TWI649264B - Oxide semiconductor and semiconductor device - Google Patents
Oxide semiconductor and semiconductor device Download PDFInfo
- Publication number
- TWI649264B TWI649264B TW107106203A TW107106203A TWI649264B TW I649264 B TWI649264 B TW I649264B TW 107106203 A TW107106203 A TW 107106203A TW 107106203 A TW107106203 A TW 107106203A TW I649264 B TWI649264 B TW I649264B
- Authority
- TW
- Taiwan
- Prior art keywords
- oxide
- oxide semiconductor
- semiconductor
- tantalum
- snnb
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 95
- 239000010955 niobium Substances 0.000 claims abstract description 35
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 33
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims abstract description 33
- 239000002131 composite material Substances 0.000 claims abstract description 19
- 239000013078 crystal Substances 0.000 claims abstract description 19
- 229910052718 tin Inorganic materials 0.000 claims abstract description 15
- 239000002800 charge carrier Substances 0.000 claims abstract description 14
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 13
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical group O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims abstract description 6
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000000126 substance Substances 0.000 claims description 10
- 229910052748 manganese Inorganic materials 0.000 claims description 6
- 229910052735 hafnium Inorganic materials 0.000 claims description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims description 5
- 229910052720 vanadium Inorganic materials 0.000 claims description 5
- 229910052726 zirconium Inorganic materials 0.000 claims description 5
- 229910052796 boron Inorganic materials 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 239000011135 tin Substances 0.000 description 188
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 22
- 238000010521 absorption reaction Methods 0.000 description 21
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 14
- 238000001228 spectrum Methods 0.000 description 13
- 230000007547 defect Effects 0.000 description 12
- 230000007847 structural defect Effects 0.000 description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 11
- 239000000843 powder Substances 0.000 description 11
- 239000011787 zinc oxide Substances 0.000 description 11
- 238000005259 measurement Methods 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 9
- 239000001301 oxygen Substances 0.000 description 9
- 229910006404 SnO 2 Inorganic materials 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000005245 sintering Methods 0.000 description 7
- 238000002441 X-ray diffraction Methods 0.000 description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 229910052500 inorganic mineral Inorganic materials 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 235000010755 mineral Nutrition 0.000 description 6
- 239000011707 mineral Substances 0.000 description 6
- 239000000654 additive Substances 0.000 description 5
- 230000000996 additive effect Effects 0.000 description 5
- 230000001747 exhibiting effect Effects 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 239000004570 mortar (masonry) Substances 0.000 description 4
- -1 oxygen chalcogenide compound Chemical class 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000005355 Hall effect Effects 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000011941 photocatalyst Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910052798 chalcogen Inorganic materials 0.000 description 1
- 150000001787 chalcogens Chemical class 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000002447 crystallographic data Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- NIFIFKQPDTWWGU-UHFFFAOYSA-N pyrite Chemical group [Fe+2].[S-][S-] NIFIFKQPDTWWGU-UHFFFAOYSA-N 0.000 description 1
- 229910052683 pyrite Inorganic materials 0.000 description 1
- 239000011028 pyrite Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/24—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G19/00—Compounds of tin
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G19/00—Compounds of tin
- C01G19/006—Compounds containing, besides tin, two or more other elements, with the exception of oxygen or hydrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G33/00—Compounds of niobium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G33/00—Compounds of niobium
- C01G33/006—Compounds containing, besides niobium, two or more other elements, with the exception of oxygen or hydrogen
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/495—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/04—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/30—Three-dimensional structures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
- C01P2002/54—Solid solutions containing elements as dopants one element only
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/77—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3232—Titanium oxides or titanates, e.g. rutile or anatase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3239—Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3251—Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3256—Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3258—Tungsten oxides, tungstates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3262—Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3286—Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3293—Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6586—Processes characterised by the flow of gas
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/76—Crystal structural characteristics, e.g. symmetry
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Thin Film Transistor (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
本發明提供一種在氧化物半導體中可以實現p型半導體,且具備透明性、遷移率、耐候性等的優異的氧化物半導體以及一種具備該氧化物半導體的半導體裝置。解決手段是提供一種氧化物半導體,具有包含鉭鈮錫石結構的結晶結構,並且由包含Nb元素和Sn元素的複合氧化物構成,藉由前述複合氧化物中Sn4+相對於Sn總含量的比例Sn4+/(Sn2++Sn4+)為0.006Sn4+/(Sn2++Sn4+)
Description
本發明是涉及一種由包含Sn的複合氧化物構成的氧化物半導體及一種半導體裝置,特別是關於一種能夠實現p型半導體特性的氧化物半導體。
以往,作為氧化物複合體,習知有在可見光範圍具有高透明性並且表現出高電氣傳導性的透明半導體材料,被廣泛用於透明電極等。例如,在透明半導体中,雖然習知有In2
O3
、ZnO、SnO2
以及該些的母體材料中添加不純物的添加Sn的In2
O3
、添加Al的ZnO、添加Ga的ZnO、添加Sb的SnO2
、添加F的SnO2
等,但這些全部都是電子為電荷載體的n型半導體。另一方面,半導體中有以電洞為電荷載體的p型半導體。如果配置在可見光範圍透明的n型和p型的半導體,則藉由形成pn接合,能夠製造在可見光範圍製作透明的二極體、電晶體、太陽電池等。
雖然Cu2
O和NiO等作為p型半導體以為習知,但是因為在可見光範圍有光吸收,具有強烈顯色,所以並不是透明的。自1990年以來,透明p型半導體的研究開發持續進展,並報導了一些新的透明p型半導體。例如,具有黑銅鐵礦(Delafossite)結構的以ABO2
(A=Cu或Ag中的至少一種,B=Al、Ga、In、Sc、Y、Cr、Rh或La中的至少一種)的化學式表示的氧化物複合體、以LnCuOCh(Ln=鑭系元素或Y中的至少一種,Ch=S、Se或Te中的至少一種)的化學式表示的氧硫族(Oxychalcogenide)化合物,以ZnO的化學式表示的氧化鋅等。然而,具有黑銅鐵礦結構的化合物的電洞的遷移率低。此外,氧硫族化合物雖然遷移率和電洞濃度相當高,但在大氣氛圍中會氧化,使特性顯著劣化。此外,因為氧化鋅是最初以電子作為電荷載體的n型半導體,需要將用於生成電子的結構缺陷濃度降至最低限度,並導入氮等的表現出p型半導體特性的構造缺陷。因此,由於同時導入p型的結構缺陷並降低n型結構缺陷的生成或n型結構缺陷濃度是困難的,所以製造具有p型半導體特性的氧化鋅是困難的且再現性差。因此,難以實現適合於電子元件的透明p型半導體。
氧化物半導體雖然是被預期作為在含有氧的大氣中氧化反應強的半導體材料,但是,以氧化物實現p型傳導性是困難的。這是因為氧化物中價帶上端部的電子侷限於氧離子上。在黑銅鐵礦化合物中將金屬的d軌域成分導入到價帶上端部,在氧硫族化合物中將硫族元素的p軌域成分導入到價帶上端部,以使價帶上端部的電子的侷限性降低。另外,如果在價帶的上端部導入具有比d軌域或p軌域大的電子軌域半徑的金屬元素的s軌域的話,則使價帶上端部的電子的侷限性降低,可以預期有高遷移率。甚至,預期s軌域的等向性的球形結構能夠抑制相對於引起鍵角或鍵長的差異的結晶結構的雜亂之遷移率的降低。基於該考量,在價帶上端部導入錫的s軌域成分的氧化錫(SnO)中,報導了p-通道電晶體的製作(例如參照專利文獻1)。另外,習知因為SnO的能能隙帶(band gap)為0.7eV且比可見光範圍小的能量,所以能被強烈顯色,不能確保可見光範圍的透明性。
關於鉭鈮錫石氧化物,有以下習知文獻。
鉭鈮錫石(foordite)以一般式SnNb2
O6
表示,晶格a=1.7093nm、b=0.4877nm、c=0.5558nm、β=90.85°,具有屬於空間群C2/c的單斜晶系的結晶結構(參照非專利文獻1)。另外,鉭鈮錫石的名稱是採用自美國的礦物學者Eugene E. Foord的名字。
圖4是示意表示鉭鈮錫石結構的氧化物複合體SnNb2
O6
的結晶結構。圖式表示3個單位晶格在c軸方向連接的狀況。Nb形成被氧氣圍繞的Nb2
O6
八面體,此八面體透過Sn在a軸方向層狀地連接。
根據報告,具備以組成式SnNb2
O6
表示的鉭鈮錫石結構的金屬氧化物,價帶上端部是由Sn的5s成分構成(參照非專利文獻2)。
根據報告,天然礦物的鉭鈮錫石中相對於Sn的總量(Sn2+
+Sn4+
)包含了少於3%的Sn4+
(參照非專利文獻3)。可是在此報告中,由於是天然礦物,以一般化學式AB2
O6
表示時,成為A=Sn+Pb、B=Nb+Ta。又根據報告,在組成分析中,也包含Fe、Mn、Ca、Na等不純物成分(參照非專利文獻3)。
根據報告,利用SnO和Nb2
O5
的固相反應合成的SnNb2
O6
表現鉭鈮錫石結構,在119
Sn梅斯堡光譜測定中Sn4+
量為零(參照非專利文獻4)。在此報告中,由於不是天然礦物,並不包含非專利文獻3所示的不純物。
根據報告,關於具有鉭鈮錫石結構的SnNb2
O6
,或是用Sr部份置換Sn的Sn0.95
Sr0.05
Nb2
O6
,在負載Ir的化合物方面,是作為透過光的照射分解水進而生成氧的光觸媒(參照專利文獻2)。然後在負載Pt的SnNb2
O6
方面,是作為透過光的照射分解水進而生成氫的光觸媒(參照非專利文獻2)。
根據報告,具有燒綠石結構,並且在包含Sn2+
和Nb5+
的Sn2
Nb2
O7
中,具有如Sn2-p
(B2-q
Snq
)O7-p-0.5q
表示表現的結構缺陷(非專利文獻5)。 [先前技術文獻]
[專利文獻1] 國際公開2010/010802號公報 [專利文獻2] 日本特開2006-88019號公報 [非專利文獻]
[非專利文獻1] T.S. Ercit, P. Cerny, The Canadian Mineralogist 26, 899-903 (1988) [非專利文獻2] Y. Hosogi, Y. Shimodaira, H. Kato, H. Kobayashi, A. Kudo, Chemistry of Materials 20, 1299 (2008) [非專利文獻3] P. Cerny, A-M. Fransolet, T. S. Ercit, R. Chapman, The Canadian Mineralogist 26, 889 (1988) [非專利文獻4] L.P. Cruz, J.-M. Savariult, J. Rocha, J.-C. Jumas, J. D. Pedrosa, Journal of Solid State Chemistry 156, 349 (2001) [非專利文獻5] M. A. Subramanian, G. Aravamudan, G. V. Subba Rao, Progress in Solid State Chemistry 15, 55 (1983)
以往,在含有氧的大氣中氧化反應強的氧化物半導體中,難以實現適用於電子元件的透明p型半導體。特別是,如果配置在可見光範圍透明的n型和p型半導體則能夠製作pn接合,雖然預期有透明的半導體裝置,然而實現上是困難的。
本發明欲解決這些問題,本發明的目的在於提供一種在可見光範圍的光吸收少且能夠實現高的電荷載體的遷移率的高的創新型氧化物半導體以及一種具有該氧化物半導體的半導體裝置。另外,本發明的目的在於,提供一種表現p型的半導體特性的氧化物半導體以及一種具有該氧化物半導體的半導體裝置。
本發明為了達成前述目的,具有以下特徵。
(1)一種氧化物半導體,其特徵在於,具有包含鉭鈮錫石結構的結晶結構,並且由包含Nb元素和Sn元素的複合氧化物構成,前述複合氧化物中Sn4+相對於Sn總含量的比例Sn4+/(Sn2++Sn4+)為0.006Sn4+/(Sn2++Sn4+)0.013,且電洞成為電荷載體。
(2)如(1)所述之氧化物半導體,其特徵在於,前述複合氧化物是以一般化學式AB2O6表示的氧化物,A為Sn,B為Nb。
(3)如(1)或(2)所述之氧化物半導體,其特徵在於,添加由W、Zr、V、Mn、Ti、Ga、Hf以及Mo所組成的群組中選出的至少一種以上的元素作為添加元素。
(4)如(3)所述之氧化物半導體,其特徵在於,前述添加元素之添加元素的總和為0.001原子%以上且10原子%以下。
(5)一種半導體裝置,其特徵在於,具備如(1)至(4)任一項所述之氧化物半導體。
根據本發明,在氧化物半導體中,可以實現具有寬能隙帶的透明且高遷移率的半導體。另外,透過本發明的氧化物半導體,可以實現p型的氧化物半導體。根據本發明,物質中的Sn4+相對於Sn總含量的比例的Sn4+/(Sn2++Sn4+)為0.006Sn4+/(Sn2++Sn4+)0.013時,藉由生成以Sn4+置換具有鉭鈮錫石結構的結構式SnNb2O6的一部分Nb位置的結構缺陷Sn’Nb,可以實現p型。
在本發明的氧化物半導體中,價帶上端部是由Sn的5s成分構成。藉此,由於s軌域是軌域半徑大且為等向性的球狀,所以使電子的侷限性降低,即使面對結構紊亂也可以實現高遷移率的效果。
本發明的半導體因為由氧化物構成,所以具有耐候性,如果形成由本發明的p型氧化物半導體和n型氧化物半導體得到的pn接合的話,則可以實現耐候性優異的電子元件。
由於本發明的氧化物半導體在表現鉭鈮錫石結構的SnNb2
O6
中,能隙帶(Eg)顯示為2.3eV,因而可以實現寬能隙帶,在可見光範圍具有高透明性。
另外,本發明的氧化物半導體也可以添加由W、Zr、V、Mn、Ti、Ga、Hf以及Mo所組成的群體中選出的至少一種以上的元素,與沒有添加元素時具有同樣的作用效果。包含添加元素的情況,例如,較佳含有添加元素的總和為0.001~10原子%,可以實現p型氧化物半導體。
本發明的半導體裝置因為具有達到上述效果的氧化物半導體,可以期待以下的作用效果。藉由形成由本發明的氧化物半導體構成的pn接合,能實現電晶體或二極體、甚至是利用其整流特性的積體電路。另外,也可以利用於對應構成pn接合的半導體的能隙帶的發光二極體或太陽電池。
以下說明關於本發明的實施方式。
在鉭鈮錫石結構的氧化物複合體中,本發明者著眼於半導體特性受氧化物複合體中的Sn4+相對於Sn的總量的比例[Sn4+/(Sn2++Sn4+)]的影響而進行研究開發,而得到具有優異的半導體特性,且具有p型的半導體特性的氧化物半導體。
相對於價帶的上端部是由Sn的5s軌域構成的能隙帶小的SnO,本發明的實施方式的氧化物半導體是透過與Nb2O5形成複合氧化物來提高結合的離子性,關於實現能隙帶的寬化的組成式SnNb2O6,具有主要為鉭鈮錫石(foordite)結構的結晶結構,並且Sn4+相對於Sn總含量的比例的Sn4+/(Sn2++Sn4+)為0.006Sn4+/(Sn2++Sn4+)0.013的半導體。
另外,本發明的實施方式的氧化物半導體認為是以所謂SnNb2O6作為化學劑量組成的一般化學式(general formula)簡要地描述,且具有一部分所含Sn2+氧化成Sn4+並且將一部分的Nb5+位置置換,以為了形成係為p型的電荷載體的電洞,又以係為結構缺陷的標記法的克羅格-維克(Kroger-Vink)的標記法標記為「Sn’Nb」的結構缺陷的半導體。
Sn是相較下易於改變價數,除了Sn2+以外,還能得到Sn0和Sn4+。例如在與SnNb2O6同樣地包含Sn2+和Nb5+的氧化物複合體Sn2Nb2O7中,在先前技術中記載的報告有描述。即,習知具有諸如Sn2-p(B2-qSnq)O7-p-0.5q表現的結構缺陷(參照非專利文獻5)。在此,除了係為相當於p的Sn缺損的V”Sn以外,存在有相當於q的Sn4+置換Nb5+的缺陷Sn’Nb,任一個皆是導致生成電洞的結構缺陷。因此,認為這些缺陷生成SnNb2O6時,任一個皆是導致生成電洞的結構缺陷中心。
在此,Sn4+
相對於Sn的總量(Sn2+
+Sn4+
)的比例Sn4+
/(Sn2+
+Sn4+
)只要不被確認有SnO2
的析出,就表示反映出用Sn4+
置換Nb5+
位置的缺陷「Sn’Nb
」。
順道一提,根據報告,在天然礦物的鉭鈮錫石中包含3%以下的Sn4+
(參照專利文獻3)。另一方面,在從樣品合成的鉭鈮錫石中並無包含Sn4+
(參照非專利文獻4)。這些差異認為是在於,天然礦物中包含具有一般化學式AB2
O6
的A2+
和B5+
以外的價數的不純物成分,為了使與這些不純物的電荷平衡,容易改變價數的Sn一部分表現為4價。在包含Sn的鉭鈮錫石結構的氧化物複合體中,以非專利文獻3或非專利文獻4為首,以往並未發現p型半導體特性。這是認為因為除了未能找到生成適量的Sn4+
與B位置置換的缺陷Sn’Nb
或Sn2+
不足的缺陷V”Sn
的條件,且生成-1價的缺陷Sn’B
或-2價的缺陷V”Sn
之生成是同時生成+2價的氧缺損V・・ O
,電荷補償完了,於是無法發現由生成電洞得到的p型傳導。在此考量的結構缺陷「Sn’Nb
」「V”Sn
」「V・・ O
」的生成量認為是依附於製作氧化物複合體時的溫度或大氣氣體條件。認為在本發明中,透過適當地控制調製樣品時的溫度或氛圍氣體條件,由找出生成「Sn’Nb
」且難以生成「V・・ O
」的最適合條件而帶來p型半導體特性的表現。p型半導體特性在塊材狀也在薄膜狀中表現。
本發明的具有包含鉭鈮錫石結構的結晶結構的氧化物,只要是主要包含鉭鈮錫石結構的結晶結構即可。另外,主要是指例如超過整體的50重量%。最者,雖然較佳為全部以鉭鈮錫石結構構成的結晶結構,但也可以容許包含若干其他結晶結構的情況,較佳為實質性上以鉭鈮錫石結構構成者。實質上是指例如80重量%以上。
關於本發明的半導體裝置,例如,舉例有以本實施方式的p型半導體以及n型半導體形成pn接合的pn接合元件。作為適當的n型半導體,舉例In2
O3
、ZnO、SnO2
及在這些的母體材料中添加不純物的添加Sn的In2
O3
、添加Al的ZnO、添加Ga的ZnO、添加Sb的SnO2
、添加F的SnO2
等。除了能製作從載體濃度的控制的容易性之絕緣體至半導體的特徵,還有從圖案化的蝕刻或容易度、和沒有原料的稀有性問題等的觀點來看,特別較佳為ZnO。
(第1實施方式) 在本實施方式中,對包含氧化物複合體的氧化物半導體作說明,該氧化物複合體具有包含Sn和Nb、包含鉭鈮錫石結構的結晶結構。在具有由Sn、Nb及氧組成的鉭鈮錫石結構的氧化物複合體中,調查了對應Sn4+
相對於(Sn2+
+Sn4+
)量的比例Sn4+
/(Sn2+
+Sn4+
)的特性。如以下所示,Sn4+
/(Sn2+
+Sn4+
)為0.006≤Sn4+
/(Sn2+
+Sn4+
)≤0.013中,表現出電洞作為電荷載體的p型半導體特性。
[具有包含Sn和Nb且包含鉭鈮錫石結構的結晶結構的氧化物複合體的製造] 將秤量的SnO粉末(股份有限公司高純度化學研究所,純度99.5%)2.030g、Nb2
O5
粉末(股份有限公司高純度化學研究所,純度99.9%)3.992g置入瑪瑙製研缽中,一邊加入乙醇(和光純藥股份有限公司,特級)一邊濕式混合約1小時。此時,以Sn和Nb的比例(Sn/Nb)在原子數比為0.50的方式混合SnO、Nb2
O5
。
其後,在室溫下放置一晚使乙醇乾燥,將大致分成六等份的粉末單軸加壓(直徑15mm,170MPa),製作成六個圓板狀的壓粉體。將壓粉體置於氧化鋁舟上,放入具有直徑50mm、長度800mm的氧化鋁爐管的電爐中,一邊以150ml/分的流量流動氮氣,一邊在1173K下鍛燒4小時。鍛燒後的壓粉體在瑪瑙製研缽內破碎,以相對於樣品2wt.%的方式添加聚乙烯醇水溶液作為黏合劑,並與乙醇混合,在室溫下放置一晚使其乾燥。之後,用篩子將粒徑調整為212μm以下,單軸加壓(直徑15mm,170MPa),然後進行均壓成形(285MPa),製作出直徑約15mm、厚度約1.2mm的成形體。將所得的成形體置於氧化鋁舟,一邊流動氮氣(流量:50ml/分),一邊在1053K~1473K下燒結4小時。各樣品的實際燒結溫度如後述的表1所示。
[Sn價數的比例與電氣特性] 用X射線繞射儀(Panalytical, X’ Pert Pro MRD)進行獲得的樣品的結晶結構的鑑定。使用波長分散型螢光X射線分析裝置(理學,ZSX)估計燒成後的(Sn/Nb)的組成比例。準備金電極沉積在圓形的樣品的四角的樣品,並藉由范德堡法(Van der Pauw method)配置使用霍爾效應(Hall effect)測量裝置(東陽科技,Resitest 8310)進行。使用熱電特性評價裝置(Advance理工,ZEM-3)進行樣品的賽貝克係數(Seebeck coefficient)評價。X射線繞射、螢光X射線以及霍爾測量是在300K下進行,另外,賽貝克測量是在323K進行。樣品中Sn4+
與Sn2+
的Sn量的估算是藉由用透射法的梅斯堡分光進行。測量是在室溫(300K)和液氮溫度(78K)下的兩個點測量,相對得到的119
Sn梅斯堡光譜,進行利用勞倫茲曲線(Lorenz curve)的最小平方擬合來求出吸收峰的積分強度,即積分吸收強度。此處,由於四價的Sn位置和二價的Sn位置的無反衝分率f(recoilless fraction)的溫度依附性不同(德拜(Debye)溫度是不同的),如果直接使用相對高溫(室溫)的數據的峰積分吸收強度的比例值,則會有低估二價Sn的量,而高估四價的Sn的量的傾向。因此,以德拜模型的高溫近似來擬合各位置的絕對積分吸收強度的溫度依附性,並求出每個位置的德拜溫度,以進行f的修正。具體而言,將德拜模型的高溫近似式(1)適用於標準化的積分吸收強度的溫度依附性,求出每個樣品/每個位置的德拜溫度。
ln f =-(6ER
/kB
θD 2
)T (1) ER
= Eγ 2
/2Mc2
(2) A = const. ×f (3) f:無反衝分率 T:測量溫度 θD
:德拜溫度 kB
:波茲曼常數 ER
:反衝能量 Eγ
:梅斯堡伽瑪線能量(23.87 keV) M:反衝核質量(118.90331 u) c:光速 A:積分吸收強度
使用得到的德拜溫度,由式(1)求出各溫度下每個位置的無反衝分率,修正積分吸收強度,然後求出四價和二價的Sn位置的積分吸收強度比。將此值作為不依附於溫度的定量值。
圖1分別表示關於SnNb2
O6
的各個樣品在各個燒結溫度下的X射線繞射圖案的變化。圖1的橫軸是相對使用CuKα射線的入射角度Θ的繞射角度2Θ。圖式也表現來自X射線資料庫的ICDD(International Centre for Diffraction Data)的SnNb2
O6
鉭鈮錫石(98-020-2827)的X射線繞射圖案。任一個情況的X射線繞射圖案也僅表現出歸於SnNb2
O6
的峰值,前述SnNb2
O6
具有屬於單斜晶系的鉭鈮錫石結構。由此可以看出,在SnNb2
O6
中,樣品編號1至4具有包含屬於單斜晶系的鉭鈮錫石結構的結晶結構,與實際燒結溫度的差異無關。
圖2中用實線表示關於SnNb2
O6
的樣品編號1至3的各個燒結溫度的119
Sn梅斯堡光譜的變化。圖式中用細線表示幾乎不存在Sn4+
的SnNb2
O6
(樣品編號4)的光譜。再者,光譜的測量溫度是300K。圖2的橫軸是都卜勒速度。在全部的光譜中,可見三個吸收峰值。在0mm/s附近的一個弱峰是歸因於Sn4+
的峰值,而在2-6mm/s的兩個峰值是歸因於Sn2+
的峰值。因此,可以知道樣品編號1至3全部都有Sn4+
和Sn2+
共存。
此處,從119
Sn梅斯堡光譜求出Sn4+
相對於Sn的總量(Sn2+
+Sn4+
)的比例Sn4+
/(Sn2+
+Sn4+
)。如上所述,單單由這些峰值的積分吸收強度比求取的話,會有低估二價的Sn量、而高估四價的Sn量的傾向。在此進行積分吸收強度的修正。樣品編號1為例具體說明。
在圖3中用實線表示在300K和78K下測量的樣品編號1的119
Sn梅斯堡光譜。然後,作為參考,在圖式中用細線表現幾乎不存在Sn4+
的SnNb2
O6
(樣品編號4)的光譜。首先,求得各個溫度下的峰值面積(相當於積分吸收強度A)。因為此積分吸收強度A和無反衝分率f與式(3)有關係,在式(1)右邊的括號內,相當於表示積分吸收強度的自然對數(lnA)和溫度T的關係(lnA vs. T)的斜率。從此斜率求得德拜溫度θD
。接著,從求得的德拜溫度θD
使用式(1),求得300K和78K的無反衝分率f。自得到的各個溫度的無反衝分率f和當時的積分吸收強度A的關係,算出假設無反衝分率f=1時的修正積分吸收強度Acorr
來作為不依附於測量溫度的定量值。
測量溫度78K下的積分吸收強度A,由歸因於Sn4+
的峰值來看是0.004504,而由歸因於Sn2+
的峰值來看是0.301744。測量溫度300K下的積分吸收強度A,由歸因於Sn4+
的峰值來看是0.003433,而由歸因於Sn2+
的峰值來看是0.148438。從這些的積分吸收強度得到斜率(ΔlnA/ΔT)(Sn4+
是-0.00122,Sn2+
是-0.00320),從這些斜率得到德拜溫度θD
(Sn4+
是387K,Sn2+
是237K)。從這些的德拜溫度θD
使用式(1),得到78K下的無反衝分率f(Sn4+
是0.9092、Sn2+
是0.7791),得到300K下的無反衝分率f(Sn4+
是0.6935、Sn2+
是0.3829)。接著,假設無反衝分率f=1時的修正積分吸收強度Acorr
在測量溫度78K和300K兩者下,求得Sn4+
是0.0050,Sn2+
是0.3877,算出修正積分吸收強度Acorr
來作為不依附於測量溫度的定量值。將此作為強度比(和為1)表示時,算出Sn4+
是0.013,Sn2+
是0.987,Sn4+
/(Sn2+
+Sn4+
)是0.013。
表1總結表示關於SnNb2
O6
中燒結溫度不同的樣品,從119
Sn梅斯堡光譜求得的Sn4+
/(Sn2+
+Sn4+
)和電氣測量結果(比電阻、電荷載體的濃度、遷移率、賽貝克係數)。
[表1]
在表1中,由於SnNb2
O6
的製作條件中僅燒結溫度有差異,透過燒結溫度,知道樣品編號1至4的諸如表現p型傳導的樣品(樣品編號1至2)、表現絕緣性的樣品(樣品編號3)、表現n型傳導的樣品(樣品編號4)的電氣特性有差異。知道這些樣品的Sn4+
/(Sn2+
+Sn4+
)中,比起表現絕緣性的樣品(樣品編號3),表現p型傳導的樣品(樣品編號1至2)顯示出較高的數值。接著知道在表現p型傳導的樣品(樣品編號1至2)中,電荷載體濃度高的樣品(樣品編號1)顯示比濃度低的樣品(樣品編號2)有較高的Sn4+
/(Sn2+
+Sn4+
)的值。即,係為顯示p型的電荷載體的電洞濃度依附於Sn4+
的比例,Sn4+
在比例高時,顯示出高電洞濃度。這些即表示與作出電洞的結構缺陷Sn’B
的量有關係。此外從樣品編號1至2可以知道,當至少0.006≤Sn4+
/(Sn2+
+Sn4+
)≤0.013時,會表現p型傳導。
(第2實施方式) 在本實施方式中,說明關於第一實施方式的氧化物複合體是微量添加Sn、Nb以外的元素的情況。即使微量添加元素,在結晶結構是鉭鈮錫石結構的情況下,也與第一實施方式同樣地表現出p型半導體特性。
[具有包含Sn和Nb,並且包含具有其他元素作為添加元素的鉭鈮錫石結構的結晶結構的氧化物複合體的製造] 與第一實施方式中的氧化物複合體的製造同樣地,在秤量的SnO粉末(股份有限公司高純度化學研究所,純度99.5%)和Nb2
O5
粉末(股份有限公司高純度化學研究所,純度99.9%)中加入1.5~5.0原子%的WO2
粉末(和光純藥工業股份有限公司,純度99.9%),置入瑪瑙製研缽,一邊加入乙醇(和光純藥股份有限公司,特級)一邊濕式混合約1小時。
之後,在室溫下放置一晚使乙醇乾燥,將大致分成六等份的粉末單軸加壓(直徑15mm,170MPa),製作成六個圓板狀的壓粉體。將壓粉體置於氧化鋁舟上,放入具有直徑50mm、長度800mm的氧化鋁爐管的電爐中,一邊以150ml/分的流量流動氮氣,一邊在1173K下鍛燒4小時。在瑪瑙製研缽內破碎鍛燒的壓粉體,以相對於樣品2wt.%的比例聚乙烯醇水溶液添加作為黏合劑,並與乙醇混合後,在室溫下放置一晚讓其乾燥。之後,用篩子將粒徑調整為212μm以下,單軸加壓(直徑15mm,170MPa),然後進行均壓成形(285MPa),製作出直徑約15mm、厚度約1.2mm的成形體。將得到的成形體置於氧化鋁舟,一邊流動氮氣(流量:50ml/分)一邊在1053K下燒結4小時。
[添加元素與電氣特性] 表2總結表示添加1.5~5.0原子%WO2
添加化合物的樣品的電氣測量結果(比電阻、電荷載體的濃度、遷移率、賽貝克係數)。
[表2]
在表2中,添加1.5~5.0原子%的WO2
的SnNb2
O6
由於任一個的賽貝克係數都取得正值,所以知道是p型半導體。此外在樣品編號5至8的樣品中,透過X射線繞射測量,任一個都觀察到歸因於SnNb2
O6
的峰。在樣品編號8的樣品中,除了歸因於SnNb2
O6
的峰值,些微地觀察到歸因於WO3
等的添加化合物的異相。由此可知,雖然知道添加元素在3.5原子%以下的話為最佳,但由於能確認賽貝克係數是正值,即使在5原子%以下也是較佳的。若在10原子%以下的話,雖然不純物會增加,但由於SnNb2
O6
是主要的結晶相,即使觀察到若干歸因於添加元素的異相,仍可以實現p型半導體。
作為添加元素,雖然示出W的具體例,但W的離子半徑是0.066nm(W4+
),與Nb5+
的離子半徑(0.064nm)之間的差異為小至3.1%(W4+
)。一般認為形成置換型固溶體時,被置換的離子和添加元素的離子之間的大小差異在15%以內。因此,Zr、V、Mn、Ti、Ga、Hf、Mo的離子半徑各為0.072nm(差異12.5%),0.064nm(差異0.0%)、0.065nm(差異1.5%)、0.061nm(差異4.7%)、0.062nm(差異3.1%)、0.071nm(差異10.9%)、0.065nm(差異1.5%),因為與W同樣地差異在15%以內,所以可以對鉭鈮錫石結構形成置換固溶體。即,除了上述Sn4+
將Nb5+
置換的缺陷,因為這些添加元素與任一個的Nb置換的缺陷也被認為是生成電洞的缺陷,添加同樣的量的添加元素時也能實現p型。
以上,從根據X射線的結晶相的鑑定、根據霍爾效應測量及熱電特性測量的電氣特性評價、根據梅斯堡光譜測量的Sn4+
/(Sn2+
+Sn4+
)的結果來看,在以一般化學式SnNb2
O6
表示的化合物中,當物質中的Sn4+
相對於Sn總量的比例Sn4+
/(Sn2+
+Sn4+
)為0.006≤Sn4+
/(Sn2+
+Sn4+
)≤0.013的情況下,明顯表現出具有包含鉭鈮錫石結構的結晶結構,且電洞作為電荷載體的p型半導體特性。此外,本發明的氧化物半導體具有從由W、Zr、V、Mn、Ti、Ga、Hf、Mo所組成的群組中選出的至少一種以上的元素作為添加元素的情況下,明顯能實現p型氧化物半導體。添加元素的量即使分別包含0.001原子%以上10原子%以下,也能實現p型氧化物半導體。另,添加元素的量的總和較佳為0.001原子%以上5原子%以下,總和更較佳為0.001原子%以上3.5原子%以下。
透過上述的氧化物複合體的製造方法雖然示例出塊材狀的複合體的情況,但即使是薄膜狀也能得到同樣的p型特性。薄膜狀的氧化物半導體除了透過濺鍍法、藉由加熱或電子束的汽相沉積法、離子鍍法等的真空成膜技術以外,也能藉由以溶液作為初始材料的旋塗法或噴塗法等的氧化物薄膜製造技術進行製造。
再者,以上述實施方式等示出的例子是為了易於理解發明而記載,並非限定此方式。 [產業上的利用可能性]
因為本發明的氧化物半導體能夠實現p型半導體,所以藉由在可見光範圍透明的n型和p型的半導體能夠實現pn接合,能夠廣泛地用於透射型顯示器或透明電晶體等的裝置,在產業上是有用途。
無
圖1是表示第一實施方式中的氧化物複合體SnNb2
O6
(樣品編號1至4以及ICDD的資料)時的X射線繞射圖案的圖式。 圖2是表示第一實施方式中的氧化物複合體SnNb2
O6
(樣品編號1至3)的情況,在300K測得的119
Sn梅斯堡光譜(實線),並且細線表示Sn4+
幾乎不存在的SnNb2
O6
(樣品編號4)情況,在300K測得的119
Sn梅斯堡光譜的圖式。 圖3是表示第一實施方式中在氧化物複合體SnNb2
O6
(樣品編號1)中的測得溫度是300K和78K時的119
Sn梅斯堡光譜的圖式。
圖4是示意表現鉭鈮錫石結構的氧化物複合體SnNb2O6的結晶結構的圖式。
Claims (5)
- 一種氧化物半導體,具有包含鉭鈮錫石結構的結晶構造,並且由包含Nb元素和Sn元素的複合氧化物構成,前述複合氧化物中Sn4+相對於Sn總含量的比例Sn4+/(Sn2++Sn4+)為0.006Sn4+/(Sn2++Sn4+)0.013,且電洞成為電荷載體。
- 如申請專利範圍第1項所述之氧化物半導體,其中,前述複合氧化物是以一般化學式AB2O6表示的氧化物,A為Sn,B為Nb。
- 如申請專利範圍第1項或2項所述之氧化物半導體,其中,添加由W、Zr、V、Mn、Ti、Ga、Hf以及Mo所組成的群組中選出的至少一種以上的元素作為添加元素。
- 如申請專利範圍第3項所述之氧化物半導體,其中,前述添加元素之添加元素的總和為0.001原子%以上且10原子%以下。
- 一種半導體裝置,包括申請專利範圍第1項至4項中任一項所述之氧化物半導體。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017032113 | 2017-02-23 | ||
JP2017-032113 | 2017-02-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201831405A TW201831405A (zh) | 2018-09-01 |
TWI649264B true TWI649264B (zh) | 2019-02-01 |
Family
ID=63253692
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107106203A TWI649264B (zh) | 2017-02-23 | 2018-02-23 | Oxide semiconductor and semiconductor device |
Country Status (5)
Country | Link |
---|---|
US (1) | US20200035792A1 (zh) |
EP (1) | EP3587350A4 (zh) |
JP (1) | JP6933400B2 (zh) |
TW (1) | TWI649264B (zh) |
WO (1) | WO2018155034A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018155033A1 (ja) * | 2017-02-23 | 2018-08-30 | 国立研究開発法人産業技術総合研究所 | 酸化物半導体及び半導体装置 |
JP7395488B2 (ja) | 2018-09-13 | 2023-12-11 | 株式会社半導体エネルギー研究所 | 半導体装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58219703A (ja) * | 1982-06-01 | 1983-12-21 | イ−・アイ・デユ・ポン・ドウ・ヌム−ル・アンド・カンパニ− | 酸化錫を含む導電相の製造方法 |
JP4206822B2 (ja) * | 2003-05-21 | 2009-01-14 | 住友金属鉱山株式会社 | 複合酸化物から成る光触媒とその製造方法 |
GB0326991D0 (en) * | 2003-11-20 | 2003-12-24 | Johnson Matthey Plc | Pigments |
JP4528944B2 (ja) | 2004-09-22 | 2010-08-25 | 学校法人東京理科大学 | 硝酸イオン存在下の酸化的雰囲気においてIr酸化物系助触媒を担持させた光触媒およびその製造方法 |
JP5168605B2 (ja) | 2008-07-24 | 2013-03-21 | 独立行政法人科学技術振興機構 | pチャネル薄膜トランジスタとその製造方法 |
-
2018
- 2018-01-22 US US16/487,961 patent/US20200035792A1/en not_active Abandoned
- 2018-01-22 WO PCT/JP2018/001729 patent/WO2018155034A1/ja unknown
- 2018-01-22 JP JP2019501124A patent/JP6933400B2/ja active Active
- 2018-01-22 EP EP18758245.7A patent/EP3587350A4/en active Pending
- 2018-02-23 TW TW107106203A patent/TWI649264B/zh active
Non-Patent Citations (4)
Title |
---|
Dalal Noureldine,…etc.,〝Flux-assisted synthesis of SnNb2O6 for tuning photocatalytic properties〞,Vol.16,2014,P10762-P10769 * |
Dalal Noureldine,…etc.,〝Flux-assisted synthesis of SnNb2O6 for tuning photocatalytic properties〞,Vol.16,2014,P10762-P10769。 |
Yasuhiro Hosogi,…etc.,〝Role of Sn2+ in the Band Structure of SnM2O6 and Sn2M2O7 (M=Nb and Ta) and Their Photocatalytic Properties〞, Chemistry of Materials,Vol.20,2008,P1299-P1307 * |
Yasuhiro Hosogi,…etc.,〝Role of Sn2+ in the Band Structure of SnM2O6 and Sn2M2O7 (M=Nb and Ta) and Their Photocatalytic Properties〞, Chemistry of Materials,Vol.20,2008,P1299-P1307。 |
Also Published As
Publication number | Publication date |
---|---|
EP3587350A1 (en) | 2020-01-01 |
JPWO2018155034A1 (ja) | 2019-12-19 |
WO2018155034A1 (ja) | 2018-08-30 |
TW201831405A (zh) | 2018-09-01 |
EP3587350A4 (en) | 2020-12-23 |
US20200035792A1 (en) | 2020-01-30 |
JP6933400B2 (ja) | 2021-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Murmu et al. | Influence of carrier density and energy barrier scattering on a high Seebeck coefficient and power factor in transparent thermoelectric copper iodide | |
Ingram et al. | Transport and defect mechanisms in cuprous delafossites. 1. Comparison of hydrothermal and standard solid-state synthesis in CuAlO2 | |
Yaremchenko et al. | Boosting thermoelectric performance by controlled defect chemistry engineering in Ta-substituted strontium titanate | |
Marquardt et al. | Crystal chemistry and electrical properties of the delafossite structure | |
Peng et al. | Design of semiconducting tetrahedral Mn 1− x Zn x O alloys and their application to solar water splitting | |
TWI469933B (zh) | 新穎化合物半導體及其應用 | |
Barreteau et al. | Layered oxychalcogenide in the Bi–Cu–O–Se system as good thermoelectric materials | |
Woods-Robinson et al. | Combinatorial tuning of structural and optoelectronic properties in CuxZn1− xS | |
Kaiser et al. | Molybdenum Oxides MoO x: Spark-Plasma Synthesis and Thermoelectric Properties at Elevated Temperature | |
Ramana et al. | Electronic structure and chemical bonding in transition-metal-mixed gallium oxide (Ga2O3) compounds | |
Novitskii et al. | Reactive spark plasma sintering and thermoelectric properties of Nd-substituted BiCuSeO oxyselenides | |
Blichfeld et al. | Fast direct synthesis and compaction of phase pure thermoelectric ZnSb | |
Pavan Kumar et al. | Copper Hyper-Stoichiometry: The Key for the Optimization of Thermoelectric Properties in Stannoidite Cu8+ x Fe3–x Sn2S12 | |
Williamson et al. | Computationally driven discovery of layered quinary oxychalcogenides: Potential p-type transparent conductors? | |
Daniels et al. | A and B site doping of a phonon-glass perovskite oxide thermoelectric | |
TWI649264B (zh) | Oxide semiconductor and semiconductor device | |
Gayner et al. | Effects of Co-doping and microstructure on charge carrier energy filtering in thermoelectric titanium-doped zinc aluminum oxide | |
Yang et al. | Seeking new layered oxyselenides with promising thermoelectric performance | |
Huang et al. | Origin of the enhancement in transport properties on polycrystalline SnSe with compositing two-dimensional material MoSe2 | |
Chen et al. | Thermoelectric performance of Dy/Y co-doped SrTiO3 ceramic composites with submicron A2Ti2O7 (A= Dy, Y) pyrochlore | |
US20180305219A1 (en) | Oxide semiconductor | |
Shaili et al. | Higher conductivity and enhanced optoelectronic properties of chemically grown Nd-doped CaSnO3 perovskite oxide thin films | |
Joos et al. | Spark Plasma Sintering (SPS)-Assisted Synthesis and Thermoelectric Characterization of Magnéli Phase V6O11 | |
TWI675005B (zh) | 氧化物半導體以及半導體裝置 | |
JP3922651B2 (ja) | 熱電変換材料とこれを用いた熱電変換素子ならびにこの素子を備える電子機器および冷却装置 |