WO2020027215A1 - 方向性電磁鋼板 - Google Patents

方向性電磁鋼板 Download PDF

Info

Publication number
WO2020027215A1
WO2020027215A1 PCT/JP2019/030059 JP2019030059W WO2020027215A1 WO 2020027215 A1 WO2020027215 A1 WO 2020027215A1 JP 2019030059 W JP2019030059 W JP 2019030059W WO 2020027215 A1 WO2020027215 A1 WO 2020027215A1
Authority
WO
WIPO (PCT)
Prior art keywords
grain
steel sheet
oriented electrical
electrical steel
rolling direction
Prior art date
Application number
PCT/JP2019/030059
Other languages
English (en)
French (fr)
Inventor
修一 中村
悠祐 川村
翔太 森本
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2020534713A priority Critical patent/JP7028325B2/ja
Priority to BR112021000803-9A priority patent/BR112021000803A2/pt
Priority to CN201980049675.6A priority patent/CN112469840B/zh
Priority to US17/263,824 priority patent/US11939641B2/en
Priority to RU2021101788A priority patent/RU2764625C1/ru
Priority to EP19843927.5A priority patent/EP3831974A4/en
Priority to KR1020217002559A priority patent/KR102457420B1/ko
Publication of WO2020027215A1 publication Critical patent/WO2020027215A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/04Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation

Definitions

  • the present invention relates to a grain-oriented electrical steel sheet.
  • This application is filed with Japanese Patent Application No. 2018-143898 filed on July 31, 2018, in Japanese Patent Application No. 2018-143900 filed on July 31, 2018, and filed in Japan on July 31, 2018.
  • Japanese Patent Application No. 2018-143901 filed, Japanese Patent Application No. 2018-143902 filed on July 31, 2018, Japanese Patent Application No. 2018-143904 filed on July 31, 2018, and 2018 Priority is claimed based on Japanese Patent Application No. 2018-143905 filed in Japan on July 31, 2008, and the contents thereof are incorporated herein by reference.
  • -Oriented electrical steel sheets are steel sheets containing 7% by mass or less of Si and having a secondary recrystallized texture integrated in the ⁇ 110 ⁇ ⁇ 001> orientation (Goss orientation).
  • the ⁇ 110 ⁇ ⁇ 001> orientation means that the ⁇ 110 ⁇ plane of the crystal is arranged parallel to the rolling plane, and the ⁇ 001> axis of the crystal is arranged parallel to the rolling direction.
  • the magnetic properties of ⁇ oriented electrical steel sheets ⁇ are greatly affected by the degree of integration in the ⁇ 110 ⁇ ⁇ 001> orientation.
  • the relationship between the rolling direction of the steel sheet, which is the main magnetization direction when the steel sheet is used, and the ⁇ 001> direction of the crystal, which is the easy magnetization direction, is important.
  • the angle between the ⁇ 001> direction of the crystal and the rolling direction is controlled to fall within a range of about 5 °.
  • the deviation between the actual crystal orientation of the grain-oriented electrical steel sheet and the ideal ⁇ 110 ⁇ ⁇ 001> orientation is represented by a deviation angle ⁇ around the normal direction Z to the rolling surface, a deviation angle ⁇ around the perpendicular direction C to the rolling direction, and the rolling direction.
  • the shift angle ⁇ around L can be represented by three components.
  • FIG. 1 is a schematic view illustrating the shift angle ⁇ , the shift angle ⁇ , and the shift angle ⁇ .
  • the deviation angle ⁇ is an angle formed between the ⁇ 001> direction of the crystal projected on the rolling surface and the rolling direction L when viewed from the normal direction Z of the rolling surface. Is the angle between the ⁇ 001> direction of the crystal projected on the L section (a section having the normal to the rolling direction as a normal line) and the rolling direction L when viewed from the direction perpendicular to the rolling direction C (the sheet width direction). is there.
  • the shift angle ⁇ is an angle formed between the ⁇ 110> direction of the crystal projected on the C section (a section having the rolling direction as a normal line) and the normal direction Z of the rolling surface when viewed from the rolling direction L.
  • magnetostriction is a phenomenon in which a magnetic material changes its shape when a magnetic field is applied.
  • small magnetostriction is required because magnetostriction causes vibration and noise.
  • Patent Documents 1 to 3 disclose how to control the shift angle ⁇ .
  • Patent Documents 4 and 5 disclose controlling the shift angle ⁇ in addition to the shift angle ⁇ .
  • Patent Literature 6 discloses a technique for improving the iron loss characteristics by further classifying the degree of integration of crystal orientations using the shift angle ⁇ , the shift angle ⁇ , and the shift angle ⁇ as indices.
  • Patent Documents 7 to 9 Further, not only controlling the magnitudes and average values of the absolute values of the deviation angles ⁇ , ⁇ , and ⁇ but also controlling the fluctuation angles (deviations) are disclosed in Patent Documents 7 to 9, for example. Further, Patent Documents 10 to 12 disclose that Nb, V, and the like are added to grain-oriented electrical steel sheets.
  • Patent Literatures 13 and 14 disclose a method of performing a secondary recrystallization while giving a temperature gradient to a steel sheet in a tip region of a secondary recrystallized grain that is eating a primary recrystallized grain in a finish annealing step. Is disclosed.
  • Patent Document 15 discloses a process (for example, in the width direction of a steel sheet) in which, when a secondary recrystallization proceeds while giving a temperature gradient, free growth of the secondary recrystallization generated at the beginning of the secondary recrystallization is suppressed. (A process of applying a mechanical strain to the end portion).
  • Patent Documents 1 to 9 do not sufficiently reduce magnetostriction in spite of controlling the crystal orientation.
  • Patent Documents 10 to 12 merely contain Nb and V, so that the reduction of magnetostriction cannot be said to be sufficient. Further, the conventional techniques disclosed in Patent Documents 13 to 15 not only have a problem in terms of productivity, but also cannot sufficiently reduce magnetostriction.
  • An object of the present invention is to provide a grain-oriented electrical steel sheet with improved magnetostriction in view of the current situation where reduction of magnetostriction is required for grain-oriented electrical steel sheets.
  • the gist of the present invention is as follows.
  • the grain-oriented electrical steel sheet according to one embodiment of the present invention is as follows: Si: 2.0 to 7.0%, Nb: 0 to 0.030%, V: 0 to 0.030%, Mo : 0 to 0.030%, Ta: 0 to 0.030%, W: 0 to 0.030%, C: 0 to 0.0050%, Mn: 0 to 1.0%, S: 0 to 0.0.0% 0150%, Se: 0 to 0.0150%, Al: 0 to 0.0650%, N: 0 to 0.0050%, Cu: 0 to 0.40%, Bi: 0 to 0.010%, B: 0 to 0.080%, P: 0 to 0.50%, Ti: 0 to 0.0150%, Sn: 0 to 0.10%, Sb: 0 to 0.10%, Cr: 0 to 0.30 %, Ni: 0 to 1.0%, the balance being a chemical composition composed of Fe and impurities, and having a texture oriented in the Goss orientation.
  • the deviation angle from the ideal Goss direction with the direction Z as the rotation axis is defined as ⁇
  • the deviation angle from the ideal Goss direction with the rotation perpendicular direction C as the rotation axis is defined as ⁇
  • the rolling direction L is the rotation axis.
  • the shift angle from the ideal Goss orientation is defined as ⁇
  • the shift angles of the crystal orientations measured at two measurement points adjacent to each other on the plate surface and having an interval of 1 mm are ( ⁇ 1 ⁇ 1 ⁇ 1 ) and ( ⁇ 2 ⁇ 2 ⁇ 2 )
  • the boundary condition BA is defined as [( ⁇ 2 ⁇ 1 ) 2 + ( ⁇ 2 ⁇ 1 ) 2 + ( ⁇ 2 ⁇ 1 ) 2 ] 1/2 ⁇ 0.5 °.
  • the boundary condition BA When the boundary condition BB is defined as [( ⁇ 2 ⁇ 1 ) 2 + ( ⁇ 2 ⁇ 1 ) 2 + ( ⁇ 2 ⁇ 1 ) 2 ] 1/2 ⁇ 2.0 °, the boundary condition BA And the grain boundary that does not satisfy the boundary condition BB exists.
  • the average crystal grain size in the rolling direction L obtained based on the boundary conditions BA defined as the particle size RA L, the rolling direction L obtained based on the boundary conditions BB the average crystal grain size when defining the particle diameter RB L, and the particle size RA L and particle size RB L may satisfy 1.15 ⁇ RB L ⁇ RA L.
  • the average crystal grain size of the perpendicular to the rolling direction C determined based on the boundary conditions BA defined as the particle size RA C, based on the boundary conditions BB the average crystal grain size of the perpendicular to the rolling direction C obtaining Te when defining the particle diameter RB C, and a particle size RA C and particle size RB C, may satisfy 1.15 ⁇ RB C ⁇ RA C.
  • the average crystal grain size in the rolling direction L is defined as the particle size RA L determined based on the boundary conditions BA
  • boundary when the average crystal grain size of the perpendicular to the rolling direction C is defined as the particle size RA C determined based on the condition BA
  • a particle size RA L and particle size RA C even satisfies 1.15 ⁇ RA C ⁇ RA L Good.
  • the average crystal grain size in the rolling direction L obtained based on the boundary conditions BB is defined as the particle diameter RB L
  • the boundary when the average crystal grain size of the perpendicular to the rolling direction C is defined as the particle diameter RB C determined based on the condition BB
  • a particle size RB L and particle size RB C even satisfies 1.50 ⁇ RB C ⁇ RB L Good.
  • a shift angle of the crystal orientation measured at a measurement point on the sheet surface is represented by ( ⁇ ), and each measurement is performed.
  • the standard deviation ⁇ ( ⁇ ) of the absolute value of the deviation angle ⁇ is 0 ° or more and 3.0 ° or less. Is also good.
  • the boundary condition BC is defined as
  • the boundary condition BC is There may be a grain boundary that satisfies and does not satisfy the boundary condition BB.
  • the average crystal grain size in the rolling direction L obtained based on the boundary condition BC is defined as the particle size RC L
  • the boundary when the average crystal grain size in the rolling direction L is defined as the particle diameter RB L determined based on the condition BB
  • a particle size RC L and particle size RB L may satisfy 1.10 ⁇ RB L ⁇ RC L .
  • the average crystal grain size of the perpendicular to the rolling direction C determined based on the boundary condition BC is defined as the particle size RC C
  • the average crystal grain size of the perpendicular to the rolling direction C is defined as the particle diameter RB C determined based on the boundary conditions BB
  • particle size RC C and the particle size RB C is, satisfies 1.10 ⁇ RB C ⁇ RC C Is also good.
  • the average crystal grain size in the rolling direction L obtained based on the boundary condition BC is defined as the particle size RC L
  • the boundary when the average crystal grain size of the perpendicular to the rolling direction C is defined as the particle size RC C determined based on the condition BC
  • the particle size RC L and a particle size RC C is also satisfies 1.15 ⁇ RC C ⁇ RC L Good.
  • the average crystal grain size in the rolling direction L obtained based on the boundary condition BC is defined as the particle size RC L
  • the boundary the average grain size in the rolling direction L is defined as the particle diameter RB L determined based on the conditions BB
  • the average crystal grain size of the perpendicular to the rolling direction C determined based on the boundary condition BC is defined as the particle size RC C
  • the boundary condition when the average crystal grain size of the perpendicular to the rolling direction C is defined as the particle diameter RB C determined based on the BB
  • the particle size RC L and a particle size RC C and the particle size RB L and particle size RB C (RB C ⁇ RC L ) ⁇ (RB L ⁇ RC C ) ⁇ 1.0.
  • ) of the absolute value of the deviation angle ⁇ is 0 ° or more and 3.50 ° or less. It may be.
  • at least one selected from the group consisting of Nb, V, Mo, Ta, and W is used as a chemical composition. The total content may be 0.0030 to 0.030% by mass.
  • the magnetic domain is subdivided by at least one of local microstrain application or local groove formation. Is also good.
  • the intermediate layer In the grain-oriented electrical steel sheet according to any one of the above (1) to (15), an intermediate layer disposed in contact with the grain-oriented electrical steel sheet and an insulating layer disposed in contact with the intermediate layer. And a coating.
  • the intermediate layer In the grain-oriented electrical steel sheet according to any one of the above (1) to (16), the intermediate layer may be a forsterite film having an average thickness of 1 to 3 ⁇ m.
  • the intermediate layer In the grain-oriented electrical steel sheet according to any one of the above (1) to (17), the intermediate layer may be an oxide film having an average thickness of 2 to 500 nm.
  • a grain-oriented electrical steel sheet having improved magnetostriction and iron loss in a medium magnetic field region (in particular, a magnetic field of about 1.7 T) can be obtained.
  • FIG. 3 is a schematic diagram illustrating a shift angle ⁇ , a shift angle ⁇ , and a shift angle ⁇ . It is a cross section of an grain-oriented electrical steel sheet concerning one embodiment of the present invention. 1 is a flowchart of a method for manufacturing a grain-oriented electrical steel sheet according to an embodiment of the present invention.
  • the strength of the magnetic field when magnetizing is generally in the magnetic field region around 1.7T, which is the strength of the magnetic field when measuring the magnetic properties (hereinafter simply referred to as the "medium magnetic field region"). in there), the correlation between the magnetic flux density B 8 and iron loss was found to be relatively high.
  • the present inventors have found that in some of the material was found that in some cases the correlation between the magnetic flux density B 8 and magnetostriction becomes weak.
  • the behavior was evaluated by the difference between the minimum value and the maximum value of magnetostriction, which is the amount of magnetostriction at 1.7 T (hereinafter, referred to as “ ⁇ p-pT1.7T”). I learned that I can do it. Then, it was thought that if this behavior could be controlled optimally, it would be possible to further improve the magnetostriction in the medium magnetic field region.
  • the present inventors have studied the growth of a crystal with a change in orientation, instead of growing the crystal while maintaining the crystal orientation at the stage of growing the secondary recrystallized grains.
  • many local and small azimuthal changes in the orientation that were not conventionally recognized as grain boundaries are generated. It has been found that a state in which the secondary recrystallized grains are divided into small regions having slightly different crystal orientations is advantageous for improving magnetostriction and iron loss in a medium magnetic field region.
  • the inside of the secondary recrystallized grain is divided into a plurality of regions by grain boundaries having a small value of the angle ⁇ . That is, the grain-oriented electrical steel sheet according to the present embodiment has a local grain that divides the inside of the secondary recrystallized grain in addition to the grain boundary having a relatively large angle difference corresponding to the grain boundary of the secondary recrystallized grain. And a small grain boundary (a grain boundary having a small value of the angle ⁇ ).
  • the grain-oriented electrical steel sheet according to the present embodiment has, in mass%, Si: 2.0 to 7.0%, Nb: 0 to 0.030%, V: 0 to 0.030%, Mo: : 0 to 0.030%, Ta: 0 to 0.030%, W: 0 to 0.030%, C: 0 to 0.0050%, Mn: 0 to 1.0%, S: 0 to 0.0.0% 0150%, Se: 0 to 0.0150%, Al: 0 to 0.0650%, N: 0 to 0.0050%, Cu: 0 to 0.40%, Bi: 0 to 0.010%, B: 0 to 0.080%, P: 0 to 0.50%, Ti: 0 to 0.0150%, Sn: 0 to 0.10%, Sb: 0 to 0.10%, Cr: 0 to 0.30 %, Ni: 0 to 1.0%, the balance having a chemical composition consisting of Fe and impurities, and having a texture oriented in the Goss orientation, The deviation angle
  • the deviation angle from the ideal Goss direction with the rolling direction L as the rotation axis is defined as ⁇
  • the deviation angles of the crystal orientations measured at two measurement points adjacent to each other on the plate surface and having an interval of 1 mm are respectively expressed as ( ⁇ 1 ⁇ 1 ⁇ 1 ) and ( ⁇ 2 ⁇ 2 ⁇ 2 )
  • the boundary condition BA is expressed as [( ⁇ 2 ⁇ 1 ) 2 + ( ⁇ 2 ⁇ 1 ) 2 + ( ⁇ 2 ⁇ 1 ) 2 ] 1/2 ⁇ 0.5 °
  • the boundary condition BB is defined as [( ⁇ 2 ⁇ 1 ) 2 + ( ⁇ 2 ⁇ 1 ) 2 + ( ⁇ 2 ⁇ 1 ) 2 ] 1/2 ⁇ 2.0 °
  • the grain-oriented electrical steel sheet according to the present embodiment satisfies the boundary condition BA and satisfies the boundary condition BB in addition to the grain boundary (grain boundary corresponding to the secondary recrystallization grain boundary) that satisfies the boundary condition BB. It has unsatisfactor
  • a grain boundary satisfying the boundary condition BB substantially corresponds to a secondary recrystallized grain boundary observed when a conventional grain-oriented electrical steel sheet is macro-etched.
  • the grain-oriented electrical steel sheet according to this embodiment has, at a relatively high frequency, a grain boundary satisfying the boundary condition BA and not satisfying the boundary condition BB, in addition to the grain boundary satisfying the above-described boundary condition BB.
  • a grain boundary that satisfies the boundary condition BA and does not satisfy the boundary condition BB corresponds to a local small-angle grain boundary that divides the inside of the secondary recrystallized grain. That is, in this embodiment, the secondary recrystallized grains are finely divided into small regions having slightly different crystal orientations.
  • a conventional grain-oriented electrical steel sheet may have secondary recrystallized grain boundaries that satisfy the boundary condition BB. Further, in the conventional grain-oriented electrical steel sheet, the crystal orientation may be gradually displaced within the secondary recrystallized grains. However, in the conventional grain-oriented electrical steel sheet, since the crystal orientation tends to be continuously displaced in the secondary recrystallized grains, the displacement of the crystal orientation existing in the conventional grain-oriented electrical steel sheet is limited by the boundary condition BA. Is difficult to satisfy.
  • the displacement of the crystal orientation may be identified in the long range region within the secondary recrystallized grains, but the displacement of the crystal orientation is small in the short range region within the secondary recrystallized grains. Therefore, it is difficult to discriminate (it is difficult to satisfy the boundary condition BA).
  • the crystal orientation is locally displaced in a short range region and can be identified as a grain boundary. Specifically, [( ⁇ 2 ⁇ 1 ) 2 + ( ⁇ 2 ⁇ 1 ) 2 + ( ⁇ 2 ) is set between two measurement points adjacent to each other in the secondary recrystallized grain and having an interval of 1 mm. ⁇ 1 ) 2 ]
  • the displacement at which the value of 1/2 is 0.5 ° or more exists at a relatively high frequency.
  • the grain boundary satisfying the boundary condition BA and not satisfying the boundary condition BB (the grain for dividing the secondary recrystallized grain) is precisely controlled by the production conditions as described later. World) intentionally.
  • the secondary recrystallized grains are divided by grain boundaries having a small angle ⁇ , and both magnetostriction and iron loss in a medium magnetic field region are improved.
  • the crystal orientation is specified without strictly distinguishing an angle difference of about ⁇ 2.5 °.
  • the angular range of about ⁇ 2.5 ° centered on the geometrically strict ⁇ 110 ⁇ ⁇ 001> direction is defined as “ ⁇ 110 ⁇ ⁇ 001> direction”.
  • the ⁇ 110 ⁇ ⁇ 001> direction of the grain-oriented electrical steel sheet according to the present embodiment is shifted by 2 ° from the ideal ⁇ 110 ⁇ ⁇ 001> direction”.
  • the following five angles ⁇ , ⁇ , ⁇ , ⁇ , and ⁇ related to the crystal orientation observed in the grain-oriented electrical steel sheet are used.
  • Deviation angle ⁇ The deviation angle of the crystal orientation observed in the grain-oriented electrical steel sheet from the ideal ⁇ 110 ⁇ ⁇ 001> orientation around the normal Z to the rolling surface.
  • Shift angle ⁇ shift angle of the crystal orientation observed in the grain-oriented electrical steel sheet from the ideal ⁇ 110 ⁇ ⁇ 001> orientation around the direction C perpendicular to the rolling direction.
  • Shift angle ⁇ The shift angle of the crystal orientation observed in the grain-oriented electrical steel sheet from the ideal ⁇ 110 ⁇ ⁇ 001> orientation around the rolling direction L.
  • FIG. 1 is a schematic diagram of the above-described shift angles ⁇ , ⁇ , and ⁇ .
  • This angle ⁇ may be described as “space three-dimensional azimuth difference”.
  • the grain-oriented electrical steel sheet according to the present embodiment is a conventional grain-oriented electrical steel sheet for controlling a spatial three-dimensional misorientation (angle ⁇ ), particularly during the growth of secondary recrystallized grains. Utilizes local changes in crystal orientation that are not recognized as grain boundaries.
  • the above orientation change that occurs to divide one secondary recrystallized grain into small regions having slightly different crystal orientations may be referred to as “switching”.
  • a grain boundary (a grain boundary that satisfies the boundary condition BA and does not satisfy the boundary condition BB) that divides the inside of the secondary recrystallized grain is distinguished as a “sub-grain boundary” and a grain boundary including the sub-grain boundary is defined as a boundary.
  • the resulting crystal grains may be described as “sub-crystal grains”.
  • iron loss W 17/50
  • magnetostriction ⁇ p-p@1.7T
  • the magnetization behavior is caused by the movement of the 180 ° magnetic domain and the rotation of the magnetization from the easy magnetization direction.
  • the magnetic domain movement and magnetization rotation are affected by the continuity of the magnetic domain with the adjacent crystal grain or the continuity of the magnetization direction, and it is considered that the misorientation with the adjacent grain may lead to the magnitude of the disturbance of the magnetization behavior.
  • the switching local azimuth change
  • the switching occurs frequently within one secondary recrystallized grain, so that the relative azimuth difference between adjacent grains is reduced and the directional property is reduced. It is considered that this acts to increase the continuity of the crystal orientation in the entire magnetic steel sheet.
  • boundary conditions are defined for the change in crystal orientation including switching.
  • definition of “grain boundaries” based on these boundary conditions is important.
  • the crystal orientation of the grain-oriented electrical steel sheet that is practically manufactured is controlled so that the deviation angle between the rolling direction and the ⁇ 001> direction is approximately 5 ° or less.
  • This control is the same for the grain-oriented electrical steel sheet according to the present embodiment.
  • the “grain boundary” of the grain-oriented electrical steel sheet the “boundary in which the azimuth difference between adjacent regions is 15 ° or more”, which is a general definition of a grain boundary (large-angle grain boundary), is applied. Can not do.
  • a grain boundary is revealed by macro-etching of the steel sheet surface. In this case, a difference in crystal orientation between both sides of the grain boundary is usually about 2 to 3 °.
  • the crystal orientation may be measured by an X-ray diffraction method (Laue method).
  • the Laue method is a method of irradiating a steel sheet with an X-ray beam and analyzing transmitted or reflected diffraction spots. By analyzing the diffraction spots, the crystal orientation at the place where the X-ray beam is irradiated can be identified. If the diffraction spots are analyzed at a plurality of positions while changing the irradiation position, the crystal orientation distribution at each irradiation position can be measured.
  • the Laue method is a technique suitable for measuring the crystal orientation of a metal structure having coarse crystal grains.
  • the number of measurement points for the crystal orientation may be at least 500, but it is preferable to appropriately increase the number of measurement points according to the size of the secondary recrystallized grains. For example, if the number of secondary recrystallized grains included in the measurement line is less than 10 when the number of measurement points for measuring the crystal orientation is 500, then 10 or more secondary recrystallized grains are included in the measurement line. It is preferable to extend the above measurement line by increasing the number of measurement points at 1 mm intervals as described above.
  • the boundary condition BA Is defined as [( ⁇ 2 ⁇ 1 ) 2 + ( ⁇ 2 ⁇ 1 ) 2 + ( ⁇ 2 ⁇ 1 ) 2 ] 1/2 ⁇ 0.5 °
  • the boundary condition BB is defined as [( ⁇ 2 ⁇ ⁇ 1 ) 2 + ( ⁇ 2 ⁇ 1 ) 2 + ( ⁇ 2 ⁇ 1 ) 2 ] 1/2 ⁇ 2.0 ° It is determined whether a grain boundary satisfying the boundary condition BA and / or the boundary condition BB exists between two adjacent measurement points.
  • the grain boundary satisfying the boundary condition BB has a spatial three-dimensional azimuth difference (angle ⁇ ) between two points sandwiching the grain boundary of 2.0 ° or more, and this grain boundary has been recognized by macro etching. It can be said that these are almost the same as the grain boundaries of conventional secondary recrystallized grains.
  • the grain-oriented electrical steel sheet according to this embodiment has a grain boundary strongly related to “switching”, specifically, the boundary condition BA is satisfied and the boundary condition is satisfied. Grain boundaries that do not satisfy BB exist at a relatively high frequency.
  • the grain boundary thus defined corresponds to a grain boundary that divides one secondary recrystallized grain into small regions having slightly different crystal orientations.
  • the above two grain boundaries can be determined using different measurement data. However, taking into account the labor of measurement and the deviation from the actual state due to the difference in data, the deviation angle of the crystal orientation obtained from the same measurement line (at least 500 measurement points at 1 mm intervals on the rolling surface) is used. Therefore, it is preferable to obtain the above two grain boundaries.
  • the grain-oriented electrical steel sheet according to the present embodiment has, at a relatively high frequency, a grain boundary that satisfies the boundary condition BA and does not satisfy the boundary condition BB, in addition to the grain boundary that satisfies the boundary condition BB.
  • the recrystallized grains are divided into small regions having slightly different crystal orientations. As a result, both magnetostriction and iron loss in the medium magnetic field region are improved.
  • a grain boundary that satisfies the boundary condition BA and does not satisfy the boundary condition BB exists in the steel sheet.
  • grain boundaries satisfying the boundary condition BA and not satisfying the boundary condition BB exist at a relatively high frequency.
  • the boundary condition BA only needs to be 1.15 times or more the “grain boundary satisfying the boundary condition BB”. That is, when the boundary condition is determined as described above, the value obtained by dividing the "number of boundaries satisfying the boundary condition BA" by the "number of boundaries satisfying the boundary condition BB” may be 1.15 or more. In the present embodiment, when the above value is 1.15 or more, it is determined that “a grain boundary that satisfies the boundary condition BA and does not satisfy the boundary condition BB” exists in the grain-oriented electrical steel sheet.
  • the upper limit of the value obtained by dividing the “number of boundaries satisfying the boundary condition BA” by the “number of boundaries satisfying the boundary condition BB” is not particularly limited. For example, this value may be 80 or less, 40 or less, or 30 or less.
  • the grain size in the rolling direction of the sub-crystal grains is smaller than the grain size in the rolling direction of the secondary recrystallized grains. That is, the grain-oriented electrical steel sheet according to the present embodiment has subcrystal grains and secondary recrystallized grains whose grain size is controlled in the rolling direction.
  • the grain-oriented electrical steel sheet according to the present embodiment the average crystal grain size in the rolling direction L obtained based on the boundary conditions BA defined as the particle size RA L, the rolling direction L obtained based on the boundary conditions BB when the average crystal grain size of the defined as the particle diameter RB L, A particle size RA L and a particle size RB L satisfies the 1.15 ⁇ RB L ⁇ RA L. Further, it is preferable that RB L ⁇ RA L ⁇ 80.
  • This rule represents the above-mentioned “switching” state with respect to the rolling direction. That is, among the secondary recrystallized grains having a boundary where the angle ⁇ is 2 ° or more as a crystal grain boundary, a crystal grain including at least one boundary where the angle ⁇ is 0.5 ° or more and less than 2 ° is included. , In the rolling direction. In the present embodiment, the status of this switch, defined and evaluated by the rolling direction of the grain size RA L and particle size RB L.
  • RB L / RA L value is preferably 1.20 or more, more preferably 1.30 or more, more preferably 1.50 or more, more preferably 2.0 or more, more preferably 3.0 or more, more preferably 5.0 or more.
  • RB L / RA L value there is no particular limitation on the upper limit of RB L / RA L value.
  • the greater the higher RB L / RA L value occurrence frequency of the switching since the continuity of the crystal orientation of the whole grain-oriented electromagnetic steel sheet is increased, preferred for improvement of the magnetostriction.
  • the switching since the switching is also a residual lattice defect in the crystal grain, if the switching frequency is too high, there is a concern that the effect of improving the iron loss may be reduced. Therefore, 80 may be mentioned as a practical maximum of RB L / RA L value.
  • the maximum value of RB L / RA L values preferably 40, more preferably include 30.
  • the boundary between two measurement points adjacent to each other on the rolling surface and having an interval of 1 mm is classified into cases A to C in Table 1.
  • the above particle diameter RB L is determined based on the grain boundaries satisfying the case A of Table 1
  • the particle size RA L is obtained based on the grain boundaries satisfying the case A and / or case B in Table 1.
  • the deviation angle of the crystal orientation measurement line along a rolling direction including at least 500 measurement points were measured, the average value of the segment length to be sandwiched between the grain boundaries of the case A in the measurement line and the particle diameter RB L I do.
  • a line segment length of the average value held between the grain boundaries of the case A and / or case B the particle size RA L the particle size RA L.
  • the grain size of the sub-crystal grains in the direction perpendicular to the rolling direction is smaller than the grain size of the secondary recrystallized grains in the direction perpendicular to the rolling direction. That is, the grain-oriented electrical steel sheet according to the present embodiment has sub-crystal grains and secondary re-crystal grains whose grain size is controlled in the direction perpendicular to the rolling direction.
  • the grain-oriented electrical steel sheet according to the present embodiment perpendicular to the rolling of the average crystal grain size of the perpendicular to the rolling direction C determined based on the boundary conditions BA defined as the particle size RA C, determined on the basis of the boundary conditions BB when defining the particle diameter RB C the average crystal grain size of the direction C, A particle size RA C and a particle size RB C satisfies the 1.15 ⁇ RB C ⁇ RA C. Further, it is preferable that an RB C ⁇ RA C ⁇ 80.
  • This rule represents the above-mentioned "switching" situation in the direction perpendicular to the rolling direction. That is, among the secondary recrystallized grains having a boundary where the angle ⁇ is 2 ° or more as a crystal grain boundary, a crystal grain including at least one boundary where the angle ⁇ is 0.5 ° or more and less than 2 ° is included. , In the direction perpendicular to the rolling direction. In the present embodiment, the status of this switch, defined and evaluated by the particle size RA C and particle size RB C in the direction perpendicular to the rolling direction.
  • RB C / RA C value is preferably 1.20 or more, more preferably 1.30 or more, more preferably 1.50 or more, more preferably 2.0 or more, more preferably 3.0 or more, more preferably 5.0 or more.
  • RB C / RA C value there is no particular limitation on the upper limit of the RB C / RA C value.
  • the greater the higher RB C / RA C value occurrence frequency of the switching since the continuity of the crystal orientation of the whole grain-oriented electromagnetic steel sheet is increased, preferred for improvement of the magnetostriction.
  • the switching since the switching is also a residual lattice defect in the crystal grain, if the switching frequency is too high, there is a concern that the effect of improving the iron loss may be reduced. Therefore, 80 may be mentioned as a practical maximum of RB C / RA C value.
  • the maximum value of RB C / RA C values preferably 40, more preferably include 30.
  • the above particle diameter RB C is determined based on the grain boundaries satisfying the case A of Table 1
  • the particle size RA C is determined based on the grain boundaries satisfying the case A and / or case B in Table 1.
  • perpendicular to the rolling direction along measures the deviation angle of the crystal orientation measurement line including at least 500 measurement points, the average value of the particle size RB C line segment length sandwiched between the grain boundaries of the case A in this measurement line
  • the grain size of the sub-crystal grains in the rolling direction is smaller than the grain size of the sub-crystal grains in the direction perpendicular to the rolling direction. That is, the grain-oriented electrical steel sheet according to the present embodiment has sub-crystal grains whose grain size is controlled in the rolling direction and the direction perpendicular to the rolling direction.
  • the grain-oriented electrical steel sheet according to the present embodiment perpendicular to the rolling direction of an average grain size in the rolling direction L obtained based on the boundary conditions BA defined as the particle size RA L, obtained based on the boundary conditions BA
  • a particle size RA L and a particle size RA C satisfies the 1.15 ⁇ RA C ⁇ RA L. Further, it is preferable that an RA C ⁇ RA L ⁇ 10.
  • the shape of a crystal grain may be described as “(in-plane) anisotropy” or “flat (shape)”.
  • the shape of these crystal grains describes the shape when observed from the surface (rolled surface) of the steel sheet. That is, the shape of the crystal grains does not take into account the size in the plate thickness direction (observed shape in the plate thickness cross section).
  • the grain-oriented electrical steel sheet almost all the crystal grains have the same size as the steel sheet thickness in the thickness direction. That is, in the grain-oriented electrical steel sheet, the thickness of the steel sheet is often occupied by one crystal grain except for a specific region such as the vicinity of a crystal grain boundary.
  • RA C / RA L value for the rolling direction and the direction perpendicular to the rolling direction, indicating the status of the "switching" described above. That is, it means that the frequency of occurrence of the local change in the crystal orientation that is recognized as switching is different depending on the in-plane direction of the steel sheet.
  • the status of this switch was assessed by a particle size RA C and particle size RA L of two orthogonal directions in the steel sheet surface to define.
  • That RA C / RA L value is greater than 1, the subgrains defined by switching Viewed on average, and stretched in the direction perpendicular to the rolling direction, and shown to have a flat form collapsed in the rolling direction I have. In other words, it indicates that the form of the crystal grain defined by the sub-grain boundary has anisotropy.
  • Such anisotropy of switching occurrence is some anisotropy existing in the steel sheet before secondary recrystallization: for example, anisotropy in the shape of primary recrystallized grains; Anisotropy of crystal orientation distribution of primary recrystallized grains due to (colony distribution); arrangement of precipitates stretched by hot rolling and precipitates crushed and arranged in rows in the rolling direction; coil width direction And distribution of precipitates due to fluctuations in the thermal history in the longitudinal direction and anisotropy in the crystal grain size distribution.
  • details of the mechanism of occurrence are unknown.
  • the steel sheet undergoing the secondary recrystallization has a temperature gradient, a direct anisotropy is given to the growth of crystal grains (dislocation disappearance and formation of grain boundaries). That is, the temperature gradient in the secondary recrystallization is a very effective control condition for controlling the anisotropy defined in the present embodiment. Details will be described in connection with the manufacturing method.
  • the direction in which the subcrystal grains are stretched is a direction perpendicular to the rolling at present. It is preferable to consider the method. In this case, the rolling direction of the grain size RA L becomes a value smaller than the particle size RA C in the direction perpendicular to the rolling direction. The relationship between the rolling direction and the direction perpendicular to the rolling direction will be described in connection with the manufacturing method.
  • the direction in which the sub-crystal grains are stretched is determined not by the temperature gradient but by the frequency of occurrence of sub-grains.
  • RA C / RA L value is less than 1.15, the switching frequency is not sufficient, magnetostriction Sometimes it cannot be improved sufficiently.
  • RA C / RA L value is preferably 1.80 or more, more preferably 2.10 or more.
  • RA C / RA L value there is no particular limitation on the upper limit of RA C / RA L value. Frequency and the extending direction of the switching is limited to a particular direction, the larger the RA C / RA L value, since the continuity of the crystal orientation of the whole grain-oriented electromagnetic steel sheet is increased, preferred for improvement of the magnetostriction. On the other hand, since the switching is also a residual lattice defect in the crystal grain, there is a concern that if the frequency of occurrence is too high, the effect of improving iron loss in particular may be reduced. Therefore, it includes 10 as a practical maximum of RA C / RA L value. Particularly if necessary considerations for iron loss, as the maximum of RA C / RA L value, preferably 6, more preferably include 4.
  • grain-oriented electrical steel sheet according to the present embodiment in addition to the control of RA C / RA L value described above, and the particle size RA L and particle size RB L described above, 1.20 ⁇ RB L ⁇ RA L It is preferable to satisfy the following.
  • particle size RA C and RA L is the angle ⁇ between two adjacent measurement points is the particle size based on the grain boundaries to be 0.5 ° or more, "switch" is not at all generated, even if all of the grain boundaries of the angle ⁇ was at 2.0 ° or more, it may RA C / RA L value described above is satisfied. Be likened RA C / RA L value is satisfied, if the angle of all the grain boundaries ⁇ is 2.0 ° or more, only been generally recognized secondary recrystallized grains are simply becomes flat shape Therefore, the above effects of the present embodiment are not preferably obtained.
  • the angle ⁇ of all the grain boundaries is 2 situation hardly occurs that is .0 ° or more, but in addition to satisfying the RA C / RA L value described above, it is preferable to satisfy the RB L / RA L value.
  • the particle size mentioned above RA C and particle size RB C and is 1.20 ⁇ RB C / to meet the RA C does not become any problem, but rather preferable in view of enhancing the continuity of the crystal orientation of the whole grain-oriented electromagnetic steel sheet.
  • the grain size of the secondary recrystallized grains in the rolling direction and the direction perpendicular to the rolling direction is controlled.
  • the grain-oriented electrical steel sheet according to the present embodiment perpendicular to the rolling direction of an average grain size in the rolling direction L obtained based on the boundary conditions BB is defined as the particle diameter RB L, obtained based on the boundary conditions BB when defining the particle diameter RB C the average crystal grain size and C,
  • a particle size RB L and a particle size RB C preferably satisfies the 1.50 ⁇ RB C ⁇ RB L. Further, it is preferable that an RB C ⁇ RB L ⁇ 20.
  • RB C / RB L value is preferably 1.80 or more, more preferably 2.00 or more, more preferably 2.50 or more. There is no particular limitation on the upper limit of the RB C / RB L value.
  • the RB C / RB L value performs a preferential heating of the ends of the coil width during finish annealing, by applying a temperature gradient to the coil width direction (direction of the coil axis) A process for growing secondary recrystallized grains is given.
  • the particle size of the secondary recrystallized grains in the coil circumferential direction for example, rolling direction
  • the particle size of the secondary recrystallized grains in the coil width direction is defined as the coil width.
  • one crystal grain can occupy the entire width of a coil having a width of 1000 mm. In this case, as the upper limit of RB C / RB L value, and 20.
  • the maximum value of the particle size of the secondary recrystallized grains is not limited to the coil width, A larger value is also possible. Even in this case, according to the present embodiment, the above effects of the present embodiment can be obtained by appropriately dividing the crystal grains by the sub-grain boundaries by switching.
  • the frequency of switching of the angle ⁇ is controlled in the rolling direction and the direction perpendicular to the rolling direction.
  • the average crystal grain size in the rolling direction L obtained based on the boundary conditions BA defined as the particle size RA L, the rolling direction L obtained based on the boundary conditions BB the average crystal grain size is defined as the particle diameter RB L of the average crystal grain size of the perpendicular to the rolling direction C determined based on the boundary conditions BA defined as the particle size RA C, perpendicular to the rolling direction C determined based on the boundary conditions BB when the average crystal grain size of the defined as the particle diameter RB C,
  • a particle size RA L and a particle size RA C and particle size RB L and a particle size RB C preferably satisfy the (RB C ⁇ RA L) ⁇ (RB L ⁇ RA C) ⁇ 1.0.
  • the lower limit is not particularly limited, if the state of the art assumes, may be a 0.2 ⁇ (RB C ⁇ RA L ) ⁇ (RB L ⁇ RA C).
  • This definition represents the in-plane anisotropy of the occurrence frequency of the above-mentioned “switching”. That is, the (RB C ⁇ RA L) / (RB L ⁇ RA C) is "occurrence of about switching of dividing the secondary recrystallized grains in the direction perpendicular to the rolling direction: RB C / RA C" and "secondary The degree of occurrence of switching to divide the recrystallized grains in the rolling direction: RB L / R AL. The fact that this value is less than 1 indicates that one secondary recrystallized grain is divided in the rolling direction by switching (sub-grain boundaries).
  • the sub-grain boundaries tend to divide the secondary recrystallized grains in the rolling direction rather than in the direction perpendicular to the rolling. That is, the sub-grain boundaries tend to extend in the direction in which the secondary recrystallized grains extend. It is considered that this tendency of the sub-grain boundaries serves to increase the area occupied by crystals of a specific orientation when the secondary recrystallized grains are stretched.
  • the value of (RB C ⁇ RA L) / (RB L ⁇ RA C) is preferably 0.9 or less, more preferably 0.8 or less, more preferably 0.5 or less.
  • the lower limit of (RB C ⁇ RA L) / (RB L ⁇ RA C) is not particularly limited, but in consideration of industrial feasibility, may be a greater than 0.2.
  • the above particle size RB L and particle size RB C is determined based on the grain boundaries satisfying the case A of Table 1.
  • the above particle size RA L and particle size RA C is determined based on the grain boundaries satisfying the case A and / or case B in Table 1.
  • the deviation angle of the crystal orientation is measured on a measurement line including at least 500 measurement points along the direction perpendicular to the rolling direction, and the average value of the lengths of the line segments sandwiched by the grain boundaries of case A and / or case B on this measurement line It is referred to as particle size RA C.
  • Particle size RA L, particle size RB L, particle diameter RB C also may be obtained as well.
  • the standard deviation ⁇ ( ⁇ ) of the absolute value of the shift angle ⁇ be 0 ° or more and 3.0 ° or less.
  • the “shift angle” is easily controlled to a characteristic range.
  • the absolute value of the shift angle ⁇ approaching zero does not hinder the above embodiment.
  • the crystal orientation changes little by little due to the switching with respect to the angle ⁇ , the crystal orientation converges to a specific orientation, and as a result, the standard deviation of the shift angle ⁇ approaches zero. Will not be a hindrance.
  • the standard deviation ⁇ ( ⁇ ) of the shift angle ⁇ may be 0 ° or more and 3.0 ° or less.
  • the standard deviation ⁇ ( ⁇ ) of the shift angle ⁇ is obtained as follows.
  • the grain-oriented electrical steel sheet has an increased degree of integration in the ⁇ 110 ⁇ ⁇ 001> orientation by secondary recrystallization in which crystal grains grown to a size of about several cm are formed. In each embodiment, it is necessary to recognize a change in crystal orientation in such a grain-oriented electrical steel sheet. Therefore, in a region including at least 20 secondary recrystallized grains, 500 or more crystal orientations are measured.
  • one secondary recrystallized grain is regarded as a single crystal, and the inside of the secondary recrystallized grain has exactly the same crystal orientation”. That is, in each embodiment, there is a local azimuth change within a coarse secondary recrystallized grain that is not recognized as a grain boundary conventionally, and it is necessary to detect this azimuth change.
  • the measurement points of the crystal orientation are distributed at regular intervals within a fixed area set independently of the boundaries of crystal grains (crystal grain boundaries). Specifically, measurement points are distributed at equal intervals of 5 mm vertically and horizontally within an area of Lmm ⁇ Mmm (L, M> 100) so as to include at least 20 or more crystal grains on the steel sheet surface. It is preferable to measure the crystal orientation at each measurement point and obtain data of a total of 500 points or more. If the measurement point is a grain boundary or some singular point, the data is not used. In addition, it is necessary to extend the above measurement range according to a region necessary for determining the magnetic characteristics of the target steel sheet (for example, in the case of an actual coil, a range for measuring the magnetic characteristics described on a mill sheet). is there.
  • ⁇ ( ⁇ ) is preferably within the above numerical range.
  • the standard deviation of the shift angle ⁇ and the shift angle ⁇ is a factor that is generally considered to be small in order to improve magnetic properties or magnetostriction in a medium magnetic field of about 1.7 T.
  • these controls alone have limitations on the characteristics that can be achieved.
  • ⁇ ( ⁇ ) by controlling ⁇ ( ⁇ ) together, the continuity of the crystal orientation in the entire grain-oriented electrical steel sheet is favorably affected.
  • the standard deviation ⁇ ( ⁇ ) of the shift angle ⁇ is more preferably 2.70 or less, further preferably 2.50 or less, further preferably 2.20 or less, and further preferably 1.80 or less. is there.
  • the standard deviation ⁇ ( ⁇ ) may of course be 0 (zero).
  • the secondary recrystallized grains are divided into a plurality of regions having slightly different shift angles ⁇ . That is, the grain-oriented electrical steel sheet according to the present embodiment has a local grain that divides the inside of the secondary recrystallized grain in addition to the grain boundary having a relatively large angle difference corresponding to the grain boundary of the secondary recrystallized grain. Has a grain boundary related to a small inclination angle ⁇ .
  • the boundary condition BC is defined as
  • the boundary condition BC is satisfied.
  • iron loss in a high magnetic field region is preferably improved.
  • the present inventors In order to understand the characteristics of the magnetic characteristics in a high magnetic field region, the present inventors generally study the iron loss and the crystal loss when magnetized at about 1.9 T, which is higher than about 1.7 T at which the magnetic properties are measured. The relationship with the azimuth shift angle was analyzed. As a result, it was confirmed that control of the deviation angle ⁇ is important for reducing iron loss in a high magnetic field region. Therefore, first, the cause of the deviation angle ⁇ was considered as follows.
  • the crystal orientation preferentially generated in the secondary recrystallization of a practical grain-oriented electrical steel sheet is basically the ⁇ 110 ⁇ ⁇ 001> orientation.
  • growth in an orientation having some in-plane rotation within the steel plate surface ( ⁇ 110 ⁇ plane) is allowed and proceeds. That is, it is not easy to completely eliminate the generation and growth of crystal grains having the shift angle ⁇ in the secondary recrystallization process that is industrially performed.
  • the crystal grains of this orientation grow to a certain size, the crystal grains ultimately remain in the steel sheet without being eaten by the ideal crystal grains of the ⁇ 110 ⁇ ⁇ 001> orientation. Strictly speaking, these crystal grains do not have a ⁇ 001> orientation in the rolling direction, and are generally called “swinging Goss” or the like.
  • the present inventors have studied the growth of a crystal with a change in orientation, instead of growing the crystal while maintaining the crystal orientation at the stage of growing the secondary recrystallized grains.
  • a large number of local and small tilt changes in the orientation that were not conventionally recognized as grain boundaries are generated, and the shift angle ⁇ of one secondary recrystallized grain is reduced. It has been found that the state divided into slightly different small regions is advantageous for reducing iron loss in a high magnetic field region.
  • a crystal grain boundary (a grain boundary satisfying the boundary condition BC) in consideration of the angle difference of the shift angle ⁇ is referred to as an “ ⁇ grain boundary”, and a crystal grain distinguished by the ⁇ grain boundary as a boundary is referred to as an “ ⁇ crystal boundary”. Granules ".
  • the crystal orientation is controlled to the Goss orientation, but actually, the crystal orientation is slightly different between the crystal grains on both sides of the crystal grain boundary. Therefore, when the grain-oriented magnetic steel sheet is excited, a special magnetic domain (return magnetic domain) for adjusting the magnetic domain structure is induced near the crystal grain boundaries. In this return magnetic domain, the magnetic moment in the magnetic domain is difficult to be aligned in the direction of the external magnetic field, so that the return magnetic domain remains in the high magnetic field region during the magnetization process and suppresses the movement of the domain wall.
  • return magnetic domain return magnetic domain
  • the crystal orientation is measured at 1 mm intervals on the rolled surface, and then the above-mentioned shift angle ⁇ , shift angle ⁇ , and shift angle ⁇ are specified for each measurement point. It is determined whether or not a grain boundary exists between two adjacent measurement points based on the specified shift angle at each measurement point. Specifically, it is determined whether or not two adjacent measurement points satisfy the boundary condition BC and / or the boundary condition BB.
  • the boundary condition BC Is defined as
  • the boundary condition BB is [( ⁇ 2 ⁇ 1 ) 2 + ( ⁇ 2 ⁇ 1 ) 2 + ( ⁇ 2 ⁇ 1 ) 2 ] 1 / 2 ⁇ 2.0 ° to define. It is determined whether or not a grain boundary satisfying the boundary condition BC and / or the boundary condition BB exists between two adjacent measurement points.
  • the grain-oriented electrical steel sheet according to the present embodiment has, at a relatively high frequency, a grain boundary that satisfies the boundary condition BC and does not satisfy the boundary condition BB, in addition to the grain boundary that satisfies the boundary condition BB.
  • the inside of the recrystallized grains is divided into small regions having slightly different deviation angles ⁇ , and as a result, iron loss in a high magnetic field region is reduced.
  • a grain boundary that satisfies the boundary condition BC and does not satisfy the boundary condition BB exists in the steel sheet.
  • a grain boundary that satisfies the boundary condition BC and does not satisfy the boundary condition BB exists at a relatively high frequency.
  • the present embodiment is characterized in that the inside of the secondary recrystallized grain is divided into small areas where the shift angle ⁇ is slightly different, so that the ⁇ grain boundary is relatively larger than the conventional secondary recrystallized grain boundary. It is preferably present at a high frequency.
  • the “grain boundary satisfying the boundary condition BC” may be present at a ratio of 1.10 times or more the “grain boundary satisfying the boundary condition BB”. That is, when the boundary condition is determined as described above, the value obtained by dividing the “number of boundaries satisfying the boundary condition BC” by the “number of boundaries satisfying the boundary condition BB” may be 1.10. In the present embodiment, when the above value is 1.10 or more, it is determined that “a grain boundary that satisfies the boundary condition BC and does not satisfy the boundary condition BB” exists in the grain-oriented electrical steel sheet.
  • the upper limit of the value obtained by dividing the “number of boundaries satisfying the boundary condition BC” by the “number of boundaries satisfying the boundary condition BB” is not particularly limited. For example, this value may be 80 or less, 40 or less, or 30 or less.
  • the grain size in the rolling direction of ⁇ crystal grains is smaller than the grain size in the rolling direction of secondary recrystallized grains. That is, the grain-oriented electrical steel sheet according to the present embodiment has ⁇ crystal grains and secondary recrystallized grains whose grain size is controlled in the rolling direction.
  • the average crystal grain size in the rolling direction L determined based on the boundary condition BC is defined as the grain size RC L
  • the rolling direction L determined based on the boundary condition BB is defined.
  • This rule represents the above-mentioned “switching” state with respect to the rolling direction. That is, among the secondary recrystallized grains having the boundary where the angle ⁇ is 2 ° or more as the crystal grain boundary, the boundary where
  • the status of this switch defined and evaluated by a particle size in the rolling direction RC L and particle size RB L.
  • the RB L / RC L value is preferably 1.30 or more, more preferably 1.50 or more, further preferably 2.0 or more, further preferably 3.0 or more, and still more preferably 5.0 or more.
  • the upper limit of the RB L / RC L value is not particularly limited. If the switching frequency is high and the RB L / R C L value is large, the continuity of the crystal orientation in the entire grain-oriented electrical steel sheet is high, which is preferable for improvement of magnetostriction. On the other hand, since the switching is also a residual lattice defect in the crystal grain, if the switching frequency is too high, there is a concern that the effect of improving the iron loss may be reduced. Therefore, a practical maximum value of the RB L / RC L value is 80. In particular, if consideration is given to iron loss, the maximum value of the RB L / R C L value is preferably 40, more preferably 30.
  • the RB L / R C L value may be less than 1.0.
  • RB L is the average particle size of the defined rolling direction on the basis of the grain boundary angle ⁇ is 2 ° or more.
  • RC L is
  • RB L is the particle diameter determined by the grain boundary based on the angle phi, a particle diameter determined by the grain boundary based on RC L off angle alpha, grains for obtaining a particle size in the RB L and RC L
  • the definition of the world is different. Therefore, the RB L / RC L value may be less than 1.0.
  • each condition is controlled so that the frequency of switching by the shift angle ⁇ increases. If the switching control is not sufficient and the separation from the present embodiment is large, the shift angle ⁇ does not change, and the RB L / R C L value becomes less than 1.0. As described above, in the present embodiment, the occurrence frequency of the ⁇ grain boundary is sufficiently increased, and the condition that the RB L / R C L value is 1.10 or more is an essential condition.
  • the above particle diameter RB L is determined based on the grain boundaries satisfying the casing 1 and / or case 2 of Table 2, the particle size RC L is the grain boundary satisfying the casing 1 and / or the case 3 of Table 2 Ask based on.
  • the deviation angle of the crystal orientation is measured on a measurement line including at least 500 measurement points along the rolling direction, and the average value of the lengths of the line segments sandwiched between the grain boundaries of Case 1 and / or Case 2 is measured on this measurement line. and the particle size RB L.
  • a line segment length of the average value held between the grain boundaries of the case 1 and / or the case 3 and the particle size RC L is measured based on the grain boundaries satisfying the casing 1 and / or case 2 of Table 2 Ask based on.
  • the deviation angle of the crystal orientation is measured on a measurement line including at least 500 measurement points along the rolling direction, and the average value of the lengths of the line segments sandwiched between the grain boundaries of Case 1 and / or Case 2 is measured on this measurement line.
  • the grain size in the direction perpendicular to the rolling direction of the ⁇ crystal grains is smaller than the grain size in the direction perpendicular to the rolling direction of the secondary recrystallized grains. That is, the grain-oriented electrical steel sheet according to the present embodiment has ⁇ crystal grains and secondary recrystallized grains whose grain size is controlled in the direction perpendicular to the rolling direction.
  • the grain-oriented electrical steel sheet according to the present embodiment perpendicular to the rolling of the average crystal grain size of the perpendicular to the rolling direction C determined based on the boundary condition BC is defined as the particle size RC C, determined on the basis of the boundary conditions BB when defining the particle diameter RB C the average crystal grain size of the direction C, Particle size RC C and the particle size RB C satisfies the 1.10 ⁇ RB C ⁇ RC C. Further, it is preferable that an RB C ⁇ RC C ⁇ 80.
  • This rule represents the above-mentioned "switching" situation in the direction perpendicular to the rolling direction. That is, among the secondary recrystallized grains having the boundary where the angle ⁇ is 2 ° or more as the crystal grain boundary, the boundary where
  • the status of this switch defined and evaluated by the direction perpendicular to the rolling direction of the particle size RC C and particle size RB C.
  • RB C / RC C value is preferably 1.30 or more, more preferably 1.50 or more, more preferably 2.0 or more, more preferably 3.0 or more, more preferably 5.0 or more.
  • RB C / RC C value there is no particular limitation on the upper limit of the RB C / RC C value.
  • the greater the higher RB C / RC C value occurrence frequency of the switching since the continuity of the crystal orientation of the whole grain-oriented electromagnetic steel sheet is increased, preferred for improvement of the magnetostriction.
  • the switching since the switching is also a residual lattice defect in the crystal grain, if the switching frequency is too high, there is a concern that the effect of improving the iron loss may be reduced. Therefore, 80 may be mentioned as a practical maximum of RB C / RC C value.
  • the maximum value of RB C / RC C values preferably 40, more preferably include 30.
  • RB C is the particle diameter determined by the grain boundary based on the angle phi, is the particle diameter determined by the grain boundary based on RC C off angle alpha. Since the definition of the grain boundary for obtaining the particle size at RB C and RC C are different, there is a case where RB C / RC C value is less than 1.0.
  • the above particle diameter RB C is determined based on the grain boundaries satisfying the casing 1 and / or case 2 of Table 2, the particle size RC C is the grain boundary satisfying the casing 1 and / or the case 3 of Table 2 Ask based on.
  • the deviation angle of the crystal orientation is measured on a measurement line including at least 500 measurement points along the direction perpendicular to the rolling direction, and the average value of the length of the line segment sandwiched between the grain boundaries of case 1 and / or case 2 on this measurement line It is referred to as particle size RB C.
  • a line segment length of the average value held between the grain boundaries of the case 1 and / or the case 3 and the particle size RC C is based on the grain boundaries satisfying the casing 1 and / or case 2 of Table 2 Ask based on.
  • the deviation angle of the crystal orientation is measured on a measurement line including at least 500 measurement points along the direction perpendicular to the rolling direction, and the average value of the length of the line segment sandwiched between the grain boundaries of case 1 and /
  • control high magnetic field core loss RC C value is not necessarily clear, switched one in the secondary recrystallized grains (local azimuth changes) that occurs, the adjacent grains Is considered to be small (the crystal orientation change near the crystal grain boundary is gradual), and as a result, it is considered that the generation of the return magnetic domain is suppressed.
  • the grain size of the ⁇ crystal grains in the rolling direction is smaller than the grain size of the ⁇ crystal grains in the direction perpendicular to the rolling direction. That is, the grain-oriented electrical steel sheet according to the present embodiment has ⁇ crystal grains whose grain size is controlled in the rolling direction and the direction perpendicular to the rolling direction.
  • the grain-oriented electrical steel sheet according to the present embodiment perpendicular to the rolling direction of an average grain size in the rolling direction L obtained based on the boundary condition BC is defined as the particle size RC L, obtained based on the boundary condition BC
  • the particle size RC L and the particle size RC C satisfy 1.15 ⁇ RC C ⁇ RC L. Further, it is preferable that RC C ⁇ RC L ⁇ 10.
  • the above definition of the RC C / RC L value represents the above-mentioned “switching” state in the rolling direction and the direction perpendicular to the rolling direction. That is, it means that the frequency of occurrence of the local change in the crystal orientation that is recognized as switching is different depending on the in-plane direction of the steel sheet.
  • the status of this switch was assessed by two directions of particle size RC C and particle size RC L orthogonal in the steel sheet surface to define.
  • the RC C / RC L value is more than 1 indicates that, on average, the ⁇ crystal grains defined by the switching have a flat shape elongated in the direction perpendicular to the rolling direction and collapsed in the rolling direction. I have. That is, it indicates that the form of the crystal grain defined by the ⁇ grain boundary has anisotropy.
  • ⁇ -crystal grains have in-plane anisotropy to improve high-field iron loss.
  • continuity is important when moving or rotating a magnetic domain by 180 °.
  • the control frequency of the RC C / RC L value increases the frequency of switching, which is a local change in orientation, and increases the continuity of the crystal orientation in the entire grain-oriented electrical steel sheet.
  • the direction in which the ⁇ crystal grains are stretched is a direction perpendicular to the rolling at present. It is preferable to consider the method. In this case, the rolling direction of the grain size RC L becomes a value smaller than the particle size RC C in the direction perpendicular to the rolling direction. The relationship between the rolling direction and the direction perpendicular to the rolling direction will be described in connection with the manufacturing method.
  • the direction in which the ⁇ crystal grains are stretched is determined not by the temperature gradient but by the occurrence frequency of the ⁇ grain boundaries.
  • the RC C / RC L value is preferably at least 1.80, more preferably at least 2.10.
  • the upper limit of the RC C / RC L value is not particularly limited. If the frequency of switching and the stretching direction are restricted to a specific direction and the RC C / R C L value increases, the continuity of the crystal orientation in the entire grain-oriented electrical steel sheet increases, which is preferable for improving magnetostriction. On the other hand, since the switching is also a residual lattice defect in the crystal grain, there is a concern that if the frequency of occurrence is too high, the effect of improving iron loss in particular may be reduced. Therefore, the practical maximum value of the RC C / RC L value is 10. In particular, if consideration is given to iron loss, the maximum value of RC C / RC L value is preferably 6, more preferably 4.
  • grain-oriented electrical steel sheet according to the present embodiment in addition to the control of the RC C / RC L value described above, similarly to the sixth embodiment, and the particle size RC L and particle size RB L, 1.10 It is preferable to satisfy ⁇ RB L ⁇ RC L.
  • the particle diameters RC C and RC L are particle diameters based on a grain boundary where
  • the angle ⁇ of all the grain boundaries is 2.0 ° or more, the above-mentioned RC C / RC L value may be satisfied.
  • the RC C / RC L value is satisfied, if the angle ⁇ of all the grain boundaries is 2.0 ° or more, the generally recognized secondary recrystallized grains simply become flat. Therefore, the above effects of the present embodiment are not preferably obtained.
  • the angle ⁇ of all the grain boundaries is 2 Although it is unlikely that the angle is greater than or equal to 0.0 °, it is preferable to satisfy the RB L / RC L value in addition to satisfying the RC C / RC L value described above.
  • a particle size RC C and a particle diameter RB C 1 be satisfied .10 ⁇ RB C / RC C does not become any problem, but rather preferable in view of enhancing the continuity of the crystal orientation of the whole grain-oriented electromagnetic steel sheet.
  • the grain size of the secondary recrystallized grains in the rolling direction and the direction perpendicular to the rolling direction is controlled.
  • the grain-oriented electrical steel sheet according to the present embodiment perpendicular to the rolling direction of an average grain size in the rolling direction L obtained based on the boundary conditions BB is defined as the particle diameter RB L, obtained based on the boundary conditions BB when defining the particle diameter RB C the average crystal grain size and C,
  • a particle size RB L and a particle size RB C preferably satisfies the 1.50 ⁇ RB C ⁇ RB L. Further, it is preferable that an RB C ⁇ RB L ⁇ 20.
  • the form of the secondary recrystallized grain when the RC C / RC L value of the ⁇ crystal grain is controlled in connection with the above switching, the form of the secondary recrystallized grain also tends to have large in-plane anisotropy.
  • the shape of the ⁇ -crystal grains is controlled by controlling the shape of the secondary recrystallized grains to have in-plane anisotropy. Also tend to have in-plane anisotropy
  • RB C / RB L value is preferably 1.80 or more, more preferably 2.00 or more, more preferably 2.50 or more. There is no particular limitation on the upper limit of the RB C / RB L value.
  • the RB C / RB L value performs a preferential heating of the ends of the coil width during finish annealing, by applying a temperature gradient to the coil width direction (direction of the coil axis) A process for growing secondary recrystallized grains is given.
  • the particle size of the secondary recrystallized grains in the coil circumferential direction for example, rolling direction
  • the particle size of the secondary recrystallized grains in the coil width direction is defined as the coil width.
  • one crystal grain can occupy the entire width of a coil having a width of 1000 mm. In this case, as the upper limit of RB C / RB L value, and 20.
  • the maximum value of the particle size of the secondary recrystallized grains is not limited to the coil width, A larger value is also possible. Even in this case, according to the present embodiment, the above effects of the present embodiment can be obtained by appropriately dividing the crystal grain by the ⁇ grain boundary by the switching.
  • the frequency of the switching regarding the shift angle ⁇ be controlled in the rolling direction and the direction perpendicular to the rolling direction.
  • the average crystal grain size in the rolling direction L determined based on the boundary condition BC is defined as the grain size RC L
  • the rolling direction L determined based on the boundary condition BB is defined.
  • the average crystal grain size is defined as the particle diameter RB L of the average crystal grain size of the perpendicular to the rolling direction C determined based on the boundary condition BC is defined as the particle size RC C, perpendicular to the rolling direction C determined based on the boundary conditions BB when the average crystal grain size of the defined as the particle diameter RB C, Particle size RC L and a particle size RC C and the particle size RB L and a particle size RB C preferably satisfy the (RB C ⁇ RC L) ⁇ (RB L ⁇ RC C) ⁇ 1.0.
  • the lower limit is not particularly limited, if the state of the art assumes, it may be a 0.2 ⁇ (RB C ⁇ RC L ) ⁇ (RB L ⁇ RC C).
  • This definition represents the in-plane anisotropy of the occurrence frequency of the above-mentioned “switching”. That is, the (RB C ⁇ RC L) / (RB L ⁇ RC C) is "occurrence of about switching of dividing the secondary recrystallized grains in the direction perpendicular to the rolling direction: RB C / RC C" and "secondary The degree of occurrence of switching for dividing recrystallized grains in the rolling direction: RB L / RC L. The fact that this value is less than 1 indicates that one secondary recrystallized grain is divided into a large number in the rolling direction by switching ( ⁇ grain boundary).
  • the ⁇ grain boundary tends to divide the secondary recrystallized grains in the rolling direction rather than in the direction perpendicular to the rolling direction. That is, the ⁇ grain boundaries tend to extend in the direction in which the secondary recrystallized grains extend. It is considered that this tendency of the ⁇ grain boundary acts to increase the area occupied by crystals in a specific orientation when the secondary recrystallized grains are stretched.
  • the value of (RB C ⁇ RC L ) / (RB L ⁇ RC C ) is preferably 0.9 or less, more preferably 0.8 or less, more preferably 0.5 or less.
  • the lower limit of (RB C ⁇ RC L) / (RB L ⁇ RC C) is not particularly limited, but in consideration of industrial feasibility, may be a greater than 0.2.
  • the above particle size RB L and particle size RB C is determined based on the grain boundaries satisfying the casing 1 and / or case 2 of Table 2.
  • the above particle size RC L and particle size RC C are determined based on the grain boundaries satisfying Case 1 and / or Case 3 in Table 2.
  • the deviation angle of the crystal orientation is measured on a measurement line including at least 500 measurement points along the direction perpendicular to the rolling direction, and the average value of the lengths of the line segments sandwiched by the grain boundaries of Case 1 and / or Case 3 on this measurement line It is referred to as particle size RC C.
  • Particle size RC L, particle size RB L, particle diameter RB C also may be obtained as well.
  • ) of the absolute value of the shift angle ⁇ is preferably 0 ° or more and 3.50 ° or less.
  • the “shift angle” is easily controlled to a characteristic range.
  • the absolute value of the shift angle approaching zero does not hinder the embodiment.
  • the crystal orientation changes little by little due to switching with respect to the shift angle ⁇ , the crystal orientation itself converges to a specific direction, and as a result, the standard deviation of the shift angle approaches zero. Will not be a hindrance.
  • ) of the absolute value of the shift angle ⁇ may be 0 ° or more and 3.50 ° or less.
  • ) of the absolute value of the shift angle ⁇ may be obtained in the same manner as ⁇ ( ⁇ ) described above.
  • the shift angle ⁇ is determined for each measurement point, and the standard deviation ⁇ (
  • ) is preferably within the above numerical range.
  • ) of the shift angle ⁇ is more preferably 3.00 or less, further preferably 2.50 or less, further preferably 2.20 or less, and still more preferably 1.80. It is as follows.
  • ) may of course be 0 (zero).
  • the average crystal grain size in the rolling direction L obtained based on the boundary conditions BB is defined as the particle diameter RB L
  • Particle size RB L and particle size RB C is preferably at 22mm or more.
  • the switching is considered to be caused by dislocations accumulated during the growth of the secondary recrystallized grains. In other words, once the switching has occurred, the secondary recrystallized grains need to grow to a considerable extent in order for the next switching to occur. Therefore, when the particle size RB L and particle size RB C is less than 15 mm, the switching is less likely to occur, significant improvement of the magnetostriction due to the switching may become difficult.
  • Particle size RB L and particle size RB C is preferably 15mm or more.
  • Particle size RB L and particle size RB C is preferably not 22mm or more, more preferably 30mm or more, still more preferably 40mm or more.
  • the upper limit of the particle size RB L and particle size RB C is not particularly limited.
  • a steel sheet on which primary recrystallization has been completed is wound around a coil, and ⁇ 110 ⁇ ⁇ 001> crystal grains are formed by secondary recrystallization in a state where the steel sheet has a curvature in the rolling direction. Generate and grow. Therefore, if the rolling direction of the grain size RB L is increased, an increase in the deviation angle, could also result in the magnetostriction is increased. Therefore, increasing the particle size RB L indefinitely is preferably avoided.
  • the particle size RB L, 400 mm as a preferable upper limit 200 mm More preferable upper limit can be mentioned 100mm More preferable upper limit.
  • a steel sheet that has undergone primary recrystallization is heated in a state wound around a coil, and ⁇ 110 ⁇ ⁇ 001> crystal grains are generated and grown by secondary recrystallization. Therefore, the secondary recrystallized grains grow from the coil end side where the temperature rise precedes, to the coil center side where the temperature rise is delayed.
  • the coil width and 1000 mm can be exemplified 500mm which is about half the coil width as an upper limit of particle size RB C.
  • the total width of the coil is a particle diameter of RB C.
  • the average crystal grain size in the rolling direction L obtained based on the boundary conditions BA defined as the particle size RA L
  • the direction perpendicular to the rolling direction C determined based on the boundary conditions BA defines the average crystal grain size and grain size RA C
  • an average grain size in the rolling direction L obtained based on the boundary condition BC is defined as the particle size RC L
  • Particle size RA L and particle size RC L is not less 30mm or less
  • it is preferred particle size RA C and particle size RC C is 400mm or less.
  • the particle size RA L and the particle size RC L may be 40 mm or less, but are preferably 30 mm or less, and more preferably 20 mm or less.
  • the particle size RA C and particle size RC C, 400 mm as a preferable upper limit, more preferably 200mm upper limit, more preferably 100mm upper limit, more preferably 40mm upper limit, the more preferred 30mm upper limit be able to.
  • Particle size RA L, particle size RC L, particle size RA C, and the lower limit of the particle size RC C is not particularly limited.
  • the minimum value of these grain sizes is 1 mm.
  • a steel sheet having a particle size of less than 1 mm is not excluded.
  • the switching involves the presence of lattice defects in the crystal, albeit slightly, so that if the switching frequency is too high, there is a concern that the magnetic properties may be adversely affected.
  • a preferable lower limit of the particle diameter is 5 mm.
  • the grain size includes an uncertainty of a maximum of 2 mm for each grain. Therefore, the particle size measurement (direction measurement of at least 500 points at 1 mm intervals on the rolled surface) is performed at a position sufficiently distant in a direction perpendicular to the direction defining the particle size and in the plane of the steel plate, that is, measurement of different crystal grains. It is preferable to perform the operation at a total of five or more locations at such positions. Then, by averaging all the particle sizes obtained by a total of five or more measurements, the above unclearness can be resolved.
  • the measurement may be performed at five or more locations sufficiently far away from each other, and the orientation may be measured at a total of 2500 or more measurement points to determine the average particle size.
  • the grain-oriented electrical steel sheet according to the present embodiment may have an intermediate layer, an insulating film, and the like on the steel sheet. It may be specified on the basis of no steel plate. That is, when the grain-oriented electrical steel sheet serving as the measurement sample has an insulating film or the like on the surface, the crystal orientation or the like may be measured after removing the film or the like.
  • a grain-oriented electrical steel sheet having the coating may be immersed in a high-temperature alkaline solution. Specifically, by immersing in a sodium hydroxide aqueous solution of NaOH: 30 to 50% by mass + H 2 O: 50 to 70% by mass at 80 to 90 ° C. for 5 to 10 minutes, washing with water and drying, The insulating coating can be removed from the grain-oriented electrical steel sheet.
  • the time of immersion in the above-mentioned aqueous sodium hydroxide solution may be changed depending on the thickness of the insulating film.
  • the magnetic steel sheet from which the insulating coating has been removed may be immersed in high-temperature hydrochloric acid.
  • the preferred concentration of hydrochloric acid for removing the intermediate layer to be dissolved is previously checked, and after immersion in hydrochloric acid of this concentration, for example, 30 to 40% by mass hydrochloric acid at 80 to 90 ° C. for 1 to 5 minutes, By washing with water and drying, the intermediate layer can be removed.
  • each coating is removed by using different treatment liquids such that an alkaline solution is used for removing the insulating coating and hydrochloric acid is used for removing the intermediate layer.
  • the grain-oriented electrical steel sheet of each embodiment contains a basic element as a chemical composition, optionally contains a selective element, and the balance consists of Fe and impurities.
  • the grain-oriented electrical steel sheet according to each embodiment contains Si (silicon): 2.00% to 7.00% by mass fraction as a basic element (main alloy element).
  • the content of ⁇ ⁇ Si is preferably 2.0 to 7.0% in order to integrate the crystal orientation in the ⁇ 110 ⁇ ⁇ 001> orientation.
  • impurities may be contained as a chemical composition.
  • impurities refer to elements that are mixed in from ore or scrap as a raw material or from a manufacturing environment when steel is industrially manufactured.
  • the upper limit of the total content of impurities may be, for example, 5%.
  • a selective element may be contained in addition to the above-described basic element and impurity.
  • impurity For example, Nb, V, Mo, Ta, W, C, Mn, S, Se, Al, N, Cu, Bi, B, P, Ti , Sn, Sb, Cr, Ni, and the like.
  • These optional elements may be contained according to the purpose. Therefore, it is not necessary to limit the lower limit of these selected elements, and the lower limit may be 0%. Further, even if these selective elements are contained as impurities, the above effects are not impaired.
  • Nb (niobium): 0 to 0.030% V (Vanadium): 0 to 0.030% Mo (molybdenum): 0 to 0.030% Ta (tantalum): 0 to 0.030% W (tungsten): 0 to 0.030% Nb, V, Mo, Ta, and W can be used as elements having characteristic effects in each embodiment.
  • one or more of Nb, V, Mo, Ta, and W may be collectively referred to as “Nb group element”.
  • the Nb group element preferably acts on the formation of switching which is a feature of the grain-oriented electrical steel sheet according to each embodiment.
  • the Nb group element it is not necessary that the Nb group element is finally contained in the grain-oriented electrical steel sheet according to each embodiment, because the Nb group element acts on the switching occurrence during the manufacturing process.
  • the Nb group element has a considerable tendency to be discharged out of the system due to purification in finish annealing described later. Therefore, even when the slab contains the Nb group element and the frequency of switching is increased by utilizing the Nb group element in the manufacturing process, the Nb group element may be discharged out of the system by the subsequent purification annealing. Therefore, the Nb group element may not be detected as the chemical composition of the final product.
  • the upper limit of the content of the Nb group element is defined as the chemical composition of the grain-oriented electrical steel sheet as the final product.
  • the upper limit of each of the Nb group elements may be 0.030%.
  • the lower limit of the content of the Nb group element is not particularly limited, and the lower limits may each be 0%.
  • At least one selected from the group consisting of Nb, V, Mo, Ta, and W is used as the chemical composition in a total amount of 0.0030 to 0.030 mass%. It is preferred to contain.
  • the total content of the Nb group elements in the final product is preferably 0.0030% or more, more preferably 0.0050% or more.
  • the total content of the Nb group elements in the final product exceeds 0.030%, the frequency of switching can be maintained, but the magnetic characteristics may be reduced. Therefore, the total content of Nb group elements in the final product is preferably 0.030% or less. The function of the Nb group element will be described later in connection with the manufacturing method.
  • the lower limit may be 0%. It is preferable that the total content of S and Se is 0 to 0.0150%.
  • the total of S and Se includes at least one of S and Se, and means the total content thereof.
  • the chemical composition of the grain-oriented electrical steel sheet according to each embodiment is the chemical composition of the final product. Generally, the chemical composition of the final product is different from the chemical composition of the starting slab.
  • the chemical composition of the grain-oriented electrical steel sheet according to each embodiment may be measured by a general steel analysis method.
  • the chemical composition of the grain-oriented electrical steel sheet may be measured using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry). Specifically, a 35 mm square test piece collected from a grain-oriented electrical steel sheet is measured under conditions based on a previously prepared calibration curve using an ICPS-8100 (measurement device) manufactured by Shimadzu Corporation, and the chemical composition is determined. Specified. Note that C and S may be measured using a combustion-infrared absorption method, and N may be measured using an inert gas melting-thermal conductivity method.
  • the above chemical composition is a component of the grain-oriented electrical steel sheet.
  • the chemical composition is measured after removing the film or the like by the above method.
  • the grain-oriented electrical steel sheet according to each embodiment of the present invention is characterized in that the secondary recrystallized grains are divided into small areas having slightly different misalignment angles, and this feature causes magnetostriction and iron loss in a medium magnetic field area. Is reduced. Therefore, in the grain-oriented electrical steel sheet according to each embodiment, there is no particular limitation on the film configuration on the steel sheet, the presence or absence of the magnetic domain refining treatment, and the like. In each embodiment, an arbitrary coating may be formed on a steel plate according to the purpose, and a magnetic domain refining process may be performed as necessary.
  • the grain-oriented electrical steel sheet according to each embodiment of the present invention may have an intermediate layer disposed in contact with the grain-oriented electrical steel sheet (silicon steel sheet), and an insulating coating disposed in contact with the intermediate layer. Good.
  • FIG. 2 is a schematic cross-sectional view of a grain-oriented electrical steel sheet according to a preferred embodiment of the present invention.
  • the grain-oriented electrical steel sheet 10 (silicon steel sheet) according to the present embodiment, when viewed along a cut surface whose cutting direction is parallel to the sheet thickness direction, is on the grain-oriented electrical steel sheet 10 (silicon steel sheet). It may include an intermediate layer 20 disposed in contact with the insulating layer 30 and an insulating coating 30 disposed on the intermediate layer 20 in contact with the intermediate layer 20.
  • the intermediate layer is a layer mainly composed of oxide, a layer mainly composed of carbide, a layer mainly composed of nitride, a layer mainly composed of boride, a layer mainly composed of silicide, a layer mainly composed of phosphide.
  • Any layer may be used as long as it is a layer mainly containing, a layer mainly containing sulfide, a layer mainly containing an intermetallic compound, or the like.
  • These intermediate layers can be formed by heat treatment in an atmosphere with controlled redox properties, chemical vapor deposition (CVD), physical vapor deposition (PVD), or the like.
  • the intermediate layer may be a forsterite film having an average thickness of 1 to 3 ⁇ m.
  • the forsterite film is a film mainly composed of Mg 2 SiO 4 .
  • the interface between the forsterite coating and the grain-oriented electrical steel sheet is an interface where the forsterite coating is fitted into the steel sheet when viewed from the above cross section.
  • the intermediate layer may be an oxide film having an average thickness of 2 to 500 nm.
  • the oxide film is a coating mainly composed of SiO 2 .
  • the interface between the oxide film and the grain-oriented electrical steel sheet is a smooth interface when viewed in the cross section.
  • the above-mentioned insulating coating is mainly composed of phosphate and colloidal silica, and has an average thickness of 0.1 to 10 ⁇ m, or is mainly composed of alumina sol and boric acid and has an average thickness of 0.5 to 8 ⁇ m. Any insulating coating may be used.
  • the magnetic domains may be subdivided by at least one of local microstrain application and local groove formation.
  • the local minute strain and the local groove may be provided or formed by laser, plasma, a mechanical method, etching, or another method.
  • the local micro-strain or the local groove is linear or dot-shaped so as to extend in a direction intersecting the rolling direction on the rolling surface of the steel sheet, and the interval between the rolling directions is 4 mm to 10 mm. May be provided or formed.
  • FIG. 3 is a flowchart illustrating a method for manufacturing a grain-oriented electrical steel sheet according to an embodiment of the present invention.
  • the method for manufacturing a grain-oriented electrical steel sheet (silicon steel sheet) according to the present embodiment includes a casting step, a hot rolling step, a hot-rolled sheet annealing step, a cold rolling step, and a decarburization step.
  • An annealing step, an annealing separating agent applying step, and a finish annealing step are provided.
  • the nitriding treatment may be performed at any timing from the decarburizing annealing step to the finish annealing step, and the method may further include an insulating film forming step after the finish annealing step.
  • the method for manufacturing a grain-oriented electrical steel sheet (silicon steel sheet) includes: In the casting process, as a chemical composition, Si: 2.0 to 7.0%, Nb: 0 to 0.030%, V: 0 to 0.030%, Mo: 0 to 0.030% by mass%, Ta: 0 to 0.030%, W: 0 to 0.030%, C: 0 to 0.0850%, Mn: 0 to 1.0%, S: 0 to 0.0350%, Se: 0 to 0 0.0350%, Al: 0 to 0.0650%, N: 0 to 0.0120%, Cu: 0 to 0.40%, Bi: 0 to 0.010%, B: 0 to 0.080%, P : 0 to 0.50%, Ti: 0 to 0.0150%, Sn: 0 to 0.10%, Sb: 0 to 0.10%, Cr: 0 to 0.30%, Ni: 0 to 1.0.
  • the primary recrystallized grain size is controlled to 24 ⁇ m or less
  • the total content of Nb, V, Mo, Ta, and W in the chemical composition of the slab is 0.0030 to 0.030%
  • PH 2 O / PH 2 at 700 to 800 ° C. in the heating process is 0.030 to 5.0
  • PH 2 O / PH 2 at 900 to 950 ° C. is 0.010 to 0.20
  • PH 2 O / PH 2 at 950 to 1000 ° C. is 0. .0050 to 0.10 or PH 2 O / PH 2 at 1000 to 1050 ° C.
  • At least one of ⁇ 0.10 and PH 2 O / PH 2 at 1000 ⁇ 1050 ° C. is set to 0.0010 ⁇ 0.050.
  • the above-mentioned PH 2 O / PH 2 is called an oxygen potential and is a ratio of a partial pressure of water vapor PH 2 O of the atmospheric gas to a partial pressure of hydrogen PH 2 .
  • Switching in the present embodiment is mainly a factor that makes it easy to generate an azimuth change (switching) itself and a factor that makes the azimuth change (switching) continuously occur in one secondary recrystallized grain. Is controlled by the two.
  • the start of the secondary recrystallization can be controlled to a lower temperature.
  • the growth of the secondary recrystallized grains is anisotropic. May be adopted.
  • ⁇ ⁇ The above factors are important for controlling the switching, which is a feature of the present embodiment.
  • a conventionally known method for manufacturing a grain-oriented electrical steel sheet can be applied.
  • the switching which is a feature of the present embodiment, can be applied by any manufacturing method, and is not limited to a specific manufacturing method.
  • a method of controlling switching in a manufacturing method to which a nitriding treatment is applied will be described as an example.
  • a slab is prepared.
  • An example of a method for manufacturing a slab is as follows. Manufacture (melt) molten steel. A slab is manufactured using molten steel. The slab may be manufactured by a continuous casting method. An ingot may be manufactured using molten steel, and the slab may be manufactured by slab rolling the ingot.
  • the thickness of the slab is not particularly limited. The thickness of the slab is, for example, 150 to 350 mm. The thickness of the slab is preferably between 220 and 280 mm. As the slab, a so-called thin slab having a thickness of 10 to 70 mm may be used. When a thin slab is used, the rough rolling before the finish rolling can be omitted in the hot rolling step.
  • the chemical composition of the slab the chemical composition of a slab used for manufacturing a general grain-oriented electrical steel sheet can be used.
  • the chemical composition of the slab contains, for example, the following elements.
  • C 0 to 0.0850%
  • carbon (C) is an element effective in controlling the primary recrystallization structure in the production process, an excessive C content in the final product adversely affects magnetic properties. Therefore, the C content of the slab may be 0 to 0.0850%.
  • a preferred upper limit of the C content is 0.0750%.
  • C is purified in a decarburizing annealing step and a finish annealing step described below, and becomes 0.0050% or less after the finish annealing step. When C is contained, the lower limit of the C content may be more than 0% or 0.0010% in consideration of productivity in industrial production.
  • Si 2.0 to 7.0%
  • Silicon (Si) increases the electrical resistance of the grain-oriented electrical steel sheet and reduces iron loss. If the Si content is less than 2.0%, austenite transformation occurs at the time of finish annealing, and the crystal orientation of the grain-oriented electrical steel sheet is impaired. On the other hand, if the Si content exceeds 7.0%, the cold workability decreases, and cracks tend to occur during cold rolling.
  • a preferred lower limit of the Si content is 2.50%, more preferably 3.0%.
  • the preferable upper limit of the Si content is 4.50%, and more preferably 4.0%.
  • Mn 0. ⁇ 1.0%
  • Manganese (Mn) combines with S or Se to produce MnS or MnSe, and functions as an inhibitor.
  • the Mn content may be 0 to 1.0%.
  • Mn is contained, when the Mn content is in the range of 0.05 to 1.0%, the secondary recrystallization is preferably stabilized.
  • a part of the function of the inhibitor can be performed by the nitride of the Nb group element.
  • MnS or MnSe intensity as a general inhibitor is controlled to be weaker. Therefore, a preferable upper limit of the Mn content is 0.50%, and more preferably 0.20%.
  • S 0 to 0.0350%
  • Se 0 to 0.0350%
  • Sulfur (S) and selenium (Se) combine with Mn to produce MnS or MnSe and function as inhibitors.
  • the S content may be 0 to 0.0350%
  • the Se content may be 0 to 0.0350%.
  • the total content of S and Se is 0.0030 to 0.0350% because the secondary recrystallization is stabilized.
  • a part of the function of the inhibitor can be performed by the nitride of the Nb group element. In this case, MnS or MnSe intensity as a general inhibitor is controlled to be weaker.
  • the preferable upper limit of the total of the contents of S and Se is 0.0250%, and more preferably 0.010%.
  • S and Se remain after the final annealing, they form compounds and deteriorate iron loss. Therefore, it is preferable to reduce S and Se as much as possible by purification during the finish annealing.
  • the total content of S and Se is 0.0030 to 0.0350%
  • the chemical composition of the slab contains only one of S and Se, and that the slab contains only one of S and Se.
  • One content may be 0.0030 to 0.0350%, the slab contains both S and Se, and the total content of S and Se is 0.0030 to 0.0350%. You may.
  • Al 0 to 0.0650%
  • Aluminum (Al) combines with N and precipitates as (Al, Si) N, and functions as an inhibitor.
  • the Al content may be 0 to 0.0650%.
  • AlN as an inhibitor formed by nitriding described later expands the secondary recrystallization temperature range, and particularly, This is preferable because the secondary recrystallization in a high temperature range is stabilized.
  • a preferred lower limit of the Al content is 0.020%, more preferably 0.0250%. From the viewpoint of the stability of the secondary recrystallization, the preferable upper limit of the Al content is 0.040%, more preferably 0.030%.
  • N 0 to 0.0120% Nitrogen (N) combines with Al and functions as an inhibitor.
  • the N content may be 0 to 0.0120%. Since N can be contained by nitridation during the manufacturing process, the lower limit may be 0%. On the other hand, when N is contained, if the N content exceeds 0.0120%, blisters, which are a kind of defect, are likely to be generated in the steel sheet.
  • the preferable upper limit of the N content is 0.010%, and more preferably 0.0090%. N is purified in the finish annealing step, and becomes 0.0050% or less after the finish annealing step.
  • Nb 0 to 0.030%
  • V 0 to 0.030%
  • Mo 0 to 0.030%
  • Ta 0 to 0.030%
  • W 0 to 0.030%
  • Nb, V, Mo, Ta, and W are Nb group elements.
  • the Nb content may be 0 to 0.030%
  • the V content may be 0 to 0.030%
  • the Mo content may be 0 to 0.030%
  • the Ta content may be 0 to 0.030%
  • the W content may be 0-0.030%
  • the W content may be 0-0.030%.
  • At least one element selected from the group consisting of Nb, V, Mo, Ta, and W is contained as the Nb group element in a total amount of 0.0030 to 0.030% by mass.
  • the timing is appropriate. Initiate secondary recrystallization. Further, the orientation of the secondary recrystallized grains to be generated is very preferable, and in the subsequent growth process, the switching characteristic of the present embodiment is likely to occur, so that the structure can be finally controlled to a preferable magnetic property.
  • the primary recrystallized grain size after decarburization annealing is preferably reduced as compared with the case where no Nb group element is contained. It is considered that the refinement of the primary recrystallized grains is obtained by a pinning effect due to precipitates such as carbides, carbonitrides, and nitrides, and a drag effect as a solid solution element.
  • Nb and Ta have strong effects and are preferably obtained.
  • the driving force of the secondary recrystallization is increased by the reduction of the primary recrystallization particle diameter by the Nb group element, and the secondary recrystallization starts at a lower temperature than before.
  • the precipitate of the Nb group element is decomposed at a relatively lower temperature than a conventional inhibitor such as AlN, secondary recrystallization starts at a lower temperature than in the past during the temperature rise process of the finish annealing.
  • a conventional inhibitor such as AlN or (Al, Si) N that is stable up to a high temperature even after the secondary recrystallization is started.
  • the C content of the slab be 50 ppm or more at the time of casting.
  • a nitride is more preferable than a carbide or a carbonitride. Therefore, after the completion of the primary recrystallization, the C content is reduced to 30 ppm or less, preferably 20 ppm or less by decarburizing annealing.
  • the content is set to 10 ppm or less to sufficiently decompose carbides and carbonitrides of Nb group elements in the steel.
  • the nitrides (inhibitors) of the Nb group elements can be converted into the preferred form (secondary re-forming) for the present embodiment by the subsequent nitriding treatment. (A form in which the crystal easily advances).
  • the total content of the Nb group elements is preferably 0.0040% or more, and more preferably 0.0050% or more. Further, the total content of Nb group elements is preferably 0.020% or less, and more preferably 0.010%.
  • the rest of the chemical composition of the slab consists of Fe and impurities.
  • impurities here are inevitably mixed from components contained in raw materials or components mixed in the process of manufacturing when slabs are manufactured industrially, and substantially reduce the effects of the present embodiment. Means an element that has no effect.
  • the slab may contain a known selective element instead of a part of the Fe in consideration of the effect on the inhibitory function and the magnetic properties due to the compound formation, in addition to solving the manufacturing problem.
  • a known selective element instead of a part of the Fe in consideration of the effect on the inhibitory function and the magnetic properties due to the compound formation, in addition to solving the manufacturing problem.
  • the selected element for example, the following elements can be mentioned.
  • the hot rolling step is a step of performing hot rolling of a slab heated to a predetermined temperature (for example, 1100 to 1400 ° C.) to obtain a hot-rolled steel sheet.
  • a predetermined temperature for example, 1100 to 1400 ° C.
  • finish rolling is performed to perform hot rolling of a predetermined thickness, for example, 1.8 to 3.5 mm. Steel plate. After finishing rolling, the hot-rolled steel sheet is wound at a predetermined temperature.
  • the slab heating temperature is preferably 1100 ° C to 1280 ° C in consideration of productivity.
  • the hot rolling step by providing a temperature gradient within the above range in the width or longitudinal direction of the steel strip, the crystal structure, crystal orientation, and precipitates, causing non-uniformity in the in-plane position of the steel sheet. You may.
  • the growth of the secondary recrystallized grains in the final secondary recrystallization process is given anisotropy, and the in-plane anisotropy is preferably imparted to the shape of the subcrystal grains required for the present embodiment. Is possible.
  • a temperature gradient is provided in the plate width direction to refine the precipitates in the high-temperature part and enhance the inhibitor function of the high-temperature part, so that the secondary recrystallization preferentially shifts from the low-temperature part to the high-temperature part. It is possible to induce grain growth.
  • the hot-rolled sheet annealing step is a step of annealing the hot-rolled steel sheet obtained in the hot rolling step under predetermined temperature conditions (for example, at 750 to 1200 ° C. for 30 seconds to 10 minutes) to obtain a hot-rolled annealed sheet. .
  • the hot-rolled sheet annealing step by providing a temperature gradient within the above range in the width or longitudinal direction of the steel strip, the crystal structure, crystal orientation, and precipitates, the non-uniformity at the position in the steel sheet plane. It may be caused.
  • the growth of the secondary recrystallized grains in the final secondary recrystallization process is given anisotropy, and the in-plane anisotropy is preferably imparted to the shape of the subcrystal grains required for the present embodiment. Is possible.
  • the secondary recrystallization directed the low-temperature portion to the high-temperature portion. It is possible to induce preferential grain growth.
  • the hot-rolled annealed sheet obtained in the hot-rolled sheet annealing step is subjected to a single cold rolling or a plurality of (two or more) cold rollings (for example, total rolling) through annealing (intermediate annealing).
  • This is a step of obtaining a cold-rolled steel sheet having a thickness of, for example, 0.10 to 0.50 mm according to a cold rolling rate of 80 to 95%).
  • the decarburizing annealing step is a step of performing decarburizing annealing (for example, at 700 to 900 ° C. for 1 to 3 minutes) on the cold-rolled steel sheet obtained in the cold rolling step to obtain a decarburized annealed steel sheet in which primary recrystallization has occurred. is there.
  • decarburizing annealing is preferably performed in a humid atmosphere in order to remove “C” contained in the cold-rolled steel sheet.
  • the primary recrystallized grain size of the decarburized annealed steel sheet it is preferable to control the primary recrystallized grain size of the decarburized annealed steel sheet to 24 ⁇ m or less.
  • the secondary recrystallization start temperature can be shifted to a preferable low temperature.
  • the primary recrystallized grain size can be reduced by controlling the conditions of the above-described hot rolling and hot-rolled sheet annealing, or by lowering the decarburizing annealing temperature as necessary.
  • the Nb group element is contained in the slab, and the primary recrystallized grains can be reduced by the pinning effect of carbides and carbonitrides of the Nb group element.
  • the amount of decarboxylation and the state of the surface oxide layer caused by the decarburization annealing affect the formation of the intermediate layer (glass film), a conventional method is used to express the effect of the present embodiment. It may be adjusted appropriately.
  • the Nb group element that may be contained as an element that facilitates switching is present as a carbide, a carbonitride, a solid solution element, or the like, and has an effect of reducing the primary recrystallized grain size.
  • the primary recrystallization particle size is preferably 23 ⁇ m or less, more preferably 20 ⁇ m or less, and even more preferably 18 ⁇ m or less. Further, the primary recrystallized particle size may be 8 ⁇ m or more, and may be 12 ⁇ m or more.
  • the decarburization annealing step by providing a temperature gradient or a difference in decarburization behavior in the above range in the width or longitudinal direction of the steel strip, the crystal structure, crystal orientation, and precipitates, at a position in the plane of the steel sheet. May be caused.
  • the growth of the secondary recrystallized grains in the final secondary recrystallization process is given anisotropy, and the in-plane anisotropy is preferably imparted to the shape of the subcrystal grains required for the present embodiment. Is possible.
  • a temperature gradient is provided in the sheet width direction to refine the primary recrystallized grain size in the low-temperature part, thereby increasing the driving force for starting the secondary recrystallization, and early performing the secondary recrystallization in the low-temperature part. By starting this, it is possible to induce preferential grain growth from the low-temperature part to the high-temperature part during the growth of the secondary recrystallized grains.
  • the nitriding treatment is performed to adjust the strength of the inhibitor in the secondary recrystallization.
  • the nitrogen amount of the steel sheet may be increased to about 40 to 300 ppm at an arbitrary timing from the start of the above-described decarburizing annealing to the start of the secondary recrystallization in the finish annealing described later.
  • the nitride of the Nb group element formed by the nitriding process functions as an inhibitor at a relatively low temperature and the grain growth suppressing function disappears, so that the secondary recrystallization is performed. Starts at a lower temperature than before.
  • This nitride also has an advantageous effect on the selectivity of nucleation of secondary recrystallized grains, and it is conceivable that a high magnetic flux density may be realized.
  • AlN is also formed in the nitriding treatment, and this AlN functions as an inhibitor that keeps the grain growth suppressing function up to a relatively high temperature.
  • the amount of nitriding after the nitriding treatment is preferably set to 130 to 250 ppm, and more preferably 150 to 200 ppm.
  • non-uniformity may be caused in the inhibitor strength at a position in the plane of the steel sheet.
  • the growth of the secondary recrystallized grains in the final secondary recrystallization process is given anisotropy, and the in-plane anisotropy is preferably imparted to the shape of the subcrystal grains required for the present embodiment. Is possible.
  • the annealing separator applying step is a step of applying an annealing separator to the decarburized annealed steel sheet.
  • the annealing separating agent for example, an annealing separating agent mainly containing MgO or an annealing separating agent mainly containing alumina can be used.
  • a forsterite coating (a coating mainly composed of Mg 2 SiO 4 ) is easily formed as an intermediate layer by finish annealing, and the annealing mainly containing alumina is used.
  • an oxide film (a film mainly composed of SiO 2 ) is likely to be formed as an intermediate layer by finish annealing. These intermediate layers may be removed as needed.
  • the decarburized annealed steel sheet after applying the annealing separator is finish-annealed in the next finish annealing step in a state of being wound in a coil shape.
  • the finish annealing step is a step of subjecting the decarburized annealed steel sheet to which the annealing separator has been applied to finish annealing to cause secondary recrystallization.
  • the secondary recrystallization proceeds while the growth of the primary recrystallized grains is suppressed by the inhibitor, whereby the ⁇ 100 ⁇ ⁇ 001> oriented grains are preferentially grown, and the magnetic flux density is dramatically improved.
  • Finish annealing is an important step for controlling the switching, which is a feature of the present embodiment.
  • the angle ⁇ is controlled in the finish annealing based on the following four conditions (A) to (C-2).
  • the total content of Nb group elements in the description of the finish annealing step means the total content of Nb group elements in the steel sheet (decarburized annealed steel sheet) immediately before finish annealing. In other words, it is the chemical composition of the steel sheet immediately before finish annealing that affects the finish annealing conditions, and the chemical composition after finish annealing and purification (for example, the chemical composition of grain-oriented electrical steel sheet (finish annealed steel sheet)) Irrelevant.
  • PC1 0.0050-0.10 (C-2)
  • PC2 0.0010 to 0.050
  • the condition (A) should be satisfied and at least one of the conditions (B) to (C-2) should be satisfied. .
  • PA is preferably 0.10 or more, more preferably 0.30 or more, preferably 1.0 or less, and more preferably 0.60 or less.
  • PB is preferably 0.020 or more, preferably 0.040 or more, more preferably 0.10 or less, and preferably 0.070 or less.
  • PC1 is preferably 0.010 or more, more preferably 0.020 or more, preferably 0.070 or less, and more preferably 0.050 or less.
  • PC2 is preferably 0.002 or more, more preferably 0.0050 or more, preferably 0.030 or less, and more preferably 0.020 or less.
  • Condition (A) is a condition in a temperature range sufficiently lower than the temperature at which secondary recrystallization occurs, and this condition does not directly affect a phenomenon recognized as secondary recrystallization.
  • this temperature range is a temperature range in which the surface layer of the steel sheet is oxidized by moisture brought in by the annealing separator applied to the surface of the steel sheet, that is, a temperature range that affects the formation of the primary coating (intermediate layer).
  • the condition (A) is important for enabling the subsequent “continuation of the secondary recrystallization to a high-temperature region” through controlling the formation of the primary film.
  • the primary film has a dense structure, and prevents the constituent elements (eg, Al, N, etc.) of the inhibitor from being discharged out of the system at the stage where secondary recrystallization occurs. Act as a barrier to As a result, the secondary recrystallization continues to a high temperature, and the switching can be sufficiently caused.
  • constituent elements eg, Al, N, etc.
  • Condition (B) is a condition in a temperature range corresponding to a nucleation stage of recrystallization nuclei in secondary recrystallization.
  • the growth of the secondary recrystallized grains progresses at an arbitrary stage of the grain growth, being controlled by the inhibitor decomposition. It is considered that this condition (B) promotes the decomposition of the inhibitor, particularly in the surface layer of the steel sheet, and affects the number of nuclei for secondary recrystallization.
  • primary recrystallized grains having a crystal orientation preferable for secondary recrystallization exist in the surface layer of a steel sheet.
  • the conditions (C-1) and (C-2) are conditions in a temperature range in which the secondary recrystallization starts and the grains grow, and these conditions are the inhibitor strength in the process of growing the secondary recrystallized grains. Affect adjustment. By setting these temperature regions to the above-described atmosphere, the growth of the secondary recrystallized grains progresses at a rate determined by inhibitor decomposition in each temperature region. Although the details will be described later, dislocations are efficiently accumulated at the grain boundaries in front of the secondary recrystallized grains in the growth direction under these conditions, so that the frequency of switching increases and the switching occurs continuously. The reason why the atmosphere is controlled under the conditions (C-1) and (C-2) by dividing the temperature region into two portions is that an appropriate atmosphere differs depending on the temperature region.
  • a grain-oriented electrical steel sheet satisfying the switching condition of the present embodiment is obtained. It is possible to get. In other words, if control is performed to increase the switching frequency in the early stage of the secondary recrystallization, the secondary recrystallized grains grow while maintaining the misorientation due to the switching, and the effect continues until the latter period, and the final switching frequency is also high. Become. Alternatively, even if switching of sufficient frequency does not occur in the initial stage of the secondary recrystallization, a sufficient amount of dislocations are accumulated in the front of the crystal grain in the growth direction during the subsequent grain growth, and new switching occurs.
  • the final switching frequency can be increased.
  • the secondary recrystallized grains may be controlled to be divided into small regions having slightly different crystal orientations.
  • the boundary condition BA is satisfied and the boundary condition is satisfied. What is necessary is just to make the grain boundary which does not satisfy BB.
  • the holding time at 1000 to 1050 ° C. is 200 to 1500 minutes.
  • the heating is performed.
  • the holding time at 1000 to 1050 ° C. is preferably set to 100 to 1500 minutes.
  • condition (E-1) In the heating process of the finish annealing, when a holding time (total residence time) in a temperature range of 1000 to 1050 ° C. is TE1, When the total content of Nb group elements is 0.0030 to 0.030%, TE1: 100 minutes or more When the total content of the Nb group elements is out of the above range, TE1: 200 minutes or more
  • TE1 is preferably 150 minutes or more, more preferably 300 minutes or more, and preferably 1500 minutes or less, More preferably, it is 900 minutes or less.
  • TE1 is preferably 300 minutes or more, more preferably 600 minutes or more, and still more preferably 1500 minutes or less, and 900 minutes or less. It is more preferred that:
  • Condition (E-1) is a factor for controlling the stretching direction in the plane of the steel sheet at the sub-grain boundary where switching occurs. By performing sufficient holding at 1000 to 1050 ° C., it is possible to increase the frequency of switching in the rolling direction. It is considered that the switching frequency in the rolling direction increases due to the change in the form (for example, arrangement and shape) of the precipitates in the steel including the inhibitor during the holding in the above temperature range.
  • the arrangement and shape of the precipitates (particularly MnS) in the steel have anisotropy in the steel sheet plane, and It is thought to have a tendency to deflect.
  • the retention in the above temperature range changes the degree of deflection of the form of such precipitates in the rolling direction, and during the growth of secondary recrystallized grains, sub-grain boundaries are formed in the steel sheet plane. It is considered that this affects the direction in which the film is easily stretched.
  • the existence frequency of the sub-grain boundaries is high, so that even if the holding time of the condition (E-1) is short, The effect can be obtained.
  • the grain size in the rolling direction of the sub-crystal grains can be controlled to be smaller than the grain size in the rolling direction of the secondary recrystallized grains.
  • the combined above-mentioned condition (E-1) as described as the second embodiment, by the directional electromagnetic steel plates, and a particle size RA L and particle size RB L, It can be controlled so as to satisfy 1.15 ⁇ RB L ⁇ RA L.
  • the heating step is performed.
  • the holding time at 950 to 1000 ° C. is preferably 200 to 1500 minutes.
  • the heating is performed.
  • the holding time at 950 to 1000 ° C. is preferably set to 100 to 1500 minutes.
  • condition (E-2) In the heating process of the finish annealing, when the holding time (total residence time) in the temperature range of 950 to 1000 ° C. is TE2, When the total content of Nb group elements is 0.0030 to 0.030%, TE2: 100 minutes or more When the total content of Nb group elements is out of the above range, TE2: 200 minutes or more
  • TE2 is preferably 150 minutes or more, more preferably 300 minutes or more, and 1500 minutes or less. , And more preferably 900 minutes or less.
  • TE2 is preferably 300 minutes or more, more preferably 600 minutes or more, further preferably 1500 minutes or less, and 900 minutes or less. It is more preferred that:
  • the condition (E-2) is a factor for controlling the drawing direction in the steel sheet plane of the sub-grain boundary where the switching occurs.
  • the condition (E-2) is a factor for controlling the drawing direction in the steel sheet plane of the sub-grain boundary where the switching occurs.
  • the arrangement and shape of the precipitates (particularly MnS) in the steel have anisotropy in the steel sheet plane, and It is thought to have a tendency to deflect.
  • the retention in the above temperature range changes the degree of deflection of the form of such precipitates in the rolling direction, and during the growth of secondary recrystallized grains, sub-grain boundaries are formed in the steel sheet plane. It is considered that this affects the direction in which the film is easily stretched.
  • the frequency of existence of the sub-grain boundaries itself is high, so that even if the holding time under the condition (E-2) is short, the present embodiment is not used. The effect can be obtained.
  • the grain size in the direction perpendicular to the rolling direction of the sub-crystal grains can be controlled to be smaller than the grain size in the direction perpendicular to the rolling direction of the secondary recrystallized grains.
  • the combined above-mentioned condition (E-2) as described as the third embodiment, by the directional electromagnetic steel plates, and a particle size RA C and particle size RB C, It can be controlled so as to satisfy 1.15 ⁇ RB C ⁇ RA C.
  • the manufacturing method in the heating process of the finish annealing, while applying a temperature gradient of more than 0.5 ° C./cm to the boundary portion between the primary recrystallization region and the secondary recrystallization region in the steel sheet.
  • secondary recrystallization occurs.
  • the direction in which the temperature gradient is given is preferably the direction C perpendicular to the rolling direction.
  • the finish annealing step can be effectively used as a step for imparting in-plane anisotropy to the shape of the sub-crystal grains.
  • a box-shaped annealing furnace is used and a coil-shaped steel plate is placed in the furnace and heated, a sufficient temperature difference is generated between the outside and the inside of the coil so that the position and arrangement of the heating device and the annealing are performed. What is necessary is just to control the temperature distribution in a furnace.
  • a temperature distribution may be formed in the coil to be annealed by arranging induction heating, high-frequency heating, an electric heating device, or the like, and positively heating only a part of the coil.
  • the method of giving the temperature gradient is not particularly limited, and a known method may be applied. If a temperature gradient is applied to the steel sheet, secondary recrystallized grains having a sharp orientation are generated from the part of the coil that reached the secondary recrystallization start state early, and these secondary recrystallized grains are caused by the temperature gradient. And grow with anisotropy. For example, secondary recrystallized grains can be grown over the entire coil. Therefore, it is possible to preferably control the in-plane anisotropy of the shape of the sub-crystal grains.
  • a temperature gradient is applied from one end to the other end in the width direction (the width direction of the steel sheet) to generate secondary recrystallized grains. Preferably, it is grown.
  • the temperature exceeds 0.5 ° C./cm (preferably 0.7 ° C./cm or more).
  • the secondary recrystallized grains may be grown by performing the final annealing while giving the temperature gradient of
  • the direction in which the temperature gradient is applied is preferably the direction C perpendicular to the rolling direction.
  • the upper limit of the temperature gradient is not particularly limited, but it is preferable to continuously grow the secondary recrystallized grains while maintaining the temperature gradient. In consideration of the heat conduction of the steel sheet and the growth rate of the secondary recrystallized grains, in a general manufacturing process, for example, the upper limit of the temperature gradient may be 10 ° C./cm.
  • the grain size of the sub-crystal grains in the rolling direction can be controlled to be smaller than the grain size of the sub-crystal grains in the direction perpendicular to the rolling direction.
  • the directional electromagnetic steel plates, and a particle size RA L and particle size RA C 1. It can be controlled so as to satisfy 15 ⁇ RA C ⁇ RA L.
  • the deviation angle ⁇ may be further controlled by appropriately controlling the following conditions in the finish annealing.
  • the total content of the Nb group elements is 0.0030 to 0.030%, at least one of the conditions (A ′) and (B ′) and the condition (D) may be satisfied.
  • PA ′ is preferably 0.30 or more, and more preferably 0.60 or less.
  • PB ′ is preferably 0.040 or more, and more preferably 0.070 or less.
  • the TD is preferably 180 minutes or more, more preferably 240 minutes or more, preferably 480 minutes or less, and more preferably 360 minutes or less.
  • Condition (A ') is a condition in a temperature range sufficiently lower than the temperature at which secondary recrystallization occurs, and this condition does not directly affect a phenomenon recognized as secondary recrystallization.
  • this temperature range is a temperature range in which the surface layer of the steel sheet is oxidized by moisture brought in by the annealing separator applied to the surface of the steel sheet, that is, a temperature range that affects the formation of the primary coating (intermediate layer).
  • the condition (A ′) is important for enabling the subsequent “continuation of the secondary recrystallization to a high-temperature region” through controlling the formation of the primary film.
  • the primary film has a dense structure, and prevents the constituent elements (eg, Al, N, etc.) of the inhibitor from being discharged out of the system at the stage where secondary recrystallization occurs. Act as a barrier to As a result, the secondary recrystallization continues to a high temperature, and the switching can be sufficiently caused.
  • constituent elements eg, Al, N, etc.
  • the 'condition (B') is a condition in a temperature range corresponding to a nucleation stage of a recrystallization nucleus of the secondary recrystallization.
  • the 'condition (B') promotes the decomposition of the inhibitor, particularly in the surface layer of the steel sheet, and affects the number of nuclei for secondary recrystallization.
  • primary recrystallized grains having a crystal orientation preferable for secondary recrystallization exist in the surface layer of a steel sheet.
  • the condition (D) overlaps with the temperature range of the condition (B ′) and is a condition in a temperature range corresponding to a nucleation stage of secondary recrystallization. Holding in this temperature range is important to cause good secondary recrystallization, but if the holding time is long, primary recrystallized grains are likely to grow. For example, when the grain size of the primary recrystallized grains increases, dislocation accumulation (dislocation accumulation at the grain boundary on the front surface in the growth direction of the secondary recrystallized grains), which serves as a driving force for switching, becomes difficult to occur. If the holding time in this temperature range is 600 minutes or less, the secondary recrystallization can be started while the primary recrystallized grains remain fine, so that the selectivity of a specific shift angle is improved. In the present embodiment, the switching at the shift angle ⁇ is frequently generated and continued with the background of shifting the secondary recrystallization start temperature to a low temperature by making the primary recrystallized grains finer and utilizing the Nb group element.
  • the switching condition of the present embodiment is changed. It is possible to obtain a grain-oriented electrical steel sheet that satisfies. That is, if the switching frequency at a specific shift angle (shift angle ⁇ in the present embodiment) is controlled to be increased in the early stage of the secondary recrystallization, the secondary recrystallized grains grow while maintaining the azimuth difference due to the switching. However, the effect continues until the second half and the final switching frequency increases.
  • the secondary recrystallized grains may be controlled to be divided into small areas having slightly different shift angles ⁇ .
  • the boundary condition BC is satisfied and the boundary condition BC is satisfied. What is necessary is just to make the grain boundary which does not satisfy BB.
  • the holding time at 1000 to 1050 ° C. is preferably 300 to 1500 minutes.
  • the holding time at 1000 to 1050 ° C. is preferably set to 150 to 900 minutes.
  • condition (E-1 ′) In the heating process of the finish annealing, when the holding time (total residence time) in the temperature range of 1000 to 1050 ° C. is TE1 ′, When the total content of Nb group elements is 0.0030 to 0.030%, TE1 ′: 150 minutes or more When the total content of the Nb group elements is out of the above range, TE1 ': 300 minutes or more
  • TE1 ′ is preferably 200 minutes or more, more preferably 300 minutes or more, and preferably 900 minutes or less. , 600 minutes or less.
  • TE1 ′ is preferably 360 minutes or more, more preferably 600 minutes or more, and preferably 1500 minutes or less, and 900 minutes or less. More preferably, there is.
  • Condition (E-1 ′) is a factor that controls the in-plane stretching direction of the ⁇ grain boundary where the switching occurs. By performing sufficient holding at 1000 to 1050 ° C., it is possible to increase the frequency of switching in the rolling direction. It is considered that the switching frequency in the rolling direction increases due to the change in the form (for example, arrangement and shape) of the precipitates in the steel including the inhibitor during the holding in the above temperature range.
  • the arrangement and shape of the precipitates (particularly MnS) in the steel have anisotropy in the steel sheet plane, and It is thought to have a tendency to deflect.
  • the retention in the above temperature range changes the degree of deflection of the form of such precipitates in the rolling direction, and during the growth of the secondary recrystallized grains, the ⁇ grain boundary is formed in the steel sheet plane. It is considered that this affects the direction in which the film is easily stretched.
  • the grain size of the ⁇ crystal grains in the rolling direction can be controlled to be smaller than the grain size of the secondary recrystallized grains in the rolling direction.
  • the grain size of the ⁇ crystal grains in the rolling direction can be controlled to be smaller than the grain size of the secondary recrystallized grains in the rolling direction.
  • the holding time at 950 to 1000 ° C. is preferably 300 to 1500 minutes.
  • the holding time at 950 to 1000 ° C. is preferably 150 to 900 minutes.
  • condition (E-2 ′) In the heating step of the finish annealing, when the holding time (total residence time) in the temperature range of 950 to 1000 ° C. is TE2 ′, When the total content of Nb group elements is 0.0030 to 0.030%, TE2 ': 150 minutes or more When the total content of the Nb group elements is out of the above range, TE2 ': 300 minutes or more
  • TE2 ′ is preferably 200 minutes or more, more preferably 300 minutes or more, and preferably 900 minutes or less. , 600 minutes or less.
  • TE2 ′ is preferably 360 minutes or more, more preferably 600 minutes or more, preferably 1500 minutes or less, and preferably 900 minutes or less. More preferably, there is.
  • Condition (E-2 ′) is a factor for controlling the in-plane stretching direction of the ⁇ grain boundary where the switching is occurring. By performing sufficient holding at 950 to 1000 ° C., it is possible to increase the switching frequency in the direction perpendicular to the rolling direction. It is considered that the frequency of switching in the direction perpendicular to the rolling direction increases due to a change in the form (for example, arrangement and shape) of the precipitates in the steel including the inhibitor during the holding in the above temperature range.
  • the arrangement and shape of the precipitates (particularly MnS) in the steel have anisotropy in the steel sheet plane, and It is thought to have a tendency to deflect.
  • the retention in the above temperature range changes the degree of deflection of the form of such precipitates in the rolling direction, and during the growth of the secondary recrystallized grains, the ⁇ grain boundary is formed in the steel sheet plane. It is considered that this affects the direction in which the film is easily stretched.
  • the grain size in the direction perpendicular to the rolling direction of the ⁇ crystal grains can be controlled to be smaller than the grain size in the direction perpendicular to the rolling direction of the secondary recrystallized grains.
  • the combined above-mentioned condition (E-2 ') as described as the seventh embodiment, by the directional electromagnetic steel plates, and a particle size RC C and the particle diameter RB C It can be controlled so as to satisfy the 1.10 ⁇ RB C ⁇ RC C.
  • a temperature gradient of more than 0.5 ° C./cm is applied to a boundary portion between the primary recrystallization region and the secondary recrystallization region in the steel sheet in the heating process of the finish annealing.
  • the direction in which the temperature gradient is given is preferably the direction C perpendicular to the rolling direction.
  • the finish annealing step can be effectively used as a step for imparting in-plane anisotropy to the shape of ⁇ crystal grains.
  • a box-shaped annealing furnace is used and a coil-shaped steel plate is placed in the furnace and heated, a sufficient temperature difference is generated between the outside and the inside of the coil so that the position and arrangement of the heating device and the annealing are performed. What is necessary is just to control the temperature distribution in a furnace.
  • a temperature distribution may be formed in the coil to be annealed by arranging induction heating, high-frequency heating, an electric heating device, or the like, and positively heating only a part of the coil.
  • the method of giving the temperature gradient is not particularly limited, and a known method may be applied. If a temperature gradient is applied to the steel sheet, secondary recrystallized grains having a sharp orientation are generated from the part of the coil that reached the secondary recrystallization start state early, and these secondary recrystallized grains are caused by the temperature gradient. And grow with anisotropy. For example, secondary recrystallized grains can be grown over the entire coil. Therefore, it is possible to preferably control the in-plane anisotropy of the shape of the ⁇ crystal grain.
  • a temperature gradient is applied from one end to the other end in the width direction (the width direction of the steel sheet) to generate secondary recrystallized grains. Preferably, it is grown.
  • the temperature exceeds 0.5 ° C./cm (preferably 0.7 ° C./cm or more).
  • the secondary recrystallized grains may be grown by performing the final annealing while giving the temperature gradient of
  • the direction in which the temperature gradient is applied is preferably the direction C perpendicular to the rolling direction.
  • the upper limit of the temperature gradient is not particularly limited, but it is preferable to continuously grow the secondary recrystallized grains while maintaining the temperature gradient. In consideration of the heat conduction of the steel sheet and the growth rate of the secondary recrystallized grains, in a general manufacturing process, for example, the upper limit of the temperature gradient may be 10 ° C./cm.
  • the grain size of the ⁇ crystal grains in the rolling direction can be controlled to be smaller than the grain size of the ⁇ crystal grains in the direction perpendicular to the rolling direction.
  • the directional electromagnetic steel plates, and a particle size RC L and particle size RC C 1. It can be controlled so as to satisfy 15 ⁇ RC C ⁇ RC L.
  • the holding time at 1050 to 1100 ° C. in the heating process of the finish annealing may be 300 to 1200 minutes.
  • condition (F) In the heating process of the finish annealing, when the holding time in a temperature range of 1050 to 1100 ° C. is TF, TF: 300-1200 minutes
  • the heating rate at 1050 to 1100 ° C. is lowered (slow heating), and specifically, TF is reduced to 300 to 1200.
  • the secondary recrystallization continues to a high temperature and the magnetic flux density is preferably increased.
  • TF is preferably 400 minutes or more, and more preferably 700 minutes or less.
  • the condition (F) does not need to be controlled.
  • the cost can be reduced by increasing the heating rate in the temperature range of 1050 ° C. or higher and shortening the finish annealing time. .
  • the four conditions (A) to (C-2) are basically controlled as described above, and the conditions (A ′) and (B '), condition (D), condition (E-1), condition (E-1'), condition (E-2), condition (E-2 '), and / or temperature gradient conditions are combined. I just need. For example, a plurality of the above conditions may be combined. Further, the condition (F) may be combined as needed.
  • the method for manufacturing a grain-oriented electrical steel sheet according to the present embodiment includes the above-described steps. However, the manufacturing method according to the present embodiment may further include an insulating film forming step after the finish annealing step, if necessary.
  • the insulating film forming step is a step of forming an insulating film on the grain-oriented electrical steel sheet (finish-annealed steel sheet) after the finish annealing step.
  • An insulating coating mainly composed of phosphate and colloidal silica or an insulating coating mainly composed of alumina sol and boric acid may be formed on the steel sheet after the finish annealing.
  • a coating solution containing phosphoric acid or phosphate, chromic anhydride or chromate and colloidal silica is applied to the steel sheet after finish annealing and baked (for example, at 350 ° C. to 1150 ° C. for 5 to 300 seconds). ), An insulating film may be formed. At the time of film formation, the degree of oxidation, dew point, etc. of the atmosphere may be controlled as necessary.
  • a coating solution containing alumina sol and boric acid may be applied to the steel sheet after finish annealing and baked (for example, at 750 ° C. to 1350 ° C. for 10 to 100 seconds) to form an insulating film.
  • the degree of oxidation of the atmosphere, the dew point, and the like may be controlled as necessary.
  • the manufacturing method according to the present embodiment may further include a magnetic domain control step as needed.
  • the magnetic domain control step is a step of performing processing for subdividing the magnetic domains of the grain-oriented electrical steel sheet. For example, a local minute strain or a local groove may be formed in the grain-oriented electrical steel sheet by a known technique such as laser, plasma, mechanical method, and etching. Such a magnetic domain refining process does not impair the effects of the present embodiment.
  • the local micro-strain and the local groove become abnormal points when measuring the crystal orientation and the grain size specified in the present embodiment. For this reason, in the measurement of the crystal orientation, the measurement point is set so as not to overlap with the local minute strain and the local groove. Further, in the measurement of the particle size, local micro strain and local grooves are not recognized as grain boundaries.
  • the switching specified in the present embodiment occurs in the process of growing the secondary recrystallized grains. This phenomenon is affected by various control conditions such as the chemical composition of the raw material (slab), the formation of the inhibitor until the growth of the secondary recrystallized grains, and the control of the particle size of the primary recrystallized grains. For this reason, the switching is not limited to simply controlling one condition, and it is necessary to control a plurality of control conditions in a complex and inseparable manner.
  • the switching is performed so as to reduce the deviation, that is, to approach the ⁇ 110 ⁇ plane orientation and reduce the deviation angle.
  • the secondary recrystallized grains grow with an angle difference or a shift angle.
  • the shift angle corresponds to the angle caused by the azimuth variation at the time when the secondary recrystallized grains are generated.
  • the standard deviation ⁇ ( ⁇ ) of the final deviation angle ⁇ also corresponds to a value resulting from the azimuth variation at the time when the secondary recrystallized grains are generated. That is, the shift angle hardly changes during the growth process of the secondary recrystallized grains.
  • the switching is remarkable. Get up.
  • the reason for this is not clear, but in the process of growing the secondary recrystallized grains, the relatively high-density geometrical misorientation is eliminated in the front part in the growth direction, that is, in the area adjacent to the primary recrystallized grains. It is conceivable that the dislocations to be formed remain. It is considered that the remaining dislocations correspond to switching and sub-grain boundaries in the present embodiment.
  • the secondary recrystallization starts at a lower temperature than before, so that the disappearance of dislocations is delayed, and the dislocations accumulate in a form such that the dislocations are swept and accumulated at the grain boundaries on the front surface in the growth direction of the growing secondary recrystallized grains.
  • the dislocation density increases. For this reason, the rearrangement of atoms is likely to occur in front of the growing secondary recrystallized grains. As a result, the angle difference between adjacent secondary recrystallized grains is reduced, that is, the grain boundary energy is reduced. Or switching to reduce the surface energy.
  • This switching is caused by leaving sub-grain boundaries in the grains. Before the switching occurs, another secondary recrystallized grain is generated, and if the growing secondary recrystallized grain reaches the generated secondary recrystallized grain, the grain growth is stopped. Will not happen. For this reason, in the present embodiment, at the growth stage of the secondary recrystallized grains, the frequency of generation of new secondary recrystallized grains is reduced, and only the existing secondary recrystallized grains are controlled to continue the growth at an inhibitor rate. Is advantageous. For this reason, in the present embodiment, it is preferable to use an inhibitor that shifts the secondary recrystallization initiation temperature preferably at a low temperature and an inhibitor that is stable up to a relatively high temperature.
  • the conditions in the examples are examples of one condition adopted to confirm the operability and effects of the present invention. Therefore, the present invention is not limited to this one condition example.
  • the present invention can employ various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
  • Example 1 Grain-oriented electrical steel sheets (silicon steel sheets) having the chemical composition shown in Table A2 were manufactured using slabs having the chemical composition shown in Table A1 as raw materials. In addition, these chemical compositions were measured based on the above method. In Table A1 and Table A2, "-" indicates that the content was not controlled and manufactured with consideration for the content, and the content was not measured. Further, in Tables A1 and A2, the numerical values with “ ⁇ ” are the values measured by controlling and manufacturing with consideration of the content, and the measured values having sufficient reliability as the content. Is not obtained (measurement result is below the detection limit).
  • Oriented electrical steel sheets were manufactured under the manufacturing conditions shown in Tables A3 to A7. Specifically, a slab is cast, and hot rolling, hot-rolled sheet annealing, cold rolling, and decarburizing annealing are performed. In some cases, hydrogen-nitrogen-ammonia is added to the steel sheet after decarburizing annealing. A nitriding treatment (nitriding annealing) was performed in a mixed atmosphere.
  • an annealing separator containing MgO as a main component was applied to the steel sheet and subjected to finish annealing.
  • the steel sheet was kept at 1200 ° C. for 20 hours in a hydrogen atmosphere (purification annealing), and was naturally cooled.
  • a coating solution for forming an insulating coating containing chromium mainly containing phosphate and colloidal silica is applied. Then, the film was heated and held in an atmosphere of 75% by volume: 25% by volume of hydrogen: nitrogen, and cooled to form an insulating film.
  • the manufactured grain-oriented electrical steel sheet has an intermediate layer disposed in contact with the grain-oriented electrical steel sheet (silicon steel sheet) when viewed in a cutting plane in which the cutting direction is parallel to the sheet thickness direction. And an insulating coating disposed thereon.
  • the intermediate layer was a forsterite film having an average thickness of 2 ⁇ m
  • the insulation film was an insulation film having an average thickness of 1 ⁇ m mainly composed of phosphate and colloidal silica.
  • the “number of boundaries satisfying the boundary condition BA” corresponds to the grain boundaries of the case A and / or case B in Table 1 described above, and the “number of boundaries satisfying the boundary condition BB” corresponds to Corresponds to grain boundaries.
  • the average crystal grain size was calculated based on the specified grain boundaries.
  • the standard deviation ⁇ ( ⁇ ) of the absolute value of the shift angle ⁇ was measured by the above method.
  • an iron loss W 17/50 (W / kg) defined as a power loss per unit weight (1 kg) of a steel sheet was measured under the conditions of an AC frequency of 50 Hz and an exciting magnetic flux density of 1.7 T. Further, the magnetic flux density B 8 (T) in the rolling direction of the steel sheet when excited at 800 A / m was measured.
  • magnetostriction ( ⁇ p ⁇ p@1.7T).
  • magnetostriction has a relatively strong correlation with magnetic flux density, and the higher the magnetic flux density, the lower the magnetostriction. Therefore, even if the absolute value of the magnetostriction is low, it is difficult to determine whether the effect of reducing the magnetostriction is obtained if the magnetic flux density of the evaluation material is sufficiently high. That is, the effect of reducing the magnetostriction needs to be determined in consideration of the correlation with the magnetic flux density.
  • the following ⁇ ⁇ p-p is used as an index for magnetostriction evaluation.
  • ⁇ p-p ⁇ p-p@1.7T- (11.68-5.75 ⁇ B 8 )
  • Tables A1 to A12 are test results for steel sheets under specific conditions of chemical composition and production conditions. Therefore, the coefficient of “11.68-5.75 ⁇ B 8 ” has no particular physical meaning and is merely an experimental constant applicable under the conditions of the present embodiment. Therefore, the present invention is not limited to the above index. However, As far the present embodiment, the correlation between B 8 and ⁇ p-p@1.7T is relatively high. Therefore, the effect of the present invention can be determined from ⁇ ⁇ p-p which is an index of the above-described magnetostriction evaluation.
  • Examples 1001 to 1064 are examples manufactured by a process of forming a main inhibitor of secondary recrystallization by nitridation after primary recrystallization by lowering the slab heating temperature.
  • Examples 1001 to 1023 are examples in which the conditions of PA, PB, PC1, PC2, and TE1 are mainly changed at the time of finish annealing using a steel type not containing Nb.
  • No. 1003 is a comparative example in which the amount of N after nitriding was 300 ppm and the inhibitor strength was increased. In general, a factor that productivity is decreased by increasing the amount of nitride, B 8 inhibitor strength is increased by increasing the amount of nitride increases. No. Even 1003, B 8 is a high value. However, No. In No. 1003, the value of ⁇ pp was insufficient because the finish annealing conditions were not favorable. That is, No. In 1003, no switching occurred during secondary recrystallization, and as a result, magnetostriction did not improve.
  • No. 1010 is an example of the present invention in which the N content after nitriding was 160 ppm. No. In 1010, ⁇ pp was a preferable low value. That is, No. In 1010, switching occurred at the time of secondary recrystallization, and as a result, magnetostriction was improved.
  • No. Examples 1022 and 1023 are examples in which TF is increased and secondary recrystallization is continued to a high temperature.
  • B 8 is high.
  • the finish annealing conditions were not favorable. Like 1003, the magnetostriction did not improve.
  • No. In 1023 in addition to B 8 reaches a high value, since the finish annealing conditions were preferred, ⁇ .lambda.p-p becomes a preferable low value.
  • Examples 1024 to 1034 are examples in which the conditions of PA and TE1 are mainly changed at the time of finish annealing using a steel type containing 0.002% of Nb.
  • Examples 1035 to 1047 are examples in which the Nb content is 0.006%.
  • ⁇ ⁇ pp is preferably a smaller value than 1001 to 1034.
  • Examples 1048 to 1055 are examples in which TE1 was set to a short time of less than 200 minutes and the influence of the Nb content was particularly confirmed.
  • Nb is preferably contained, switching occurs at the time of secondary recrystallization even if TE1 is short, thereby improving magnetostriction.
  • Examples 1056 to 1064 are examples in which TE1 was set to a short time of less than 200 minutes and the effect of the content of the Nb group element was confirmed.
  • Nb group element other than Nb is preferably contained, switching occurs during secondary recrystallization even if TE1 is short, and magnetostriction is improved.
  • No. Nos. 1065 to 1100 are examples manufactured by a process in which the slab heating temperature is increased and MnS sufficiently dissolved during slab heating is reprecipitated in a later step and used as a main inhibitor.
  • No. No. 1065 to 1100, 1083-1100 is an embodiment in which enhanced B 8 contain a Bi slab time.
  • Example 2 Using a slab having the chemical composition shown in Table B1 as a raw material, a grain-oriented electrical steel sheet having the chemical composition shown in Table B2 was produced.
  • the method of measuring the chemical composition and the method of description in the table are the same as those in Example 1 described above.
  • Oriented electrical steel sheets were manufactured under the manufacturing conditions shown in Tables B3 to B7. Manufacturing conditions other than those shown in the table are the same as those in the first embodiment.
  • the manufactured grain-oriented electrical steel sheet (finished annealed steel sheet) was formed with the same insulating coating as in Example 1 above.
  • the manufactured grain-oriented electrical steel sheet has an intermediate layer disposed in contact with the grain-oriented electrical steel sheet (silicon steel sheet) when viewed in a cutting plane in which the cutting direction is parallel to the sheet thickness direction. And an insulating coating disposed thereon.
  • the intermediate layer was a forsterite film having an average thickness of 1.5 ⁇ m
  • the insulating film was an insulating film having an average thickness of 2 ⁇ m mainly composed of phosphate and colloidal silica.
  • ⁇ ⁇ p-p is used as an index for evaluating magnetostriction.
  • the reason for using the index of magnetostriction evaluation is the same as that of the first embodiment.
  • ⁇ p-p ⁇ p-p@1.7T- (12.16-6.00 ⁇ B 8 )
  • Examples 2001 to 2064 are examples manufactured by a process of forming a main inhibitor of secondary recrystallization by nitriding after primary recrystallization by lowering the slab heating temperature.
  • Examples 2001 to 2023 are examples in which the conditions of PA, PB, PC1, PC2, and TE2 are mainly changed at the time of finish annealing using a steel type containing no Nb.
  • No. 2003 is a comparative example in which the amount of N after nitriding was 300 ppm and the inhibitor strength was increased.
  • the B 8 is a high value, since the finish annealing conditions are not favorable, ⁇ value of .lambda.p-p becomes insufficient.
  • No. 2010 is an example of the present invention in which the N content after nitriding was 160 ppm.
  • No. Examples 2022 and 2023 are examples in which TF is increased and secondary recrystallization is continued to a high temperature.
  • B 8 is high.
  • no. In No. 2022 the finish annealing conditions were not favorable.
  • the magnetostriction did not improve.
  • No. In 2023 in addition to B 8 reaches a high value, since the finish annealing conditions were preferred, ⁇ .lambda.p-p becomes a preferable low value.
  • Examples 2024 to 2034 are examples in which the conditions of PA and TE2 are mainly changed at the time of finish annealing using a steel type containing 0.001% of Nb.
  • No. 2035 to 2047 are Examples in which the Nb content is 0.007%.
  • ⁇ ⁇ p-p is preferably a smaller value than 2001 to 2034.
  • No. 2048 to 2055 are Examples in which TE2 was set to a short time of less than 200 minutes and the influence of the Nb content was particularly confirmed.
  • Nb is preferably contained, switching occurs at the time of secondary recrystallization even if TE2 is short, thereby improving magnetostriction.
  • Examples 2056 to 2064 are examples in which TE2 was set to a short time of less than 200 minutes and the effect of the content of the Nb group element was confirmed.
  • Nb group element other than Nb is preferably contained, switching occurs during secondary recrystallization even if TE2 is short, and magnetostriction is improved.
  • Example manufactured by high-temperature slab heating process No. 2065 to 2100 are examples produced by a process in which the slab heating temperature is increased and MnS sufficiently dissolved during slab heating is reprecipitated in a later step and used as a main inhibitor.
  • Example 3 Using a slab having the chemical composition shown in Table C1 as a raw material, a grain-oriented electrical steel sheet having the chemical composition shown in Table C2 was produced.
  • the method of measuring the chemical composition and the method of description in the table are the same as those in Example 1 described above.
  • Oriented electrical steel sheets were manufactured under the manufacturing conditions shown in Tables C3 to C6.
  • heat treatment was performed with a temperature gradient in the direction perpendicular to the rolling direction of the steel sheet.
  • the temperature gradient and the manufacturing conditions other than those shown in the table are the same as those in the first embodiment.
  • Example 2 The same insulating coating as in Example 1 was formed on the surface of the manufactured grain-oriented electrical steel sheet (finished annealed steel sheet).
  • the manufactured grain-oriented electrical steel sheet has an intermediate layer disposed in contact with the grain-oriented electrical steel sheet (silicon steel sheet) when viewed in a cutting plane in which the cutting direction is parallel to the sheet thickness direction. And an insulating coating disposed thereon.
  • the intermediate layer was a forsterite film having an average thickness of 3 ⁇ m
  • the insulation film was an insulation film having an average thickness of 3 ⁇ m mainly composed of phosphate and colloidal silica.
  • the crystal grains extended in the direction of the temperature gradient, and the crystal grain size of the subcrystal grains also increased in this direction. That is, the crystal grains were elongated in the direction perpendicular to the rolling.
  • the grain size of the sub-crystal grains in the direction perpendicular to the rolling direction was smaller than the grain size in the rolling direction.
  • Examples 3001 to 3070 are examples manufactured by a process of forming a main inhibitor of secondary recrystallization by nitridation after primary recrystallization by lowering the slab heating temperature.
  • Examples 3001 to 3035 are examples in which the conditions of PA, PB, PC1, PC2, and the temperature gradient are mainly changed at the time of finish annealing using a steel type not containing Nb.
  • Examples 3036 to 3070 are examples in which the conditions of PA, PB, PC1, PC2, and the temperature gradient were mainly changed at the time of finish annealing using a steel type containing an Nb group element at the time of slab.
  • No. 3071 is an embodiment manufactured by a process in which the slab heating temperature is increased and MnS sufficiently dissolved during slab heating is reprecipitated in a later step and used as a main inhibitor.
  • the magnetostriction is preferably improved by appropriately controlling the finish annealing conditions.
  • Example 4 Grain-oriented electrical steel sheets having the chemical composition shown in Table D2 were produced from slabs having the chemical composition shown in Table D1. The method of measuring the chemical composition and the method of description in the table are the same as those in Example 1 described above.
  • the grain-oriented electrical steel sheet was manufactured based on the manufacturing conditions shown in Table D3. Manufacturing conditions other than those shown in the table are the same as those in the first embodiment.
  • a steel sheet was coated with an annealing separator containing MgO as a main component as an annealing separator and subjected to finish annealing.
  • an annealing separator mainly composed of alumina was applied to a steel sheet as an annealing separator, and was subjected to finish annealing.
  • Example 2 The same insulating coating as in Example 1 was formed on the surface of the manufactured grain-oriented electrical steel sheet (finished annealed steel sheet).
  • the manufactured grain-oriented electrical steel sheet has an intermediate layer disposed in contact with the grain-oriented electrical steel sheet (silicon steel sheet) when viewed in a cutting plane in which the cutting direction is parallel to the sheet thickness direction. And an insulating coating disposed thereon.
  • the intermediate layer was a forsterite coating having an average thickness of 1.5 ⁇ m
  • the insulating coating was an insulating coating mainly composed of phosphate and colloidal silica having an average thickness of 2 ⁇ m.
  • the intermediate layer is an oxide film (coating mainly composed of SiO 2 ) having an average thickness of 20 nm
  • the insulating coating is mainly composed of phosphate and colloidal silica having an average thickness of 2 ⁇ m. It was an insulating coating.
  • Example 5 Grain-oriented electrical steel sheets (silicon steel sheets) having the chemical composition shown in Table E2 were manufactured from slabs having the chemical composition shown in Table E1. The method of measuring the chemical composition and the method of description in the table are the same as those in Example 1 described above.
  • Oriented electrical steel sheets were manufactured under the manufacturing conditions shown in Tables E3 to E7. Manufacturing conditions other than those shown in the table are the same as those in the first embodiment.
  • the manufactured grain-oriented electrical steel sheet (finished annealed steel sheet) was formed with the same insulating coating as in Example 1 above.
  • the manufactured grain-oriented electrical steel sheet has an intermediate layer disposed in contact with the grain-oriented electrical steel sheet (silicon steel sheet) when viewed in a cutting plane in which the cutting direction is parallel to the sheet thickness direction. And an insulating coating disposed thereon.
  • the intermediate layer was a forsterite film having an average thickness of 2 ⁇ m
  • the insulation film was an insulation film having an average thickness of 1 ⁇ m mainly composed of phosphate and colloidal silica.
  • the crystal orientation of the grain-oriented electrical steel sheet was measured by the above method. A shift angle was specified from the crystal orientation of each of the measured measurement points, and a grain boundary existing between two adjacent measurement points was specified based on the shift angle.
  • the value obtained by dividing the “number of boundaries satisfying the boundary condition BA” by the “number of boundaries satisfying the boundary condition BB” is 1.15 or more.
  • the “number of boundaries satisfying the boundary condition BA” corresponds to the grain boundaries of the case A and / or case B in Table 1 described above, and the “number of boundaries satisfying the boundary condition BB” corresponds to Corresponds to grain boundaries.
  • the boundary condition is determined at two measurement points having an interval of 1 mm
  • the value obtained by dividing “the number of boundaries satisfying the boundary condition BC” by “the number of boundaries satisfying the boundary condition BB” is 1.10 or more.
  • the “number of boundaries satisfying the boundary condition BC” corresponds to the grain boundaries in Case 1 and / or Case 3 in Table 2 described above
  • the “number of boundaries satisfying the boundary condition BB” corresponds to Case 1 and And / or correspond to the grain boundaries of case 2.
  • the average crystal grain size was calculated based on the specified grain boundaries.
  • ) of the absolute value of the shift angle ⁇ was measured by the above method.
  • an iron loss W 19/50 (W / kg) defined as a power loss per unit weight (1 kg) of a steel sheet was measured under the conditions of an AC frequency of 50 Hz and an exciting magnetic flux density of 1.9 T.
  • the evaluation method other than the iron loss W 19/50 is the same as that in the first embodiment.
  • the evaluation results are shown in Tables E8 to E12.
  • Examples 5001 to 5064 are examples manufactured by a process of forming a main inhibitor of secondary recrystallization by nitriding after primary recrystallization by lowering the slab heating temperature.
  • Examples 5001 to 5023 are examples in which the conditions of PA ′, PB ′, TD, and TE1 ′ are mainly changed at the time of finish annealing using a steel type not containing Nb.
  • No. 5003 is a comparative example in which the amount of N after nitriding was 300 ppm and the inhibitor strength was increased.
  • No. Even 5003, B 8 is a high value.
  • No. 5017 to 5023 are examples in which the TF is increased and the secondary recrystallization is continued to a high temperature.
  • No. In 5017 ⁇ 5023, B 8 is high.
  • the finish annealing conditions were not preferable.
  • the high field iron loss was not improved.
  • Examples 5024 to 5034 are examples in which the conditions of PA ′, PB ′, and TE1 ′ are mainly changed at the time of finish annealing using a steel type containing 0.002% of Nb at the time of slab.
  • Examples 5035 to 5046 are examples using steel types containing 0.007% of Nb at the time of slab.
  • Nb is contained at the time of slab, Nb is purified by finish annealing, and the Nb content is 0.006% or less at the time of grain-oriented electrical steel sheet (finish-annealed steel sheet).
  • No. Nos. 5035 to 5046 are Nos. Described above at the time of slab. Since Nb is contained more preferably than 5001 to 5034, W19 / 50 is a low value.
  • B 8 is high. That is, by controlling the finish annealing conditions using slab containing Nb, favors B 8 and W 19/50. In particular, no.
  • Reference numeral 5042 is an example of the present invention in which purification is enhanced by finish annealing, and the Nb content is below the detection limit at the time of a grain-oriented electrical steel sheet (finish-annealed steel sheet). No. In 5042, the use of the Nb group element cannot be verified from the grain-oriented electrical steel sheet, which is the final product, but the above effects are remarkably obtained.
  • No. 5047 to 5054 are examples in which TE1 ′ was set to a short time of less than 300 minutes and the influence of the Nb content was particularly confirmed.
  • No. 5055 to 5064 are examples in which TE1 ′ was set to a short time of less than 300 minutes and the effect of the content of the Nb group element was confirmed.
  • Examples 5065 to 5101 are examples manufactured by a process in which slab heating temperature is increased and MnS sufficiently dissolved during slab heating is reprecipitated in a later step and used as a main inhibitor.
  • Example 6 Grain-oriented electrical steel sheets having the chemical composition shown in Table F2 were produced from slabs having the chemical composition shown in Table F1. The method of measuring the chemical composition and the method of description in the table are the same as those in Example 1 described above.
  • Oriented electrical steel sheets were manufactured based on the manufacturing conditions shown in Tables F3 to F7. Manufacturing conditions other than those shown in the table are the same as those in the first embodiment.
  • Example 2 The same insulating coating as in Example 1 was formed on the surface of the manufactured grain-oriented electrical steel sheet (finished annealed steel sheet).
  • the manufactured grain-oriented electrical steel sheet has an intermediate layer disposed in contact with the grain-oriented electrical steel sheet (silicon steel sheet) when viewed in a cutting plane in which the cutting direction is parallel to the sheet thickness direction. And an insulating coating disposed thereon.
  • the intermediate layer was a forsterite film having an average thickness of 1.5 ⁇ m
  • the insulating film was an insulating film having an average thickness of 2 ⁇ m mainly composed of phosphate and colloidal silica.
  • Examples 6001 to 6063 are examples manufactured by a process of forming a main inhibitor of secondary recrystallization by nitriding after primary recrystallization by lowering the slab heating temperature.
  • Examples 6001 to 6023 are examples in which the conditions of PA ′, PB ′, TD, and TE2 ′ are mainly changed at the time of finish annealing using a steel type not containing Nb.
  • No. Reference numeral 6003 is a comparative example in which the amount of N after nitriding was 300 ppm and the inhibitor strength was increased.
  • No. Even 6003, B 8 is a high value.
  • No. Examples 6017 to 6023 are examples in which TF is increased and secondary recrystallization is continued to a high temperature.
  • No. In 6017 ⁇ 6023, B 8 is high.
  • the finish annealing conditions were not favorable.
  • the high field iron loss did not improve.
  • Examples 6024 to 6034 are examples in which the condition of PA ′, PB ′, and TE2 ′ is mainly changed at the time of finish annealing using a steel type containing 0.001% of Nb at the time of slab.
  • No. Nos. 6035 to 6046 are examples using steel types containing 0.009% of Nb at the time of slab.
  • Nb is contained at 0.009% at the time of slab, Nb is purified by finish annealing, and the Nb content is 0.007% or less at the time of grain-oriented electrical steel sheet (finish-annealed steel sheet). .
  • No. Nos. 6035 to 6046 are Nos. Described above at the time of slab. Since Nb is contained more preferably than 6001 to 6034, W19 / 50 is a low value.
  • B 8 is high. That is, by controlling the finish annealing conditions using slab containing Nb, favors B 8 and W 19/50. In particular, no.
  • Reference numeral 6042 is an example of the present invention in which purification is enhanced by finish annealing, and the Nb content is below the detection limit at the time of a grain-oriented electrical steel sheet (finish-annealed steel sheet). No. In 6042, the use of the Nb group element cannot be verified from the grain-oriented electrical steel sheet, which is the final product, but the above effects are remarkably obtained.
  • Examples 6047 to 6053 are Examples in which TE2 ′ was set to a short time of less than 300 minutes and the influence of the Nb content was particularly confirmed.
  • Examples 6054 to 6063 are examples in which the effect of the content of the Nb group element was confirmed by shortening the TE2 ′ to less than 300 minutes.
  • No. Nos. 6064 to 6100 are examples produced by a process in which the slab heating temperature is increased and MnS sufficiently dissolved during slab heating is reprecipitated in a later step and used as a main inhibitor.
  • No. No. 6064 to 6100 No. 6082-6100 is an embodiment in which enhanced B 8 contain a Bi slab time.
  • Example 7 Using a slab having the chemical composition shown in Table G1 as a raw material, a grain-oriented electrical steel sheet having the chemical composition shown in Table G2 was produced.
  • the method of measuring the chemical composition and the method of description in the table are the same as those in Example 1 described above.
  • Oriented magnetic steel sheets were manufactured under the manufacturing conditions shown in Tables G3 to G6.
  • heat treatment was performed with a temperature gradient in the direction perpendicular to the rolling direction of the steel sheet.
  • the temperature gradient and the manufacturing conditions other than those shown in the table are the same as those in Example 1 described above.
  • Example 2 The same insulating coating as in Example 1 was formed on the surface of the manufactured grain-oriented electrical steel sheet (finished annealed steel sheet).
  • the manufactured grain-oriented electrical steel sheet has an intermediate layer disposed in contact with the grain-oriented electrical steel sheet (silicon steel sheet) when viewed in a cutting plane in which the cutting direction is parallel to the sheet thickness direction. And an insulating coating disposed thereon.
  • the intermediate layer was a forsterite film having an average thickness of 3 ⁇ m
  • the insulation film was an insulation film having an average thickness of 3 ⁇ m mainly composed of phosphate and colloidal silica.
  • the crystal grains extended in the direction of the temperature gradient, and the crystal grain size of ⁇ crystal grains also increased in this direction. That is, the crystal grains were elongated in the direction perpendicular to the rolling.
  • the grain size of the ⁇ crystal grains in the direction perpendicular to the rolling direction was smaller than the grain size in the rolling direction.
  • the grain size in the direction perpendicular to the rolling direction is smaller than the grain size in the rolling direction, it is indicated by “*” in the column of “temperature gradient directions do not match” in the table.
  • Examples 7001 to 7069 are examples manufactured by a process of forming a main inhibitor of secondary recrystallization by nitriding after primary recrystallization by lowering the slab heating temperature.
  • Examples 7001 to 7034 are examples in which the conditions of PA ′, PB ′, TD, and the temperature gradient are mainly changed at the time of finish annealing using a steel type not containing Nb.
  • Examples 7035 to 7069 are examples in which the conditions of PA ′, PB ′, TD, and the temperature gradient were mainly changed at the time of finish annealing using a steel type containing an Nb group element at the time of slab.
  • No. 7070 is an embodiment manufactured by a process in which the slab heating temperature is raised and MnS sufficiently dissolved during slab heating is reprecipitated in a later step and used as a main inhibitor.
  • Example 8 Grain-oriented electrical steel sheets having the chemical composition shown in Table H2 were manufactured using slabs having the chemical composition shown in Table H1 as raw materials. The method of measuring the chemical composition and the method of description in the table are the same as those in Example 1 described above.
  • the grain-oriented electrical steel sheet was manufactured based on the manufacturing conditions shown in Table H3. Manufacturing conditions other than those shown in the table are the same as those in the first embodiment.
  • an annealing separator containing MgO as a main component was applied to a steel plate as an annealing separator, and subjected to finish annealing.
  • an annealing separator containing alumina as a main component was applied to a steel sheet as an annealing separator, and subjected to finish annealing.
  • Example 2 The same insulating coating as in Example 1 was formed on the surface of the manufactured grain-oriented electrical steel sheet (finished annealed steel sheet).
  • the manufactured grain-oriented electrical steel sheet has an intermediate layer disposed in contact with the grain-oriented electrical steel sheet (silicon steel sheet) when viewed in a cutting plane in which the cutting direction is parallel to the sheet thickness direction. And an insulating coating disposed thereon.
  • the intermediate layer was a forsterite film having an average thickness of 1.5 ⁇ m
  • the insulating film was an insulating film mainly containing phosphate and colloidal silica having an average thickness of 2 ⁇ m.
  • the intermediate layer is an oxide film (film mainly composed of SiO 2 ) having an average thickness of 20 nm
  • the insulating film is mainly composed of phosphate and colloidal silica having an average thickness of 2 ⁇ m. It was an insulating coating.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

この方向性電磁鋼板は、Goss方位に配向する集合組織を有し、板面上で隣接し且つ間隔が1mmである2つの測定点で測定する結晶方位のずれ角を(α β γ)および(α β γ)と表し、境界条件BAを[(α-α+(β-β+(γ-γ1/2≧0.5°と定義し、境界条件BBを[(α-α+(β-β+(γ-γ1/2≧2.0°と定義するとき、境界条件BAを満足し且つ境界条件BBを満足しない粒界が存在する。

Description

方向性電磁鋼板
 本発明は、方向性電磁鋼板に関する。
 本願は、2018年7月31日に日本に出願された特願2018-143898号、2018年7月31日に日本に出願された特願2018-143900号、2018年7月31日に日本に出願された特願2018-143901号、2018年7月31日に日本に出願された特願2018-143902号、2018年7月31日に日本に出願された特願2018-143904号、および2018年7月31日に日本に出願された特願2018-143905号、に基づき優先権を主張し、その内容をここに援用する。
 方向性電磁鋼板は、Siを7質量%以下含有し、{110}<001>方位(Goss方位)に集積した二次再結晶集合組織を有する鋼板である。なお、{110}<001>方位とは、結晶の{110}面が圧延面と平行に配し、且つ結晶の<001>軸が圧延方向と平行に配することを意味する。
 方向性電磁鋼板の磁気特性は、{110}<001>方位への集積度に大きく影響される。特に、鋼板の使用時に主たる磁化方向となる鋼板の圧延方向と、磁化容易方向である結晶の<001>方向との関係が重要と考えられている。そのため、近年の実用の方向性電磁鋼板では、結晶の<001>方向と圧延方向とがなす角が5゜程度の範囲内に入るように、制御されている。
 方向性電磁鋼板の実際の結晶方位と理想的な{110}<001>方位とのずれは、圧延面法線方向Z周りにおけるずれ角α、圧延直角方向C周りにおけるずれ角β、および圧延方向L周りにおけるずれ角γの3成分により表すことができる。
 図1は、ずれ角α、ずれ角β、及びずれ角γを例示する模式図である。図1に示すように、ずれ角αとは、圧延面法線方向Zから見たときに圧延面に射影した結晶の<001>方向と圧延方向Lとがなす角である。ずれ角βは、圧延直角方向C(板幅方向)から見たときにL断面(圧延直角方向を法線とする断面)に射影した結晶の<001>方向と圧延方向Lとがなす角である。ずれ角γは、圧延方向Lから見たときにC断面(圧延方向を法線とする断面)に射影した結晶の<110>方向と圧延面法線方向Zとがなす角である。
 ずれ角α、β、γのうち、ずれ角βは、磁歪に影響を与えることが知られている。なお、磁歪とは、磁性体が磁場印加によって形状変化する現象である。変圧器のトランスなどに用いられる方向性電磁鋼板では、磁歪が振動・騒音の原因となるため、磁歪が小さいことが求められている。
 例えば、特許文献1~3には、ずれ角βを制御することが開示されている。また、ずれ角βに加えて、ずれ角αを制御することが、特許文献4および5に開示されている。さらに、ずれ角α、ずれ角β、およびずれ角γを指標として用い、結晶方位の集積度をさらに詳細に分類して鉄損特性を向上する技術が特許文献6に開示されている。
 また、ずれ角α、β、γの絶対値の大きさ及び平均値を単に制御するだけでなく、変動(偏差)を含めて制御することが、例えば特許文献7~9に開示されている。さらに、特許文献10~12には、方向性電磁鋼板にNbやVなどを添加することが開示されている。
 また、方向性電磁鋼板は、磁歪に加えて磁束密度にも優れることが求められている。これまで、二次再結晶における結晶粒の成長を制御して磁束密度の高い鋼板を得る方法などが提案されている。例えば、特許文献13および14には、仕上げ焼鈍工程にて、一次再結晶粒を蚕食しつつある二次再結晶粒の先端領域で、鋼板に温度勾配を与えながら二次再結晶を進行させる方法が開示されている。
 温度勾配を用いて二次再結晶粒を成長させた場合、粒成長は安定するものの、結晶粒が過度に大きくなりすぎることがある。結晶粒が過度に大きくなれば、コイルによる曲率の影響で磁束密度の向上効果が阻まれてしまうことがある。例えば、特許文献15には、温度勾配を与えながら二次再結晶を進行させる際に、二次再結晶の初期に発生した二次再結晶の自由な成長を抑制する処理(例えば鋼板の幅方向の端部に機械的な歪みを加える処理)が開示されている。
日本国特開2001-294996号公報 日本国特開2005-240102号公報 日本国特開2015-206114号公報 日本国特開2004-060026号公報 国際公開第2016/056501号 日本国特開2007-314826号公報 日本国特開2001-192785号公報 日本国特開2005-240079号公報 日本国特開2012-052229号公報 日本国特開昭52-024116号公報 日本国特開平02-200732号公報 日本国特許第4962516号公報 日本国特開昭57-002839号公報 日本国特開昭61-190017号公報 日本国特開平02-258923号公報
 本発明者らが検討した結果、特許文献1~9により開示された従来の技術は、結晶方位を制御しているにも関わらず、特に、磁歪の低減が十分とは言えない。
 また、特許文献10~12により開示された従来の技術は、単にNb及びVを含有させただけであるため、磁歪の低減は十分とは言えない。さらに、特許文献13~15により開示された従来の技術は、生産性の観点で問題があるばかりでなく、磁歪の低減が十分とは言えない。
 本発明は、磁歪の低減が方向性電磁鋼板に求められている現状を踏まえ、磁歪を改善した方向性電磁鋼板を提供することを課題とする。特に、中磁場領域(1.7T程度の磁場)での磁歪及び鉄損をいずれも改善した方向性電磁鋼板を提供することを課題とする。
 本発明の要旨は、次のとおりである。
(1)本発明の一態様に係る方向性電磁鋼板は、 質量%で、Si:2.0~7.0%、Nb:0~0.030%、V:0~0.030%、Mo:0~0.030%、Ta:0~0.030%、W:0~0.030%、C:0~0.0050%、Mn:0~1.0%、S:0~0.0150%、Se:0~0.0150%、Al:0~0.0650%、N:0~0.0050%、Cu:0~0.40%、Bi:0~0.010%、B:0~0.080%、P:0~0.50%、Ti:0~0.0150%、Sn:0~0.10%、Sb:0~0.10%、Cr:0~0.30%、Ni:0~1.0%を含有し、残部がFeおよび不純物からなる化学組成を有し、Goss方位に配向する集合組織を有する方向性電磁鋼板において、圧延面法線方向Zを回転軸とする理想Goss方位からのずれ角をαと定義し、圧延直角方向Cを回転軸とする理想Goss方位からのずれ角をβと定義し、圧延方向Lを回転軸とする理想Goss方位からのずれ角をγと定義し、板面上で隣接し且つ間隔が1mmである2つの測定点で測定する結晶方位のずれ角を(α β γ)および(α β γ)と表し、境界条件BAを[(α-α+(β-β+(γ-γ1/2≧0.5°と定義し、境界条件BBを[(α-α+(β-β+(γ-γ1/2≧2.0°と定義するとき、境界条件BAを満足し且つ境界条件BBを満足しない粒界が存在する。
(2)上記(1)に記載の方向性電磁鋼板では、境界条件BAに基づいて求める圧延方向Lの平均結晶粒径を粒径RAと定義し、境界条件BBに基づいて求める圧延方向Lの平均結晶粒径を粒径RBと定義するとき、粒径RAと粒径RBとが、1.15≦RB÷RAを満たしてもよい。
(3)上記(1)又は(2)に記載の方向性電磁鋼板では、境界条件BAに基づいて求める圧延直角方向Cの平均結晶粒径を粒径RAと定義し、境界条件BBに基づいて求める圧延直角方向Cの平均結晶粒径を粒径RBと定義するとき、粒径RAと粒径RBとが、1.15≦RB÷RAを満たしてもよい。
(4)上記(1)~(3)のいずれか一項に記載の方向性電磁鋼板では、境界条件BAに基づいて求める圧延方向Lの平均結晶粒径を粒径RAと定義し、境界条件BAに基づいて求める圧延直角方向Cの平均結晶粒径を粒径RAと定義するとき、粒径RAと粒径RAとが、1.15≦RA÷RAを満たしてもよい。
(5)上記(1)~(4)のいずれか一項に記載の方向性電磁鋼板では、境界条件BBに基づいて求める圧延方向Lの平均結晶粒径を粒径RBと定義し、境界条件BBに基づいて求める圧延直角方向Cの平均結晶粒径を粒径RBと定義するとき、粒径RBと粒径RBとが、1.50≦RB÷RBを満たしてもよい。
(6)上記(1)~(5)のいずれか一項に記載の方向性電磁鋼板では、境界条件BAに基づいて求める圧延方向Lの平均結晶粒径を粒径RAと定義し、境界条件BBに基づいて求める圧延方向Lの平均結晶粒径を粒径RBと定義し、境界条件BAに基づいて求める圧延直角方向Cの平均結晶粒径を粒径RAと定義し、境界条件BBに基づいて求める圧延直角方向Cの平均結晶粒径を粒径RBと定義するとき、粒径RAと粒径RAと粒径RBと粒径RBとが、(RB×RA)÷(RB×RA)<1.0を満たしてもよい。
(7)上記(1)~(6)のいずれか一項に記載の方向性電磁鋼板では、板面上の測定点で測定する結晶方位のずれ角を(α β γ)と表し、各測定点でのずれ角をθ=[α+β+γ1/2と定義するとき、ずれ角θの絶対値の標準偏差σ(θ)が、0°以上3.0°以下であってもよい。
(8)上記(1)~(7)のいずれか一項に記載の方向性電磁鋼板では、境界条件BCを|α-α|≧0.5°と定義するとき、境界条件BCを満足し且つ境界条件BBを満足しない粒界が存在してもよい。
(9)上記(1)~(8)のいずれか一項に記載の方向性電磁鋼板では、境界条件BCに基づいて求める圧延方向Lの平均結晶粒径を粒径RCと定義し、境界条件BBに基づいて求める圧延方向Lの平均結晶粒径を粒径RBと定義するとき、粒径RCと粒径RBとが、1.10≦RB÷RCを満たしてもよい。
(10)上記(1)~(9)のいずれか一項に記載の方向性電磁鋼板では、境界条件BCに基づいて求める圧延直角方向Cの平均結晶粒径を粒径RCと定義し、境界条件BBに基づいて求める圧延直角方向Cの平均結晶粒径を粒径RBと定義するとき、粒径RCと粒径RBとが、1.10≦RB÷RCを満たしてもよい。
(11)上記(1)~(10)のいずれか一項に記載の方向性電磁鋼板では、境界条件BCに基づいて求める圧延方向Lの平均結晶粒径を粒径RCと定義し、境界条件BCに基づいて求める圧延直角方向Cの平均結晶粒径を粒径RCと定義するとき、粒径RCと粒径RCとが、1.15≦RC÷RCを満たしてもよい。
(12)上記(1)~(11)のいずれか一項に記載の方向性電磁鋼板では、境界条件BCに基づいて求める圧延方向Lの平均結晶粒径を粒径RCと定義し、境界条件BBに基づいて求める圧延方向Lの平均結晶粒径を粒径RBと定義し、境界条件BCに基づいて求める圧延直角方向Cの平均結晶粒径を粒径RCと定義し、境界条件BBに基づいて求める圧延直角方向Cの平均結晶粒径を粒径RBと定義するとき、粒径RCと粒径RCと粒径RBと粒径RBとが、(RB×RC)÷(RB×RC)<1.0を満たしてもよい。
(13)上記(1)~(12)のいずれか一項に記載の方向性電磁鋼板では、ずれ角αの絶対値の標準偏差σ(|α|)が、0°以上3.50°以下であってもよい。
(14)上記(1)~(13)のいずれか一項に記載の方向性電磁鋼板では、化学組成として、Nb、V、Mo、Ta、およびWからなる群から選択される少なくとも1種を合計で0.0030~0.030質量%含有してもよい。
(15)上記(1)~(14)のいずれか一項に記載の方向性電磁鋼板では、局所的な微小歪の付与または局所的な溝の形成の少なくとも1つによって磁区が細分化されてもよい。
(16)上記(1)~(15)のいずれか一項に記載の方向性電磁鋼板では、方向性電磁鋼板上に接して配された中間層と、中間層上に接して配された絶縁被膜とを有してもよい。
(17)上記(1)~(16)のいずれか一項に記載の方向性電磁鋼板では、中間層が平均厚さ1~3μmのフォルステライト被膜であってもよい。
(18)上記(1)~(17)のいずれか一項に記載の方向性電磁鋼板では、中間層が平均厚さ2~500nmの酸化膜であってもよい。
 本発明の上記態様によれば、中磁場領域(特に1.7T程度の磁場)での磁歪及び鉄損をいずれも改善した方向性電磁鋼板が得られる。
ずれ角α、ずれ角β、およびずれ角γを例示する模式図である。 本発明の一実施形態に係る方向性電磁鋼板の断面模式図である。 本発明の一実施形態に係る方向性電磁鋼板の製造方法の流れ図である。
 本発明の好ましい一実施形態を詳細に説明する。ただ、本発明は本実施形態に開示の構成のみに制限されることなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。また、下記する数値限定範囲には、下限値及び上限値がその範囲に含まれる。「超」または「未満」と示す数値は、その値が数値範囲に含まれない。また、化学組成に関する「%」は特に断りがない限り「質量%」を意味する。
 結晶方位が、理想的な{110}<001>方位(Goss方位)に近づくことだけでは、例えば、結晶方位のずれ角の標準偏差がゼロに近づくことだけでは、鉄損と磁歪と合わせて低減することに限界がある。本発明者らは、この原因を検討した。結晶方位と磁束密度との相関は、理論的にも高いはずである。そのため、圧延方向の磁束密度Bと、鉄損および磁歪との相関のずれに注目した。
 検討の結果、磁化する際の磁界の強さが、一般的に磁気特性を測定する際の磁界の強さである1.7T近傍の磁場領域(以降、単に「中磁場領域」と記述することがある)では、磁束密度Bと鉄損との相関は比較的高いことがわかった。
 この磁場領域に関して、磁気特性と方向性電磁鋼板の結晶方位のずれ角との関係について解析した結果、圧延方向の磁束密度Bは、ずれ角αおよびずれ角βと強く相関すること、より詳細には、(α+β1/2と強く相関することが確認された。すなわち、結晶方位としては、ずれ角αおよびずれ角βをどちらも低減することが重要であることが確認された。この知見は、ずれ角αおよびずれ角βを制御するという公知技術を裏付けている。つまり、ずれ角αおよびずれ角βを考慮して結晶方位を制御することにより、磁束密度Bを高めるとともに中磁場領域での鉄損値を低下させることができる。
 しかし、本発明者らは、一部の材料では、磁束密度Bと磁歪との相関が弱くなる場合があることを知見した。この状況を調査したところ、その挙動が1.7Tでの磁気歪み量である「磁歪の最小値と最大値との差」(以下、「λp-p@1.7T」と表記する)で評価できることを知見した。そして、この挙動を最適に制御できれば、中磁場領域での磁歪のさらなる改善が可能であると考えた。
 本発明者らは、方向性電磁鋼板内のずれ角α、β、γの分布の測定結果に基づき、λp-p@1.7Tを好ましく制御するための幾何学的要因について鋭意検討した。その結果、方向性電磁鋼板のずれ角α、β、およびγから計算される値である「空間3次元的な方位差」(角度φ:φ=[(α-α+(β-β+(γ-γ1/2)に関する結晶方位を制御することが重要であることを認識した。
 本発明者らは、二次再結晶粒の成長の段階で結晶方位を保ったまま成長させるのではなく、方位変化を伴いながら結晶を成長させることを検討した。その結果、二次再結晶粒の成長の途中で、従来は粒界と認識されなかったほどの局所的で小傾角な方位変化(角度φの値が小さな粒界)を多数発生させ、一つの二次再結晶粒を結晶方位がわずかに異なる小さな領域に分割した状態が、中磁場領域での磁歪及び鉄損の改善に有利となることを知見した。
 また、上記の方位変化の制御には、方位変化自体を発生し易くする要因と、方位変化が一つの結晶粒の中で継続的に発生するようにする要因との考慮が重要であることを知見した。そして、方位変化自体を発生し易くさせるためには、二次再結晶をより低温から開始させることが有効で、例えば、一次再結晶粒径を制御し、Nb等の元素を活用できることを確認した。さらに、従来から用いられるインヒビターであるAlNなどを適切な温度および雰囲気中で利用することによって、方位変化を二次再結晶中の一つの結晶粒の中で高温領域まで継続的に発生させることができることを確認した。
[第1実施形態]
 本発明の第1実施形態に係る方向性電磁鋼板では、二次再結晶粒内が、角度φの値が小さな粒界によって複数の領域に分割されている。すなわち、本実施形態に係る方向性電磁鋼板は、二次再結晶粒の粒界に相当する比較的に角度差が大きい粒界に加えて、二次再結晶粒内を分割している局所的で小傾角な粒界(角度φの値が小さな粒界)を有する。
 具体的には、本実施形態に係る方向性電磁鋼板は、質量%で、Si:2.0~7.0%、Nb:0~0.030%、V:0~0.030%、Mo:0~0.030%、Ta:0~0.030%、W:0~0.030%、C:0~0.0050%、Mn:0~1.0%、S:0~0.0150%、Se:0~0.0150%、Al:0~0.0650%、N:0~0.0050%、Cu:0~0.40%、Bi:0~0.010%、B:0~0.080%、P:0~0.50%、Ti:0~0.0150%、Sn:0~0.10%、Sb:0~0.10%、Cr:0~0.30%、Ni:0~1.0%、を含有し、残部がFeおよび不純物からなる化学組成を有し、Goss方位に配向する集合組織を有する方向性電磁鋼板であって、
 圧延面法線方向Zを回転軸とする理想Goss方位からのずれ角をαと定義し、圧延直角方向(板幅方向)Cを回転軸とする理想Goss方位からのずれ角をβと定義し、圧延方向Lを回転軸とする理想Goss方位からのずれ角をγと定義し、並びに、
 板面上で隣接し且つ間隔が1mmである2つの測定点で測定する結晶方位のずれ角をそれぞれ(α β γ)および(α β γ)と表し、境界条件BAを[(α-α+(β-β+(γ-γ1/2≧0.5°と定義し、境界条件BBを[(α-α+(β-β+(γ-γ1/2≧2.0°と定義するとき、
 本実施形態に係る方向性電磁鋼板は、上記境界条件BBを満足する粒界(二次再結晶粒界に相当する粒界)に加えて、上記境界条件BAを満足し且つ上記境界条件BBを満足しない粒界(二次再結晶粒を分割する粒界)を有する。
 境界条件BBを満足する粒界は、従来の方向性電磁鋼板をマクロエッチングしたときに観察される二次再結晶粒界に実質的に対応する。本実施形態に係る方向性電磁鋼板は、上記の境界条件BBを満足する粒界に加えて、境界条件BAを満足し且つ上記境界条件BBを満足しない粒界を比較的高い頻度で有する。この境界条件BAを満足し且つ上記境界条件BBを満足しない粒界は、二次再結晶粒内を分割している局所的で小傾角な粒界に対応する。すなわち、本実施形態では、二次再結晶粒が、結晶方位がわずかに異なる小さな領域により細かく分割された状態となる。
 従来の方向性電磁鋼板は、境界条件BBを満足する二次再結晶粒界を有するかもしれない。また、従来の方向性電磁鋼板は、二次再結晶粒の粒内で結晶方位がゆるやかに変位しているかもしれない。ただ、従来の方向性電磁鋼板では、二次再結晶粒内で結晶方位が連続的に変位する傾向が強いため、従来の方向性電磁鋼板に存在する結晶方位の変位は、上記の境界条件BAを満足しにくい。
 例えば、従来の方向性電磁鋼板では、二次再結晶粒内の長範囲領域で結晶方位の変位を識別できるかもしれないが、二次再結晶粒内の短範囲領域では結晶方位の変位が微小なために識別しにくい(境界条件BAを満足しにくい)。一方、本実施形態に係る方向性電磁鋼板では、結晶方位が短範囲領域で局所的に変位して粒界として識別できる。具体的には、二次再結晶粒内で隣接し且つ間隔が1mmである2つの測定点の間に、[(α-α+(β-β+(γ-γ1/2の値が0.5°以上となる変位が比較的高い頻度で存在する。
 本実施形態に係る方向性電磁鋼板では、後述するように製造条件を緻密に制御することによって、境界条件BAを満足し且つ境界条件BBを満足しない粒界(二次再結晶粒を分割する粒界)を意図的に作り込む。本実施形態に係る方向性電磁鋼板では、二次再結晶粒が、角度φの値が小さな粒界によって分割された状態となり、中磁場領域での磁歪及び鉄損のいずれもが改善される。
 以下、本実施形態に係る方向性電磁鋼板を詳しく説明する。
1.結晶方位
 まず、本実施形態における結晶方位の記載を説明する。
 本実施形態では、「実際の結晶の{110}<001>方位」と「理想的な{110}<001>方位」との2つの{110}<001>方位を区別する。この理由は、本実施形態では、実用鋼板の結晶方位を表示する際の{110}<001>方位と、学術的な結晶方位としての{110}<001>方位とを区別して扱う必要があるためである。
 一般的に再結晶した実用鋼板の結晶方位の測定では、±2.5°程度の角度差は厳密に区別せずに結晶方位を規定する。従来の方向性電磁鋼板であれば、幾何学的に厳密な{110}<001>方位を中心とする±2.5°程度の角度範囲域を、「{110}<001>方位」とする。しかし、本実施形態では、±2.5°以下の角度差も明確に区別する必要がある。
 このため、本実施形態では、実用的な意味で方向性電磁鋼板の方位を意味する場合には、従来通り、単に「{110}<001>方位(Goss方位)」と記載する。一方、幾何学的に厳密な結晶方位としての{110}<001>方位を意味する場合には、従来の公知文献などで用いられる{110}<001>方位との混同を回避するため、「理想{110}<001>方位(理想Goss方位)」と記載する。
 したがって、本実施形態では、例えば、「本実施形態に係る方向性電磁鋼板の{110}<001>方位は、理想{110}<001>方位から2°ずれている」との記載が存在することがある。
 また、本実施形態では、方向性電磁鋼板で観測される結晶方位に関連する以下の5つの角度α、β、γ、θ、φを使用する。
 ずれ角α:方向性電磁鋼板で観測される結晶方位の、圧延面法線方向Z周りにおける理想{110}<001>方位からのずれ角。
 ずれ角β:方向性電磁鋼板で観測される結晶方位の、圧延直角方向C周りにおける理想{110}<001>方位からのずれ角。
 ずれ角γ:方向性電磁鋼板で観測される結晶方位の、圧延方向L周りにおける理想{110}<001>方位からのずれ角。
 上記のずれ角α、ずれ角β、及びずれ角γの模式図を、図1に示す。
 ずれ角θ:上記のずれ角α、β、γを用いて、θ=[α+β+γ1/2により得られる理想{110}<001>方位からのずれ角。
 角度φ:方向性電磁鋼板の圧延面上で隣接し且つ間隔が1mmである2つの測定点で測定する結晶方位の上記ずれ角を、それぞれ(α、β、γ)および(α、β、γ)と表したとき、φ=[(α-α+(β-β+(γ-γ1/2により得られる角度。
 この角度φを、「空間3次元的な方位差」と記述することがある。
2.方向性電磁鋼板の結晶粒界
 本実施形態に係る方向性電磁鋼板は、空間3次元的な方位差(角度φ)を制御するために、特に、二次再結晶粒の成長中に起こる、従来では、粒界とは認識されなかった程度の局所的な結晶方位の変化を利用する。以降の説明では、一つの二次再結晶粒内を結晶方位がわずかに異なる小さな領域に分割するように生じる上記の方位変化を「切り替え」と記述することがある。
 さらに、二次再結晶粒内を分割する結晶粒界(境界条件BAを満足し且つ境界条件BBを満足しない粒界)を「亜粒界」、亜粒界を含めた粒界を境界として区別した結晶粒を「亜結晶粒」と記述することがある。
 また、本実施形態に関連する特性である中磁場での鉄損(W17/50)および磁歪(λp-p@1.7T)に関して、以降の説明では、これらをそれぞれ単に「鉄損」および「磁歪」と記述することがある。
 上記の切り替えは、結晶方位の変化が1°程度(2°未満)であり、二次再結晶粒の成長が継続する過程で発生すると考えられる。詳細は、製造法との関連で後述するが、切り替えが発生し易い状況で二次再結晶粒を成長させることが重要である。例えば、一次再結晶粒径を制御することで二次再結晶を比較的低温で開始させ、インヒビターの種類と量とを制御することで二次再結晶を高温まで継続させることが重要である。
 角度φの制御が磁気特性に影響を及ぼす理由は必ずしも明確ではないが、以下のように推定される。
 一般的に磁化挙動は、180°磁区の移動と磁化容易方向からの磁化回転により起きる。この磁区移動および磁化回転は、隣接する結晶粒との磁区の連続性または磁化方向の連続性に影響を受け、隣接粒との方位差が磁化挙動の障害の大小に結びつくのではないかと考えられる。本実施形態にて制御する切り替えは、一つの二次再結晶粒内で切り替え(局所的な方位変化)が高い頻度で生じることで、隣接粒との相対的な方位差を小さくし、方向性電磁鋼板全体での結晶方位の連続性を高めるように作用していると考えられる。
 本実施形態では、切り替えを含めた結晶方位の変化に関して、2種類の境界条件を規定する。本実施形態では、これらの境界条件に基づく「粒界」の定義が重要である。
 現在、実用的に製造されている方向性電磁鋼板の結晶方位は、圧延方向と<001>方向とのずれ角が、概ね5°以下となるよう制御されている。この制御は、本実施形態に係る方向性電磁鋼板でも同様である。このため、方向性電磁鋼板の「粒界」を定義するとき、一般的な粒界(大傾角粒界)の定義である「隣接する領域の方位差が15°以上となる境界」を適用することができない。例えば、従来の方向性電磁鋼板では、鋼板面のマクロエッチングにより粒界を顕出するが、この場合の粒界の両側領域の結晶方位差は通常、2~3°程度である。
 本実施形態では、後述するように、結晶と結晶との境界を厳密に規定する必要がある。このため、粒界の特定法として、マクロエッチングのような目視をベースとする方法は採用しない。
 本実施形態では、粒界を特定するために、圧延面上に1mm間隔で少なくとも500点の測定点を含む測定線を設定して結晶方位を測定する。例えば、結晶方位は、X線回折法(ラウエ法)により測定すればよい。ラウエ法とは、鋼板にX線ビームを照射して、透過または反射した回折斑点を解析する方法である。回折斑点を解析することによって、X線ビームを照射した場所の結晶方位を同定することができる。照射位置を変えて複数箇所で回折斑点の解析を行えば、各照射位置の結晶方位分布を測定することができる。ラウエ法は、粗大な結晶粒を有する金属組織の結晶方位を測定するのに適した手法である。
 なお、結晶方位の測定点は少なくとも500点であればよいが、二次再結晶粒の大きさに応じて、測定点を適切に増やすことが好ましい。例えば、結晶方位を測定する測定点を500点としたときに測定線内に含まれる二次再結晶粒が10個未満となる場合、測定線内に二次再結晶粒が10個以上含まれるように1mm間隔の測定点を増やして上記の測定線を延長することが好ましい。
 圧延面上にて1mm間隔で結晶方位を測定し、その上で、各測定点に関して、上記したずれ角α、ずれ角β、及びずれ角γを特定する。特定した各測定点でのずれ角に基づいて、隣接する2つの測定点間に粒界が存在するか否かを判断する。具体的には、隣接する2つの測定点が、上記の境界条件BAおよび/または境界条件BBを満足するか否かを判断する。
 具体的には、隣接する2つの測定点で測定した結晶方位のずれ角をそれぞれ(α、β、γ)および(α、β、γ)と表したとき、境界条件BAを[(α-α+(β-β+(γ-γ1/2≧0.5°と定義し、境界条件BBを[(α-α+(β-β+(γ-γ1/2≧2.0°と定義する。隣接する2つの測定点間に、境界条件BAおよび/または境界条件BBを満足する粒界が存在するか否かを判断する。
 境界条件BBを満足する粒界は、粒界を挟む2点間の空間3次元的な方位差(角度φ)が2.0°以上であり、この粒界は、マクロエッチングで認識されていた従来の二次再結晶粒の粒界とほぼ同じであると言える。
 上記の境界条件BBを満足する粒界とは別に、本実施形態に係る方向性電磁鋼板には、「切り替え」に強く関連する粒界、具体的には、境界条件BAを満足し且つ境界条件BBを満足しない粒界が比較的高い頻度で存在する。このように定義される粒界は、一つの二次再結晶粒内を結晶方位がわずかに異なる小さな領域に分割する粒界に対応する。
 上記した2つの粒界は、別の測定データを使用して求めることも可能である。ただ、測定の手間及びデータが異なることによる実態とのずれを考慮すれば、同じ測定線(圧延面上にて1mm間隔で少なくとも500点の測定点)から得られた結晶方位のずれ角を用いて、上記2つの粒界を求めることが好ましい。
 本実施形態に係る方向性電磁鋼板は、境界条件BBを満足する粒界に加えて、境界条件BAを満足し且つ上記境界条件BBを満足しない粒界を比較的高い頻度で有するので、二次再結晶粒が、結晶方位がわずかに異なる小さな領域に分割された状態となり、その結果、中磁場領域での磁歪及び鉄損のいずれもが改善される。
 なお、本実施形態では、鋼板中に「境界条件BAを満足し且つ境界条件BBを満足しない粒界」が存在すればよい。ただ、実質的には、磁歪及び鉄損を改善するために、境界条件BAを満足し且つ上記境界条件BBを満足しない粒界が比較的高い頻度で存在することが好ましい。
 具体的には、圧延面上にて1mm間隔で少なくとも500点の測定点で結晶方位を測定し、各測定点でずれ角を特定し、隣接する2つの測定点で境界条件を判定したとき、「境界条件BAを満足する粒界」が、「境界条件BBを満足する粒界」よりも1.15倍以上の割合で存在すればよい。すなわち、上記のように境界条件を判定したとき、「境界条件BAを満足する境界数」を「境界条件BBを満足する境界数」で割った値が、1.15以上となればよい。本実施形態では、上記の値が1.15以上である場合、方向性電磁鋼板に「境界条件BAを満足し且つ境界条件BBを満足しない粒界」が存在すると判断する。
 なお、「境界条件BAを満足する境界数」を「境界条件BBを満足する境界数」で割った値の上限は、特に限定されない。例えば、この値は、80以下であればよく、40以下であればよく、30以下であればよい。
[第2実施形態]
 続いて、本発明の第2実施形態に係る方向性電磁鋼板について以下に説明する。また、以下で説明する各実施形態では、上記第1実施形態との相違点を中心に説明し、その他の特徴については上記第1実施形態と同様であるとして重複する説明を省略する。
 本発明の第2実施形態に係る方向性電磁鋼板では、亜結晶粒の圧延方向の粒径が、二次再結晶粒の圧延方向の粒径よりも小さい。すなわち、本実施形態に係る方向性電磁鋼板は、圧延方向に対して粒径が制御されている亜結晶粒および二次再結晶粒を有する。
 具体的には、本実施形態に係る方向性電磁鋼板では、境界条件BAに基づいて求める圧延方向Lの平均結晶粒径を粒径RAと定義し、境界条件BBに基づいて求める圧延方向Lの平均結晶粒径を粒径RBと定義するとき、
 粒径RAと粒径RBとが、1.15≦RB÷RAを満たす。また、RB÷RA≦80であることが好ましい。
 この規定は、圧延方向に対する、上述の「切り替え」の状況を表す。つまり、角度φが2°以上となる境界を結晶粒界とする二次再結晶粒の中に、角度φが0.5°以上で且つ2°未満となる境界を少なくとも一つ含む結晶粒が、圧延方向に対して相応の頻度で存在することを意味している。本実施形態では、この切り替えの状況を、圧延方向の粒径RA及び粒径RBにより評価し規定する。
 粒径RBが小さいために、または粒径RBは大きくても切り替えが少なく粒径RAが大きいために、RB/RA値が1.15未満になると、切り替え頻度が十分でなくなり、磁歪が十分に改善できないことがある。RB/RA値は、好ましくは1.20以上、より好ましくは1.30以上、より好ましくは1.50以上、さらに好ましくは2.0以上、さらに好ましくは3.0以上、さらに好ましくは5.0以上である。
 RB/RA値の上限については特に限定されない。切り替えの発生頻度が高くRB/RA値が大きくなれば、方向性電磁鋼板全体での結晶方位の連続性が高くなるため、磁歪の改善にとっては好ましい。一方で、切り替えは結晶粒内での格子欠陥の残存でもあるため、あまりに発生頻度が高いと、特に鉄損への改善効果が低下する可能性が懸念される。そのため、RB/RA値の実用的な最大値としては80が挙げられる。特に鉄損についての配慮が必要であれば、RB/RA値の最大値として、好ましくは40、より好ましくは30が挙げられる。
 なお、切り替えがまったく発生していなければ、二次再結晶粒内を分割する結晶粒界(境界条件BAを満足し且つ境界条件BBを満足しない粒界)が存在しないので、粒径RAと粒径RBとは同じ大きさになり、RB/RA値は1.0となる。
 なお、本実施形態に係る方向性電磁鋼板に関して、圧延面上で隣接し且つ間隔が1mmである2つの測定点間の境界は、表1のケースAからケースCに分類される。上記の粒径RBは、表1のケースAを満足する粒界に基づいて求め、粒径RAは、表1のケースAおよび/またはケースBを満足する粒界に基づいて求める。例えば、圧延方向に沿って少なくとも500測定点を含む測定線上で結晶方位のずれ角を測定し、この測定線上でケースAの粒界に挟まれる線分長さの平均値を粒径RBとする。同様に、上記の測定線上で、ケースAおよび/またはケースBの粒界に挟まれる線分長さの平均値を粒径RAとする。
Figure JPOXMLDOC01-appb-T000001
 RB/RA値の制御が磁歪及び鉄損に影響を及ぼす理由は必ずしも明確ではないが、一つの二次再結晶粒内で切り替え(局所的な方位変化)が生じることで、隣接粒との相対的な方位差を小さくし(結晶粒界近傍での結晶方位変化が緩やかになり)、方向性電磁鋼板全体での結晶方位の連続性を高めるように作用していると考えられる。
[第3実施形態]
 続いて、本発明の第3実施形態に係る方向性電磁鋼板について以下に説明する。以下では、上記の実施形態との相違点を中心に説明し、重複する説明を省略する。
 本発明の第3実施形態に係る方向性電磁鋼板では、亜結晶粒の圧延直角方向の粒径が、二次再結晶粒の圧延直角方向の粒径よりも小さい。すなわち、本実施形態に係る方向性電磁鋼板は、圧延直角方向に対して粒径が制御されている亜結晶粒および二次再結晶粒を有する。
 具体的には、本実施形態に係る方向性電磁鋼板では、境界条件BAに基づいて求める圧延直角方向Cの平均結晶粒径を粒径RAと定義し、境界条件BBに基づいて求める圧延直角方向Cの平均結晶粒径を粒径RBと定義するとき、
 粒径RAと粒径RBとが、1.15≦RB÷RAを満たす。また、RB÷RA≦80であることが好ましい。
 この規定は、圧延直角方向に対する、上述の「切り替え」の状況を表す。つまり、角度φが2°以上となる境界を結晶粒界とする二次再結晶粒の中に、角度φが0.5°以上で且つ2°未満となる境界を少なくとも一つ含む結晶粒が、圧延直角方向に対して相応の頻度で存在することを意味している。本実施形態では、この切り替えの状況を、圧延直角方向の粒径RA及び粒径RBにより評価し規定する。
 粒径RBが小さいために、または粒径RBは大きくても切り替えが少なく粒径RAが大きいために、RB/RA値が1.15未満になると、切り替え頻度が十分でなくなり、磁歪が十分に改善できないことがある。RB/RA値は、好ましくは1.20以上、より好ましくは1.30以上、より好ましくは1.50以上、さらに好ましくは2.0以上、さらに好ましくは3.0以上、さらに好ましくは5.0以上である。
 RB/RA値の上限については特に限定されない。切り替えの発生頻度が高くRB/RA値が大きくなれば、方向性電磁鋼板全体での結晶方位の連続性が高くなるため、磁歪の改善にとっては好ましい。一方で、切り替えは結晶粒内での格子欠陥の残存でもあるため、あまりに発生頻度が高いと、特に鉄損への改善効果が低下する可能性が懸念される。そのため、RB/RA値の実用的な最大値としては80が挙げられる。特に鉄損についての配慮が必要であれば、RB/RA値の最大値として、好ましくは40、より好ましくは30が挙げられる。
 なお、切り替えがまったく発生していなければ、二次再結晶粒内を分割する結晶粒界(境界条件BAを満足し且つ境界条件BBを満足しない粒界)が存在しないので、粒径RAと粒径RBとは同じ大きさになり、RB/RA値は1.0となる。
 上記の粒径RBは、表1のケースAを満足する粒界に基づいて求め、粒径RAは、表1のケースAおよび/またはケースBを満足する粒界に基づいて求める。例えば、圧延直角方向に沿って少なくとも500測定点を含む測定線上で結晶方位のずれ角を測定し、この測定線上でケースAの粒界に挟まれる線分長さの平均値を粒径RBとする。同様に、上記の測定線上で、ケースAおよび/またはケースBの粒界に挟まれる線分長さの平均値を粒径RAとする。
 RB/RA値の制御が磁歪及び鉄損に影響を及ぼす理由は必ずしも明確ではないが、一つの二次再結晶粒内で切り替え(局所的な方位変化)が生じることで、隣接粒との相対的な方位差を小さくし(結晶粒界近傍での結晶方位変化が緩やかになり)、方向性電磁鋼板全体での結晶方位の連続性を高めるように作用していると考えられる。
[第4実施形態]
 続いて、本発明の第4実施形態に係る方向性電磁鋼板について以下に説明する。以下では、上記の実施形態との相違点を中心に説明し、重複する説明を省略する。
 本発明の第4実施形態に係る方向性電磁鋼板では、亜結晶粒の圧延方向の粒径が、亜結晶粒の圧延直角方向の粒径よりも小さい。すなわち、本実施形態に係る方向性電磁鋼板は、圧延方向および圧延直角方向に対して粒径が制御されている亜結晶粒を有する。
 具体的には、本実施形態に係る方向性電磁鋼板では、境界条件BAに基づいて求める圧延方向Lの平均結晶粒径を粒径RAと定義し、境界条件BAに基づいて求める圧延直角方向Cの平均結晶粒径を粒径RAと定義するとき、
 粒径RAと粒径RAとが、1.15≦RA÷RAを満たす。また、RA÷RA≦10であることが好ましい。
 以後の説明で、結晶粒の形状について「(面内)異方性」又は「扁平(形状)」と記述することがある。これらの結晶粒の形状は、鋼板の表面(圧延面)から観察した際の形状について記述している。つまり、結晶粒の形状は、板厚方向の大きさ(板厚断面での観察形状)について考慮していない。ちなみに、方向性電磁鋼板では、ほぼすべての結晶粒が板厚方向に鋼板板厚と同じサイズを有している。つまり方向性電磁鋼板では、結晶粒界近傍など特異な領域を除いて鋼板板厚がひとつの結晶粒で占められることが多い。
 上記したRA/RA値の規定は、圧延方向および圧延直角方向に対する、上述の「切り替え」の状況を表す。つまり、切り替えと認識される程度の局所的な結晶方位の変化が起きる頻度が、鋼板の面内方向により異なることを意味している。本実施形態では、この切り替えの状況を、鋼板面内で直交する2つの方向の粒径RA及び粒径RAにより評価し規定する。
 RA/RA値が1超であるということは、切り替えで規定される亜結晶粒は平均的にみると、圧延直角方向に延伸し、圧延方向につぶれた扁平形態を有することを示している。つまり、亜粒界により規定される結晶粒の形態が異方性を有することを示す。
 亜結晶粒の形状が面内異方性を持つことにより、磁気特性が改善する理由は明確ではないが、以下のように考えられる。磁化挙動では、180°磁区の移動または磁化回転する際、隣接する結晶粒との「連続性」が重要であることは前述の通りである。例えば、一つの二次再結晶粒を切り替えによって小領域に分割した場合、この小領域の数が同じ(小領域の面積が同じ)であれば、小領域の形状は等方性であるよりも、異方性であるほうが、切り替えによる境界(亜粒界)の存在比率は大きくなる。つまり、RA/RA値の制御によって局所的な方位変化である切り替えの存在頻度が増加することになり、方向性電磁鋼板全体での結晶方位の連続性を高めると考えられる。
 このような切り替え発生の異方性は、二次再結晶前の鋼板に存在する何らかの異方性:例えば、一次再結晶粒の形状の異方性;熱延板結晶粒の形状の異方性を起因とする一次再結晶粒の結晶方位分布の異方性(コロニー的な分布);熱延で延伸した析出物及び破砕されて圧延方向に列状となった析出物の配置;コイル幅方向や長手方向の熱履歴の変動に起因する析出物分布;結晶粒径分布の異方性;などにより生ずると考えられる。しかしながら、発生メカニズムの詳細は不明である。ただし、二次再結晶中の鋼板が温度勾配を有すれば、結晶粒の成長(転位の消失および粒界の形成)に直接的な異方性を与える。すなわち、二次再結晶での温度勾配は、本実施形態で規定する上記異方性を制御する非常に有効な制御条件となる。詳細は製造法と関連して詳述する。
 また、上述の二次再結晶時の温度勾配により異方性を与えるプロセスとも関連するが、本実施形態で亜結晶粒を延伸させる方向は、圧延直角方向となることが現状の一般的な製造法も考慮すると好ましい。この場合、圧延方向の粒径RAが、圧延直角方向の粒径RAよりも小さな値となる。圧延方向および圧延直角方向の関係については、製造法と関連して説明する。なお、亜結晶粒を延伸させる方向は、温度勾配ではなく、あくまでも亜粒界の発生頻度により決定される。
 粒径RAが小さいために、または粒径RAは大きくても粒径RAが大きいために、RA/RA値が1.15未満になると、切り替え頻度が十分でなくなり、磁歪が十分に改善できないことがある。RA/RA値は、好ましくは1.80以上、より好ましくは2.10以上である。
 RA/RA値の上限については特に限定されない。切り替えの発生頻度および延伸方向が特定の方向に制限され、RA/RA値が大きくなれば、方向性電磁鋼板全体での結晶方位の連続性が高くなるため、磁歪の改善にとっては好ましい。一方で切り替えは結晶粒内での格子欠陥の残存でもあるため、あまりに発生頻度が高いと、特に鉄損への改善効果が低下する可能性が懸念される。そのため、RA/RA値の実用的な最大値としては10が挙げられる。特に鉄損についての配慮が必要であれば、RA/RA値の最大値として、好ましくは6、より好ましくは4が挙げられる。
 また、本実施形態に係る方向性電磁鋼板は、上記したRA/RA値の制御に加えて、上記した粒径RAと粒径RBとが、1.20≦RB÷RAを満たすことが好ましい。
 この規定は、「切り替え」が発生していることを明確にする。例えば、粒径RAおよびRAは、隣接する2つの測定点間で角度φが0.5°以上となる粒界に基づく粒径であるが、「切り替え」がまったく発生しておらず、すべての粒界の角度φが2.0°以上であったとしても、上記したRA/RA値が満足されることがある。たとえRA/RA値が満足されても、すべての粒界の角度φが2.0°以上であれば、一般的に認識されている二次再結晶粒が単に扁平形状になっただけであるので、本実施形態の上記効果は好ましく得られない。本実施形態では、境界条件BAを満足し且つ境界条件BBを満足しない粒界(二次再結晶粒を分割する粒界)を有することを前提とするため、すべての粒界の角度φが2.0°以上であるという状況は生じにくいが、上記したRA/RA値を満足することに加えて、RB/RA値を満足することが好ましい。
 また、本実施形態では、圧延方向に関してRB/RA値を制御することに加えて、圧延直角方向についても、上記した粒径RAと粒径RBとが1.20≦RB/RAを満たすことは何ら問題とならず、方向性電磁鋼板全体での結晶方位の連続性を高める観点ではむしろ好ましい。
 さらに、本実施形態に係る方向性電磁鋼板では、二次再結晶粒の圧延方向および圧延直角方向の粒径が制御されていることが好ましい。
 具体的には、本実施形態に係る方向性電磁鋼板では、境界条件BBに基づいて求める圧延方向Lの平均結晶粒径を粒径RBと定義し、境界条件BBに基づいて求める圧延直角方向Cの平均結晶粒径を粒径RBと定義するとき、
 粒径RBと粒径RBとが、1.50≦RB÷RBを満たすことが好ましい。また、RB÷RB≦20であることが好ましい。
 この規定は、上述の「切り替え」とは無関係であり、二次再結晶粒が圧延直角方向に延伸していることを表す。従って、この特徴それ自体は特別ではない。ただし、本実施形態では、RA/RA値を制御した上で、RB/RB値が上記の数値範囲を満たすことが好ましい。
 本実施形態では、上記の切り替えに関係して、亜結晶粒のRA/RA値が制御される場合、二次再結晶粒の形態も面内異方性が大きくなる傾向がある。逆の見方をすると、本実施形態のように角度φの切り替えを発生させる場合、二次再結晶粒の形状が面内異方性を持つように制御することで、亜結晶粒の形状にも面内異方性を持つ傾向がある。
 RB/RB値は、好ましくは1.80以上、より好ましくは2.00以上、さらに好ましくは2.50以上である。RB/RB値の上限については特に限定されない。
 RB/RB値を制御する実用的な方法として、例えば、仕上げ焼鈍時にコイル幅の端部からの優先的な加熱を行い、コイル幅方向(コイル軸方向)への温度勾配を付与して二次再結晶粒を成長させるプロセスが挙げられる。このとき、二次再結晶粒のコイル周方向(例えば圧延方向)の粒径を50mm程度に維持したまま、二次再結晶粒のコイル幅方向(例えば圧延直角方向)の粒径をコイル幅と同じに制御することも可能である。例えば、幅1000mmのコイルの全幅を一つの結晶粒で占めることができる。この場合、RB/RB値の上限値として、20が挙げられる。
 なお、圧延直角方向ではなく圧延方向に温度勾配を持たせるように連続焼鈍プロセスによって二次再結晶を進行させれば、二次再結晶粒の粒径の最大値はコイル幅に制限されず、さらに大きな値とすることも可能である。この場合であっても、本実施形態によれば、切り替えによる亜粒界により結晶粒が適度に分割されることで、本実施形態の上記効果を得ることが可能である。
 さらに、本実施形態に係る方向性電磁鋼板では、角度φに関する切り替えの発生頻度が圧延方向および圧延直角方向に対して制御されていることが好ましい。
 具体的には、本実施形態に係る方向性電磁鋼板では、境界条件BAに基づいて求める圧延方向Lの平均結晶粒径を粒径RAと定義し、境界条件BBに基づいて求める圧延方向Lの平均結晶粒径を粒径RBと定義し、境界条件BAに基づいて求める圧延直角方向Cの平均結晶粒径を粒径RAと定義し、境界条件BBに基づいて求める圧延直角方向Cの平均結晶粒径を粒径RBと定義するとき、
 粒径RAと粒径RAと粒径RBと粒径RBとが、(RB×RA)÷(RB×RA)<1.0を満たすことが好ましい。また、下限は特に限定しないが、現状の技術を前提にすれば、0.2<(RB×RA)÷(RB×RA)であればよい。
 この規定は、上述の「切り替え」の発生頻度の面内異方性を表す。つまり、上記の(RB・RA)/(RB・RA)は、「二次再結晶粒を圧延直角方向に分割する切り替えの発生程度:RB/RA」と、「二次再結晶粒を圧延方向に分割する切り替えの発生程度:RB/RA」との比になっている。この値が1未満であるということは、一つの二次再結晶粒が、切り替え(亜粒界)により、圧延方向に数多く分割されていることを示している。
 また、見方を変えると、上記の(RB・RA)/(RB・RA)は、「二次再結晶粒の扁平の程度:RB/RB」と、「亜結晶粒の扁平の程度:RA/RA」との比になっている。この値が1未満であるということは、一つの二次再結晶粒を分割する亜結晶粒は、二次再結晶粒よりも扁平な形状になることを示している。
 すなわち、亜粒界は二次再結晶粒を圧延直角方向に分断するよりも圧延方向に分断する傾向がある。つまり、亜粒界は二次再結晶粒が延伸する方向に延伸する傾向がある。亜粒界のこの傾向は、二次再結晶粒が延伸する際に、切り替えが特定方位の結晶の占有面積を増大させるように作用していると考えられる。
 (RB・RA)/(RB・RA)の値は、好ましくは0.9以下、より好ましくは0.8以下、より好ましくは0.5以下である。上記のように、(RB・RA)/(RB・RA)の下限は、特に制限されないが、工業的な実現性も考慮すると、0.2超であればよい。
 上記の粒径RBおよび粒径RBは、表1のケースAを満足する粒界に基づいて求める。上記の粒径RAおよび粒径RAは、表1のケースAおよび/またはケースBを満足する粒界に基づいて求める。例えば、圧延直角方向に沿って少なくとも500測定点を含む測定線上で結晶方位のずれ角を測定し、この測定線上でケースAおよび/またはケースBの粒界に挟まれる線分長さの平均値を粒径RAとする。粒径RA、粒径RB、粒径RBも同様に求めればよい。
[第1~第4実施形態に共通する技術特徴]
 続いて、上記した第1~第4実施形態に係る方向性電磁鋼板について、共通する技術特徴を以下に説明する。
 上記した第1~第4実施形態に係る方向性電磁鋼板では、ずれ角θの絶対値の標準偏差σ(θ)が、0°以上3.0°以下であることが好ましい。
 上述のような切り替えが十分に起きている鋼板では、「ずれ角」についても特徴的な範囲に制御されやすい。例えば、角度φに関する切り替えにより少しずつ結晶方位が変化する場合、ずれ角θの絶対値がゼロに近づくことは上記実施形態の支障とはならない。また、例えば、角度φに関する切り替えにより少しずつ結晶方位が変化する場合、結晶方位自体が特定の方位に収斂することで、結果として、ずれ角θの標準偏差がゼロに近づくことは、上記実施形態の支障とはならない。
 そのため、各実施形態では、ずれ角θの標準偏差σ(θ)が、0°以上3.0°以下であってもよい。
 ずれ角θの標準偏差σ(θ)は、以下のように求める。
 方向性電磁鋼板は、数cm程度の大きさに成長した結晶粒が形成される二次再結晶により{110}<001>方位への集積度を高めている。各実施形態では、このような方向性電磁鋼板にて結晶方位の変動を認識する必要がある。このため、少なくとも二次再結晶粒を20個含む領域について、500点以上の結晶方位を測定する。
 なお、各実施形態では、「一つの二次再結晶粒を単結晶と捉え、二次再結晶粒内は厳密に同じ結晶方位を有する」と考えるべきではない。つまり、各実施形態では、一つの粗大な二次再結晶粒内に従来は粒界として認識しない程度の局所的な方位変化が存在し、この方位変化を検出することが必要になる。
 このため、例えば、結晶方位の測定点を、結晶粒の境界(結晶粒界)とは無関係に設定した一定面積内に等間隔で分布させることが好ましい。具体的には、鋼板面にて、少なくとも20個以上の結晶粒を含むように、Lmm×Mmm(ただしL、M>100)の面積内に、縦横5mm間隔で等間隔に測定点を分布させ、各測定点での結晶方位を測定し、計500点以上のデータを得ることが好ましい。測定点が結晶粒界及び何らかの特異点である場合には、そのデータは用いない。また、対象となる鋼板の磁気特性を決定するために必要な領域(例えば、実機のコイルであれば、ミルシートに記載する磁気特性を測定する範囲)に応じて、上記の測定範囲を広げる必要がある。
 そして、各測定点について、ずれ角θを決定し、さらにずれ角θの標準偏差σ(θ)を計算する。各実施形態に係る方向性電磁鋼板では、σ(θ)が、上記した数値範囲内であることが好ましい。
 なお、ずれ角αおよびずれ角βの標準偏差は、一般的に、1.7T程度の中磁場での磁気特性または磁歪を改善するために小さくすべきと考えられている因子である。ただ、これらだけの制御では到達する特性に限界があった。上記した各実施形態では、上記の技術特徴に加えて、σ(θ)を合わせて制御することで、方向性電磁鋼板全体での結晶方位の連続性に好ましく影響を及ぼす。
 ずれ角θの標準偏差σ(θ)は、より好ましくは2.70以下であり、さらに好ましくは2.50以下であり、さらに好ましくは2.20以下であり、さらに好ましくは1.80以下である。標準偏差σ(θ)は、もちろん0(ゼロ)であっても構わない。
[第5実施形態]
 続いて、本発明の第5実施形態に係る方向性電磁鋼板について以下に説明する。以下では、上記の実施形態との相違点を中心に説明し、重複する説明を省略する。
 本発明の第5実施形態に係る方向性電磁鋼板では、上記の特徴に加えて、二次再結晶粒が、ずれ角αがわずかに異なる複数の領域に分割されている。すなわち、本実施形態に係る方向性電磁鋼板は、二次再結晶粒の粒界に相当する比較的に角度差が大きい粒界に加えて、二次再結晶粒内を分割している局所的で小傾角なずれ角αに関する粒界を有する。
 具体的には、本実施形態に係る方向性電磁鋼板では、上記の特徴に加えて、境界条件BCを|α-α|≧0.5°と定義するとき、境界条件BCを満足し且つ境界条件BBを満足しない粒界がさらに存在する。
 本実施形態に係る方向性電磁鋼板では、高磁場領域(特に1.9T程度の磁場)での鉄損が好ましく改善される。
 本発明者らは、高磁場領域での磁気特性の特徴を把握するため、一般的に磁気特性が測定される1.7T程度よりも高い、1.9T程度で磁化した際の鉄損と結晶方位のずれ角との関係について解析した。その結果、高磁場領域での低鉄損化には、ずれ角αの制御が重要であることを確認した。そこでまず、ずれ角αの発生原因を以下のように考察した。
 実用の方向性電磁鋼板の二次再結晶で優先的に発生する結晶方位は、基本的には{110}<001>方位とされている。しかし、工業的に実施される二次再結晶工程では、鋼板面({110}面)内で多少の面内回転を有する方位の成長が許容されて進行する。すなわち、工業的に実施される二次再結晶過程では、ずれ角αを有する結晶粒の生成および成長を完全に排除することが容易ではない。そして、この方位の結晶粒がある程度の大きさに成長すると、この結晶粒は理想的な{110}<001>方位の結晶粒に蚕食されることなく、最終的に鋼板中に残存する。この結晶粒は、厳密には圧延方向に<001>方位を有しておらず、一般的には「首振りGoss」などと呼ばれる。
 そこで、本発明者らは、二次再結晶粒の成長の段階で結晶方位を保ったまま成長させるのではなく、方位変化を伴いながら結晶を成長させることを検討した。その結果、二次再結晶粒の成長の途中で、従来は粒界と認識されなかったほどの局所的で小傾角な方位変化を多数発生させ、一つの二次再結晶粒をずれ角αがわずかに異なる小さな領域に分割した状態が、高磁場領域での鉄損低減に有利となることを知見した。
 なお、以降の説明では、ずれ角αの角度差を考慮した結晶粒界(境界条件BCを満足する粒界)を「α粒界」、α粒界を境界として区別した結晶粒を「α結晶粒」と記述することがある。
 また、本実施形態に関連する特性である1.9Tで励磁した際の鉄損(W19/50)に関して、以降の説明では、単に「高磁場(での)鉄損」と記述することがある。
 ずれ角αの制御が高磁場鉄損に影響を及ぼす理由は必ずしも明確ではないが、以下のように推定される。
 二次再結晶が完了した方向性電磁鋼板では結晶方位がGoss方位に制御されているが、実際には、結晶粒界を挟む両側の結晶粒でわずかに結晶方位が異なる。そのため、方向性電磁鋼板を励磁した際には、結晶粒界近傍に、磁区構造を調整するための特別な磁区(還流磁区)が誘発される。この還流磁区では、磁区内の磁気モーメントが外部磁場の方向に揃いにくく、そのため、還流磁区が磁化過程で高磁場領域まで残存して磁壁の移動を抑制する。一方、結晶粒界近傍での還流磁区の発生を少なくできれば、高磁場領域で鋼板全体の磁化が容易に進行し、その結果、鉄損の改善につながると考えられる。結晶粒界では結晶方位の不連続性に起因して還流磁区が誘発されるが、本実施形態では、切り替えを伴う比較的緩やかな方位変化によって、粒界近傍領域での結晶方位変化が緩やかになり、その結果、還流磁区の生成が抑制されると考えられる。
 本実施形態では、圧延面上にて1mm間隔で結晶方位を測定し、その上で、各測定点に関して、上記したずれ角α、ずれ角β、及びずれ角γを特定する。特定した各測定点でのずれ角に基づいて、隣接する2つの測定点間に粒界が存在するか否かを判断する。具体的には、隣接する2つの測定点が、上記の境界条件BCおよび/または境界条件BBを満足するか否かを判断する。
 具体的には、隣接する2つの測定点で測定した結晶方位のずれ角をそれぞれ(α、β、γ)および(α、β、γ)と表したとき、境界条件BCを|α-α|≧0.5°と定義し、境界条件BBを[(α-α+(β-β+(γ-γ1/2≧2.0°と定義する。隣接する2つの測定点間に、境界条件BCおよび/または境界条件BBを満足する粒界が存在するか否かを判断する。
 本実施形態に係る方向性電磁鋼板は、境界条件BBを満足する粒界に加えて、境界条件BCを満足し且つ上記境界条件BBを満足しない粒界を比較的高い頻度で有するので、二次再結晶粒内がずれ角αがわずかに異なる小さな領域に分割された状態となり、その結果、高磁場領域での鉄損が低減される。
 なお、本実施形態では、鋼板中に「境界条件BCを満足し且つ境界条件BBを満足しない粒界」が存在すればよい。ただ、実質的には、高磁場領域の鉄損を低減するために、境界条件BCを満足し且つ上記境界条件BBを満足しない粒界が比較的高い頻度で存在することが好ましい。
 例えば、本実施形態では、二次再結晶粒内をずれ角αがわずかに異なる小さな領域に分割することを特徴とするので、α粒界が、従来の二次再結晶粒界よりも比較的高い頻度で存在することが好ましい。
 具体的には、圧延面上にて1mm間隔で少なくとも500点の測定点で結晶方位を測定し、各測定点でずれ角を特定し、隣接する2つの測定点で境界条件を判定したとき、「境界条件BCを満足する粒界」が、「境界条件BBを満足する粒界」よりも1.10倍以上の割合で存在すればよい。すなわち、上記のように境界条件を判定したとき、「境界条件BCを満足する境界数」を「境界条件BBを満足する境界数」で割った値が、1.10以上となればよい。本実施形態では、上記の値が1.10以上である場合、方向性電磁鋼板に「境界条件BCを満足し且つ境界条件BBを満足しない粒界」が存在すると判断する。
 なお、「境界条件BCを満足する境界数」を「境界条件BBを満足する境界数」で割った値の上限は、特に限定されない。例えば、この値は、80以下であればよく、40以下であればよく、30以下であればよい。
[第6実施形態]
 続いて、本発明の第6実施形態に係る方向性電磁鋼板について以下に説明する。以下では、上記の実施形態との相違点を中心に説明し、重複する説明を省略する。
 本発明の第6実施形態に係る方向性電磁鋼板では、α結晶粒の圧延方向の粒径が、二次再結晶粒の圧延方向の粒径よりも小さい。すなわち、本実施形態に係る方向性電磁鋼板は、圧延方向に対して粒径が制御されているα結晶粒および二次再結晶粒を有する。
 具体的には、本実施形態に係る方向性電磁鋼板では、境界条件BCに基づいて求める圧延方向Lの平均結晶粒径を粒径RCと定義し、境界条件BBに基づいて求める圧延方向Lの平均結晶粒径を粒径RBと定義するとき、
 粒径RCと粒径RBとが、1.10≦RB÷RCを満たす。また、RB÷RC≦80であることが好ましい。
 この規定は、圧延方向に対する、上述の「切り替え」の状況を表す。つまり、角度φが2°以上となる境界を結晶粒界とする二次再結晶粒の中に、|α-α|が0.5°以上で且つ角度φが2°未満となる境界を少なくとも一つ含む結晶粒が、圧延方向に対して相応の頻度で存在することを意味している。本実施形態では、この切り替えの状況を、圧延方向の粒径RC及び粒径RBにより評価し規定する。
 粒径RBが小さいために、または粒径RBは大きくても切り替えが少なく粒径RCが大きいために、RB/RC値が1.10未満になると、切り替え頻度が十分でなくなり、高磁場鉄損が十分に改善できないことがある。RB/RC値は、好ましくは1.30以上、より好ましくは1.50以上、さらに好ましくは2.0以上、さらに好ましくは3.0以上、さらに好ましくは5.0以上である。
 RB/RC値の上限については特に限定されない。切り替えの発生頻度が高くRB/RC値が大きくなれば、方向性電磁鋼板全体での結晶方位の連続性が高くなるため、磁歪の改善にとっては好ましい。一方で、切り替えは結晶粒内での格子欠陥の残存でもあるため、あまりに発生頻度が高いと、特に鉄損への改善効果が低下する可能性が懸念される。そのため、RB/RC値の実用的な最大値としては80が挙げられる。特に鉄損についての配慮が必要であれば、RB/RC値の最大値として、好ましくは40、より好ましくは30が挙げられる。
 なお、RB/RC値は、1.0未満になる場合がある。RBは角度φが2°以上となる粒界に基づいて規定された圧延方向の平均粒径である。一方で、RCは|α-α|が0.5°以上となる粒界に基づいて規定された圧延方向の平均粒径である。単純に考えると、角度差の下限が小さい粒界の方が検出される境界が高いように思われる。つまり、RBは常にRCよりも大きくなり、RB/RC値は常に1.0以上になるように思われる。
 しかしながら、RBは角度φに基づく粒界によって求められる粒径であり、RCはずれ角αに基づく粒界によって求められる粒径であって、RBおよびRCでは粒径を求めるための粒界の定義が異なる。そのため、RB/RC値が1.0未満になる場合がある。
 例えば、|α-α|が0.5°未満(例えば、0°)であっても、ずれ角βおよび/またはすれ角γが大きければ、角度φは十分に大きくなる。すなわち、境界条件BCを満たさないが、境界条件BBを満たす粒界が存在することになる。このような粒界が増えれば、粒径RBの値が小さくなり、結果として、RB/RC値が1.0未満になりえる。本実施形態では、ずれ角αによる切り替えが起きる頻度が高くなるように各条件を制御する。切り替えの制御が十分でなく、本実施形態からのかい離が大きい場合には、ずれ角αの変化が起きなくなり、RB/RC値が1.0未満になる。なお、本実施形態ではα粒界の発生頻度を十分に高め、RB/RC値が1.10以上であることを必須の条件とすることは、既に説明した通りである。
 上記の粒径RBは、表2のケース1および/またはケース2を満足する粒界に基づいて求め、粒径RCは、表2のケース1および/またはケース3を満足する粒界に基づいて求める。例えば、圧延方向に沿って少なくとも500測定点を含む測定線上で結晶方位のずれ角を測定し、この測定線上でケース1および/またはケース2の粒界に挟まれる線分長さの平均値を粒径RBとする。同様に、上記の測定線上で、ケース1および/またはケース3の粒界に挟まれる線分長さの平均値を粒径RCとする。
Figure JPOXMLDOC01-appb-T000002
 RB/RC値の制御が高磁場鉄損に影響を及ぼす理由は必ずしも明確ではないが、一つの二次再結晶粒内で切り替え(局所的な方位変化)が生じることで、隣接粒との相対的な方位差を小さくし(結晶粒界近傍での結晶方位変化が緩やかになり)、その結果、還流磁区の生成が抑制されると考えられる。
[第7実施形態]
 続いて、本発明の第7実施形態に係る方向性電磁鋼板について以下に説明する。以下では、上記の実施形態との相違点を中心に説明し、重複する説明を省略する。
 本発明の第7実施形態に係る方向性電磁鋼板では、α結晶粒の圧延直角方向の粒径が、二次再結晶粒の圧延直角方向の粒径よりも小さい。すなわち、本実施形態に係る方向性電磁鋼板は、圧延直角方向に対して粒径が制御されているα結晶粒および二次再結晶粒を有する。
 具体的には、本実施形態に係る方向性電磁鋼板では、境界条件BCに基づいて求める圧延直角方向Cの平均結晶粒径を粒径RCと定義し、境界条件BBに基づいて求める圧延直角方向Cの平均結晶粒径を粒径RBと定義するとき、
 粒径RCと粒径RBとが、1.10≦RB÷RCを満たす。また、RB÷RC≦80であることが好ましい。
 この規定は、圧延直角方向に対する、上述の「切り替え」の状況を表す。つまり、角度φが2°以上となる境界を結晶粒界とする二次再結晶粒の中に、|α-α|が0.5°以上で且つ角度φが2°未満となる境界を少なくとも一つ含む結晶粒が、圧延直角方向に対して相応の頻度で存在することを意味している。本実施形態では、この切り替えの状況を、圧延直角方向の粒径RC及び粒径RBにより評価し規定する。
 粒径RBが小さいために、または粒径RBは大きくても切り替えが少なく粒径RCが大きいために、RB/RC値が1.10未満になると、切り替え頻度が十分でなくなり、高磁場鉄損が十分に改善できないことがある。RB/RC値は、好ましくは1.30以上、より好ましくは1.50以上、さらに好ましくは2.0以上、さらに好ましくは3.0以上、さらに好ましくは5.0以上である。
 RB/RC値の上限については特に限定されない。切り替えの発生頻度が高くRB/RC値が大きくなれば、方向性電磁鋼板全体での結晶方位の連続性が高くなるため、磁歪の改善にとっては好ましい。一方で、切り替えは結晶粒内での格子欠陥の残存でもあるため、あまりに発生頻度が高いと、特に鉄損への改善効果が低下する可能性が懸念される。そのため、RB/RC値の実用的な最大値としては80が挙げられる。特に鉄損についての配慮が必要であれば、RB/RC値の最大値として、好ましくは40、より好ましくは30が挙げられる。
 なお、RBは角度φに基づく粒界によって求められる粒径であり、RCはずれ角αに基づく粒界によって求められる粒径である。RBおよびRCでは粒径を求めるための粒界の定義が異なるため、RB/RC値が1.0未満になる場合がある。
 上記の粒径RBは、表2のケース1および/またはケース2を満足する粒界に基づいて求め、粒径RCは、表2のケース1および/またはケース3を満足する粒界に基づいて求める。例えば、圧延直角方向に沿って少なくとも500測定点を含む測定線上で結晶方位のずれ角を測定し、この測定線上でケース1および/またはケース2の粒界に挟まれる線分長さの平均値を粒径RBとする。同様に、上記の測定線上で、ケース1および/またはケース3の粒界に挟まれる線分長さの平均値を粒径RCとする。
 RB/RC値の制御が高磁場鉄損に影響を及ぼす理由は必ずしも明確ではないが、一つの二次再結晶粒内で切り替え(局所的な方位変化)が生じることで、隣接粒との相対的な方位差を小さくし(結晶粒界近傍での結晶方位変化が緩やかになり)、その結果、還流磁区の生成が抑制されると考えられる。
[第8実施形態]
 続いて、本発明の第8実施形態に係る方向性電磁鋼板について以下に説明する。以下では、上記の実施形態との相違点を中心に説明し、重複する説明を省略する。
 本発明の第8実施形態に係る方向性電磁鋼板では、α結晶粒の圧延方向の粒径が、α結晶粒の圧延直角方向の粒径よりも小さい。すなわち、本実施形態に係る方向性電磁鋼板は、圧延方向および圧延直角方向に対して粒径が制御されているα結晶粒を有する。
 具体的には、本実施形態に係る方向性電磁鋼板では、境界条件BCに基づいて求める圧延方向Lの平均結晶粒径を粒径RCと定義し、境界条件BCに基づいて求める圧延直角方向Cの平均結晶粒径を粒径RCと定義するとき、
 粒径RCと粒径RCとが、1.15≦RC÷RCを満たす。また、RC÷RC≦10であることが好ましい。
 上記したRC/RC値の規定は、圧延方向および圧延直角方向に対する、上述の「切り替え」の状況を表す。つまり、切り替えと認識される程度の局所的な結晶方位の変化が起きる頻度が、鋼板の面内方向により異なることを意味している。本実施形態では、この切り替えの状況を、鋼板面内で直交する2つの方向の粒径RC及び粒径RCにより評価し規定する。
 RC/RC値が1超であるということは、切り替えで規定されるα結晶粒は平均的にみると、圧延直角方向に延伸し、圧延方向につぶれた扁平形態を有することを示している。つまり、α粒界により規定される結晶粒の形態が異方性を有することを示す。
 α結晶粒の形状が面内異方性を持つことにより、高磁場鉄損が改善する理由は明確ではないが、以下のように考えられる。高磁場では、180°磁区の移動または磁化回転する際、隣接する結晶粒との「連続性」が重要であることは前述の通りである。例えば、一つの二次再結晶粒を切り替えによって小領域に分割した場合、この小領域の数が同じ(小領域の面積が同じ)であれば、小領域の形状は等方性であるよりも、異方性であるほうが、切り替えによる境界(α粒界)の存在比率は大きくなる。つまり、RC/RC値の制御によって局所的な方位変化である切り替えの存在頻度が増加することになり、方向性電磁鋼板全体での結晶方位の連続性を高めると考えられる。
 また、上述の二次再結晶時の温度勾配により異方性を与えるプロセスとも関連するが、本実施形態でα結晶粒を延伸させる方向は、圧延直角方向であることが現状の一般的な製造法も考慮すると好ましい。この場合、圧延方向の粒径RCが、圧延直角方向の粒径RCよりも小さな値となる。圧延方向および圧延直角方向の関係については、製造法と関連して説明する。なお、α結晶粒を延伸させる方向は、温度勾配ではなく、あくまでも、α粒界の発生頻度により決定される。
 粒径RCが小さいために、または粒径RCは大きくても粒径RCが大きいために、RC/RC値が1.15未満になると、切り替え頻度が十分でなくなり、高磁場鉄損が十分に改善できないことがある。RC/RC値は、好ましくは1.80以上、より好ましくは2.10以上である。
 RC/RC値の上限については特に限定されない。切り替えの発生頻度および延伸方向が特定の方向に制限され、RC/RC値が大きくなれば、方向性電磁鋼板全体での結晶方位の連続性が高くなるため、磁歪の改善にとっては好ましい。一方で切り替えは結晶粒内での格子欠陥の残存でもあるため、あまりに発生頻度が高いと、特に鉄損への改善効果が低下する可能性が懸念される。そのため、RC/RC値の実用的な最大値としては10が挙げられる。特に鉄損についての配慮が必要であれば、RC/RC値の最大値として、好ましくは6、より好ましくは4が挙げられる。
 また、本実施形態に係る方向性電磁鋼板は、上記したRC/RC値の制御に加えて、第6実施形態と同様に、粒径RCと粒径RBとが、1.10≦RB÷RCを満たすことが好ましい。
 この規定は、「切り替え」が発生していることを明確にする。例えば、粒径RCおよびRCは、隣接する2つの測定点間で|α-α|が0.5°以上となる粒界に基づく粒径であるが、「切り替え」がまったく発生しておらず、すべての粒界の角度φが2.0°以上であったとしても、上記したRC/RC値が満足されることがある。たとえRC/RC値が満足されても、すべての粒界の角度φが2.0°以上であれば、一般的に認識されている二次再結晶粒が単に扁平形状になっただけであるので、本実施形態の上記効果は好ましく得られない。本実施形態では、境界条件BCを満足し且つ境界条件BBを満足しない粒界(二次再結晶粒を分割する粒界)を有することを前提とするため、すべての粒界の角度φが2.0°以上であるという状況は生じにくいが、上記したRC/RC値を満足することに加えて、RB/RC値を満足することが好ましい。
 また、本実施形態では、圧延方向に関してRB/RC値を制御することに加えて、圧延直角方向についても、第7実施形態と同様に、粒径RCと粒径RBとが1.10≦RB/RCを満たすことは何ら問題とならず、方向性電磁鋼板全体での結晶方位の連続性を高める観点ではむしろ好ましい。
 さらに、本実施形態に係る方向性電磁鋼板では、二次再結晶粒の圧延方向および圧延直角方向の粒径が制御されていることが好ましい。
 具体的には、本実施形態に係る方向性電磁鋼板では、境界条件BBに基づいて求める圧延方向Lの平均結晶粒径を粒径RBと定義し、境界条件BBに基づいて求める圧延直角方向Cの平均結晶粒径を粒径RBと定義するとき、
 粒径RBと粒径RBとが、1.50≦RB÷RBを満たすことが好ましい。また、RB÷RB≦20であることが好ましい。
 この規定は、上述の「切り替え」とは無関係であり、二次再結晶粒が圧延直角方向に延伸していることを表す。従って、この特徴それ自体は特別ではない。ただし、本実施形態では、RC/RC値を制御した上で、RB/RB値が上記の数値範囲を満たすことが好ましい。
 本実施形態では、上記の切り替えに関係して、α結晶粒のRC/RC値が制御される場合、二次再結晶粒の形態も面内異方性が大きくなる傾向がある。逆の見方をすると、本実施形態のようにずれ角αの切り替えを発生させる場合、二次再結晶粒の形状が面内異方性を持つように制御をすることで、α結晶粒の形状も面内異方性つ傾向がある
 RB/RB値は、好ましくは1.80以上、より好ましくは2.00以上、さらに好ましくは2.50以上である。RB/RB値の上限については特に限定されない。
 RB/RB値を制御する実用的な方法として、例えば、仕上げ焼鈍時にコイル幅の端部からの優先的な加熱を行い、コイル幅方向(コイル軸方向)への温度勾配を付与して二次再結晶粒を成長させるプロセスが挙げられる。このとき、二次再結晶粒のコイル周方向(例えば圧延方向)の粒径を50mm程度に維持したまま、二次再結晶粒のコイル幅方向(例えば圧延直角方向)の粒径をコイル幅と同じに制御することも可能である。例えば、幅1000mmのコイルの全幅を一つの結晶粒で占めることができる。この場合、RB/RB値の上限値として、20が挙げられる。
 なお、圧延直角方向ではなく圧延方向に温度勾配を持たせるように連続焼鈍プロセスによって二次再結晶を進行させれば、二次再結晶粒の粒径の最大値はコイル幅に制限されず、さらに大きな値とすることも可能である。この場合であっても、本実施形態によれば、切り替えによるα粒界により結晶粒が適度に分割されることで、本実施形態の上記効果を得ることが可能である。
 さらに、本実施形態に係る方向性電磁鋼板では、ずれ角αに関する切り替えの発生頻度が圧延方向および圧延直角方向に対して制御されていることが好ましい。
 具体的には、本実施形態に係る方向性電磁鋼板では、境界条件BCに基づいて求める圧延方向Lの平均結晶粒径を粒径RCと定義し、境界条件BBに基づいて求める圧延方向Lの平均結晶粒径を粒径RBと定義し、境界条件BCに基づいて求める圧延直角方向Cの平均結晶粒径を粒径RCと定義し、境界条件BBに基づいて求める圧延直角方向Cの平均結晶粒径を粒径RBと定義するとき、
 粒径RCと粒径RCと粒径RBと粒径RBとが、(RB×RC)÷(RB×RC)<1.0を満たすことが好ましい。また、下限は特に限定しないが、現状の技術を前提にすれば、0.2<(RB×RC)÷(RB×RC)であればよい。
 この規定は、上述の「切り替え」の発生頻度の面内異方性を表す。つまり、上記の(RB・RC)/(RB・RC)は、「二次再結晶粒を圧延直角方向に分割する切り替えの発生程度:RB/RC」と、「二次再結晶粒を圧延方向に分割する切り替えの発生程度:RB/RC」との比になっている。この値が1未満であるということは、一つの二次再結晶粒が、切り替え(α粒界)により、圧延方向に数多く分割されていることを示している。
 また、見方を変えると、上記の(RB・RC)/(RB・RC)は、「二次再結晶粒の扁平の程度:RB/RB」と、「α結晶粒の扁平の程度:RC/RC」との比になっている。この値が1未満であるということは、一つの二次再結晶粒を分割するα結晶粒は、二次再結晶粒よりも扁平な形状になることを示している。
 すなわち、α粒界は二次再結晶粒を圧延直角方向に分断するよりも圧延方向に分断する傾向がある。つまり、α粒界は二次再結晶粒が延伸する方向に延伸する傾向がある。α粒界のこの傾向は、二次再結晶粒が延伸する際に、切り替えが特定方位の結晶の占有面積を増大させるように作用していると考えられる。
 (RB・RC)/(RB・RC)の値は、好ましくは0.9以下、より好ましくは0.8以下、より好ましくは0.5以下である。上記のように、(RB・RC)/(RB・RC)の下限は、特に制限されないが、工業的な実現性も考慮すると、0.2超であればよい。
 上記の粒径RBおよび粒径RBは、表2のケース1および/またはケース2を満足する粒界に基づいて求める。上記の粒径RCおよび粒径RCは、表2のケース1および/またはケース3を満足する粒界に基づいて求める。例えば、圧延直角方向に沿って少なくとも500測定点を含む測定線上で結晶方位のずれ角を測定し、この測定線上でケース1および/またはケース3の粒界に挟まれる線分長さの平均値を粒径RCとする。粒径RC、粒径RB、粒径RBも同様に求めればよい。
[第5~第8実施形態に共通する技術特徴]
 続いて、上記した第5~第8実施形態に係る方向性電磁鋼板について、共通する技術特徴を以下に説明する。
 上記した第5~第8実施形態に係る方向性電磁鋼板では、ずれ角αの絶対値の標準偏差σ(|α|)が、0°以上3.50°以下であることが好ましい。
 上述のような切り替えが十分に起きている鋼板では、「ずれ角」についても特徴的な範囲に制御されやすい。例えば、ずれ角αに関する切り替えにより少しずつ結晶方位が変化する場合、ずれ角の絶対値がゼロに近づくことは上記実施形態の支障とはならない。また、例えば、ずれ角αに関する切り替えにより少しずつ結晶方位が変化する場合、結晶方位自体が特定の方位に収斂することで、結果として、ずれ角の標準偏差がゼロに近づくことは、上記実施形態の支障とはならない。
 そのため、各実施形態では、ずれ角αの絶対値の標準偏差σ(|α|)が、0°以上3.50°以下であってもよい。
 ずれ角αの絶対値の標準偏差σ(|α|)は、上述のσ(θ)と同様に求めればよい。各測定点について、ずれ角αを決定し、さらにずれ角αの絶対値の標準偏差σ(|α|)を計算する。各実施形態に係る方向性電磁鋼板では、σ(|α|)が、上記した数値範囲内であることが好ましい。
 ずれ角αの標準偏差σ(|α|)は、より好ましくは3.00以下であり、さらに好ましくは2.50以下であり、さらに好ましくは2.20以下であり、さらに好ましくは1.80以下である。標準偏差σ(|α|)は、もちろん0(ゼロ)であっても構わない。
[各実施形態に共通する技術特徴]
 続いて、上記した各実施形態に係る方向性電磁鋼板について、共通する技術特徴を以下に説明する。
 本発明の各実施形態に係る方向性電磁鋼板では、境界条件BBに基づいて求める圧延方向Lの平均結晶粒径を粒径RBと定義し、境界条件BBに基づいて求める圧延直角方向Cの平均結晶粒径を粒径RBと定義するとき、
 粒径RBおよび粒径RBが、22mm以上であることが好ましい。
 切り替えは、二次再結晶粒の成長の過程で蓄積する転位により生じると考えられる。すなわち、一度切り替えが起きた後、次の切り替えが起きるためには、二次再結晶粒が相当程度にまで成長することが必要となる。このため、粒径RBおよび粒径RBが15mm未満であると、切り替えが発生しにくく、切り替えによる磁歪の十分な改善が困難になるおそれがある。粒径RBおよび粒径RBは、15mm以上であることが好ましい。粒径RBおよび粒径RBは、好ましくは22mm以上であり、より好ましくは30mm以上であり、さらに好ましくは40mm以上である。
 粒径RBおよび粒径RBの上限は特に限定しない。例えば、一般的な方向性電磁鋼板の製造では、一次再結晶が完了した鋼板をコイルに巻き、圧延方向に曲率を有した状態で二次再結晶により{110}<001>方位の結晶粒を生成・成長させる。そのため、圧延方向の粒径RBが増大すれば、ずれ角が増加し、磁歪が増大することにもなりかねない。このため、粒径RBを無制限に大きくすることは避けることが好ましい。工業的な実現性も考慮すると、粒径RBについて、好ましい上限として400mm、さらに好ましい上限として200mm、さらに好ましい上限として100mmを挙げることができる。
 また、一般的な方向性電磁鋼板の製造では、一次再結晶が完了した鋼板をコイルに巻いた状態で加熱し、二次再結晶により{110}<001>方位の結晶粒を生成・成長させるので、二次再結晶粒は温度上昇が先行するコイル端部側から温度上昇が遅延するコイル中心側に向かって成長する。このような製造法では、例えばコイル幅を1000mmとすれば、コイル幅の半分程度となる500mmを粒径RBの上限として挙げることができる。もちろん各実施形態では、コイルの全幅が粒径RBとなることを除外しない。
 本発明の各実施形態に係る方向性電磁鋼板では、境界条件BAに基づいて求める圧延方向Lの平均結晶粒径を粒径RAと定義し、境界条件BAに基づいて求める圧延直角方向Cの平均結晶粒径を粒径RAと定義し、境界条件BCに基づいて求める圧延方向Lの平均結晶粒径を粒径RCと定義し、境界条件BCに基づいて求める圧延直角方向Cの平均結晶粒径を粒径RCと定義するとき、
 粒径RAおよび粒径RCが30mm以下であり、粒径RAおよび粒径RCが400mm以下であることが好ましい。
 粒径RAおよび粒径RCの値が小さいほど、圧延方向で切り替えの発生頻度が高いことを意味する。粒径RAおよび粒径RCは、40mm以下であればよいが、30mm以下であることがより好ましく、20mm以下であることがより好ましい。
 また、十分な切り替えが起きない状況で粒径RAおよび粒径RCが増大すれば、ずれ角が増加し、磁歪が増大することにもなりかねない。このため、粒径RAおよび粒径RCを無制限に大きくすることは避けることが好ましい。工業的な実現性も考慮すると、粒径RAおよび粒径RCについて、好ましい上限として400mm、さらに好ましい上限として200mm、さらに好ましい上限として100mm、さらに好ましい上限として40mm、さらに好ましい上限として30mmを挙げることができる。
 粒径RA、粒径RC、粒径RA、および粒径RCの下限は特に限定しない。各実施形態では、結晶方位の測定間隔を1mmとしていることから、これらの粒径の最低値は1mmとなる。しかし、各実施形態では、例えば測定間隔を1mm未満とすることにより、これらの粒径が1mm未満となるような鋼板を除外しない。ただし、切り替えは、僅かとは言え結晶中の格子欠陥の存在を伴うので、切り替えの頻度があまりに高い場合には、磁気特性への悪影響も懸念される。また、工業的な実現性も考慮すると、これらの粒径について、好ましい下限として5mmを挙げることができる。
 なお、各実施形態に係る方向性電磁鋼板における結晶粒径の測定では、結晶粒一つについて、粒径が最大で2mmの不明確さを含む。そのため、粒径測定(圧延面上にて1mm間隔で少なくとも500点の方位測定)は、粒径を規定する方向と鋼板面内で直交する方向に十分離れた位置、つまり異なる結晶粒の測定となるような位置について、計5箇所以上で実施することが好ましい。その上で、計5箇所以上の測定によって得られる全ての粒径を平均することにより、上記の不明確さを解消できる。例えば、粒径RA、粒径RC、および粒径RBについては圧延方向に十分離れた5箇所以上で、粒径RA、粒径RC、および粒径RBについては圧延直角方向に十分離れた5箇所以上で測定を実施し、計2500点以上の測定点で方位測定を行って平均粒径を求めればよい。
 なお、本実施形態に係る方向性電磁鋼板は、鋼板上に中間層や絶縁被膜などを有してもよいが、上記の結晶方位、粒界、平均結晶粒径などは、被膜等を有さない鋼板に基づいて特定してもよい。すなわち、測定試料となる方向性電磁鋼板が、表面に絶縁被膜等を有している場合は、被膜等を除去してから結晶方位などを測定してもよい。
 例えば、絶縁被膜の除去方法として、被膜を有する方向性電磁鋼板を、高温のアルカリ溶液に浸漬すればよい。具体的には、NaOH:30~50質量%+HO:50~70質量%の水酸化ナトリウム水溶液に、80~90℃で5~10分間、浸漬した後に、水洗して乾燥することで、方向性電磁鋼板から絶縁被膜を除去できる。なお、絶縁被膜の厚さに応じて、上記の水酸化ナトリウム水溶液に浸漬する時間を変えればよい。
 また、例えば、中間層の除去方法として、絶縁被膜を除去した電磁鋼板を、高温の塩酸に浸漬すればよい。具体的には、溶解したい中間層を除去するために好ましい塩酸の濃度を予め調べ、この濃度の塩酸に、例えば30~40質量%塩酸に、80~90℃で1~5分間、浸漬した後に、水洗して乾燥させることで、中間層が除去できる。通常は、絶縁被膜の除去にはアルカリ溶液を用い、中間層の除去には塩酸を用いるように、処理液を使い分けて各被膜を除去する。
 次いで、各実施形態に係る方向性電磁鋼板の化学組成を説明する。各実施形態の方向性電磁鋼板は、化学組成として、基本元素を含み、必要に応じて選択元素を含み、残部がFe及び不純物からなる。
 各実施形態に係る方向性電磁鋼板は、基本元素(主要な合金元素)として、質量分率で、Si(シリコン):2.00%~7.00%を含有する。
 Siは、結晶方位を{110}<001>方位に集積させるために、含有量が2.0~7.0%であることが好ましい。
 各実施形態では、化学組成として、不純物を含有してもよい。なお、「不純物」とは、鋼を工業的に製造する際に、原料としての鉱石やスクラップから、または製造環境等から混入する元素を指す。不純物の合計含有量の上限は、例えば、5%であればよい。
 また、各実施形態では、上記した基本元素および不純物に加えて、選択元素を含有してもよい。例えば、上記した残部であるFeの一部に代えて、選択元素として、Nb、V、Mo、Ta、W、C、Mn、S、Se、Al、N、Cu、Bi、B、P、Ti、Sn、Sb、Cr、Niなどを含有してもよい。これらの選択元素は、その目的に応じて含有させればよい。よって、これらの選択元素の下限値を限定する必要がなく、下限値が0%でもよい。また、これらの選択元素が不純物として含有されても、上記効果は損なわれない。
  Nb(ニオブ):0~0.030%
  V(バナジウム):0~0.030%
  Mo(モリブデン):0~0.030%
  Ta(タンタル):0~0.030%
  W(タングステン):0~0.030%
 Nb、V、Mo、Ta、及びWは、各実施形態で特徴的な効果を有する元素として活用することができる。以降の説明では、Nb、V、Mo、Ta、及びWのうちの一種または二種以上の元素をまとめて、「Nb群元素」と記述することがある。
 Nb群元素は、各実施形態に係る方向性電磁鋼板の特徴である切り替えの形成に好ましく作用する。ただし、Nb群元素が切り替え発生に作用するのは製造過程であるので、Nb群元素が各実施形態に係る方向性電磁鋼板に最終的に含有される必要はない。例えば、Nb群元素は、後述する仕上げ焼鈍における純化により系外に排出される傾向が少なからず存在している。そのため、スラブにNb群元素を含有させ、製造過程でNb群元素を活用して切り替えの頻度を高めた場合でも、その後の純化焼鈍によりNb群元素が系外に排出されることがある。そのため、最終製品の化学組成として、Nb群元素が検出できない場合がある。
 そのため、各実施形態では、最終製品である方向性電磁鋼板の化学組成として、Nb群元素の含有量の上限についてのみ規定する。Nb群元素の上限は、それぞれ0.030%であればよい。一方、上述の通り、製造過程でNb群元素を活用したとしても、最終製品ではNb群元素の含有量がゼロになることがある。そのため、Nb群元素の含有量の下限は特に限定されず、下限がそれぞれ0%であってもよい。
 本発明の各実施形態に係る方向性電磁鋼板では、化学組成として、Nb、V、Mo、Ta、およびWからなる群から選択される少なくとも1種を合計で0.0030~0.030質量%含有することが好ましい。
 Nb群元素の含有量が製造途中で増加することは考えにくいので、最終製品の化学組成としてNb群元素が検出されれば、製造過程でNb群元素による切り替え制御が行われたことが示唆される。製造過程で切り替えを好ましく制御するには、最終製品のNb群元素の合計含有量が、0.0030%以上であることが好ましく、0.0050%以上であることがさらに好ましい。一方、最終製品のNb群元素の合計含有量が0.030%を超えると、切り替えの発生頻度を維持できるが磁気特性が低下することがある。そのため、最終製品のNb群元素の合計含有量が、0.030%以下であることが好ましい。なお、Nb群元素の作用は製造法と関連して後述する。
 C(炭素):0~0.0050%
 Mn(マンガン):0~1.0%
 S(硫黄):0~0.0150%
 Se(セレン):0~0.0150%
 Al(酸可溶性アルミニウム):0~0.0650%
 N(窒素):0~0.0050%
 Cu(銅):0~0.40%
 Bi(ビスマス):0~0.010%
 B(ボロン):0~0.080%
 P(燐):0~0.50%
 Ti(チタン):0~0.0150%
 Sn(スズ):0~0.10%
 Sb(アンチモン):0~0.10%
 Cr(クロム):0~0.30%
 Ni(ニッケル):0~1.0%
 これらの選択元素は、公知の目的に応じて含有させればよい。これらの選択元素の含有量の下限値を設ける必要はなく、下限値が0%でもよい。なお、S及びSeの含有量が合計で0~0.0150%であることが好ましい。S及びSeの合計とは、S及びSeの少なくとも一方を含み、その合計含有量であることを意味する。
 なお、方向性電磁鋼板では、脱炭焼鈍および二次再結晶時の純化焼鈍を経ることで、比較的大きな化学組成の変化(含有量の低下)が起きる。元素によっては純化焼鈍によって、一般的な分析手法では検出できない程度(1ppm以下)にまで含有量が低減することもある。各実施形態に係る方向性電磁鋼板の上記化学組成は、最終製品における化学組成である。一般に、最終製品の化学組成と、出発素材であるスラブの化学組成とは異なる。
 各実施形態に係る方向性電磁鋼板の化学組成は、鋼の一般的な分析方法によって測定すればよい。例えば、方向性電磁鋼板の化学組成は、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて測定すればよい。具体的には、方向性電磁鋼板から採取した35mm角の試験片を、島津製作所製ICPS-8100等(測定装置)により、予め作成した検量線に基づいた条件で測定することにより、化学組成が特定される。なお、CおよびSは燃焼-赤外線吸収法を用いて測定し、Nは不活性ガス融解-熱伝導度法を用いて測定すればよい。
 なお、上記の化学組成は、方向性電磁鋼板の成分である。測定試料となる方向性電磁鋼板が、表面に絶縁被膜等を有している場合は、被膜等を上記の方法で除去してから化学組成を測定する。
 本発明の各実施形態に係る方向性電磁鋼板は、二次再結晶粒がずれ角がわずかに異なる小さな領域に分割されていることを特徴とし、この特徴によって中磁場領域での磁歪及び鉄損が低減される。そのため、各実施形態に係る方向性電磁鋼板では、鋼板上の被膜構成や、磁区細分化処理の有無などは特に制限されない。各実施形態では、目的に応じて任意の被膜を鋼板上に形成し、必要に応じて磁区細分化処理を施せばよい。
 本発明の各実施形態に係る方向性電磁鋼板では、方向性電磁鋼板(珪素鋼板)上に接して配された中間層と、中間層上に接して配された絶縁被膜とを有してもよい。
 図2は、本発明の好適な実施形態に係る方向性電磁鋼板の断面模式図である。図2に示すように、本実施形態に係る方向性電磁鋼板10(珪素鋼板)は、切断方向が板厚方向と平行な切断面で見たとき、方向性電磁鋼板10(珪素鋼板)上に接して配された中間層20と、中間層20上に接して配された絶縁被膜30とを有してもよい。
 例えば、上記の中間層は、酸化物を主体とする層、炭化物を主体とする層、窒化物を主体とする層、硼化物を主体とする層、珪化物を主体とする層、りん化物を主体とする層、硫化物を主体とする層、金属間化合物を主体とする層などであればよい。これらの中間層は、酸化還元性を制御した雰囲気中での熱処理、化学蒸着(CVD)、物理蒸着(PVD)などによって形成できる。
 本発明の各実施形態に係る方向性電磁鋼板では、上記中間層が平均厚さ1~3μmのフォルステライト被膜であってもよい。なお、フォルステライト被膜とは、MgSiOを主体とする被膜である。このフォルステライト被膜と方向性電磁鋼板との界面は、上記断面で見たとき、フォルステライト被膜が鋼板に嵌入した界面となる。
 本発明の各実施形態に係る方向性電磁鋼板では、上記中間層が平均厚さ2~500nmの酸化膜であってもよい。なお、酸化膜とは、SiOを主体とする被膜である。この酸化膜と方向性電磁鋼板との界面は、上記断面で見たとき、平滑界面となる。
 また、上記の絶縁被膜は、りん酸塩とコロイド状シリカとを主体とし平均厚さが0.1~10μmの絶縁被膜や、アルミナゾルと硼酸とを主体とし平均厚さが0.5~8μmの絶縁被膜であればよい。
 本発明の各実施形態に係る方向性電磁鋼板では、局所的な微小歪の付与または局所的な溝の形成の少なくとも1つによって磁区が細分化されていてもよい。なお、局所的な微小歪や局所的な溝は、レーザー、プラズマ、機械的方法、エッチング、その他の手法によって付与または形成すればよい。例えば、局所的な微小歪または局所的な溝は、鋼板の圧延面上で圧延方向と交差する方向に延伸するように線状または点状に、且つ圧延方向の間隔が4mm~10mmになるように付与または形成すればよい。
[方向性電磁鋼板の製造方法]
 次に、本発明の一実施形態に係る方向性電磁鋼板の製造方法を説明する。
 図3は、本発明の一実施形態に係る方向性電磁鋼板の製造方法を例示する流れ図である。図3に示すように、本実施形態に係る方向性電磁鋼板(珪素鋼板)の製造方法は、鋳造工程と、熱間圧延工程と、熱延板焼鈍工程と、冷間圧延工程と、脱炭焼鈍工程と、焼鈍分離剤塗布工程と、仕上げ焼鈍工程とを備える。また、必要に応じて、脱炭焼鈍工程から仕上げ焼鈍工程までの任意のタイミングで窒化処理を行ってもよく、仕上げ焼鈍工程後に絶縁被膜形成工程をさらに有してもよい。
 具体的には、本実施形態に係る方向性電磁鋼板(珪素鋼板)の製造方法は、
 鋳造工程で、化学組成として、質量%で、Si:2.0~7.0%、Nb:0~0.030%、V:0~0.030%、Mo:0~0.030%、Ta:0~0.030%、W:0~0.030%、C:0~0.0850%、Mn:0~1.0%、S:0~0.0350%、Se:0~0.0350%、Al:0~0.0650%、N:0~0.0120%、Cu:0~0.40%、Bi:0~0.010%、B:0~0.080%、P:0~0.50%、Ti:0~0.0150%、Sn:0~0.10%、Sb:0~0.10%、Cr:0~0.30%、Ni:0~1.0%を含有し、残部がFeおよび不純物からなるスラブを鋳造し、
 脱炭焼鈍工程で、一次再結晶粒径を24μm以下に制御し、
 仕上げ焼鈍工程で、
  上記スラブの化学組成のNb、V、Mo、Ta、およびWの合計含有量が0.0030~0.030%であるとき、加熱過程にて、700~800℃でのPHO/PHを0.030~5.0とするか、900~950℃でのPHO/PHを0.010~0.20とするか、950~1000℃でのPHO/PHを0.0050~0.10とするか、1000~1050℃でのPHO/PHを0.0010~0.050とするか、のうちの少なくとも一つを制御し、
  上記スラブの化学組成のNb、V、Mo、Ta、およびWの合計含有量が0.0030~0.030%でないとき、加熱過程にて、700~800℃でのPHO/PHを0.030~5.0とし、且つ900~950℃でのPHO/PHを0.010~0.20とするか、950~1000℃でのPHO/PHを0.0050~0.10とするか、1000~1050℃でのPHO/PHを0.0010~0.050とするか、のうちの少なくとも一つを制御する。
 上記のPHO/PHは、酸素ポテンシャルと呼ばれ、雰囲気ガスの水蒸気分圧PHOと水素分圧PHとの比である。
 本実施形態の「切り替え」は、主として、方位変化(切り替え)自体を発生し易くする要因と、方位変化(切り替え)が一つの二次再結晶粒の中で継続的に発生するようにする要因との二つによって制御される。
 切り替え自体を発生し易くさせるためには、二次再結晶をより低温から開始させることが有効である。例えば、一次再結晶粒径を制御し、Nb群元素を活用することによって、二次再結晶の開始をより低温に制御できる。
 切り替えを一つの二次再結晶粒の中で継続的に発生させるためには、二次再結晶粒を低温から高温まで継続的に成長させることが有効である。例えば、従来から用いられるインヒビターであるAlNなどを適切な温度および雰囲気中で利用することによって、低温で二次再結晶粒を発生させ、インヒビター効果を高温まで継続して作用させ、切り替えを一つの二次再結晶粒の中で高温まで継続的に発生させることができる。
 すなわち、切り替えを好ましく発生させるためには、高温での二次再結晶粒の発生を抑制したまま、低温で発生した二次再結晶粒を高温まで優先的に成長させることが有効となる。
 本実施形態では、上記の二つの要因に加え、亜結晶粒の形状に面内異方性を付与するため、最終的な二次再結晶過程で、二次再結晶粒の成長に異方性を持たせる方法を採用してもよい。
 本実施形態の特徴である切り替えを制御するには、上記の要因が重要である。その他の製造条件は、従来の公知の方向性電磁鋼板の製造方法を適用することができる。例えば、高温スラブ加熱によって形成するMnSやAlNをインヒビターとして利用する製造方法や、低温スラブ加熱とその後の窒化処理によって形成するAlNをインヒビターとして利用する製造方法などがある。本実施形態の特徴である切り替えは、何れの製造方法でも適用が可能であり、特定の製造方法に限定されない。以下では、窒化処理を適用する製造方法にて切り替えを制御する方法を一例として説明する。
(鋳造工程)
 鋳造工程では、スラブを準備する。スラブの製造方法の一例は次のとおりである。溶鋼を製造(溶製)する。溶鋼を用いてスラブを製造する。連続鋳造法によりスラブを製造してもよい。溶鋼を用いてインゴットを製造し、インゴットを分塊圧延してスラブを製造してもよい。スラブの厚さは、特に限定されない。スラブの厚さは、たとえば、150~350mmである。スラブの厚さは、好ましくは、220~280mmである。スラブとして、厚さが10~70mmの、いわゆる薄スラブを用いてもよい。薄スラブを用いる場合、熱間圧延工程にて、仕上げ圧延前の粗圧延を省略できる。
 スラブの化学組成は、一般的な方向性電磁鋼板の製造に用いられるスラブの化学組成を用いることができる。スラブの化学組成はたとえば、次の元素を含有する。
 C:0~0.0850%
 炭素(C)は、製造過程では一次再結晶組織の制御に有効な元素であるものの、最終製品のC含有量が過剰であると磁気特性に悪影響を及ぼす。したがって、スラブのC含有量は0~0.0850%であればよい。C含有量の好ましい上限は0.0750%である。Cは後述の脱炭焼鈍工程及び仕上げ焼鈍工程で純化され、仕上げ焼鈍工程後には0.0050%以下となる。Cを含む場合、工業生産における生産性を考慮すると、C含有量の下限は0%超であってもよく、0.0010%であってもよい。
 Si:2.0~7.0%
 シリコン(Si)は、方向性電磁鋼板の電気抵抗を高めて鉄損を低下させる。Si含有量が2.0%未満であれば、仕上げ焼鈍時にオーステナイト変態が生じて、方向性電磁鋼板の結晶方位が損なわれてしまう。一方、Si含有量が7.0%を超えれば、冷間加工性が低下して、冷間圧延時に割れが発生しやすくなる。Si含有量の好ましい下限は2.50%であり、さらに好ましくは3.0%である。Si含有量の好ましい上限は4.50%であり、さらに好ましくは4.0%である。
 Mn:0.~1.0%
 マンガン(Mn)は、S又はSeと結合して、MnS、又は、MnSeを生成し、インヒビターとして機能する。Mn含有量は0~1.0%であればよい。Mnを含有させる場合、Mn含有量が0.05~1.0%の範囲内にある場合に、二次再結晶が安定するので好ましい。本実施形態では、インヒビターの機能の一部をNb群元素の窒化物によって担うことが可能である。この場合は、一般的なインヒビターとしてのMnS、又は、MnSe強度は弱めに制御する。このため、Mn含有量の好ましい上限は0.50%であり、さらに好ましくは0.20%である。
 S:0~0.0350%
 Se:0~0.0350%
 硫黄(S)及びセレン(Se)は、Mnと結合して、MnS又はMnSeを生成し、インヒビターとして機能する。S含有量は0~0.0350%であればよく、Se含有量は0~0.0350%であればよい。S及びSeの少なくとも一方を含有させる場合、S及びSeの含有量が合計で0.0030~0.0350%であれば、二次再結晶が安定するので好ましい。本実施形態では、インヒビターの機能の一部をNb群元素の窒化物によって担うことが可能である。この場合は、一般的なインヒビターとしてのMnS、又は、MnSe強度は弱めに制御する。このため、S及びSe含有量の合計の好ましい上限は0.0250%であり、さらに好ましくは0.010%である。S及びSeは仕上げ焼鈍後に残留すると化合物を形成し、鉄損を劣化させる。そのため、仕上げ焼鈍中の純化により、S及びSeをできるだけ少なくすることが好ましい。
 ここで、「S及びSeの含有量が合計で0.0030~0.0350%」であるとは、スラブの化学組成がS又はSeのいずれか一方のみを含有し、S又はSeのいずれか一方の含有量が0.0030~0.0350%であってもよいし、スラブがS及びSeの両方を含有し、S及びSeの含有量が合計で0.0030~0.0350%であってもよい。
 Al:0~0.0650%
 アルミニウム(Al)は、Nと結合して(Al、Si)Nとして析出し、インヒビターとして機能する。Al含有量は0~0.0650%であればよい。Alを含有させる場合、Alの含有量が0.010~0.065%の範囲内にある場合に、後述の窒化により形成されるインヒビターとしてのAlNは二次再結晶温度域を拡大し、特に高温域での二次再結晶が安定するので好ましい。Al含有量の好ましい下限は0.020%であり、さらに好ましくは0.0250%である。二次再結晶の安定性の観点から、Al含有量の好ましい上限は0.040%であり、さらに好ましくは0.030%である。
 N:0~0.0120%
 窒素(N)は、Alと結合してインヒビターとして機能する。N含有量は0~0.0120%であればよい。Nは製造過程の途中で窒化により含有させることが可能であるため下限が0%でもよい。一方、Nを含有させる場合、N含有量が0.0120%を超えれば、鋼板中に欠陥の一種であるブリスタが発生しやすくなる。N含有量の好ましい上限は0.010%であり、さらに好ましくは0.0090%である。Nは仕上げ焼鈍工程で純化され、仕上げ焼鈍工程後には0.0050%以下となる。
 Nb:0~0.030%
 V:0~0.030%
 Mo:0~0.030%
 Ta:0~0.030%
 W:0~0.030%
 Nb、V、Mo、Ta、及びWは、Nb群元素である。Nb含有量は0~0.030%であればよく、V含有量は0~0.030%であればよく、Mo含有量は0~0.030%であればよく、Ta含有量は0~0.030%であればよく、W含有量は0~0.030%であればよい。
 また、Nb群元素として、Nb、V、Mo、Ta、およびWからなる群から選択される少なくとも1種を合計で0.0030~0.030質量%含有することが好ましい。
 Nb群元素を切り替えの制御に活用する場合、スラブでのNb群元素の合計含有量が0.030%以下(好ましくは0.0030%以上0.030%以下)であると、適切なタイミングで二次再結晶を開始させる。また、発生する二次再結晶粒の方位が非常に好ましいものとなり、その後の成長過程で、本実施形態が特徴とする切り替えが起きやすくなり、最終的に磁気特性にとって好ましい組織に制御できる。
 Nb群元素を含有することにより、脱炭焼鈍後の一次再結晶粒径は、Nb群元素を含有しない場合に比べて好ましく小径化する。この一次再結晶粒の微細化は、炭化物、炭窒化物、窒化物等の析出物によるピン止め効果、および固溶元素としてのドラッグ効果などにより得られると考えられる。特に、Nb及びTaはその効果が強く好ましく得られる。
 Nb群元素による一次再結晶粒径の小径化によって、二次再結晶の駆動力が大きくなり、二次再結晶が従来よりも低温で開始する。また、Nb群元素の析出物は、AlNなどの従来インヒビターよりも比較的低温で分解するため、仕上げ焼鈍の昇温過程にて、二次再結晶が従来よりも低温で開始する。これらのメカニズムについては後述するが、低温で二次再結晶が開始することで、本実施形態の特徴である切り替えが起き易くなる。
 なお、二次再結晶のインヒビターとしてNb群元素の析出物を活用する場合、Nb群元素の炭化物及び炭窒化物は、二次再結晶が可能な温度域よりも低い温度域で不安定となるため、二次再結晶開始温度を低温にシフトさせる効果が小さいと考えられる。このため、二次再結晶開始温度を好ましく低温にシフトさせるためには、二次再結晶が可能な温度域まで安定であるNb群元素の窒化物を活用することが好ましい。
 二次再結晶開始温度を好ましく低温シフトさせるNb群元素の析出物(好ましくは窒化物)と、二次再結晶開始後も高温まで安定なAlN、(Al、Si)Nなどの従来インヒビターとを併用することにより、二次再結晶粒である{110}<001>方位粒の優先成長温度域を従来よりも拡大することができる。そのため、低温から高温までの幅広い温度域で切り替えが発生し、方位選択が広い温度域で継続する。その結果、最終的な亜粒界の存在頻度が高まるとともに、方向性電磁鋼板を構成する二次再結晶粒の{110}<001>方位集積度を効果的に高めることができる。
 なお、Nb群元素の炭化物や炭窒化物などのピン止め効果により、一次再結晶粒の微細化を指向する場合は、鋳造時点でスラブのC含有量を50ppm以上としておくことが好ましい。ただし、二次再結晶におけるインヒビターとしては、炭化物もしくは炭窒化物よりも、窒化物が好ましいことから、一次再結晶完了後は、脱炭焼鈍によりC含有量を30ppm以下、好ましくは20ppm以下、さらに好ましくは10ppm以下にして、鋼中のNb群元素の炭化物や炭窒化物を十分に分解しておくことが好ましい。脱炭焼鈍にて、Nb群元素の大部分を固溶状態にしておくことで、その後の窒化処理にて、Nb群元素の窒化物(インヒビター)を、本実施形態にとって好ましい形態(二次再結晶が進行しやすい形態)に調整することができる。
 Nb群元素の合計含有量は、0.0040%以上であることが好ましく、0.0050%以上であることがより好ましい。また、Nb群元素の合計含有量は、0.020%以下であることが好ましく、0.010%であることがより好ましい。
 スラブの化学組成の残部はFe及び不純物からなる。なお、ここでいう「不純物」は、スラブを工業的に製造する際に、原材料に含まれる成分、又は製造の過程で混入する成分から不可避的に混入し、本実施形態の効果に実質的に影響を与えない元素を意味する。
 また、スラブは、製造上の課題解決のほか、化合物形成によるインヒビター機能の強化や磁気特性への影響を考慮して、上記Feの一部に代えて、公知の選択元素を含有してもよい。選択元素として、たとえば、次の元素が挙げられる。
 Cu:0~0.40%
 Bi:0~0.010%
 B:0~0.080%
 P:0~0.50%
 Ti:0~0.0150%
 Sn:0~0.10%
 Sb:0~0.10%
 Cr:0~0.30%
 Ni:0~1.0%
 これらの選択元素は、公知の目的に応じて含有させればよい。これらの選択元素の含有量の下限値を設ける必要はなく、下限値が0%でもよい。
(熱間圧延工程)
 熱間圧延工程は、所定の温度(例えば1100~1400℃)に加熱されたスラブの熱間圧延を行い、熱間圧延鋼板を得る工程である。熱間圧延工程では、例えば、鋳造工程後に加熱された珪素鋼素材(スラブ)の粗圧延を行った後、仕上げ圧延を行って所定厚さ、例えば、1.8~3.5mmの熱間圧延鋼板とする。仕上げ圧延終了後、熱間圧延鋼板を所定の温度で巻き取る。
 インヒビターとしてのMnS強度はそれほど必要でないため、生産性を考慮すれば、スラブ加熱温度は1100℃~1280℃とすることが好ましい。
 なお、熱延工程にて、鋼帯の幅または長手方向に上記範囲内で温度勾配を設けることにより、結晶組織、結晶方位、及び析出物について、鋼板面内位置での不均一性を生じさせてもよい。これにより、最終的な二次再結晶過程での二次再結晶粒の成長に異方性を持たせ、本実施形態にとって必要な亜結晶粒の形状に面内異方性を好ましく付与することが可能である。例えば、スラブ加熱にて、板幅方向に温度勾配を設けて高温部の析出物を微細化し、高温部のインヒビター機能を高めることで、二次再結晶時に低温部から高温部に向けた優先的な粒成長を誘起することが可能である。
(熱延板焼鈍工程)
 熱延板焼鈍工程は、熱間圧延工程で得た熱間圧延鋼板を所定の温度条件(例えば750~1200℃で30秒間~10分間)で焼鈍して、熱延焼鈍板を得る工程である。
 なお、熱延板焼鈍工程にて、鋼帯の幅または長手方向に上記範囲内で温度勾配を設けることにより、結晶組織、結晶方位、及び析出物について、鋼板面内位置での不均一性を生じさせてもよい。これにより、最終的な二次再結晶過程での二次再結晶粒の成長に異方性を持たせ、本実施形態にとって必要な亜結晶粒の形状に面内異方性を好ましく付与することが可能である。例えば、熱延板焼鈍にて、板幅方向に温度勾配を設けて高温部の析出物を微細化し、高温部のインヒビター機能を高めることで、二次再結晶時に低温部から高温部に向けた優先的な粒成長を誘起することが可能である。
(冷間圧延工程)
 冷間圧延工程は、熱延板焼鈍工程で得た熱延焼鈍板を、1回の冷間圧延、又は焼鈍(中間焼鈍)を介して複数回(2回以上)の冷間圧延(例えば総冷延率で80~95%)により、例えば、0.10~0.50mmの厚さを有する冷間圧延鋼板を得る工程である。
(脱炭焼鈍工程)
 脱炭焼鈍工程は、冷間圧延工程で得た冷間圧延鋼板に脱炭焼鈍(例えば700~900℃で1~3分間)を行い、一次再結晶が生じた脱炭焼鈍鋼板を得る工程である。冷間圧延鋼板に脱炭焼鈍を行うことで、冷間圧延鋼板中に含まれるCが除去される。脱炭焼鈍は、冷間圧延鋼板中に含まれる「C」を除去するために、湿潤雰囲気中で行うことが好ましい。
 本実施形態に係る方向性電磁鋼板の製造方法では、脱炭焼鈍鋼板の一次再結晶粒径を24μm以下に制御することが好ましい。一次再結晶粒径を微細化することによって、二次再結晶開始温度を好ましく低温にシフトさせることができる。
 例えば、前述の熱間圧延および熱延板焼鈍の条件を制御したり、脱炭焼鈍温度を必要に応じて低温化したりすることによって、一次再結晶粒径を小さくすることができる。または、スラブにNb群元素を含有させ、Nb群元素の炭化物や炭窒化物などのピン止め効果によって、一次再結晶粒を小さくすることができる。
 なお、脱炭焼鈍に起因する脱炭酸化量及び表面酸化層の状態は、中間層(グラス被膜)の形成に影響を及ぼすため、本実施形態の効果を発現するために従来の方法を使って適宜調整してもよい。
 切り替えを起きやすくする元素として含有させてもよいNb群元素は、この時点では、炭化物や炭窒化物や固溶元素などとして存在し、一次再結晶粒径を微細化するように影響を及ぼす。一次再結晶粒径は、23μm以下であることが好ましく、20μm以下であることがより好ましく、18μm以下であることがより好ましい。また、一次再結晶粒径は、8μm以上であればよく、12μm以上であってもよい。
 なお、脱炭焼鈍工程にて、鋼帯の幅または長手方向に上記範囲内での温度勾配や脱炭挙動差を設けることにより、結晶組織、結晶方位、及び析出物について、鋼板面内位置での不均一性を生じさせてもよい。これにより、最終的な二次再結晶過程での二次再結晶粒の成長に異方性を持たせ、本実施形態にとって必要な亜結晶粒の形状に面内異方性を好ましく付与することが可能である。例えば、スラブ加熱にて、板幅方向に温度勾配を設けて低温部の一次再結晶粒径を微細化して二次再結晶開始の駆動力を高め、低温部での二次再結晶を早期に開始させることで、二次再結晶粒の成長時に低温部から高温部に向けた優先的な粒成長を誘起することが可能である。
(窒化処理)
 窒化処理は、二次再結晶におけるインヒビターの強度を調整するために実施する。窒化処理では、上述の脱炭焼鈍の開始から、後述する仕上げ焼鈍における二次再結晶の開始までの間の任意のタイミングで、鋼板の窒素量を40~300ppm程度に増加させればよい。窒化処理としては、例えば、アンモニア等の窒化能のあるガスを含有する雰囲気中で鋼板を焼鈍する処理や、MnN等の窒化能を有する粉末を含む焼鈍分離剤を塗布した脱炭焼鈍鋼板を仕上げ焼鈍する処理等が例示される。
 スラブがNb群元素を上記の数値範囲で含有する場合は、窒化処理によって形成されるNb群元素の窒化物が比較的低温で粒成長抑止機能が消失するインヒビターとして機能するので、二次再結晶が従来よりも低温から開始する。この窒化物は、二次再結晶粒の核発生の選択性に関しても有利に作用し、高磁束密度化を実現している可能性も考えられる。また、窒化処理ではAlNも形成され、このAlNが比較的高温まで粒成長抑止機能が継続するインヒビターとして機能する。これらの効果を得るためには、窒化処理後の窒化量を130~250ppmとすることが好ましく、さらには150~200ppmとすることが好ましい。
 なお、窒化処理にて、鋼帯の幅または長手方向に上記範囲内で窒化量に差を設けることにより、インヒビター強度について、鋼板面内位置での不均一性を生じさせてもよい。これにより、最終的な二次再結晶過程での二次再結晶粒の成長に異方性を持たせ、本実施形態にとって必要な亜結晶粒の形状に面内異方性を好ましく付与することが可能である。例えば、板幅方向に窒化量の差を設けて高窒化部のインヒビター機能を高めることで、二次再結晶時に低窒化部から高窒化部に向けた優先的な粒成長を誘起することが可能である。
(焼鈍分離剤塗布工程)
 焼鈍分離剤塗布工程は、脱炭焼鈍鋼板に焼鈍分離剤を塗布する工程である。焼鈍分離剤としては、例えば、MgOを主成分とする焼鈍分離剤や、アルミナを主成分とする焼鈍分離剤を用いることができる。
 なお、MgOを主成分とする焼鈍分離剤を用いた場合には、仕上げ焼鈍によって中間層としてフォルステライト被膜(MgSiOを主体とする被膜)が形成されやすく、アルミナを主成分とする焼鈍分離剤を用いた場合には、仕上げ焼鈍によって中間層として酸化膜(SiOを主体とする被膜)が形成されやすい。これらの中間層は、必要に応じて除去してもよい。
 焼鈍分離剤を塗布後の脱炭焼鈍鋼板は、コイル状に巻取った状態で、次の仕上げ焼鈍工程で仕上げ焼鈍される。
(仕上げ焼鈍工程)
 仕上げ焼鈍工程は、焼鈍分離剤が塗布された脱炭焼鈍鋼板に仕上げ焼鈍を施し、二次再結晶を生じさせる工程である。この工程は、一次再結晶粒の成長をインヒビターにより抑制した状態で二次再結晶を進行させることによって、{100}<001>方位粒を優先成長させ、磁束密度を飛躍的に向上させる。
 仕上げ焼鈍は、本実施形態の特徴である切り替えを制御するために重要な工程である。本実施形態では、仕上げ焼鈍にて、以下の(A)~(C-2)の4つの条件を基本として、角度φを制御する。
 なお、仕上げ焼鈍工程の説明における「Nb群元素の合計含有量」は、仕上げ焼鈍直前の鋼板(脱炭焼鈍鋼板)のNb群元素の合計含有量を意味する。つまり、仕上げ焼鈍条件に影響するのは、仕上げ焼鈍直前の鋼板の化学組成であり、仕上げ焼鈍および純化が起きた後の化学組成(例えば方向性電磁鋼板(仕上げ焼鈍鋼板)の化学組成)とは無関係である。
(A)仕上げ焼鈍の加熱過程にて、700~800℃の温度域での雰囲気についてのPHO/PHをPAとしたとき、
  PA:0.030~5.0
(B)仕上げ焼鈍の加熱過程にて、900~950℃の温度域での雰囲気についてのPHO/PHをPBとしたとき、
  PB:0.010~0.20
(C-1)仕上げ焼鈍の加熱過程にて、950~1000℃の温度域での雰囲気についてのPHO/PHをPC1としたとき、
  PC1:0.0050~0.10
(C-2)仕上げ焼鈍の加熱過程にて、1000~1050℃の温度域での雰囲気についてのPHO/PHをPC2としたとき、
  PC2:0.0010~0.050
 なお、Nb群元素の合計含有量が0.0030~0.030%の場合は、条件(A)~(C-2)のうちの少なくとも一つを満足すればよい。
 Nb群元素の合計含有量が0.0030~0.030%でない場合は、条件(A)を満足し、かつ条件(B)~(C-2)のうちの少なくとも一つを満足すればよい。
 条件(A)~(C-2)に関して、Nb群元素を上記範囲で含有する場合、Nb群元素が持つ回復再結晶抑制効果のため、「低温域での二次再結晶の開始」と「高温域までの二次再結晶の継続」の二つ要因が強く作用する。その結果、本実施形態の効果を得るための制御条件が緩和する。
 PAは、好ましくは、0.10以上であることが好ましく、0.30以上であることが好ましく、1.0以下であることが好ましく、0.60以下であることが好ましい。
 PBは、好ましくは、0.020以上であることが好ましく、0.040以上であることが好ましく、0.10以下であることが好ましく、0.070以下であることが好ましい。
 PC1は、好ましくは、0.010以上であることが好ましく、0.020以上であることが好ましく、0.070以下であることが好ましく、0.050以下であることが好ましい。
 PC2は、好ましくは、0.002以上であることが好ましく、0.0050以上であることが好ましく、0.030以下であることが好ましく、0.020以下であることが好ましい。
 切り替えが発生するメカニズムの詳細は、現時点では明確ではない。ただし、二次再結晶過程の観察結果および切り替えを好ましく制御できる製造条件を考慮し、「低温域での二次再結晶の開始」と「高温域までの二次再結晶の継続」との二つの要因が重要であると推察している。
 この二つの要因を念頭に、上記(A)~(C-2)の限定理由について説明する。なお、以下の説明でメカニズムについての記述は推測を含む。
 条件(A)は、二次再結晶が起きる温度よりも十分に低い温度域での条件であり、この条件は二次再結晶と認識される現象に直接的には影響しない。ただし、この温度域は、鋼板表面に塗布された焼鈍分離剤が持ち込む水分等で鋼板表層が酸化する温度域であり、すなわち、一次被膜(中間層)の形成に影響を及ぼす温度域である。条件(A)は、この一次被膜の形成を制御することを介して、その後の「高温域までの二次再結晶の継続」を可能とするために重要となる。この温度域を上記雰囲気とすることで、一次被膜は緻密な構造となり、二次再結晶が生じる段階にてインヒビターの構成元素(例えば、Al、Nなど)が系外に排出されるのを阻害するバリアとして作用する。これにより二次再結晶が高温まで継続し、切り替えを十分に起こすことが可能になる。
 条件(B)は、二次再結晶の再結晶核の核生成段階に相当する温度域での条件である。この温度領域を上記雰囲気とすることで、粒成長の任意の段階にて、二次再結晶粒の成長がインヒビター分解に律速されて進行するようになる。この条件(B)は、特に鋼板表層でのインヒビター分解を促進し、二次再結晶の核を増やすことに影響していると考えられる。例えば、鋼板表層には、二次再結晶にとって好ましい結晶方位の一次再結晶粒が多く存在していることが知られている。本実施形態では、900~950℃の低温域で鋼板表層のみのインヒビター強度を弱めておくことで、その後の昇温過程にて二次再結晶が早期に(低温で)開始し、また多数の二次再結晶粒が発生するため、二次再結晶初期の粒成長にて切り替え頻度が高まると考えられる。
 条件(C-1)および(C-2)は、二次再結晶が開始して粒成長する温度域での条件であり、これらの条件は二次再結晶粒が成長する過程でのインヒビター強度の調整に影響する。これらの温度領域を上記雰囲気とすることで、各温度域にて、二次再結晶粒の成長がインヒビター分解に律速されて進行するようになる。詳細は後述するが、これらの条件によって、二次再結晶粒の成長方向前面の粒界に転位が効率的に蓄積するので、切り替えの発生頻度が高まり且つ切り替えが継続的に発生する。温度域を二つに分けて条件(C-1)および(C-2)として雰囲気を制御するのは、温度域により適切な雰囲気が異なるためである。
 本実施形態の製造方法では、Nb群元素を活用する場合、条件(A)~(C-2)のうちの少なくとも1つを満足すれば、本実施形態の切り替え条件を満たす方向性電磁鋼板を得ることが可能である。すなわち、二次再結晶初期に切り替え頻度を高めるように制御すれば、切り替えによる方位差を保ったままで二次再結晶粒が成長し、その影響は後期まで継続して最終的な切り替え頻度も高くなる。あるいは、二次再結晶の初期過程で十分な頻度の切り替えが起きなくても、その後の粒成長の過程で結晶粒の成長方向前面に十分な量の転位を蓄積させて新たな切り替えを発生させることで、最終的な切り替え頻度を高められる。もちろん、Nb群元素を活用したとしても、条件(A)~(C-2)のすべてを満たすことが好ましい。つまり、二次再結晶の初期段階で切り替え頻度を高め、且つ二次再結晶の中後期でも新たな切り替えを発生させることが最適である。
 上記した本実施形態に係る方向性電磁鋼板の製造方法を基本として、二次再結晶粒を結晶方位がわずかに異なる小さな領域に分割された状態に制御すればよい。具体的には、上記方法を基本として、第1実施形態として記述したように、方向性電磁鋼板中に、境界条件BBを満足する粒界に加えて、境界条件BAを満足し且つ上記境界条件BBを満足しない粒界を作り込めばよい。
 次に、本実施形態に係る製造方法に関する好ましい製造条件を説明する。
 本実施形態に係る製造方法では、仕上げ焼鈍工程で、スラブの化学組成のNb、V、Mo、Ta、およびWの合計含有量が0.0030~0.030%でないとき、加熱過程にて、1000~1050℃での保持時間を200~1500分とすることが好ましい。
 同様に、本実施形態に係る製造方法では、仕上げ焼鈍工程で、スラブの化学組成のNb、V、Mo、Ta、およびWの合計含有量が0.0030~0.030%であるとき、加熱過程にて、1000~1050℃での保持時間を100~1500分とすることが好ましい。
 以下では、上記の製造条件を、条件(E-1)とする。
(E-1)仕上げ焼鈍の加熱過程にて、1000~1050℃の温度域での保持時間(総滞留時間)をTE1としたとき、
  Nb群元素の合計含有量が0.0030~0.030%の場合、
   TE1:100分以上
  Nb群元素の合計含有量が上記範囲外の場合、
   TE1:200分以上
 Nb群元素の合計含有量が0.0030~0.030%の場合、TE1は、150分以上であることが好ましく、300分以上であることがさらに好ましく、1500分以下であることが好ましく、900分以下であることがさらに好ましい。
 Nb群元素の合計含有量が上記範囲外の場合、TE1は、好ましくは、300分以上であることが好ましく、600分以上であることがさらに好ましく、1500分以下であることが好ましく、900分以下であることがさらに好ましい。
 条件(E-1)は、切り替えが起きている亜粒界の鋼板面内の延伸方向を制御する因子となる。1000~1050℃で、十分な保持を行うことで、圧延方向での切り替え頻度を高めることが可能となる。上記温度域での保持中に、インヒビターを含む鋼中析出物の形態(例えば、配列及び形状)が変化することに起因して、圧延方向での切り替え頻度が高まると考えられる。
 仕上げ焼鈍に供される鋼板は、熱間圧延および冷間圧延を経ているので、鋼中の析出物(特にMnS)の配列及び形状は、鋼板面内で異方性を有し、圧延方向に偏向する傾向を有すると考えられる。詳細は不明であるが、上記の温度域での保持は、このような析出物の形態の圧延方向への偏向程度を変化させ、二次再結晶粒の成長時に亜粒界が鋼板面内のどの方向に延伸しやすいかに影響を及ぼしていると考えられる。具体的には、1000~1050℃という比較的高温で鋼板を保持すると、上記の圧延方向への偏向が消失し、このため亜粒界が圧延方向に延伸する割合が低下して圧延直角方向に延伸する傾向が強くなる。その結果として、圧延方向で計測する亜粒界の頻度が高くなると考えられる。
 なお、Nb群元素の合計含有量が0.0030~0.030%の場合は、亜粒界の存在頻度自体が高いため、条件(E-1)の保持時間が短くても本実施形態の効果を得ることが可能である。
 上記した条件(E-1)を含む製造方法によって、亜結晶粒の圧延方向の粒径を、二次再結晶粒の圧延方向の粒径よりも小さく制御できる。具体的には、上記した条件(E-1)を合わせて制御することによって、第2実施形態として記述したように、方向性電磁鋼板にて、粒径RAと粒径RBとが、1.15≦RB÷RAを満たすように制御できる。
 また、本実施形態に係る製造方法では、仕上げ焼鈍工程で、スラブの化学組成のNb、V、Mo、Ta、およびWの合計含有量が0.0030~0.030%でないとき、加熱過程にて、950~1000℃での保持時間を200~1500分とすることが好ましい。
 同様に、本実施形態に係る製造方法では、仕上げ焼鈍工程で、スラブの化学組成のNb、V、Mo、Ta、およびWの合計含有量が0.0030~0.030%であるとき、加熱過程にて、950~1000℃での保持時間を100~1500分とすることが好ましい。
 以下では、上記の製造条件を、条件(E-2)とする。
(E-2)仕上げ焼鈍の加熱過程にて、950~1000℃の温度域での保持時間(総滞留時間)をTE2としたとき、
  Nb群元素の合計含有量が0.0030~0.030%の場合、
   TE2:100分以上
  Nb群元素の合計含有量が上記範囲外の場合、
   TE2:200分以上
 Nb群元素の合計含有量が0.0030~0.030%の場合、TE2は、好ましくは、150分以上であることが好ましく、300分以上であることがさらに好ましく、1500分以下であることが好ましく、900分以下であることがさらに好ましい。
 Nb群元素の合計含有量が上記範囲外の場合、TE2は、好ましくは、300分以上であることが好ましく、600分以上であることがさらに好ましく、1500分以下であることが好ましく、900分以下であることがさらに好ましい。
 条件(E-2)は、切り替えが起きている亜粒界の鋼板面内の延伸方向を制御する因子となる。950~1000℃で、十分な保持を行うことで、圧延直角方向での切り替え頻度を高めることが可能となる。上記温度域での保持中に、インヒビターを含む鋼中析出物の形態(例えば、配列及び形状)が変化することに起因して、圧延直角方向での切り替え頻度が高まると考えられる。
 仕上げ焼鈍に供される鋼板は、熱間圧延および冷間圧延を経ているので、鋼中の析出物(特にMnS)の配列及び形状は、鋼板面内で異方性を有し、圧延方向に偏向する傾向を有すると考えられる。詳細は不明であるが、上記の温度域での保持は、このような析出物の形態の圧延方向への偏向程度を変化させ、二次再結晶粒の成長時に亜粒界が鋼板面内のどの方向に延伸しやすいかに影響を及ぼしていると考えられる。具体的には、950~1000℃という比較的低温で鋼板を保持すると、鋼中で析出物の形態の圧延方向への偏向が増長し、このため亜粒界が圧延直角方向に延伸する割合が低下して圧延方向に延伸する傾向が強くなる。その結果として、圧延直角方向で計測する亜粒界の頻度が高くなるものと考えられる。
 なお、Nb群元素の合計含有量が0.0030~0.030%の場合は、亜粒界の存在頻度自体が高いため、条件(E-2)の保持時間が短くても本実施形態の効果を得ることが可能である。
 上記した条件(E-2)を含む製造方法によって、亜結晶粒の圧延直角方向の粒径を、二次再結晶粒の圧延直角方向の粒径よりも小さく制御できる。具体的には、上記した条件(E-2)を合わせて制御することによって、第3実施形態として記述したように、方向性電磁鋼板にて、粒径RAと粒径RBとが、1.15≦RB÷RAを満たすように制御できる。
 また、本実施形態に係る製造方法では、仕上げ焼鈍の加熱過程にて、鋼板中の一次再結晶領域と二次再結晶領域との境界部位に0.5℃/cm超の温度勾配を与えながら二次再結晶を生じさせることが好ましい。例えば、仕上げ焼鈍の加熱過程の800℃から1150℃の温度範囲内で二次再結晶粒が成長中に上記の温度勾配を鋼板に与えることが好ましい。
 また、上記温度勾配を与える方向が圧延直角方向Cであることが好ましい。
 仕上げ焼鈍工程は、亜結晶粒の形状に面内異方性を付与する工程として有効に活用できる。例えば、箱型の焼鈍炉を用い、コイル状の鋼板を炉内に設置して加熱する際に、コイルの外部と内部とに十分な温度差が生じるように、加熱装置の位置や配置、焼鈍炉内の温度分布を制御すればよい。または、誘導加熱、高周波加熱、通電加熱装置などを配置してコイルの一部のみを積極的に加熱することで、焼鈍されるコイル内に温度分布を形成してもよい。
 温度勾配を付与する方法は、特に限定されず、公知の方法を適用すれば良い。鋼板に温度勾配を付与すれば、早期に二次再結晶開始状態に到達したコイル内の部位から尖鋭な方位を持つ二次再結晶粒が生成し、この二次再結晶粒が温度勾配に起因して異方性を示して成長する。例えば、二次再結晶粒をコイルの全体にわたり成長させることもできる。そのため、亜結晶粒の形状の面内異方性を好ましく制御することが可能となる。
 コイル状の鋼板を加熱する場合、コイルエッジ部が加熱されやすいことから、幅方向(鋼板の板幅方向)の一端側から他端側に向けて温度勾配を付与して二次再結晶粒を成長させることが好ましい。
 なお、Goss方位へ制御して目的の磁気特性を得ることを考慮すれば、さらには工業的な生産性も考慮すれば、0.5℃/cm超(好ましくは0.7℃/cm以上)の温度勾配を与えながら仕上げ焼鈍を施して二次再結晶粒を成長させればよい。温度勾配を与える方向は、圧延直角方向Cであることが好ましい。温度勾配の上限は特に限定されないが、温度勾配を維持した状態で二次再結晶粒を継続的に成長させることが好ましい。鋼板の熱伝導と二次再結晶粒の成長速度とを考慮すると、一般的な製造プロセスであれば、例えば温度勾配の上限は10℃/cmであればよい。
 上記した条件の温度勾配を含む製造方法によって、亜結晶粒の圧延方向の粒径を、亜結晶粒の圧延直角方向の粒径よりも小さく制御できる。具体的には、上記した条件の温度勾配を合わせて制御することによって、第4実施形態として記述したように、方向性電磁鋼板にて、粒径RAと粒径RAとが、1.15≦RA÷RAを満たすように制御できる。
 本実施形態に係る方向性電磁鋼板の製造方法では、さらに、仕上げ焼鈍にて、以下の条件を好適に制御することにより、ずれ角αを制御してもよい。
(A’)仕上げ焼鈍の加熱過程にて、700~800℃の温度域での雰囲気についてのPHO/PHをPA’としたとき、
  PA’:0.10~1.0
(B’)仕上げ焼鈍の加熱過程にて、900~950℃の温度域での雰囲気についてのPHO/PHをPB’としたとき、
 PB’:0.020~0.10
(D)仕上げ焼鈍の加熱過程にて、850~950℃の温度域での保持時間をTDとしたとき、
  TD:120~600分
 なお、Nb群元素の合計含有量が0.0030~0.030%の場合は、条件(A’)、(B’)のうちの少なくとも一つ、かつ条件(D)を満足すればよい。
 Nb群元素の合計含有量が0.0030~0.030%でない場合は、条件(A’)、(B’)、(D)の3つを満足すればよい。
 条件(A’)および(B’)に関して、Nb群元素を上記範囲で含有する場合、Nb群元素が持つ回復再結晶抑制効果のため、「低温域での二次再結晶の開始」と「高温域までの二次再結晶の継続」の二つ要因が強く作用する。その結果、本実施形態の効果を得るための制御条件が緩和する。
 PA’は、0.30以上であることが好ましく、0.60以下であることが好ましい。
 PB’は、0.040以上であることが好ましく、0.070以下であることが好ましい。
 TDは、180分以上であることが好ましく、240分以上であることがより好ましく、480分以下であることが好ましく、360分以下であることがより好ましい。
 上記(A’)、(B’)、(D)の限定理由について説明する。なお、以下の説明で、メカニズムについての記述は推測を含む。
 条件(A’)は、二次再結晶が起きる温度よりも十分に低い温度域での条件であり、この条件は二次再結晶と認識される現象に直接的には影響しない。ただし、この温度域は、鋼板表面に塗布された焼鈍分離剤が持ち込む水分等で鋼板表層が酸化する温度域であり、すなわち、一次被膜(中間層)の形成に影響を及ぼす温度域である。条件(A’)は、この一次被膜の形成を制御することを介して、その後の「高温域までの二次再結晶の継続」を可能とするために重要となる。この温度域を上記雰囲気とすることで、一次被膜は緻密な構造となり、二次再結晶が生じる段階にてインヒビターの構成元素(例えば、Al、Nなど)が系外に排出されるのを阻害するバリアとして作用する。これにより二次再結晶が高温まで継続し、切り替えを十分に起こすことが可能になる。
 条件(B’)は、二次再結晶の再結晶核の核生成段階に相当する温度域での条件である。この温度領域を上記雰囲気とすることで、粒成長の任意の段階にて、二次再結晶粒の成長がインヒビター分解に律速されて進行するようになる。この条件(B’)は、特に鋼板表層でのインヒビター分解を促進し、二次再結晶の核を増やすことに影響していると考えられる。例えば、鋼板表層には、二次再結晶にとって好ましい結晶方位の一次再結晶粒が多く存在していることが知られている。本実施形態では、900~950℃の低温域で鋼板表層のみのインヒビター強度を弱めておくことで、その後の昇温過程にて二次再結晶が早期に(低温で)開始し、また多数の二次再結晶粒が発生するため、二次再結晶初期の粒成長にて切り替え頻度が高まると考えられる。
 条件(D)は、条件(B’)の温度域と重なっており、二次再結晶の核生成段階に相当する温度域での条件である。
この温度域での保持は良好な二次再結晶を起こすために重要であるが、保持時間が長くなると、一次再結晶粒の成長も起きやすくなる。例えば、一次再結晶粒の粒径が大きくなると、切り替え発生の駆動力となる転位の蓄積(二次再結晶粒の成長方向前面の粒界への転位蓄積)が起きにくくなってしまう。この温度域での保持時間を600分以下とすれば、一次再結晶粒が微細なままで、二次再結晶を開始させることができるので、特定のずれ角の選択性を高めることとなる。
本実施形態では、一次再結晶粒の微細化やNb群元素の活用などにより二次再結晶開始温度を低温にシフトさせることを背景として、ずれ角αでの切り替えを多く発生させ且つ継続させる。
 本実施形態の製造方法では、Nb群元素を活用する場合、条件(A’)および(B’)の両方を満足しなくても一方を選択的に満足すれば、本実施形態の切り替え条件を満たす方向性電磁鋼板を得ることが可能である。すなわち、二次再結晶初期に特定のずれ角(本実施形態の場合はずれ角α)での切り替え頻度を高めるように制御すれば、切り替えによる方位差を保ったままで二次再結晶粒が成長し、その影響は後期まで継続して最終的な切り替え頻度も高くなる。さらにその影響は後期まで継続して新たな切り替えが発生するとしても、ずれ角αの変化が大きい切り替えが発生し、最終的なずれ角αの切り替え頻度も高くなる。もちろん、Nb群元素を活用したとしても、条件(A’)および(B’)の両方を満たすことが最適である。
 上記した本実施形態に係る方向性電磁鋼板の製造方法を基本として、二次再結晶粒をずれ角αがわずかに異なる小さな領域に分割された状態に制御すればよい。具体的には、上記方法を基本として、第5実施形態として記述したように、方向性電磁鋼板中に、境界条件BBを満足する粒界に加えて、境界条件BCを満足し且つ上記境界条件BBを満足しない粒界を作り込めばよい。
 次に、ずれ角αをさらに好ましく制御する製造条件を説明する。
 ずれ角αを制御する製造条件として、仕上げ焼鈍工程で、スラブの化学組成のNb、V、Mo、Ta、およびWの合計含有量が0.0030~0.030%でないとき、加熱過程にて、1000~1050℃での保持時間を300~1500分とすることが好ましい。
 同様に、ずれ角αを制御する製造条件として、仕上げ焼鈍工程で、スラブの化学組成のNb、V、Mo、Ta、およびWの合計含有量が0.0030~0.030%であるとき、加熱過程にて、1000~1050℃での保持時間を150~900分とすることが好ましい。
 以下では、上記の製造条件を、条件(E-1’)とする。
(E-1’)仕上げ焼鈍の加熱過程にて、1000~1050℃の温度域での保持時間(総滞留時間)をTE1’としたとき、
  Nb群元素の合計含有量が0.0030~0.030%の場合、
   TE1’:150分以上
  Nb群元素の合計含有量が上記範囲外の場合、
   TE1’:300分以上
 Nb群元素の合計含有量が0.0030~0.030%の場合、TE1’は、200分以上であることが好ましく、300分以上であることがより好ましく、900分以下であることが好ましく、600分以下であることがより好ましい。
 Nb群元素の合計含有量が上記範囲外の場合、TE1’は、360分以上であることが好ましく、600分以上であることがより好ましく、1500分以下であることが好ましく、900分以下であることがより好ましい。
 条件(E-1’)は、切り替えが起きているα粒界の鋼板面内の延伸方向を制御する因子となる。1000~1050℃で、十分な保持を行うことで、圧延方向での切り替え頻度を高めることが可能となる。上記温度域での保持中に、インヒビターを含む鋼中析出物の形態(例えば、配列及び形状)が変化することに起因して、圧延方向での切り替え頻度が高まると考えられる。
 仕上げ焼鈍に供される鋼板は、熱間圧延および冷間圧延を経ているので、鋼中の析出物(特にMnS)の配列及び形状は、鋼板面内で異方性を有し、圧延方向に偏向する傾向を有すると考えられる。詳細は不明であるが、上記の温度域での保持は、このような析出物の形態の圧延方向への偏向程度を変化させ、二次再結晶粒の成長時にα粒界が鋼板面内のどの方向に延伸しやすいかに影響を及ぼしていると考えられる。具体的には、1000~1050℃という比較的高温で鋼板を保持すると、鋼中で析出物の形態の圧延方向への偏向が消失し、このためα粒界が圧延方向に延伸する割合が低下して圧延直角方向に延伸する傾向が強くなる。その結果として、圧延方向で計測するα粒界の頻度が高くなると考えられる。
 なお、Nb群元素の合計含有量が0.0030~0.030%の場合は、α粒界の存在頻度自体が高いため、条件(E-1’)の保持時間が短くても本実施形態の効果を得ることが可能である。
 上記した条件(E-1’)を含む製造方法によって、α結晶粒の圧延方向の粒径を、二次再結晶粒の圧延方向の粒径よりも小さく制御できる。具体的には、上記した条件(E-1’)を合わせて制御することによって、第6実施形態として記述したように、方向性電磁鋼板にて、粒径RCと粒径RBとが、1.10≦RB÷RCを満たすように制御できる。
 また、ずれ角αを制御する製造条件として、仕上げ焼鈍工程で、スラブの化学組成のNb、V、Mo、Ta、およびWの合計含有量が0.0030~0.030%でないとき、加熱過程にて、950~1000℃での保持時間を300~1500分とすることが好ましい。
 同様に、ずれ角αを制御する製造条件として、仕上げ焼鈍工程で、スラブの化学組成のNb、V、Mo、Ta、およびWの合計含有量が0.0030~0.030%であるとき、加熱過程にて、950~1000℃での保持時間を150~900分とすることが好ましい。
 以下では、上記の製造条件を、条件(E-2’)とする。
(E-2’)仕上げ焼鈍の加熱過程にて、950~1000℃の温度域での保持時間(総滞留時間)をTE2’としたとき、
  Nb群元素の合計含有量が0.0030~0.030%の場合、
   TE2’:150分以上
  Nb群元素の合計含有量が上記範囲外の場合、
   TE2’:300分以上
 Nb群元素の合計含有量が0.0030~0.030%の場合、TE2’は、200分以上であることが好ましく、300分以上であることがより好ましく、900分以下であることが好ましく、600分以下であることがより好ましい。
 Nb群元素の合計含有量が上記範囲外の場合、TE2’は、360分以上であることが好ましく、600分以上であることがより好ましく、1500分以下であることが好ましく、900分以下であることがより好ましい。
 条件(E-2’)は、切り替えが起きているα粒界の鋼板面内の延伸方向を制御する因子となる。950~1000℃で、十分な保持を行うことで、圧延直角方向での切り替え頻度を高めることが可能となる。上記温度域での保持中に、インヒビターを含む鋼中析出物の形態(例えば、配列及び形状)が変化することに起因して、圧延直角方向での切り替え頻度が高まると考えられる。
 仕上げ焼鈍に供される鋼板は、熱間圧延および冷間圧延を経ているので、鋼中の析出物(特にMnS)の配列及び形状は、鋼板面内で異方性を有し、圧延方向に偏向する傾向を有すると考えられる。詳細は不明であるが、上記の温度域での保持は、このような析出物の形態の圧延方向への偏向程度を変化させ、二次再結晶粒の成長時にα粒界が鋼板面内のどの方向に延伸しやすいかに影響を及ぼしていると考えられる。具体的には、950~1000℃という比較的低温で鋼板を保持すると、鋼中で析出物の形態の圧延方向への偏向が増長し、このためα粒界が圧延直角方向に延伸する割合が低下して圧延方向に延伸する傾向が強くなる。その結果として、圧延直角方向で計測するα粒界の頻度が高くなるものと考えられる。
 なお、Nb群元素の合計含有量が0.0030~0.030%の場合は、α粒界の存在頻度自体が高いため、条件(E-2’)の保持時間が短くても本実施形態の効果を得ることが可能である。
 上記した条件(E-2’)を含む製造方法によって、α結晶粒の圧延直角方向の粒径を、二次再結晶粒の圧延直角方向の粒径よりも小さく制御できる。具体的には、上記した条件(E-2’)を合わせて制御することによって、第7実施形態として記述したように、方向性電磁鋼板にて、粒径RCと粒径RBとが、1.10≦RB÷RCを満たすように制御できる。
 また、ずれ角αを制御する製造条件として、仕上げ焼鈍の加熱過程にて、鋼板中の一次再結晶領域と二次再結晶領域との境界部位に0.5℃/cm超の温度勾配を与えながら二次再結晶を生じさせることが好ましい。例えば、仕上げ焼鈍の加熱過程の800℃から1150℃の温度範囲内で二次再結晶粒が成長中に上記の温度勾配を鋼板に与えることが好ましい。
 また、上記温度勾配を与える方向が圧延直角方向Cであることが好ましい。
 仕上げ焼鈍工程は、α結晶粒の形状に面内異方性を付与する工程として有効に活用できる。例えば、箱型の焼鈍炉を用い、コイル状の鋼板を炉内に設置して加熱する際に、コイルの外部と内部とに十分な温度差が生じるように、加熱装置の位置や配置、焼鈍炉内の温度分布を制御すればよい。または、誘導加熱、高周波加熱、通電加熱装置などを配置してコイルの一部のみを積極的に加熱することで、焼鈍されるコイル内に温度分布を形成してもよい。
 温度勾配を付与する方法は、特に限定されず、公知の方法を適用すれば良い。鋼板に温度勾配を付与すれば、早期に二次再結晶開始状態に到達したコイル内の部位から尖鋭な方位を持つ二次再結晶粒が生成し、この二次再結晶粒が温度勾配に起因して異方性を示して成長する。例えば、二次再結晶粒をコイルの全体にわたり成長させることもできる。そのため、α結晶粒の形状の面内異方性を好ましく制御することが可能となる。
 コイル状の鋼板を加熱する場合、コイルエッジ部が加熱されやすいことから、幅方向(鋼板の板幅方向)の一端側から他端側に向けて温度勾配を付与して二次再結晶粒を成長させることが好ましい。
 なお、Goss方位へ制御して目的の磁気特性を得ることを考慮すれば、さらには工業的な生産性も考慮すれば、0.5℃/cm超(好ましくは0.7℃/cm以上)の温度勾配を与えながら仕上げ焼鈍を施して二次再結晶粒を成長させればよい。温度勾配を与える方向は、圧延直角方向Cであることが好ましい。温度勾配の上限は特に限定されないが、温度勾配を維持した状態で二次再結晶粒を継続的に成長させることが好ましい。鋼板の熱伝導と二次再結晶粒の成長速度とを考慮すると、一般的な製造プロセスであれば、例えば温度勾配の上限は10℃/cmであればよい。
 上記した条件の温度勾配を含む製造方法によって、α結晶粒の圧延方向の粒径を、α結晶粒の圧延直角方向の粒径よりも小さく制御できる。具体的には、上記した条件の温度勾配を合わせて制御することによって、第8実施形態として記述したように、方向性電磁鋼板にて、粒径RCと粒径RCとが、1.15≦RC÷RCを満たすように制御できる。
 続いて、本実施形態に係る方向性電磁鋼板について、共通する好ましい製造条件を以下に説明する。
 本実施形態に係る製造方法では、仕上げ焼鈍の加熱過程にて、1050~1100℃の保持時間を300~1200分としてもよい。
 以下では、上記の製造条件を、条件(F)とする。
 (F)仕上げ焼鈍の加熱過程にて、1050~1100℃の温度域での保持時間をTFとしたとき、
  TF:300~1200分
 仕上げ焼鈍の加熱過程で1050℃までに二次再結晶が完了していない場合には、1050~1100℃の加熱速度を低く(徐加熱)することで、具体的には、TFを300~1200分とすることで、二次再結晶が高温まで継続して磁束密度が好ましく高まる。例えば、TFは、400分以上であることが好ましく、700分以下であることが好ましい。なお、仕上げ焼鈍の加熱過程で1050℃までに二次再結晶が完了している場合には、条件(F)を制御しなくてもよい。例えば、1050℃までに二次再結晶が完了している場合には、1050℃以上の温度域にて従来よりも昇温速度を速くして仕上げ焼鈍時間を短縮すれば、低コスト化が図れる。
 本実施形態に係る製造方法では、仕上げ焼鈍工程にて、上記のように条件(A)~(C-2)の4つを基本として制御し、必要に応じて、条件(A’)、条件(B’)、条件(D)、条件(E-1)、条件(E-1’)、条件(E-2)、条件(E-2’)、および/または温度勾配の条件を組み合わせればよい。例えば、上記条件のうちの複数の条件を組み合わせてもよい。また、必要に応じて条件(F)を組み合わせてもよい。
 本実施形態に係る方向性電磁鋼板の製造方法は、上記した各工程を有する。ただ、本実施形態に係る製造方法は、必要に応じて、仕上げ焼鈍工程後に絶縁被膜形成工程をさらに有してもよい。
 (絶縁被膜形成工程)
 絶縁被膜形成工程は、仕上げ焼鈍工程後の方向性電磁鋼板(仕上げ焼鈍鋼板)に絶縁被膜を形成する工程である。仕上げ焼鈍後の鋼板に、りん酸塩とコロイド状シリカとを主体とする絶縁被膜や、アルミナゾルと硼酸とを主体とする絶縁被膜を形成すればよい。
 例えば、仕上げ焼鈍後の鋼板に、りん酸あるいはりん酸塩、無水クロム酸あるいはクロム酸塩およびコロイド状シリカを含むコーティング溶液を塗布して焼き付けて(例えば、350℃~1150℃で5~300秒間)、絶縁被膜を形成すればよい。被膜形成時には、必要に応じて、雰囲気の酸化度や露点などを制御すればよい。
 または、仕上げ焼鈍後の鋼板に、アルミナゾルおよびホウ酸を含むコーティング溶液を塗布して焼き付けて(例えば、750℃~1350℃で10~100秒間)、絶縁被膜を形成すればよい。被膜形成時には、必要に応じて、雰囲気の酸化度や露点などを制御すればよい。
 また、本実施形態に係る製造方法は、必要に応じて、磁区制御工程をさらに有してもよい。
(磁区制御工程)
 磁区制御工程は、方向性電磁鋼板の磁区を細分化する処理を行う工程である。例えば、レーザー、プラズマ、機械的方法、エッチングなどの公知の手法により、方向性電磁鋼板に局所的な微小歪または局所的な溝を形成すればよい。このような磁区細分化処理は、本実施形態の効果を損ねない。
 なお、上記の局所的な微小歪及び局所的な溝は、本実施形態で規定する結晶方位及び粒径の測定の際に異常点となる。このため、結晶方位の測定では、測定点が局所的な微小歪及び局所的な溝に重ならないようにする。また、粒径の測定では、局所的な微小歪及び局所的な溝を粒界とは認識しない。
(切り替え発生のメカニズムについて)
 本実施形態で規定する切り替えは、二次再結晶粒が成長する過程で起きる。この現象は、素材(スラブ)の化学組成、二次再結晶粒の成長に至るまでのインヒビターの造り込み、一次再結晶粒の粒径の制御など、多岐の制御条件に影響される。このため、切り替えは、単に一つの条件を制御すればよいわけではなく、複数の制御条件を複合的に且つ不可分に制御する必要がある。
 切り替えは、隣接する結晶粒の間の粒界エネルギーおよび表面エネルギーに起因して生じると考えられる。
 上記の粒界エネルギーについては、角度差を有する2つの結晶粒が隣接していると、その粒界エネルギーが大きくなるため、二次再結晶粒が成長する過程で粒界エネルギーを低減するように、つまり特定の同一方位に近づくように切り替えが起きることが考えられる。
 また、上記の表面エネルギーについては、対称性がそれなりに高い{110}面から方位がわずかにでもずれると、表面エネルギーを増大させることになるため、二次再結晶粒が成長する過程で表面エネルギーを低減するように、つまり{110}面方位に近づきずれ角が小さくなるように切り替えが起きることが考えられる。
 ただし、これらのエネルギー差は、一般的な状況では二次再結晶粒が成長する過程で切り替えを起こしてまで方位変化を生じさせるようなエネルギー差ではない。このため、一般的な状況では角度差またはずれ角を有したままで二次再結晶粒が成長する。例えば、一般的な状況で二次再結晶粒が成長する場合、切り替えは起きず、ずれ角は二次再結晶粒の発生時点での方位ばらつきに起因した角度に対応する。また、最終的なずれ角θの標準偏差σ(θ)も、二次再結晶粒の発生時点での方位ばらつきに起因した値に相当する。すなわち、ずれ角は、二次再結晶粒の成長過程で殆ど変化しない。
 一方、本実施形態に係る方向性電磁鋼板のように、二次再結晶をより低温から開始させ、かつ二次再結晶粒の成長を高温まで長時間に亘って継続させる場合、切り替えが顕著に起きるようになる。この理由は明確ではないが、二次再結晶粒が成長する過程で、その成長方向の前面部つまり一次再結晶粒に隣接する領域に、比較的高密度で幾何学的な方位のずれを解消するための転位が残存することが考えられる。この残存する転位が、本実施形態の切り替えおよび亜粒界に対応すると考えられる。
 本実施形態では、二次再結晶が従来よりも低温で開始するため、転位の消滅が遅れ、成長する二次再結晶粒の成長方向前面の粒界に転位が掃き溜められるような形で蓄積して転位密度が増す。このため成長する二次再結晶粒の前面で原子の再配列が起き易くなり、その結果、隣接する二次再結晶粒との角度差を小さくするように、すなわち粒界エネルギーを小さくするように、または表面エネルギーを小さくするように切り替えを起こすものと考えられる。
 この切り替えは、亜粒界を粒内に残すことにより起こることとなる。
なお、切り替えが起きる前に、別の二次再結晶粒が発生して、成長中の二次再結晶粒がこの生成した二次再結晶粒に到達すれば、粒成長が止まるため、切り替え自体が起きなくなる。このため、本実施形態では、二次再結晶粒の成長段階で、新たな二次再結晶粒の発生頻度を低くし、インヒビター律速で既存の二次再結晶のみが成長を継続に制御することが有利となる。このため、本実施形態では、二次再結晶開始温度を好ましく低温シフトさせるインヒビターと、比較的高温まで安定なインヒビターとを併用することが好ましい。
 次に、実施例により本発明の一態様の効果を更に具体的に詳細に説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
(実施例1)
 表A1に示す化学組成を有するスラブを素材として、表A2に示す化学組成を有する方向性電磁鋼板(珪素鋼板)を製造した。なお、これらの化学組成は、上記の方法に基づいて測定した。表A1および表A2で、「-」は含有量を意識した制御および製造をしておらず、含有量の測定を実施していないことを示す。また、表A1および表A2で、「<」を付記する数値は、含有量を意識した制御および製造を実施して含有量の測定を実施したが、含有量として十分な信頼性を有する測定値が得られなかったこと(測定結果が検出限界以下であること)を示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 方向性電磁鋼板は、表A3~表A7に示す製造条件に基づいて製造した。具体的には、スラブを鋳造し、熱間圧延、熱延板焼鈍、冷間圧延、および脱炭焼鈍を実施し、一部については、脱炭焼鈍後の鋼板に、水素-窒素-アンモニアの混合雰囲気で窒化処理(窒化焼鈍)を施した。
 さらに、MgOを主成分とする焼鈍分離剤を鋼板に塗布し、仕上げ焼鈍を施した。仕上げ焼鈍の最終過程では、鋼板を水素雰囲気にて1200℃で20時間保持(純化焼鈍)して、自然冷却した。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 製造した方向性電磁鋼板(仕上げ焼鈍鋼板)の表面に形成された一次被膜(中間層)の上に、りん酸塩とコロイド状シリカを主体としクロムを含有する絶縁被膜形成用のコーティング溶液を塗布し、水素:窒素が75体積%:25体積%の雰囲気で加熱して保持し、冷却して、絶縁被膜を形成した。
 製造した方向性電磁鋼板は、切断方向が板厚方向と平行な切断面で見たとき、方向性電磁鋼板(珪素鋼板)上に接して配された中間層と、この中間層上に接して配された絶縁被膜とを有していた。なお、中間層は平均厚さ2μmのフォルステライト被膜であり、絶縁被膜は平均厚さ1μmのりん酸塩とコロイド状シリカとを主体とする絶縁被膜であった。
 得られた方向性電磁鋼板について、各種特性を評価した。評価結果を表A8~表A12に示す。
(1)方向性電磁鋼板の結晶方位
 方向性電磁鋼板の結晶方位を上記の方法で測定した。この測定した各測定点の結晶方位からずれ角を特定し、このずれ角に基づいて隣接する2つの測定点間に存在する粒界を特定した。なお、間隔が1mmである2つの測定点で境界条件を判定したとき、「境界条件BAを満足する境界数」を「境界条件BBを満足する境界数」で割った値が1.15以上である場合に、「境界条件BAを満足し且つ境界条件BBを満足しない粒界」が存在すると判断し、且つ表中で「切り替え粒界」が存在すると表示した。なお、「境界条件BAを満足する境界数」とは、上記した表1のケースAおよび/またはケースBの粒界に対応し、「境界条件BBを満足する境界数」とは、ケースAの粒界に対応する。また、特定した粒界に基づいて平均結晶粒径を算出した。加えて、ずれ角θの絶対値の標準偏差σ(θ)を上記の方法で測定した。
(2)方向性電磁鋼板の磁気特性
 方向性電磁鋼板の磁気特性は、JIS C 2556:2015に規定された単板磁気特性試験法(SST:Single Sheet Tester)に基づいて測定した。
 磁気特性として、交流周波数:50Hz、励磁磁束密度:1.7Tの条件で、鋼板の単位重量(1kg)あたりの電力損失として定義される鉄損W17/50(W/kg)を測定した。また、800A/mで励磁したときの鋼板の圧延方向の磁束密度B(T)を測定した。
 さらに、磁気特性として、交流周波数:50Hz、励磁磁束密度:1.7Tの条件下で鋼板に生じる磁歪λp-p@1.7Tを測定した。具体的には、上記の励磁条件下での試験片(鋼板)の最大長さLmaxおよび最小長さLmin、並び磁束密度0Tでの試験片の長さLを用いて、λp-p@1.7T=(Lmax-Lmin)÷Lにより算出した。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 方向性電磁鋼板の特性は、化学組成及び製造法により大きく変化する。このため、各特性の評価結果は、化学組成及び製造方法を妥当な程度に限定した鋼板の範囲内で比較検討する必要がある。そのため、以下では、いくつかの特徴のある化学組成および製造法による方向性電磁鋼板ごとに、各特性の評価結果を説明する。
 なお、本実施例1では、磁歪(λp-p@1.7T)により技術的効果を説明するが、単に磁歪の数値の大小を比較しても効果の優劣を理解しにくい。例えば、磁歪は、磁束密度と比較的強い相関性を持ち、磁束密度が高くなれば磁歪も低くなる傾向がある。そのため、たとえ磁歪の絶対値が低くても、その評価材の磁束密度が十分に高ければ、磁歪の低減効果が得られているかどうかを判断することが難しい。つまり、磁歪の低減効果は磁束密度との相関性を考慮して判断する必要がある。本実施例では、磁歪評価の指標として、以下の△λp-pを使用する。
 △λp-p=λp-p@1.7T-(11.68-5.75×B
 なお、「11.68-5.75×B」は、「Bから推定されるλp-p@1.7Tの値」に相当する。この「Bから推定されるλp-p@1.7Tの値」は、本実施例のうち比較例のλp-p@1.7TおよびB値に基づき、且つλp-p@1.7T=a-b×Bの関係を想定し、重回帰分析により係数aおよびbを決定した。例えば、供試材のBが1.9Tであれば、λp-p@1.7Tが0.755(=11.68-5.75×1.9)程度であると推定できる。
 なお、表A1~表A12に示す実施例は、化学組成及び製造条件が特定条件下の鋼板についての試験結果である。そのため、上記「11.68-5.75×B」の係数には、特に物理的な意味はなく、本実施例の条件下で適用できる単なる実験定数に過ぎない。そのため、本発明は、上記の指標に限定されない。ただ、本実施例に限れば、Bとλp-p@1.7Tとの相関性は比較的高い。そのため、上記した磁歪評価の指標である△λp-pによって、本発明効果を判断できる。
 本実施例では、△λp-pが-0.0230以下であるとき(-0.0230を基準としてマイナスに値が大きくなるとき)、磁歪特性が良好であると判断した。
(低温スラブ加熱プロセスによって製造した実施例)
 No.1001~1064は、スラブ加熱温度を低くして一次再結晶後の窒化によって二次再結晶の主要なインヒビターを形成するプロセスで製造した実施例である。
(No.1001~1023の実施例)
 No.1001~1023は、Nbを含有しない鋼種を用いて、仕上げ焼鈍時に主にPA、PB、PC1、PC2、およびTE1の条件を変化させた実施例である。
 No.1001~1023のうち、本発明例は、境界条件BAを満足し且つ境界条件BBを満足しない粒界が存在しており、いずれも優れた磁歪を示した。また、本発明例では、許容できる鉄損値が得られた。一方、比較例は、二次再結晶粒内で結晶方位が微小に且つ連続的に変位したが、境界条件BAを満足し且つ境界条件BBを満足しない粒界が十分に存在しておらず、好ましい磁歪が得られなかった。
 なお、No.1003は、窒化後のN量を300ppmとしてインヒビター強度を高めた比較例である。一般的に、窒化量を増やせば生産性が低下する要因となるが、窒化量を増やすことでインヒビター強度が高くなりBが上昇する。No.1003でも、Bが高い値となっている。ただ、No.1003では、仕上げ焼鈍条件が好ましくなかったため、△λp-pの値が不十分となった。つまり、No.1003では、二次再結晶時に切り替えが起きず、その結果、磁歪が改善しなかった。一方、No.1010は、窒化後のN量を160ppmとした本発明例である。No.1010では、△λp-pが好ましく低い値となった。つまり、No.1010では、二次再結晶時に切り替えが生じて、その結果、磁歪が改善した。
 また、No.1022および1023は、TFを高めて二次再結晶を高温まで継続させた実施例である。No.1022および1023では、Bが高くなっている。ただ、上記のうち、No.1022では、仕上げ焼鈍条件が好ましくなかったため、No.1003と同様に磁歪が改善しなかった。一方、No.1023では、Bが高い値となったことに加えて、仕上げ焼鈍条件が好ましかったため、△λp-pが好ましく低い値となった。
(No.1024~1034の実施例)
 No.1024~1034は、Nbを0.002%含有する鋼種を用いて、仕上げ焼鈍時に主にPAおよびTE1の条件を変化させた実施例である。
 No.1024~1034のうち、本発明例は、境界条件BAを満足し且つ境界条件BBを満足しない粒界が存在しており、いずれも優れた磁歪を示した。また、本発明例では、許容できる鉄損値が得られた。一方、比較例は、二次再結晶粒内で結晶方位が微小に且つ連続的に変位したが、境界条件BAを満足し且つ境界条件BBを満足しない粒界が十分に存在しておらず、好ましい磁歪が得られなかった。
(No.1035~1047の実施例)
 No.1035~1047は、Nb含有量を0.006%とした実施例である。
 No.1035~1047のうち、本発明例は、境界条件BAを満足し且つ境界条件BBを満足しない粒界が存在しており、いずれも優れた磁歪を示した。また、本発明例では、許容できる鉄損値が得られた。一方、比較例は、二次再結晶粒内で結晶方位が微小に且つ連続的に変位したが、境界条件BAを満足し且つ境界条件BBを満足しない粒界が十分に存在しておらず、好ましい磁歪が得られなかった。
 なお、No.1035~1047では、上記したNb含有量が低いNo.1001~1034よりも、△λp-pが好ましく小さな値となっている。
(No.1048~1055の実施例)
 No.1048~1055は、TE1を200分未満の短時間とし、特にNb含有量の影響を確認した実施例である。
 No.1048~1055のうち、本発明例は、境界条件BAを満足し且つ境界条件BBを満足しない粒界が存在しており、いずれも優れた磁歪を示した。また、本発明例では、許容できる鉄損値が得られた。一方、比較例は、二次再結晶粒内で結晶方位が微小に且つ連続的に変位したが、境界条件BAを満足し且つ境界条件BBを満足しない粒界が十分に存在しておらず、好ましい磁歪が得られなかった。
 なお、No.1048~1055に示されるように、Nbが好ましく含有されれば、たとえTE1が短時間でも、二次再結晶時に切り替えが生じて磁歪が改善する。
(No.1056~1064の実施例)
 No.1056~1064は、TE1を200分未満の短時間とし、Nb群元素の含有量の影響を確認した実施例である。
 No.1056~1064のうち、本発明例は、境界条件BAを満足し且つ境界条件BBを満足しない粒界が存在しており、いずれも優れた磁歪を示した。また、本発明例では、許容できる鉄損値が得られた。一方、比較例は、二次再結晶粒内で結晶方位が微小に且つ連続的に変位したが、境界条件BAを満足し且つ境界条件BBを満足しない粒界が十分に存在しておらず、好ましい磁歪が得られなかった。
 なお、No.1056~1064に示されるように、Nb以外のNb群元素が好ましく含有されれば、たとえTE1が短時間でも、二次再結晶時に切り替えが生じて磁歪が改善する。
(高温スラブ加熱プロセスによって製造した実施例)
 No.1065~1100は、スラブ加熱温度を高くしてスラブ加熱中に十分に溶解したMnSを後工程で再析出させて主要なインヒビターとして活用するプロセスで製造した実施例である。
 No.1065~1100のうち、本発明例は、境界条件BAを満足し且つ境界条件BBを満足しない粒界が存在しており、いずれも優れた磁歪を示した。また、本発明例では、許容できる鉄損値が得られた。一方、比較例は、二次再結晶粒内で結晶方位が微小に且つ連続的に変位したが、境界条件BAを満足し且つ境界条件BBを満足しない粒界が十分に存在しておらず、好ましい磁歪が得られなかった。
 なお、No.1065~1100のうち、No.1083~1100は、スラブ時点でBiを含有させてBを高めた実施例である。
 No.1065~1100に示されるように、高温スラブ加熱プロセスであっても、仕上げ焼鈍条件を適切に制御することで、二次再結晶時に切り替えが生じて磁歪が改善する。また、低温スラブ加熱プロセスと同様に、高温スラブ加熱プロセスでも、Nbを含有するスラブを用いて仕上げ焼鈍条件を制御すれば、好ましく磁歪が改善する。
(実施例2)
 表B1に示す化学組成を有するスラブを素材として、表B2に示す化学組成を有する方向性電磁鋼板を製造とした。なお、化学組成の測定方法や、表中での記述方法は上記の実施例1と同じである。
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
 方向性電磁鋼板は、表B3~表B7に示す製造条件に基づいて製造した。表に示す以外の製造条件は上記の実施例1と同じである。
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
 製造した方向性電磁鋼板(仕上げ焼鈍鋼板)、上記の実施例1と同じ絶縁被膜を形成した。
 製造した方向性電磁鋼板は、切断方向が板厚方向と平行な切断面で見たとき、方向性電磁鋼板(珪素鋼板)上に接して配された中間層と、この中間層上に接して配された絶縁被膜とを有していた。なお、中間層は平均厚さ1.5μmのフォルステライト被膜であり、絶縁被膜は平均厚さ2μmのりん酸塩とコロイド状シリカとを主体とする絶縁被膜であった。
 得られた方向性電磁鋼板について、各種特性を評価した。なお、評価方法は上記の実施例1と同じである。評価結果を表B8~表B12に示す。
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
 上記の実施例1と同様に、以下では、いくつかの特徴のある化学組成および製造法による方向性電磁鋼板ごとに、各特性の評価結果を説明する。
 なお、本実施例2では、磁歪評価の指標として、以下の△λp-pを使用する。この磁歪評価の指標を用いる理由は、実施例1と同じである。
 △λp-p=λp-p@1.7T-(12.16-6.00×B
 なお、「12.16-6.00×B」は、本実施例のうち比較例のλp-p@1.7TおよびBの値に基づき、且つλp-p@1.7T=a-b×Bの関係を想定し、重回帰分析により係数aおよびbを決定した。例えば、供試材のBが1.9Tであれば、λp-p@1.7Tが0.760(=12.16-6.00×1.9)程度であると推定できる。上記の実施例1と同様に、本発明は、この指標に限定されない。
(低温スラブ加熱プロセスによって製造した実施例)
 No.2001~2064は、スラブ加熱温度を低くして一次再結晶後の窒化によって二次再結晶の主要なインヒビターを形成するプロセスで製造した実施例である。
(No.2001~2023の実施例)
 No.2001~2023は、Nbを含有しない鋼種を用いて、仕上げ焼鈍時に主にPA、PB、PC1、PC2、およびTE2の条件変化させた実施例である。
 No.2001~2023では、△λp-pが-0.0210以下であるとき(-0.0210を基準としてマイナスに値が大きくなるとき)、磁歪特性が良好であると判断した。
 No.2001~2023のうち、本発明例は、境界条件BAを満足し且つ境界条件BBを満足しない粒界が存在しており、いずれも優れた磁歪を示した。また、本発明例では、許容できる鉄損値が得られた。一方、比較例は、二次再結晶粒内で結晶方位が微小に且つ連続的に変位したが、境界条件BAを満足し且つ境界条件BBを満足しない粒界が十分に存在しておらず、好ましい磁歪が得られなかった。
 なお、No.2003は、窒化後のN量を300ppmとしてインヒビター強度を高めた比較例である。No.2003では、Bが高い値となっているが、仕上げ焼鈍条件が好ましくなかったため、△λp-pの値が不十分となった。一方、No.2010は、窒化後のN量を160ppmとした本発明例である。No.2010では、△λp-pが好ましく低い値となった。つまり、No.2010では、二次再結晶時に切り替えが生じて、その結果、磁歪が改善した。
 また、No.2022および2023は、TFを高めて二次再結晶を高温まで継続させた実施例である。No.2022および2023では、Bが高くなっている。ただ、上記のうち、No.2022では、仕上げ焼鈍条件が好ましくなかったため、No.2003と同様に磁歪が改善しなかった。一方、No.2023では、Bが高い値となったことに加えて、仕上げ焼鈍条件が好ましかったため、△λp-pが好ましく低い値となった。
(No.2024~2034の実施例)
 No.2024~2034は、Nbを0.001%含有する鋼種を用いて、仕上げ焼鈍時に主にPAおよびTE2の条件を変化させた実施例である。
 No.2024~2034では、△λp-pが-0.010以下であるとき(-0.010を基準としてマイナスに値が大きくなるとき)、磁歪特性が良好であると判断した。
 No.2024~2034のうち、本発明例は、境界条件BAを満足し且つ境界条件BBを満足しない粒界が存在しており、いずれも優れた磁歪を示した。また、本発明例では、許容できる鉄損値が得られた。一方、比較例は、二次再結晶粒内で結晶方位が微小に且つ連続的に変位したが、境界条件BAを満足し且つ境界条件BBを満足しない粒界が十分に存在しておらず、好ましい磁歪が得られなかった。
(No.2035~2047の実施例)
 No.2035~2047は、Nb含有量を0.007%とした実施例である。
 No.2035~2047では、△λp-pが-0.010以下であるとき(-0.010を基準としてマイナスに値が大きくなるとき)、磁歪特性が良好であると判断した。
 No.2035~2047のうち、本発明例は、境界条件BAを満足し且つ境界条件BBを満足しない粒界が存在しており、いずれも優れた磁歪を示した。また、本発明例では、許容できる鉄損値が得られた。一方、比較例は、二次再結晶粒内で結晶方位が微小に且つ連続的に変位したが、境界条件BAを満足し且つ境界条件BBを満足しない粒界が十分に存在しておらず、好ましい磁歪が得られなかった。
 なお、No.2035~2047では、上記したNb含有量が低いNo.2001~2034よりも、△λp-pが好ましく小さな値となっている。
(No.2048~2055の実施例)
 No.2048~2055は、TE2を200分未満の短時間とし、特にNb含有量の影響を確認した実施例である。
 No.2048~2055では、△λp-pが-0.010以下であるとき(-0.010を基準としてマイナスに値が大きくなるとき)、磁歪特性が良好であると判断した。
 No.2048~2055のうち、本発明例は、境界条件BAを満足し且つ境界条件BBを満足しない粒界が存在しており、いずれも優れた磁歪を示した。また、本発明例では、許容できる鉄損値が得られた。一方、比較例は、二次再結晶粒内で結晶方位が微小に且つ連続的に変位したが、境界条件BAを満足し且つ境界条件BBを満足しない粒界が十分に存在しておらず、好ましい磁歪が得られなかった。
 なお、No.2048~2055に示されるように、Nbが好ましく含有されれば、たとえTE2が短時間でも、二次再結晶時に切り替えが生じて磁歪が改善する。
(No.2056~2064の実施例)
 No.2056~2064は、TE2を200分未満の短時間とし、Nb群元素の含有量の影響を確認した実施例である。
 No.2056~2064では、△λp-pが-0.010以下であるとき(-0.010を基準としてマイナスに値が大きくなるとき)、磁歪特性が良好であると判断した。
 No.2056~2064のうち、本発明例は、境界条件BAを満足し且つ境界条件BBを満足しない粒界が存在しており、いずれも優れた磁歪を示した。また、本発明例では、許容できる鉄損値が得られた。一方、比較例は、二次再結晶粒内で結晶方位が微小に且つ連続的に変位したが、境界条件BAを満足し且つ境界条件BBを満足しない粒界が十分に存在しておらず、好ましい磁歪が得られなかった。
 なお、No.2056~2064に示されるように、Nb以外のNb群元素が好ましく含有されれば、たとえTE2が短時間でも、二次再結晶時に切り替えが生じて磁歪が改善する。
(高温スラブ加熱プロセスによって製造した実施例)
 No.2065~2100は、スラブ加熱温度を高くしてスラブ加熱中に十分に溶解したMnSを後工程で再析出させて主要なインヒビターとして活用するプロセスで製造した実施例である。
 No.2065~2100では、△λp-pが-0.0210以下であるとき(-0.0210を基準としてマイナスに値が大きくなるとき)、磁歪特性が良好であると判断した。
 No.2065~2100のうち、本発明例は、境界条件BAを満足し且つ境界条件BBを満足しない粒界が存在しており、いずれも優れた磁歪を示した。また、本発明例では、許容できる鉄損値が得られた。一方、比較例は、二次再結晶粒内で結晶方位が微小に且つ連続的に変位したが、境界条件BAを満足し且つ境界条件BBを満足しない粒界が十分に存在しておらず、好ましい磁歪が得られなかった。
 なお、No.2065~2100のうち、No.2083~2100は、スラブ時点でBiを含有させてBを高めた実施例である。
 No.2065~2100に示されるように、高温スラブ加熱プロセスであっても、仕上げ焼鈍条件を適切に制御することで、二次再結晶時に切り替えが生じて磁歪が改善する。また、低温スラブ加熱プロセスと同様に、高温スラブ加熱プロセスでも、Nbを含有するスラブを用いて仕上げ焼鈍条件を制御すれば、好ましく磁歪が改善する。
(実施例3)
 表C1に示す化学組成を有するスラブを素材として、表C2に示す化学組成を有する方向性電磁鋼板を製造とした。なお、化学組成の測定方法や、表中での記述方法は上記の実施例1と同じである。
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
 方向性電磁鋼板は、表C3~表C6に示す製造条件に基づいて製造した。なお、仕上げ焼鈍では、切り替えの発生方向の異方性を制御するため、鋼板の圧延直角方向に温度勾配をつけて熱処理を行った。この温度勾配および表に示す以外の製造条件は上記の実施例1と同じである。
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
 製造した方向性電磁鋼板(仕上げ焼鈍鋼板)の表面に、上記の実施例1と同じ絶縁被膜を形成した。
 製造した方向性電磁鋼板は、切断方向が板厚方向と平行な切断面で見たとき、方向性電磁鋼板(珪素鋼板)上に接して配された中間層と、この中間層上に接して配された絶縁被膜とを有していた。なお、中間層は平均厚さ3μmのフォルステライト被膜であり、絶縁被膜は平均厚さ3μmのりん酸塩とコロイド状シリカとを主体とする絶縁被膜であった。
 得られた方向性電磁鋼板について、各種特性を評価した。なお、評価方法は上記の実施例1と同じである。評価結果を表C7~表C10に示す。
 ほとんどの方向性電磁鋼板は、温度勾配の方向に結晶粒が延伸し、亜結晶粒の結晶粒径もこの方向が大きくなった。すなわち、圧延直角方向に結晶粒が延伸していた。ただし、温度勾配が小さかった一部の方向性電磁鋼板では、亜結晶粒について圧延直角方向の粒径が圧延方向の粒径より小さくなっていた。圧延直角方向の粒径が圧延方向の粒径より小さい場合、表中の「温度勾配方向が不一致」の欄に「*」で示した。
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
 上記の実施例1と同様に、以下では、いくつかの特徴のある化学組成および製造法による方向性電磁鋼板ごとに、各特性の評価結果を説明する。
(低温スラブ加熱プロセスによって製造した実施例)
 No.3001~3070は、スラブ加熱温度を低くして一次再結晶後の窒化によって二次再結晶の主要なインヒビターを形成するプロセスで製造した実施例である。
(No.3001~3035の実施例)
 No.3001~3035は、Nbを含有しない鋼種を用いて、仕上げ焼鈍時に主にPA、PB、PC1、PC2、および温度勾配の条件を変化させた実施例である。
 No.3001~3035では、λp-p@1.7Tが0.420以下であるとき、磁歪特性が良好であると判断した。
 No.3001~3035のうち、本発明例は、境界条件BAを満足し且つ境界条件BBを満足しない粒界が存在しており、いずれも優れた磁歪を示した。また、本発明例では、許容できる鉄損値が得られた。一方、比較例は、二次再結晶粒内で結晶方位が微小に且つ連続的に変位したが、境界条件BAを満足し且つ境界条件BBを満足しない粒界が十分に存在しておらず、好ましい磁歪が得られなかった。
(No.3036~3070の実施例)
 No.3036~3070は、スラブ時点でNb群元素を含有する鋼種を用いて、仕上げ焼鈍時に主にPA、PB、PC1、PC2、および温度勾配の条件を変化させた実施例である。
 No.3036~3070では、λp-p@1.7Tが0.420以下であるとき、磁歪特性が良好であると判断した。
 No.3036~3070のうち、本発明例は、境界条件BAを満足し且つ境界条件BBを満足しない粒界が存在しており、いずれも優れた磁歪を示した。また、本発明例では、許容できる鉄損値が得られた。一方、比較例は、二次再結晶粒内で結晶方位が微小に且つ連続的に変位したが、境界条件BAを満足し且つ境界条件BBを満足しない粒界が十分に存在しておらず、好ましい磁歪が得られなかった。
(No.3071の実施例)
 No.3071は、スラブ加熱温度を高くしてスラブ加熱中に十分に溶解したMnSを後工程で再析出させて主要なインヒビターとして活用するプロセスで製造した実施例である。
 No.3071では、λp-p@1.7Tが0.420以下であるとき、磁歪特性が良好であると判断した。
 No.3071に示されるように、高温スラブ加熱プロセスであっても、仕上げ焼鈍条件を適切に制御することで、好ましく磁歪が改善する。
(実施例4)
 表D1に示す化学組成を有するスラブを素材として、表D2に示す化学組成を有する方向性電磁鋼板を製造した。なお、化学組成の測定方法や、表中での記述方法は上記の実施例1と同じである。
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
 方向性電磁鋼板は、表D3に示す製造条件に基づいて製造した。表に示す以外の製造条件は上記の実施例1と同じである。
 なお、No.4009以外では、焼鈍分離剤として、MgOを主成分とする焼鈍分離剤を鋼板に塗布し、仕上げ焼鈍を施した。一方、No.4009では、焼鈍分離剤として、アルミナを主成分とする焼鈍分離剤を鋼板に塗布し、仕上げ焼鈍を施した。
Figure JPOXMLDOC01-appb-T000039
 製造した方向性電磁鋼板(仕上げ焼鈍鋼板)の表面に、上記の実施例1と同じ絶縁被膜を形成した。
 製造した方向性電磁鋼板は、切断方向が板厚方向と平行な切断面で見たとき、方向性電磁鋼板(珪素鋼板)上に接して配された中間層と、この中間層上に接して配された絶縁被膜とを有していた。
 なお、No.4009以外の方向性電磁鋼板では、中間層が平均厚さ1.5μmのフォルステライト被膜であり、絶縁被膜が平均厚さ2μmのりん酸塩とコロイド状シリカとを主体とする絶縁被膜であった。一方、No.4009の方向性電磁鋼板では、中間層が平均厚さ20nmの酸化膜(SiOを主体とする被膜)であり、絶縁被膜が平均厚さ2μmのりん酸塩とコロイド状シリカとを主体とする絶縁被膜であった。
 また、No.4012およびNo.4013の方向性電磁鋼板では、絶縁被膜を形成後に、レーザー照射によって、鋼板の圧延面上で圧延方向と交差する方向に延伸するように線状の微小歪を、圧延方向の間隔が4mmになるように付与した。レーザーを付与したことにより、鉄損が低減する効果が得られていることがわかる。
 得られた方向性電磁鋼板について、各種特性を評価した。なお、評価方法は上記の実施例1と同じである。評価結果を表D4に示す。
Figure JPOXMLDOC01-appb-T000040
 No.4001~4013では、△λp-pが0以下であるとき(0を基準としてマイナスに値が大きくなるとき)、磁歪特性が良好であると判断した。
 No.4001~4013のうち、本発明例は、境界条件BAを満足し且つ境界条件BBを満足しない粒界が存在しており、いずれも優れた磁歪を示した。また、本発明例では、許容できる鉄損値が得られた。一方、比較例は、二次再結晶粒内で結晶方位が微小に且つ連続的に変位したが、境界条件BAを満足し且つ境界条件BBを満足しない粒界が十分に存在しておらず、好ましい磁歪が得られなかった。
(実施例5)
 表E1に示す化学組成を有するスラブを素材として、表E2に示す化学組成を有する方向性電磁鋼板(珪素鋼板)を製造した。なお、化学組成の測定方法や、表中での記述方法は上記の実施例1と同じである。
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
 方向性電磁鋼板は、表E3~表E7に示す製造条件に基づいて製造した。表に示す以外の製造条件は上記の実施例1と同じである。
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
 製造した方向性電磁鋼板(仕上げ焼鈍鋼板)、上記の実施例1と同じ絶縁被膜を形成した。
 製造した方向性電磁鋼板は、切断方向が板厚方向と平行な切断面で見たとき、方向性電磁鋼板(珪素鋼板)上に接して配された中間層と、この中間層上に接して配された絶縁被膜とを有していた。なお、中間層は平均厚さ2μmのフォルステライト被膜であり、絶縁被膜は平均厚さ1μmのりん酸塩とコロイド状シリカとを主体とする絶縁被膜であった。
 得られた方向性電磁鋼板について、各種特性を評価した。
 方向性電磁鋼板の結晶方位を上記の方法で測定した。この測定した各測定点の結晶方位からずれ角を特定し、このずれ角に基づいて隣接する2つの測定点間に存在する粒界を特定した。
 なお、間隔が1mmである2つの測定点で境界条件を判定したとき、「境界条件BAを満足する境界数」を「境界条件BBを満足する境界数」で割った値が1.15以上である場合に、「境界条件BAを満足し且つ境界条件BBを満足しない粒界」が存在すると判断し、且つ表中で「切り替え粒界(亜粒界)」が存在すると表示した。なお、「境界条件BAを満足する境界数」とは、上記した表1のケースAおよび/またはケースBの粒界に対応し、「境界条件BBを満足する境界数」とは、ケースAの粒界に対応する。
 同様に、間隔が1mmである2つの測定点で境界条件を判定したとき、「境界条件BCを満足する境界数」を「境界条件BBを満足する境界数」で割った値が1.10以上である場合に、「境界条件BCを満足し且つ境界条件BBを満足しない粒界」が存在すると判断し、且つ表中で「切り替え粒界(α粒界)」が存在すると表示した。なお、「境界条件BCを満足する境界数」とは、上記した表2のケース1および/またはケース3の粒界に対応し、「境界条件BBを満足する境界数」とは、ケース1および/またはケース2の粒界に対応する。また、特定した粒界に基づいて平均結晶粒径を算出した。加えて、ずれ角αの絶対値の標準偏差σ(|α|)を上記の方法で測定した。
 磁気特性として、交流周波数:50Hz、励磁磁束密度:1.9Tの条件で、鋼板の単位重量(1kg)あたりの電力損失として定義される鉄損W19/50(W/kg)を測定した。鉄損W19/50以外の評価方法は、上記の実施例1と同じである。評価結果を表E8~表E12に示す。
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000052
 上記の実施例1と同様に、以下では、いくつかの特徴のある化学組成および製造法による方向性電磁鋼板ごとに、各特性の評価結果を説明する。
(低温スラブ加熱プロセスによって製造した実施例)
 No.5001~5064は、スラブ加熱温度を低くして一次再結晶後の窒化によって二次再結晶の主要なインヒビターを形成するプロセスで製造した実施例である。
(No.5001~5023の実施例)
 No.5001~5023は、Nbを含有しない鋼種を用いて、仕上げ焼鈍時に主にPA’、PB’、TD、およびTE1’の条件を変化させた実施例である。
 No.5001~5023では、鉄損W19/50が1.750W/kg以下であるとき、鉄損特性が良好であると判断した。
 No.5001~5023のうち、本発明例は、境界条件BAを満足し且つ境界条件BBを満足しない粒界が存在し、中磁場領域の磁歪に優れていた。これら本発明例の内、さらに境界条件BCを満足し且つ境界条件BBを満足しない粒界が存在している本発明例は、いずれも優れた高磁場鉄損を示した。一方、比較例は、二次再結晶粒内でずれ角αが微小に且つ連続的に変位したが、境界条件BCを満足し且つ境界条件BBを満足しない粒界が十分に存在しておらず、好ましい高磁場鉄損が得られなかった。
 なお、No.5003は、窒化後のN量を300ppmとしてインヒビター強度を高めた比較例である。一般的に、窒化量を増やせば生産性が低下する要因ともなるが、窒化量を増やすことでインヒビター強度が高くなりBが上昇する。No.5003でも、Bが高い値となっている。ただ、No.5003では、仕上げ焼鈍条件が好ましくなかったため、W19/50の値が不十分となった。つまり、No.5003では、二次再結晶時に切り替えが起きず、その結果、高磁場鉄損が改善しなかった。一方、No.5006では、Bが特別に高い値ではないが、仕上げ焼鈍条件が好ましかったため、W19/50が好ましく低い値となった。つまり、No.5006では、二次再結晶時に切り替えが生じて、その結果、高磁場鉄損が改善した。
 また、No.5017~5023は、TFを高めて二次再結晶を高温まで継続させた実施例である。No.5017~5023では、Bが高くなっている。ただ、これらのうち、No.5021及び5022では、仕上げ焼鈍条件が好ましくなかったため、No.5003と同様に高磁場鉄損が改善しなかった。一方、上記のうち、No.5023では、Bが高い値となったことに加えて、仕上げ焼鈍条件が好ましかったため、W19/50が好ましく低い値となった。
(No.5024~5034の実施例)
 No.5024~5034は、スラブ時点でNbを0.002%含有する鋼種を用いて、仕上げ焼鈍時に主にPA’、PB’、およびTE1’の条件を変化させた実施例である。
 No.5024~5034では、鉄損W19/50が1.750W/kg以下であるとき、鉄損特性が良好であると判断した。
 No.5024~5034のうち、本発明例は、境界条件BAを満足し且つ境界条件BBを満足しない粒界が存在し、中磁場領域の磁歪に優れていた。これら本発明例の内、さらに境界条件BCを満足し且つ境界条件BBを満足しない粒界が存在している本発明例は、いずれも優れた高磁場鉄損を示した。一方、比較例は、二次再結晶粒内でずれ角αが微小に且つ連続的に変位したが、境界条件BCを満足し且つ境界条件BBを満足しない粒界が十分に存在しておらず、好ましい高磁場鉄損が得られなかった。
(No.5035~5046の実施例)
 No.5035~5046は、スラブ時点でNbを0.007%含有する鋼種を用いた実施例である。
 No.5035~5046では、鉄損W19/50が1.650W/kg以下であるとき、鉄損特性が良好であると判断した。
 No.5035~5046のうち、本発明例は、境界条件BAを満足し且つ境界条件BBを満足しない粒界が存在し、中磁場領域の磁歪に優れていた。これら本発明例の内、さらに境界条件BCを満足し且つ境界条件BBを満足しない粒界が存在している本発明例は、いずれも優れた高磁場鉄損を示した。一方、比較例は、二次再結晶粒内でずれ角αが微小に且つ連続的に変位したが、境界条件BCを満足し且つ境界条件BBを満足しない粒界が十分に存在しておらず、好ましい高磁場鉄損が得られなかった。
 なお、No.5035~5046では、スラブ時点でNbを0.007%含有し、仕上げ焼鈍でNbが純化され、方向性電磁鋼板(仕上げ焼鈍鋼板)の時点でNb含有量が0.006%以下となっている。No.5035~5046は、スラブ時点で上記したNo.5001~5034よりもNbを好ましく含有しているので、W19/50が低い値となっている。また、Bが高くなっている。すなわち、Nbを含有するスラブを用いて仕上げ焼鈍条件を制御すれば、BおよびW19/50に有利に作用する。特にNo.5042は、仕上げ焼鈍で純化を強化し、方向性電磁鋼板(仕上げ焼鈍鋼板)の時点でNb含有量が検出限界以下になった本発明例である。No.5042では、最終製品である方向性電磁鋼板からはNb群元素を活用したことを検証できないが、上記の効果が顕著に得られている。
(No.5047~5054の実施例)
 No.5047~5054は、TE1’を300分未満の短時間とし、特にNb含有量の影響を確認した実施例である。
 No.5047~5054では、鉄損W19/50が1.650W/kg以下であるとき、鉄損特性が良好であると判断した。
 No.5047~5054のうち、本発明例は、境界条件BAを満足し且つ境界条件BBを満足しない粒界が存在し、中磁場領域の磁歪に優れていた。これら本発明例の内、さらに境界条件BCを満足し且つ境界条件BBを満足しない粒界が存在している本発明例は、いずれも優れた高磁場鉄損を示した。一方、比較例は、二次再結晶粒内でずれ角αが微小に且つ連続的に変位したが、境界条件BCを満足し且つ境界条件BBを満足しない粒界が十分に存在しておらず、好ましい高磁場鉄損が得られなかった。
 なお、No.5047~5054に示されるように、スラブ時点でNbを0.0030~0.030質量%含有すれば、たとえTE1’が短時間でも、二次再結晶時に切り替えが生じて高磁場鉄損が改善する。
(No.5055~5064の実施例)
 No.5055~5064は、TE1’を300分未満の短時間とし、Nb群元素の含有量の影響を確認した実施例である。
 No.5055~5064では、鉄損W19/50が1.650W/kg以下であるとき、鉄損特性が良好であると判断した。
 No.5055~5064のうち、本発明例は、境界条件BAを満足し且つ境界条件BBを満足しない粒界が存在し、中磁場領域の磁歪に優れていた。これら本発明例の内、さらに境界条件BCを満足し且つ境界条件BBを満足しない粒界が存在している本発明例は、いずれも優れた高磁場鉄損を示した。一方、比較例は、二次再結晶粒内でずれ角αが微小に且つ連続的に変位したが、境界条件BCを満足し且つ境界条件BBを満足しない粒界が十分に存在しておらず、好ましい高磁場鉄損が得られなかった。
 なお、No.5055~5064に示されるように、Nb以外のNb群元素にがスラブに所定量含有されれば、たとえTE1’が短時間でも、二次再結晶時に切り替えが生じて高磁場鉄損が改善する。
(高温スラブ加熱プロセスによって製造した実施例)
 No.5065~5101は、スラブ加熱温度を高くしてスラブ加熱中に十分に溶解したMnSを後工程で再析出させて主要なインヒビターとして活用するプロセスで製造した実施例である。
 No.5065~5101では、鉄損W19/50が1.450W/kg以下であるとき、鉄損特性が良好であると判断した。
 No.5065~5101のうち、本発明例は、境界条件BAを満足し且つ境界条件BBを満足しない粒界が存在し、中磁場領域の磁歪に優れていた。これら本発明例の内、さらに境界条件BCを満足し且つ境界条件BBを満足しない粒界が存在している本発明例は、いずれも優れた高磁場鉄損を示した。一方、比較例は、二次再結晶粒内でずれ角αが微小に且つ連続的に変位したが、境界条件BCを満足し且つ境界条件BBを満足しない粒界が十分に存在しておらず、好ましい高磁場鉄損が得られなかった。
 なお、No.5065~5101のうち、No.5083~5101は、スラブ時点でBiを含有させてBを高めた実施例である。
 No.5065~5101に示されるように、高温スラブ加熱プロセスであっても、仕上げ焼鈍条件を適切に制御することで、二次再結晶時に切り替えが生じて高磁場鉄損が改善する。また、低温スラブ加熱プロセスと同様に、高温スラブ加熱プロセスでも、Nbを含有するスラブを用いて仕上げ焼鈍条件を制御すれば、高磁場鉄損に有利に作用する。
(実施例6)
 表F1に示す化学組成を有するスラブを素材として、表F2に示す化学組成を有する方向性電磁鋼板を製造した。なお、化学組成の測定方法や、表中での記述方法は上記の実施例1と同じである。
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000054
 方向性電磁鋼板は、表F3~表F7に示す製造条件に基づいて製造した。表に示す以外の製造条件は上記の実施例1と同じである。
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000059
 製造した方向性電磁鋼板(仕上げ焼鈍鋼板)の表面に、上記の実施例1と同じ絶縁被膜を形成した。
 製造した方向性電磁鋼板は、切断方向が板厚方向と平行な切断面で見たとき、方向性電磁鋼板(珪素鋼板)上に接して配された中間層と、この中間層上に接して配された絶縁被膜とを有していた。なお、中間層は平均厚さ1.5μmのフォルステライト被膜であり、絶縁被膜は平均厚さ2μmのりん酸塩とコロイド状シリカとを主体とする絶縁被膜であった。
 得られた方向性電磁鋼板について、各種特性を評価した。なお、評価方法は上記の実施例1や実施例5と同じである。評価結果を表F8~表F12に示す。
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000064
 上記の実施例1と同様に、以下では、いくつかの特徴のある化学組成および製造法による方向性電磁鋼板ごとに、各特性の評価結果を説明する。
(低温スラブ加熱プロセスによって製造した実施例)
 No.6001~6063は、スラブ加熱温度を低くして一次再結晶後の窒化によって二次再結晶の主要なインヒビターを形成するプロセスで製造した実施例である。
(No.6001~6023の実施例)
 No.6001~6023は、Nbを含有しない鋼種を用いて、仕上げ焼鈍時に主にPA’、PB’、TD、およびTE2’の条件を変化させた実施例である。
 No.6001~6023では、鉄損W19/50が1.610W/kg以下であるとき、鉄損特性が良好であると判断した。
 No.6001~6023のうち、本発明例は、境界条件BAを満足し且つ境界条件BBを満足しない粒界が存在し、中磁場領域の磁歪に優れていた。これら本発明例の内、さらに境界条件BCを満足し且つ境界条件BBを満足しない粒界が存在している本発明例は、いずれも優れた高磁場鉄損を示した。一方、比較例は、二次再結晶粒内でずれ角αが微小に且つ連続的に変位したが、境界条件BCを満足し且つ境界条件BBを満足しない粒界が十分に存在しておらず、好ましい高磁場鉄損が得られなかった。
 なお、No.6003は、窒化後のN量を300ppmとしてインヒビター強度を高めた比較例である。一般的に、窒化量を増やせば生産性が低下する要因ともなるが、窒化量を増やすことでインヒビター強度が高くなりBが上昇する。No.6003でも、Bが高い値となっている。ただ、No.6003では、仕上げ焼鈍条件が好ましくなかったため、W19/50の値が不十分となった。つまり、No.6003では、二次再結晶時に切り替えが起きず、その結果、高磁場鉄損が改善しなかった。一方、No.6006では、Bが特別に高い値ではないが、仕上げ焼鈍条件が好ましかったため、W19/50が好ましく低い値となった。つまり、No.6006では、二次再結晶時に切り替えが生じて、その結果、高磁場鉄損が改善した。
 また、No.6017~6023は、TFを高めて二次再結晶を高温まで継続させた実施例である。No.6017~6023では、Bが高くなっている。ただ、これらのうち、No.6021及び6022では、仕上げ焼鈍条件が好ましくなかったため、No.6003と同様に高磁場鉄損が改善しなかった。一方、上記のうち、No.6017~6020および6023では、Bが高い値となったことに加えて、仕上げ焼鈍条件が好ましかったため、W19/50が好ましく低い値となった。
(No.6024~6034の実施例)
 No.6024~6034は、スラブ時点でNbを0.001%含有する鋼種を用いて、仕上げ焼鈍時に主にPA’、PB’、およびTE2’の条件を変化させた実施例である。
 No.6024~6034では、鉄損W19/50が1.610W/kg以下であるとき、鉄損特性が良好であると判断した。
 No.6024~6034のうち、本発明例は、境界条件BAを満足し且つ境界条件BBを満足しない粒界が存在し、中磁場領域の磁歪に優れていた。これら本発明例の内、さらに境界条件BCを満足し且つ境界条件BBを満足しない粒界が存在している本発明例は、いずれも優れた高磁場鉄損を示した。一方、比較例は、二次再結晶粒内でずれ角αが微小に且つ連続的に変位したが、境界条件BCを満足し且つ境界条件BBを満足しない粒界が十分に存在しておらず、好ましい高磁場鉄損が得られなかった。
(No.6035~6046の実施例)
 No.6035~6046は、スラブ時点でNbを0.009%含有する鋼種を用いた実施例である。
 No.6035~6046では、鉄損W19/50が1.610W/kg以下であるとき、鉄損特性が良好であると判断した。
 No.6035~6046のうち、本発明例は、境界条件BAを満足し且つ境界条件BBを満足しない粒界が存在し、中磁場領域の磁歪に優れていた。これら本発明例の内、さらに境界条件BCを満足し且つ境界条件BBを満足しない粒界が存在している本発明例は、いずれも優れた高磁場鉄損を示した。一方、比較例は、二次再結晶粒内でずれ角αが微小に且つ連続的に変位したが、境界条件BCを満足し且つ境界条件BBを満足しない粒界が十分に存在しておらず、好ましい高磁場鉄損が得られなかった。
 なお、No.6035~6046では、スラブ時点でNbを0.009%含有し、仕上げ焼鈍でNbが純化され、方向性電磁鋼板(仕上げ焼鈍鋼板)の時点でNb含有量が0.007%以下となっている。No.6035~6046は、スラブ時点で上記したNo.6001~6034よりもNbを好ましく含有しているので、W19/50が低い値となっている。また、Bが高くなっている。すなわち、Nbを含有するスラブを用いて仕上げ焼鈍条件を制御すれば、BおよびW19/50に有利に作用する。特にNo.6042は、仕上げ焼鈍で純化を強化し、方向性電磁鋼板(仕上げ焼鈍鋼板)の時点でNb含有量が検出限界以下になった本発明例である。No.6042では、最終製品である方向性電磁鋼板からはNb群元素を活用したことを検証できないが、上記の効果が顕著に得られている。
(No.6047~6053の実施例)
 No.6047~6053は、TE2’を300分未満の短時間とし、特にNb含有量の影響を確認した実施例である。
 No.6047~6053では、鉄損W19/50が1.610W/kg以下であるとき、鉄損特性が良好であると判断した。
 No.6047~6053のうち、本発明例は、境界条件BAを満足し且つ境界条件BBを満足しない粒界が存在し、中磁場領域の磁歪に優れていた。これら本発明例の内、さらに境界条件BCを満足し且つ境界条件BBを満足しない粒界が存在している本発明例は、いずれも優れた高磁場鉄損を示した。一方、比較例は、二次再結晶粒内でずれ角αが微小に且つ連続的に変位したが、境界条件BCを満足し且つ境界条件BBを満足しない粒界が十分に存在しておらず、好ましい高磁場鉄損が得られなかった。
 なお、No.6047~6053に示されるように、スラブ時点でNbを0.0030~0.030質量%含有すれば、たとえTE2’が短時間でも、二次再結晶時に切り替えが生じて高磁場鉄損が改善する。
(No.6054~6063の実施例)
 No.6054~6063は、TE2’を300分未満の短時間とし、Nb群元素の含有量の影響を確認した実施例である。
 No.6054~6063では、鉄損W19/50が1.610W/kg以下であるとき、鉄損特性が良好であると判断した。
 No.6054~6063のうち、本発明例は、境界条件BAを満足し且つ境界条件BBを満足しない粒界が存在し、中磁場領域の磁歪に優れていた。これら本発明例の内、さらに境界条件BCを満足し且つ境界条件BBを満足しない粒界が存在している本発明例は、いずれも優れた高磁場鉄損を示した。一方、比較例は、二次再結晶粒内でずれ角αが微小に且つ連続的に変位したが、境界条件BCを満足し且つ境界条件BBを満足しない粒界が十分に存在しておらず、好ましい高磁場鉄損が得られなかった。
 なお、No.6054~6063に示されるように、Nb以外のNb群元素にがスラブに所定量含有されれば、たとえTE2’が短時間でも、二次再結晶時に切り替えが生じて高磁場鉄損が改善する。
(高温スラブ加熱プロセスによって製造した実施例)
 No.6064~6100は、スラブ加熱温度を高くしてスラブ加熱中に十分に溶解したMnSを後工程で再析出させて主要なインヒビターとして活用するプロセスで製造した実施例である。
 No.6064~6100では、鉄損W19/50が1.450W/kg以下であるとき、鉄損特性が良好であると判断した。
 No.6064~6100のうち、本発明例は、境界条件BAを満足し且つ境界条件BBを満足しない粒界が存在し、中磁場領域の磁歪に優れていた。これら本発明例の内、さらに境界条件BCを満足し且つ境界条件BBを満足しない粒界が存在している本発明例は、いずれも優れた高磁場鉄損を示した。一方、比較例は、二次再結晶粒内でずれ角αが微小に且つ連続的に変位したが、境界条件BCを満足し且つ境界条件BBを満足しない粒界が十分に存在しておらず、好ましい高磁場鉄損が得られなかった。
 なお、No.6064~6100のうち、No.6082~6100は、スラブ時点でBiを含有させてBを高めた実施例である。
 No.6064~6100に示されるように、高温スラブ加熱プロセスであっても、仕上げ焼鈍条件を適切に制御することで、二次再結晶時に切り替えが生じて高磁場鉄損が改善する。また、低温スラブ加熱プロセスと同様に、高温スラブ加熱プロセスでも、Nbを含有するスラブを用いて仕上げ焼鈍条件を制御すれば、高磁場鉄損に有利に作用する。
(実施例7)
 表G1に示す化学組成を有するスラブを素材として、表G2に示す化学組成を有する方向性電磁鋼板を製造とした。なお、化学組成の測定方法や、表中での記述方法は上記の実施例1と同じである。
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000066
 方向性電磁鋼板は、表G3~表G6に示す製造条件に基づいて製造した。なお、仕上げ焼鈍では、切り替えの発生方向の異方性を制御するため、鋼板の圧延直角方向に温度勾配をつけて熱処理を行った。この温度勾配および表に示す以外の製造条件は上記の実施例1と同じである
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000070
 製造した方向性電磁鋼板(仕上げ焼鈍鋼板)の表面に、上記の実施例1と同じ絶縁被膜を形成した。
 製造した方向性電磁鋼板は、切断方向が板厚方向と平行な切断面で見たとき、方向性電磁鋼板(珪素鋼板)上に接して配された中間層と、この中間層上に接して配された絶縁被膜とを有していた。なお、中間層は平均厚さ3μmのフォルステライト被膜であり、絶縁被膜は平均厚さ3μmのりん酸塩とコロイド状シリカとを主体とする絶縁被膜であった。
 得られた方向性電磁鋼板について、各種特性を評価した。なお、評価方法は上記の実施例1や実施例5と同じである。評価結果を表G7~表G10に示す。
 ほとんどの方向性電磁鋼板は、温度勾配の方向に結晶粒が延伸し、α結晶粒の結晶粒径もこの方向が大きくなった。すなわち、圧延直角方向に結晶粒が延伸していた。ただし、温度勾配が小さかった一部の方向性電磁鋼板では、α結晶粒について圧延直角方向の粒径が圧延方向の粒径より小さくなっていた。圧延直角方向の粒径が圧延方向の粒径より小さい場合、表中の「温度勾配方向が不一致」の欄に「*」で示した。
Figure JPOXMLDOC01-appb-T000071
Figure JPOXMLDOC01-appb-T000072
Figure JPOXMLDOC01-appb-T000073
Figure JPOXMLDOC01-appb-T000074
 上記の実施例1と同様に、以下では、いくつかの特徴のある化学組成および製造法による方向性電磁鋼板ごとに、各特性の評価結果を説明する。
(低温スラブ加熱プロセスによって製造した実施例)
 No.7001~7069は、スラブ加熱温度を低くして一次再結晶後の窒化によって二次再結晶の主要なインヒビターを形成するプロセスで製造した実施例である。
(No.7001~7034の実施例)
 No.7001~7034は、Nbを含有しない鋼種を用いて、仕上げ焼鈍時に主にPA’、PB’、TD、および温度勾配の条件を変化させた実施例である。
 No.7001~7034では、鉄損W19/50が1.950W/kg以下であるとき、鉄損特性が良好であると判断した。
 No.7001~7034のうち、本発明例は、境界条件BAを満足し且つ境界条件BBを満足しない粒界が存在し、中磁場領域の磁歪に優れていた。これら本発明例の内、さらに境界条件BCを満足し且つ境界条件BBを満足しない粒界が存在している本発明例は、いずれも優れた高磁場鉄損を示した。一方、比較例は、二次再結晶粒内でずれ角αが微小に且つ連続的に変位したが、境界条件BCを満足し且つ境界条件BBを満足しない粒界が十分に存在しておらず、好ましい高磁場鉄損が得られなかった。
(No.7035~7069の実施例)
 No.7035~7069は、スラブ時点でNb群元素を含有する鋼種を用いて、仕上げ焼鈍時に主にPA’、PB’、TD、および温度勾配の条件を変化させた実施例である。
 No.7035~7069では、鉄損W19/50が1.850W/kg以下であるとき、鉄損特性が良好であると判断した。
 No.7035~7069のうち、本発明例は、境界条件BAを満足し且つ境界条件BBを満足しない粒界が存在し、中磁場領域の磁歪に優れていた。これら本発明例の内、さらに境界条件BCを満足し且つ境界条件BBを満足しない粒界が存在している本発明例は、いずれも優れた高磁場鉄損を示した。一方、比較例は、二次再結晶粒内でずれ角αが微小に且つ連続的に変位したが、境界条件BCを満足し且つ境界条件BBを満足しない粒界が十分に存在しておらず、好ましい高磁場鉄損が得られなかった。
(No7070の実施例)
 No.7070は、スラブ加熱温度を高くしてスラブ加熱中に十分に溶解したMnSを後工程で再析出させて主要なインヒビターとして活用するプロセスで製造した実施例である。
 No.7070では、鉄損W19/50が1.850W/kg以下であるとき、鉄損特性が良好であると判断した。
 No.7070に示されるように、高温スラブ加熱プロセスであっても、仕上げ焼鈍条件を適切に制御することで、高磁場鉄損が改善する。
(実施例8)
 表H1に示す化学組成を有するスラブを素材として、表H2に示す化学組成を有する方向性電磁鋼板を製造した。なお、化学組成の測定方法や、表中での記述方法は上記の実施例1と同じである。
Figure JPOXMLDOC01-appb-T000075
Figure JPOXMLDOC01-appb-T000076
 方向性電磁鋼板は、表H3に示す製造条件に基づいて製造した。表に示す以外の製造条件は上記の実施例1と同じである。
 なお、No.8009以外では、焼鈍分離剤として、MgOを主成分とする焼鈍分離剤を鋼板に塗布し、仕上げ焼鈍を施した。一方、No.8009では、焼鈍分離剤として、アルミナを主成分とする焼鈍分離剤を鋼板に塗布し、仕上げ焼鈍を施した。
Figure JPOXMLDOC01-appb-T000077
 製造した方向性電磁鋼板(仕上げ焼鈍鋼板)の表面に、上記の実施例1と同じ絶縁被膜を形成した。
 製造した方向性電磁鋼板は、切断方向が板厚方向と平行な切断面で見たとき、方向性電磁鋼板(珪素鋼板)上に接して配された中間層と、この中間層上に接して配された絶縁被膜とを有していた。
 なお、No.8009以外の方向性電磁鋼板では、中間層が平均厚さ1.5μmのフォルステライト被膜であり、絶縁被膜が平均厚さ2μmのりん酸塩とコロイド状シリカとを主体とする絶縁被膜であった。一方、No.8009の方向性電磁鋼板では、中間層が平均厚さ20nmの酸化膜(SiOを主体とする被膜)であり、絶縁被膜が平均厚さ2μmのりん酸塩とコロイド状シリカとを主体とする絶縁被膜であった。
 また、No.8012およびNo.8013の方向性電磁鋼板では、絶縁被膜を形成後に、レーザー照射によって、鋼板の圧延面上で圧延方向と交差する方向に延伸するように線状の微小歪を、圧延方向の間隔が4mmになるように付与した。レーザーを付与したことにより、鉄損が低減する効果が得られていることがわかる。
 得られた方向性電磁鋼板について、各種特性を評価した。なお、評価方法は上記の実施例1や実施例5と同じである。評価結果を表H4に示す。
Figure JPOXMLDOC01-appb-T000078
 No.8001~8013では、鉄損W19/50が1.760W/kg以下であるとき、鉄損特性が良好であると判断した。
 No.8001~8013のうち、本発明例は、境界条件BAを満足し且つ境界条件BBを満足しない粒界が存在し、中磁場領域の磁歪に優れていた。これら本発明例の内、さらに境界条件BCを満足し且つ境界条件BBを満足しない粒界が存在している本発明例は、いずれも優れた高磁場鉄損を示した。一方、比較例は、二次再結晶粒内でずれ角αが微小に且つ連続的に変位したが、境界条件BCを満足し且つ境界条件BBを満足しない粒界が十分に存在しておらず、好ましい高磁場鉄損が得られなかった。
 本発明の上記態様によれば、中磁場領域(特に1.7T程度の磁場)での磁歪及び鉄損をいずれも改善した方向性電磁鋼板の提供が可能となるので、産業上の利用可能性が高い。
 10  方向性電磁鋼板(珪素鋼板)
 20  中間層
 30  絶縁被膜

Claims (18)

  1.  質量%で、
      Si:2.0~7.0%、
      Nb:0~0.030%、
      V:0~0.030%、
      Mo:0~0.030%、
      Ta:0~0.030%、
      W:0~0.030%、
      C:0~0.0050%、
      Mn:0~1.0%、
      S:0~0.0150%、
      Se:0~0.0150%、
      Al:0~0.0650%、
      N:0~0.0050%、
      Cu:0~0.40%、
      Bi:0~0.010%、
      B:0~0.080%、
      P:0~0.50%、
      Ti:0~0.0150%、
      Sn:0~0.10%、
      Sb:0~0.10%、
      Cr:0~0.30%、
      Ni:0~1.0%、
     を含有し、残部がFeおよび不純物からなる化学組成を有し、
     Goss方位に配向する集合組織を有する方向性電磁鋼板において、
     圧延面法線方向Zを回転軸とする理想Goss方位からのずれ角をαと定義し、
     圧延直角方向Cを回転軸とする理想Goss方位からのずれ角をβと定義し、
     圧延方向Lを回転軸とする理想Goss方位からのずれ角をγと定義し、
     板面上で隣接し且つ間隔が1mmである2つの測定点で測定する結晶方位のずれ角を(α β γ)および(α β γ)と表し、
     境界条件BAを[(α-α+(β-β+(γ-γ1/2≧0.5°と定義し、
     境界条件BBを[(α-α+(β-β+(γ-γ1/2≧2.0°と定義するとき、
     前記境界条件BAを満足し且つ前記境界条件BBを満足しない粒界が存在する、
    ことを特徴とする方向性電磁鋼板。
  2.  前記境界条件BAに基づいて求める前記圧延方向Lの平均結晶粒径を粒径RAと定義し、
     前記境界条件BBに基づいて求める前記圧延方向Lの平均結晶粒径を粒径RBと定義するとき、
     前記粒径RAと前記粒径RBとが、1.15≦RB÷RAを満たす、
    ことを特徴とする請求項1に記載の方向性電磁鋼板。
  3.  前記境界条件BAに基づいて求める前記圧延直角方向Cの平均結晶粒径を粒径RAと定義し、
     前記境界条件BBに基づいて求める前記圧延直角方向Cの平均結晶粒径を粒径RBと定義するとき、
     前記粒径RAと前記粒径RBとが、1.15≦RB÷RAを満たす、
    ことを特徴とする請求項1または請求項2に記載の方向性電磁鋼板。
  4.  前記境界条件BAに基づいて求める前記圧延方向Lの平均結晶粒径を粒径RAと定義し、
     前記境界条件BAに基づいて求める前記圧延直角方向Cの平均結晶粒径を粒径RAと定義するとき、
     前記粒径RAと前記粒径RAとが、1.15≦RA÷RAを満たす、
    ことを特徴とする請求項1~3の何れか一項に記載の方向性電磁鋼板。
  5.  前記境界条件BBに基づいて求める前記圧延方向Lの平均結晶粒径を粒径RBと定義し、
     前記境界条件BBに基づいて求める前記圧延直角方向Cの平均結晶粒径を粒径RBと定義するとき、
     前記粒径RBと前記粒径RBとが、1.50≦RB÷RBを満たす、
    ことを特徴とする請求項1~4の何れか一項に記載の方向性電磁鋼板。
  6.  前記境界条件BAに基づいて求める前記圧延方向Lの平均結晶粒径を粒径RAと定義し、
     前記境界条件BBに基づいて求める前記圧延方向Lの平均結晶粒径を粒径RBと定義し、
     前記境界条件BAに基づいて求める前記圧延直角方向Cの平均結晶粒径を粒径RAと定義し、
     前記境界条件BBに基づいて求める前記圧延直角方向Cの平均結晶粒径を粒径RBと定義するとき、
     前記粒径RAと前記粒径RAと前記粒径RBと前記粒径RBとが、
     (RB×RA)÷(RB×RA)<1.0を満たす、
    ことを特徴とする請求項1~5の何れか一項に記載の方向性電磁鋼板。
  7.  板面上の測定点で測定する結晶方位のずれ角を(α β γ)と表し、各測定点でのずれ角をθ=[α+β+γ1/2と定義するとき、
     前記ずれ角θの絶対値の標準偏差σ(θ)が、0°以上3.0°以下である、ことを特徴とする請求項1~6の何れか一項に記載の方向性電磁鋼板。
  8.  境界条件BCを|α-α|≧0.5°と定義するとき、
     前記境界条件BCを満足し且つ前記境界条件BBを満足しない粒界が存在する、ことを特徴とする請求項1~7の何れか一項に記載の方向性電磁鋼板。
  9.  前記境界条件BCに基づいて求める前記圧延方向Lの平均結晶粒径を粒径RCと定義し、
     前記境界条件BBに基づいて求める前記圧延方向Lの平均結晶粒径を粒径RBと定義するとき、
     前記粒径RCと前記粒径RBとが、1.10≦RB÷RCを満たす、
    ことを特徴とする請求項1~8の何れか一項に記載の方向性電磁鋼板。
  10.  前記境界条件BCに基づいて求める前記圧延直角方向Cの平均結晶粒径を粒径RCと定義し、
     前記境界条件BBに基づいて求める前記圧延直角方向Cの平均結晶粒径を粒径RBと定義するとき、
     前記粒径RCと前記粒径RBとが、1.10≦RB÷RCを満たす、
    ことを特徴とする請求項1~9の何れか一項に記載の方向性電磁鋼板。
  11.  前記境界条件BCに基づいて求める前記圧延方向Lの平均結晶粒径を粒径RCと定義し、
     前記境界条件BCに基づいて求める前記圧延直角方向Cの平均結晶粒径を粒径RCと定義するとき、
     前記粒径RCと前記粒径RCとが、1.15≦RC÷RCを満たす、
    ことを特徴とする請求項1~10の何れか一項に記載の方向性電磁鋼板。
  12.  前記境界条件BCに基づいて求める前記圧延方向Lの平均結晶粒径を粒径RCと定義し、
     前記境界条件BBに基づいて求める前記圧延方向Lの平均結晶粒径を粒径RBと定義し、
     前記境界条件BCに基づいて求める前記圧延直角方向Cの平均結晶粒径を粒径RCと定義し、
     前記境界条件BBに基づいて求める前記圧延直角方向Cの平均結晶粒径を粒径RBと定義するとき、
     前記粒径RCと前記粒径RCと前記粒径RBと前記粒径RBとが、
     (RB×RC)÷(RB×RC)<1.0を満たす、
    ことを特徴とする請求項1~11の何れか一項に記載の方向性電磁鋼板。
  13.  前記ずれ角αの絶対値の標準偏差σ(|α|)が、0°以上3.50°以下である、ことを特徴とする請求項1~12の何れか一項に記載の方向性電磁鋼板。
  14.  前記化学組成として、Nb、V、Mo、Ta、およびWからなる群から選択される少なくとも1種を合計で0.0030~0.030質量%含有する、
    ことを特徴とする請求項1~13の何れか一項に記載の方向性電磁鋼板。
  15.  局所的な微小歪の付与または局所的な溝の形成の少なくとも1つによって磁区が細分化されている、ことを特徴とする請求項1~14の何れか一項に記載の方向性電磁鋼板。
  16.  前記方向性電磁鋼板上に接して配された中間層と、前記中間層上に接して配された絶縁被膜とを有する、ことを特徴とする請求項1~15の何れか一項に記載の方向性電磁鋼板。
  17.  前記中間層が平均厚さ1~3μmのフォルステライト被膜である、ことを特徴とする請求項16に記載の方向性電磁鋼板。
  18.  前記中間層が平均厚さ2~500nmの酸化膜である、ことを特徴とする請求項16に記載の方向性電磁鋼板。
PCT/JP2019/030059 2018-07-31 2019-07-31 方向性電磁鋼板 WO2020027215A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2020534713A JP7028325B2 (ja) 2018-07-31 2019-07-31 方向性電磁鋼板
BR112021000803-9A BR112021000803A2 (pt) 2018-07-31 2019-07-31 Chapa de aço elétrico de grão orientado
CN201980049675.6A CN112469840B (zh) 2018-07-31 2019-07-31 方向性电磁钢板
US17/263,824 US11939641B2 (en) 2018-07-31 2019-07-31 Grain oriented electrical steel sheet
RU2021101788A RU2764625C1 (ru) 2018-07-31 2019-07-31 Лист анизотропной электротехнической стали
EP19843927.5A EP3831974A4 (en) 2018-07-31 2019-07-31 CORNORATED ELECTROMAGNETIC SHEET STEEL
KR1020217002559A KR102457420B1 (ko) 2018-07-31 2019-07-31 방향성 전자 강판

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2018143898 2018-07-31
JP2018143901 2018-07-31
JP2018143905 2018-07-31
JP2018143904 2018-07-31
JP2018-143902 2018-07-31
JP2018143900 2018-07-31
JP2018-143905 2018-07-31
JP2018-143898 2018-07-31
JP2018-143900 2018-07-31
JP2018-143904 2018-07-31
JP2018-143901 2018-07-31
JP2018143902 2018-07-31

Publications (1)

Publication Number Publication Date
WO2020027215A1 true WO2020027215A1 (ja) 2020-02-06

Family

ID=69231800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030059 WO2020027215A1 (ja) 2018-07-31 2019-07-31 方向性電磁鋼板

Country Status (8)

Country Link
US (1) US11939641B2 (ja)
EP (1) EP3831974A4 (ja)
JP (1) JP7028325B2 (ja)
KR (1) KR102457420B1 (ja)
CN (1) CN112469840B (ja)
BR (1) BR112021000803A2 (ja)
RU (1) RU2764625C1 (ja)
WO (1) WO2020027215A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021156980A1 (ja) * 2020-02-05 2021-08-12
JPWO2021156960A1 (ja) * 2020-02-05 2021-08-12
JPWO2022092118A1 (ja) * 2020-10-26 2022-05-05
US11753691B2 (en) 2018-07-31 2023-09-12 Nippon Steel Corporation Grain oriented electrical steel sheet
RU2809519C1 (ru) * 2020-10-26 2023-12-12 Ниппон Стил Корпорейшн Ленточный сердечник
US11851726B2 (en) 2018-07-31 2023-12-26 Nippon Steel Corporation Grain oriented electrical steel sheet
US11939641B2 (en) 2018-07-31 2024-03-26 Nippon Steel Corporation Grain oriented electrical steel sheet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230094748A (ko) * 2021-12-21 2023-06-28 주식회사 포스코 방향성 전기강판 및 이의 제조방법

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5224116A (en) 1975-08-20 1977-02-23 Nippon Steel Corp Material of high magnetic flux density one directionally orientated el ectromagnetic steel and its treating method
JPS572839A (en) 1980-06-04 1982-01-08 Nippon Steel Corp Production of unidirectional silicon steel plate of high magnetic flux density
JPS61190017A (ja) 1985-02-20 1986-08-23 Nippon Steel Corp 鉄損の低い一方向性珪素鋼板の製造方法
JPH02200732A (ja) 1989-01-31 1990-08-09 Nippon Steel Corp 磁気特性の優れた方向性電磁鋼板の製造法
JPH02258923A (ja) 1989-03-30 1990-10-19 Nippon Steel Corp 磁束密度の極めて高い方向性電磁鋼板の製造方法
JP2001192785A (ja) 2000-01-06 2001-07-17 Kawasaki Steel Corp 磁気特性に優れた方向性電磁鋼板およびその製造方法
JP2001294996A (ja) 2000-04-06 2001-10-26 Nippon Steel Corp 高加工性方向性電磁鋼板およびその製造方法
JP2004060026A (ja) 2002-07-31 2004-02-26 Jfe Steel Kk 高周波磁気特性、圧延性および加工性に優れる方向性電磁鋼板およびその製造方法
JP2005240102A (ja) 2004-02-26 2005-09-08 Jfe Steel Kk 鉄損特性に優れた方向性電磁鋼板
JP2005240079A (ja) 2004-02-25 2005-09-08 Jfe Steel Kk 鉄損劣化率が小さい方向性電磁鋼板
JP2007314826A (ja) 2006-05-24 2007-12-06 Nippon Steel Corp 鉄損特性に優れた一方向性電磁鋼板
JP2009235471A (ja) * 2008-03-26 2009-10-15 Jfe Steel Corp 方向性電磁鋼板およびその製造方法
JP2012052229A (ja) 2010-08-06 2012-03-15 Jfe Steel Corp 方向性電磁鋼板およびその製造方法
JP2012077380A (ja) * 2010-09-10 2012-04-19 Jfe Steel Corp 方向性電磁鋼板およびその製造方法
JP4962516B2 (ja) 2009-03-27 2012-06-27 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP2012177149A (ja) * 2011-02-25 2012-09-13 Jfe Steel Corp 方向性電磁鋼板およびその製造方法
KR20130014892A (ko) * 2011-08-01 2013-02-12 주식회사 포스코 자성이 우수한 방향성 전기강판 및 그 제조방법
JP2015206114A (ja) 2014-04-11 2015-11-19 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
CN105220071A (zh) * 2015-10-16 2016-01-06 宝山钢铁股份有限公司 一种低噪音特性取向硅钢及其制造方法
WO2016056501A1 (ja) 2014-10-06 2016-04-14 Jfeスチール株式会社 低鉄損方向性電磁鋼板およびその製造方法
JP2018143900A (ja) 2017-03-01 2018-09-20 VEEma株式会社 井戸管の洗浄装置
JP2018143905A (ja) 2017-03-01 2018-09-20 日本碍子株式会社 ハニカム触媒体
JP2018143902A (ja) 2017-03-01 2018-09-20 鹿島建設株式会社 生物処理用微生物担体及び固定床の製造方法
JP2018143898A (ja) 2015-07-31 2018-09-20 株式会社村田製作所 濾過フィルタデバイス
JP2018143904A (ja) 2017-03-01 2018-09-20 Nok株式会社 ポリスルホン中空糸膜の製造法
JP2018143901A (ja) 2017-03-01 2018-09-20 東洋紡株式会社 セラミックグリーンシート製造用離型フィルムの製造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960009170B1 (en) 1992-07-02 1996-07-16 Nippon Steel Corp Grain oriented electrical steel sheet having high magnetic flux density and ultra iron loss and process for producing the same
JP3456742B2 (ja) 1993-08-18 2003-10-14 新日本製鐵株式会社 変圧器の騒音レベル予測方法
JP3470475B2 (ja) 1995-11-27 2003-11-25 Jfeスチール株式会社 極めて鉄損の低い方向性電磁鋼板とその製造方法
US6379810B1 (en) 1999-01-18 2002-04-30 Matsushita Electric Industrial Co., Ltd. High resistance magnetic film
JP3410057B2 (ja) * 1999-01-18 2003-05-26 松下電器産業株式会社 高抵抗磁性膜
JP2001025415A (ja) 1999-07-14 2001-01-30 Delta Kogyo Co Ltd シートのリクライナ構造
JP2001254155A (ja) * 2000-03-09 2001-09-18 Nkk Corp 高周波鉄損特性に優れた高けい素鋼板
JP4962512B2 (ja) 2008-03-12 2012-06-27 株式会社デンソー 固定子コイルの製造方法
JP5853352B2 (ja) * 2010-08-06 2016-02-09 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
JP5891578B2 (ja) * 2010-09-28 2016-03-23 Jfeスチール株式会社 方向性電磁鋼板
JP6121086B2 (ja) * 2010-09-30 2017-04-26 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
KR101244446B1 (ko) 2011-06-27 2013-03-18 임문택 연마판 회전형 각질제거기
KR101677883B1 (ko) 2013-09-19 2016-11-18 제이에프이 스틸 가부시키가이샤 방향성 전기 강판 및 그 제조 방법
US10626474B2 (en) 2014-12-24 2020-04-21 Jfe Steel Corporation Grain-oriented electrical steel sheet and method of manufacturing same
JP6620566B2 (ja) 2016-01-20 2019-12-18 日本製鉄株式会社 方向性電磁鋼板、方向性電磁鋼板の製造方法、変圧器またはリアクトル用の鉄心、および、騒音評価方法
KR102477847B1 (ko) 2018-03-22 2022-12-16 닛폰세이테츠 가부시키가이샤 방향성 전자 강판 및 방향성 전자 강판의 제조 방법
US11851726B2 (en) * 2018-07-31 2023-12-26 Nippon Steel Corporation Grain oriented electrical steel sheet
KR102457420B1 (ko) 2018-07-31 2022-10-24 닛폰세이테츠 가부시키가이샤 방향성 전자 강판
RU2764622C1 (ru) 2018-07-31 2022-01-18 Ниппон Стил Корпорейшн Лист анизотропной электротехнической стали
CN115053000B (zh) 2020-02-05 2024-04-02 日本制铁株式会社 方向性电磁钢板
KR20220124785A (ko) 2020-02-05 2022-09-14 닛폰세이테츠 가부시키가이샤 방향성 전자 강판

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5224116A (en) 1975-08-20 1977-02-23 Nippon Steel Corp Material of high magnetic flux density one directionally orientated el ectromagnetic steel and its treating method
JPS572839A (en) 1980-06-04 1982-01-08 Nippon Steel Corp Production of unidirectional silicon steel plate of high magnetic flux density
JPS61190017A (ja) 1985-02-20 1986-08-23 Nippon Steel Corp 鉄損の低い一方向性珪素鋼板の製造方法
JPH02200732A (ja) 1989-01-31 1990-08-09 Nippon Steel Corp 磁気特性の優れた方向性電磁鋼板の製造法
JPH02258923A (ja) 1989-03-30 1990-10-19 Nippon Steel Corp 磁束密度の極めて高い方向性電磁鋼板の製造方法
JP2001192785A (ja) 2000-01-06 2001-07-17 Kawasaki Steel Corp 磁気特性に優れた方向性電磁鋼板およびその製造方法
JP2001294996A (ja) 2000-04-06 2001-10-26 Nippon Steel Corp 高加工性方向性電磁鋼板およびその製造方法
JP2004060026A (ja) 2002-07-31 2004-02-26 Jfe Steel Kk 高周波磁気特性、圧延性および加工性に優れる方向性電磁鋼板およびその製造方法
JP2005240079A (ja) 2004-02-25 2005-09-08 Jfe Steel Kk 鉄損劣化率が小さい方向性電磁鋼板
JP2005240102A (ja) 2004-02-26 2005-09-08 Jfe Steel Kk 鉄損特性に優れた方向性電磁鋼板
JP2007314826A (ja) 2006-05-24 2007-12-06 Nippon Steel Corp 鉄損特性に優れた一方向性電磁鋼板
JP2009235471A (ja) * 2008-03-26 2009-10-15 Jfe Steel Corp 方向性電磁鋼板およびその製造方法
JP4962516B2 (ja) 2009-03-27 2012-06-27 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP2012052229A (ja) 2010-08-06 2012-03-15 Jfe Steel Corp 方向性電磁鋼板およびその製造方法
JP2012077380A (ja) * 2010-09-10 2012-04-19 Jfe Steel Corp 方向性電磁鋼板およびその製造方法
JP2012177149A (ja) * 2011-02-25 2012-09-13 Jfe Steel Corp 方向性電磁鋼板およびその製造方法
KR20130014892A (ko) * 2011-08-01 2013-02-12 주식회사 포스코 자성이 우수한 방향성 전기강판 및 그 제조방법
JP2015206114A (ja) 2014-04-11 2015-11-19 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
WO2016056501A1 (ja) 2014-10-06 2016-04-14 Jfeスチール株式会社 低鉄損方向性電磁鋼板およびその製造方法
JP2018143898A (ja) 2015-07-31 2018-09-20 株式会社村田製作所 濾過フィルタデバイス
CN105220071A (zh) * 2015-10-16 2016-01-06 宝山钢铁股份有限公司 一种低噪音特性取向硅钢及其制造方法
JP2018143900A (ja) 2017-03-01 2018-09-20 VEEma株式会社 井戸管の洗浄装置
JP2018143905A (ja) 2017-03-01 2018-09-20 日本碍子株式会社 ハニカム触媒体
JP2018143902A (ja) 2017-03-01 2018-09-20 鹿島建設株式会社 生物処理用微生物担体及び固定床の製造方法
JP2018143904A (ja) 2017-03-01 2018-09-20 Nok株式会社 ポリスルホン中空糸膜の製造法
JP2018143901A (ja) 2017-03-01 2018-09-20 東洋紡株式会社 セラミックグリーンシート製造用離型フィルムの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3831974A4

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11753691B2 (en) 2018-07-31 2023-09-12 Nippon Steel Corporation Grain oriented electrical steel sheet
US11939641B2 (en) 2018-07-31 2024-03-26 Nippon Steel Corporation Grain oriented electrical steel sheet
US11851726B2 (en) 2018-07-31 2023-12-26 Nippon Steel Corporation Grain oriented electrical steel sheet
JP7348552B2 (ja) 2020-02-05 2023-09-21 日本製鉄株式会社 方向性電磁鋼板
WO2021156980A1 (ja) * 2020-02-05 2021-08-12 日本製鉄株式会社 方向性電磁鋼板
JPWO2021156980A1 (ja) * 2020-02-05 2021-08-12
JP7348551B2 (ja) 2020-02-05 2023-09-21 日本製鉄株式会社 方向性電磁鋼板
WO2021156960A1 (ja) * 2020-02-05 2021-08-12 日本製鉄株式会社 方向性電磁鋼板
JPWO2021156960A1 (ja) * 2020-02-05 2021-08-12
JPWO2022092118A1 (ja) * 2020-10-26 2022-05-05
WO2022092118A1 (ja) * 2020-10-26 2022-05-05 日本製鉄株式会社 巻鉄心
JP7211559B2 (ja) 2020-10-26 2023-01-24 日本製鉄株式会社 巻鉄心
KR20230079196A (ko) 2020-10-26 2023-06-05 닛폰세이테츠 가부시키가이샤 권철심
RU2809519C1 (ru) * 2020-10-26 2023-12-12 Ниппон Стил Корпорейшн Ленточный сердечник
RU2809494C1 (ru) * 2020-10-26 2023-12-12 Ниппон Стил Корпорейшн Ленточный сердечник

Also Published As

Publication number Publication date
BR112021000803A2 (pt) 2021-04-13
CN112469840B (zh) 2022-07-08
KR102457420B1 (ko) 2022-10-24
EP3831974A1 (en) 2021-06-09
JP7028325B2 (ja) 2022-03-02
KR20210024614A (ko) 2021-03-05
EP3831974A4 (en) 2022-05-04
US11939641B2 (en) 2024-03-26
US20210355557A1 (en) 2021-11-18
CN112469840A (zh) 2021-03-09
JPWO2020027215A1 (ja) 2021-08-12
RU2764625C1 (ru) 2022-01-18

Similar Documents

Publication Publication Date Title
JP7028327B2 (ja) 方向性電磁鋼板
WO2020027215A1 (ja) 方向性電磁鋼板
JP7028326B2 (ja) 方向性電磁鋼板
JP2021123755A (ja) 方向性電磁鋼板
JP7348551B2 (ja) 方向性電磁鋼板
JP7348552B2 (ja) 方向性電磁鋼板
JP7492111B2 (ja) 方向性電磁鋼板
JP7492109B2 (ja) 方向性電磁鋼板
JP7492110B2 (ja) 方向性電磁鋼板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19843927

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020534713

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217002559

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021000803

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2021101788

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2019843927

Country of ref document: EP

Effective date: 20210301

ENP Entry into the national phase

Ref document number: 112021000803

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210115