WO2020022620A1 - 전극 보호층용 고분자 및 이를 적용한 이차전지 - Google Patents
전극 보호층용 고분자 및 이를 적용한 이차전지 Download PDFInfo
- Publication number
- WO2020022620A1 WO2020022620A1 PCT/KR2019/005445 KR2019005445W WO2020022620A1 WO 2020022620 A1 WO2020022620 A1 WO 2020022620A1 KR 2019005445 W KR2019005445 W KR 2019005445W WO 2020022620 A1 WO2020022620 A1 WO 2020022620A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polymer
- group
- formula
- protective layer
- electrode protective
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F259/00—Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00
- C08F259/08—Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00 on to polymers containing fluorine
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D127/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
- C09D127/02—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
- C09D127/12—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C09D127/16—Homopolymers or copolymers of vinylidene fluoride
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D151/00—Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
- C09D151/003—Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0404—Methods of deposition of the material by coating on electrode collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/665—Composites
- H01M4/667—Composites in the form of layers, e.g. coatings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F214/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
- C08F214/18—Monomers containing fluorine
- C08F214/22—Vinylidene fluoride
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2438/00—Living radical polymerisation
- C08F2438/01—Atom Transfer Radical Polymerization [ATRP] or reverse ATRP
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1395—Processes of manufacture of electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
- H01M4/623—Binders being polymers fluorinated polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/46—Separators, membranes or diaphragms characterised by their combination with electrodes
- H01M50/461—Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a polymer for an electrode protective layer and a secondary battery to which the polymer is applied, and more particularly, to electrochemical stability by inhibiting side reactions on an active material surface by an electrolyte solution without interfering with the transfer of lithium ions from the active material surface of a secondary battery electrode. It relates to a protective layer and a secondary battery applying the same.
- Secondary batteries known as electrochemical devices are devices that convert external electrical energy into chemical energy and store it, and then generate electricity when needed.
- the term “rechargeable battery” is also used to mean that it can be charged several times.
- Commonly used secondary batteries include lead acid batteries, nickel cadmium (Ni-Cd) batteries, nickel hydrogen (NiMH) batteries, lithium ion (Li-ion) batteries, and lithium ion polymer (Li-ion polymer) batteries.
- Secondary batteries provide both economic and environmental advantages over primary batteries that are used once and discarded.
- lithium secondary batteries mainly used in notebooks and smartphones are composed of a positive electrode made of lithium oxide, a carbon-based negative electrode, a separator, and a liquid or solid electrolyte.
- a positive electrode made of lithium oxide
- a carbon-based negative electrode a separator
- a liquid or solid electrolyte As the area of application of lithium secondary batteries expands to electric vehicles (EVs) and energy storage devices (ESSs), driving voltages increase to 4.5 V or higher, and the use environment of batteries is being severe, such as applying metal lithium as a negative electrode. to be.
- Metal Lithium Cathode has the highest theoretical specific capacity of 3860 mAh / g and has the lowest electrochemical potential of -3.04 V (vs. standard hydrogen electrode), but it has received much attention, but it has side reaction with electrolyte and uneven deposition / dissolution of lithium. Due to the problem, commercialization is delayed.
- SEI solid electrolyte interface
- an electrode active material such as lithium metal
- polyacetylene, tetraethoxysilane, lithium phosphorus oxynitride, alumina particles, ultrathin alumina films, etc. may be applied and coated on a lithium film to improve cycle characteristics by forming lithium dendrites or suppressing side reactions.
- Research is being actively conducted. However, after continuous battery operation, a phenomenon in which the protective effect of the electrode was inferior was observed, which is analyzed to be due to the occurrence of cracking due to the low lithium ion conductivity, low flexibility, and uneven coating of the electrode.
- Patent Document 1 Korean Unexamined Patent Publication No. 2016-0058274 (2016.05.25), "A binder containing a polymer formed by branching a block copolymer comprising a polypropylene oxide block and a polyethylene oxide block"
- the present inventors conducted various studies to solve the above problems, and as a result, a monomer containing a poly (alkylene oxide) having ion conductivity, a thermosetting functional group or a photocurable functional group on a fluorine-based polymer having a high dielectric constant
- a monomer containing a poly (alkylene oxide) having ion conductivity, a thermosetting functional group or a photocurable functional group on a fluorine-based polymer having a high dielectric constant When graft copolymerization of a monomer containing a polymer for manufacturing an electrode protective layer, and applied to a secondary battery to protect the surface of the lithium metal or the active material, the lithium ion conductivity does not interfere with the flow of lithium ions in the electrolyte due to lithium ion conductivity excellent lithium It is confirmed that the present invention can improve the voltage stability of the secondary battery by suppressing side reaction with the electrolyte generated on the surface of the electrode active material due to the characteristics of the chemical resistance to the electro
- an object of the present invention is to provide a polymer for an electrode protective layer comprising a polymer grafted on a fluorinated polymer with a monomer comprising poly (alkylene oxide) and a monomer comprising a thermosetting functional group or a photocurable functional group.
- a polymer for an electrode protective layer including a polymer comprising a poly (alkylene oxide) and a polymer (A) grafted with a thermosetting functional group or a monomer containing a photocurable functional group on a fluorine-based polymer.
- the fluorine-based polymer includes a structure of the following formula (1).
- p, q, and r are each independently 0 ⁇ p ⁇ 20,000, 1 ⁇ q ⁇ 22,000, and 0 ⁇ r ⁇ 15,000).
- polymer (A) comprises a structure of formula (2).
- p, q, r and s are each independently 0 ⁇ p ⁇ 20,000, 0 ⁇ q ⁇ 22,000, 0 ⁇ r ⁇ 15,000 and 0 ⁇ s ⁇ 22,000,
- R 1 , R 2 , R 3 are each independently hydrogen or methyl
- R 4 is any one selected from hydrogen, an alkyl group having 1 to 12 carbon atoms, and a phenyl group which is unsubstituted or substituted with an alkyl group having 1 to 12 carbon atoms,
- Z is a curable functional group represented by the following formula (3) or (4),
- l, m and n are each independently 2 ⁇ l ⁇ 230, 1 ⁇ m ⁇ 200 and 2 ⁇ n ⁇ 50,
- R 5 is any one selected from hydrogen, chlorine or bromine
- X is a simple link or alkylene or phenylene having 1 to 6 carbon atoms
- Y is at least one functional group selected from hydrogen, hydroxy group, alkoxysilyl group, phosphate group, succinate group, phthalate group and isocyanate group,
- X is a simple connection or alkylene having 1 to 12 carbon atoms, alkyloxycarbonyl having 1 to 12 carbon atoms ( ), Urethane group-containing alkyleneoxycarbonyl having 1 to 12 carbon atoms, poly (ethylene oxide) carbonyl and phenylene having an added mole number of 1 to 10 ethylene oxide,
- polymer (A) comprises a structure of formula (5) or formula (6).
- R 1 , R 2 , R 3 are each independently hydrogen or methyl
- R 4 is any one selected from hydrogen, an alkyl group having 1 to 12 carbon atoms, and a phenyl group which is unsubstituted or substituted with an alkyl group having 1 to 12 carbon atoms,
- X is a simple link or is alkylene or phenylene having 1 to 6 carbon atoms
- Y is at least one functional group selected from hydrogen, hydroxy group, alkoxysilyl group, phosphate group, succinate group, phthalate group and isocyanate group,
- l, m and n are each independently 2 ⁇ l ⁇ 230, 1 ⁇ m ⁇ 200 and 2 ⁇ n ⁇ 50,
- R 5 is any one selected from hydrogen, chlorine or bromine
- R 1 , R 2 , R 3 and R 6 are each independently hydrogen or methyl
- R 4 is any one selected from hydrogen, an alkyl group having 1 to 12 carbon atoms, and a phenyl group which is unsubstituted or substituted with an alkyl group having 1 to 12 carbon atoms,
- X is a simple link or alkylene having 1 to 12 carbon atoms, alkyloxycarbonyl having 1 to 12 carbon atoms ( ) Is one selected from urethane group-containing alkyleneoxycarbonyl having 1 to 12 carbon atoms, poly (ethylene oxide) carbonyl having 1 to 10 moles of ethylene oxide, and phenylene,
- l, m and n are each independently 2 ⁇ l ⁇ 230, 1 ⁇ m ⁇ 200 and 2 ⁇ n ⁇ 50,
- R 5 is any one selected from hydrogen, chlorine or bromine
- poly (alkylene oxide) is poly (ethylene oxide) or poly (propylene oxide).
- thermosetting functional group is any one or more selected from carboxylic acid groups, hydroxy groups, alkoxysilyl groups, phosphate groups, succinate groups, phthalate groups and isocyanate groups.
- One embodiment of the present invention is a monomer containing a poly (alkylene oxide) and a monomer comprising a thermosetting functional group is included in a molar ratio of 99.9: 0.1 to 70:30.
- It provides a polymer composition for electrode protective layer comprising the above-described polymer for electrode protective layer and a multifunctional crosslinking agent.
- One embodiment of the present invention is that the multifunctional crosslinking agent is included in 0.1 to 10 parts by weight based on 100 parts by weight of the polymer (A).
- the multifunctional crosslinking agent is any one selected from the group consisting of an isocyanate crosslinking agent, an epoxy crosslinking agent, an aziridine crosslinking agent, an alcohol crosslinking agent, and an amine crosslinking agent.
- the electrode comprises an electrode active material
- the electrode active material is any one selected from the group consisting of metal lithium, a positive electrode active material and a negative electrode active material.
- One embodiment of the present invention is that the photocurable functional group is an unsaturated vinyl group.
- a monomer containing a poly (alkylene oxide) and a monomer containing a photocurable functional group is included in a molar ratio of 99.9: 0.1 to 70:30.
- It provides a polymer composition for electrode protective layer comprising the above-mentioned polymer for electrode protective layer, a polyfunctional vinyl-based crosslinking agent and a photoinitiator.
- One embodiment of the present invention is that the polyfunctional vinyl-based crosslinking agent is included in 0.1 to 50 parts by weight based on 100 parts by weight of the polymer (A).
- One embodiment of the present invention is that the photoinitiator is included in 0.01 to 5 parts by weight based on 100 parts by weight of the polymer (A).
- the electrode comprises an electrode active material
- the electrode active material is any one selected from the group consisting of metal lithium, a positive electrode active material and a negative electrode active material.
- a secondary battery including an electrode including the electrode protective layer described above.
- the electrode protective layer polymer according to the present invention is a polymer prepared by grafting a monomer containing a poly (alkylene oxide) and a monomer comprising a thermosetting functional group or a photo-curable functional group on a fluorine-based polymer having a high dielectric constant (A)
- A When the electrode is prepared by coating the electrode active material layer using the same, and thermally curing or photocuring the same, the lithium ion conductivity is excellent and does not interfere with the flow of lithium ions, and the chemical resistance to the electrolyte is high and uniform.
- due to the characteristics of the flexible protective layer it is possible to suppress side reactions with the electrolyte generated on the surface of the electrode active material, thereby improving voltage stability of the secondary battery.
- the fluorine-based polymer has a high dielectric dissociation degree of 9 to 40, and has an advantage of having electrochemical stability even at high voltage (5.0 V) when used in a lithium secondary battery.
- high voltage 5.0 V
- ionic conductivity is very high. There is a low disadvantage.
- a monomer containing poly (alkylene oxide) having lithium ion chelating properties is introduced on the fluorine-based polymer having a high dielectric constant through a grafting reaction.
- a monomer containing poly (alkylene oxide) having lithium ion chelating properties is introduced on the fluorine-based polymer having a high dielectric constant through a grafting reaction.
- it is formed by further graft copolymerization of the monomer including the poly (alkylene oxide) and the monomer including the thermosetting functional group or the photocurable functional group. It provides a polymer for electrode protective layer comprising a polymer (A) to be.
- the fluorine-based polymer according to one embodiment of the present invention may be a polymer including a poly (chlorotrifluoroethylene) polymer unit, and the fluorine-based polymer may be a compound represented by the following Chemical Formula 1.
- p, q, and r are each independently 0 ⁇ p ⁇ 20,000, 1 ⁇ q ⁇ 22,000, and 0 ⁇ r ⁇ 15,000).
- the fluorine-based polymer according to the embodiment is a dimer of vinylidene fluoride (VdF) and chlorotrifluoroethylene (CTFE) or a trimer of VDF, CTFE, and trifluoroethylene (TrFE). It may include, the polymer may be to necessarily include a CTFE.
- a monomer comprising a poly (alkylene oxide) and a monomer including a thermosetting functional group or a photocurable functional group may be graft copolymerized, and according to the present invention Embodiments may be graft copolymerization using atomic transfer radical polymerization (ATRP).
- ATRP atomic transfer radical polymerization
- the fluorine-based polymer according to the present invention is a polymer capable of grafting branched chains by an atom transfer radical polymerization reaction, and any polymer may be used as long as it is a polymer polymer containing such a fluorine atom, but preferably polyvinylidene Polyvinylidene fluoride (PVDF), Polyvinyl fluoride (PVF), Polychlorotrifluoroethylene (PCTFE), Polytetrafluoroethylene (PTFE), Polytrifluoroethylene (Polytrifluoroethylene) PTrFE), poly-1,2-difluoroethylene, or a copolymer including one or more thereof, may be preferably used.
- PVDF polyvinylidene Polyvinylidene fluoride
- PVF Polyvinyl fluoride
- PCTFE Polychlorotrifluoroethylene
- PTFE Polytetrafluoroethylene
- Polytrifluoroethylene Polytrifluoroethylene
- PCTFE polychlorotrifluoroethylene
- PCTFE polychlorotrifluoroethylene
- VDF-CTFE polychlorotrifluoroethylene
- P (VDF-CTFE) poly (vinylidene fluoride-chlorotrifluoroethylene)
- P (VDF-CTFE-TrFE ) poly (vinylidene fluoridechlorotrifluoroethylene-trifluoroethylene)
- VDF-CTFE-TrFE polychlorotrifluoroethylene
- the present invention provides a polymer in which a monomer including a thermosetting functional group or a photocurable functional group is additionally grafted in the polymer.
- the thermosetting functional group may be thermoset with itself or with an appropriate polyfunctional functional group to improve the above characteristics.
- the photocurable functional group can be photocured in itself or in the presence of a suitable polyfunctional vinyl-based functional group and a photoinitiator to improve the above characteristics.
- a structure in which a monomer including the poly (alkylene oxide) is copolymerized on the fluorine-based polymer and a monomer including the thermosetting functional group or the photocurable functional group are represented by the structure of Formula 2 below. It may be to include.
- p, q, r and s are each independently 0 ⁇ p ⁇ 20,000, 0 ⁇ q ⁇ 22,000, 0 ⁇ r ⁇ 15,000 and 0 ⁇ s ⁇ 22,000,
- R 1 , R 2 , R 3 are each independently hydrogen or methyl
- R 4 is any one selected from hydrogen, an alkyl group having 1 to 12 carbon atoms, and a phenyl group which is unsubstituted or substituted with an alkyl group having 1 to 12 carbon atoms,
- Z is a curable functional group represented by the following formula (3) or (4),
- l, m and n are each independently 2 ⁇ l ⁇ 230, 1 ⁇ m ⁇ 200 and 2 ⁇ n ⁇ 50,
- R 5 is any one selected from hydrogen, chlorine or bromine
- X is a simple link or alkylene or phenylene having 1 to 6 carbon atoms
- Y is at least one functional group selected from hydrogen, hydroxy group, alkoxysilyl group, phosphate group, succinate group, phthalate group and isocyanate group,
- X is a simple connection or alkylene having 1 to 12 carbon atoms, alkyloxycarbonyl having 1 to 12 carbon atoms ( ), Urethane group-containing alkyleneoxycarbonyl having 1 to 12 carbon atoms, poly (ethylene oxide) carbonyl and phenylene having an added mole number of 1 to 10 ethylene oxide,
- an embodiment of the present invention may be one wherein the polymer (A) includes a structure of Formula 5 or Formula 6.
- R 1 , R 2 , R 3 are each independently hydrogen or methyl
- R 4 is any one selected from hydrogen, an alkyl group having 1 to 12 carbon atoms, and a phenyl group which is unsubstituted or substituted with an alkyl group having 1 to 12 carbon atoms,
- X is a simple link or is alkylene or phenylene having 1 to 6 carbon atoms
- Y is at least one functional group selected from hydrogen, hydroxy group, alkoxysilyl group, phosphate group, succinate group, phthalate group and isocyanate group,
- l, m and n are each independently 2 ⁇ l ⁇ 230, 1 ⁇ m ⁇ 200 and 2 ⁇ n ⁇ 50,
- R 5 is any one selected from hydrogen, chlorine or bromine
- R 1 , R 2 , R 3 and R 6 are each independently hydrogen or methyl
- R 4 is any one selected from hydrogen, an alkyl group having 1 to 12 carbon atoms, and a phenyl group which is unsubstituted or substituted with an alkyl group having 1 to 12 carbon atoms,
- X is a simple link or alkylene having 1 to 12 carbon atoms, alkyloxycarbonyl having 1 to 12 carbon atoms ( ), Urethane group-containing alkyleneoxycarbonyl having 1 to 12 carbon atoms, poly (ethylene oxide) carbonyl and phenylene having an added mole number of 1 to 10 ethylene oxide,
- l, m and n are each independently 2 ⁇ l ⁇ 230, 1 ⁇ m ⁇ 200 and 2 ⁇ n ⁇ 50,
- R 5 is any one selected from hydrogen, chlorine or bromine
- the poly (alkylene oxide) is a material capable of improving the ion conductivity of the fluorine-based polymer, may be poly (ethylene oxide) or poly (propylene oxide), preferably poly (ethylene Oxide).
- Examples of the monomer containing the poly (alkylene oxide) include poly (alkylene oxide) (meth) acrylate, poly (alkylene oxide) monoalkyl ether (meth) acrylate, poly (alkylene oxide) monophenyl ether (Meth) acrylates, and the like, but is not limited thereto.
- Monomers containing the thermosetting functional group may include at least one functional group selected from a carboxylic acid group, hydroxy group, alkoxysilyl group, phosphate group, succinate group, phthalate group and isocyanate group,
- a functional group selected from a carboxylic acid group, hydroxy group, alkoxysilyl group, phosphate group, succinate group, phthalate group and isocyanate group
- Non-limiting examples thereof include (meth) acrylic acid, 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, (3-trialkoxysilyl) Propyl (meth) acrylate, 3- (dialkoxysilyl) propyl (meth) acrylate, (meth) acryloyloxypropyl phosphate, (meth) acryloyloxyethyl isocyanate, 2- (meth) acryloyloxy Ethyl succinate
- the monomer including the photocurable functional group according to an embodiment of the present invention may include an unsaturated vinyl group, and non-limiting examples thereof include vinyl (meth) acrylate, allyl (meth) acrylate, 2- Vinyl group-containing (meth) acrylates such as (vinyloxy) ethyl methacrylate.
- the polymerized unit including the photocurable functional group may be secondarily derived from a (meth) acrylate containing no vinyl group through a post-polymerization reaction.
- a hydroxy group-containing (meth) acrylate is copolymerized with the poly (alkylene oxide) group-containing monomer and then condensed with 2-isocyanatoethyl (meth) acrylate to introduce a (meth) acrylate group into the side chain.
- (meth) acrylate containing an isocyanate group may be condensed with a hydroxy group-containing (meth) acrylate after copolymerization with a poly (alkylene oxide) group-containing monomer.
- the kind of the polymer reaction used to introduce the vinyl group into the side chain is not limited, but for example, the urethane formation reaction of the hydroxy group-isocyanate group, the ester group formation reaction of the epoxy group-carboxylic acid group, and the S N 2 reaction of the amine group-halogen group Etc. can be mentioned.
- the monomer including the poly (alkylene oxide) and the monomer including a thermosetting functional group or a photocurable functional group may have a molar ratio of 99.9: 0.1 to 70:30, specifically, 99: 1 to 90:10. It may be a molar ratio. Can be. If the monomer including the thermosetting functional group or the photocurable functional group is less than the above range, the cross-linking reaction between the polymers is not sufficient, so that the physical, chemical, and electrochemical strength and stability of the electrode protective layer are not high enough, and if the monomer is more than the above range, Since the content of the alkylene oxide is low and the polymer network density is too high, the ionic conductivity may be significantly deteriorated.
- the fluorine-based graft polymer (A) may further introduce a unit derived from a third monomer in the graft chain for the purpose of improving the interfacial adhesion characteristics, mechanical properties of the electrode active material. .
- Examples of the third monomer include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, t- Butyl (meth) acrylate, pentyl (meth) acrylate, 2-ethylhexyl (meth) acrylate with 2-ethylbutyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate , Isononyl (meth) acrylate, or lauryl (meth) acrylate, styrene, ⁇ -methylstyrene, p-methylstyrene, p-methoxystyrene, (meth) acrylonitrile and the like may be exemplified, but It is not limited.
- the third monomer according to an embodiment of the present invention may be included in the 1 to 20 middle portion compared to 100 parts by weight of the total fluorine-based graft polymer (A). If it is less than 1 part by weight, the desired physical properties may not be improved, and when 20 parts by weight or more are included, the ionic conductivity may be too low.
- the fluorine-based polymer according to Chemical Formula 1 may be included in an amount of 5 to 50 parts by weight, preferably 5 to 40 parts by weight, based on 100 parts by weight of the fluorine-based graft polymer (A). If the content of the fluorine-based polymer is above the above range, the mechanical strength and electrochemical stability of the electrode protective layer may be increased, but the crystallinity of the fluorine-based polymer is not suppressed, and the content of alkylene oxide is excessively reduced, thereby decreasing the ion conductivity. If the content of less than the above range can not implement the high electrochemical stability and high lithium ion dissociation characteristics of the fluorine-based polymer is selected appropriately in the above range.
- the present invention is a polymer composition for electrode protective layer further comprises a polyfunctional crosslinking agent having at least two functional groups capable of reacting with the thermosetting functional group contained in the polymer composition for electrode protective layer and the fluorine-based graft polymer (A).
- a polyfunctional crosslinking agent having at least two functional groups capable of reacting with the thermosetting functional group contained in the polymer composition for electrode protective layer and the fluorine-based graft polymer (A).
- the multifunctional crosslinking agent may further react with the thermosetting functional group Y included in the graft polymer of Formula 2 to form a crosslinked structure between the polymers.
- the electrode protective layer formed of the crosslinked structure exhibits high chemical and electrochemical stability, and protects the surface of the electrode active material from side reactions with the electrolyte, thereby overcoming problems such as deterioration of cycle characteristics and deterioration of coulombic efficiency of the secondary battery. have.
- the kind of the polyfunctional crosslinking agent is not particularly limited, and any one selected from the group consisting of an isocyanate crosslinking agent, an epoxy crosslinking agent, an aziridine crosslinking agent, an alcohol crosslinking agent, and an amine crosslinking agent can be used.
- isocyanate crosslinking agent examples include diisocyanate compounds such as toluene diisocyanate, xylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, isoborone diisocyanate, tetramethylxylene diisocyanate or naphthalene diisocyanate, or the diisocyanate.
- diisocyanate compounds such as toluene diisocyanate, xylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, isoborone diisocyanate, tetramethylxylene diisocyanate or naphthalene diisocyanate, or the diisocyanate.
- a compound obtained by reacting a compound with a polyol can be used.
- the polyol for example, trimethylol propane can be used.
- epoxy crosslinking agent examples include ethylene glycol diglycidyl ether, triglycidyl ether, trimethylolpropane triglycidyl ether, N, N, N ', N'-tetraglycidyl ethylenediamine and glycerin diglycid.
- aziridine crosslinking agents include N, N'-toluene-2,4-bis (1-aziridinecarboxamide), N, N'-diphenyl Consisting of methane-4,4'-bis (1-aziridinecarboxamide), triethylene melamine, bisisoprotaloyl-1- (2-methylaziridine) and tri-1-aziridinylphosphine oxide One or more selected from the group, but is not limited thereto.
- the alcohol crosslinking agent include, but are not limited to, one or more selected from the group consisting of poly (alkylene glycol), glycerol, trismethylol propane, pentaerythritol, and dipentaerythritol.
- Specific examples of the amine-based crosslinking agent include ethylene diamine, diethylenetriamine, triethylenetetramine, or modified amines thereof, metaphenylenediamine, diaminodiphenylmethane, diaminodiphenyl sulfone, or modified amines thereof. At least one selected from the group consisting of, but is not limited thereto.
- the multifunctional crosslinking agent may be included in a ratio of 0.1 to 10 parts by weight, preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the bloso-based graft polymer (A).
- content of the cross-linking agent within the above range it can be appropriately represented to the desired level of the physical properties of the electrolyte.
- the present invention also provides a polymer composition for electrode protective layer further comprising a polyfunctional vinyl-based crosslinking agent having a functional group capable of reacting with the polymer composition for electrode protective layer and the photocurable functional group contained in the fluorine-based graft polymer (A). to provide.
- the fluorine-based graft polymer (A) may be photocurable in the presence of a photoinitiator by a vinyl group introduced into the side chain, but may be a photocurable polymer composition further comprising a polyfunctional vinylic crosslinking agent.
- the multifunctional vinyl-based crosslinking agent may further react with an unsaturated vinyl functional group included in the graft polymer of Formula 2 to form a crosslinked structure between polymers.
- the electrode protective layer formed of the crosslinked structure exhibits high chemical and electrochemical stability, and protects the surface of the electrode active material from side reactions with the electrolyte, thereby overcoming problems such as deterioration of cycle characteristics and deterioration of coulombic efficiency of the secondary battery. have.
- the polyfunctional vinyl-based crosslinking agent is an organic compound having two or more vinyl groups in one molecule, and includes ethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and tri (Propylene glycol) di (meth) acrylate, tris (2- (meth) acryloethyl) isocyanate, trimethylolpropane tri (meth) acrylate, trimethylolpropane ethoxylate tri (meth) acrylate, pentaerythritol di (Meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol di (meth) acrylate, dipentaerythritol tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipenta
- the polyfunctional vinyl-based crosslinking agent may be included in a ratio of 0.1 to 50 parts by weight, preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of the bloso-based graft polymer (A).
- content of the cross-linking agent within the above range it can be appropriately represented to the desired level of the physical properties of the electrolyte.
- the photoinitiator is acetophenone compound, biimidazole compound, triazine compound, oxime compound, benzoin compound, hydroxy ketone compound, amino ketone compound or phosphine oxide compound
- a general initiator capable of generating radicals by irradiation of ultraviolet rays or the like to initiate photopolymerization can be used without limitation.
- Acetophenone compounds which can be used as the photoinitiator include 2-hydroxy-2-methyl-1-phenylpropan-1-one and 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropane-1 -One, 4- (2-hydroxyethoxy) -phenyl- (2-hydroxy-2-propyl) ketone, 1-hydroxycyclohexylphenylketone, benzoinmethyl ether, benzoinethyl ether, benzoin iso Butyl ether, benzoin butyl ether, 2,2-dimethoxy-2-phenylacetophenone, 2-methyl- (4-methylthio) phenyl-2-morpholino-1-propan-1-one, 2-benzyl 2-dimethylamino-1- (4-morpholinophenyl) -butan-1-one, 2- (4-bromo-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butane It is selected from the group consisting of -1-
- ⁇ -hydroxy ketone compounds (ex. IRGACURE 184, IRGACURE 500, IRGACURE 2959, DAROCUR 1173; Ciba Specialty Chemicals); Phenylglyoxylate compounds (ex. IRGACURE 754, DAROCUR MBF; Ciba Specialty Chemicals); Benzyl dimethyl ketal compounds (ex. IRGACURE 651; Ciba Specialty Chemicals); ⁇ -amino ketone compounds (ex. IRGACURE 369, IRGACURE 907, IRGACURE 1300; Ciba Specialty Chemicals); Monoacylphosphine-based compounds (MAPO) (ex.
- MAPO Monoacylphosphine-based compounds
- DAROCUR TPO Ciba Specialty Chemicals
- Bisacylphosphene compounds BAPO
- IRGACURE 819, IRGACURE 819DW Ciba Specialty Chemicals
- Phosphine oxide compounds ex. IRGACURE 2100; Ciba Specialty Chemicals
- Metallocene compounds ex. IRGACURE 784; Ciba Specialty Chemicals
- Iodonium salts ex.IRGACURE 250; Ciba Specialty Chemicals
- the content of the photoinitiator may be 0.01 to 5 parts by weight based on 100 parts by weight of the fluorine-based graft polymer (A), preferably 0.1 to 1 parts by weight, but is not limited thereto.
- the content of the radical initiator is 0.01 or less, curing may not be sufficiently performed, and an electrode protective layer of desired physical properties may not be obtained, and thus, appropriately controlled within the above range.
- the method for preparing a polymer for electrode protective layer according to the present invention may include a mixing step, a polymerization step and optionally a polymer reaction step.
- a monomer comprising a monomer and a photocurable functional group or a monomer containing a functional group capable of introducing a photocurable functional group in the polymer reaction step may be a step of mixing a raw material for preparing a polymer grafted to form a mixture.
- One exemplary mixing step may be mixing the fluorinated polymer with the monomer and the solvent to be polymerized. Thereafter, the catalyst and ligand may be further mixed with the solvent.
- the fluorine-based polymer is a part that becomes the main chain of the grafted polymer (A), and specific examples thereof are as described above, and in one embodiment according to the present invention, poly (vinylidene-co-chlorodrifluoroethylene) (Hereinafter, P (VDF-co-CTFE)).
- the monomer comprising the poly (alkylene oxide) and the monomer having a thermosetting functional group or a photocurable functional group are poly (ethylene glycol) monomethyl ether methacrylate) (Poly (ethylene glycol) monomethyl ether methacrylate)) (hereinafter mPEGMA) and 2-hydroxyethyl methacrylate (hereinafter referred to as HEMA).
- the solvent may use a variety of solvents known in the art, for example, N-methyl-2-pyrrolidone (NMP), gamma-butyrolactone (GBL) dimethylformamide (DMF), dimethyl sulfoxide (DMSO), dimethylacetamide (DMAc), acetonitrile (AcCN) or tetrahydrofuran (THF) and the like can be used, but is not limited thereto.
- NMP N-methyl-2-pyrrolidone
- GBL gamma-butyrolactone
- DMF dimethylformamide
- DMSO dimethyl sulfoxide
- DMAc dimethylacetamide
- AcCN acetonitrile
- THF tetrahydrofuran
- a catalyst and a ligand may be mixed with the solvent.
- the catalyst is for example Cu (I) Cl, Cu (II) Cl 2 , Cu (I) Br, Cu (II) Br 2 , Fe (II) Cl 2 , Fe (III) Cl 3 or mixtures thereof Etc. may be exemplified, but preferably Cu (I) Cl, Cu (II) Cl 2 , Cu (I) Br, Cu (II) Br 2, or a mixture thereof.
- the content of the catalyst may be 0.0001 to 1 parts by weight, 0.0005 to 0.5 parts by weight or 0.001 to 0.1 parts by weight relative to 100 parts by weight of the monomer mixture.
- the content of the catalyst is less than 0.0001 parts by weight, the reaction rate is very slow, and when the content of the catalyst is more than 1 part by weight, there is a problem that gelation or removal of the catalyst is very difficult before the polymerization of the graft polymer.
- the ligand is not particularly limited as long as it can be used in a polymerization reaction in combination with the catalyst.
- the ligand contains one or more ligands capable of coordinating with the catalyst through sigma-bonding or two or more carbon atoms coordinating with the catalyst via ⁇ -bonding Ligand may be exemplified, but is not limited thereto.
- PMDETA N, N, N ', N' '′, N ′' ′ '-pentamethyldiethylenetriamine
- bpy (2,2'-bipyridine)
- dNbpy (4,4'-di-5-nonyl-2,2'-bipyridine
- TPMA tris (2-pyridylmethyl) amine
- Me6TREN tris (2-dimethylaminoethyl) amine
- the content of the ligand may be 50 to 2000 parts by weight, 100 to 1000 parts by weight or 200 to 500 parts by weight with respect to 100 parts by weight of the catalyst. If the content of the ligand is less than 50 parts by weight of the metal complex formed by the coupling with the catalyst is too small or the reaction is not very slow or progress, if it is more than 2000 parts by weight of the increase in the manufacturing cost, side reactions due to the use of excess ligand This may occur.
- the ATRP reaction may use a catalytic reducing agent as necessary.
- Reducing agents include, but are not limited to, organic reducing agents, inorganic reducing agents, and radical generators.
- the polymer reaction step is a step required when using a monomer containing a functional group capable of introducing a photocurable functional group in the mixing step, and can be used when the photocurable vinyl monomer has a high risk of causing a gelation reaction in the polymerization step.
- the polymer reaction step is a condensation reaction of the grafted polymer and the monomolecular compound prepared in the ATRP reaction step may select the appropriate condensation reaction conditions according to the type of functional group.
- the monomer used in the mixing step is an alcohol group-containing monomer such as 2-hydroxyethyl methacrylate
- the polymer reaction step may introduce a (meth) acrylate group through condensation with an isocyanate-containing (meth) acrylate compound.
- the reaction temperature can be selected from the range of 40 °C to 100 °C and optionally may promote the reaction with a catalyst such as dibutyltin dilaurate (dibutyltin dilaurate).
- the polymer according to one embodiment of the present invention may be PVDF-co- (PCTFE-g- (mPEGMA-co-HEMA)).
- the polymer according to an embodiment of the present invention is prepared PVDF-co- (PCTFE-g- (mPEGMA-co-HEMA)) by the ATRP method and the graft polymer and 2-isocyanatoethyl acrylate (PVDF-co- (PCTFE-g- (mPEGMA-co-HEMA-), a compound in which a (meth) acrylate group is introduced into the side chain through a polymer reaction with (2-isocyanatoethyl acrylate or 2- (acryloyloxy) ethyl isocyanate (AOI) AOI))).
- PVDF-co- PCTFE-g- (mPEGMA-co-HEMA)
- the resulting polymer may be precipitated in an appropriate nonsolvent to remove unreacted monomers. Thereafter, the polymer may be dried under vacuum conditions to obtain a fluorine-based graft polymer (A) according to the present invention.
- the electrode protective layer according to the present invention specifically refers to an electrode protective layer coated on at least one surface of an electrode active material or metal lithium to solve the above problems, the fluorine-based graft polymer (A) or the fluorine-based graft polymer (In the solution in which A) is dissolved, a polyfunctional crosslinking agent is added at a ratio of 0.1 to 10 parts by weight or 0.1 to 6 parts by weight with respect to 100 parts by weight of the total fluorine-based graft polymer (A), and diluted in a solvent, and stirred for 1 to 6 hours. It may include a step.
- the solution may be mixed with an active material to be coated to prepare a paste, or may be coated on the surface of a foil-type electrode to be cured and dried through a heat treatment at 50 to 150 ° C. for 1 minute to 12 hours.
- the active material on which the coating film is formed may be further subjected to a vacuum drying step or a heating step to remove residual solvent.
- the polyfunctional vinyl-based crosslinking agent is 0.1 to 50 parts by weight based on 100 parts by weight of the total fluorine-based graft polymer (A) in a solution in which the fluorine graft polymer (A) or the fluorine graft polymer (A) is dissolved.
- the fluorine-based graft polymer (A) and the polyfunctional vinyl-based cross-linking may be added in a ratio of 0.01 to 5 parts by weight based on a total of 100 parts by weight, and properly diluted in a solvent, followed by stirring for 1 to 6 hours. Thereafter, the solution is mixed with the active material to be coated to prepare a paste or coated on the surface of a foil-type electrode and irradiated with ultraviolet (UV) light for photocuring, followed by further vacuum drying or heating. The solvent can be removed.
- UV ultraviolet
- the electrode on which the protective layer is formed may include an electrode active material, and the electrode active material may be any one selected from the group consisting of metal lithium, a positive electrode active material, and a negative electrode active material.
- the present invention provides a lithium secondary battery comprising an electrode (anode and cathode) to which the polymer composition for electrode protective layer is applied to form a protective layer, a separator and an electrolyte interposed between the negative electrode and the positive electrode.
- the positive electrode of the present invention may be prepared by, for example, preparing and applying a mixture of a positive electrode active material, a conductive material, and a binder in a slurry form on a positive electrode current collector, followed by drying, and further adding a filler to the mixture as necessary. You may.
- the positive electrode active material is not limited as long as it is commonly used in the art, for example, a layered compound such as lithium cobalt oxide (LiCoO 2), lithium nickel oxide (LiNiO 2), or a compound substituted with one or more transition metals; Lithium manganese oxycyclic (LiMnO 2); Lithium copper oxide (Li 2 CuO 2); Vanadium oxide; Nickel site type lithium nickel oxide; It may be a compound containing a lithium intercalation material as a main component, such as a lithium manganese composite oxide, a disulfide compound, or a composite oxide formed by a combination thereof.
- a layered compound such as lithium cobalt oxide (LiCoO 2), lithium nickel oxide (LiNiO 2), or a compound substituted with one or more transition metals
- Lithium manganese oxycyclic (LiMnO 2) Lithium copper oxide (Li 2 CuO 2); Vanadium oxide
- Nickel site type lithium nickel oxide It may be
- the positive electrode current collector may be generally 3 ⁇ m to 500 ⁇ m thick, and is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
- stainless steel, aluminum, nickel, titanium, calcined carbon, or a surface treated with carbon, nickel, titanium, silver, or the like on the surface of aluminum or stainless steel may be used.
- the cathode active material slurry may be prepared by adding and mixing an additive such as a binder, a conductive material, a filler, and a dispersant to the cathode active material.
- the binder is a component that assists in the bonding between the positive electrode active material and the conductive material and the positive electrode current collector, and may generally be added in an amount of 1 wt% to 30 wt% based on the total amount of the positive electrode active material.
- Such a binder is not particularly limited and may be conventional ones known in the art, but for example, vinylidene fluoride-hexafluoropropylene copolymer (PVBF-co-HEP), polyvinylidenefluoride, polyacryl Ronitrile (polyacrylonitrile), polymethylmethacrylate, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, poly 1 or 2 or more types selected from the group consisting of propylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), sulfonated EPDM, styrene-butyrene rubber (SBR) and fluorine rubber.
- PVF-co-HEP vinylidene fluoride-hexafluoropropylene copolymer
- EPDM ethylene-propylene-diene monomer
- the conductive material may be added at 0.05 wt% to 5 wt% based on the total weight of the positive electrode active material.
- a conductive material is not particularly limited and is not particularly limited as long as it is conductive without causing side reactions with other elements of the battery. Examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black (super-p), acetylene black, ketjen black, channel black, furnace black, lamp black and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives.
- the filler may be used as necessary to determine whether or not to be used as a component for inhibiting the expansion of the positive electrode, and is not particularly limited as long as it is a fibrous material without causing chemical change in the battery, for example, olefin polymers such as polyethylene polypropylene; It may be a fibrous material such as glass fiber, carbon fiber.
- the dispersant is not particularly limited, but may be, for example, isopropyl alcohol, N-methylpyrrolidone (NMP), acetone, or the like.
- the coating may be performed by a method commonly known in the art, but for example, the positive electrode active material slurry may be distributed on one surface of the positive electrode current collector and then uniformly dispersed using a doctor blade or the like. Can be.
- the method may be performed by a die casting method, a comma coating method, a screen printing method, or the like.
- the drying is not particularly limited, but may be performed within one day in a vacuum oven at 50 °C to 200 °C.
- the negative electrode of the present invention may be prepared by, for example, applying a mixture of a negative electrode active material, a conductive material, and a binder onto a negative electrode current collector, followed by drying, and, if necessary, further adding a filler to the mixture.
- the negative electrode active material may be a compound capable of reversible intercalation and deintercalation of lithium as the negative electrode active material.
- Specific examples thereof include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fibers, and amorphous carbon;
- Metallic compounds capable of alloying with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloys, Sn alloys or Al alloys;
- a composite including the above metallic compound and carbonaceous material such as a Si-C composite or a Sn-C composite, and one or a mixture of two or more of them may be used.
- a metal lithium thin film may be used as the anode active material.
- the carbon material both low crystalline carbon and high crystalline carbon can be used. Soft crystalline carbon and hard carbon are typical low crystalline carbon, and high crystalline carbon is amorphous, plate, scaly, spherical or fibrous natural graphite or artificial graphite, Kish graphite (Kish) graphite, pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, mesophase pitches and petroleum or coal tar pitch High temperature calcined carbon, such as derived cokes) is typical.
- Additives such as binders, conductive materials, fillers, and dispersants used in the negative electrode may be the same as or included in the aforementioned positive electrode.
- the separator may be an insulating thin film having high ion permeability and mechanical strength, and may generally have a pore diameter of 0.01 ⁇ m to 10 ⁇ m and a thickness of 5 ⁇ m to 300 ⁇ m.
- a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer may be used alone.
- these may be laminated and used, or a nonwoven fabric made of a conventional porous nonwoven fabric such as glass fibers having high melting point, polyethylene terephthalate fiber, or the like may be used, but is not limited thereto.
- the electrolyte may include an organic solvent and a lithium salt commonly used in the electrolyte, and are not particularly limited.
- the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
- the lithium salt is LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN (C2F5SO3) 2, LiN (C2F5SO2) 2, LiN (CF3SO2) 2.
- LiCl, LiI, LiB (C 2 O 4) 2, and the like may be used.
- the concentration of the lithium salt is preferably used within the range of 0.1 to 2.0M. When the concentration of the lithium salt is included in the above range, since the electrolyte has an appropriate conductivity and viscosity, it can exhibit excellent electrolyte performance, and lithium ions can move effectively.
- Typical organic solvents include propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, dipropyl carbonate, dimethyl sulfoxide, acetonitrile, dimethoxy ethane, diethoxyethane and vinylene. It may be one or more selected from the group consisting of carbonate, sulfolane, gamma-butyrolactone, propylene sulfite and tetrahydrofuran.
- ethylene carbonate and propylene carbonate which are cyclic carbonates among the carbonate-based organic solvents, are highly viscous organic solvents, and thus may be preferably used because they dissociate lithium salts in the electrolyte well.
- Such cyclic carbonate dimethyl carbonate and diethyl carbonate By using a low viscosity, low dielectric constant linear carbonate mixed in an appropriate ratio, such as to make an electrolyte having a high electrical conductivity can be used more preferably.
- an electrode assembly is formed by disposing a separator between a positive electrode and a negative electrode, and the electrode assembly may be manufactured by putting an electrolyte into a cylindrical battery case or a square battery case. Alternatively, after stacking the electrode assembly, it may be prepared by impregnating it in an electrolyte and sealing the resultant obtained in a battery case.
- the battery case used in the present invention may be adopted that is commonly used in the art, there is no limitation on the appearance according to the use of the battery, for example, cylindrical, square, pouch (coin) or coin using a can ( coin).
- the lithium secondary battery according to the present invention may not only be used in a battery cell used as a power source of a small device, but also preferably used as a unit battery in a medium-large battery module including a plurality of battery cells.
- Preferred examples of the medium-to-large device include, but are not limited to, electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, power storage systems, and the like.
- thermosetting polymer solution Using the fluorine-based graft polymer prepared in Preparation Examples 1-1 to 1-3 were mixed in a weight ratio (pt) as shown in Table 3 and stirred for 6 hours to prepare a thermosetting polymer solution.
- the solution was coated on a circular SUS substrate of 2 cm 2 ⁇ 0.1 cm in a dry room, dried by heating at 60 ° C. for 5 hours, and further thermoset at 120 ° C. for 2 hours. After vacuum drying at 60 °C for 48 hours to prepare a completely dried polymer electrode protective layer. The coating amount of the polymer solution was adjusted so that the thickness of the final electrode protective layer was about 100 ⁇ m.
- Examples 1-1 to 1-5 and Comparative Examples 1-1 to 1-3 are shown in Table 3 below.
- LiTFSI Lithium bistrifluoromethanesulfonimidate
- TDI-TMP (adduct of Tolyldiisocyanate-trimethyolpropane)
- Examples 2-1 to 2-5 and Comparative Examples 2-1 to 2-3 are shown in Table 4 below.
- LiTFSI Lithium bistrifluoromethanesulfonimidate
- PETA Penentaerythritol triacrylate
- the lithium salt-containing electrode protective layer applied on the circular SUS (stainless steel) substrate was contacted with lithium metal electrodes having the same surface area, and then an alternating voltage was applied through the electrodes on both sides of the sample at room temperature.
- the applied frequency was set to an amplitude range of 0.01 Hz to 1 MHz and the impedance was measured using BioLogic VMP3.
- the bulk electrolyte resistance is obtained from the intersection (R b ) where the measured semicircle or straight line of the impedance trajectory meets the real axis, and the ion conductivity of the polymer electrode protective layer is calculated from the width and thickness of the sample, and is shown in Table 3 below.
- a cell in which a lithium salt-containing polymer electrode protective layer was sandwiched between SUS and lithium metal was prepared.
- a voltage of 0.0 to 5.0 V was applied at a rate of 1 mV / sec to perform cyclic voltammetry (IVIUM, Inc.) to evaluate oxidation potential stability at off-set voltage.
- IVIUM, Inc. cyclic voltammetry
- Polymer electrode protection which is an electrode protective layer prepared in Examples 1-1 to 1-5, Examples 2-1 to 2-5, Comparative Examples 1-1 to 1-3 and Comparative Examples 2-1 to 2-3
- the layer was coated on a SUS (stainless steel) substrate and immersed in 10 mL of diethyl carbonate solution containing 1M LiPF 6 . After immersing for 48 hours at room temperature and then visually observed the form of the membrane and the results are shown in Table 5.
- Example 1-1 2.3 ⁇ 10 -7 4.2 ⁇ Example 1-2 1.5 ⁇ 10 -7 4.3 ⁇ Example 1-3 1.8 ⁇ 10 -6 4.2 ⁇ Example 1-4 1.0 ⁇ 10 -6 4.1 ⁇ Example 1-5 8.3 ⁇ 10 -7 4.2 ⁇ Comparative Example 1-1 3.9 ⁇ 10 -7 3.7 ⁇ Comparative Example 1-2 1.1 ⁇ 10 -6 3.7 ⁇ Comparative Example 1-3 1.0 ⁇ 10 -9 4.8 ⁇ Example 2-1 5.1 ⁇ 10 -7 4.3 ⁇ Example 2-2 3.3 ⁇ 10 -7 4.5 ⁇ Example 2-3 4.5 ⁇ 10 -6 4.2 ⁇ Example 2-4 1.0 ⁇ 10 -7 4.5 ⁇ Example 2-5 9.7 ⁇ 10 -7 4.4 ⁇ Comparative Example 2-1 4.6 ⁇ 10 -7 3.7 ⁇ Comparative Example 2-2 1.1 ⁇ 10 -7 3.7 ⁇ Comparative Example 2-3 1.5 ⁇ 10 -6 4.1 ⁇
- the electrode protective layer according to the present invention in contact with the lithium metal to confirm the ion conductivity and electrochemical stability, the ion conductivity is excellent and the electrochemical stability is obtained, the result of the lithium metal electrode It was confirmed that the protective layer can be applied well. In addition, it was confirmed that the resistance to the electrolyte is high and the possibility of damage to the electrode protective layer due to the side reaction with the electrolyte is low.
- the electrode protective layer without the fluorine-based polymer was excellent in ionic conductivity but poor in electrochemical stability and electrolyte resistance. Was very low, and the graft polymer in which the photocurable functional group was not introduced into the side chain did not have sufficient electrolyte resistance even after photocuring, and thus it was found that the graft polymer was not applicable to the electrode protective layer.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Graft Or Block Polymers (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Secondary Cells (AREA)
Abstract
본 발명은 불소계 중합체 상에, 폴리(알킬렌 옥사이드)를 포함하는 단량체와, 열경화형 관능기 또는 광경화형 관능기를 포함하는 단량체가 그라프팅 된 고분자(A)를 포함하는 전극 보호층용 고분자에 관한 것으로, 본 발명에 따른 고분자를 사용하여 전극 활물질층을 코팅하고 이를 열경화하거나 광경화하여 전극을 제조할 경우, 리튬 이온의 흐름을 방해하지 않아 우수한 리튬 이온 전도성을 나타내고 전해액에 대한 내화학성이 높으며, 균일하고 유연한 보호층의 특성으로 인해 전극 활물질 표면에서 발생하는 전해액과의 부반응을 억제하여 이차전지의 전압 안정성을 향상할 수 있다.
Description
본 출원은 2018년 7월 27일자 한국 특허출원 제10-2018-0087897호 및 동일자 한국 특허출원 제10-2018-0087904호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.
본 발명은 전극 보호층용 고분자 및 상기 고분자를 적용한 이차전지에 관한 것으로, 보다 구체적으로는 이차전지 전극의 활물질 표면에서 리튬 이온의 전달을 방해하지 않고 전해액에 의한 활물질 표면의 부반응을 억제하여 전기 화학적 안정성을 높일 수 있는 보호층 및 이를 적용한 이차전지에 관한 것이다.
전기화학소자 중 대표적으로 알려진 이차전지는 외부의 전기 에너지를 화학 에너지의 형태로 바꾸어 저장해 두었다가 필요할 때에 전기를 만들어 내는 장치를 말한다. 여러 번 충전할 수 있다는 뜻으로 "충전식 전지"(rechargeable battery)라는 명칭도 쓰인다. 흔히 쓰이는 이차전지로는 납 축전지, 니켈 카드뮴(Ni-Cd) 전지, 니켈 수소(NiMH) 축전지, 리튬이온(Li-ion) 전지, 리튬이온 폴리머(Li-ion polymer) 전지가 있다. 이차전지는 한 번 쓰고 버리는 일차 전지에 비해 경제적인 이점과 환경적인 이점을 모두 제공한다.
최근에는 무선통신 기술이 점차 발전함에 따라, 휴대용 장치 또는 자동차 부속품 등의 경량화 등이 요구되면서, 이들 장치의 에너지원으로 사용하는 이차전지에 대한 수요가 더욱 증가하고 있다.
현재 노트북, 스마트폰에 주로 사용되고 있는 고(高) 에너지 밀도의 리튬 이차전지는 리튬 산화물로 이루어진 양극과 탄소계의 음극, 분리막 및 액상 또는 고상의 전해질로 구성되어 있다. 리튬 이차전지의 응용 영역이 전기 자동차 (EV)나 에너지 저장 장치 (ESS) 등으로 확대됨에 따라 구동 전압이 4.5 V 이상으로 높아지고, 음극으로 금속 리튬을 적용하는 등 전지의 사용 환경이 가혹해지고 있는 상황이다. 금속 리튬 음극은 이론적 비용량이 3860 mAh/g으로 매우 높고 전기화학 포텐셜이 -3.04 V (vs. 표준 수소 전극)로 가장 낮아 큰 관심을 받고 있으나 전해액과의 부반응이나 리튬의 불균일한 퇴적/용출 등의 문제로 상용화가 지연되고 있다.
금속 리튬은 유기 전해액 및 그에 녹아 있는 리튬염과의 반응을 통해 지속적으로 고체 전해액 계면(Solid Electrolyte Interface, SEI)을 형성한다. 전지의 충, 방전 사이클이 반복되는 동안 SEI층은 지속적으로 파괴와 재생의 과정을 거치고, 새로 드러난 리튬 금속 표면은 다시 전해액과 반응을 함으로써, 전지의 쿨롱 효율(Coulombic efficiency) 저하 및 리튬 덴드라이트(dendrite) 성장을 통한 단락을 유발하여 금속 리튬 전극을 적용한 이차전지의 상업화가 지연되고 있다.
이러한 문제점을 해결하기 위한 방안으로 안정적인 인조 SEI 층을 리튬 금속과 같은 전극 활물질 표면에 도포하고 이를 통해 사이클 특성을 개선하려는 시도가 행해지고 있다. 예를 들어, 폴리아세틸렌, 테트라에톡시실란, 리튬 포스포러스 옥시나이트라이드, 알루미나 입자, 초박막의 알루미나 필름 등을 리튬막 위에 도포, 코팅하여 리튬 덴드라이트의 형성이나 부반응의 억제를 통해 사이클 특성을 개선하는 연구가 활발히 진행되고 있다. 그러나, 여전히 지속적인 배터리 구동 이후, 전극의 보호 효과가 떨어지는 현상이 관찰되었고, 이는 전극의 낮은 리튬 이온 전도성, 낮은 유연성 및 불균일한 코팅막으로 인한 균열 발생 때문인 것으로 분석되고 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 대한민국 공개특허 제2016-0058274호(2016.05.25), "폴리프로필렌옥사이드 블록 및 폴리에틸렌옥사이드 블록을 포함하는 블록 공중합체가 가지결합하여 형성된 고분자를 함유하는 바인더"
이에, 본 발명자들은 상기 문제를 해결하고자 다각적으로 연구를 수행한 결과 유전상수가 높은 불소계 중합체 상에, 이온전도성이 있는 폴리(알킬렌 옥사이드)를 포함하는 단량체와, 열경화형 관능기 또는 광경화형 관능기를 포함하는 단량체를 그라프트 공중합시켜 전극 보호층용 고분자를 제조하고, 이를 이차전지에 적용하여 리튬 금속 표면이나 활물질 표면을 보호하는 경우, 리튬 이온 전도성으로 인해 전해액 내의 리튬 이온의 흐름을 방해하지 않아 우수한 리튬 이온 전도성을 나타내면서도 전해액에 대한 내화학성이 높으며, 균일하고 유연한 보호층의 특성으로 인해 전극 활물질 표면에서 발생하는 전해액과의 부반응을 억제하여 이차전지의 전압 안정성을 향상시킬 수 있는 것을 확인하고 본 발명을 완성하였다.
따라서, 본 발명의 목적은, 불소계 중합체 상에, 폴리(알킬렌 옥사이드)를 포함하는 단량체와 열경화형 관능기 또는 광경화형 관능기를 포함하는 단량체가 그라프팅된 고분자를 포함하는 전극 보호층용 고분자를 제공하는데 있다.
상기 목적을 달성하기 위해, 본 발명은,
불소계 중합체 상에, 폴리(알킬렌 옥사이드)를 포함하는 단량체와, 열경화형 관능기 또는 광경화형 관능기를 포함하는 단량체가 그라프팅된 고분자(A)를 포함하는 전극 보호층용 고분자를 제공한다.
본 발명의 일 구체예는 상기 불소계 중합체가 하기 화학식 1의 구조를 포함하는 것이다.
[화학식 1]
(상기 화학식 1에서 p,q 및 r은 각각 독립적으로 0≤p≤20,000, 1≤q≤22,000 및 0≤r≤15,000 이다)
본 발명의 일 구체예는 상기 고분자(A)가 하기 화학식 2의 구조를 포함하는 것이다.
[화학식 2]
(상기 화학식 2에서 p, q, r 및 s는 각각 독립적으로 0≤p≤20,000, 0<q≤22,000, 0≤r≤15,000 및 0≤s<22,000 이며,
R1, R2, R3는 각각 독립적으로 수소 또는 메틸이며,
R4는 수소, 탄소수 1 내지 12의 알킬기 및 탄소수 1 내지 12의 알킬기로 치환되거나 치환되지 않은 페닐기 중에서 선택되는 어느 하나이며,
Z는 하기 화학식 3 또는 화학식 4로 나타내어지는 경화성 관능기이며,
l, m 및 n은 각각 독립적으로 2≤l≤230, 1≤m≤200 및 2≤n≤50 이며,
R5는 수소, 염소 또는 브롬 중에서 선택되는 어느 하나이다
[화학식 3]
(상기 화학식 3에서, X는 단순 연결이거나 탄소수 1 내지 6의 알킬렌 또는 페닐렌이고,
Y는 수소, 히드록시기, 알콕시실릴기, 포스페이트기, 숙시네이트기, 프탈레이트기 및 이소시아네이트기 중에서 선택되는 하나 이상의 작용기이며,
*는 상기 화학식 2 중 O에 직결하고 있는 결합부위를 나타낸다)
[화학식 4]
(상기 화학식 4에서, X는 단순 연결이거나 탄소수 1 내지 12의 알킬렌, 탄소수 1 내지 12의 알킬옥시카보닐(), 우레탄기 함유 탄소수 1 내지 12의 알킬렌옥시카보닐, 에틸렌 옥사이드의 부가몰수 1 내지 10인 폴리(에틸렌 옥사이드)카보닐 및 페닐렌 중에서 선택되는 어느 하나이며,
*는 상기 화학식 2 중 O에 직결하고 있는 결합부위를 나타낸다))
또한, 본 발명의 일 구체예는 상기 고분자(A)가 하기 화학식 5 또는 화학식 6의 구조를 포함하는 것이다.
[화학식 5]
(상기 화학식 5에서 p, q, r 및 s는 각각 독립적으로 0≤p≤20,000, 0<q≤22,000, 0≤r≤15,000 및 0≤s<22,000 이며,
R1, R2, R3는 각각 독립적으로 수소 또는 메틸이며,
R4는 수소, 탄소수 1 내지 12의 알킬기 및 탄소수 1 내지 12의 알킬기로 치환되거나 치환되지 않은 페닐기 중에서 선택되는 어느 하나이며,
X는 단순 연결이거나 탄소수 1 내지 6의 알킬렌 또는 페닐렌이며,
Y는 수소, 히드록시기, 알콕시실릴기, 포스페이트기, 숙시네이트기, 프탈레이트기 및 이소시아네이트기 중에서 선택되는 하나 이상의 작용기이며,
l, m 및 n은 각각 독립적으로 2≤l≤230, 1≤m≤200 및 2≤n≤50 이며,
R5는 수소, 염소 또는 브롬 중에서 선택되는 어느 하나이다)
[화학식 6]
(상기 화학식 6에서 p, q, r 및 s는 각각 독립적으로 0≤p≤20,000, 0<q≤22,000, 0≤r≤15,000 및 0≤s<22,000 이며,
R1, R2, R3 및 R6는 각각 독립적으로 수소 또는 메틸이며,
R4는 수소, 탄소수 1 내지 12의 알킬기 및 탄소수 1 내지 12의 알킬기로 치환되거나 치환되지 않은 페닐기 중에서 선택되는 어느 하나이며,
X는 단순 연결이거나 탄소수 1 내지 12의 알킬렌, 탄소수 1 내지 12의 알킬옥시카보닐()우레탄기 함유 탄소수 1 내지 12의 알킬렌옥시카보닐, 에틸렌 옥사이드의 부가몰수 1 내지 10인 폴리(에틸렌 옥사이드)카보닐 및 페닐렌 중에서 선택되는 어느 하나이며,
l, m 및 n은 각각 독립적으로 2≤l≤230, 1≤m≤200 및 2≤n≤50 이며,
R5는 수소, 염소 또는 브롬 중에서 선택되는 어느 하나이다)
본 발명의 일 구체예는 상기 폴리(알킬렌 옥사이드)가 폴리(에틸렌 옥사이드) 또는 폴리(프로필렌 옥사이드)인 것이다.
본 발명의 일 구체예는 상기 열경화형 관능기가 카르복시산기, 히드록시기, 알콕시실릴기, 포스페이트기, 숙시네이트기, 프탈레이트기 및 이소시아네이트기 중에서 선택되는 어느 하나 이상인 것이다.
본 발명의 일 구체예는 상기 폴리(알킬렌 옥사이드)를 포함하는 단량체와 열경화형 관능기를 포함하는 단량체가 99.9:0.1 내지 70:30의 몰비로 포함된 것이다.
또한, 본 발명은,
상술한 전극 보호층용 고분자 및 다관능 가교제를 포함하는 전극 보호층용 고분자 조성물을 제공한다.
본 발명의 일 구체예는 상기 다관능 가교제가 상기 고분자(A) 100 중량부 대비 0.1 내지 10 중량부로 포함되는 것이다.
본 발명의 일 구체예는 상기 다관능 가교제가 이소시아네이트 가교제, 에폭시 가교제, 아지리딘 가교제, 알코올 가교제 및 아민계 가교제로 이루어진 군에서 선택되는 어느 하나인 것이다.
또한, 본 발명은,
상술한 전극 보호층용 고분자 조성물을 열경화하여 형성되는 전극 보호층을 제공한다.
본 발명의 일 구체예는 상기 전극이 전극 활물질을 포함하고,
상기 전극 활물질은 금속 리튬, 양극 활물질 및 음극 활물질로 이루어진 군에서 선택되는 어느 하나인 것이다.
본 발명의 일 구체예는 상기 광경화형 관능기가 불포화 비닐기인 것이다.
본 발명의 일 구체예는 상기 폴리(알킬렌 옥사이드)를 포함하는 단량체와 광경화형 관능기를 포함하는 단량체가 99.9:0.1 내지 70:30의 몰비로 포함된 것이다.
또한, 본 발명은,
상술한 전극 보호층용 고분자, 다관능 비닐계 가교제 및 광개시제를 포함하는 전극 보호층용 고분자 조성물을 제공한다.
본 발명의 일 구체예는 상기 다관능 비닐계 가교제가 상기 고분자(A) 100 중량부 대비 0.1 내지 50 중량부로 포함되는 것이다.
본 발명의 일 구체예는 상기 광개시제가 상기 고분자(A) 100 중량부 대비 0.01 내지 5 중량부로 포함되는 것이다.
또한, 본 발명은,
상술한 전극 보호층용 고분자 조성물을 광경화하여 형성되는 전극 보호층을 제공한다.
본 발명의 일 구체예는 상기 전극이 전극 활물질을 포함하고,
상기 전극 활물질은 금속 리튬, 양극 활물질 및 음극 활물질로 이루어진 군에서 선택되는 어느 하나인 것이다.
또한 본 발명은,
상술한 전극 보호층을 포함하는 전극을 포함하는 이차 전지를 제공한다.
본 발명에 따른 전극 보호층용 고분자는 유전상수가 높은 불소계 중합체 상에, 폴리(알킬렌 옥사이드)를 포함하는 단량체와, 열경화형 관능기 또는 광경화형 관능기를 포함하는 단량체를 그라프팅시켜 제조되는 고분자(A)를 포함하고, 이를 사용하여 전극 활물질층을 코팅하고 이를 열경화하거나 광경화하여 전극을 제조할 경우, 리튬 이온의 흐름을 방해하지 않아 우수한 리튬 이온 전도성을 나타내고 전해액에 대한 내화학성이 높으며, 균일하고 유연한 보호층의 특성으로 인해 전극 활물질 표면에서 발생하는 전해액과의 부반응을 억제하여 이차전지의 전압 안정성을 향상할 수 있다.
이하, 본 발명을 더욱 상세히 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 발명에서, '포함하다' 또는 '가지다'등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하여는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
<전극 보호층용 고분자>
불소계 고분자는 유전상수가 9 내지 40 정도로 리튬 이온 해리도가 매우 높고, 리튬 이차전지에 사용될 경우 고전압(5.0V)에서도 전기화학적 안정성을 가진다는 장점이 있으나, 높은 결정성으로 인하여 상온에서 이온전도도가 매우 낮은 단점이 있다.
따라서, 본 발명에서는 불소계 고분자의 단점을 극복하고자, 유전상수가 높은 불소계 중합체 상에, 리튬 이온 킬레이팅(Chelating) 특성이 있는 폴리(알킬렌 옥사이드)를 포함하는 단량체를 그라프트화 반응을 통하여 도입한다. 또한, 전해액에 의해 녹거나 부반응을 일으키지 않는 안정적인 보호층의 형성을 위해 상기 폴리(알킬렌 옥사이드)를 포함하는 단량체와 더불어 열경화형 관능기 또는 광경화형 관능기를 포함하는 단량체를 추가로 그라프팅 공중합하여 형성되는 고분자(A)를 포함하는 전극 보호층용 고분자를 제공한다.
본 발명의 일구현에 따른 불소계 중합체는 폴리(클로로트리플루오로에틸렌) (Polychlorotrifluoroethylene; PCTFE) 중합단위를 포함하는 고분자일 수 있으며, 상기 불소계 중합체는 하기 화학식 1로 표시되는 화합물일 수 있다.
[화학식 1]
(상기 화학식 1에서 p, q 및 r은 각각 독립적으로 0≤p≤20,000, 1≤q≤22,000 및 0≤r≤15,000 이다)
상기 일 구현예에 따른 불소계 중합체는 비닐리덴플루오라이드(Vinylidene fluoride; VdF) 및 클로로트리플루오로에틸렌(Chlorotrifluoroethylene; CTFE) 의 이량체 혹은 VDF, CTFE, 트리플로오로에틸렌(Trifluoroethylene; TrFE) 의 삼량체를 포함할 수 있으며, 상기 중합체는 CTFE를 반드시 포함하는 것 일 수 있다.
상기 불소계 중합체의 이온전도성과 전기화학적 안정성을 향상시키기 위해 폴리(알킬렌 옥사이드)를 포함하는 단량체와, 열경화형 관능기 또는 광경화형 관능기를 포함하는 단량체를 그라프트 공중합할 수 있고, 본 발명에 따른 일 구현예는 원자 전달 라디칼 중합(atomic transfer radical polymerization, 이하 ATRP)을 이용한 그라프트 공중합일 수 있다.
본 발명에 따른 불소계 중합체는 원자 전달 라디칼 중합반응에 의해 가지형 사슬이 그라프팅될 수 있는 중합체로서, 이러한 불소원자를 포함하는 고분자 중합체라면 어떠한 중합체를 사용하여도 무방하지만, 바람직하게는 폴리비닐리덴 플루오라이드(Polyvinylidene fluoride; PVdF), 폴리비닐 플루오라이드(Polyvinyl fluoride; PVF), 폴리클로로트리플루오로에틸렌(Polychlorotrifluoroethylene; PCTFE), 폴리테트라플루오로에틸렌(Polytetrafluoroethylene; PTFE), 폴리트리플루오로에틸렌(Polytrifluoroethylene; PTrFE), 폴리-1,2-디플루오로 에틸렌(Poly-1,2-difluoroethylene) 또는 이들을 하나 이상 포함하는 공중합체를 사용하는 것이 좋으며, 바람직하게는 폴리클로로트리플루오로에틸렌(Polychlorotrifluoroethylene; PCTFE), 더욱 바람직하게는 폴리(비닐리덴 플루오라이드-클로로트리플루오로에틸렌) (Poly(vinylidene fluoridechlorotrifluoroethylene), 이하 P(VDF-CTFE)) 또는 폴리(비닐리덴 플루오라이드-클로로트리플루오로에틸렌-트리플루오로에틸렌)(Poly(vinylidene fluoridechlorotrifluoroethylene-trifluoroethylene), 이하 P(VDF-CTFE-TrFE))을 사용할 수 있다.
본 발명의 일 구현예는, 원자 전달 라디칼 중합을 통해 상기 CTFE 상의 염소(Cl) 그룹에 이온전도성을 가진 폴리(알킬렌 옥사이드)를 포함하는 체인을 도입하여 불소계 고분자 전해질의 결정성을 낮출 수 있고, 이에 따라 고분자 사슬의 유동성을 향상시킬 수 있는 장점이 있다. 뿐만 아니라 유전상수가 큰 불소계 고분자를 적용함으로써 더 많은 리튬 이온을 해리하여 기존 폴리(알킬렌 옥사이드)계 고분자 대비 높은 이온전도도 및 전기화학적 안정성을 나타낼 수 있다.
또한, 전극 보호층의 물리적, 화학적, 전기화학적 강도 및 안정성을 확보하기 위하여 본 발명에서는 추가적으로 고분자 내에 열경화형 관능기 또는 광경화형 관능기를 포함하는 단량체가 그라프팅된 고분자를 제공한다. 열경화형 관능기는 그 자체 혹은 적절한 다관능 관능기와 열경화하여 상기 특성을 향상할 수 있다. 또한, 광경화형 관능기는 그 자체 혹은 적절한 다관능 비닐계 관능기와 광개시제의 존재하에서 광경화하여 상기 특성을 향상할 수 있다.
본 발명의 일 구현예에 있어 상기 불소계 중합체 상에, 상기 폴리(알킬렌 옥사이드)를 포함하는 단량체와, 상기 열경화형 관능기 또는 광경화형 관능기를 포함하는 단량체를 공중합한 구조는 아래의 화학식 2의 구조를 포함하는 것일 수 있다.
[화학식 2]
(상기 화학식 2에서 p, q, r 및 s는 각각 독립적으로 0≤p≤20,000, 0<q≤22,000, 0≤r≤15,000 및 0≤s<22,000 이며,
R1, R2, R3는 각각 독립적으로 수소 또는 메틸이며,
R4는 수소, 탄소수 1 내지 12의 알킬기 및 탄소수 1 내지 12의 알킬기로 치환되거나 치환되지 않은 페닐기 중에서 선택되는 어느 하나이며,
Z는 하기 화학식 3 또는 화학식 4로 나타내어지는 경화성 관능기이며,
l, m 및 n은 각각 독립적으로 2≤l≤230, 1≤m≤200 및 2≤n≤50 이며,
R5는 수소, 염소 또는 브롬 중에서 선택되는 어느 하나이다
[화학식 3]
(상기 화학식 3에서, X는 단순 연결이거나 탄소수 1 내지 6의 알킬렌 또는 페닐렌이고,
Y는 수소, 히드록시기, 알콕시실릴기, 포스페이트기, 숙시네이트기, 프탈레이트기 및 이소시아네이트기 중에서 선택되는 하나 이상의 작용기이며,
*는 상기 화학식 2 중 O에 직결하고 있는 결합부위를 나타낸다)
[화학식 4]
(상기 화학식 4에서, X는 단순 연결이거나 탄소수 1 내지 12의 알킬렌, 탄소수 1 내지 12의 알킬옥시카보닐(), 우레탄기 함유 탄소수 1 내지 12의 알킬렌옥시카보닐, 에틸렌 옥사이드의 부가몰수 1 내지 10인 폴리(에틸렌 옥사이드)카보닐 및 페닐렌 중에서 선택되는 어느 하나이며,
*는 상기 화학식 2 중 O에 직결하고 있는 결합부위를 나타낸다))
또한, 본 발명의 일 구체예는 상기 고분자(A)가 하기 화학식 5 또는 화학식 6의 구조를 포함하는 것일 수 있다.
[화학식 5]
(상기 화학식 5에서 p, q, r 및 s는 각각 독립적으로 0≤p≤20,000, 0<q≤22,000, 0≤r≤15,000 및 0≤s<22,000 이며,
R1, R2, R3는 각각 독립적으로 수소 또는 메틸이며,
R4는 수소, 탄소수 1 내지 12의 알킬기 및 탄소수 1 내지 12의 알킬기로 치환되거나 치환되지 않은 페닐기 중에서 선택되는 어느 하나이며,
X는 단순 연결이거나 탄소수 1 내지 6의 알킬렌 또는 페닐렌이며,
Y는 수소, 히드록시기, 알콕시실릴기, 포스페이트기, 숙시네이트기, 프탈레이트기 및 이소시아네이트기 중에서 선택되는 하나 이상의 작용기이며,
l, m 및 n은 각각 독립적으로 2≤l≤230, 1≤m≤200 및 2≤n≤50 이며,
R5는 수소, 염소 또는 브롬 중에서 선택되는 어느 하나이다)
[화학식 6]
(상기 화학식 6에서 p, q, r 및 s는 각각 독립적으로 0≤p≤20,000, 0<q≤22,000, 0≤r≤15,000 및 0≤s<22,000 이며,
R1, R2, R3 및 R6는 각각 독립적으로 수소 또는 메틸이며,
R4는 수소, 탄소수 1 내지 12의 알킬기 및 탄소수 1 내지 12의 알킬기로 치환되거나 치환되지 않은 페닐기 중에서 선택되는 어느 하나이며,
X는 단순 연결이거나 탄소수 1 내지 12의 알킬렌, 탄소수 1 내지 12의 알킬옥시카보닐(), 우레탄기 함유 탄소수 1 내지 12의 알킬렌옥시카보닐, 에틸렌 옥사이드의 부가몰수 1 내지 10인 폴리(에틸렌 옥사이드)카보닐 및 페닐렌 중에서 선택되는 어느 하나이며,
l, m 및 n은 각각 독립적으로 2≤l≤230, 1≤m≤200 및 2≤n≤50 이며,
R5는 수소, 염소 또는 브롬 중에서 선택되는 어느 하나이다)
본 발명의 일 구현예에 따른 상기 폴리(알킬렌 옥사이드)는 불소계 중합체의 이온전도성을 향상시킬 수 있는 물질로써, 폴리(에틸렌 옥사이드) 또는 폴리(프로필렌 옥사이드)일 수 있고, 바람직하게는 폴리(에틸렌 옥사이드)일 수 있다. 상기 폴리(알킬렌 옥사이드)를 포함하는 단량체의 예로는 폴리(알킬렌 옥사이드) (메타)아크릴레이트, 폴리(알킬렌 옥사이드) 모노알킬 에테르 (메타)아크릴레이트, 폴리(알킬렌 옥사이드) 모노페닐 에테르 (메타)아크릴레이트 등이 있으나 이에 한정되지 않는다.
본 발명의 일 구현예에 따른 상기 열경화형 관능기를 포함하는 단량체는 카르복시산기, 히드록시기, 알콕시실릴기, 포스페이트기, 숙시네이트기, 프탈레이트기 및 이소시아네이트기 중에서 선택되는 하나 이상인 관능기를 포함할 수 있으며, 이의 비제한적인 예로는, (메타)아크릴산, 2-히드록시에틸 (메타)아크릴레이트, 히드록시프로필 (메타)아크릴레이트, 4-히드록시부틸 (메타)아크릴레이트, (3-트리알콕시실릴)프로필 (메타)아크릴레이트, 3-(디알콕시실릴)프로필 (메타)아크릴레이트, (메타)아크릴로일옥시프로필 포스페이트, (메타)아크릴로일옥시에틸 이소시아네이트, 2-(메타)아크릴로일옥시에틸 숙시네이트, 2-(메타)아크릴로일옥시에틸 프탈레이트, 2-(N,N-디에틸아미노)에틸 (메타)아크릴레이트 등이 있으며, 바람직하게는 2-히드록시에틸 (메타)아크릴레이트, 4-히드록시부틸 (메타)아크릴레이트, (3-트리알콕시실릴)프로필 (메타)아크릴레이트일 수 있다.
또한, 본 발명의 일 구현예에 따른 상기 광경화형 관능기를 포함하는 단량체는 불포화 비닐기를 포함할 수 있으며, 이의 비제한적인 예로는, 비닐 (메타)아크릴레이트, 알릴 (메타)아크릴레이트, 2-(비닐옥시)에틸 메타아크릴레이트와 같은 비닐기 함유 (메타)아크릴레이트일 수 있다.
상기 광경화형 관능기를 포함한 중합 단위는 비닐기를 함유하지 않은 (메타)아크릴레이트로부터 고분자 반응 (post-polymerization reaction)을 통해 이차적으로 유도될 수도 있다. 예를 들면 히드록시기 함유 (메타)아크릴레이트를 상기 폴리(알킬렌 옥사이드)기 함유 모노머와 공중합 한 후 2-이소시아네이토에틸 (메타)아크릴레이트와 축합하여 측쇄에 (메타)아크릴레이트기를 도입할 수 있으며, 반대로 이소시아네이트기를 포함하는 (메타)아크릴레이트를 폴리(알킬렌 옥사이드)기 함유 모노머와 공중합 후 히드록시기 함유 (메타)아크릴레이트와 축합할 수도 있다. 측쇄에 비닐기를 도입하기 위하여 사용하는 고분자 반응의 종류는 제한되지 않으나, 예를 들면 히드록시기-이소시아네이트기의 우레탄 형성 반응, 에폭시기-카르복시산기의 에스테르기 형성 반응, 아민기-할로겐기의 SN2 반응 등을 예를 들 수 있다.
상기 폴리(알킬렌 옥사이드)를 포함하는 단량체와, 열경화형 관능기 또는 광경화형 관능기를 포함하는 단량체는 99.9:0.1 내지 70:30의 몰비를 가질 수 있고, 구체적으로는 99:1 내지 90:10의 몰비일 수 있다. 일 수 있다. 만일, 열경화형 관능기 또는 광경화형 관능기를 포함하는 단량체가 상기 범위 이하일 경우에는 고분자간의 가교 반응이 충분하지 않아 전극 보호층의 물리적, 화학적, 전기화학적 강도 및 안정성이 충분히 높지 않고, 상기 범위 이상일 경우에는 알킬렌 옥사이드의 함량이 적고 고분자 네트워크 밀도가 지나치게 높아져 이온 전도도가 현격히 나빠질 수 있으므로 상기 범위에서 적절히 조절한다.
본 발명의 일 구현예에서, 상기 불소계 그라프트 고분자(A)는 전극 활물질의 계면 접착 특성, 기계적 특성의 향상을 목적으로 그라프트 체인에 제3의 단량체로부터 유도된 유닛을 추가로 도입할 수 있다. 제3의 단량체의 예로는, 메틸(메타)아크릴레이트, 에틸(메타)아크릴레이트, n-프로필(메타)아크릴레이트, 이소프로필(메타)아크릴레이트, n-부틸(메타)아크릴레이트, t-부틸(메타)아크릴레이트, 펜틸(메타)아크릴레이트, 2-에틸부틸(메타)아크릴레이트로 2-에틸헥실(메타)아크릴레이트, n-옥틸(메타)아크릴레이트, 이소옥틸(메타)아크릴레이트, 이소노닐(메타)아크릴레이트, 또는 라우릴(메타)아크릴레이트, 스티렌, α-메틸스티렌, p-메틸스티렌, p-메톡시스티렌, (메타)아크릴로니트릴 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 일 구현예에 따른 제3의 단량체는 불소계 그라프트 고분자(A) 총 100 중량부 대비 1 내지 20 중랑부 포함될 수 있다. 1 중량부 이하에서는 목적으로 하는 물성의 개선이 미진할 수 있으며 20 중량부 이상 포함할 경우 이온 전도도가 지나치게 낮아질 수 있다.
본 발명의 일 구현예에 따른 상기 화학식 1에 따른 불소계 중합체는 상기 불소계 그라프트 고분자(A) 100 중량부 대비 5 내지 50 중량부, 바람직하게는 5 내지 40 중량부로 포함될 수 있다. 만일 불소계 중합체의 함량이 상기 범위 이상이면 전극 보호층의 기계적 강도, 전기화학적 안정성은 높아질 수 있으나, 불소계 고분자의 결정성이 억제되지 못하고 알킬렌 옥사이드의 함량이 과도하게 줄어들어 이온전도도가 떨어지며, 불소계 중합체의 함량이 상기 범위 미만일 경우 불소계 중합체의 높은 전기화학적 안정성 및 높은 리튬 이온 해리 특성을 구현할 수 없게 되므로 상기 범위에서 적절히 선택한다.
또한, 본 발명은 상기 전극 보호층용 고분자 조성물 및 상기 불소계 그라프트 고분자(A) 내에 포함된 열경화형 관능기와 반응할 수 있는 관능기를 적어도 2개 이상 가지는 다관능 가교제를 추가로 포함하는 전극 보호층용 고분자 조성물을 제공한다.
상기 다관능 가교제는 상기 화학식 2의 그라프트 고분자 내에 포함된 열경화형 관능기 Y와 추가적으로 반응하여 고분자 간 가교 구조를 형성할 수 있다. 상기 가교 구조로 형성된 전극 보호층은 높은 화학적, 전기 화학적 안정성을 타내며 전극 활물질 표면을 전해액과의 부반응으로부터 보호하여 이차전지의 사이클 특성 열화 및 쿨롱 효율(Coulombic efficiency) 저하 등의 문제를 극복할 수 있다.
다관능 가교제의 종류로는, 특별히 제한되지 않으며 이소시아네이트 가교제, 에폭시 가교제, 아지리딘 가교제, 알코올 가교제 및 아민계 가교제로 이루어진 군에서 선택되는 어느 하나를 사용할 수 있다.
이소시아네이트 가교제의 구체적인 예로는 톨루엔 디이소시아네이트, 크실렌 디이소시아네이트, 디페닐메탄 디이소시아네이트, 헥사메틸렌 디이소시아네이트, 이소보론 디이소시아네이트, 테트라메틸크실렌 디이소시아네이트 또는 나프탈렌 디이소시아네이트 등의 디이소시아네이트 화합물이나, 또는 상기 디이소시아네이트 화합물을 폴리올과 반응시킨 화합물을 사용할 수 있으며, 상기에서 폴리올로는, 예를 들면, 트리메틸롤 프로판 등을 사용할 수 있다.
또한, 에폭시 가교제의 구체적인 예로는 에틸렌글리콜 디글리시딜에테르, 트리글리시딜에테르, 트리메틸올프로판 트리글리시딜에테르, N, N, N', N'-테트라글리시딜 에틸렌디아민 및 글리세린 디글리시딜에테르로 이루어진 군으로부터 선택된 하나 이상을 들 수 있으며, 아지리딘 가교제의 구체적인 예로는 N,N'-톨루엔-2,4-비스(1-아지리딘카르복사미드), N,N'-디페닐메탄-4,4'-비스(1-아지리딘카르복사미드), 트리에틸렌 멜라민, 비스이소프로탈로일-1-(2-메틸아지리딘) 및 트리-1-아지리디닐포스핀옥시드로 이루어진 군으로부터 선택된 하나 이상을 들 수 있으나, 이에 제한되는 것은 아니다. 알코올 가교제의 구체적인 예로는 폴리(알킬렌 글리콜), 글리세롤, 트리스메틸올 프로판, 펜타에리스리톨, 디펜타에리스리톨로 이루어진 군으로부터 선택된 하나 이상을 들 수 있으나, 이에 제한되는 것은 아니다. 또한, 상기 아민계 가교제의 구체적인 예로는 에틸렌 디아민, 디에틸렌트리아민, 트리에틸렌테트라민, 혹은 이들의 변성아민, 메타페닐렌디아민, 디아미노디페닐메탄, 디아미노디페닐 술폰 혹은 이들의 변성 아민으로 이루어진 군으로부터 하나 이상 선택할 있으나, 이에 제한되는 것은 아니다.
상기 다관능 가교제는 상기 블소계 그라프트 고분자(A) 100 중량부 대비 0.1 내지 10 중량부, 바람직하게는 0.5 내지 5 중량부의 비율로 포함될 수 있다. 상기 가교제의 함량을 전술한 범위 내에서 조절하여 전해질의 물성을 목적하는 수준으로 적절하게 나타낼 수 있다.
또한, 본 발명은 상기 전극 보호층용 고분자 조성물 및 상기 불소계 그라프트 고분자(A) 내에 포함된 광경화형 관능기와 반응할 수 있는 관능기를 가지는 다관능 비닐계 가교제를 추가로 포함하는 전극 보호층용 고분자 조성물을 제공한다. 상기 불소계 그라프트 중합체(A)는 측쇄에 도입된 비닐기에 의해 광개시제의 존재 하에 광경화할 수 있으나 다관능 비닐계 가교제를 추가로 포함하는 광경화형 고분자 조성물일 수 있다.
상기 다관능 비닐계 가교제는 상기 화학식 2의 그라프트 고분자 내에 포함된 불포화 비닐 관능기와 추가적으로 반응하여 고분자 간 가교 구조를 형성할 수 있다. 상기 가교 구조로 형성된 전극 보호층은 높은 화학적, 전기 화학적 안정성을 타내며 전극 활물질 표면을 전해액과의 부반응으로부터 보호하여 이차전지의 사이클 특성 열화 및 쿨롱 효율(Coulombic efficiency) 저하 등의 문제를 극복할 수 있다.
본 발명의 일 구현예에 있어서 상기 다관능 비닐계 가교제는 한 분자내에 비닐기가 2개 이상인 유기 화합물로서, 에틸렌글리콜 디(메타)아크릴레이트, 1,6-헥산디올 디(메타)아크릴레이트, 트리(프로필렌글리콜) 디(메타)아크릴레이트, 트리스(2-(메타)아크릴로에틸) 이소시아네이트, 트리메틸올프로판 트리(메타)아크릴레이트, 트리메틸올프로판 에톡시레이트 트리(메타)아크릴레이트, 펜타에리스리톨 디(메타)아크릴레이트, 펜타에리스리톨 트리(메타)아크릴레이트, 펜타에리스리톨 테트라(메타)아크릴레이트, 디펜타에리스리톨 디(메타)아크릴레이트, 디펜타에리스리톨 트리(메타)아크릴레이트, 디펜타에리스리톨 테트라(메타)아크릴레이트, 디펜타에리스리톨 펜타(메타)아크릴레이트, 디펜타에리스리톨 헥사(메타)아크릴레이트 등을 1종 이상 포함할 수 있으나, 이에만 한정되는 것은 아니다.
상기 다관능 비닐계 가교제는 상기 블소계 그라프트 고분자(A) 100 중량부 대비 0.1 내지 50 중량부, 바람직하게는 0.5 내지 10 중량부의 비율로 포함될 수 있다. 상기 가교제의 함량을 전술한 범위 내에서 조절하여 전해질의 물성을 목적하는 수준으로 적절하게 나타낼 수 있다.
본 발명의 일 구현예에 있어서 상기 광개시제는 아세토페논계 화합물, 비이미다졸계 화합물, 트리아진계 화합물, 옥심계 화합물, 벤조인계 화합물, 히드록시케톤계 화합물, 아미노케톤계 화합물 또는 포스핀옥시드계 화합물 등과 같이, 자외선 등의 조사에 의해 라디칼을 발생시켜 광중합을 개시시킬 수 있는 일반적인 개시제를 제한 없이 사용할 수 있다.
상기 광개시제로 사용 가능한 아세토페논계 화합물로는 2-히드록시-2-메틸-1-페닐프로판-1-온, 1-(4-이소프로필페닐)-2-히드록시-2-메틸프로판-1-온, 4-(2-히드록시에톡시)-페닐-(2-히드록시-2-프로필)케톤, 1-히드록시시클로헥실페닐케톤, 벤조인메틸 에테르, 벤조인에틸 에테르, 벤조인이소부틸 에테르, 벤조인부틸에테르, 2,2-디메톡시-2-페닐아세토페논, 2-메틸-(4-메틸티오)페닐-2-몰폴리노-1-프로판-1-온, 2-벤질-2-디메틸아미노-1-(4-몰폴리노페닐)-부탄-1-온, 2-(4-브로모-벤질-2-디메틸아미노-1-(4-몰폴리노페닐)-부탄-1-온 및 2-메틸-1-[4-(메틸티오)페닐]-2-몰폴리노프로판-1-온으로 이루어진 그룹으로부터 선택된 것이고, 비이미다졸계 화합물로는 2,2-비스(2-클로로페닐)-4,4',5,5'-테트라페닐 비이미다졸, 2,2'-비스(o-클로로페닐)-4,4',5,5'-테트라키스(3,4,5-?z리메톡시페닐)-1,2'-비이미다졸, 2,2'-비스(2,3-디클로로페닐)-4,4',5,5'-테트라페닐 비이미다졸, 및 2,2'-비스(o-클로로페닐)-4,4,5,5'-테트라페닐-1,2'-비이미다졸로 이루어진 그룹으로부터 선택된 것이고, 트리아진계 화합물로는 3-{4-[2,4-비스(트리클로로메틸)-s-트리아진-6-일]페닐티오}프로피오닉산, 1,1,1,3,3,3-헥사플로로이소프로필-3-{4-[2,4-비스(트리클로로메틸)-s-트리아진-6-일]페닐티오}프로피오네이트, 에틸-2-{4-[2,4-비스(트리클로로메틸)-s-트리아진-6-일]페닐티오}아세테이트, 2-에폭시에틸-2-{4-[2,4-비스(트리클로로메틸)-s-트리아진-6-일]페닐티오}아세테이트, 시클로헥실-2-{4-[2,4-비스(트리클로로메틸)-s-트리아진-6-일]페닐티오}아세테이트, 벤질-2-{4-[2,4-비스(트리클로로메틸)-s-트리아진-6-일]페닐티오}아세테이트, 3-{클로로-4-[2,4-비스(트리클로로메틸)-s-트리아진-6-일]페닐티오}프로피오닉산, 3-{4-[2,4-비스(트리클로로메틸)-s-트리아진-6-일]페닐티오}프로피온아미드, 2,4-비스(트리클로로메틸)-6-p-메톡시스티릴-s-트리아진, 2,4-비스(트리클로로메틸)-6-(1-p-디메틸아미노페닐)-1,3,-부타디에닐-s-트리아진, 및 2-트리클로로메틸-4-아미노-6-p-메톡시스티릴-s-트리아진으로 이루어진 그룹으로부터 선택된 것이며, 옥심계 화합물로는 1,2-옥타디온-1-(4-페닐치오)페닐-2-(o-벤조일옥심)(시바가이기 社, CGI 124), 및 에타논-1-(9-에틸)-6-(2-메틸벤조일-3-일)-1-(o-아세틸옥심)(CGI 242), 옥심 OX-03(시바 가이기社), NCI-831(아데카 社), PI-102(엘지화학 社),PBG 304, PBG 305, PBG 3057(트론니 社)등이 있다.
또한 α-히드록시케톤계 화합물(ex. IRGACURE 184, IRGACURE 500, IRGACURE 2959, DAROCUR 1173; Ciba Specialty Chemicals(제)); 페닐글리옥실레이트(phenylglyoxylate)계 화합물(ex. IRGACURE 754, DAROCUR MBF; Ciba Specialty Chemicals(제)); 벤질디메틸케탈계 화합물(ex. IRGACURE 651; Ciba Specialty Chemicals(제)); α-아미노케톤계 화합물(ex. IRGACURE 369, IRGACURE 907, IRGACURE 1300; Ciba Specialty Chemicals(제)); 모노아실포스핀계 화합물(MAPO)(ex. DAROCUR TPO; Ciba Specialty Chemicals(제)); 비스아실포스펜계 화합물(BAPO)(ex. IRGACURE 819, IRGACURE 819DW; Ciba Specialty Chemicals(제)); 포스핀옥시드계 화합물(ex. IRGACURE 2100; Ciba Specialty Chemicals(제)); 메탈로센계 화합물(ex. IRGACURE 784; Ciba Specialty Chemicals(제)); 아이오도늄염(iodonium salt)(ex.IRGACURE 250; Ciba Specialty Chemicals(제)); 및 상기 중 하나 이상의 혼합물 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
상기 광개시제의 함량은 상기 불소계 그라프트 고분자(A) 100 중량부 대비 0.01 내지 5 중량부일 수 있고, 바람직하게는 0.1 내지 1 중량부일 수 있으나, 이에 한정되는 것은 아니다. 라디칼 개시제의 함량이 0.01 이하일 경우 경화가 충분히 이루어 지지 않을 수 있고, 원하는 물성의 전극 보호층을 얻을 수 없으므로 상기 범위내에서 적절히 조절한다.
<그라프트 고분자의 제조방법>
본 발명에 따른 전극 보호층용 고분자의 제조방법은 혼합단계, 중합단계 및 선택적으로 고분자 반응 단계를 포함할 수 있다.
상기에서 혼합단계는, 불소계 중합체 상에, 폴리(알킬렌 옥사이드)를 포함하는 단량체 및 열경화형 관능기를 포함하는 단량체가 그라프팅된 고분자를 제조하기 위한 원료, 또는 폴리(알킬렌 옥사이드)를 포함하는 단량체 및 광경화형 관능기를 포함하는 단량체 혹은 상기 고분자 반응 단계에서 광경화형 관능기를 도입할 수 있는 작용기를 포함하는 단량체가 그라프팅된 고분자를 제조하기 위한 원료를 혼합하여 혼합물을 형성하는 단계일 수 있으며, 하나의 예시적인 상기 혼합단계는 불소계 중합체와 중합하고자 하는 상기 단량체 및 용매를 혼합하는 단계일 수 있다. 이 후 추가적으로 촉매 및 리간드를 용매와 함께 혼합하는 단계를 거칠 수 있다.
상기 불소계 중합체는, 상기 그라프팅 된 고분자(A)의 주쇄가 되는 부분이며, 이의 구체적인 예시는 전술한 바와 같고, 본 발명에 따른 일 구현예로 폴리(비닐리덴-co-클로로드리플루오로에틸렌)(이하, P(VDF-co-CTFE))일 수 있다. 본 발명의 일 구현예에서 상기 폴리(알킬렌 옥사이드)를 포함하는 단량체 및 열경화형 관능기 또는 광경화형 관능기를 갖는 단량체는 폴리(에틸렌 글리콜) 모노메틸 에테르 메타크릴레이트)(Poly(ethylene glycol) monomethyl ether methacrylate))(이하, mPEGMA) 및 2-히드록시에틸 메타아크릴레이트(2-hydroxyethyl methacrylate, 이하 HEMA)일 수 있다.
상기 용매는 기술 분야에서 공지된 다양한 용매를 사용할 수 있으며, 예를 들어, N-메틸-2-피롤리돈(NMP), 감마-부티로락톤(GBL) 디메틸포름아미드(DMF), 디메틸설폭사이드(DMSO), 디메틸아세트아미드(DMAc), 아세토니트릴(AcCN) 또는 테트라하이드로퓨란(THF) 등을 사용할 수 있으나, 이에 제한되는 것은 아니다.
상기 혼합 용액에 추가적으로 촉매 및 리간드를 용매와 함께 혼합할 수 있다.
상기 촉매는 예를 들어, Cu(I)Cl, Cu(Ⅱ)Cl2, Cu(I)Br, Cu(Ⅱ)Br2, Fe(Ⅱ)Cl2, Fe(Ⅲ)Cl3 또는 이들의 혼합물 등이 예시될 수 있으나, 바람직하게는 Cu(I)Cl, Cu(Ⅱ)Cl2, Cu(I)Br, Cu(Ⅱ)Br2 또는 이들의 혼합물이 예시될 수 있다.
또한, 상기 촉매의 함량은 상기 단량체 혼합물 100 중량부 대비 0.0001 내지 1 중량부, 0.0005 내지 0.5 중량부 또는 0.001 내지 0.1 중량부일 수 있다. 상기 촉매의 함량이 0.0001 중량부 미만인 경우 반응속도가 매우 지체되고, 1 중량부 초과인 경우 중합된 그라프트 고분자의 생성 이전에 겔화되거나 촉매 제거가 매우 어려운 문제가 있어 상기 범위에서 적절히 선택한다.
상기 리간드는 상기 촉매와 결합하여 중합 반응에 사용될 수 있는 것이라면 특별히 제한되지 않는다.
일례로, 상기 리간드는 σ-결합을 통하여 촉매와 배위할 수 있는 질소, 산소, 인 및 황 원자를 1개 이상 갖는 리간드 또는 π-결합을 통하여 촉매와 배위할 수 있는 2개 이상의 탄소 원자를 함유하는 리간드 등이 예시될 수 있으나, 이에 제한되지 않으며, 구체적으로는 PMDETA (N,N,N′,N′'′',N′'′'-pentamethyldiethylenetriamine), bpy(2,2'-bipyridine), dNbpy(4,4'-di-5-nonyl-2,2'-bipyridine), TPMA(tris(2-pyridylmethyl)amine), Me6TREN(tris(2-dimethylaminoethyl)amine)으로 이루어진 군에서 1종 이상 선택하여 사용할 수 있으나 이에 제한되지 않는다.
상기 리간드의 함량은, 상기 촉매 100 중량부 대비 50 내지 2000 중량부, 100 내지 1000 중량부 또는 200 내지 500 중량부일 수 있다. 상기 리간드의 함량이 50 중량부 미만인 경우 촉매와의 결합에 의한 금속 복합체 형성이 너무 적어 반응이 매우 느리거나 진행되지 않으며, 2000 중량부 초과인 경우 제조 원가의 상승하고, 과량의 리간드 사용으로 인한 부반응이 발생할 우려가 있다.
상기 ATRP 반응은 필요에 따라 촉매 환원제를 사용할 수 있다. 환원제로는 유기 환원제, 무기 환원제, 라디칼 발생제를 예를 들 수 있으나 이에 제한되지 않는다.
ATRP 반응의 촉매, 리간드, 필요에 따라 촉매 환원제를 혼합하여 30℃ 내지 100℃에서 교반하면, ATRP 반응이 일어나 그라프팅 된 고분자를 수득할 수 있다.
상기 고분자 반응 단계는 상기 혼합단계에 광경화형 관능기를 도입할 수 있는 작용기를 포함하는 단량체를 사용하였을 때 필요한 단계로서, 광경화형 비닐계 단량체가 중합 단계에서 겔화 반응을 일으킬 위험이 높을 경우 사용할 수 있다. 상기 고분자 반응 단계는 상기 ATRP 반응 단계에서 제조된 그라프팅 된 고분자와 단분자 화합물의 축합 반응으로서 작용기의 종류에 따라 적절한 축합 반응 조건을 선택할 수 있다. 구체적인 예로 상기 혼합 단계에 사용한 단량체가 2-히드록시에틸 메타아크릴레이트와 같은 알코올기 함유 단량체 일 경우 고분자 반응 단계에서는 이소시아네이트 함유 (메타)아크릴레이트 화합물과 축합을 통하여 (메타)아크릴레이트기를 도입할 수 있다. 이 때 반응 온도는 40 ℃ 내지 100 ℃의 범위에서 선택할 수 있으며 선택적으로 디부틸틴 디라우레이트 (dibutyltin dilaurate)와 같은 촉매로 반응을 촉진할 수 있다.
본 발명의 일 구현예에 따른 고분자는 PVDF-co-(PCTFE-g-(mPEGMA-co-HEMA))일 수 있다.
또한, 본 발명의 일 구현예에 따른 고분자는 PVDF-co-(PCTFE-g-(mPEGMA-co-HEMA))를 ATRP 법으로 제조한 후 상기 그라프트 고분자와 2-이소시아네이토에틸 아크릴레이트(2-isocyanatoethyl acrylate 혹은 2-(acryloyloxy)ethyl isocyanate, AOI)와의 고분자 반응을 통해 측쇄에 (메타)아크릴레이트기를 도입한 화합물인 (PVDF-co-(PCTFE-g-(mPEGMA-co-HEMA-AOI)))일 수 있다.
상기 그라프팅 중합 반응을 진행한 이후에 생성된 고분자를 적절한 비용제(nonsolvent)에 침전하여 미반응 단량체를 제거하는 단계를 더 거칠 수도 있다. 그 이후 상기 고분자를 진공 조건에서 건조시키는 단계를 거쳐 본 발명에 따른 불소계 그라프트 고분자(A)를 수득할 수 있다.
<전극 보호층 형성방법>
본 발명에 따른 전극 보호층은 구체적으로 전극 활물질 또는 금속 리튬의 적어도 일면에 코팅되어 상술한 문제점을 해결하기 위한 전극 보호층을 의미하며, 상기 불소계 그라프트 고분자(A) 혹은 상기 불소계 그라프트 고분자(A)가 녹아 있는 용액에 다관능 가교제를 총 불소계 그라프트 고분자(A) 100 중량부 대비 0.1 내지 10 중량부 혹은 0.1 내지 6 중량부의 비율로 투입하고 용매에 적절히 희석하여 1 내지 6시간동안 교반하는 단계를 포함할 수 있다. 이후 상기 용액을 코팅 하고자 하는 활물질과 혼합하여 페이스트를 제조하거나 포일(foil) 형태의 전극의 표면에 코팅하여 50 내지 150 ℃에서 1분 내지 12시간 열처리 과정을 거쳐 경화 및 건조하여 제조할 수 있다. 코팅막이 형성된 활물질은 진공 건조 공정이나 가열 공정을 추가로 실시하여 잔류 용매를 제거할 수 있다.
또는, 상기 불소계 그라프트 고분자(A) 혹은 상기 불소계 그라프트 고분자(A)가 녹아 있는 용액에 다관능 비닐계 가교제를 총 불소계 그라프트 고분자(A) 100 중량부 대비 0.1 내지 50 중량부, 광개시제를 불소계 그라프트 고분자(A) 및 다관능 비닐계 가교체의 총 100 중량부 대비 0.01 내지 5 중량부의 비율로 투입하고 용매에 적절히 희석하여 1 내지 6시간동안 교반하는 단계를 포함할 수 있다. 이후 상기 용액을 코팅 하고자 하는 활물질과 혼합하여 페이스트를 제조하거나 포일(foil) 형태의 전극의 표면에 코팅하고 자외선(UV)을 조사하여 광경화 한 후 진공 건조 공정이나 가열 공정을 추가로 실시하여 잔류 용매를 제거할 수 있다.
본 발명의 일 구현예에 따르면 상기 보호층이 형성되는 전극은 전극 활물질을 포함할 수 있으며, 상기 전극 활물질은 금속 리튬, 양극 활물질 및 음극 활물질로 이루어진 군에서 선택되는 어느 하나인 것일 수 있다.
<리튬 이차전지>
또한 본 발명은 상기 전극 보호층용 고분자 조성물이 적용되어 보호층을 형성한 전극(양극 및 음극), 상기의 음극과 양극 사이에 개재된 분리막 및 전해질을 포함하는 리튬 이차전지를 제공한다.
본 발명의 상기 양극은, 예컨대 양극 집전체 상에 양극 활물질, 도전재 및 결착제의 혼합물을 슬러리 형태로 제조하여 도포한 후 건조하여 제조될 수 있으며, 필요에 따라서는 상기 혼합물에 충진제를 더 첨가할 수도 있다.
상기 양극 활물질은 당업계에서 통상적으로 사용되는 것이면 한정되지 않으나, 예컨대 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 하나 또는 그 이상의 전이금속으로 치환된 화합물; 리튬 망간 산환물(LiMnO2); 리튬 동 산화물(Li2CuO2); 바나듐 산화물; 니켈 사이트형 리튬 니켈 산화물(Lithiated nickel oxide); 리튬 망간 복합 산화물, 디설파이드 화합물 또는 이들 조합에 의해 형성되는 복합 산화물 등과 같이 리튬 흡착 물질(lithium intercalation material)을 주성분으로 하는 화합물일 수 있다.
상기 양극 집전체는 일반적으로 3 ㎛ 내지 500 ㎛의 두께인 것을 사용할 수 있으며, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니다. 예컨대, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸의 표면에 카본, 니켈, 티탄, 또는 은 등으로 표면 처리한 것 등이 사용될 수 있다.
상기 양극 활물질 슬러리는 상기 양극 활물질에 바인더와 도전재 및 충진제와 분산제 등의 첨가제를 첨가하고 혼합하여 제조한 것일 수 있다.
상기 바인더는 상기 양극 활물질과 도전재의 결합과 양극 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질 총량을 기준으로 1 중량% 내지 30 중량%로 첨가될 수 있다. 이러한 바인더는 특별히 한정되지 않고 당업계에 공지된 통상적인 것을 사용할 수 있으나, 예컨대 비닐리덴플루오라이드-헥사플로오로프로필렌 코폴리머(PVBF-co-HEP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌-부티렌 고무(SBR) 및 불소 고무로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 혼합물일 수 있다.
상기 도전재는 통상적으로 양극 활물질 전체 중량을 기준으로 0.05 중량% 내지 5 중량%로 첨가될 수 있다. 이러한 도전재는 특별히 한정되지 않고 전지의 기타 요소들과 부반응을 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니나, 예컨대 천연흑연이나 인조흑연 등의 흑연; 카본 블랙(super-p), 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본 블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등일 수 있다.
상기 충진제는 양극의 팽창을 억제하는 성분으로서 필요에 따라 사용 여부를 정할 수 있으며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니나, 예컨대 폴리에틸렌 폴리프로필렌등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질일 수 있다.
상기 분산제(분산액)로는 특별히 한정되는 것은 아니나, 예컨대 이소프로필 알코올, N-메틸피롤리돈(NMP), 아세톤 등일 수 있다.
상기 도포는 당업계에 통상적으로 공지된 방법에 의하여 수행할 수 있으나, 예컨대 상기 양극 활물질 슬러리를 상기 양극 집전체 일측 상면에 분배시킨 후 닥터 블레이드(doctor blade) 등을 사용하여 균일하게 분산시켜 수행할 수 있다. 이외에도, 다이 캐스팅(die casting), 콤마 코팅(comma coating), 스크린 프린팅(screen printing) 등의 방법을 통하여 수행할 수 있다.
상기 건조는 특별히 한정되는 것은 아니나 50℃ 내지 200℃의 진공오븐에서 1일 이내로 수행하는 것일 수 있다.
본 발명의 상기 음극은, 예컨대 음극 집전체 상에 음극 활물질, 도전재 및 결착제의 혼합물을 도포한 후 건조하여 제조될 수 있으며, 필요에 따라서는 상기 혼합물에 충진제를 더 첨가할 수도 있다.
상기 음극 활물질은 상기 음극활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOx(0 < x < 2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 또, 탄소재료는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화 탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정 피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성 탄소가 대표적이다.
상기 음극에 사용되는 결착제, 도전재와 충진제 및 분산제와 같은 첨가제는 앞서 언급한 양극 제조에 사용된 것 과 동일하거나, 포함되는 것일 수 있다.
상기 분리막으로는 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막일 수 있으며, 일반적으로 0.01 ㎛ 내지 10 ㎛의 기공직경, 5 ㎛ 내지 300 ㎛의 두께를 갖는 것일 수 있다. 이러한 분리막으로는 다공성 고분자 필름, 예컨대 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 제한되는 것은 아니다.
또한, 상기 전해질은 전해질에 통상적으로 사용되는 유기용매 및 리튬염을 포함할 수 있으며, 특별히 제한되는 것은 아니다.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 튬염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기 유기용매로는 대표적으로 프로필렌 카보네이트, 에틸렌 카보네이트, 디에틸카보네이트, 디메틸카보네이트, 에틸메틸카보네이트, 메틸프로필카보네이트, 디프로필카보네이트, 디메틸술폭사이드, 아세토니트릴, 디메톡시에 탄, 디에톡시에탄, 비닐렌카보네이트, 술포란, 감마-부티로락톤, 프로필렌설파이트 및 테트라하이드로퓨란으로 이루어진 군으로부터 선택되는 1종 이상인 것일 수 있다.
특히, 상기 카보네이트계 유기용매 중 고리형 카보네이트인 에틸렌카보네이트 및 프로필렌카보네이트는 고점도의 유기용매로서 유전율이 높아 전해질 내의 리튬염을 잘 해리시키므로 바람직하게 사용될 수 있으며, 이러한 고리형 카보네이트 디메틸카보네이트 및 디에틸카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 갖는 전해액을 만들 수 있어 더욱 바람직하게 사용될 수 있다.
본 발명의 리튬 이차전지는 양극과 음극 사이에 분리막을 배치하여 전극 조립체를 형성하고, 상기 전극 조립체는 원통형 전지 케이스 또는 각형 전지 케이스에 넣은 다음 전해질을 주입하여 제조할 수 있다. 또는, 상기 전극 조립체를 적층한 후, 이를 전해질에 함침시키고 얻어진 결과물을 전지 케이스에 넣어 밀봉하여 제조할 수도 있다.
본 발명에서 사용되는 전지 케이스는 당분야에서 통상적으로 사용되는 것이 채택될 수 있고, 전지의 용도에 따른 외형에 제한이 없으며, 예를 들면 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
본 발명에 따른 리튬 이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로도 바람직하게 사용될 수 있다. 상기 중대형 디바이스의 바람직한 예로는 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 전력 저장용 시스템 등을 들 수 있지만, 이들 만으로 한정되는 것은 아니다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
<실시예>
제조예 (1-1) 그라프팅 공중합된 PVDF-co-(PCTFE-g-(mPEGMA-co-HEMA))의 제조(A1-1)
1000ml 플라스크에 불소계 중합체로 중량 평균 분자량(이하 Mw) 600,000의 P(VDF-co-CTFE) 10g, 중합하고자 하는 단량체인 폴리(에틸렌 글리콜) 모노메틸 에테르 메타아크릴레이트(mPEGMA, 에틸렌 옥사이드 부가몰수 = 9) 116g 및 2-히드록시에틸 메타아크릴레이트(HEMA) 3.35g을 용매 디메틸설폭사이드(DMSO) 450ml에 넣고 질소 조건하에서 1시간 교반하였다.
그 후, ATRP 반응 촉매로 CuCl2 0.003g, 리간드로 TPMA 0.014g, 환원제로 Sn(EH)2 (Tin(II) 2-ethylhexanoate) 0.25g을 상기 플라스크에 투입한 후 질소 조건 하에서 60 ℃에서 30시간 교반하여 ATRP 반응을 진행하였다. 이때 단량체 전환율은 65%였다.
반응을 완료한 후, 생성된 고분자를 디에틸 에테르 용매에 재침전하여 반응에 참여하지 않은 단량체를 제거하였다. 최종적으로 얻은 고분자를 진공 조건에서 24시간 건조시켜, 불소계 체인의 함량이 11%인 PVDF-co-(PCTFE-g-(mPEGMA-co-HEMA)) 고분자(A1-1)를 수득하였다.
제조예 (1-2) 그라프팅 공중합된 PVDF-co-(PCTFE-g-P(mPEGA-co-HBA)) 의 제조(A1-2)
1000ml 플라스크에 불소계 중합체로 중량 평균 분자량(이하 Mw) 600,000의 P(VDF-co-CTFE) 20g, 중합하고자 하는 단량체인 폴리(에틸렌 글리콜) 모노메틸 에테르 아크릴레이트(mPEGA, 에틸렌 옥사이드 부가몰수 = 9) 112g 및 4-히드록시부틸 아크릴레이트(4-hydroxybutyl acrylate, HBA) 3.65g을 용매 DMSO 480ml에 넣고 질소 조건하에서 1시간 교반하였다.
그 후, ATRP 반응 촉매로 CuCl2 0.003g, 리간드로 TPMA 0.014g, 환원제로 아조비스이소부티로니트릴(azobisisobutyronitrile, AIBN) 0.04g을 상기 플라스크에 투입한 후 질소 조건 하에서 60 ℃에서 30시간 교반하여 ATRP 반응을 진행하였다. 이때 단량체 전환율은 80%였다.
반응을 완료한 후, 생성된 고분자를 에테르 용매에 재침전하여 미반응 단량체를 제거하였다. 최종적으로 얻은 고분자를 상온에서 24시간 진공 건조하여, 불소계 체인의 함량이 17%인 PVDF-co-(PCTFE-g-(mPEGA-co-HBA))-고분자 (A1-2)를 수득하였다.
제조예 (1-3) 그라프팅 공중합된 PVDF-co-(PCTFE-g-P(mPEGMA-co-TMSPMA))-co-PTrFE의 제조(A1-3)
1000ml 플라스크에 불소계 중합체로 중량 평균 분자량(Mw) 560,000의 P(VDF-co-CTFE-co-TrFE) 10g, 중합하고자 하는 단량체인 mPEGMA (에틸렌 옥사이드 부가몰수 = 9) 108g 및 3-(트리메톡시실릴)프로필 메타크릴레이트(TMSPMA) 0.54g을 용매 디메틸포름아마이드 (DMF) 350ml에 넣고 질소 조건하에서 1시간 교반하였다.
그 후, ATRP 반응 촉매로 CuCl2 0.003g, 리간드로 TPMA 0.014g, 환원제로 Sn(EH)2 (Tin(II) 2-ethylhexanoate) 0.3g을 상기 플라스크에 투입한 후 질소 조건 하에서 60 ℃에서 30시간 교반하여 ATRP 반응을 진행하였다. 이때 단량체 전환율은 74%였다.
반응을 완료한 후, 생성된 고분자를 디에틸 에테르 용매에 재침전하여 미반응 단량체를 제거하였다. 최종적으로 얻은 고분자를 상온에서 24시간 진공 건조하여, 불소계 체인의 함량이 11%인 PVDF-co-(PCTFE-g-(mPEGMA-co-TMSPMA))-co-PTrFE 고분자 (A1-3)를 수득하였다.
비교 제조예 (1-1) 불소계 체인 미함유 P(mPEGMA-co-HEMA)의 제조 (B1-1)
1000ml 플라스크에 mPEGMA (에틸렌 옥사이드 부가몰수 = 9) 116g 및 HEMA 3.35g을 용매 DMSO 350ml에 넣고 질소 조건하에서 1시간 교반하였다. 라디칼 개시제로 AIBN 0.10g을 투입하고 질소 분위기 하에서 60 ℃에서 20시간 교반하여 중합 반응을 진행하였다.
반응을 완료한 후, 생성된 고분자를 디에틸 에테르 용매에 재침전하여 미반응 단량체를 제거하였다. 최종적으로 얻은 고분자를 상온에서 24시간 진공 건조하여, 불소계 체인이 함유되지 않은 P(mPEGMA-co-HEMA) 고분자 (B1-1)를 수득하였다.
상기 제조예 1-1 내지 1-3 및 비교 제조예 1-1을 하기 표 1에 나타내었다.
고분자 | mPEG(M)A:열경화형 단량체 몰비 | 고분자 내 불소계 함량 | 열경화형 관능기 종류 | Mw(PDI) |
A1-1 | 90:10 | 11% | Hydroxy | 170만 (6.2) |
A1-2 | 90:10 | 17% | Hydroxy | 115만 (4.5) |
A1-3 | 99:1 | 11% | Trimethoxysilyl | 106만 (3.4) |
B1-1 | 90:10 | 0% | Hydroxy | 17만 (2.9) |
(PDI: 분산도)
제조예 (2-1) 그라프팅 공중합된 PVDF-co-(PCTFE-g-(mPEGMA-co-(HEMA-AOI)))의 제조(A2-1)
1000ml 플라스크에 불소계 중합체로 중량 평균 분자량(이하 Mw) 600,000의 P(VDF-co-CTFE) 15g, 중합하고자 하는 단량체인 폴리(에틸렌 글리콜) 모노메틸 에테르 메타아크릴레이트 (mPEGMA, 에틸렌 옥사이드 부가몰수 = 9) 116g 및 2-히드록시에틸 메타아크릴레이트 (HEMA) 3.35g을 용매 디메틸설폭사이드(DMSO) 450ml에 넣고 질소 조건하에서 1시간 교반하였다.
그 후, ATRP 반응 촉매로 CuCl2 0.003g, 리간드로 TPMA 0.014g, 환원제로 아조비스이소부티로니트릴(azobisisobutyronitrile, AIBN) 0.04g을 상기 플라스크에 투입한 후 질소 조건 하에서 60 ℃에서 30시간 교반하여 ATRP 반응을 진행하였다. 이때 단량체 전환율은 82%였다.
중합을 완료한 후, 반응물을 상온으로 식히고 반응조에 공기(air)를 2시간 동안 투입하며 버블링하였다. 열중합 금지제로 BHT(2,6-bis(1,1-dimethylethyl)-4-methylphenol) 0.002 g을 투입하고 반응물을 50 ℃로 가열한 후 2-isocyanatoethyl acrylate (AOI) 4.36 g, 축합 촉매로 DBTDL(dibutyltin dilaurate) 0.16 g을 투입하였다. 산소 존재 하에서 24 시간 반응한 후 반응을 종료하였다. 상기의 방법으로 불소계 체인의 함량이 11%인 PVDF-co-(PCTFE-g-(mPEGMA-co-(HEMA-AOI))) 고분자와 단량체의 혼합 용액을 수득하였다. 상기 미반응 잔류 단량체는 후의 광중합 과정에서 고분자 네트워크에 포함된다.
제조예 (2-2) 그라프팅 공중합된 PVDF-co-(PCTFE-g-P(mPEGA-co-HBA-AOI)) 의 제조(A2-2)
1000ml 플라스크에 불소계 중합체로 중량 평균 분자량(이하 Mw) 600,000의 P(VDF-co-CTFE) 20g, 중합하고자 하는 단량체인 mPEGA (Polyethylene glycol monomethyl ether acrylate, 에틸렌 옥사이드 부가몰수 = 9) 112g 및 4-히드록시부틸 아크릴레이트(4-hydroxybutyl acrylate, HBA) 3.65g을 용매 DMSO 480ml에 넣고 질소 조건하에서 1시간 교반하였다.
그 후, ATRP 반응 촉매로 CuCl2 0.003g, 리간드로 TPMA 0.014g, 환원제로 AIBN 0.04g을 상기 플라스크에 투입한 후 질소 조건 하에서 60 ℃에서 30시간 교반하여 ATRP 반응을 진행하였다. 이때 단량체 전환율은 80%였다.
중합을 완료한 후, 반응물을 상온으로 식히고 반응조에 공기(air)를 2시간 동안 투입하며 버블링하였다. 열중합 금지제로 BHT(2,6-bis(1,1-dimethylethyl)-4-methylphenol) 0.002 g을 투입하고 반응물을 50 ℃로 가열한 후 2-isocyanatoethyl acrylate (AOI) 4.35 g, 축합 촉매로 DBTDL (dibutyltion dilaurate) 0.16 g을 투입하였다. 산소 존재 하에서 24 시간 반응한 후 반응을 종료한다. 상기와 같은 방법으로 불소계 체인의 함량이 15%인 PVDF-co-(PCTFE-g-(mPEGA-co-(HBA-AOI))) 고분자와 단량체의 혼합 용액을 수득하였다. 상기 미반응 잔류 단량체는 후의 광중합 과정에서 고분자 네트워크에 포함된다.
제조예 (2-3) 그라프팅 공중합된 PVDF-co-(PCTFE-g-P(mPEGMA-co-(HEMA-AOI)))-co-PTrFE의 제조(A2-3)
1000ml 플라스크에 불소계 중합체로 중량 평균 분자량(Mw) 560,000의 P(VDF-co-CTFE-co-TrFE) 15g, 중합하고자 하는 단량체인 mPEGMA (에틸렌 옥사이드 부가몰수 = 9) 116g 및 HEMA 0.70g을 용매 디메틸포름아마이드 (DMF) 350ml에 넣고 질소 조건하에서 1시간 교반하였다.
그 후, ATRP 반응 촉매로 CuCl2 0.003g, 리간드로 TPMA 0.014g, 환원제로 AIBN 0.04g을 상기 플라스크에 투입한 후 질소 조건 하에서 60 ℃에서 30시간 교반하여 ATRP 반응을 진행하였다. 이때 단량체 전환율은 80%였다.
중합을 완료한 후, 반응물을 상온으로 식히고 반응조에 공기(air)를 2시간 동안 버블링하였다. 열중합 금지제로 BHT(2,6-bis(1,1-dimethylethyl)-4-methylphenol) 0.0004 g을 투입하고 반응물을 50 ℃로 가열한 후 2-isocyanatoethyl acrylate (AOI) 0.84 g, 축합 촉매로 DBTDL (dibutyltion dilaurate) 0.031 g을 투입하였다. 산소 존재 하에서 24 시간 반응한 후 반응을 종료한다. 상기와 같은 방법으로 불소계 체인의 함량이 11%인 PVDF-co-(PCTFE-g-(mPEGMA-co-(HHEMA-AOI)))-co-PTrFE 고분자와 단량체의 혼합 용액을 수득하였다. 상기 미반응 잔류 단량체는 후의 광중합 과정에서 고분자 네트워크에 포함된다.
비교 제조예 (2-1) 불소계 체인 미함유 P(mPEGMA-co-(HEMA-AOI))의 제조 (B2-1)
1000ml 플라스크에 mPEGMA (에틸렌 옥사이드 부가몰수 = 9) 116g 및 HEMA 3.35g을 용매 DMSO 350ml에 넣고 질소 조건하에서 1시간 교반하였다. 라디칼 개시제로 AIBN 0.10g을 투입하고 질소 분위기 하에서 60 ℃에서 20시간 교반하여 중합 반응을 진행하였다. 이후 상기 제조예 1과 동일하게 진행하여 P(mPEGMA-co-(HEMA-AOI))) 고분자와 단량체의 혼합 용액 (B2-1)을 수득하였다.
비교 제조예 (2-2) 광경화형 비닐계 측쇄 미함유 그라프팅 공중합된 PVDF-co-(PCTFE-g-P(mPEGMA-co-HEMA))의 제조 (B2-2)
상기 제조예 1과 동일한 조건으로 불소계 중합체로 중량 평균 분자량(이하 Mw) 600,000의 P(VDF-co-CTFE) 15g, 중합하고자 하는 단량체인 mPEGMA (에틸렌 옥사이드 부가몰수 = 9) 116g 및 HEMA 3.35g을 용매 DMSO 450ml로 그라프트 중합을 시행한 후, 측쇄에 비닐기 도입 고분자 반응을 시행하지 않고 PCTFE-g-P(mPEGMA-co-HEMA)와 미반응 당량체의 혼합 용액 (B2-2)을 수득하였다.
상기 제조예 2-1 내지 2-3 및 비교 제조예 2-1 내지 2-2를 하기 표 2에 나타내었다.
고분자 | 폴리(알킬렌 옥사이드):비닐계 측쇄1 | 불소계 고분자함량2 | Mw(PDI3) |
A2-1 | 90:10 | 11% | 160만 (5.9) |
A2-2 | 90:10 | 15% | 115만 (4.5) |
A2-3 | 98:2 | 11% | 155만 (5.5) |
B2-1 | 90:10 | 0% | 17만 (2.9) |
B2-2 | 90:04 | 11% | 160만 (5.9) |
* 1: 폴리(알킬렌 옥사이드) 함유 중합 단위:광경화형 비닐계 측쇄 함유 중합 단위의 몰비율
* 2: 그라프트 고분자와 잔류 단량체의 합 대비 불소계 주쇄의 함량
* 3: 분산도, Mw/Mn
* 4: 폴리(알킬렌 옥사이드) 함유 중합단위:히드록시 함유 중합단위의 몰 비율 = 90:10
실시예 1-1~1-5 경화된 전극 보호층의 제조
상기 제조예 1-1 내지 1-3에서 제조된 불소계 그라프트 고분자를 이용하여 표 3와 같은 중량비 (pt)로 혼합하고 6시간동안 교반하여 열경화형 고분자 용액을 제조하였다. 상기 용액을 dry room에서 2 cm2 × 0.1 cm의 원형의 SUS 기판위에 코팅 한 후 60℃ 온도에서 5 시간 동안 가열하여 건조하고 추가로 120 ℃에서 2시간동안 열경화하였다. 이 후 60 ℃에서 48 시간 진공 건조하여 완전히 건조된 고분자 전극 보호층을 제조하였다. 고분자 용액의 도포 양은 최종 전극 보호층의 두께가 약 100 ㎛가 되도록 조절하였다.
비교예 1-1~1-3 경화된 고분자 막의 제조
상기 비교 제조예 1-1에서 제조된 고분자 및 P(VDF-CTFE) 공중합체를 이용하여 표 3와 같은 조성비로 혼합하고 6시간동안 교반하여 균일한 용액을 제조하였다. 이하 상기 실시예에서의 경화막 제조 방법과 동일한 고분자 경화막을 제조하였다.
실시예 1-1 내지 1-5 및 비교예 1-1 내지 1-3을 하기 표 3에 나타내었다.
고분자 (pt) | LiTFSI 함량 (pt) | 경화제 (pt) | 용매 (pt) | |
실시예1-1 | A1-1 (100) | 45 | 0.5 | ACN (217) |
실시예1-2 | A1-2 (100) | 45 | 0.5 | ACN (217) |
실시예1-3 | A1-3 (100) | 45 | - | ACN (217) |
실시예1-4 | A1-1 (100) | 45 | 0.1 | ACN (217) |
실시예1-5 | A1-2 (100) | 45 | 0.1 | ACN (217) |
비교예1-1 | B1-1 (100) | 45 | 0.5 | ACN (217) |
비교예1-2 | B1-1 (100) | 45 | 0.1 | ACN (217) |
비교예1-3 | P(VDF-CTFE) (100) | 45 | - | Acetone:DMSO 1:1(v/v) (900) |
* LiTFSI: Lithium bistrifluoromethanesulfonimidate
* 경화제: TDI-TMP (Tolyldiisocyanate-trimethyolpropane의 adduct)
* P(VDF-CTFE): Poly(vidnylene difluorode-co-chlorotrifluoroethylene), Mw = 600,000
* ACN: Acetonitrile
* DMSO: Dimethyl sulfoxide
실시예 2-1~2-5 경화된 전극 보호층의 제조
상기 제조예 2-1 내지 2-3에서 제조된 불소계 그라프트 고분자를 이용하여 표 4와 같은 중량비 (pt)로 혼합하고 6시간동안 교반하여 광경화형 고분자 용액을 제조하였다. 상기 용액을 dry room에서 2 cm2 × 0.1 cm의 원형의 SUS 기판위에 코팅 한 후 metal halide lamp에 3분간 노광 하였다. 이 후 60 ℃에서 48 시간 진공 건조하여 완전히 건조된 고분자 전극 보호층을 제조하였다. 고분자 용액의 도포 양은 최종 전극 보호층의 두께가 약 100 ㎛가 되도록 조절하였다.
비교예 2-1~2-3 경화된 고분자 막의 제조
상기 비교 제조예 2-1 내지 2-2에서 제조된 고분자를 이용하여 표 4와 같은 조성비로 혼합하고 6시간동안 교반하여 균일한 용액을 제조하였다. 이하 상기 실시예에서의 경화막 제조 방법과 동일한 고분자 경화막을 제조하였다.
실시예 2-1 내지 2-5 및 비교예 2-1 내지 2-3을 하기 표 4에 나타내었다.
고분자 (pt) | LiTFSI 함량 (pt) | 경화제 (pt) | 광개시제 | |
실시예2-1 | A2-1 (100) | 40 | 0 | 1 |
실시예2-2 | A2-2 (100) | 40 | 0 | 1 |
실시예2-3 | A2-3 (100) | 40 | 0 | 1 |
실시예2-4 | A2-1 (100) | 40 | 5 | 1 |
실시예2-5 | A2-3 (100) | 40 | 5 | 1 |
비교예2-1 | B2-1 (100) | 40 | 0 | 1 |
비교예2-2 | B2-1 (100) | 40 | 5 | 1 |
비교예2-3 | B2-2 (100) | 40 | 5 | 1 |
* LiTFSI: Lithium bistrifluoromethanesulfonimidate
* 경화제: PETA (Pentaerythritol triacrylate)
* 광개시제: Irgacure 819
실험예 (1) 전극 보호층의 이온전도도 측정
상기 실시예 1-1 내지 1-5, 실시예 2-1 내지 2-5, 비교예 1-1 내지 1-3 및 비교예 2-1 내지 2-3에서 제조된 전극 보호층의 이온전도도는 그 임피던스를 측정한 뒤 하기 수학식 1을 이용하여 구하였다.
원형의 SUS(스테인레스 스틸) 기판위에 도포된 리튬염 함유 전극 보호층을 동일한 표면적의 리튬 금속 전극과 접촉시킨 후 상온에서 샘플 양면의 전극을 통하여 교류 전압을 인가하였다. 이 때, 인가되는 조건으로 측정 주파수 0.01Hz 내지 1MHz의 진폭 범위로 설정하고 BioLogic社 VMP3를 이용하여 임피던스를 측정하였다. 측정된 임피던스 궤적의 반원이나 직선이 실수축과 만나는 교점 (Rb) 로부터 벌크 전해질의 저항을 구하고 샘플의 넓이와 두께로부터 고분자 전극 보호층의 이온 전도도를 계산하여 하기 표 3에 나타내었다.
[수학식 1]
σ: 이온전도도
Rb: 임피던스 궤적이 실수축과의 교점
A: 샘플의 넓이
t: 샘플의 두께
실험예 (2) 전극 보호층의 전기화학적 안정성 평가
상기 실험예와 동일하게 SUS와 리튬 금속 사이에 리튬염 함유 고분자 전극 보호층이 샌드위치 된 셀을 제작하였다. 60 ℃에서 0.0 내지 5.0 V의 전압을 1 mV/sec의 속도로 인가하여 순환전압 전류법(cyclic voltametry, IVIUM 社)를 실시하여 off-set 전압으로 산화 전위 안정성을 평가하였다. 그 결과를 표 5에 나타내었다.
실험예 (3) 전극 보호층의 전해액 내화학성 평가
상기 실시예 1-1 내지 1-5, 실시예 2-1 내지 2-5, 비교예 1-1 내지 1-3 및 비교예 2-1 내지 2-3에서 제조된 전극 보호층인 고분자 전극 보호층을 SUS(스테인레스 스틸) 기판위에 코팅하여 이를 1M LiPF6가 포함된 10 mL의 디에틸카보네이트(diethyl carbonate) 용액에 침지하였다. 이후 상온에서 48시간 동안 담지한 후 막 형태를 육안으로 관찰하고 그 결과를 표 5에 나타내었다.
이온전도도(S/cm) | OFF-Set Voltage (V) | 경화막 형상 | |
실시예1-1 | 2.3 × 10-7 | 4.2 | ○ |
실시예1-2 | 1.5 × 10-7 | 4.3 | ○ |
실시예1-3 | 1.8 × 10-6 | 4.2 | ○ |
실시예1-4 | 1.0 × 10-6 | 4.1 | ○ |
실시예1-5 | 8.3 × 10-7 | 4.2 | ○ |
비교예1-1 | 3.9 × 10-7 | 3.7 | × |
비교예1-2 | 1.1 × 10-6 | 3.7 | × |
비교예1-3 | 1.0 × 10-9 | 4.8 | ○ |
실시예2-1 | 5.1 × 10-7 | 4.3 | ○ |
실시예2-2 | 3.3 × 10-7 | 4.5 | ○ |
실시예2-3 | 4.5 × 10-6 | 4.2 | ○ |
실시예2-4 | 1.0 × 10-7 | 4.5 | ○ |
실시예2-5 | 9.7 × 10-7 | 4.4 | ○ |
비교예2-1 | 4.6 × 10-7 | 3.7 | × |
비교예2-2 | 1.1 × 10-7 | 3.7 | × |
비교예2-3 | 1.5 × 10-6 | 4.1 | △ |
(○: 필름이 SUS위에 막 형태를 유치하며 남아 있음; △: 필름이 SUS위에 막 형태를 유지하며 남아 있으나 곳곳에 핀홀이 관찰됨; ×: SUS가 완전히 노출된 부분이 관찰됨)
상기 표 3에서 보듯이, 본 발명에 따른 전극 보호층을 리튬 금속에 접촉하여 이온전도도와 전기 화학적 안정성을 확인한 결과, 이온 전도도가 우수 하면서도 전기 화학적 안정성이 개선되는 결과를 얻었으며, 리튬 금속 전극의 보호층으로 우수하게 적용될 수 있음을 확인하였다. 또한, 전해액에 대한 내성이 높아 전해액과의 부반응으로 인한 전극 보호층의 손상의 가능성도 낮은 것을 확인할 수 있었다. 이에 비하여, 불소계 중합체가 도입되지 않은 전극 보호층의 경우 이온 전도도는 우수하나 전기 화학적 안정성 및 전해액 내성이 열악하였고, 폴리(에틸렌 옥사이드)를 포함하는 단량체가 도입되지 않는 그라프트 고분자의 경우에는 이온 전도도가 매우 낮고, 광경화형 관능기가 측쇄에 도입되지 않는 그라프트 고분자의 경우에는 광경화 후에도 전해액 내성이 충분하지 않아 전극 보호층으로 적용이 불가능한 것을 알 수 있었다.
Claims (15)
- 불소계 중합체 상에, 폴리(알킬렌 옥사이드)를 포함하는 단량체 및 경화형 관능기를 포함하는 단량체가 그라프팅 된 고분자(A)를 포함하는 전극 보호층용 고분자.
- 제1항에 있어서,상기 폴리(알킬렌 옥사이드)는 폴리(에틸렌 옥사이드) 또는 폴리(프로필렌 옥사이드)인 것을 특징으로 하는 전극 보호층용 고분자.
- 제1항에 있어서,상기 폴리(알킬렌 옥사이드)를 포함하는 단량체와 상기 경화형 관능기를 포함하는 단량체가 99.9:0.1 내지 70:30의 몰비를 갖는 것을 특징으로 하는 전극 보호층용 고분자.
- 제1항에 있어서,상기 고분자(A)는 하기 화학식 2의 구조를 포함하는 것을 특징으로 하는 전극 보호층용 고분자.[화학식 2](상기 화학식 2에서 p, q, r 및 s는 각각 독립적으로 0≤p≤20,000, 0<q≤22,000, 0≤r≤15,000 및 0≤s<22,000 이며,R1, R2, R3는 각각 독립적으로 수소 또는 메틸이며,R4는 수소, 탄소수 1 내지 12의 알킬기 및 탄소수 1 내지 12의 알킬기로 치환되거나 치환되지 않은 페닐기 중에서 선택되는 어느 하나이며,Z는 하기 화학식 3 또는 화학식 4로 나타내어지는 경화성 관능기이며,l, m 및 n은 각각 독립적으로 2≤l≤230, 1≤m≤200 및 2≤n≤50 이며,R5는 수소, 염소 또는 브롬 중에서 선택되는 어느 하나이다[화학식 3](상기 화학식 3에서, X는 단순 연결이거나 탄소수 1 내지 6의 알킬렌 또는 페닐렌이고,Y는 수소, 히드록시기, 알콕시실릴기, 포스페이트기, 숙시네이트기, 프탈레이트기 및 이소시아네이트기 중에서 선택되는 하나 이상의 작용기이며,*는 상기 화학식 2 중 O에 직결하고 있는 결합부위를 나타낸다)[화학식 4](상기 화학식 4에서, X는 단순 연결이거나 탄소수 1 내지 12의 알킬렌, 탄소수 1 내지 12의 알킬옥시카보닐(), 우레탄기 함유 탄소수 1 내지 12의 알킬렌옥시카보닐, 에틸렌 옥사이드의 부가몰수 1 내지 10인 폴리(에틸렌 옥사이드)카보닐 및 페닐렌 중에서 선택되는 어느 하나이며,*는 상기 화학식 2 중 O에 직결하고 있는 결합부위를 나타낸다))
- 제6항에 기재된 전극 보호층용 고분자 및 다관능 가교제를 포함하는 전극 보호층용 고분자 조성물.
- 제8항에 있어서,상기 다관능 가교제는 제1항에 따른 고분자(A) 100 중량부 대비 0.1 내지 10 중량부로 포함되는 것을 특징으로 하는 전극 보호층용 고분자 조성물.
- 제8항에 있어서,상기 다관능 가교제는 이소시아네이트 가교제, 에폭시 가교제, 아지리딘 가교제, 알코올 가교제 및 아민계 가교제로 이루어진 군에서 선택되는 어느 하나인 것을 특징으로 하는 전극 보호층용 고분자 조성물.
- 제8항에 기재된 전극 보호층용 고분자 조성물을 열경화하여 형성되는 전극 보호층.
- 제7항에 기재된 전극 보호층용 고분자, 다관능 비닐계 가교제 및 광개시제를 포함하는 전극 보호층용 고분자 조성물.
- 제12항에 있어서,상기 다관능 비닐계 가교제는 제1항에 따른 고분자(A) 100 중량부 대비 0.1 내지 50 중량부로 포함되는 것을 특징으로 하는 전극 보호층용 고분자 조성물.
- 제12항에 있어서,상기 광개시제는 제1항에 따른 고분자(A) 및 다관능 비닐계 가교제의 총 100 중량부 대비 0.01 내지 5 중량부로 포함되는 것을 특징으로 하는 전극 보호층용 고분자 조성물.
- 제12항에 기재된 전극 보호층용 고분자 조성물을 광경화하여 형성되는 전극 보호층.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020532997A JP7044883B2 (ja) | 2018-07-27 | 2019-05-08 | 電極保護層用高分子及びこれを適用した二次電池 |
EP19840537.5A EP3716377A4 (en) | 2018-07-27 | 2019-05-08 | ELECTRODE PROTECTIVE POLYMER AND SECONDARY BATTERY TO WHICH THIS IS APPLIED |
US16/954,016 US11518836B2 (en) | 2018-07-27 | 2019-05-08 | Electrode protective layer polymer and secondary battery to which same is applied |
CN201980008210.6A CN111587503B (zh) | 2018-07-27 | 2019-05-08 | 电极保护层用聚合物和应用其的二次电池 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2018-0087897 | 2018-07-27 | ||
KR1020180087904A KR102439830B1 (ko) | 2018-07-27 | 2018-07-27 | 전극 보호층용 고분자 및 이를 적용한 이차전지 |
KR10-2018-0087904 | 2018-07-27 | ||
KR1020180087897A KR102244913B1 (ko) | 2018-07-27 | 2018-07-27 | 전극 보호층용 고분자 및 이를 적용한 이차전지 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020022620A1 true WO2020022620A1 (ko) | 2020-01-30 |
Family
ID=69180905
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/005445 WO2020022620A1 (ko) | 2018-07-27 | 2019-05-08 | 전극 보호층용 고분자 및 이를 적용한 이차전지 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11518836B2 (ko) |
EP (1) | EP3716377A4 (ko) |
JP (1) | JP7044883B2 (ko) |
CN (1) | CN111587503B (ko) |
WO (1) | WO2020022620A1 (ko) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7169268B2 (ja) * | 2016-09-28 | 2022-11-10 | ダウ グローバル テクノロジーズ エルエルシー | 湿気硬化性ポリオレフィン組成物 |
KR20210018159A (ko) * | 2019-08-08 | 2021-02-17 | 주식회사 엘지화학 | 고분자 전해질용 공중합체, 이를 포함하는 겔 폴리머 전해질 및 리튬 이차전지 |
CN112442147B (zh) * | 2020-11-26 | 2023-08-29 | 南京玖泰新材料科技有限公司 | 一种低粘度3d用氟树脂及其制备方法和应用 |
CN113113671B (zh) * | 2021-04-12 | 2022-11-22 | 清华大学深圳国际研究生院 | 一种聚偏氟乙烯基固态电解质、其制备方法及锂离子电池 |
CA3242430A1 (en) * | 2021-12-13 | 2023-06-22 | Umicore | A negative electrode comprising a metal substrate and a protective layer |
WO2024031220A1 (zh) * | 2022-08-08 | 2024-02-15 | 宁德时代新能源科技股份有限公司 | 聚合物改性锂材料、负极极片、二次电池、用电装置、方法和应用 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050170255A1 (en) * | 2002-10-03 | 2005-08-04 | Daikin Industries, Ltd. | Solid electrolyte comprising fluorine-containing polymer having fluorine-containing ether chains |
KR20050092722A (ko) * | 2002-12-25 | 2005-09-22 | 다이킨 고교 가부시키가이샤 | 불소 함유 에테르쇄를 포함하는 불소 함유 중합체를포함하는 고체 전해질 |
KR20150063870A (ko) * | 2013-12-02 | 2015-06-10 | 삼성에스디아이 주식회사 | 바인더 조성물, 이에 의해 형성된 바인더를 포함하는 세퍼레이터, 상기 세퍼레이터를 포함하는 리튬 전지, 및 상기 바인더 조성물의 제조방법 |
KR20150100754A (ko) * | 2012-12-21 | 2015-09-02 | 솔베이 스페셜티 폴리머스 이태리 에스.피.에이. | 고밀도 플루오로중합체 필름 |
KR20160058274A (ko) | 2014-11-14 | 2016-05-25 | 한국화학연구원 | 폴리프로필렌옥사이드 블록 및 폴리에틸렌옥사이드 블록을 포함하는 블록 공중합체가 가지결합하여 형성된 고분자를 함유하는 바인더 |
KR20180087897A (ko) | 2017-01-25 | 2018-08-03 | 한양대학교 에리카산학협력단 | 유아용 상태 전송 방법 |
KR20180087904A (ko) | 2017-01-25 | 2018-08-03 | 목포대학교산학협력단 | 애플리케이션을 이용한 수면보조장치시스템 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100378348B1 (ko) | 1996-12-13 | 2003-06-12 | 삼성전자주식회사 | 망목상 고분자, 그 제조방법 및 이를 함유하는 고분자 고체전해질 |
JP4534265B2 (ja) | 1998-12-02 | 2010-09-01 | パナソニック株式会社 | 非水電解質二次電池 |
AU2002211808A1 (en) * | 2000-09-11 | 2002-03-26 | Massachusetts Institute Of Technology | Graft copolymers, methods for grafting hydrophilic chains onto hydrophobic polymers, and articles thereof |
JP4412840B2 (ja) | 2000-10-11 | 2010-02-10 | パナソニック株式会社 | リチウムポリマー電池およびその製造法 |
KR100497251B1 (ko) | 2003-08-20 | 2005-06-23 | 삼성에스디아이 주식회사 | 리튬 설퍼 전지용 음극 보호막 조성물 및 이를 사용하여제조된 리튬 설퍼 전지 |
KR100588475B1 (ko) | 2004-06-07 | 2006-06-09 | 한국화학연구원 | 폴리실록산계 화합물을 포함하는 고체 고분자 전해질 조성물 |
WO2007117493A2 (en) * | 2006-04-05 | 2007-10-18 | University Of Massachusetts | Graft copolymers and related methods of preparation |
WO2009014399A2 (en) * | 2007-07-26 | 2009-01-29 | Lg Chem, Ltd. | Electrode active material having core-shell structure |
JP4661843B2 (ja) * | 2007-08-28 | 2011-03-30 | ソニー株式会社 | 非水電解質二次電池 |
EP2415793B1 (en) * | 2009-03-30 | 2015-01-14 | Piotrek Co., Ltd. | Method of producing fluorinated polymer |
TWI510511B (zh) | 2012-06-01 | 2015-12-01 | Lg Chemical Ltd | 聚合物,彼之製法,以及含彼之組成物與膜 |
KR101738769B1 (ko) | 2014-09-18 | 2017-05-23 | 주식회사 엘지화학 | 애노드, 이를 포함하는 리튬 이차 전지, 상기 리튬 이차 전지를 포함하는 전지 모듈 및 애노드의 제조방법 |
KR20180005173A (ko) | 2015-05-12 | 2018-01-15 | 시오 인코퍼레이티드 | 리튬 배터리를 위한 전해질로서의 peo 및 플루오르화 중합체의 공중합체 |
KR102475886B1 (ko) | 2015-06-25 | 2022-12-08 | 삼성전자주식회사 | 리튬금속전지용 음극 및 이를 포함하는 리튬금속전지 |
KR101990609B1 (ko) | 2015-09-24 | 2019-06-18 | 주식회사 엘지화학 | 리튬 전극 및 이를 포함하는 리튬 이차전지 |
DE102015224373A1 (de) * | 2015-12-04 | 2017-06-08 | Robert Bosch Gmbh | Siliciumpartikel mit künstlicher SEI |
WO2017104867A1 (ko) * | 2015-12-17 | 2017-06-22 | 주식회사 엘지화학 | 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지 |
US20180151887A1 (en) | 2016-11-29 | 2018-05-31 | GM Global Technology Operations LLC | Coated lithium metal negative electrode |
KR102183663B1 (ko) * | 2017-09-14 | 2020-11-26 | 주식회사 엘지화학 | 이차전지용 고체 전해질 조성물 및 이로부터 제조된 고체 전해질 |
WO2019054622A1 (ko) | 2017-09-14 | 2019-03-21 | 주식회사 엘지화학 | 이차전지용 고체 전해질 조성물 및 이로부터 제조된 고체 전해질 |
-
2019
- 2019-05-08 US US16/954,016 patent/US11518836B2/en active Active
- 2019-05-08 EP EP19840537.5A patent/EP3716377A4/en active Pending
- 2019-05-08 JP JP2020532997A patent/JP7044883B2/ja active Active
- 2019-05-08 WO PCT/KR2019/005445 patent/WO2020022620A1/ko unknown
- 2019-05-08 CN CN201980008210.6A patent/CN111587503B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050170255A1 (en) * | 2002-10-03 | 2005-08-04 | Daikin Industries, Ltd. | Solid electrolyte comprising fluorine-containing polymer having fluorine-containing ether chains |
KR20050092722A (ko) * | 2002-12-25 | 2005-09-22 | 다이킨 고교 가부시키가이샤 | 불소 함유 에테르쇄를 포함하는 불소 함유 중합체를포함하는 고체 전해질 |
KR20150100754A (ko) * | 2012-12-21 | 2015-09-02 | 솔베이 스페셜티 폴리머스 이태리 에스.피.에이. | 고밀도 플루오로중합체 필름 |
KR20150063870A (ko) * | 2013-12-02 | 2015-06-10 | 삼성에스디아이 주식회사 | 바인더 조성물, 이에 의해 형성된 바인더를 포함하는 세퍼레이터, 상기 세퍼레이터를 포함하는 리튬 전지, 및 상기 바인더 조성물의 제조방법 |
KR20160058274A (ko) | 2014-11-14 | 2016-05-25 | 한국화학연구원 | 폴리프로필렌옥사이드 블록 및 폴리에틸렌옥사이드 블록을 포함하는 블록 공중합체가 가지결합하여 형성된 고분자를 함유하는 바인더 |
KR20180087897A (ko) | 2017-01-25 | 2018-08-03 | 한양대학교 에리카산학협력단 | 유아용 상태 전송 방법 |
KR20180087904A (ko) | 2017-01-25 | 2018-08-03 | 목포대학교산학협력단 | 애플리케이션을 이용한 수면보조장치시스템 |
Non-Patent Citations (1)
Title |
---|
LIU, Y.: "Synthesis, characterization and electrochemical transport properties of the poly(ethyleneglycol)-grafted poly(vinylidenefluoride) nanoporous membranes", REACTIVE & FUNCTIONAL POLYMERS, 2001, pages 201 - 213, XP002624496, DOI: 10.1016/S1381-5148(01)00030-X * |
Also Published As
Publication number | Publication date |
---|---|
CN111587503A (zh) | 2020-08-25 |
US20210087317A1 (en) | 2021-03-25 |
JP7044883B2 (ja) | 2022-03-30 |
US11518836B2 (en) | 2022-12-06 |
EP3716377A4 (en) | 2021-05-05 |
EP3716377A1 (en) | 2020-09-30 |
CN111587503B (zh) | 2023-02-28 |
JP2021507464A (ja) | 2021-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020022620A1 (ko) | 전극 보호층용 고분자 및 이를 적용한 이차전지 | |
WO2017196105A1 (ko) | 리튬금속전지용 보호음극 및 이를 포함한 리튬금속전지 | |
WO2021235794A1 (ko) | 이차전지 | |
WO2019107921A1 (ko) | 젤 폴리머 전해질용 조성물 및 이를 포함하는 젤 폴리머 전해질 및 리튬 이차 전지 | |
WO2020242138A1 (ko) | 리튬 이차전지용 양극, 이의 제조방법 및 이를 포함한 리튬 이차전지 | |
WO2020067779A1 (ko) | 비수성 전해액 및 이를 포함하는 리튬 이차전지 | |
WO2019203622A1 (ko) | 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지 | |
WO2021025521A1 (ko) | 고분자 전해질용 공중합체, 이를 포함하는 겔 폴리머 전해질 및 리튬 이차전지 | |
WO2018106078A1 (ko) | 리튬 이차전지용 전해질 및 이를 포함하는 리튬 이차전지 | |
WO2019004699A1 (ko) | 리튬 이차전지 | |
WO2020036336A1 (ko) | 리튬 이차 전지용 전해질 | |
WO2020096343A1 (ko) | 겔 폴리머 전해질용 조성물 및 이로부터 형성된 겔 폴리머 전해질을 포함하는 리튬 이차전지 | |
WO2019108031A1 (ko) | 젤 폴리머 전해질용 조성물, 이로부터 제조되는 젤 폴리머 전해질 및 이를 포함하는 리튬 이차 전지 | |
WO2021194260A1 (ko) | 음극의 제조방법 | |
WO2021153987A1 (ko) | 음극 활물질, 이를 포함하는 음극 및 이차전지 | |
WO2017095151A1 (ko) | 이차전지용 양극 및 이를 포함하는 이차전지 | |
WO2020036337A1 (ko) | 리튬 이차 전지용 전해질 | |
WO2022092831A1 (ko) | 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지 | |
WO2021118144A1 (ko) | 음극 활물질, 이의 제조방법, 이를 포함하는 음극 및 이차전지 | |
WO2024080826A1 (ko) | 공중합체 조성물을 포함하는 바인더, 상기 바인더를 포함하는 이차전지용 음극 및 상기 음극을 포함하는 이차전지 | |
WO2019143155A1 (ko) | 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지 | |
WO2019108024A1 (ko) | 젤 폴리머 전해질용 조성물, 이로부터 제조되는 젤 폴리머 전해질 및 이를 포함하는 리튬 이차 전지 | |
WO2022055331A1 (ko) | 겔 폴리머 전해질 이차전지의 제조방법 및 이에 의해 제조된 겔 폴리머 전해질 이차전지 | |
KR20200012514A (ko) | 전극 보호층용 고분자 및 이를 적용한 이차전지 | |
WO2021025544A1 (ko) | 겔 고분자 전해질용 고분자, 이를 포함하는 겔 고분자 전해질 및 리튬 이차전지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19840537 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020532997 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2019840537 Country of ref document: EP Effective date: 20200624 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |