WO2020021838A1 - 車両用空調装置 - Google Patents
車両用空調装置 Download PDFInfo
- Publication number
- WO2020021838A1 WO2020021838A1 PCT/JP2019/020737 JP2019020737W WO2020021838A1 WO 2020021838 A1 WO2020021838 A1 WO 2020021838A1 JP 2019020737 W JP2019020737 W JP 2019020737W WO 2020021838 A1 WO2020021838 A1 WO 2020021838A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- expansion valve
- refrigerant
- line
- port
- heating
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/00642—Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
- B60H1/00814—Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
- B60H1/00878—Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
- B60H1/00899—Controlling the flow of liquid in a heat pump system
- B60H1/00921—Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/00642—Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
- B60H1/00814—Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
- B60H1/00878—Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
- B60H1/00899—Controlling the flow of liquid in a heat pump system
- B60H1/00907—Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant changes and an evaporator becomes condenser
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/00642—Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
- B60H1/00814—Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
- B60H1/00878—Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
- B60H1/00899—Controlling the flow of liquid in a heat pump system
- B60H1/00914—Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is a bypass of the condenser
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/32—Cooling devices
- B60H1/3204—Cooling devices using compression
- B60H1/3205—Control means therefor
- B60H1/3213—Control means therefor for increasing the efficiency in a vehicle heat pump
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/32—Cooling devices
- B60H1/3204—Cooling devices using compression
- B60H1/3227—Cooling devices using compression characterised by the arrangement or the type of heat exchanger, e.g. condenser, evaporator
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/32—Cooling devices
- B60H1/3204—Cooling devices using compression
- B60H1/3228—Cooling devices using compression characterised by refrigerant circuit configurations
- B60H1/32284—Cooling devices using compression characterised by refrigerant circuit configurations comprising two or more secondary circuits, e.g. at evaporator and condenser side
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/32—Cooling devices
- B60H1/3204—Cooling devices using compression
- B60H1/323—Cooling devices using compression characterised by comprising auxiliary or multiple systems, e.g. plurality of evaporators, or by involving auxiliary cooling devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B29/00—Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
- F25B29/003—Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B40/00—Subcoolers, desuperheaters or superheaters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/20—Disposition of valves, e.g. of on-off valves or flow control valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/30—Expansion means; Dispositions thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/40—Fluid line arrangements
- F25B41/42—Arrangements for diverging or converging flows, e.g. branch lines or junctions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/00642—Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
- B60H1/00814—Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
- B60H1/00878—Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
- B60H2001/00949—Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising additional heating/cooling sources, e.g. second evaporator
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/32—Cooling devices
- B60H2001/3236—Cooling devices information from a variable is obtained
- B60H2001/3248—Cooling devices information from a variable is obtained related to pressure
- B60H2001/3254—Cooling devices information from a variable is obtained related to pressure of the refrigerant at an expansion unit
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/32—Cooling devices
- B60H2001/3236—Cooling devices information from a variable is obtained
- B60H2001/3255—Cooling devices information from a variable is obtained related to temperature
- B60H2001/3264—Cooling devices information from a variable is obtained related to temperature of the refrigerant at an expansion unit
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/32—Cooling devices
- B60H2001/3269—Cooling devices output of a control signal
- B60H2001/3285—Cooling devices output of a control signal related to an expansion unit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/19—Calculation of parameters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/02—Compressor control
- F25B2600/025—Compressor control by controlling speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/11—Fan speed control
- F25B2600/112—Fan speed control of evaporator fans
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2507—Flow-diverting valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2513—Expansion valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2519—On-off valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/17—Speeds
- F25B2700/171—Speeds of the compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/19—Pressures
- F25B2700/191—Pressures near an expansion valve
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2103—Temperatures near a heat exchanger
Definitions
- the present invention relates to a vehicle air conditioner mounted on a vehicle.
- Priority is claimed on Japanese Patent Application No. 2018-139604, filed on July 25, 2018, the content of which is incorporated herein by reference.
- This vehicle air conditioner includes a compressor, an indoor condenser, an indoor evaporator, an outdoor heat exchanger, a first expansion valve as a first pressure reducing means, a second expansion valve as a second pressure reducing means, and a three-way as a switching means. It has a solenoid valve and a two-way solenoid valve.
- the first expansion valve reduces the pressure of the refrigerant in the cooling mode to expand the refrigerant.
- the second expansion valve reduces the pressure of the refrigerant during the heating mode to expand the refrigerant.
- Each of the first expansion valve and the second expansion valve has a valve case, a ball (valve element) disposed in the valve case, a temperature detector for detecting a temperature of the refrigerant, and a differential pressure of the refrigerant.
- a pressure detector Both the temperature detector and the pressure detector are provided in the valve case.
- the ball (valve element) operates according to the temperature detected by the temperature detector and the differential pressure detected by the pressure detector.
- An air conditioner for a vehicle for solving the above problems, A compressor that compresses the refrigerant, heat-exchanges the refrigerant with room air, cools and condenses the refrigerant, and heats the room air, and heat-exchanges the refrigerant with room air.
- An indoor evaporator that cools the indoor air while heating and evaporating the refrigerant, and functions as a condenser that exchanges heat between the refrigerant and the outside air to cool and condense the refrigerant during cooling
- An outdoor heat exchanger that functions as an evaporator that heats and evaporates the refrigerant during heating, a first expansion valve that expands the liquid-phase refrigerant during cooling and sends the refrigerant to the indoor evaporator, A second expansion valve that expands the liquid-phase refrigerant and sends the refrigerant to the outdoor heat exchanger that functions as an evaporator during heating; the compressor; the indoor condenser; the indoor evaporator; and the outdoor heat.
- the refrigerant line connects the first expansion valve and the second expansion valve, and a line between expansion valves in which the refrigerant in a liquid phase exists during heating and cooling, and the expansion without a device including a valve.
- An expansion valve connection line that is connected to the inter-valve line and in which the refrigerant in the liquid phase exists during heating and cooling.
- the expansion valve control detector is provided in the expansion valve line or the expansion valve connection line and detects only one refrigerant temperature in the expansion valve line or the expansion valve connection line.
- thermometer and only one pressure gauge provided on the expansion valve line or the expansion valve connection line to detect the pressure of the refrigerant in the expansion valve line or the expansion valve connection line. Is done.
- the controller at the time of cooling, for the first expansion valve, giving an opening degree command indicating an opening degree according to the state quantity of the refrigerant detected by the expansion valve control detector, at the time of heating, An opening command indicating an opening corresponding to the state quantity of the refrigerant detected by the expansion valve control detector is given to the second expansion valve.
- the first expansion valve of this aspect expands the liquid-phase refrigerant during cooling and sends the refrigerant to the indoor evaporator.
- the controller according to this aspect gives the first expansion valve an opening command indicating an opening corresponding to the state quantity of the refrigerant detected by the expansion valve control detector.
- the opening degree of the first expansion valve of the present embodiment is an opening degree corresponding to the state quantity of the refrigerant detected by the expansion valve control detector. For this reason, in this aspect, the cooling capacity and the cooling efficiency can be improved.
- the second expansion valve of this aspect expands the liquid-phase refrigerant during heating and sends the refrigerant to the outdoor heat exchanger functioning as an evaporator. Further, the controller according to the present embodiment gives the second expansion valve an opening command indicating the opening corresponding to the state quantity of the refrigerant detected by the expansion valve control detector. As a result, the opening of the second expansion valve of the present embodiment is an opening corresponding to the state quantity of the refrigerant detected by the expansion valve control detector. For this reason, in this aspect, the heating capacity and the heating efficiency can be improved.
- the expansion valve control detector of this aspect is provided in the expansion valve line or the expansion valve connection line, and detects the state quantity of the refrigerant in the expansion valve line or the expansion valve connection line.
- a liquid-phase refrigerant exists in the expansion valve line and the expansion valve connection line both during heating and during cooling. For this reason, based on the state quantity of the refrigerant detected by the expansion valve control detector composed of a set of detectors, the opening degree of the first expansion valve during cooling and the opening degree of the second expansion valve during heating are determined. The degree can be controlled. Therefore, in this embodiment, an increase in the number of detectors can be suppressed, and an increase in the size of the vehicle air conditioner and an increase in manufacturing cost can be suppressed.
- the cooling device includes an inlet through which the refrigerant flows, a first outlet from which the refrigerant flows, and a second outlet, and the inlet and the first outlet communicate with each other.
- the apparatus may further include a three-way valve and a two-way valve that can be changed to a state, a heating state in which the inlet and the second outlet communicate with each other.
- the outdoor heat exchanger has a first port and a second port through which the refrigerant enters and exits.
- Each of the first expansion valve and the second expansion valve has a first port and a second port through which the refrigerant enters and exits.
- the refrigerant line is a discharge line connecting a discharge port of the compressor and the inlet of the three-way valve, and a heat line connecting the first outlet of the three-way valve and the first port of the outdoor heat exchanger.
- Exchanger first port line, a heat exchanger second port line connecting the second port of the outdoor heat exchanger and the first port of the second expansion valve, and the second port of the second expansion valve An expansion valve line connecting two ports and the first port of the first expansion valve; a suction line connecting a second port of the first expansion valve and a suction port of the compressor; A first heating line connecting the second outlet of the valve and the line between the expansion valves; and a second heating line connecting the first port of the outdoor heat exchanger and the suction line.
- the first heating dedicated line forms at least a part of the expansion valve connection line.
- the indoor condenser is provided in the discharge line or the first heating line.
- the indoor evaporator is provided in the suction line.
- the two-way valve is provided in the second heating line.
- the controller when the three-way valve is in the cooling state, gives a close command to the two-way valve, gives an open command to the second expansion valve, the first expansion valve In response, an opening command indicating an opening corresponding to the state quantity of the refrigerant detected by the expansion valve control detector is given.
- the controller also provides an open command to the two-way valve, a close command to the first expansion valve, and the second expansion valve when the three-way valve is in the heating state. , An opening command indicating an opening corresponding to the state quantity of the refrigerant detected by the expansion valve control detector.
- the expansion valve control detector includes the first expansion line from the second port of the second expansion valve in the expansion valve line.
- the refrigerant between the second port of the second expansion valve and the connection position with the first dedicated heating line in the line between the expansion valves is provided to a connection position with the dedicated heating line.
- the state quantity may be detected.
- the liquid-phase refrigerant flows during both cooling and heating. For this reason, in this aspect, the state quantity of the liquid-phase refrigerant can be accurately detected both during cooling and during heating.
- the controller determines a difference between a saturation temperature of the refrigerant determined by the pressure detected by the pressure gauge and a temperature of the refrigerant detected by the thermometer.
- An opening command indicating an opening corresponding to a certain subcool degree may be given to the first expansion valve and the second expansion valve.
- the controller gives an opening command in a direction to make the opening larger than the current time when the subcooling degree is larger than the threshold value for the subcooling degree, and opens the opening command when the subcooling degree is smaller than the threshold value.
- An opening degree command in a direction to make the degree smaller than the current time may be given.
- the threshold may be 5 ° C. to 20 ° C.
- the controller may change the threshold value according to a rotation speed of the compressor.
- the controller uses the first threshold as the threshold when the compressor rotation speed is the first rotation speed, and the rotation speed of the compressor is higher than the first rotation speed.
- a second threshold larger than the first threshold may be used as the threshold.
- the present invention it is possible to suppress an increase in the size of the device and an increase in manufacturing cost while increasing the cooling / heating capability or the cooling / heating efficiency.
- the vehicle air conditioner of this embodiment is mounted on an EV (Electric Vehicle), an HEV (Hybrid Electric Vehicle), a PHEV (Plug-in Hybrid Electric Vehicle), or the like.
- EV Electric Vehicle
- HEV Hybrid Electric Vehicle
- PHEV Plug-in Hybrid Electric Vehicle
- this vehicle air conditioner includes a heating ventilating and air conditioning unit (HVAC) unit 10, a compressor 20, an outdoor heat exchanger 21, a first expansion valve 22, a second expansion valve 23, and a three-way valve. 25, a two-way valve 26, a buffer tank 27, a refrigerant line 40 interconnecting these components, an expansion valve control detector 30, and a controller 50.
- HVAC heating ventilating and air conditioning unit
- the HVAC unit 10 includes a unit duct 11, a blower 12, an indoor evaporator 13, an indoor condenser 14, an air mix damper 15, and an auxiliary heater 16.
- the unit duct 11 is arranged in the instrument panel of the vehicle.
- the unit duct 11 has an air inlet 11a and an air outlet 11b.
- the blower 12 selectively sucks one of the outside air and the room air, and sends the air into the unit duct 11 from the air inlet 11a of the unit duct 11 as room air.
- the indoor evaporator 13 is arranged in the unit duct 11.
- the indoor evaporator 13 has an inlet 13a through which the refrigerant flows, and an outlet 13b through which the refrigerant flows.
- the indoor evaporator 13 exchanges heat between the indoor air from the blower 12 and the refrigerant to heat and evaporate the refrigerant, while cooling the indoor air.
- the indoor condenser 14 is arranged in the unit duct 11 at a position closer to the air outlet 11 b than the indoor evaporator 13.
- the indoor condenser 14 has an inlet 14a through which the refrigerant flows, and an outlet 14b through which the refrigerant flows.
- the indoor condenser 14 heat-exchanges the indoor air from the blower 12 and the refrigerant to cool and condense the refrigerant, while heating the indoor air.
- the air mix damper 15 is disposed along the indoor condenser 14 between the indoor evaporator 13 and the indoor condenser 14 in the unit duct 11.
- the air mix damper 15 controls the amount of air that passes through the indoor condenser 14 among the air that has flowed into the unit duct 11, and bypasses the air without passing through the indoor condenser 14. Adjust the amount of air.
- the auxiliary heater 16 is arranged in the unit duct 11 closer to the air outlet 11 b than the indoor condenser 14. The auxiliary heater 16 heats the air according to an instruction from the controller 50 when the temperature of the air does not rise to a target temperature even when the air is heated by the indoor condenser 14.
- the air outlet 11b of the unit duct 11 is connected to an outlet provided in an instrument panel or the like.
- the compressor 20 has a suction port 20a for sucking the refrigerant and a discharge port 20b for discharging the refrigerant.
- the compressor 20 compresses the refrigerant sucked from the suction port 20a and discharges the compressed refrigerant from the discharge port 20b.
- the compressor 20 can change the number of rotations, which is a drive amount, according to an instruction from the controller 50.
- the outdoor heat exchanger 21 has a first port 21a and a second port 21b through which the refrigerant enters and exits.
- the outdoor heat exchanger 21 exchanges heat between the refrigerant and the outside air.
- the first expansion valve 22 and the second expansion valve 23 are both electromagnetic valves.
- Each of these expansion valves has a valve case, a valve element disposed in the valve case, and an electromagnetic drive mechanism that moves the valve element in the valve case to change the valve opening.
- the valve case has first ports 22a and 23a and second ports 22b and 23b through which the refrigerant enters and exits.
- the three-way valve 25 and the two-way valve 26 are both solenoid valves.
- the three-way valve 25 has a valve case, a valve element disposed in the valve case, and an electromagnetic drive mechanism for moving the valve element in the valve case.
- the valve case has an inlet 25a into which the refrigerant flows, and a first outlet 25b and a second outlet 25c from which the refrigerant flows.
- the valve body is displaceable between a cooling state in which the inlet 25a and the first outlet 25b communicate with each other and a heating state in which the inlet 25a communicates with the second outlet 25c.
- the electromagnetic drive mechanism displaces the valve body to a heating state or a cooling state according to an instruction from the controller 50.
- the buffer tank 27 is a tank for temporarily storing the refrigerant.
- the expansion valve control detector 30 is provided in the refrigerant line 40 and detects the state quantity of the refrigerant in the refrigerant line 40.
- the expansion valve control detector 30 includes only one set of a detector having one thermometer 31 for detecting the temperature of the refrigerant and one pressure gauge 32 for detecting the pressure of the refrigerant. Both the thermometer 31 and the pressure gauge 32 are provided in the refrigerant line 40.
- the refrigerant line 40 includes a discharge line 41, a heat exchanger first port line 42, a heat exchanger second port line 43, an expansion valve line 44, a suction line 45, a first heating dedicated line 46, and a second heating dedicated line. 47.
- the discharge line 41 connects the discharge port 20 b of the compressor 20 and the inlet 25 a of the three-way valve 25.
- the discharge line 41 has a first discharge line 41a and a second discharge line 41b.
- the first discharge line 41 a connects the discharge port 20 b of the compressor 20 and the inlet 14 a of the indoor condenser 14.
- the second discharge line 41b connects the outlet 14b of the indoor condenser 14 and the inlet 25a of the three-way valve 25. Therefore, the indoor condenser 14 is provided in the discharge line 41.
- the heat exchanger first port line 42 connects the first outlet 25 b of the three-way valve 25 and the first port 21 a of the outdoor heat exchanger 21.
- the heat exchanger second port line 43 connects the second port 21 b of the outdoor heat exchanger 21 and the first port 23 a of the second expansion valve 23.
- the expansion valve line 44 connects the second port 23 b of the second expansion valve 23 and the first port 22 a of the first expansion valve 22.
- the suction line 45 connects the second port 22b of the first expansion valve 22 and the suction port 20a of the compressor 20.
- the suction line 45 has a first suction line 45a, a second suction line 45b, and a third suction line 45c.
- the first suction line 45 a connects the second port 22 b of the first expansion valve 22 and the inlet 13 a of the indoor evaporator 13.
- the second suction line 45b connects the outlet 13b of the indoor evaporator 13 and the inlet 27a of the buffer tank 27.
- the third suction line 45c connects the outlet 27b of the buffer tank 27 and the suction port 20a of the compressor 20. Therefore, the indoor evaporator 13 and the buffer tank 27 are provided in the suction line 45.
- the first heating line 46 connects the second outlet 25c of the three-way valve 25 and the expansion valve line 44.
- the second dedicated heating line 47 connects the first port 21a of the outdoor heat exchanger 21 and the second suction line 45b.
- the first dedicated heating line 46 is directly connected to the inter-expansion-valve line 44 without using a device including a valve, and forms an inter-expansion-valve connection line in which a liquid-phase refrigerant exists during heating and cooling.
- the two-way valve 26 is provided in the second heating line 47.
- the expansion valve control detector 30 is provided between the second port 23b of the second expansion valve 23 and the connection position of the first heating line 46 in the inter-expansion-valve line 44. The state quantity of the refrigerant is detected.
- the controller 50 receives a mode from a vehicle occupant or the like, and according to the received mode, the compressor 20, the three-way valve 25, the two-way valve 26, the first expansion valve 22, the second expansion valve 23, the blower 12, The mix damper 15 and the auxiliary heater 16 are controlled.
- the modes accepted by the controller 50 include a heating mode and a cooling mode.
- the controller 50 When the controller 50 receives a heating mode from a vehicle occupant or the like, the controller 50 gives a command to the three-way valve 25 to be in a heating state and gives an opening command to the two-way valve 26.
- the controller 50 gives a closing command to the first expansion valve 22 and opens the second expansion valve 23 to indicate an opening corresponding to the state quantity of the refrigerant detected by the expansion valve control detector 30. Give a command.
- the controller 50 gives a drive command to the blower 12 of the HVAC unit 10.
- the controller 50 controls the air condenser damper 15 of the HVAC unit 10 so that the amount of air that flows into the unit duct 11 does not pass through the indoor condenser 14 but bypasses the indoor condenser 14. A damper opening command for increasing the amount of air to be passed is given. Further, the controller 50 also gives a drive command to the compressor 20.
- the three-way valve 25 is in a heating state, and the inlet 25a and the second outlet 25c of the three-way valve 25 are in a communicating state.
- the two-way valve 26 is opened.
- the first expansion valve 22 is closed.
- the blower 12 of the HVAC unit 10 starts to drive.
- the opening degree of the air mix damper 15 is such that, of the air that has flowed into the unit duct 11, the amount of air that passes through the indoor condenser 14 is larger than the amount of air that is bypassed without passing through the indoor condenser 14.
- the compressor 20 starts to drive and rotate.
- the gas-phase refrigerant compressed by the compressor 20 flows into the indoor condenser 14 via the first discharge line 41a.
- Air sent into the unit duct 11 by the blower 12 of the HVAC unit 10 passes through the indoor condenser 14.
- the indoor condenser 14 heat exchange is performed between the gas-phase refrigerant and air, and the refrigerant is cooled and condensed, and the air is heated.
- the heated air flows from the unit duct 11 into a passenger space in the vehicle from an outlet provided in an instrument panel or the like.
- a hatched portion in the refrigerant line 40 is a portion where a liquid-phase refrigerant exists. Since the three-way valve 25 is in the heating state and the inlet 25a and the second outlet 25c are in communication with each other, the liquid-phase refrigerant flowing into the three-way valve 25 is supplied to the first heating-only line 46 and the expansion-valve line 44. The air flows into the outdoor heat exchanger 21 from the second port 21b of the outdoor heat exchanger 21 via the second expansion valve 23 and the second expansion valve 23.
- the liquid-phase refrigerant is decompressed and expanded in the process of passing through the second expansion valve 23, and a part of the refrigerant becomes a gas phase.
- the outdoor heat exchanger 21 heat is exchanged between the outside air and the refrigerant, the refrigerant is heated and evaporated, and the outside air is cooled. That is, at the time of heating, the outdoor heat exchanger 21 functions as an evaporator.
- the evaporated refrigerant that is, the gas-phase refrigerant flows out of the first port 21a of the outdoor heat exchanger 21.
- the gas-phase refrigerant flows into the compressor 20 via the second heating line 47, a part of the second suction line 45b, the buffer tank 27, and the third suction line 45c.
- the gas-phase refrigerant is compressed by the compressor 20, and then flows into the indoor condenser 14 via the first discharge line 41a as described above.
- the controller 50 stores the relationship between the rotation speed of the compressor 20 and a threshold value regarding the degree of subcooling.
- the subcool degree is a deviation between the saturation temperature of the refrigerant and the actual temperature of the refrigerant.
- the relationship stored in the controller 50 is such that the threshold value increases as the rotation speed of the compressor 20 increases.
- the controller 50 determines a threshold value corresponding to the current rotational speed of the compressor 20 using this relationship. As described above, the threshold value varies depending on the number of revolutions of the compressor 20, but is 5 to 20 ° C., preferably 5 to 15 ° C.
- the pressure of the liquid-phase refrigerant detected by the pressure gauge 32 is input to the controller 50.
- the controller 50 determines the saturation temperature of the refrigerant based on the pressure. Further, the controller 50 obtains a subcool degree which is a deviation between the saturation temperature and the temperature of the liquid refrigerant detected by the thermometer 31.
- the controller 50 compares the degree of subcooling with the threshold, and if the degree of subcooling is greater than the threshold, gives an opening command to the second expansion valve 23 in a direction to increase the opening from the present time. Further, when the subcool degree is smaller than the threshold value, the controller 50 gives an opening command to the second expansion valve 23 in a direction to make the opening smaller than the current time.
- the temperature around the outdoor heat exchanger 21 may increase depending on the location of the vehicle.
- the outdoor heat exchanger 21 can efficiently take in heat from the outside air, the degree of subcooling increases, and the heating capacity improves.
- an opening degree command in a direction in which the degree of opening is increased from the current time is given to the second expansion valve 23. For this reason, in the present embodiment, for example, when the temperature around the outdoor heat exchanger 21 is high, the heating efficiency can be improved.
- the passenger may give an instruction to raise the temperature in the passenger space after giving a heating instruction to the controller 50.
- the controller 50 increases the rotation speed of the compressor 20 to increase the heating capacity.
- the threshold value increases as the rotation speed of the compressor 20 increases.
- the subcool degree decreases relative to the threshold value. Therefore, when the rotation speed of the compressor 20 increases, the possibility that the subcool degree becomes smaller than the threshold value increases. Therefore, in this case, in this embodiment, the controller 50 gives an opening command to the second expansion valve 23 in a direction to make the opening smaller than the current time, thereby improving the heating capacity.
- the controller 50 operates the auxiliary heater 16 to reduce the air heated by the indoor condenser 14 when the temperature in the occupant space does not become too high even if the rotation speed of the compressor 20 is increased. Further heating is performed by the auxiliary heater 16.
- the controller 50 When the cooling mode is received from a vehicle occupant or the like, the controller 50 gives a command to the three-way valve 25 to be in a cooling state and gives a close command to the two-way valve 26.
- the controller 50 gives an opening command to the second expansion valve 23, and indicates an opening corresponding to the state quantity of the refrigerant detected by the expansion valve control detector 30 to the first expansion valve 22.
- the controller 50 gives a drive command to the blower 12 of the HVAC unit 10.
- the controller 50 gives a command to the air mix damper 15 of the HVAC unit 10 to open the damper 15 such that most of the air flowing into the unit duct 11 bypasses the indoor condenser 14 without passing through the indoor condenser 14. Further, the controller 50 also gives a drive command to the compressor 20.
- the three-way valve 25 is in a cooling state, and the inlet 25a and the first outlet 25b of the three-way valve 25 are in a communicating state.
- the two-way valve 26 is closed.
- the second expansion valve 23 is opened.
- the blower 12 of the HVAC unit 10 starts to drive.
- the opening degree of the air mix damper 15 is such that most of the air flowing into the unit duct 11 bypasses the indoor condenser 14 without passing through the indoor condenser 14.
- the compressor 20 starts to drive and rotate.
- the gas-phase refrigerant compressed by the compressor 20 flows into the indoor condenser 14 via the first discharge line 41a. Due to the presence of the air mix damper 15 of the HVAC unit 10, almost no air sent into the unit duct 11 by the blower 12 passes through the indoor condenser 14. For this reason, in the indoor condenser 14, the amount of heat exchange between the gas-phase refrigerant and air is small, the refrigerant hardly condenses, and the air is hardly heated. Therefore, the gaseous phase refrigerant flowing into the indoor condenser 14 flows out of the indoor condenser 14 as a gaseous state refrigerant.
- the gas-phase refrigerant flowing out of the indoor condenser 14 flows into the three-way valve 25 from the inlet 25a of the three-way valve 25 via the second discharge line 41b. Since the three-way valve 25 is in a cooling state and the inlet 25a and the first outlet 25b are in communication with each other, the gas-phase refrigerant flowing into the three-way valve 25 passes through the heat exchanger first port line 42 and is supplied to the outdoor heat source. The heat flows into the outdoor heat exchanger 21 from the first port 21a of the exchanger 21. In the outdoor heat exchanger 21, heat is exchanged between the outside air and the gas-phase refrigerant, the refrigerant is cooled and condensed, and the outside air is heated. That is, during cooling, the outdoor heat exchanger 21 functions as a condenser.
- the condensed refrigerant that is, the liquid-phase refrigerant flows out of the second port 21b of the outdoor heat exchanger 21.
- a hatched portion in the refrigerant line 40 is a portion where a liquid-phase refrigerant exists.
- the liquid-phase refrigerant flows into the first expansion valve 22 via the heat exchanger second port line 43, the opened second expansion valve 23, and the expansion valve line 44.
- the liquid-phase refrigerant is decompressed and expanded, and a part of the refrigerant becomes a gas phase.
- This refrigerant flows into the indoor evaporator 13 via the first suction line 45a.
- the air sent into the unit duct 11 by the blower 12 of the HVAC unit 10 exchanges heat with the liquid-phase refrigerant, and the refrigerant is heated and evaporated to cool the air.
- Most of the cooled air bypasses the indoor condenser 14 without passing through the indoor condenser 14 and flows out of the unit duct 11 due to the presence of the air mix damper 15. Then, the cooled air flows into an occupant space in the vehicle from an outlet provided in an instrument panel or the like.
- the gas-phase refrigerant is compressed by the compressor 20, and then flows into the indoor condenser 14 via the first discharge line 41a as described above.
- the pressure of the liquid-phase refrigerant detected by the pressure gauge 32 is input to the controller 50 as in the heating mode.
- the controller 50 determines the saturation temperature of the refrigerant based on the pressure. Further, the controller 50 obtains a subcool degree which is a deviation between the saturation temperature and the temperature of the liquid refrigerant detected by the thermometer 31.
- the controller 50 compares the degree of subcooling with the threshold, and when the degree of subcooling is larger than the threshold, gives an opening command to the first expansion valve 22 in a direction to increase the opening from the current time. Further, when the subcool degree is smaller than the threshold value, the controller 50 gives an opening command to the first expansion valve 22 in a direction to make the opening smaller than the current time.
- the outdoor heat exchanger 21 cannot efficiently release the heat of the refrigerant to the outside air, so that the subcooling degree is reduced and the cooling capacity is reduced.
- the opening degree command in the direction of decreasing the opening degree from the current time is given to the first expansion valve 22. For this reason, in the present embodiment, it is possible to suppress a decrease in the cooling capacity at the time of extremely hot summer.
- the temperature around the outdoor heat exchanger 21 may decrease depending on the location of the vehicle.
- the outdoor heat exchanger 21 can efficiently release the heat of the refrigerant to the outside air, the subcool degree increases, and the cooling capacity improves.
- the opening degree command in the direction of increasing the opening degree from the current time is given to the first expansion valve 22. For this reason, in the present embodiment, for example, when the temperature around the outdoor heat exchanger 21 is low, the cooling efficiency can be improved.
- the passenger may give a cooling instruction to the controller 50 and then give an instruction to lower the temperature in the passenger space.
- the controller 50 increases the rotation speed of the compressor 20 to increase the cooling capacity.
- the threshold value increases as the rotation speed of the compressor 20 increases.
- the subcool degree decreases relative to the threshold value. Therefore, when the rotation speed of the compressor 20 increases, the possibility that the subcool degree becomes smaller than the threshold value increases. Therefore, in this case, in this embodiment, the controller 50 gives the opening command to the first expansion valve 22 in a direction to make the opening smaller than the current time, and improves the cooling capacity.
- the controller 50 determines the subcool degree of the refrigerant and controls the opening degrees of the first expansion valve 22 and the second expansion valve 23 according to the subcool degree.
- the cooling and heating capacity and cooling and heating efficiency of the device can be increased.
- the cooling and heating capacity and the cooling and heating efficiency of the vehicle air conditioner can be further improved.
- a pair of detectors (one thermometer 31) is provided between the second port 23b of the second expansion valve 23 and the connection position of the first heating line 46 within the expansion valve line 44.
- an expansion valve control detector 30 composed of one pressure gauge 32) to detect the state quantity of the refrigerant within the detector.
- the opening degree of the first expansion valve 22 in the cooling mode and the heating in accordance with the subcooling degree based on the state quantity of the refrigerant detected by the expansion valve control detector 30 composed of a set of detectors,
- the opening degree of the second expansion valve 23 in the mode can be controlled. Therefore, in the present embodiment, an increase in the number of detectors can be suppressed, and an increase in the size of the vehicle air conditioner and an increase in manufacturing cost can be suppressed.
- Modification Vehicles have multiple heat sources, such as engines or motors and batteries.
- An auxiliary heat exchanger 35 for heating the refrigerant in the discharge line 41 using heat from these heat sources as shown in parentheses in FIG. 1 may be provided.
- the auxiliary heat exchanger 35 may be provided on the first discharge line 41a, the second discharge line 41b, or may be provided over the first discharge line 41a and the second discharge line 41b.
- the auxiliary heat exchanger 35 may be provided in the first heating line 46.
- the medium that exchanges heat with the refrigerant is not limited to a liquid such as water or a coolant, but may be a gas such as air.
- the indoor condenser 14 is provided in the discharge line 41.
- the indoor condenser 14 may be provided in the first heating line 46.
- EV, HEV and PHEV vehicles are equipped with high-performance batteries.
- High-performance batteries generally generate a large amount of heat and need to be cooled.
- EV, HEV, and PHEV vehicles are equipped with a battery cooler for cooling this high-performance battery. Therefore, a refrigerant flowing in the refrigerant line 40 of the vehicle air conditioner may be used as a medium for removing heat from the high-performance battery in the battery cooler.
- the battery cooler 36 has an inlet 36a through which the refrigerant flows in and an outlet 36b through which the refrigerant flows out.
- the inlet 36a of the battery cooler 36 and the line 44 between the expansion valves are connected by a cooler inlet line 48.
- the outlet 36b of the battery cooler 36 and the second suction line 45b are connected by a cooler outlet line 49.
- the cooler inlet line 48 and the cooler outlet line 49 constitute a part of the refrigerant line 40.
- the third expansion valve 24 is provided in the cooler inlet line 48.
- the third expansion valve 24 includes a valve case, a valve element disposed in the valve case, and a valve element that moves the valve element in the valve case. And an electromagnetic drive mechanism for changing the opening.
- the valve case has a first port 24a and a second port 24b through which the refrigerant enters and exits.
- the controller 50 executes the battery cooling mode.
- the controller 50 gives a command to the three-way valve 25 to be in the cooling state, and gives a close command to the two-way valve 26.
- the controller 50 gives a close command to the first expansion valve 22, gives an open command to the second expansion valve 23, and detects the third expansion valve 24 by the expansion valve control detector 30.
- An opening command indicating the opening corresponding to the state quantity of the refrigerant is given.
- the controller 50 gives a drive command to the compressor 20.
- the controller 50 does not give a drive command to the blower 12 of the HVAC unit 10 unlike the heating mode and the cooling mode.
- the controller 50 gives a command to the air mix damper 15 of the HVAC unit 10 to open the damper 15 such that most of the air flowing into the unit duct 11 bypasses the indoor condenser 14 without passing through the indoor condenser 14.
- the three-way valve 25 is in a cooling state, and the inlet 25a of the three-way valve 25 and the first outlet 25b are in a communicating state.
- the two-way valve 26 is closed.
- the first expansion valve 22 is closed, and the second expansion valve 23 is open.
- the opening degree of the air mix damper 15 is such that most of the air flowing into the unit duct 11 bypasses the indoor condenser 14 without passing through the indoor condenser 14.
- the compressor 20 starts to drive and rotate.
- the gas-phase refrigerant compressed by the compressor 20 flows into the indoor condenser 14 via the first discharge line 41a. Since the blower 12 of the HVAC unit 10 is not driven and the presence of the air mix damper 15 of the HVAC unit 10, almost no air passes through the indoor condenser 14. For this reason, in the indoor condenser 14, the amount of heat exchange between the gas-phase refrigerant and air is small, the refrigerant hardly condenses, and the air is hardly heated. Therefore, the gaseous phase refrigerant flowing into the indoor condenser 14 flows out of the indoor condenser 14 as a gaseous state refrigerant.
- the gas-phase refrigerant flowing out of the indoor condenser 14 flows into the three-way valve 25 from the inlet 25a of the three-way valve 25 via the second discharge line 41b. Since the three-way valve 25 is in a cooling state and the inlet 25a and the first outlet 25b are in communication with each other, the gas-phase refrigerant flowing into the three-way valve 25 passes through the heat exchanger first port line 42 and is supplied to the outdoor heat source. The heat flows into the outdoor heat exchanger 21 from the first port 21a of the exchanger 21. In the outdoor heat exchanger 21, heat is exchanged between the outside air and the gas-phase refrigerant, the refrigerant is cooled and condensed, and the outside air is heated. That is, in the battery cooling mode, the outdoor heat exchanger 21 functions as a condenser.
- the condensed refrigerant that is, the liquid-phase refrigerant flows out of the second port 21b of the outdoor heat exchanger 21.
- a hatched portion in the refrigerant line 40 is a portion where a liquid-phase refrigerant exists.
- This liquid phase refrigerant flows into the third expansion valve 24 via the heat exchanger second port line 43, the opened second expansion valve 23, a part of the expansion valve line 44, and the cooler inlet line 48. .
- the refrigerant in the liquid phase is decompressed and expanded in the process of passing through the third expansion valve 24, and a part of the refrigerant becomes a gas phase.
- This refrigerant flows into the battery cooler 36 via the cooler inlet line 48.
- the battery cooler 36 In the battery cooler 36, the battery and the liquid-phase refrigerant exchange heat directly or indirectly, and the refrigerant is heated and evaporated to cool the battery. That is, the battery cooler 36 functions as an evaporator for the refrigerant.
- the refrigerant evaporated in the battery cooler 36 that is, a gaseous refrigerant, flows from the battery cooler 36 to the compressor 20 via the cooler outlet line 49, a part of the second suction line 45 b, the buffer tank 27, and the third suction line 45 c. Inflow.
- the gas-phase refrigerant is compressed by the compressor 20, and then flows into the indoor condenser 14 via the first discharge line 41a as described above.
- the pressure of the liquid-phase refrigerant detected by the pressure gauge 32 is input to the controller 50 as in the heating mode and the cooling mode.
- the controller 50 determines the saturation temperature of the refrigerant based on the pressure. Further, the controller 50 obtains a subcool degree which is a deviation between the saturation temperature and the temperature of the liquid refrigerant detected by the thermometer 31.
- the controller 50 compares the degree of subcooling with the threshold, and when the degree of subcooling is larger than the threshold, gives the third expansion valve 24 an opening command in a direction to increase the opening from the current time. When the subcool degree is smaller than the threshold value, the controller 50 gives the third expansion valve 24 an opening command in a direction to make the opening smaller than the current time.
- a pair of detectors is provided between the second port 23b of the second expansion valve 23 and the connection position of the first heating line 46 in the expansion valve inter-line 44.
- the state quantity of the refrigerant is detected.
- the line 44 between the expansion valves between the connection position between the second port 23b of the second expansion valve 23 and the line dedicated to the first heating 46, not only in the heating mode and the cooling mode, but also in the battery cooling mode. Then, a liquid-phase refrigerant flows. For this reason, the opening degree of the first expansion valve 22 in the cooling mode and the heating mode in accordance with the subcool degree based on the state quantity of the refrigerant detected by the expansion valve control detector 30 composed of a set of detectors.
- the expansion valve control detector 30 is provided between the second port 23b of the second expansion valve 23 and the connection position between the first heating line 46 in the expansion valve line 44.
- one of the detectors or both of the detectors is provided with a liquid-phase refrigerant at the time of heating and cooling. It may be provided in a line 46 dedicated to one heating (connection line between expansion valves).
- the liquid-phase refrigerant exists in the first heating dedicated line 46 at the time of heating and cooling, the refrigerant at the time of cooling does not flow because only the liquid-phase refrigerant stays.
- thermometer 31 among the thermometers 31 and the pressure gauges 32 constituting the expansion valve control detector 30 is connected to the expansion valve line 44. Inside, it is preferable to provide between the second port 23b of the second expansion valve 23 and the connection position of the first heating line 46.
- HVAC unit 11 unit duct 11a: air inlet 11b: air outlet 12: blower 13: indoor evaporator 13a: inlet 13b: outlet 14: indoor condenser 14a: inlet 14b: outlet 15: air mix damper 16: auxiliary heater 20: compressor 20a: suction port 20b: discharge port 21: outdoor heat exchanger 21a: first port 21b: second port 22: first expansion valve 22a: first port 22b: second port 23: second expansion valve 23a: first port 23b: second port 24: third expansion valve 24a: first port 24b: second port 25: three-way valve 25a: inlet 25b: first outlet 25c: second outlet 26: two-way valve 27: Buffer tank 27a: inlet 27b: outlet 30: detector 31 for expansion valve control: thermometer 32: pressure gauge 35: auxiliary heat exchanger 36: battery cooler 36a: inlet 36b: outlet 40: refrigerant line 1: discharge line 41a: first discharge line 41b: second discharge line 42: heat exchanger first port line 43: heat exchanger second
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Air-Conditioning For Vehicles (AREA)
Abstract
車両用空調装置は、室内凝縮器(14)、室内蒸発器(13)、第一膨張弁(22)、第二膨張弁(23)、冷媒ライン(40)、膨張弁制御用検知器(30)、制御器(50)を備える。膨張弁制御用検知器(30)は、冷媒ライン(40)中の膨張弁間ライン(44)内の冷媒の温度を検知する一つのみの温度計(31)と膨張弁間ライン(44)内の冷媒の圧力を検知する一つのみの圧力計(32)とで構成される。制御器(50)は、冷房時に、第一膨張弁(22)に対して、膨張弁制御用検知器(30)で検知された冷媒の状態量に応じた開度指令を与え、暖房時に、第二膨張弁(23)に対して、膨張弁制御用検知器(30)で検知された冷媒の状態量に応じた開度指令を与える。
Description
本発明は、車両に搭載される車両用空調装置に関する。
本願は、2018年7月25日に、日本国に出願された特願2018-139604号に基づき優先権を主張し、この内容をここに援用する。
本願は、2018年7月25日に、日本国に出願された特願2018-139604号に基づき優先権を主張し、この内容をここに援用する。
車両用空調装置としては、例えば、以下の特許文献1に記載されている装置がある。
この車両用空調装置は、圧縮機、室内凝縮器、室内蒸発器、室外熱交換器、第一減圧手段としての第一膨張弁、第二減圧手段としての第二膨張弁、切替手段としての三方電磁弁、二方電磁弁を備える。
第一膨張弁は、冷房モードの際に冷媒の圧力を低下させて冷媒を膨張させる。第二膨張弁は、暖房モードの際に冷媒の圧力を低下させて冷媒を膨張させる。第一膨張弁及び第二膨張弁は、いずれも、弁ケースと、弁ケース内に配置されているボール(弁体)と、冷媒の温度を検知する温度検知器、冷媒の差圧を検知する圧力検知器と、を有する。温度検知器及び圧力検知器は、いずれも弁ケースに設けられている。ボール(弁体)は、温度検知器で検知された温度、及び圧力検知器で検知された差圧に応じて動作する。
この車両用空調装置では、各膨張弁の弁体が冷媒の差圧や温度に応じて動作するので、冷暖房能力又は冷暖房効率を高めることができる。
上記特許文献1に記載の技術では、第一膨張弁及び第二膨張弁のそれぞれに温度検知器及び圧力検知器が設けられているため、各膨張弁が大型化することで、車両用空調装置が大型化する上に、検知器の数量が多くなり、製造コストもかさむ、という問題点がある。
そこで、本発明は、冷暖能力又は冷暖房効率を高めつつも、装置の大型化及び製造コストの増加を抑えることができる車両用空調装置を提供することを目的とする。
上記問題点を解決するための発明に係る一態様の車両用空調装置は、
冷媒を圧縮する圧縮機と、前記冷媒を室内空気と熱交換させて、前記冷媒を冷却して凝縮させる一方で、前記室内空気を加熱する室内凝縮器と、前記冷媒を室内空気と熱交換させて、前記冷媒を加熱して蒸発させる一方で、前記室内空気を冷却する室内蒸発器と、前記冷媒と外気とを熱交換させ、冷房時に前記冷媒を冷却して凝縮させる凝縮器として機能し、暖房時に前記冷媒を加熱して蒸発させる蒸発器として機能する室外熱交換器と、冷房時に液相の前記冷媒を膨張させて、前記室内蒸発器に前記冷媒を送る第一膨張弁と、暖房時に液相の前記冷媒を膨張させて、暖房時に蒸発器として機能する前記室外熱交換器に前記冷媒を送る第二膨張弁と、前記圧縮機、前記室内凝縮器、前記室内蒸発器、前記室外熱交換器、前記第一膨張弁、前記第二膨張弁を相互に接続する冷媒ラインと、前記冷媒の状態量を検知する膨張弁制御用検知器と、制御器と、を備える。前記冷媒ラインは、前記第一膨張弁と前記第二膨張弁とを接続し、暖房時及び冷房時に液相の前記冷媒が存在する膨張弁間ラインと、弁を含む機器を介さずに前記膨張弁間ラインに接続され、暖房時及び冷房時に液相の前記冷媒が存在する膨張弁間接続ラインと、を有する。前記膨張弁制御用検知器は、前記膨張弁間ライン又は前記膨張弁間接続ラインに設けられて前記膨張弁間ライン内又は前記膨張弁間接続ライン内の冷媒の温度を検知する一つのみの温度計、及び、前記膨張弁間ライン又は前記膨張弁間接続ラインに設けられて前記膨張弁間ライン内又は前記膨張弁間接続ライン内の冷媒の圧力を検知する一つのみの圧力計で構成される。前記制御器は、冷房時に、前記第一膨張弁に対して、前記膨張弁制御用検知器で検知された前記冷媒の状態量に応じた開度を示す開度指令を与え、暖房時に、前記第二膨張弁に対して、前記膨張弁制御用検知器で検知された前記冷媒の状態量に応じた開度を示す開度指令を与える。
冷媒を圧縮する圧縮機と、前記冷媒を室内空気と熱交換させて、前記冷媒を冷却して凝縮させる一方で、前記室内空気を加熱する室内凝縮器と、前記冷媒を室内空気と熱交換させて、前記冷媒を加熱して蒸発させる一方で、前記室内空気を冷却する室内蒸発器と、前記冷媒と外気とを熱交換させ、冷房時に前記冷媒を冷却して凝縮させる凝縮器として機能し、暖房時に前記冷媒を加熱して蒸発させる蒸発器として機能する室外熱交換器と、冷房時に液相の前記冷媒を膨張させて、前記室内蒸発器に前記冷媒を送る第一膨張弁と、暖房時に液相の前記冷媒を膨張させて、暖房時に蒸発器として機能する前記室外熱交換器に前記冷媒を送る第二膨張弁と、前記圧縮機、前記室内凝縮器、前記室内蒸発器、前記室外熱交換器、前記第一膨張弁、前記第二膨張弁を相互に接続する冷媒ラインと、前記冷媒の状態量を検知する膨張弁制御用検知器と、制御器と、を備える。前記冷媒ラインは、前記第一膨張弁と前記第二膨張弁とを接続し、暖房時及び冷房時に液相の前記冷媒が存在する膨張弁間ラインと、弁を含む機器を介さずに前記膨張弁間ラインに接続され、暖房時及び冷房時に液相の前記冷媒が存在する膨張弁間接続ラインと、を有する。前記膨張弁制御用検知器は、前記膨張弁間ライン又は前記膨張弁間接続ラインに設けられて前記膨張弁間ライン内又は前記膨張弁間接続ライン内の冷媒の温度を検知する一つのみの温度計、及び、前記膨張弁間ライン又は前記膨張弁間接続ラインに設けられて前記膨張弁間ライン内又は前記膨張弁間接続ライン内の冷媒の圧力を検知する一つのみの圧力計で構成される。前記制御器は、冷房時に、前記第一膨張弁に対して、前記膨張弁制御用検知器で検知された前記冷媒の状態量に応じた開度を示す開度指令を与え、暖房時に、前記第二膨張弁に対して、前記膨張弁制御用検知器で検知された前記冷媒の状態量に応じた開度を示す開度指令を与える。
本態様の第一膨張弁は、冷房時に、液相の冷媒を膨張させて、室内蒸発器にこの冷媒を送る。また、本態様の制御器は、この第一膨張弁に対して、膨張弁制御用検知器で検知された冷媒の状態量に応じた開度を示す開度指令を与える。この結果、本態様の第一膨張弁の開度は、膨張弁制御用検知器で検知された冷媒の状態量に応じた開度になる。このため、本態様では、冷房能力や冷房効率を高めることができる。
本態様の第二膨張弁は、暖房時に、液相の冷媒を膨張させて、蒸発器として機能する室外熱交換器にこの冷媒を送る。また、本態様の制御器は、この第二膨張弁に対して、膨張弁制御用検知器で検知された冷媒の状態量に応じた開度を示す開度指令を与える。この結果、本態様の第二膨張弁の開度は、膨張弁制御用検知器で検知された冷媒の状態量に応じた開度になる。このため、本態様では、暖房能力や暖房効率を高めることができる。
本態様の膨張弁制御用検知器は、膨張弁間ライン又は膨張弁間接続ラインに設けられて、膨張弁間ライン内又は膨張弁間接続ライン内の冷媒の状態量を検知する。膨張弁間ライン及び膨張弁間接続ライン内には、暖房時でも冷房時でも、液相の冷媒が存在する。このため、一組の検知器で構成される膨張弁制御用検知器で検知された冷媒の状態量に基づき、冷房時における第一膨張弁の開度、及び暖房時における第二膨張弁の開度を制御することができる。従って、本態様では、検知器の数量増加が抑えられ、車両用空調装置が大型化及び製造コストの増加を抑えることができる。
ここで、前記一態様の車両用空調装置において、前記冷媒が流入する入口、前記冷媒が流出する第一出口及び第二出口を有し、前記入口と前記第一出口とが連通している冷房状態と、前記入口と前記第二出口とが連通している暖房状態とに変化可能な三方弁と、二方弁と、をさらに備えてもよい。この場合、前記室外熱交換器は、前記冷媒が出入りする第一口及び第二口を有する。前記第一膨張弁及び前記第二膨張弁は、いずれも、前記冷媒が出入りする第一口及び第二口を有する。前記冷媒ラインは、前記圧縮機の吐出口と前記三方弁の前記入口とを接続する吐出ラインと、前記三方弁の前記第一出口と前記室外熱交換器の前記第一口とを接続する熱交換器第一口ラインと、前記室外熱交換器の前記第二口と前記第二膨張弁の前記第一口とを接続する熱交換器第二口ラインと、前記第二膨張弁の前記第二口と前記第一膨張弁の前記第一口とを接続する前記膨張弁間ラインと、前記第一膨張弁の第二口と前記圧縮機の吸込口とを接続する吸込ラインと、前記三方弁の第二出口と前記膨張弁間ラインとを接続する第一暖房専用ラインと、前記室外熱交換器の前記第一口と前記吸込ラインとを接続する第二暖房専用ラインと、を有する。前記第一暖房専用ラインが、前記膨張弁間接続ラインの少なくとも一部を構成する。前記室内凝縮器は、前記吐出ライン又は前記第一暖房専用ラインに設けられている。前記室内蒸発器は、前記吸込ラインに設けられている。前記二方弁は、前記第二暖房専用ラインに設けられている。前記制御器は、前記三方弁を前記冷房状態にさせているときに、前記二方弁に対して閉指令を与え、前記第二膨張弁に対して開指令を与え、前記第一膨張弁に対して、前記膨張弁制御用検知器で検知された前記冷媒の状態量に応じた開度を示す開度指令を与える。制御器は、また、前記三方弁を前記暖房状態にさせているときに、前記二方弁に対して開指令を与え、前記第一膨張弁に対して閉指令を与え、前記第二膨張弁に対して、前記膨張弁制御用検知器で検知された前記冷媒の状態量に応じた開度を示す開度指令を与える。
ここで、前記第一暖房専用ラインを備える前記態様の車両用空調装置において、前記膨張弁制御用検知器は、前記膨張弁間ライン中で前記第二膨張弁の前記第二口から前記第一暖房専用ラインとの接続位置までの間に設けられ、前記膨張弁間ライン中で前記第二膨張弁の前記第二口から前記第一暖房専用ラインとの接続位置までの間内の前記冷媒の状態量を検知してもよい。
膨張弁間ライン中で第二膨張弁の第二口から第一暖房専用ラインとの接続位置までの間内では、冷房時でも暖房時でも、液相の冷媒が流れる。このため、本態様では、冷房時でも暖房時でも、液相の冷媒の状態量を正確に検知することができる。
以上のいずれかの前記態様の車両用空調装置において、前記制御器は、前記圧力計で検知された圧力で定まる前記冷媒の飽和温度と前記温度計で検知された前記冷媒の温度との偏差であるサブクール度に応じた開度を示す開度指令を、前記第一膨張弁及び前記第二膨張弁に与えてもよい。
この場合、前記制御器は、前記サブクール度に関する閾値より前記サブクール度が大きい場合に、開度を現時点よりも大きくする方向の開度指令を与え、前記閾値より前記サブクール度が小さい場合に、開度を現時点よりも小さくする方向の開度指令を与えてもよい。
この場合、前記閾値は、5℃~20℃であってもよい。
前記制御器がサブクール度に関する閾値を用いる、いずれかの前記態様の車両用空調装置において、前記制御器は、前記圧縮機の回転数に応じて、前記閾値を変更してもよい。
この場合、前記制御器は、前記圧縮機の回転数が第一回転数のときに、前記閾値として第一閾値を用い、前記圧縮機の回転数が前記第一回転数より高い第二回転数のときに、前記閾値として前記第一閾値よりも大きな第二閾値を用いてもよい。
本発明の一態様では、冷暖能力又は冷暖房効率を高めつつも、装置の大型化及び製造コストの増加を抑えることができる。
以下、本発明に係る車両用空調装置の一実施形態及び各種変形例について、図面を用いて説明する。
「実施形態」
本発明に係る車両用空調装置の一実施形態について、図1~図3を参照して説明する。
本発明に係る車両用空調装置の一実施形態について、図1~図3を参照して説明する。
本実施形態の車両用空調装置は、EV車(Electric Vehicle)、HEV車(HybridElectric Vehicle)、PHEV車(Plug-in Hybrid Electric Vehicle)等に搭載される。
この車両用空調装置は、図1に示すように、HVAC(Heating Ventilation and Air Conditioning)ユニット10と、圧縮機20、室外熱交換器21、第一膨張弁22、第二膨張弁23、三方弁25、二方弁26、バッファタンク27、これら相互を接続する冷媒ライン40、膨張弁制御用検知器30、及び制御器50を備える。
HVACユニット10は、ユニットダクト11、送風機12、室内蒸発器13、室内凝縮器14、エアミックスダンパ15、及び補助ヒータ16を有する。
ユニットダクト11は、車両のインストルメントパネル内に配置されている。このユニットダクト11は、空気入口11aと空気出口11bとを有する。送風機12は、外気と室内空気とのうち一方の空気を選択的に吸い込んで、これを室内空気として、ユニットダクト11の空気入口11aからユニットダクト11内に送り込む。室内蒸発器13は、ユニットダクト11内に配置されている。この室内蒸発器13は、冷媒が流入する入口13aと、冷媒が流出する出口13bと、を有する。室内蒸発器13は、送風機12からの室内空気と冷媒とを熱交換させて、冷媒を加熱して蒸発させる一方で、室内空気を冷却する。室内凝縮器14は、ユニットダクト11内で、室内蒸発器13よりも空気出口11b側の位置に配置されている。この室内凝縮器14は、冷媒が流入する入口14aと、冷媒が流出する出口14bと、を有する。室内凝縮器14は、送風機12からの室内空気と冷媒とを熱交換させて、冷媒を冷却して凝縮させる一方で、室内空気を加熱する。エアミックスダンパ15は、ユニットダクト11内で、室内蒸発器13と室内凝縮器14との間に、室内凝縮器14に沿って配置されている。エアミックスダンパ15は、制御器50からの指示に応じて、ユニットダクト11内に流入した空気のうち、室内凝縮器14を通過させる空気の量と、室内凝縮器14を通過させずにバイパスさせる空気の量とを調節する。補助ヒータ16は、ユニットダクト11内で、室内凝縮器14よりも空気出口11b側に配置されている。この補助ヒータ16は、室内凝縮器14で空気を加熱しても、この空気の温度が目的の温度まで上がらない場合に、制御器50からの指示に応じて、この空気を加熱する。ユニットダクト11の空気出口11bは、インストルメントパネル等に設けられていう吹き出し口に接続されている。
圧縮機20は、冷媒を吸い込む吸込口20aと、冷媒を吐出すると吐出口20bと、を有する。圧縮機20は、吸込口20aから吸い込んだ冷媒を圧縮して吐出口20bから吐出させる。この圧縮機20は、制御器50からの指示に応じて、駆動量である回転数を変更することができる。
室外熱交換器21は、冷媒が出入りする第一口21a及び第二口21bを有する。室外熱交換器21は、冷媒と外気とを熱交換させる。
第一膨張弁22及び第二膨張弁23は、いずれも電磁弁である。これらの膨張弁は、いずれも、弁ケースと、弁ケース内に配置されている弁体と、弁ケース内で弁体を移動させて弁開度を変化させる電磁駆動機構と、を有する。弁ケースは、冷媒が出入りする第一口22a,23a及び第二口22b,23bを有する。
三方弁25及び二方弁26は、いずれも電磁弁である。三方弁25は、弁ケースと、弁ケース内に配置されている弁体と、弁ケース内で弁体を移動させる電磁駆動機構と、を有する。弁ケースは、冷媒が流入する入口25aと、冷媒が流出する第一出口25b及び第二出口25cと、を有する。弁体は、入口25aと第一出口25bとが連通している冷房状態と、入口25aと第二出口25cとが連通している暖房状態と、に変位可能である。電磁駆動機構は、制御器50からの指示に応じて、弁体を暖房状態又は冷房状態に変位させる。
バッファタンク27は、冷媒を一時的に溜めておくタンクである。
膨張弁制御用検知器30は、冷媒ライン40に設けれ、冷媒ライン40内の冷媒の状態量を検知する。この膨張弁制御用検知器30は、冷媒の温度を検知する一つの温度計31、及び冷媒の圧力を検知する一つの圧力計32を有する一組のみの検知器で構成される。温度計31及び圧力計32は、いずれも、冷媒ライン40に設けられている。
冷媒ライン40は、吐出ライン41、熱交換器第一口ライン42、熱交換器第二口ライン43、膨張弁間ライン44、吸込ライン45、第一暖房専用ライン46、及び第二暖房専用ライン47、を有する。
吐出ライン41は、圧縮機20の吐出口20bと三方弁25の入口25aとを接続する。この吐出ライン41は、第一吐出ライン41a及び第二吐出ライン41bを有する。第一吐出ライン41aは、圧縮機20の吐出口20bと室内凝縮器14の入口14aとを接続する。第二吐出ライン41bは、室内凝縮器14の出口14bと三方弁25の入口25aとを接続する。よって、室内凝縮器14は、吐出ライン41に設けられている。
熱交換器第一口ライン42は、三方弁25の第一出口25bと室外熱交換器21の第一口21aとを接続する。熱交換器第二口ライン43は、室外熱交換器21の第二口21bと第二膨張弁23の第一口23aとを接続する。膨張弁間ライン44は、第二膨張弁23の第二口23bと第一膨張弁22の第一口22aとを接続する。
吸込ライン45は、第一膨張弁22の第二口22bと、圧縮機20の吸込口20aとを接続する。この吸込ライン45は、第一吸込ライン45a、第二吸込ライン45b、及び第三吸込ライン45cを有する。第一吸込ライン45aは、第一膨張弁22の第二口22bと室内蒸発器13の入口13aとを接続する。第二吸込ライン45bは、室内蒸発器13の出口13bとバッファタンク27の入口27aとを接続する。第三吸込ライン45cは、バッファタンク27の出口27bと圧縮機20の吸込口20aとを接続する。よって、室内蒸発器13及びバッファタンク27は、吸込ライン45に設けられている。
第一暖房専用ライン46は、三方弁25の第二出口25cと膨張弁間ライン44とを接続する。第二暖房専用ライン47は、室外熱交換器21の第一口21aと第二吸込ライン45bとを接続する。この第一暖房専用ライン46は、弁を含む機器を介さずに膨張弁間ライン44に直接接続され、暖房時及び冷房時に液相の冷媒が存在する膨張弁間接続ラインを成す。
二方弁26は、第二暖房専用ライン47に設けられている。膨張弁制御用検知器30は、膨張弁間ライン44内で、第二膨張弁23の第二口23bと、第一暖房専用ライン46との接続位置との間に設けられ、これらの間の冷媒の状態量を検知する。
制御器50は、車両搭乗者等からモードを受け付け、受け付けたモードに応じて、圧縮機20、三方弁25、二方弁26、第一膨張弁22、第二膨張弁23、送風機12、エアミックスダンパ15、及び補助ヒータ16を制御する。ここで、制御器50が受け付けるモードとしては、暖房モードと冷房モードとがある。
次に、以上で説明した車両用空調装置の動作について説明する。
まず、制御器50が車両搭乗者等から暖房モードを受け付けた場合の車両用空調装置の動作について説明する。
制御器50は、車両搭乗者等から暖房モードを受け付けると、三方弁25に対して暖房状態になるよう指令を与え、二方弁26に対して開指令を与える。制御器50は、第一膨張弁22に対して閉指令を与え、第二膨張弁23に対して膨張弁制御用検知器30で検知された冷媒の状態量に応じた開度を示す開度指令を与える。制御器50は、HVACユニット10の送風機12に対して駆動指令を与える。制御器50は、HVACユニット10のエアミックスダンパ15に対して、ユニットダクト11内に流入した空気のうち、室内凝縮器14を通過させずにバイパスさせる空気の量よりも、室内凝縮器14を通過させる空気の量が大きくするダンパ開度指令を与える。さらに、制御器50は、圧縮機20に駆動指令も与える。
この結果、図2に示すように、三方弁25は、暖房状態になり、三方弁25の入口25aと第二出口25cとが連通状態になる。二方弁26は、開状態になる。第一膨張弁22は、閉状態になる。HVACユニット10の送風機12は、駆動し始める。エアミックスダンパ15の開度は、ユニットダクト11内に流入した空気のうち、室内凝縮器14を通過させずにバイパスさせる空気の量よりも、室内凝縮器14を通過させる空気の量が大きくなる開度になる。圧縮機20は、駆動回転し始める。
車両用空調装置が以上の状態になると、圧縮機20で圧縮された気相の冷媒が、第一吐出ライン41aを経て、室内凝縮器14に流入する。この室内凝縮器14には、HVACユニット10の送風機12によりユニットダクト11内に送られてきた空気が通る。室内凝縮器14では、気相の冷媒と空気とが熱交換されて、冷媒が冷却されて凝縮し、空気が加熱される。加熱された空気は、ユニットダクト11からインストルメントパネル等に設けられている吹き出し口から車両内の搭乗者空間に流入する。
室内凝縮器14で凝縮した冷媒、つまり液相の冷媒は、第二吐出ライン41bを経て、三方弁25の入口25aから三方弁25内に流入する。なお、図2において、冷媒ライン40中ではハッチングが施されている部分は、液相の冷媒が存在する部分である。三方弁25は、暖房状態で、入口25aと第二出口25cとが連通状態であるため、三方弁25に流入した液相の冷媒は、第一暖房専用ライン46、膨張弁間ライン44の一部、第二膨張弁23を経て、室外熱交換器21の第二口21bからこの室外熱交換器21内に流入する。液相の冷媒は、第二膨張弁23を通っている過程で、減圧されて膨張し、一部が気相になる。室外熱交換器21では、外気と冷媒とが熱交換されて、冷媒が加熱されて蒸発し、外気が冷却される。すなわち、暖房時、室外熱交換器21は、蒸発器として機能する。
蒸発した冷媒、つまり気相の冷媒は、室外熱交換器21の第一口21aから流出する。この気相の冷媒は、第二暖房専用ライン47、第二吸込ライン45bの一部、バッファタンク27、第三吸込ライン45cを経て、圧縮機20に流入する。
気相の冷媒は、この圧縮機20で圧縮されてから、前述したように、第一吐出ライン41aを経て、室内凝縮器14に流入する。
制御器50には、圧縮機20の回転数とサブクール度に関する閾値との関係が記憶されている。なお、サブクール度とは、冷媒の飽和温度と冷媒の実際の温度との偏差である。制御器50に記憶されている関係は、圧縮機20の回転数が大きくなるに連れて、閾値が大きくなる関係である。制御器50は、この関係を用いて、現時点の圧縮機20の回転数に応じた閾値を定める。閾値は、以上で説明したように、圧縮機20の回転数に応じて変わるものの、5~20℃で、好ましくは、5~15℃である。
制御器50には、圧力計32で検知された液相冷媒の圧力が入力する。制御器50は、この圧力に基づいて、この冷媒の飽和温度を求める。さらに、制御器50は、この飽和温度と、温度計31で検知された液冷媒の温度との偏差であるサブクール度を求める。制御器50は、このサブクール度と閾値とを比較し、サブクール度が閾値より大きい場合に、開度を現時点よりも大きくする方向の開度指令を第二膨張弁23に与える。また、制御器50は、サブクール度が閾値より小さい場合に、開度を現時点よりも小さくする方向の開度指令を第二膨張弁23に与える。
冷媒の減圧量及び膨張量は、膨張弁の開度が小さくほど、大きくなる。このため、膨張弁の開度が小さくなるほど、車両用空調装置の冷暖房能力が高くなる。しかしながら、膨張弁の開度が小さくなるほど、冷媒ライン40での冷媒の圧力損失が大きくなり、冷暖房効率が低下する。すなわち、膨張弁の開度が小さくなるほど、冷暖房能力が高くなる一方で、冷暖房効率が低下する。逆に、膨張弁の開度が大きくなるほど、冷暖房能力が低くなる一方で、冷暖房効率が向上する。
冬場の厳寒時、室外熱交換器21の周りの一部に氷付くことがある。この場合、室外熱交換器21が外気から効率的に熱を取り込むことがでず、サブクール度が小さくなって、暖房能力が低下する。本実施形態では、前述したように、サブクール度が閾値より小さい場合に、開度を現時点よりも小さくする方向の開度指令を第二膨張弁23に与える。このため、本実施形態では、例えば、室外熱交換器21の周りの一部に氷付いた場合でも、暖房能力の低下を抑えることができる。
また、冬場でも、車両が存在する場所によって、室外熱交換器21回りの温度が高くなることがある。この場合、室外熱交換器21が外気から効率的に熱を取り込むことができ、サブクール度が大きくなって、暖房能力が向上する。本実施形態では、前述したように、サブクール度が閾値より大きい場合に、開度を現時点よりも大きくする方向の開度指令を第二膨張弁23に与える。このため、本実施形態では、例えば、室外熱交換器21回りの温度が高い場合、暖房効率を向上させることができる。
冬場、搭乗者等は、制御器50に対して暖房指示を与えた後、搭乗者空間内の温度をより高くする指示を与える場合がある。この場合、制御器50は、暖房能力を高めるために、圧縮機20の回転数を高める。前述したように、閾値は、圧縮機20の回転数が大きくなるに連れて、大きくなる。閾値が大きくなると、閾値に対してサブクール度が相対的に小さくなる。このため、圧縮機20の回転数が大きくなると、サブクール度が閾値より小さくなる可能性が大きくなる。よって、この場合、本実施形態では、制御器50が第二膨張弁23に対して開度を現時点よりも小さくする方向の開度指令を与え、暖房能力を向上させる。
制御器50は、圧縮機20の回転数を高めても、搭乗者空間内の温度があまり高くならない等の場合には、補助ヒータ16を動作させて、室内凝縮器14で加熱された空気を補助ヒータ16でさらに加熱する。
次に、制御器50が車両搭乗者等から冷房モードを受け付けた場合の車両用空調装置の動作について説明する。
制御器50は、車両搭乗者等から冷房モードを受け付けると、三方弁25に対して冷房状態になるよう指令を与え、二方弁26に対して閉指令を与える。制御器50は、第二膨張弁23に対して開指令を与え、第一膨張弁22に対して膨張弁制御用検知器30で検知された冷媒の状態量に応じた開度を示す開度指令を与える。制御器50は、HVACユニット10の送風機12に対して駆動指令を与える。制御器50は、HVACユニット10のエアミックスダンパ15に対して、ユニットダクト11内に流入した空気のほとんどが室内凝縮器14を通過させずにバイパスするダンパ開度指令を与える。さらに、制御器50は、圧縮機20に駆動指令も与える。
この結果、図3に示すように、三方弁25は、冷房状態になり、三方弁25の入口25aと第一出口25bとが連通状態になる。二方弁26は、閉状態になる。第二膨張弁23は、開状態になる。HVACユニット10の送風機12は、駆動し始める。エアミックスダンパ15の開度は、ユニットダクト11内に流入した空気のほとんどが、室内凝縮器14を通過させずにバイパスする開度になる。圧縮機20は、駆動回転し始める。
車両用空調装置が以上の状態になると、圧縮機20で圧縮された気相の冷媒が、第一吐出ライン41aを経て、室内凝縮器14に流入する。この室内凝縮器14には、HVACユニット10のエアミックスダンパ15の存在により、送風機12でユニットダクト11内に送られてきた空気がほとんど通らない。このため、室内凝縮器14では、気相の冷媒と空気との熱交換量が少なく、冷媒はほとんど凝縮せず、空気はほとんど加熱されない。よって、室内凝縮器14に流入した気相の冷媒は、気相の冷媒のまま、室内凝縮器14から流出する。
室内凝縮器14から流出した気相の冷媒は、第二吐出ライン41bを経て、三方弁25の入口25aから三方弁25内に流入する。この三方弁25は、冷房状態で、入口25aと第一出口25bとが連通状態であるため、三方弁25に流入した気相の冷媒は、熱交換器第一口ライン42を経て、室外熱交換器21の第一口21aからこの室外熱交換器21内に流入する。室外熱交換器21では、外気と気相の冷媒とが熱交換されて、冷媒が冷却されて凝縮し、外気が加熱される。すなわち、冷房時、室外熱交換器21は、凝縮器として機能する。
凝縮した冷媒、つまり液相の冷媒は、室外熱交換器21の第二口21bから流出する。なお、図3において、冷媒ライン40中ではハッチングが施されている部分は、液相の冷媒が存在する部分である。この液相の冷媒は、熱交換器第二口ライン43、開状態の第二膨張弁23、及び膨張弁間ライン44を経て、第一膨張弁22に流入する。この液相の冷媒は、第一膨張弁22を通っている過程で、減圧されて膨張し、一部が気相になる。この冷媒は、第一吸込ライン45aを経て、室内蒸発器13内に流入する。
室内蒸発器13では、HVACユニット10の送風機12によりユニットダクト11内に送られてきた空気と液相の冷媒とが熱交換されて、冷媒が加熱されて蒸発し、空気が冷却される。冷却された空気のほとんどは、エアミックスダンパ15の存在により、室内凝縮器14を通過させずにバイパスし、ユニットダクト11から流出する。そして、この冷却された空気は、インストルメントパネル等に設けられていう吹き出し口から車両内の搭乗者空間に流入する。
室内蒸発器13で蒸発した冷媒、つまり気相の冷媒は、室内蒸発器13から、第二吸込ライン45b、バッファタンク27、第三吸込ライン45cを経て、圧縮機20に流入する。
気相の冷媒は、この圧縮機20で圧縮されてから、前述したように、第一吐出ライン41aを経て、室内凝縮器14に流入する。
制御器50には、暖房モード時と同様、圧力計32で検知された液相冷媒の圧力が入力する。制御器50は、この圧力に基づいて、この冷媒の飽和温度を求める。さらに、制御器50は、この飽和温度と、温度計31で検知された液冷媒の温度との偏差であるサブクール度を求める。制御器50は、このサブクール度と閾値とを比較し、サブクール度が閾値より大きい場合に、開度を現時点よりも大きくする方向の開度指令を第一膨張弁22に与える。また、制御器50は、サブクール度が閾値より小さい場合に、開度を現時点よりも小さくする方向の開度指令を第一膨張弁22に与える。
夏場の猛暑時、室外熱交換器21が冷媒の熱を効率に外気に放出することがでず、サブクール度が小さくなって、冷房能力が低下する。本実施形態では、前述したように、サブクール度が閾値より小さい場合に、開度を現時点よりも小さくする方向の開度指令を第一膨張弁22に与える。このため、本実施形態では、夏場の猛暑時の冷房能力の低下を抑えることができる。
また、夏場でも、車両が存在する場所によって、室外熱交換器21回りの温度が低くなることがある。この場合、室外熱交換器21が冷媒の熱を効率的に外気に放出することができ、サブクール度が大きくなって、冷房能力が向上する。本実施形態では、前述したように、サブクール度が閾値より大きい場合に、開度を現時点よりも大きくする方向の開度指令を第一膨張弁22に与える。このため、本実施形態では、例えば、室外熱交換器21回りの温度が低い場合、冷房効率を向上させることができる。
夏場、搭乗者等は、制御器50に対して冷房指示を与えた後、搭乗者空間内の温度をより低くする指示を与える場合がある。この場合、制御器50は、冷房能力を高めるために、圧縮機20の回転数を高める。前述したように、閾値は、圧縮機20の回転数が大きくなるに連れて、大きくなる。閾値が大きくなると、閾値に対してサブクール度が相対的に小さくなる。このため、圧縮機20の回転数が大きくなると、サブクール度が閾値より小さくなる可能性が大きくなる。よって、この場合、本実施形態では、制御器50が第一膨張弁22に対して開度を現時点よりも小さくする方向の開度指令を与え、冷房能力を向上させる。
以上のように、本実施形態では、制御器50が冷媒のサブクール度を求め、このサブクール度に応じて、第一膨張弁22及び第二膨張弁23の開度を制御するので、車両用空調装置の冷暖房能力及び冷暖房効率を高めることができる。
さらに、本実施形態では、圧縮機20の状態に応じて、サブクール度に関する閾値が変わるので、車両用空調装置の冷暖房能力及び冷暖房効率をより高めることができる。
本実施形態では、膨張弁間ライン44内で、第二膨張弁23の第二口23bと第一暖房専用ライン46との接続位置との間に、一組の検知器(一つの温度計31と一つの圧力計32)で構成される膨張弁制御用検知器30を設け、この間内の冷媒の状態量を検知するようにしている。膨張弁間ライン44内で、第二膨張弁23の第二口23bと第一暖房専用ライン46との接続位置との間では、図2及び図3に示すように、暖房モード時でも冷房モード時でも、液相の冷媒が流れる。このため、一組の検知器で構成される膨張弁制御用検知器30で検知された冷媒の状態量に基づくサブクール度に応じて、冷房モード時における第一膨張弁22の開度、及び暖房モード時における第二膨張弁23の開度を制御することができる。従って、本実施形態では、検知器の数量増加が抑えられ、車両用空調装置が大型化及び製造コストの増加を抑えることができる。
「変形例」
車両には、エンジン又はモーターや、バッテリー等、複数の熱源がある。これらの熱源からの熱を利用して、図1中の( )内に描かれているように、吐出ライン41中の冷媒を加熱する補助熱交換器35を設けてもよい。この補助熱交換器35は、第一吐出ライン41aに設けても、第二吐出ライン41bに設けても、第一吐出ライン41a及び第二吐出ライン41bにわたって設けてもよい。また、この補助熱交換器35は、第一暖房専用ライン46に設けてもよい。このように、補助熱交換器35を設けることで、暖房能力を高めることができる。なお、補助熱交換器35において、冷媒と熱交換する媒体は、水やクーラント等の液体に限られず、空気等の気体であってもよい。
車両には、エンジン又はモーターや、バッテリー等、複数の熱源がある。これらの熱源からの熱を利用して、図1中の( )内に描かれているように、吐出ライン41中の冷媒を加熱する補助熱交換器35を設けてもよい。この補助熱交換器35は、第一吐出ライン41aに設けても、第二吐出ライン41bに設けても、第一吐出ライン41a及び第二吐出ライン41bにわたって設けてもよい。また、この補助熱交換器35は、第一暖房専用ライン46に設けてもよい。このように、補助熱交換器35を設けることで、暖房能力を高めることができる。なお、補助熱交換器35において、冷媒と熱交換する媒体は、水やクーラント等の液体に限られず、空気等の気体であってもよい。
以上の実施形態では、室内凝縮器14を吐出ライン41に設けている。しかしながら、先に説明した補助熱交換器35と同様、室内凝縮器14を第一暖房専用ライン46に設けてもよい。
EV車、HEV車、PHEV車は、高性能バッテリーを搭載している。高性能バッテリーは、一般的に発熱量が多く、冷却する必要性が高い。EV車、HEV車、PHEV車では、この高性能バッテリーを冷却するためのバッテリークーラーを搭載している。そこで、バッテリークーラーで、高性能バッテリーからの熱を奪う媒体として、車両用空調装置の冷媒ライン40内を流れる冷媒を用いてもよい。
この場合、図1中の( )内に描かれているように、バッテリークーラー36は、冷媒が流入する入口36aと、冷媒が流出する出口36bと、を有する。バッテリークーラー36の入口36aと膨張弁間ライン44とは、クーラー入口ライン48で接続されている。バッテリークーラー36の出口36bと、第二吸込ライン45bとは、クーラー出口ライン49で接続されている。これらクーラー入口ライン48及びクーラー出口ライン49は、冷媒ライン40の一部を構成する。クーラー入口ライン48には、第三膨張弁24が設けられている。この第三膨張弁24は、第一膨張弁22及び第二膨張弁23と同様に、弁ケースと、弁ケース内に配置されている弁体と、弁ケース内で弁体を移動させて弁開度を変化させる電磁駆動機構と、を有する。弁ケースは、冷媒が出入りする第一口24a及び第二口24bを有する。
このように、バッテリークーラー36を冷媒ライン40中に設ける場合、制御器50は、バッテリー冷却モードを実行する。このバッテリー冷却モードでは、制御器50は、三方弁25に対して冷房状態になるよう指令を与え、二方弁26に対して閉指令を与える。制御器50は、第一膨張弁22に対して閉指令を与え、第二膨張弁23に対して開指令を与え、第三膨張弁24に対して膨張弁制御用検知器30で検知された冷媒の状態量に応じた開度を示す開度指令を与える。制御器50は、圧縮機20に駆動指令与える。一方で、制御器50は、暖房モード時や冷房モード時と異なり、HVACユニット10の送風機12に対して駆動指令を与えない。制御器50は、HVACユニット10のエアミックスダンパ15に対して、ユニットダクト11内に流入した空気のほとんどが室内凝縮器14を通過させずにバイパスするダンパ開度指令を与える。
この結果、図4に示すように、三方弁25は、冷房状態になり、三方弁25の入口25aと第一出口25bとが連通状態になる。二方弁26は、閉状態になる。第一膨張弁22は、閉状態になり、第二膨張弁23は、開状態になる。エアミックスダンパ15の開度は、ユニットダクト11内に流入した空気のほとんどが、室内凝縮器14を通過させずにバイパスする開度になる。圧縮機20は、駆動回転し始める。
車両用空調装置が以上の状態になると、圧縮機20で圧縮された気相の冷媒が、第一吐出ライン41aを経て、室内凝縮器14に流入する。この室内凝縮器14には、HVACユニット10の送風機12が駆動していない上に、HVACユニット10のエアミックスダンパ15の存在により、空気がほとんど通らない。このため、室内凝縮器14では、気相の冷媒と空気との熱交換量が少なく、冷媒はほとんど凝縮せず、空気はほとんど加熱されない。よって、室内凝縮器14に流入した気相の冷媒は、気相の冷媒のまま、室内凝縮器14から流出する。
室内凝縮器14から流出した気相の冷媒は、第二吐出ライン41bを経て、三方弁25の入口25aから三方弁25内に流入する。この三方弁25は、冷房状態で、入口25aと第一出口25bとが連通状態であるため、三方弁25に流入した気相の冷媒は、熱交換器第一口ライン42を経て、室外熱交換器21の第一口21aからこの室外熱交換器21内に流入する。室外熱交換器21では、外気と気相の冷媒とが熱交換されて、冷媒が冷却されて凝縮し、外気が加熱される。すなわち、バッテリー冷却モード時、室外熱交換器21は、凝縮器として機能する。
凝縮した冷媒、つまり液相の冷媒は、室外熱交換器21の第二口21bから流出する。なお、図4において、冷媒ライン40中ではハッチングが施されている部分は、液相の冷媒が存在する部分である。この液相の冷媒は、熱交換器第二口ライン43、開状態の第二膨張弁23、膨張弁間ライン44の一部、及びクーラー入口ライン48を経て、第三膨張弁24に流入する。この液相の冷媒は、第三膨張弁24を通っている過程で、減圧されて膨張し、一部が気相になる。この冷媒は、クーラー入口ライン48を経て、バッテリークーラー36内に流入する。
バッテリークーラー36では、バッテリーと液相の冷媒とが直接又は間接的に熱交換されて、冷媒が加熱されて蒸発し、バッテリーが冷却される。すなわち、バッテリークーラー36は、冷媒にとって、蒸発器として機能する。
バッテリークーラー36で蒸発した冷媒、つまり気相の冷媒は、バッテリークーラー36から、クーラー出口ライン49、第二吸込ライン45bの一部、バッファタンク27、第三吸込ライン45cを経て、圧縮機20に流入する。
気相の冷媒は、この圧縮機20で圧縮されてから、前述したように、第一吐出ライン41aを経て、室内凝縮器14に流入する。
制御器50には、暖房モード時及び冷房モード時と同様、圧力計32で検知された液相冷媒の圧力が入力する。制御器50は、この圧力に基づいて、この冷媒の飽和温度を求める。さらに、制御器50は、この飽和温度と、温度計31で検知された液冷媒の温度との偏差であるサブクール度を求める。制御器50は、このサブクール度と閾値とを比較し、サブクール度が閾値より大きい場合に、開度を現時点よりも大きくする方向の開度指令を第三膨張弁24に与える。また、制御器50は、サブクール度が閾値より小さい場合に、開度を現時点よりも小さくする方向の開度指令を第三膨張弁24に与える。
この変形例でも、前述したように、サブクール度が閾値より小さい場合に、開度を現時点よりも小さくする方向の開度指令を第三膨張弁24に与える。このため、本変形例では、バッテリーの冷却能力を高めることができる。また、本変形例では、前述したように、サブクール度が閾値より大きい場合に、開度を現時点よりも大きくする方向の開度指令を第三膨張弁24に与える。このため、本変形例では、バッテリーの冷却効率を向上させることができる。
本変形例でも、膨張弁間ライン44内で、第二膨張弁23の第二口23bと第一暖房専用ライン46との接続位置との間に、一組の検知器を設け、この間内の冷媒の状態量を検知するようにしている。膨張弁間ライン44内で、第二膨張弁23の第二口23bと第一暖房専用ライン46との接続位置との間では、暖房モード時や冷房モード時のみならず、バッテリー冷却モード時でも、液相の冷媒が流れる。このため、一組の検知器で構成される膨張弁制御用検知器30で検知された冷媒の状態量に基づくサブクール度に応じて、冷房モード時における第一膨張弁22の開度や暖房モード時における第二膨張弁23の開度のみならず、バッテリー冷却モード時における第一膨張弁22の開度を制御することができる。従って、本変形例でも、検知器の数量増加が抑えられ、車両用空調装置が大型化及び製造コストの増加を抑えることができる。
本実施形態では、膨張弁間ライン44内で、第二膨張弁23の第二口23bと第一暖房専用ライン46との接続位置との間に膨張弁制御用検知器30を設けている。しかしながら、この膨張弁制御用検知器30を構成する温度計31と圧力計32とのうち、一方の検知器、又は、両方の検知器を、暖房時及び冷房時に液相の冷媒が存在する第一暖房専用ライン46(膨張弁間接続ライン)に設けてもよい。但し、第一暖房専用ライン46内には、暖房時及び冷房時に液相の冷媒が存在するものの、冷房時には液相の冷媒が滞留するのみで流れない。このため、液相の冷媒の温度を正確に検知するという観点から、膨張弁制御用検知器30を構成する温度計31と圧力計32とのうち、少なくとも温度計31を、膨張弁間ライン44内で、第二膨張弁23の第二口23bと第一暖房専用ライン46との接続位置との間に設けることが好ましい。
本発明の一態様では、冷暖能力又は冷暖房効率を高めつつも、装置の大型化及び製造コストの増加を抑えることができる。
10:HVACユニット
11:ユニットダクト
11a:空気入口
11b:空気出口
12:送風機
13:室内蒸発器
13a:入口
13b:出口
14:室内凝縮器
14a:入口
14b:出口
15:エアミックスダンパ
16:補助ヒータ
20:圧縮機
20a:吸込口
20b:吐出口
21:室外熱交換器
21a:第一口
21b:第二口
22:第一膨張弁
22a:第一口
22b:第二口
23:第二膨張弁
23a:第一口
23b:第二口
24:第三膨張弁
24a:第一口
24b:第二口
25:三方弁
25a:入口
25b:第一出口
25c:第二出口
26:二方弁
27:バッファタンク
27a:入口
27b:出口
30:膨張弁制御用検知器
31:温度計
32:圧力計
35:補助熱交換器
36:バッテリークーラー
36a:入口
36b:出口
40:冷媒ライン
41:吐出ライン
41a:第一吐出ライン
41b:第二吐出ライン
42:熱交換器第一口ライン
43:熱交換器第二口ライン
44:膨張弁間ライン
45:吸込ライン
45a:第一吸込ライン
45b:第二吸込ライン
45c:第三吸込ライン
46:第一暖房専用ライン
47:第二暖房専用ライン
48:クーラー入口ライン
49:クーラー出口ライン
50:制御器
11:ユニットダクト
11a:空気入口
11b:空気出口
12:送風機
13:室内蒸発器
13a:入口
13b:出口
14:室内凝縮器
14a:入口
14b:出口
15:エアミックスダンパ
16:補助ヒータ
20:圧縮機
20a:吸込口
20b:吐出口
21:室外熱交換器
21a:第一口
21b:第二口
22:第一膨張弁
22a:第一口
22b:第二口
23:第二膨張弁
23a:第一口
23b:第二口
24:第三膨張弁
24a:第一口
24b:第二口
25:三方弁
25a:入口
25b:第一出口
25c:第二出口
26:二方弁
27:バッファタンク
27a:入口
27b:出口
30:膨張弁制御用検知器
31:温度計
32:圧力計
35:補助熱交換器
36:バッテリークーラー
36a:入口
36b:出口
40:冷媒ライン
41:吐出ライン
41a:第一吐出ライン
41b:第二吐出ライン
42:熱交換器第一口ライン
43:熱交換器第二口ライン
44:膨張弁間ライン
45:吸込ライン
45a:第一吸込ライン
45b:第二吸込ライン
45c:第三吸込ライン
46:第一暖房専用ライン
47:第二暖房専用ライン
48:クーラー入口ライン
49:クーラー出口ライン
50:制御器
Claims (8)
- 冷媒を圧縮する圧縮機と、
前記冷媒を室内空気と熱交換させて、前記冷媒を冷却して凝縮させる一方で、前記室内空気を加熱する室内凝縮器と、
前記冷媒を室内空気と熱交換させて、前記冷媒を加熱して蒸発させる一方で、前記室内空気を冷却する室内蒸発器と、
前記冷媒と外気とを熱交換させ、冷房時に前記冷媒を冷却して凝縮させる凝縮器として機能し、暖房時に前記冷媒を加熱して蒸発させる蒸発器として機能する室外熱交換器と、
冷房時に液相の前記冷媒を膨張させて、前記室内蒸発器に前記冷媒を送る第一膨張弁と、
暖房時に液相の前記冷媒を膨張させて、暖房時に蒸発器として機能する前記室外熱交換器に前記冷媒を送る第二膨張弁と、
前記圧縮機、前記室内凝縮器、前記室内蒸発器、前記室外熱交換器、前記第一膨張弁、前記第二膨張弁を相互に接続する冷媒ラインと、
前記冷媒の状態量を検知する膨張弁制御用検知器と、
制御器と、
を備え、
前記冷媒ラインは、前記第一膨張弁と前記第二膨張弁とを接続し、暖房時及び冷房時に液相の前記冷媒が存在する膨張弁間ラインと、弁を含む機器を介さずに前記膨張弁間ラインに接続され、暖房時及び冷房時に液相の前記冷媒が存在する膨張弁間接続ラインと、を有し、
前記膨張弁制御用検知器は、前記膨張弁間ライン又は前記膨張弁間接続ラインに設けられて前記膨張弁間ライン内又は前記膨張弁間接続ライン内の冷媒の温度を検知する一つのみの温度計、及び、前記膨張弁間ライン又は前記膨張弁間接続ラインに設けられて前記膨張弁間ライン内又は前記膨張弁間接続ライン内の冷媒の圧力を検知する一つのみの圧力計で構成され、
前記制御器は、冷房時に、前記第一膨張弁に対して、前記膨張弁制御用検知器で検知された前記冷媒の状態量に応じた開度を示す開度指令を与え、暖房時に、前記第二膨張弁に対して、前記膨張弁制御用検知器で検知された前記冷媒の状態量に応じた開度を示す開度指令を与える、
車両用空調装置。 - 請求項1に記載の車両用空調装置において、
前記冷媒が流入する入口、前記冷媒が流出する第一出口及び第二出口を有し、前記入口と前記第一出口とが連通している冷房状態と、前記入口と前記第二出口とが連通している暖房状態とに変化可能な三方弁と、
二方弁と、
をさらに備え、
前記室外熱交換器は、前記冷媒が出入りする第一口及び第二口を有し、
前記第一膨張弁及び前記第二膨張弁は、いずれも、前記冷媒が出入りする第一口及び第二口を有し、
前記冷媒ラインは、
前記圧縮機の吐出口と前記三方弁の前記入口とを接続する吐出ラインと、
前記三方弁の前記第一出口と前記室外熱交換器の前記第一口とを接続する熱交換器第一口ラインと、
前記室外熱交換器の前記第二口と前記第二膨張弁の前記第一口とを接続する熱交換器第二口ラインと、
前記第二膨張弁の前記第二口と前記第一膨張弁の前記第一口とを接続する前記膨張弁間ラインと、
前記第一膨張弁の第二口と前記圧縮機の吸込口とを接続する吸込ラインと、
前記三方弁の第二出口と前記膨張弁間ラインとを接続する第一暖房専用ラインと、
前記室外熱交換器の前記第一口と前記吸込ラインとを接続する第二暖房専用ラインと、
を有し、
前記第一暖房専用ラインが、前記膨張弁間接続ラインの少なくとも一部を構成し、
前記室内凝縮器は、前記吐出ライン又は前記第一暖房専用ラインに設けられ、
前記室内蒸発器は、前記吸込ラインに設けられ、
前記二方弁は、前記第二暖房専用ラインに設けられ、
前記制御器は、前記三方弁を前記冷房状態にさせているときに、前記二方弁に対して閉指令を与え、前記第二膨張弁に対して開指令を与え、前記第一膨張弁に対して、前記膨張弁制御用検知器で検知された前記冷媒の状態量に応じた開度を示す開度指令を与え、前記三方弁を前記暖房状態にさせているときに、前記二方弁に対して開指令を与え、前記第一膨張弁に対して閉指令を与え、前記第二膨張弁に対して、前記膨張弁制御用検知器で検知された前記冷媒の状態量に応じた開度を示す開度指令を与える、
車両用空調装置。 - 請求項2に記載の車両用空調装置において、
前記膨張弁制御用検知器は、前記膨張弁間ライン中で前記第二膨張弁の前記第二口から前記第一暖房専用ラインとの接続位置までの間に設けられ、前記膨張弁間ライン中で前記第二膨張弁の前記第二口から前記第一暖房専用ラインとの接続位置までの間内の前記冷媒の状態量を検知する、
車両用空調装置。 - 請求項1から3のいずれか一項に記載の車両用空調装置において、
前記制御器は、前記圧力計で検知された圧力で定まる前記冷媒の飽和温度と前記温度計で検知された前記冷媒の温度との偏差であるサブクール度に応じた開度を示す開度指令を、前記第一膨張弁及び前記第二膨張弁に与える、
車両用空調装置。 - 請求項4に記載の車両用空調装置において、
前記制御器は、前記サブクール度に関する閾値より前記サブクール度が大きい場合に、開度を現時点よりも大きくする方向の開度指令を与え、前記閾値より前記サブクール度が小さい場合に、開度を現時点よりも小さくする方向の開度指令を与える、
車両用空調装置。 - 請求項5に記載の車両用空調装置において、
前記閾値は、5℃~20℃である、
車両用空調装置。 - 請求項5又は6に記載の車両用空調装置において、
前記制御器は、前記圧縮機の回転数に応じて、前記閾値を変更する、
車両用空調装置。 - 請求項7に記載の車両用空調装置において、
前記制御器は、前記圧縮機の回転数が第一回転数のときに、前記閾値として第一閾値を用い、前記圧縮機の回転数が前記第一回転数より高い第二回転数のときに、前記閾値として前記第一閾値よりも大きな第二閾値を用いる、
車両用空調装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/253,260 US11981183B2 (en) | 2018-07-25 | 2019-05-24 | Air conditioning device for vehicle |
EP19840965.8A EP3828020B1 (en) | 2018-07-25 | 2019-05-24 | Air conditioning device for vehicle |
CN201980040702.3A CN112424006B (zh) | 2018-07-25 | 2019-05-24 | 车辆用空调装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018139604A JP7099899B2 (ja) | 2018-07-25 | 2018-07-25 | 車両用空調装置 |
JP2018-139604 | 2018-07-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020021838A1 true WO2020021838A1 (ja) | 2020-01-30 |
Family
ID=69182176
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/020737 WO2020021838A1 (ja) | 2018-07-25 | 2019-05-24 | 車両用空調装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11981183B2 (ja) |
EP (1) | EP3828020B1 (ja) |
JP (1) | JP7099899B2 (ja) |
CN (1) | CN112424006B (ja) |
WO (1) | WO2020021838A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021199864A1 (ja) * | 2020-04-03 | 2021-10-07 | 株式会社デンソー | 膨張弁の取付構造 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11407283B2 (en) * | 2018-04-30 | 2022-08-09 | Tiger Tool International Incorporated | Cab heating systems and methods for vehicles |
US11993130B2 (en) | 2018-11-05 | 2024-05-28 | Tiger Tool International Incorporated | Cooling systems and methods for vehicle cabs |
KR20210059276A (ko) * | 2019-11-15 | 2021-05-25 | 현대자동차주식회사 | 차량용 히트펌프 시스템 |
JP2021133725A (ja) * | 2020-02-25 | 2021-09-13 | マツダ株式会社 | 車両用空調装置 |
WO2022006235A1 (en) | 2020-07-02 | 2022-01-06 | Tiger Tool International Incorporated | Compressor system for a vehicle |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000088389A (ja) * | 1998-09-10 | 2000-03-31 | Matsushita Refrig Co Ltd | 多室型空気調和機 |
WO2014199916A1 (ja) | 2013-06-14 | 2014-12-18 | 三菱重工オートモーティブサーマルシステムズ株式会社 | ヒートポンプ式車両用空調システム |
CN107791780A (zh) * | 2017-08-08 | 2018-03-13 | 杭州三花研究院有限公司 | 汽车空调系统 |
JP2018139604A (ja) | 2018-05-07 | 2018-09-13 | ジオサーフ株式会社 | 圃場ガイダンスシステム及び圃場ガイダンス方法並びにソフトウェア及びソフトウェアを格納した記憶媒体 |
Family Cites Families (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4878355A (en) * | 1989-02-27 | 1989-11-07 | Honeywell Inc. | Method and apparatus for improving cooling of a compressor element in an air conditioning system |
JP3334446B2 (ja) | 1995-09-26 | 2002-10-15 | 株式会社デンソー | 車両用空調装置 |
US5704219A (en) * | 1995-08-01 | 1998-01-06 | Nippondenso Co., Ltd. | Air conditioning apparatus |
JP3890713B2 (ja) * | 1997-11-27 | 2007-03-07 | 株式会社デンソー | 冷凍サイクル装置 |
JP2000052754A (ja) | 1998-08-10 | 2000-02-22 | Mitsubishi Heavy Ind Ltd | 車両用空気調和装置 |
JP4153747B2 (ja) * | 2002-07-31 | 2008-09-24 | 株式会社ケーヒン | 車両用空調装置 |
AU2003281797B2 (en) * | 2002-08-02 | 2005-12-22 | Daikin Industries, Ltd. | Refrigeration equipment |
JP4261881B2 (ja) * | 2002-11-25 | 2009-04-30 | 株式会社テージーケー | 冷凍サイクルの制御方法 |
JP2004175232A (ja) * | 2002-11-27 | 2004-06-24 | Japan Climate Systems Corp | 車両用空調装置 |
JP2005289156A (ja) * | 2004-03-31 | 2005-10-20 | Calsonic Kansei Corp | 車両用空調装置及びその制御方法 |
JP4301987B2 (ja) * | 2004-03-31 | 2009-07-22 | 三菱重工業株式会社 | マルチ型空気調和装置 |
JP2006168645A (ja) * | 2004-12-17 | 2006-06-29 | Mitsubishi Heavy Ind Ltd | 空気調和装置およびその制御方法 |
JP4497234B2 (ja) * | 2008-07-29 | 2010-07-07 | ダイキン工業株式会社 | 空気調和装置 |
JP5446524B2 (ja) * | 2009-07-08 | 2014-03-19 | 株式会社デンソー | 車両用空調装置 |
JP5663849B2 (ja) * | 2009-07-09 | 2015-02-04 | 株式会社デンソー | 車両用空調装置 |
US20130014523A1 (en) * | 2010-03-23 | 2013-01-17 | Honda Motor Co., Ltd. | Operation method of heat pump-type vehicle air conditioning system |
JP5005122B2 (ja) * | 2010-04-23 | 2012-08-22 | パナソニック株式会社 | 車両用空調装置 |
US9222710B2 (en) * | 2010-11-01 | 2015-12-29 | Mitsubishi Heavy Industries, Ltd. | Heat-pump automotive air conditioner and defrosting method of the heat-pump automotive air conditioner |
US9925877B2 (en) * | 2011-01-21 | 2018-03-27 | Sanden Holdings Corporation | Vehicle air conditioning apparatus |
JP5278451B2 (ja) * | 2011-01-27 | 2013-09-04 | パナソニック株式会社 | 冷凍サイクル装置及びそれを用いた温水暖房装置 |
WO2012108240A1 (ja) * | 2011-02-10 | 2012-08-16 | サンデン株式会社 | 車両用空気調和装置 |
US9517680B2 (en) * | 2011-03-03 | 2016-12-13 | Sanden Holdings Corporation | Vehicle air conditioning apparatus |
DE102012204404B4 (de) * | 2011-03-25 | 2022-09-08 | Denso Corporation | Wärmeaustauschsystem und Fahrzeugkältekreislaufsystem |
DE102012205200B4 (de) * | 2011-04-04 | 2020-06-18 | Denso Corporation | Kältemittelkreislaufvorrichtung |
DE102011053256A1 (de) * | 2011-09-05 | 2013-03-07 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Kältekreislauf zum Einsatz in einem Kraftfahrzeug |
JP5984842B2 (ja) * | 2011-12-09 | 2016-09-06 | サンデンホールディングス株式会社 | 車両用空気調和装置 |
JP5944154B2 (ja) * | 2011-12-09 | 2016-07-05 | サンデンホールディングス株式会社 | 車両用空気調和装置 |
JP2013129353A (ja) * | 2011-12-22 | 2013-07-04 | Mitsubishi Heavy Ind Ltd | 車両用空調装置 |
EP3222449A1 (en) * | 2012-02-28 | 2017-09-27 | Japan Climate Systems Corporation | Vehicle air conditioner |
JP5450694B2 (ja) * | 2012-03-05 | 2014-03-26 | 本田技研工業株式会社 | 車両用空調装置 |
JP2014020675A (ja) * | 2012-07-18 | 2014-02-03 | Denso Corp | 電池温調用冷凍サイクル装置 |
KR101973203B1 (ko) * | 2012-09-24 | 2019-04-26 | 엘지전자 주식회사 | 공조 냉각 일체형 시스템 |
JP5831423B2 (ja) * | 2012-10-08 | 2015-12-09 | 株式会社デンソー | 冷凍サイクル装置 |
JP6083330B2 (ja) * | 2012-11-16 | 2017-02-22 | 株式会社デンソー | エジェクタ |
US10155430B2 (en) * | 2012-11-30 | 2018-12-18 | Sanden Holdings Corporation | Vehicle air-conditioning device |
JP6125325B2 (ja) * | 2013-05-20 | 2017-05-10 | サンデンホールディングス株式会社 | 車両用空気調和装置 |
JP6083339B2 (ja) * | 2013-07-09 | 2017-02-22 | 株式会社デンソー | 車両用空調装置 |
JP6257940B2 (ja) * | 2013-07-11 | 2018-01-10 | 三菱重工オートモーティブサーマルシステムズ株式会社 | ヒートポンプ式車両用空調システムおよびその除霜方法 |
JP6011507B2 (ja) * | 2013-10-08 | 2016-10-19 | 株式会社デンソー | 冷凍サイクル装置 |
JP6295676B2 (ja) * | 2014-01-21 | 2018-03-20 | 株式会社デンソー | ヒートポンプサイクル |
JP6277888B2 (ja) * | 2014-06-27 | 2018-02-14 | 株式会社デンソー | 冷凍サイクル装置 |
JP6402424B2 (ja) * | 2014-09-29 | 2018-10-10 | サンデンホールディングス株式会社 | 車両用空気調和装置 |
WO2016079834A1 (ja) * | 2014-11-19 | 2016-05-26 | 三菱電機株式会社 | 空気調和装置 |
JP6633303B2 (ja) * | 2015-06-25 | 2020-01-22 | サンデン・オートモーティブクライメイトシステム株式会社 | 車両用空気調和装置 |
JP2017013561A (ja) * | 2015-06-29 | 2017-01-19 | カルソニックカンセイ株式会社 | 車両用のヒートポンプシステム |
KR101726073B1 (ko) * | 2015-10-01 | 2017-04-11 | 엘지전자 주식회사 | 공기조화 시스템 |
WO2017217099A1 (ja) | 2016-06-16 | 2017-12-21 | 株式会社デンソー | 冷凍サイクル装置 |
JP6642857B2 (ja) * | 2016-10-18 | 2020-02-12 | 本田技研工業株式会社 | 車両用空調装置 |
JP6711249B2 (ja) * | 2016-11-25 | 2020-06-17 | 株式会社デンソー | 車両用空調装置 |
WO2019029218A1 (zh) * | 2017-08-08 | 2019-02-14 | 杭州三花研究院有限公司 | 汽车空调系统 |
-
2018
- 2018-07-25 JP JP2018139604A patent/JP7099899B2/ja active Active
-
2019
- 2019-05-24 CN CN201980040702.3A patent/CN112424006B/zh active Active
- 2019-05-24 US US17/253,260 patent/US11981183B2/en active Active
- 2019-05-24 EP EP19840965.8A patent/EP3828020B1/en active Active
- 2019-05-24 WO PCT/JP2019/020737 patent/WO2020021838A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000088389A (ja) * | 1998-09-10 | 2000-03-31 | Matsushita Refrig Co Ltd | 多室型空気調和機 |
WO2014199916A1 (ja) | 2013-06-14 | 2014-12-18 | 三菱重工オートモーティブサーマルシステムズ株式会社 | ヒートポンプ式車両用空調システム |
CN107791780A (zh) * | 2017-08-08 | 2018-03-13 | 杭州三花研究院有限公司 | 汽车空调系统 |
JP2018139604A (ja) | 2018-05-07 | 2018-09-13 | ジオサーフ株式会社 | 圃場ガイダンスシステム及び圃場ガイダンス方法並びにソフトウェア及びソフトウェアを格納した記憶媒体 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021199864A1 (ja) * | 2020-04-03 | 2021-10-07 | 株式会社デンソー | 膨張弁の取付構造 |
JP2021160680A (ja) * | 2020-04-03 | 2021-10-11 | 株式会社デンソー | 膨張弁の取付構造 |
JP7447644B2 (ja) | 2020-04-03 | 2024-03-12 | 株式会社デンソー | 膨張弁の取付構造 |
Also Published As
Publication number | Publication date |
---|---|
US11981183B2 (en) | 2024-05-14 |
EP3828020B1 (en) | 2023-11-08 |
CN112424006B (zh) | 2023-09-01 |
CN112424006A (zh) | 2021-02-26 |
JP7099899B2 (ja) | 2022-07-12 |
EP3828020A4 (en) | 2022-04-20 |
EP3828020A1 (en) | 2021-06-02 |
JP2020015414A (ja) | 2020-01-30 |
US20210252943A1 (en) | 2021-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020021838A1 (ja) | 車両用空調装置 | |
JP6189098B2 (ja) | ヒートポンプ式車両用空調システム | |
JP6323489B2 (ja) | ヒートポンプシステム | |
JP6065637B2 (ja) | 冷却システム | |
JP6332560B2 (ja) | 車両用空調装置 | |
JP5468982B2 (ja) | 車両用空気調和装置 | |
EP3534090B1 (en) | Heat pump cycle apparatus | |
WO2013094144A1 (ja) | 車両用空調装置 | |
JP6415943B2 (ja) | ヒートポンプ式車両用空調システム | |
JP2011195021A (ja) | 車両用ヒートポンプ装置 | |
JPH06143974A (ja) | 空気調和装置 | |
JP6079477B2 (ja) | 車両用空調装置 | |
JP5316264B2 (ja) | 車両用空調装置 | |
JP5617596B2 (ja) | 車両用空気調和装置 | |
JP6341021B2 (ja) | 車両用空調装置 | |
JP6544287B2 (ja) | 空調装置 | |
JPH1053022A (ja) | 車両用空気調和装置 | |
WO2017022421A1 (ja) | ヒートポンプシステム | |
JPH11105541A (ja) | ヒートポンプ式自動車用空気調和装置 | |
WO2022071368A1 (ja) | 熱交換器、及び車両用空調装置 | |
JP7381207B2 (ja) | 空調システム | |
JP6897185B2 (ja) | 空調装置 | |
JP5668455B2 (ja) | 車両用空気調和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19840965 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2019840965 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2019840965 Country of ref document: EP Effective date: 20210225 |