WO2020017161A1 - 電動コンプレッサ - Google Patents

電動コンプレッサ Download PDF

Info

Publication number
WO2020017161A1
WO2020017161A1 PCT/JP2019/020964 JP2019020964W WO2020017161A1 WO 2020017161 A1 WO2020017161 A1 WO 2020017161A1 JP 2019020964 W JP2019020964 W JP 2019020964W WO 2020017161 A1 WO2020017161 A1 WO 2020017161A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
compressor
opening
space
motor
Prior art date
Application number
PCT/JP2019/020964
Other languages
English (en)
French (fr)
Inventor
国彰 飯塚
裕司 佐々木
達身 猪俣
良介 湯本
海 飯嶋
達哉 福井
光 杉浦
義仁 勝
吉田 隆
孝志 森
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to DE112019003659.9T priority Critical patent/DE112019003659B4/de
Priority to CN201980026072.4A priority patent/CN111989496B/zh
Priority to JP2020530918A priority patent/JP6927435B2/ja
Publication of WO2020017161A1 publication Critical patent/WO2020017161A1/ja
Priority to US17/124,614 priority patent/US11359642B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/70Suction grids; Strainers; Dust separation; Cleaning
    • F04D29/701Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps
    • F04D29/706Humidity separation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/10Casings or enclosures characterised by the shape, form or construction thereof with arrangements for protection from ingress, e.g. water or fingers

Definitions

  • the present disclosure relates to an electric compressor.
  • Patent Document 1 there is known an electric compressor in which a hole connecting a compressor space and a motor space is formed in a wall portion facing a rear surface of an impeller of the compressor. The connection from the compressor space to the motor space has the advantage of reducing the pressure difference between these spaces.
  • Patent Document 2 there is known an electric compressor in which a groove is provided on an inner surface of a compressor housing, and the groove is connected to a cylindrical portion of a casing (gas-liquid separation means) via a condensed water passage. ing. Part of the condensed water is discharged to the cylindrical portion through the condensed water passage together with part of the intake air.
  • An electric compressor includes a rotation shaft having a rotation axis and including a first end and a second end in a direction of the rotation axis, and a motor mounted on the first end of the rotation shaft, and A compressor impeller including a rear surface facing the compressor, a motor disposed between the first end and the second end of the rotating shaft, the motor for rotating the rotating shaft and the compressor impeller, and a compressor disposed between the compressor impeller and the motor.
  • the wall is formed around the first opening, which is the edge of the bypass hole, and has a recess formed from the first opening and the reference wall surface.
  • FIG. 1 is a cross-sectional view illustrating an electric compressor according to an embodiment of the present disclosure.
  • FIG. 2 is an enlarged sectional view showing the vicinity of the through hole in FIG.
  • FIG. 3 is a perspective view of the motor housing viewed from the end wall side.
  • FIG. 4 is a front view of the end wall side of the motor housing.
  • An electric compressor includes a rotation shaft having a rotation axis and including a first end and a second end in a direction of the rotation axis, and a motor mounted on the first end of the rotation shaft, and A compressor impeller including a rear surface facing the compressor, a motor disposed between the first end and the second end of the rotating shaft, the motor for rotating the rotating shaft and the compressor impeller, and a compressor disposed between the compressor impeller and the motor.
  • the wall is formed around the first opening, which is the edge of the bypass hole, and has a recess formed from the first opening and the reference wall surface.
  • the bypass hole connecting the impeller space and the motor space reduces the pressure difference between these two spaces. Then, after the operation is stopped, when the temperature decreases, condensed water may adhere to a wall portion facing the back surface of the compressor impeller. This condensed water flows down on the reference wall. When the condensed water flows near the bypass hole, the condensed water flows into a depression arranged around the first opening of the bypass hole. Since the recess is recessed from the first opening and the reference wall, condensed water is prevented from entering the bypass hole from the first opening. According to this electric compressor, it is possible to suppress the condensed water from entering the motor space through the bypass hole.
  • the bypass hole is located below the axis of rotation. In this case, more condensed water can be guided to the depression. Collection of condensed water is suitably realized.
  • the depression is formed on the entire periphery of the first opening of the bypass hole. In this case, the condensed water flowing near the bypass hole is reliably guided to the depression. Since there is no path leading from the reference wall surface to the first opening, the inflow of condensed water into the bypass hole is reliably prevented.
  • a discharge surface is formed at the lower end of the recessed portion, which is inclined with respect to the rotation axis and is directed toward the impeller space.
  • the condensed water that has flowed into the depression flows on the discharge surface and falls downward.
  • the capacity of the depression is limited, the condensed water in the depression can be smoothly discharged through the inclined discharge surface.
  • the first opening of the bypass hole is located at the second end side of the reference wall in the direction of the rotation axis.
  • the first opening protrudes from the reference wall surface toward the first end, the first opening comes very close to the rear surface of the compressor impeller.
  • Such a structure may affect the aerodynamic performance of the compressor.
  • the first opening of the bypass hole is at the above position, the pressure difference between the impeller space and the motor space can be reduced without affecting the aerodynamic performance of the compressor.
  • the electric compressor 1 is applied to, for example, an internal combustion engine of a vehicle or a ship.
  • the electric compressor 1 is a type of a centrifugal compressor and includes a compressor 7.
  • the electric compressor 1 rotates the compressor impeller 8 by the interaction between the rotor unit 13 and the stator unit 14 to compress gas such as air and generate compressed fluid such as compressed air.
  • the motor 5 is configured by the rotor section 13 and the stator section 14.
  • the electric compressor 1 may be connected to a supercharger (not shown) applied to, for example, an internal combustion engine of a vehicle or a ship. In that case, the electric compressor 1 sends compressed air to the compressor of the supercharger. By combining the electric compressor 1 and the supercharger, the electric compressor 1 assists in starting the supercharger.
  • the electric compressor 1 includes a rotating shaft 12 rotatably supported in the housing 2 and a compressor impeller 8 attached to a first end 12a (tip) of the rotating shaft 12.
  • the housing 2 includes a motor housing 3 that houses the rotor section 13 and the stator section 14, and a compressor housing 6 that houses the compressor impeller 8.
  • the compressor housing 6 is provided on a first end side (left side in the drawing) of the motor housing 3.
  • the compressor housing 6 includes a suction port 9, a scroll part 10, and a discharge port 11.
  • an inverter, an inverter housing, and the like may be provided on a radially outer side or a second end side (right side in the drawing) of the motor housing 3.
  • the rotation shaft 12 has a rotation axis X.
  • the rotation shaft 12 includes a first end 12a and a second end 12b (base end) in the direction of the rotation axis X, and a central portion 12c between the first end 12a and the second end 12b.
  • the second end 12b and the central portion 12c of the rotating shaft 12 are housed in the motor housing 3.
  • the first end 12 a of the rotating shaft 12 projects from the motor housing 3 on the rotation axis X and is located outside the motor housing 3.
  • the first end 12a is arranged in the compressor housing 6.
  • the rotor unit 13 is attached to the central portion 12c of the rotating shaft 12, and includes one or more permanent magnets (not shown) fixed to the rotating shaft 12.
  • the stator portion 14 is held on the inner surface of the motor housing 3 so as to surround the rotor portion 13. That is, the stator portion 14 is arranged around the rotating shaft 12.
  • the stator portion 14 includes a cylindrical core portion 14a arranged so as to surround the rotor portion 13, and a coil portion 14b formed by winding a conductive wire (not shown) around the core portion 14a.
  • the compressor impeller 8 When the compressor impeller 8 rotates, the compressor impeller 8 draws in external air through the suction port 9, compresses the air through the scroll part 10, and discharges it from the discharge port 11.
  • the compressed air discharged from the discharge port 11 is supplied to the above-described internal combustion engine.
  • the motor 5 including the rotor portion 13 and the coil portion 14b is disposed between the first end 12a and the second end 12b of the rotating shaft 12.
  • the motor 5 is configured to rotate the rotating shaft 12 and the compressor impeller 8 upon receiving power.
  • the electric compressor 1 includes first and second bearings 20A and 20B that rotatably support the rotating shaft 12 with respect to the housing 2.
  • the first and second bearings 20A, 20B are provided in the motor housing 3.
  • the first and second bearings 20A and 20B are spaced apart in the direction of the rotation axis X, and support the rotation shaft 12 with both ends.
  • the first bearing 20A is held by a cylindrical sleeve portion 17 formed on the compressor impeller 8 side of the motor housing 3.
  • the second bearing 20B is held by a cylindrical sleeve portion 18 formed on the motor housing 3 on the side opposite to the compressor impeller 8.
  • the motor 5 is arranged between the first bearing 20A and the second bearing 20B.
  • the compressor impeller 8 is attached to the rotary shaft 12 by, for example, a shaft end nut 16 provided at the first end 12a of the rotary shaft 12.
  • the rotating shaft 12, the compressor impeller 8 fixed to the rotating shaft 12, the rotor unit 13, and the first and second bearings 20 ⁇ / b> A and 20 ⁇ / b> B form a rotating body C integrally within the housing 2. .
  • the electric compressor 1 generates compressed air by rotation of the compressor impeller 8 in the compressor housing 6, but is configured to achieve a desired pressure balance inside the housing 2.
  • the motor housing 3 has a housing main body 31 arranged on the outside and an inner housing 32 arranged on the inside.
  • the housing main body 31 and the inner housing 32 are separate bodies, and are arranged concentrically with respect to the rotation axis X.
  • the inner housing 32 surrounds and holds the stator portion 14.
  • the housing body 31 surrounds and holds the inner housing 32.
  • the unitized inner housing 32 and stator unit 14 are mounted in the housing main body 31 by, for example, interference fit (shrink fit).
  • the housing main body 31 includes an outer cylindrical portion 33 extending in the direction of the rotation axis X, an outer end wall portion 34 continuously provided on a first end side of the outer cylindrical portion 33, and a second end side of the outer cylindrical portion 33. And an end wall portion 35 for closing the end portion.
  • the outer end wall portion 34 has a disk shape and extends radially outward and inward from the first end of the outer cylindrical portion 33 (see also FIG. 3).
  • the compressor housing 6 is attached to the motor housing 3 by fixing the outer periphery of the compressor housing 6 to the outer periphery of the outer end wall portion 34 with bolts or the like.
  • a circular opening 34f is formed to penetrate the rotation shaft 12 and a part of the inner housing 32.
  • the inner housing 32 has an inner cylindrical portion 36 extending in the direction of the rotation axis X, and an inner end wall portion 37 provided continuously on the first end side of the inner cylindrical portion 36.
  • the inner end wall portion 37 has a disk shape and extends radially inward from the first end of the inner cylindrical portion 36.
  • An opening 37f is formed in the center of the inner end wall portion 37.
  • the sleeve portion 17 for holding the first bearing 20A is continuously provided on an edge portion including the opening 37f.
  • An exposed wall portion 38 is provided at a distal end of the sleeve portion 17 that protrudes in the axial direction from the inner end wall portion 37 toward the compressor impeller 8. At the center of the exposed wall portion 38, an opening 38f through which the rotating shaft 12 passes is formed.
  • the inner housing 32 is fitted on the inner surface of the housing main body 31.
  • the opening 34f of the outer cylindrical portion 33 and the outer end wall portion 34 of the housing main body 31, the opening 37f of the inner cylindrical portion 36, the inner end wall portion 37 of the inner housing 32, the sleeve portion 17, and the opening 38f of the exposed wall portion 38. Are formed concentrically with respect to the rotation axis X.
  • the outer end wall portion 34 of the housing body 31 and the inner end wall portion 37 of the inner housing 32 extend in a direction orthogonal to the rotation axis X.
  • the inner cylindrical portion 36 is held in the outer cylindrical portion 33, and the inner end wall portion 37 is in contact with the outer end wall portion 34.
  • the sleeve portion 17 of the inner housing 32 is fitted into an opening 34f of the outer end wall portion 34.
  • the sleeve portion 17 is in contact with the inner peripheral surface of the outer end wall portion 34 (the peripheral surface forming the opening 34f).
  • the outer ring of the first bearing 20A held by the sleeve portion 17 is in contact with the exposed wall portion 38 at the end on the compressor impeller 8 side in the direction of the rotation axis X.
  • the exposed wall portion 38 is exposed so as to face the compressor impeller 8 (see FIG. 3).
  • a water cooling jacket 40 for flowing cooling water is formed between the outer cylindrical portion 33 of the housing body 31 and the inner cylindrical portion 36 of the inner housing 32, for example.
  • the water cooling jacket portion 40 is formed on the outer peripheral surface of the inner cylindrical portion 36.
  • An annular first seal member 39A may be provided between the outer cylindrical portion 33 and the inner cylindrical portion 36.
  • an annular second seal member 39B may be provided between the outer end wall portion 34 and the sleeve portion 17, an annular second seal member 39B may be provided.
  • the water-cooling jacket section 40 may be omitted.
  • the outer end wall portion 34 of the housing body 31 and the inner end wall portion 37, the sleeve portion 17 and the exposed wall portion 38 of the inner housing 32 are integrally formed with the motor housing 3. Are formed.
  • the end wall portion 50 is disposed between the compressor impeller 8 and the motor 5 and separates an impeller space S1 where the compressor impeller 8 exists and a motor space S2 where the motor 5 exists.
  • the compressor impeller 8 includes a hub portion 8a attached to the first end 12a of the rotating shaft 12, a plurality of blade portions 8c extending from the curved hub surface 8b of the hub portion 8a in the radial direction and the direction of the rotation axis X. Having. The plurality of blades 8c are arranged at predetermined intervals in the circumferential direction.
  • the hub surface 8b of the hub portion 8a faces the shroud portion 6a of the compressor housing 6, and a plurality of blade portions 8c are arranged between the hub surface 8b and the shroud portion 6a.
  • the hub portion 8a of the compressor impeller 8 has a back surface 8d on a side opposite to the hub surface 8b.
  • the rear surface 8d of the compressor impeller 8 is not flat but has a concave shape, but the shape of the compressor impeller 8 may be appropriately changed.
  • the compressor impeller 8 may have a flat back surface.
  • the end wall 50 of the motor housing 3 is slightly separated from the compressor impeller 8 in the direction of the rotation axis X.
  • the end wall portion 50 faces the back surface 8d of the compressor impeller 8 with a gap A (see FIG. 2).
  • This gap A is a part of the impeller space S1 described above.
  • the end wall portion 50 includes a reference wall surface 50a (see FIGS. 1, 2, and 3) having a shape along the rear surface 8d, facing the rear surface 8d of the compressor impeller 8.
  • the reference wall surface 50a is formed, for example, so that the gap A is substantially constant, and has a shape corresponding to the rear surface 8d.
  • the reference wall surface 50a when the back surface 8d has a concave surface, the reference wall surface 50a has a bulging surface corresponding to the concave surface.
  • the reference wall surface 50a When the back surface 8d has a protruding or depressed conical surface, the reference wall surface 50a has a corresponding depressed or protruding conical surface.
  • the reference wall surface 50a When the back surface 8d is flat, the reference wall surface 50a is also flat.
  • the reference wall surface 50a is a fixed surface that can be determined by those skilled in the art in consideration of a desired aerodynamic performance and the like when the shape of the rear surface 8d of the compressor impeller 8 is determined.
  • the end wall portion 50 includes an outer surface 38a of the exposed wall portion 38 and an outer surface 34a of the outer end wall portion 34.
  • the outer surface 38a and the outer surface 34a are smoothly continuous. That is, the position of the outer peripheral edge of the outer surface 38a coincides with the position of the inner peripheral edge of the outer surface 34a, and no step is formed between the outer surface 38a and the outer surface 34a. Even when a step is formed between them, the size of the step is negligible.
  • the reference wall surface 50a extends along the back surface 8d of the compressor impeller 8, but on the outer peripheral side of the reference wall surface 50a (radially outside the rear edge 8e of the compressor impeller 8), the wall surface of the end wall portion 50 (annular surface 50b).
  • annular surface 50b May further project in the direction of the rotation axis X, for example.
  • a flat annular surface 50b orthogonal to the rotation axis X is formed.
  • the annular surface 50b forms a diffuser flow path between the annular surface 50b and the compressor housing 6.
  • one bypass hole 51 is formed in the end wall 50 in order to reduce the pressure difference between the impeller space S1 and the motor space S2 during operation.
  • the bypass hole 51 includes, for example, an outer through hole 34b formed in the outer end wall 34 and an inner through hole 37b formed in the inner end wall 37.
  • the outer through-hole 34b and the inner through-hole 37b are, for example, columnar holes extending in the direction of the rotation axis X, and communicate with each other in a line.
  • the bypass hole 51 including the outer through hole 34b and the inner through hole 37b connects the impeller space S1 and the motor space S2.
  • the bypass hole 51 includes a first opening 51a opening in the impeller space S1 and a second opening 51b opening in the motor space S2.
  • the first opening 51a is a circle where the outer through hole 34b and the outer surface 34a intersect, and is an end edge of the bypass hole 51 on the impeller space S1 side.
  • the first opening 51 a is formed at a position facing the rear surface 8 d of the compressor impeller 8.
  • the second opening 51b is a circle where the inner through-hole 37b and the back surface of the inner end wall 37 intersect, and is an edge of the bypass hole 51 on the motor space S2 side.
  • the first opening 51a is an opening on the side of the impeller space S1
  • the second opening 51b is an opening on the side of the motor space S2.
  • the magnitude relationship between the pressure in the impeller space S1 and the pressure in the motor space S2 may change due to the operating state of the electric compressor 1, the rotation speed of the compressor impeller 8, and the like.
  • the direction of the air flowing through the bypass hole 51 changes depending on the operation state of the electric compressor 1 or the rotation speed of the compressor impeller 8.
  • the pressure increases due to the rotation of the compressor impeller 8, so that the pressure in the impeller space S1 instantaneously becomes greater than the pressure in the motor space S2. obtain.
  • the air in the impeller space S1 flows into the motor space S2 through the bypass hole 51, so that the pressure in the impeller space S1 becomes substantially equal to the pressure in the motor space S2. Furthermore, when the rotation speed of the compressor impeller 8 is reduced, the discharge pressure from the compressor impeller 8 decreases, so that the pressure in the impeller space S1 decreases, and the pressure in the impeller space S1 can be lower than the pressure in the motor space S2. In this case, the air in the motor space S2 flows into the impeller space S1 through the bypass hole 51.
  • the bypass hole 51 may have any shape as long as the bypass hole 51 can connect two spaces.
  • the bypass hole 51 may have a prismatic shape. According to the shape of the bypass hole 51, the shapes of the first opening 51a and the second opening 51b can change.
  • the bypass hole 51 may extend in a direction at an angle to the rotation axis X.
  • An annular third seal member 39C surrounding the bypass hole 51 may be provided between the outer end wall portion 34 and the inner end wall portion 37.
  • one bypass hole 51 is formed directly below the rotating shaft 12.
  • “lower” or “upper” is based on a posture in which the electric compressor 1 is used (that is, installed in a vehicle or a ship).
  • the bypass hole 51 is formed, for example, at a position overlapping the vertical plane passing through the rotation shaft 12 (overlap). That is, the bypass hole 51 is disposed below the rotation shaft 12.
  • the bypass hole 51 is formed within a radius of the compressor impeller 8 with respect to the rotation axis X.
  • a dent portion 52 that is depressed from the first opening 51a and the reference wall surface 50a is formed around the bypass hole 51.
  • the depression 52 is arranged around the first opening 51 a. More specifically, the depression 52 is arranged on the entire periphery of the first opening 51a. The depression 52 surrounds the first opening 51a.
  • a hole end surface 54 is formed between the first opening 51a and the recess 52 along an extension surface extending from the reference wall surface 50a. That is, the first opening 51a and the hole end surface 54 are located at the same position (the position in the direction of the rotation axis X) as the reference wall surface 50a.
  • the depth of the depression 52 can be set as appropriate.
  • the first opening 51a may be recessed from the reference wall surface 50a in the direction of the rotation axis X. That is, the first opening 51a may be located on the second end 12b side (the right side in FIGS. 1 and 2) from the reference wall surface 50a in the direction of the rotation axis X. In other words, the first opening 51a and the hole end surface 54 do not protrude from the reference wall surface 50a in the direction of the rotation axis X (toward the compressor impeller 8). The first opening 51a and the hole end face 54 do not protrude into the gap A.
  • the recess 52 includes a semicircular groove 52a formed along the upper half of the first opening 51a and a substantially rectangular recess formed along the lower half of the first opening 51a. Part 52b.
  • a discharge surface 53 facing the impeller space S1 is formed at the lower end of the recess 52, that is, at the lower end of the recess 52b.
  • the discharge surface 53 is inclined with respect to the rotation axis X, and connects the bottom of the recess 52b and the annular surface 50b.
  • the discharge surface 53 extends downward (radially outward) from the position of the rear edge 8 e of the compressor impeller 8.
  • the line of intersection between the discharge surface 53 and the annular surface 50b is located radially outside the trailing edge 8e of the compressor impeller 8.
  • the discharge surface 53 is formed at a position overlapping the circular boundary L of the end wall 50 corresponding to the rear edge 8e (outer diameter) of the compressor impeller 8 (see FIGS. 1, 3 and 4).
  • the depression 52 is formed, for example, within the radius of the compressor impeller 8 with respect to the rotation axis X, but the discharge surface 53 is formed to cross the radius (in a region including the radius). .
  • the bypass hole 51 connecting the impeller space S1 and the motor space S2 reduces the pressure difference between these two spaces. Then, when the temperature of the electric compressor 1 decreases after the operation is stopped, condensed water may adhere to the end wall portion 50 facing the back surface 8d of the compressor impeller 8, for example. This condensed water flows down, for example, on the reference wall surface 50a. For example, the condensed water flows on the reference wall surface 50a in the circumferential direction. Then, when the condensed water flows near the bypass hole 51, the condensed water flows into the depression 52 arranged around the first opening 51 a of the bypass hole 51.
  • the recess 52 Since the recess 52 is recessed from the first opening 51a and the reference wall surface 50a, the condensed water can be stored. Therefore, the depression 52 suppresses the condensed water from entering the bypass hole 51 through the first opening 51a. According to the electric compressor 1, the condensed water is suppressed from entering the motor space S2 through the bypass hole 51.
  • bypass hole 51 is disposed below the rotary shaft 12, more condensed water can be guided to the recess 52. Collection of condensed water is suitably realized.
  • the depression 52 is formed on the entire circumference of the first opening 51 a of the bypass hole 51, the condensed water flowing near the bypass hole 51 is reliably guided to the depression 52. Since there is no path leading from the reference wall surface 50a to the first opening 51a, the inflow of condensed water into the bypass hole 51 is reliably prevented.
  • a discharge surface 53 inclined with respect to the rotation axis X is formed, so that the condensed water flowing into the concave portion 52 flows on the discharge surface 53 and falls downward.
  • the capacity of the depression 52 is limited, the condensed water in the depression 52 can be smoothly discharged through the inclined discharge surface 53.
  • the first opening 51a protrudes closer to the first end 12a than the reference wall surface 50a, the first opening 51a comes very close to the rear surface 8d of the compressor impeller 8. This may affect the aerodynamic performance of the compressor 7. If the first opening 51a of the bypass hole 51 is located in the above configuration, the pressure difference between the impeller space S1 and the motor space S2 can be reduced without affecting the aerodynamic performance of the compressor 7.
  • the condensed water discharged through the discharge surface 53 flows out toward the diffuser flow path.
  • the condensed water reaches the scroll section 10 and is appropriately discharged thereafter.
  • the position of the bypass hole is not limited to the position in the above embodiment.
  • the bypass hole may be formed not at the position directly below the rotating shaft 12 but at a position shifted right or left below the position directly below the rotating shaft 12.
  • the bypass hole may be arranged below the rotation axis 12. That is, the bypass hole may be arranged below the lower end of the rotating shaft 12. Further, the bypass hole may be disposed below the rotation axis X and above the lower end of the rotation shaft 12, or may be disposed above the rotation axis X. Even if the bypass hole is arranged above the rotating shaft 12, the pressure difference can be reduced.
  • the condensed water flowing down on the reference wall surface is stored in the depression, it is possible to suppress the condensed water from entering the bypass hole.
  • the number of bypass holes is not limited to one, and a plurality of bypass holes may be formed in the wall.
  • the above-described free arrangement may be applied to each of the plurality of bypass holes.
  • One of the bypass holes may be disposed directly below the rotation shaft 12.
  • Two or more bypass holes may be arranged symmetrically with respect to a vertical plane passing through the rotation axis 12.
  • the depression may be formed only in a part around the first opening of the bypass hole.
  • the depression may be a U-shaped groove formed above and to the side (both sides or one side) of the first opening and not formed below the first opening. That is, the depression may be formed only in the upper half of the first opening.
  • the depression may be formed just above the first opening. In these cases, the depression is a groove having a pair of ends, but the discharge surface may be connected to the end of the groove.
  • a discharge surface may not be formed at the lower end of the depression.
  • a wall surface parallel to the rotation axis or a wall surface that is inclined with respect to the rotation axis but does not face the impeller space but faces the inside of the recess is formed at the lower end of the recess. May be done.
  • the first opening of the bypass hole may protrude from the reference wall surface of the wall toward the first end (inside the gap A).
  • the motor housing 3 is not limited to the structure having the housing main body 31 and the inner housing 32.
  • the motor housing 3 is not divided into a plurality of members, and may have an integral structure.
  • the bypass hole 51 may be a single hole formed in one wall.
  • another known structure may be employed as the basic structure of the motor housing 3.
  • the end wall portion 50 may be separate from the motor housing 3.
  • a plate-like wall may be arranged between the compressor housing 6 and the motor housing 3. Even in that case, the wall faces the rear surface 8d of the compressor impeller 8 with the impeller space S1 and the motor space S2 separated.
  • a bypass hole and a depression are formed in the wall.
  • the present invention may be applied to an electric compressor having a turbine.

Abstract

電動コンプレッサは、第1端と第2端とを含む回転軸と、回転軸の第1端に取り付けられ、第2端の方を向く背面を含むコンプレッサインペラと、回転軸の第1端および第2端の間に配置されたモータと、インペラ空間とモータ空間とを隔てる壁部であって、コンプレッサインペラの背面に沿った形状を有する基準壁面を含む壁部と、壁部に形成され、インペラ空間とモータ空間とを接続するバイパス穴であって、インペラ空間に開口する第1開口を含むバイパス穴と、を備える。壁部には、バイパス穴の第1開口の周りに配置され、基準壁面から窪む窪み部が形成されている。

Description

電動コンプレッサ
 本開示は、電動コンプレッサに関する。
 特許文献1に記載されるように、コンプレッサのインペラ背面に面する壁部に、コンプレッサ空間とモータ空間とを接続する孔部が形成された電動コンプレッサが知られている。コンプレッサ空間からモータ空間への接続は、これらの空間の間の圧力差を低減するという利点を持つ。また、特許文献2に記載されるように、コンプレッサハウジングの内面に溝部が設けられ、その溝部が凝縮水通路を介してケーシング(気液分離手段)の円筒部と接続された電動コンプレッサが知られている。凝縮水の一部は、吸気の一部とともに、凝縮水通路を介して円筒部に排出される。
国際公開第2015/188028号 特開2009-041551号公報
 コンプレッサインペラの背面空間とモータハウジング内の空間を接続する孔部(バイパス穴)が設置されると、これらの空間の間の圧力差が低減され得る。電動コンプレッサが停止した後、その温度が低下すると、コンプレッサインペラの背面に対面する壁面上に、凝縮水が生じ得る。この凝縮水が、壁面を伝ってバイパス穴からモータが存在するモータ空間に侵入する可能性がある。本開示は、バイパス穴を通じて凝縮水がモータ空間に侵入することを抑制できる電動コンプレッサを説明する。
 本開示の一態様に係る電動コンプレッサは、回転軸線を有すると共に回転軸線の方向における第1端と第2端とを含む回転軸と、回転軸の第1端に取り付けられ、第2端の方を向く背面を含むコンプレッサインペラと、回転軸の第1端および第2端の間に配置され、回転軸およびコンプレッサインペラを回転させるためのモータと、コンプレッサインペラとモータとの間に配置され、コンプレッサインペラが存在するインペラ空間とモータが存在するモータ空間とを隔てる壁部であって、コンプレッサインペラの背面に対面して背面に沿った形状を有する基準壁面を含む壁部と、壁部を貫通するようにして壁部に形成され、インペラ空間とモータ空間とを接続するバイパス穴であって、インペラ空間に開口する第1開口を含むバイパス穴と、を備える。壁部には、バイパス穴の端縁である第1開口の周りに配置され、第1開口および基準壁面から窪む窪み部が形成されている。
 本開示の一態様によれば、壁部に形成されたバイパス穴を通じて凝縮水がモータ空間に侵入することを抑制できる。
図1は本開示の一実施形態に係る電動コンプレッサを示す断面図である。 図2は図1中の貫通孔付近を拡大して示す断面図である。 図3はモータハウジングを端壁側から見た斜視図である。 図4はモータハウジングの端壁側の正面図である。
 本開示の一態様に係る電動コンプレッサは、回転軸線を有すると共に回転軸線の方向における第1端と第2端とを含む回転軸と、回転軸の第1端に取り付けられ、第2端の方を向く背面を含むコンプレッサインペラと、回転軸の第1端および第2端の間に配置され、回転軸およびコンプレッサインペラを回転させるためのモータと、コンプレッサインペラとモータとの間に配置され、コンプレッサインペラが存在するインペラ空間とモータが存在するモータ空間とを隔てる壁部であって、コンプレッサインペラの背面に対面して背面に沿った形状を有する基準壁面を含む壁部と、壁部を貫通するようにして壁部に形成され、インペラ空間とモータ空間とを接続するバイパス穴であって、インペラ空間に開口する第1開口を含むバイパス穴と、を備える。壁部には、バイパス穴の端縁である第1開口の周りに配置され、第1開口および基準壁面から窪む窪み部が形成されている。
 この電動コンプレッサの運転時には、インペラ空間とモータ空間とを接続するバイパス穴が、これらの2つの空間の間の圧力差を低減する。そして運転が停止した後、その温度が低下すると、コンプレッサインペラの背面に対面する壁部上などに、凝縮水が付着し得る。この凝縮水は、基準壁面上を流れ落ちる。この凝縮水は、バイパス穴の近くを流れたとき、バイパス穴の第1開口の周りに配置された窪み部に流入する。この窪み部は、第1開口および基準壁面から窪んでいるので、凝縮水が第1開口からバイパス穴に入ることを抑制する。この電動コンプレッサによれば、凝縮水がバイパス穴を通じてモータ空間に侵入することを抑制できる。
 いくつかの態様において、バイパス穴は回転軸より下に配置されている。この場合、より多くの凝縮水を窪み部へ案内することができる。凝縮水の集水が好適に実現される。
 いくつかの態様において、窪み部は、バイパス穴の第1開口の全周に形成されている。この場合、バイパス穴の近くを流れる凝縮水は、窪み部へ確実に案内される。基準壁面から第1開口に繋がる経路がないので、バイパス穴への凝縮水の流入が確実に防止される。
 いくつかの態様において、窪み部の下端には、回転軸線に対して傾斜しインペラ空間に向けられた排出面が形成されている。この場合、窪み部に流入した凝縮水は排出面上を流れて下方に落ちる。窪み部の容量には限りがあるが、傾斜する排出面を通じて、窪み部内の凝縮水をスムーズに排出できる。
 いくつかの態様において、バイパス穴の第1開口は、回転軸線の方向において、基準壁面と同じか又は基準壁面より第2端側に位置する。第1開口が基準壁面よりも第1端側に突出すると、第1開口はコンプレッサインペラの背面に非常に近づく。このような構造は、コンプレッサの空力性能に影響を及ぼす可能性がある。バイパス穴の第1開口が上記の位置にあれば、コンプレッサの空力性能に影響を及ぼすことなく、インペラ空間とモータ空間との間の圧力差を低減することができる。
 以下、本開示の実施形態について、図面を参照しながら説明する。なお、図面の説明において同一要素には同一符号を付し、重複する説明は省略する。以下の説明において、特に断らない限り、「径方向」および「周方向」との語は、回転軸12或いは回転軸線Xを基準として用いられる。
 図1を参照して、一実施形態に係る電動コンプレッサ1について説明する。図1に示されるように、電動コンプレッサ1は、たとえば車両または船舶の内燃機関に適用されるものである。電動コンプレッサ1は、遠心圧縮機の一種であり、コンプレッサ7を備えている。電動コンプレッサ1は、ロータ部13およびステータ部14の相互作用によってコンプレッサインペラ8を回転させ、空気等の気体を圧縮し、圧縮空気等の圧縮流体を発生させる。ロータ部13およびステータ部14によってモータ5が構成されている。
 電動コンプレッサ1は、たとえば車両または船舶の内燃機関に適用された過給機(図示せず)に接続されてもよい。その場合、電動コンプレッサ1は、過給機のコンプレッサに対して圧縮空気を送る。電動コンプレッサ1と過給機とが組み合わせられることにより、電動コンプレッサ1は、過給機の立ち上げを助ける。
 電動コンプレッサ1は、ハウジング2内で回転可能に支持された回転軸12と、回転軸12の第1端12a(先端部)に取り付けられたコンプレッサインペラ8とを備える。ハウジング2は、ロータ部13およびステータ部14を収納するモータハウジング3と、コンプレッサインペラ8を収納するコンプレッサハウジング6とを備える。コンプレッサハウジング6は、モータハウジング3の第1端側(図示左側)に設けられている。コンプレッサハウジング6は、吸入口9と、スクロール部10と、吐出口11とを含んでいる。なお、モータハウジング3の径方向外側または第2端側(図示右側)等に、インバータおよびインバータハウジング等が設けられてもよい。
 回転軸12は、回転軸線Xを有する。回転軸12は、回転軸線Xの方向における第1端12aと第2端12b(基端部)と、第1端12aおよび第2端12bの間の中央部12cとを含む。回転軸12の第2端12bおよび中央部12cは、モータハウジング3に収容されている。回転軸12の第1端12aは、モータハウジング3から回転軸線Xに突出しており、モータハウジング3外に位置する。その第1端12aは、コンプレッサハウジング6内に配置されている。
 ロータ部13は、回転軸12の中央部12cに取り付けられており、回転軸12に固定された1または複数の永久磁石(図示せず)を含む。ステータ部14は、ロータ部13を包囲するようにしてモータハウジング3の内面に保持されている。すなわち、ステータ部14は、回転軸12の周囲に配置されている。ステータ部14は、ロータ部13を包囲するように配置された円筒状のコア部14aと、コア部14aに導線(図示せず)が巻回されてなるコイル部14bとを含む。導線を通じてステータ部14のコイル部14bに交流電流が流されると、ロータ部13およびステータ部14の相互作用によって、回転軸12とコンプレッサインペラ8とが一体になって回転する。コンプレッサインペラ8が回転すると、コンプレッサインペラ8は、吸入口9を通じて外部の空気を吸入し、スクロール部10を通じて空気を圧縮し、吐出口11から吐出する。吐出口11から吐出された圧縮空気は、前述の内燃機関に供給される。
 上記構成を別の観点で説明すると、ロータ部13とコイル部14bとを含むモータ5は、回転軸12の第1端12aおよび第2端12bの間に配置されている。モータ5は、通電を受けて、回転軸12およびコンプレッサインペラ8を回転させるように構成されている。
 電動コンプレッサ1は、ハウジング2に対して回転軸12を回転可能に支持する第1および第2の軸受20A,20Bを備える。第1および第2の軸受20A,20Bは、モータハウジング3内に設けられている。第1および第2の軸受20A,20Bは、回転軸線Xの方向に離間して配置され、回転軸12を両持ちで支持している。第1の軸受20Aは、モータハウジング3のコンプレッサインペラ8側に形成された円筒状のスリーブ部17に保持されている。第2の軸受20Bは、モータハウジング3のコンプレッサインペラ8とは反対側に形成された円筒状のスリーブ部18に保持されている。第1の軸受20Aおよび第2の軸受20Bの間に、モータ5が配置される。
 コンプレッサインペラ8は、たとえば回転軸12の第1端12aに設けられた軸端ナット16によって、回転軸12に取り付けられている。回転軸12と、回転軸12に固定されたコンプレッサインペラ8、ロータ部13、ならびに第1および第2の軸受20A,20Bとは、ハウジング2内で一体となって回転体Cを構成している。
 続いて、図1および図2を参照して、モータハウジング3およびコンプレッサインペラ8に係る構造ついて詳細に説明する。電動コンプレッサ1は、コンプレッサハウジング6内におけるコンプレッサインペラ8の回転によって圧縮空気を発生させるが、ハウジング2の内部における所望の圧力バランスが実現されるように構成されている。
 図1に示されるように、モータハウジング3は、外側に配置されるハウジング本体31と、内側に配置されるインナーハウジング32とを有する。ハウジング本体31とインナーハウジング32とは別体であり、回転軸線Xに対して同心状に配置される。インナーハウジング32は、ステータ部14を包囲し保持している。ハウジング本体31は、インナーハウジング32を包囲し保持している。ユニット化されたインナーハウジング32およびステータ部14が、たとえば締まり嵌め(焼嵌め等)により、ハウジング本体31内に取り付けられている。
 ハウジング本体31は、回転軸線Xの方向に延びる外円筒部33と、外円筒部33の第1端側に連続して設けられた外端壁部34と、外円筒部33の第2端側を閉鎖する端壁部35とを有する。外端壁部34は、円板状をなし、外円筒部33の第1端から、径方向の外方および内方に向けて延びている(図3も参照)。たとえば、この外端壁部34の外周縁部にコンプレッサハウジング6の外周縁部がボルト等によって固定されることにより、コンプレッサハウジング6がモータハウジング3に取り付けられている。外端壁部34の中央には、回転軸12およびインナーハウジング32の一部を貫通させる円形の開口34fが形成されている。
 インナーハウジング32は、回転軸線Xの方向に延びる内円筒部36と、内円筒部36の第1端側に連続して設けられた内端壁部37とを有する。内端壁部37は、円板状をなし、内円筒部36の第1端から径方向の内方に向けて延びる。内端壁部37の中央には開口37fが形成されている。この開口37fを含む縁部に、第1の軸受20Aを保持する上記スリーブ部17が連続して設けられている。内端壁部37からコンプレッサインペラ8に向けて軸方向に突出したスリーブ部17の先端に、露出壁部38が設けられている。露出壁部38の中央には、回転軸12を貫通させる開口38fが形成されている。
 インナーハウジング32は、ハウジング本体31の内面に嵌合している。ハウジング本体31の外円筒部33および外端壁部34の開口34fと、インナーハウジング32の内円筒部36、内端壁部37の開口37f、スリーブ部17、および露出壁部38の開口38fとは、回転軸線Xに関して同心状に形成されている。ハウジング本体31の外端壁部34とインナーハウジング32の内端壁部37とは、回転軸線Xに直交する方向に延びている。外円筒部33内に内円筒部36が保持されており、外端壁部34に内端壁部37が当接している。外端壁部34の開口34fに、インナーハウジング32のスリーブ部17が嵌め込まれている。スリーブ部17は、外端壁部34の内周面(開口34fを形成する周面)に当接している。スリーブ部17によって保持された第1の軸受20Aの外輪は、回転軸線Xの方向のコンプレッサインペラ8側の端部において、露出壁部38に当接している。露出壁部38は、コンプレッサインペラ8に対面するように露出している(図3参照)。
 ハウジング本体31の外円筒部33とインナーハウジング32の内円筒部36との間には、たとえば、冷却水を流すための水冷ジャケット部40が形成されている。水冷ジャケット部40は、内円筒部36の外周面に形成されている。外円筒部33と内円筒部36との間には、円環状の第1シール部材39Aが設けられてもよい。また、外端壁部34とスリーブ部17との間には、円環状の第2シール部材39Bが設けられてもよい。なお、水冷ジャケット部40は、省略されてもよい。
 図1および図2に示されるように、ハウジング本体31の外端壁部34と、インナーハウジング32の内端壁部37、スリーブ部17および露出壁部38とは、一体になってモータハウジング3の端壁部(壁部)50を形成している。この端壁部50は、コンプレッサインペラ8とモータ5との間に配置され、コンプレッサインペラ8が存在するインペラ空間S1とモータ5が存在するモータ空間S2とを隔てている。
 一方、コンプレッサインペラ8は、回転軸12の第1端12aに取り付けられたハブ部8aと、ハブ部8aの湾曲するハブ面8bから径方向および回転軸線Xの方向に延びる複数の羽根部8cとを有する。複数の羽根部8cは、周方向に所定の間隔をもって配置されている。ハブ部8aのハブ面8bはコンプレッサハウジング6のシュラウド部6aに対面しており、ハブ面8bとシュラウド部6aとの間に複数の羽根部8cが配置される。コンプレッサインペラ8のハブ部8aは、ハブ面8bとは反対側において背面8dを有する。本実施形態ではコンプレッサインペラ8の背面8dは、平坦ではなく凹部を有する形状をなすが、コンプレッサインペラ8の形状は、適宜に変更されてもよい。たとえば、コンプレッサインペラ8が、平坦な背面を有してもよい。
 モータハウジング3の端壁部50は、コンプレッサインペラ8に対して、回転軸線Xの方向に僅かに離間している。端壁部50は、コンプレッサインペラ8の背面8dに、隙間A(図2参照)をもって対面している。この隙間Aは、上記したインペラ空間S1の一部である。端壁部50は、コンプレッサインペラ8の背面8dに対面して、その背面8dに沿った形状を有する基準壁面50a(図1、図2および図3参照)を含む。この基準壁面50aは、たとえば、上記の隙間Aが略一定となるように形成されており、背面8dに対応した形状を有する。たとえば、背面8dが凹面を有する場合には、基準壁面50aは、その凹面に対応した膨出面を有する。背面8dが突出する又は窪む円錐面を有する場合には、基準壁面50aは、それらに対応した、窪む又は突出する円錐面を有する。背面8dが平坦である場合には、基準壁面50aも平坦である。この基準壁面50aは、コンプレッサインペラ8の背面8dの形状が定まれば、当業者が、所望の空力性能等を考慮して決定できる一定の面である。
 端壁部50は、より詳細には、露出壁部38の外表面38aと、外端壁部34の外表面34aとから構成される。これらの外表面38aおよび外表面34aは、滑らかに連続している。すなわち、外表面38aの外周縁の位置と外表面34aの内周縁の位置とは一致しており、外表面38aと外表面34aとの間には段差は形成されていない。これらの間に段差が形成されている場合でも、その段差の大きさは、無視し得る程度である。基準壁面50aはコンプレッサインペラ8の背面8dに沿って延びるが、基準壁面50aの外周側(コンプレッサインペラ8の後縁8eよりも径方向の外側)では、端壁部50の壁面(環状面50b)は、たとえば、回転軸線Xの方向に更に突出してもよい。その場合、たとえば、回転軸線Xに直交する平坦な環状面50bが形成される。この環状面50bは、コンプレッサハウジング6との間にディフューザ流路を形成する。
 電動コンプレッサ1では、運転中においてインペラ空間S1とモータ空間S2との間の圧力差を低減するため、端壁部50に1つのバイパス穴51が形成されている。バイパス穴51は、たとえば、外端壁部34に形成された外貫通孔34bと、内端壁部37に形成された内貫通孔37bとによって構成される。外貫通孔34bおよび内貫通孔37bは、それぞれ、たとえば回転軸線Xの方向に延びる円柱状の孔部であり、一列に並んで互いに連通している。外貫通孔34bおよび内貫通孔37bからなるバイパス穴51は、インペラ空間S1とモータ空間S2とを接続する。バイパス穴51は、インペラ空間S1に開口する第1開口51aと、モータ空間S2に開口する第2開口51bとを含む。第1開口51aは、外貫通孔34bと外表面34aとが交差する円であり、バイパス穴51のインペラ空間S1側の端縁である。第1開口51aは、コンプレッサインペラ8の背面8dに対面する位置に形成される。第2開口51bは、内貫通孔37bと内端壁部37の裏面とが交差する円であり、バイパス穴51のモータ空間S2側の端縁である。第1開口51aは、インペラ空間S1側の開口であり、第2開口51bは、モータ空間S2側の開口である。
 電動コンプレッサ1の運転状態またはコンプレッサインペラ8の回転数等に起因して、インペラ空間S1の圧力とモータ空間S2の圧力との大小関係は変化し得る。言い換えれば、電動コンプレッサ1の運転状態またはコンプレッサインペラ8の回転数等によって、バイパス穴51を流れる空気の向きは変化する。具体的には、運転停止状態からコンプレッサインペラ8の回転数を上昇させると、コンプレッサインペラ8の回転により圧力が上がるので、瞬間的に、インペラ空間S1の圧力はモータ空間S2の圧力よりも大きくなり得る。時間が経つと、インペラ空間S1にある空気がバイパス穴51を通ってモータ空間S2に流入するので、インペラ空間S1の圧力はモータ空間S2の圧力に略等しくなる。さらに、コンプレッサインペラ8の回転数を下げると、コンプレッサインペラ8からの吐出圧が下がるので、インペラ空間S1の圧力が下がり、インペラ空間S1の圧力はモータ空間S2の圧力よりも小さくなり得る。この場合は、モータ空間S2にある空気がバイパス穴51を通ってインペラ空間S1に流れ込む。
 バイパス穴51は、バイパス穴51が2つの空間を接続することができる限り、どのような形状をなしてもよい。バイパス穴51は、角柱状であってもよい。バイパス穴51の形状に従って、第1開口51aおよび第2開口51bの形状は変化し得る。バイパス穴51は、回転軸線Xに対して角度をもった方向に延びてもよい。外端壁部34と内端壁部37との間には、バイパス穴51を包囲する円環状の第3シール部材39Cが設けられてもよい。
 電動コンプレッサ1では、1つのバイパス穴51が、回転軸12の真下に形成されている。本明細書において「下」または「上」は、電動コンプレッサ1が使用される(すなわち車両または船舶に設置される)姿勢を基準とする。バイパス穴51は、たとえば、回転軸12を通る鉛直面に重なる(overlap)位置に形成される。すなわち、バイパス穴51は、回転軸12より下に配置されている。バイパス穴51は、回転軸線Xを基準としてコンプレッサインペラ8の半径の範囲内に形成されている。
 端壁部50の表面(コンプレッサインペラ8に面する表面)には、さらに、バイパス穴51の周囲において、第1開口51aおよび基準壁面50aから窪む窪み部52が形成されている。図3および図4に示されるように、窪み部52は、第1開口51aの周りに配置されている。より詳細には、窪み部52は、第1開口51aの全周に配置されている。窪み部52は、第1開口51aを取り囲んでいる。第1開口51aと窪み部52との間には、基準壁面50aを延長した延長面に沿う穴端面54が形成されている。すなわち、第1開口51aおよび穴端面54は、基準壁面50aと同じ位置(回転軸線Xの方向における位置)に位置する。窪み部52の深さは、適宜に設定され得る。なお、第1開口51aは、回転軸線Xの方向において、基準壁面50aより引っ込んでいてもよい。すなわち、第1開口51aは、回転軸線Xの方向において、基準壁面50aより第2端12b側(図1および図2において右側)に位置してもよい。言い換えれば、第1開口51aおよび穴端面54は、基準壁面50aより回転軸線Xの方向に(コンプレッサインペラ8側に)突出していない。第1開口51aおよび穴端面54は、隙間Aに突出していない。
 図4に示されるように、窪み部52は、第1開口51aの上半分に沿って形成された半円形の溝部52aと、第1開口51aの下半分に沿って形成された略矩形の窪み部52bとを含む。窪み部52の下端、すなわち窪み部52bの下端には、インペラ空間S1に向けられた排出面53が形成されている。排出面53は、回転軸線Xに対して傾斜しており、窪み部52bの底部と環状面50bとを接続している。排出面53は、コンプレッサインペラ8の後縁8eの位置から、下側(径方向の外側)に延びている。すなわち、排出面53と環状面50bとの交線は、コンプレッサインペラ8の後縁8eよりも径方向の外側に位置する。言い換えれば、排出面53は、コンプレッサインペラ8の後縁8e(外径)に対応する端壁部50の円形の境界線Lと重なる位置に形成される(図1、図3および図4参照)。すなわち、窪み部52は、たとえば回転軸線Xを基準としてコンプレッサインペラ8の半径の範囲内に形成されるが、排出面53は、その半径を横切るように(その半径を含む領域に)形成される。
 本実施形態に係る電動コンプレッサ1の運転時には、インペラ空間S1とモータ空間S2とを接続するバイパス穴51が、これらの2つの空間の間の圧力差を低減する。そして運転が停止した後、電動コンプレッサ1の温度が低下すると、コンプレッサインペラ8の背面8dに対面する端壁部50上などに、凝縮水が付着し得る。この凝縮水は、たとえば基準壁面50a上を流れ落ちる。たとえば、凝縮水は、基準壁面50aを周方向に流れていく。そして、凝縮水は、バイパス穴51の近くを流れたとき、バイパス穴51の第1開口51aの周りに配置された窪み部52に流入する。この窪み部52は、第1開口51aおよび基準壁面50aから窪んでいるので、凝縮水を溜めることができる。したがって、窪み部52は、凝縮水が第1開口51aからバイパス穴51に入ることを抑制する。この電動コンプレッサ1によれば、凝縮水がバイパス穴51を通じてモータ空間S2に侵入することが抑制されている。
 バイパス穴51は回転軸12より下に配置されているので、より多くの凝縮水を窪み部52へ案内することができる。凝縮水の集水が好適に実現される。
 窪み部52がバイパス穴51の第1開口51aの全周に形成されているので、バイパス穴51の近くを流れる凝縮水は、窪み部52へ確実に案内される。基準壁面50aから第1開口51aに繋がる経路がないので、バイパス穴51への凝縮水の流入が確実に防止される。
 窪み部52の下端には、回転軸線Xに対して傾斜する排出面53が形成されているので、窪み部52に流入した凝縮水は排出面53上を流れて下方に落ちる。窪み部52の容量には限りがあるが、傾斜する排出面53を通じて、窪み部52内の凝縮水をスムーズに排出できる。
 もし、第1開口51aが基準壁面50aよりも第1端12a側に突出していると、第1開口51aはコンプレッサインペラ8の背面8dに非常に近づく。これは、コンプレッサ7の空力性能に影響を及ぼす可能性がある。バイパス穴51の第1開口51aが上記構成の位置にあれば、コンプレッサ7の空力性能に影響を及ぼすことなく、インペラ空間S1とモータ空間S2との間の圧力差を低減することができる。
 また、排出面53がコンプレッサインペラ8の後縁8eよりも下側(径方向の外側)に形成されているので、排出面53を通じて排出された凝縮水はディフューザ流路の方へ流れ出る。たとえば、凝縮水は、スクロール部10に至り、その後適当に排出される。
 以上、本開示の実施形態について説明したが、本発明は上記実施形態に限られない。たとえば、バイパス穴の位置は上記実施形態の位置に限られない。バイパス穴は、回転軸12の真下ではなく、回転軸12の真下よりも左右のいずれかにずれた位置に形成されてもよい。バイパス穴は、回転軸12より下に配置されてもよい。すなわち、バイパス穴は、回転軸12の下端より下に配置されてもよい。また、バイパス穴は、回転軸線Xより下であって回転軸12の下端より上に配置されてもよいし、回転軸線Xより上に配置されてもよい。バイパス穴が回転軸12より上に配置されていても、圧力差を低減することができる。また基準壁面上を流れ落ちる凝縮水を窪み部に溜めることにより、凝縮水がバイパス穴に入ることを抑制することができる。
 バイパス穴は1つである場合に限られず、複数のバイパス穴が壁部に形成されてもよい。複数のバイパス穴のそれぞれに関しても、上記した自由な配置が適用されてもよい。複数のバイパス穴のうち1つが、回転軸12の真下に配置されてもよい。2以上のバイパス穴が、回転軸12を通る鉛直面に対して対称に配置されてもよい。
 窪み部は、バイパス穴の第1開口の周りの一部のみに形成されてもよい。たとえば、窪み部は、第1開口の上方および側方(両側方または片側方)に形成され、第1開口の下方には形成されないU字状の溝部であってもよい。すなわち、窪み部は、第1開口の上半分のみに形成されてもよい。窪み部は、第1開口の直上のみに形成されてもよい。これらの場合、窪み部は一対の端部を有する溝部であるが、溝部の端部に排出面が接続されてもよい。
 窪み部の下端において、排出面が形成されなくてもよい。排出面が省略される場合、窪み部の下端には、回転軸線に平行な壁面、または回転軸線に対して傾斜するがインペラ空間に面しておらずに窪み部内に面するような壁面が形成されてもよい。
 バイパス穴の第1開口は、壁部の基準壁面より第1端側(隙間A内)に突出してもよい。
 モータハウジング3がハウジング本体31とインナーハウジング32とを有する構造に限られない。モータハウジング3は、複数の部材に分割されず、一体の構造を有してもよい。その場合に、バイパス穴51は、1つの壁部に形成された単一の孔部であってもよい。本開示の電動コンプレッサの特徴部分(バイパス穴51および窪み部52等)を除き、モータハウジング3の基本的な構造として、別の公知の構造が採用されてもよい。
 上記実施形態では、端壁部50が、モータハウジング3の一部である構造について説明したが、端壁部50は、モータハウジング3とは別体であってもよい。コンプレッサハウジング6とモータハウジング3の間に、たとえば板状の壁部が配置されてもよい。その場合でも、壁部はインペラ空間S1とモータ空間S2とを隔て、コンプレッサインペラ8の背面8dに対面する。この壁部に、バイパス穴および窪み部が形成される。
 タービンを備えた電動コンプレッサに本発明が適用されてもよい。
 本開示のいくつかの態様によれば、壁部に形成されたバイパス穴を通じて凝縮水がモータ空間に侵入することを抑制できる。
1 電動コンプレッサ
3 モータハウジング
5 モータ
6 コンプレッサハウジング
7 コンプレッサ
8 コンプレッサインペラ
8d 背面
12 回転軸
12a 第1端
12b 第2端
13 ロータ部
14 ステータ部
17 スリーブ部
31 ハウジング本体
32 インナーハウジング
33 外円筒部
34 外端壁部
36 内円筒部
37 内端壁部
38 露出壁部
40 水冷ジャケット部
50 端壁部(壁部)
50a 基準壁面
51 バイパス穴
51a 第1開口
51b 第2開口
52 窪み部
53 排出面
S1 インペラ空間
S2 モータ空間
X 回転軸線

Claims (5)

  1.  回転軸線を有すると共に前記回転軸線の方向における第1端と第2端とを含む回転軸と、
     前記回転軸の前記第1端に取り付けられ、前記第2端の方を向く背面を含むコンプレッサインペラと、
     前記回転軸の前記第1端および前記第2端の間に配置され、前記回転軸および前記コンプレッサインペラを回転させるためのモータと、
     前記コンプレッサインペラと前記モータとの間に配置され、前記コンプレッサインペラが存在するインペラ空間と前記モータが存在するモータ空間とを隔てる壁部であって、前記コンプレッサインペラの前記背面に対面して前記背面に沿った形状を有する基準壁面を含む前記壁部と、
     前記壁部を貫通するようにして前記壁部に形成され、前記インペラ空間と前記モータ空間とを接続するバイパス穴であって、前記インペラ空間に開口する第1開口を含む前記バイパス穴と、を備え、
     前記壁部には、前記バイパス穴の端縁である前記第1開口の周りに配置され、前記第1開口および前記基準壁面から窪む窪み部が形成されている、電動コンプレッサ。
  2.  前記バイパス穴は前記回転軸より下に配置されている、請求項1に記載の電動コンプレッサ。
  3.  前記窪み部は、前記バイパス穴の前記第1開口の全周に形成されている、請求項1または2に記載の電動コンプレッサ。
  4.  前記窪み部の下端には、前記回転軸線に対して傾斜し前記インペラ空間に向けられた排出面が形成されている、請求項1~3のいずれか一項に記載の電動コンプレッサ。
  5.  前記バイパス穴の前記第1開口は、前記回転軸線の方向において、前記基準壁面と同じか又は前記基準壁面より前記第2端側に位置する、請求項1~4のいずれか一項に記載の電動コンプレッサ。
PCT/JP2019/020964 2018-07-20 2019-05-27 電動コンプレッサ WO2020017161A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112019003659.9T DE112019003659B4 (de) 2018-07-20 2019-05-27 Elektrischer Kompressor
CN201980026072.4A CN111989496B (zh) 2018-07-20 2019-05-27 电动压缩机
JP2020530918A JP6927435B2 (ja) 2018-07-20 2019-05-27 電動コンプレッサ
US17/124,614 US11359642B2 (en) 2018-07-20 2020-12-17 Electric compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018137137 2018-07-20
JP2018-137137 2018-07-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/124,614 Continuation US11359642B2 (en) 2018-07-20 2020-12-17 Electric compressor

Publications (1)

Publication Number Publication Date
WO2020017161A1 true WO2020017161A1 (ja) 2020-01-23

Family

ID=69164711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020964 WO2020017161A1 (ja) 2018-07-20 2019-05-27 電動コンプレッサ

Country Status (5)

Country Link
US (1) US11359642B2 (ja)
JP (1) JP6927435B2 (ja)
CN (1) CN111989496B (ja)
DE (1) DE112019003659B4 (ja)
WO (1) WO2020017161A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220216765A1 (en) * 2021-01-07 2022-07-07 Toyota Jidosha Kabushiki Kaisha Drive unit for electric vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11624375B2 (en) * 2021-01-13 2023-04-11 Garrett Transportation I Inc Moisture removal system for electric compressor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5350039A (en) * 1993-02-25 1994-09-27 Nartron Corporation Low capacity centrifugal refrigeration compressor
JP2001515991A (ja) * 1997-09-10 2001-09-25 ターボダイン システムズ インコーポレイテッド 内部冷却空気を有するモータ駆動式遠心コンプレッサ
JP2007263417A (ja) * 2006-03-28 2007-10-11 Matsushita Electric Ind Co Ltd 換気扇
JP2018145910A (ja) * 2017-03-07 2018-09-20 三菱重工業株式会社 電動過給機

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6129524A (en) * 1998-12-07 2000-10-10 Turbodyne Systems, Inc. Motor-driven centrifugal air compressor with axial airflow
DE202004010088U1 (de) 2004-06-25 2004-09-09 Ebm-Papst Mulfingen Gmbh & Co. Kg Laufrad, insbesondere für einen Axialventilator
JP2009041551A (ja) 2007-08-13 2009-02-26 Toyota Motor Corp 内燃機関の排気還流装置
RU2522015C2 (ru) * 2009-10-27 2014-07-10 Дженерал Электрик Компани Каплеуловитель для центробежного компрессора
JP5577762B2 (ja) * 2010-03-09 2014-08-27 株式会社Ihi ターボ圧縮機及びターボ冷凍機
WO2014190285A1 (en) * 2013-05-24 2014-11-27 Delta T Corporation Ceiling fan with moisture protection features
JP6011571B2 (ja) 2014-03-19 2016-10-19 株式会社豊田自動織機 電動ターボ式圧縮機
EP3456983B1 (de) 2014-06-06 2020-11-11 BorgWarner, Inc. Aufladevorrichtung für eine brennkraftmaschine
EP3164603B1 (de) 2014-07-02 2020-01-22 Pierburg GmbH Elektrischer verdichter für eine verbrennungskraftmaschine
EP3081817B1 (fr) * 2015-04-13 2021-01-13 Belenos Clean Power Holding AG Machine équipée d'un compresseur
JP2017057482A (ja) 2015-09-18 2017-03-23 株式会社東芝 電極体、電解装置
CN108138792B (zh) 2015-10-02 2019-12-03 株式会社Ihi 离心压缩机
JP6621676B2 (ja) 2016-02-09 2019-12-18 国立大学法人東北大学 高圧水素ガス用蓄圧器の製造方法
CN108702067B (zh) 2016-02-19 2020-09-11 株式会社Ihi 电动装置及电动增压器
JP6663269B2 (ja) 2016-03-28 2020-03-11 株式会社日立製作所 圧縮機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5350039A (en) * 1993-02-25 1994-09-27 Nartron Corporation Low capacity centrifugal refrigeration compressor
JP2001515991A (ja) * 1997-09-10 2001-09-25 ターボダイン システムズ インコーポレイテッド 内部冷却空気を有するモータ駆動式遠心コンプレッサ
JP2007263417A (ja) * 2006-03-28 2007-10-11 Matsushita Electric Ind Co Ltd 換気扇
JP2018145910A (ja) * 2017-03-07 2018-09-20 三菱重工業株式会社 電動過給機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220216765A1 (en) * 2021-01-07 2022-07-07 Toyota Jidosha Kabushiki Kaisha Drive unit for electric vehicle

Also Published As

Publication number Publication date
JPWO2020017161A1 (ja) 2021-04-30
JP6927435B2 (ja) 2021-09-01
DE112019003659B4 (de) 2022-11-17
DE112019003659T5 (de) 2021-04-08
CN111989496B (zh) 2021-12-31
CN111989496A (zh) 2020-11-24
US11359642B2 (en) 2022-06-14
US20210102551A1 (en) 2021-04-08

Similar Documents

Publication Publication Date Title
JP4671177B2 (ja) 電動過給機
US10337522B2 (en) Centrifugal compressor
CN108302052B (zh) 直列式轴流风扇
US10851792B2 (en) Diagonal fan
JP2007525140A (ja) 少なくとも1つの爪間のスペースが、ファンによって封止されているロータアセンブリ
US11359642B2 (en) Electric compressor
JP6603448B2 (ja) 遠心インペラ及び遠心ブロワ
WO2020255331A1 (ja) 遠心ファンおよび回転電機
WO2016181821A1 (ja) 遠心式送風機
CN113339287B (zh) 涡轮压缩机
CN111911425A (zh) 离心风机及空调器
JPH10331794A (ja) 遠心圧縮機
US20190040874A1 (en) Centrifugal Impeller and Centrifugal Blower
EP3434908B1 (en) Impeller, rotary machine, and turbocharger
JP7135138B2 (ja) 回転電機
WO2021250800A1 (ja) 遠心ファンおよび回転電機
CN113958536B (zh) 离心压缩机
WO2018016198A1 (ja) 遠心式送風機
JP7123283B1 (ja) 遠心ファンおよび遠心ファンを用いた回転電機
JP2000291593A (ja) 圧縮機
CN111742465A (zh) 具有包括空气动力学附件的定子格栅的电机
JPH085355Y2 (ja) タービン型ポンプ
JPH07117057B2 (ja) 流体加圧装置
JP2024029646A (ja) 軸流ファン
CN117404313A (zh) 轴流风扇

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19838814

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020530918

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19838814

Country of ref document: EP

Kind code of ref document: A1