WO2020015697A1 - 量子点发光二极管及其制备方法 - Google Patents

量子点发光二极管及其制备方法 Download PDF

Info

Publication number
WO2020015697A1
WO2020015697A1 PCT/CN2019/096499 CN2019096499W WO2020015697A1 WO 2020015697 A1 WO2020015697 A1 WO 2020015697A1 CN 2019096499 W CN2019096499 W CN 2019096499W WO 2020015697 A1 WO2020015697 A1 WO 2020015697A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron transport
layer
quantum dot
dot light
light emitting
Prior art date
Application number
PCT/CN2019/096499
Other languages
English (en)
French (fr)
Inventor
梁柱荣
曹蔚然
钱磊
Original Assignee
Tcl集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl集团股份有限公司 filed Critical Tcl集团股份有限公司
Priority to US16/772,762 priority Critical patent/US11485908B2/en
Publication of WO2020015697A1 publication Critical patent/WO2020015697A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/04Binary compounds including binary selenium-tellurium compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the invention belongs to the field of display technology, and particularly relates to a quantum dot light emitting diode and a preparation method thereof.
  • Quantum dots also known as nanocrystals, are particles with dimensions smaller than or close to the Bohr radius (generally no more than 10 nm in diameter) in three dimensions, usually group II-VI or III-V elements Composition of nanoparticles. Because of the extremely small size of quantum dots, the movement of internal electrons in different directions is restricted. Therefore, its optical and electronic properties are different from large particles, and they have special physical effects such as quantum confinement effects, surface effects, quantum tunnel effects, and dielectric confinement effects. Quantum dot technology has a wide range of applications, such as semiconductor transistors, solar cells, light emitting diodes (LEDs), quantum computing, medical imaging, etc., among which display technology is one of the most important areas for quantum dot applications. 1.
  • LEDs light emitting diodes
  • QLED quantum dot light emitting diode
  • Light-emitting diode is an emerging display device, and its light-emitting materials use inorganic quantum dots with more stable performance. Compared with organic fluorescent dyes, quantum dots have the advantages of good color saturation, adjustable spectrum, large luminous intensity, high color purity, long fluorescence lifetime, and single-light source can excite multicolor fluorescence. In addition, QLED devices have a long life and a simple packaging process, and are expected to become the next generation of flat panel display devices with broad application prospects.
  • QLED devices generally use metal oxides or metal sulfide semiconductors with high carrier mobility as electron transport layers, such as zinc oxide, titanium dioxide, tin oxide, zirconia, zinc sulfide, cadmium sulfide, and the like.
  • these metal oxide or metal sulfide semiconductor nanoparticles are generally prepared by a solution method, and then prepared into a thin film by a solution film formation method.
  • these materials have excellent electron injection and transport properties, they have two shortcomings. One of them is that since most of these materials are nanoparticles synthesized by the solution method, there are a large number of defects on the surface and inside of them.
  • the electrons when these materials are irradiated with photons with energy greater than the forbidden band width, the electrons will transition from the valence band to the conduction band, generating electrons- Hole pairs, electrons are reducing, holes are oxidizing, holes react with -OH (hydroxyl) on the surface of oxide semiconductor particles to form highly oxidizing OH radicals, and active OH radicals can oxidize many organic substances .
  • the metal oxide electron transport layer is in direct contact with the quantum dot layer, the photocatalytic effect of metal oxides (such as zinc oxide) will seriously damage the organic ligands on the surface of the quantum dots, and it will affect the quantum dot materials. And the interface between quantum dots / zinc oxide and zinc oxide / metal cathode, thereby greatly reducing the light-emitting lifetime of QLED devices. Therefore, the existing technology needs further research and development.
  • the purpose of the present invention is to provide a quantum dot light emitting diode and a preparation method thereof, which aim to solve the problem that a large number of defects exist on the surface of the electron transport material in the existing quantum dot light emitting diode, which causes the light emission quenching of the device and reduces the light emitting performance of the device technical problem.
  • One aspect of the present invention provides a quantum dot light emitting diode, which includes an anode, a cathode, and a quantum dot light emitting layer disposed between the anode and the cathode, and a composite electron is disposed between the cathode and the quantum dot light emitting layer.
  • a transport layer, the composite electron transport layer contains an electron transport material and an ultraviolet absorbing material.
  • Another aspect of the present invention provides a method for preparing a quantum dot light emitting diode, including the following steps:
  • a composite electron transport layer is prepared on the cathode or quantum dot light emitting layer, and the composite electron transport layer contains an electron transport material and an ultraviolet absorbing material.
  • a composite electron transport layer is provided between the cathode and the quantum dot light emitting layer in the quantum dot light emitting diode provided by the present invention.
  • the composite electron transport layer contains an electron transport material and an ultraviolet absorbing material, and the functional groups and the electron transport material in the ultraviolet absorbing material Surface vacancies or dangling bonds are combined to passivate the surface defects of the electron-transporting material, thereby avoiding the light quenching phenomenon of the quantum dot light emitting diode, and thereby improving the light emitting performance of the device.
  • the method for preparing a quantum dot light emitting diode provided by the present invention has a simple process.
  • a composite electron transport layer containing an electron transport material and an ultraviolet absorbing material is prepared on a cathode or a quantum dot light emitting layer.
  • the ultraviolet absorbing material in the composite electron transport layer can The surface defects of the electron-transporting material are passivated, thereby avoiding the light quenching phenomenon of the quantum dot light emitting diode, and thereby improving the light emitting performance of the device.
  • FIG. 1 is a schematic structural diagram of a composite electron transport layer of a quantum dot light emitting diode according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a method for manufacturing a quantum dot light emitting diode according to an embodiment of the present invention
  • FIG. 3 is another schematic flowchart of a method for manufacturing a quantum dot light emitting diode according to an embodiment of the present invention
  • FIG. 4 is a schematic flowchart of another method for manufacturing a quantum dot light emitting diode according to an embodiment of the present invention.
  • first and second in the embodiments of the present invention are only used for description purposes, and cannot be understood as indicating or suggesting relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features.
  • an embodiment of the present invention provides a quantum dot light emitting diode including an anode, a cathode, and a quantum dot light emitting layer disposed between the anode and the cathode, and between the cathode and the quantum dot light emitting layer.
  • a composite electron transport layer is provided, and the composite electron transport layer contains an electron transport material and an ultraviolet absorbing material.
  • a composite electron transport layer is provided between the cathode in the quantum dot light emitting diode provided in the embodiment of the present invention and the quantum dot light emitting layer.
  • the composite electron transport layer contains an electron transport material and an ultraviolet absorbing material, and the functional groups in the ultraviolet absorbing material. Combined with vacancies or dangling bonds on the surface of the electron-transporting material to passivate the surface defects of the electron-transporting material, thereby avoiding the phenomenon of luminescence quenching of the quantum dot light-emitting diode, and thereby improving the light-emitting performance of the device.
  • the composite electron transport layer includes an electron transport layer composed of the electron transport material and an interface modification layer composed of the ultraviolet absorbing material; wherein the interface A modification layer is located between the electron transport layer and the cathode; or the interface modification layer is located between the electron transport layer and the quantum dot light emitting layer.
  • the composite electron transport layer includes a first interface modification layer, an electron transport layer, and a second interface modification layer which are arranged in a stack, the electron transport layer is composed of the electron transport material, the first interface modification layer and the first A second interface modification layer is composed of the ultraviolet absorbing material; wherein the first interface modification layer is located between the electron transport layer and the cathode, and the second interface modification layer is located between the electron transport layer and the cathode. Quantum dots between light emitting layers.
  • the above-mentioned interface modification layer in the embodiment of the present invention may be one layer, and may be stacked between the electron transport layer and the cathode; or the interface modification layer may be one layer, and may be stacked between the electron transport layer and the quantum dot light-emitting layer. Or the interface modification layer may be two layers, one layer is disposed between the electron transport layer and the cathode, and one layer is disposed between the electron transport layer and the quantum dot light emitting layer.
  • An interface modification layer composed of an ultraviolet absorbing material is provided on the surface of the electron transport layer, which can passivate the surface defects of the electron transport layer, and the coordination group contained in the ultraviolet absorbing material (such as the hydroxyl group or carboxyl group of erucic acid ester in FIG. 1) , Can also play the role of interface modification, enhance the degree of bonding between the two interfaces. Furthermore, when the composite electron transport layer includes an interface modification layer, the thickness of the interface modification layer is 2-90 nm. When the composite electron transport layer includes a first interface modification layer and a second interface modification layer, the thickness of the first interface modification layer and the second interface modification layer is 2-90 nm.
  • the composite electron transport layer is a composite electron transport layer composed of a mixture of the electron transport material and the ultraviolet absorbing material.
  • the ultraviolet absorbing material can passivate the surface defects of the electron transporting material.
  • the ultraviolet absorbing material can passivate the internal defects of the composite electron transporting layer.
  • the thickness of the composite electron transport layer is 2-170 nm. In one embodiment, the molar ratio of the electron transport material and the ultraviolet absorbing material is (0.05-200): (0.03-90).
  • the electron transport material is selected from a metal oxide electron transport material; a metal oxide electron transport material (such as titanium dioxide, zinc oxide, etc.) has excellent electron transport performance However, it also has a strong photocatalytic ability, that is, it can play a photocatalytic effect under the excitation of photons. When ultraviolet light or light containing ultraviolet light component is under the photocatalytic action of metal oxide electron transport material, it will affect the device.
  • a metal oxide electron transport material such as titanium dioxide, zinc oxide, etc.
  • Internal inorganic materials including quantum dot materials, oxide nanoparticle materials, etc.
  • organic materials including nanoparticle surface ligands, organic transport layers, organic modification layers, etc.
  • damage resulting in material properties and device performance Consequences of adverse effects, such as quantum dot surface ligand shedding, quantum dot agglomeration, nanoparticle surface defects increased, functional layer interface defects increased, nanoparticle energy band changes, and carrier transport barriers increased.
  • the interface between the electron transport layer composed of the metal oxide electron transport material and the cathode introduces one or more of the ultraviolet absorption materials, that is, a composite electron transport composed of a mixture of the metal oxide electron transport material and the ultraviolet absorption material.
  • the electron transport layer or at least one surface of the electron transport layer composed of the metal oxide electron transport material is provided with an interface modification layer composed of the ultraviolet absorbing material; this can not only passivate surface defects of the metal oxide electron transport material, but also suppress Ultraviolet light affects device materials and device performance, and ultimately can improve device performance and extend device life.
  • the ultraviolet absorbing material is selected from cinnamic acid, cinnamic acid derivatives, salicylic acid, salicylic acid derivatives, benzophenone, benzophenone derivatives, benzotriazole, benzotriazole Derivatives, cyanoacrylic acid, cyanoacrylic derivatives, triazines, triazine derivatives, benzoic acid, benzoic acid derivatives, hindered amine compounds, organic nickel compounds, phenylbenzimidazole sulfonic acid At least one of p-xylylene dicamphorsulfonic acid, cresol triazole trisiloxane, butylmethoxydibenzoylmethane, and 4-methylbenzylidene camphor.
  • the cinnamic acid derivative is selected from the group consisting of octyl methoxycinnamate, isooctyl methoxycinnamate 4-ethylhexyl methoxycinnamate, and tetra-bis-tert-butyl Glycolic pentaerythritol oxidizes at least one of cinnamate, erucic acid, and erucic acid derivatives (such as including one or more of erucic acid esters, erucyl glucose, erucyl malate, and erucylcholine).
  • the salicylic acid derivative is selected from the group consisting of octyl salicylate, methyl salicyl alcohol, phenyl 3,5-dichlorosalicylate, and 4,4'-isopropylidenebis (phenol salicylate) At least one of p-tert-butylphenyl salicylate and p-octylphenyl salicylate.
  • the benzophenone derivative is selected from 2-hydroxy-4-n-octyloxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2,4-dihydroxybenzophenone, Benzophenone-3, 2-hydroxy-4- (2'-ethylhexyloxy) -benzophenone, 2-hydroxy-4-dodecyl-benzophenone, 2-hydroxy-4 -Methoxy-2'-carboxybenzophenone, 2-hydroxy-4 (2'-hydroxy-3'-acryloxypropoxy) benzophenone, 2-hydroxy-4- [2'- Hydroxy-3 '-(methacryloxypropoxy)] benzophenone, 2,2'-dihydroxy-4-n-octyloxybenzophenone, 2-hydroxy-4-methoxy- 4-chlorobenzophenone, 2-hydroxy-4-methoxy-2 ', 4'-dichlorobenzophenone, 1,3-bis (3'-hydroxy-4'-benzoic acid benzene (Oxy) propanol-2
  • the cyanoacrylic derivative is selected from the group consisting of 2-cyano-3,3'-diphenylacrylate-2-ethylethyl, 2-cyano-3,3'-diphenylacrylate, and 2 -At least one of isooctyl cyano-3,3-diphenylacrylate.
  • the triazine derivative is selected from 2,4,6-tris (2'-n-butoxyphenyl) -1,3,5-triazine, ethylhexyltriazinone, diethylhexylbutyramide Triazinone, tris (2,2,6,6-tetramethyl-4-oxy-piperidinyl) -1,3,5-triazine, 2- (4,6-diphenyl-1, 3,5-triazin-2-yl) -5-[(hexyl) oxy] -phenol, 2- [4,6-bis (2,4-xylyl) -2- (1,3,5 -Triazinyl)]-5-octyloxyphenol and at least one of bis-ethylhexyloxyphenolmethoxyphenyltriazine.
  • the benzoic acid derivatives are selected from the group consisting of hexyl diethylaminohydroxybenzoylbenzoate, pentyldimethylparaaminobenzoic acid, octyl-dimethyl-paraaminobenzoic acid, and o-hydroxybenzoic acid benzene Esters, resorcinol monobenzoate, resorcinol monobenzoate, 3,5-di-tert-butyl-4-hydroxybenzoate-2,4-di-tert-butylphenyl, and 3,5 -At least one of n-hexadecyl di-tert-butyl-4-hydroxybenzoate.
  • the hindered amine compound is selected from ethylbis (2,2,6,6-tetramethylpiperazinone), 4-benzoyloxy-2,2,6,6tetramethylpiperidine, 2 -(3,5-di-tert-butyl-4-hydroxy-benzyl) -2-butyl 1,3-malonate di (1,2,2,6,6-pentamethyl-4-piperidine Yl) ester, tetra (2,2,6,6-tetramethyl-4-piperidinyl) -1,2,3,4-butane tetracarboxylic acid ester, bis (2,2,6,6- Tetramethylpiperidinyl) sebacate, poly- ⁇ [6-[(1,1,3,3, -tetramethylbutyl) -imino] -1,3,5, -triazine- 2,4-diyl] [2- (2,2,6,6, -tetramethylpiperidinyl) -amino-hexamethylene- [4
  • the organic nickel-based compound is selected from tetra-n-butyl Nickel dithiocarbamate, 2,2'-thiobis (p-tert-octylphenol) nickel-n-butylamine complex, 2,2'-thiobis (p-tert-octylphenol) nickel, and 2, At least one of 2'-thiobis (4-tert-octylphenoloxy) nickel.
  • the ultraviolet absorbing material is preferably selected from hydroxycinnamic acid derivatives, specifically, erucic acid, erucic acid esters and derivatives thereof selected from hydroxycinnamic acid derivatives, including but not limited to Sinapoyl glucose), Sinapoyl malate), or one or more of sinapoyl choline.
  • the erucic acid ester is a lipid derivative of erucic acid, which is a kind of hydroxycinnamic acid derivative that is abundantly present in Arabidopsis and other cruciferous plants. In plants, it is evenly distributed in On the leaf surface, it protects plant photosynthesis and other life processes from being damaged by excessive ultraviolet rays.
  • one end contains rich carboxyl groups, which can be well anchored on the surface of an electron transport layer (such as a zinc oxide electron transport layer) composed of a metal oxide electron transport material.
  • the ultraviolet absorbing material is disposed at the interface between the quantum dot light-emitting layer and the electron transport layer, and / or the interface between the electron transport layer and the cathode), and / or the metal oxide electron transport material inside the composite electron transport layer
  • the nanoparticles are connected to each other (the ultraviolet absorbing material is mixed with the metal oxide electron transport material to form a composite electron transport layer); the other end contains a hydroxyl group and a methoxy group, which can be well anchored on the surface of the quantum dot light emitting layer (if the ultraviolet absorption
  • the material is set at the interface between the quantum dot light-emitting layer and the electron transport layer) or can be well anchored to the cathode surface (if the ultraviolet absorbing material is set at the interface between the electron transport
  • the electron transport layer is selected from one or more of a doped or undoped metal oxide and a doped or undoped metal sulfide.
  • the doped or undoped metal oxide includes one or more of ZnO, TiO 2 , SnO 2 , Ta 2 O 3 , ZrO 2 , NiO, TiLiO, ZnAlO, ZnMgO, ZnSnO, ZnLiO, InSnO .
  • the doped or undoped metal sulfide includes one or more of CdS, ZnS, MoS, WS, and CuS.
  • the material of the quantum dot light-emitting layer is a group II-VI compound, a group III-V compound, a group II-V compound, a group III-VI compound, a group IV-VI compound, a group I-III-VI compound, and group II-IV- One or more of a Group VI compound or a Group IV element.
  • the semiconductor material used in the quantum dot light-emitting layer includes, but is not limited to, nanocrystals of II-VI semiconductors, such as CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, PbS, PbSe, PbTe, and Other binary, ternary, and quaternary II-VI compounds; nanocrystals of III-V semiconductors, such as GaP, GaAs, InP, InAs, and other binary, ternary, and quaternary III-V compounds; said The semiconductor materials for electroluminescence are also not limited to Group II-V compounds, III-VI compounds, Group IV-VI compounds, Group I-III-VI compounds, Group II-IV-VI compounds, Group IV elements, and the like.
  • II-VI semiconductors such as CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, H
  • the material of the quantum dot light emitting layer may also be a doped or non-doped inorganic perovskite semiconductor, and / or an organic-inorganic hybrid perovskite semiconductor; specifically, the inorganic perovskite
  • the structure of ore-type semiconductors is AMX 3 , where A is Cs + ions and M is a divalent metal cation, including but not limited to Pb 2+ , Sn 2+ , Cu 2+ , Ni 2+ , Cd 2+ , Cr 2+, Mn 2+, Co 2+, Fe 2+, Ge 2+, Yb 2+, Eu 2+, X is a halogen anion, including but not limited to, Cl -, Br -, I - ; said organic -
  • the structure of the inorganic hybrid perovskite-type semiconductor is BMX 3 , where B is an organic amine cation, including but not limited to CH 3 (CH 2 ) n-2 NH 3 + (
  • M is a divalent metal cation, including but not limited to Pb 2+ , Sn 2 + , Cu 2+ , Ni 2+ , Cd 2+ , Cr 2+ , Mn 2+ , Co 2+ , Fe 2+ , Ge 2+ , Yb 2+ , Eu 2+ ;
  • X is a halogen anion, including but not limited Cl -, Br -, I.
  • the quantum dot light emitting diode may be disposed on a substrate, wherein the substrate is a rigid substrate or a flexible substrate, wherein the rigid substrate includes, but is not limited to, one of glass, metal foil, or Multiple; the flexible substrate includes, but is not limited to, polyethylene terephthalate (PET), polyethylene terephthalate (PEN), polyetheretherketone (PEEK), polystyrene (PS), polyethersulfone (PES), polycarbonate (PC), polyarylate (PAT), polyarylate (PAR), polyimide (PI), polyvinyl chloride (PV), poly One or more of ethylene (PE), polyvinylpyrrolidone (PVP), and textile fibers.
  • PET polyethylene terephthalate
  • PEN polyethylene terephthalate
  • PEEK polyetheretherketone
  • PS polystyrene
  • PS polyethersulfone
  • PC polycarbonate
  • PAT polyarylate
  • PAR polyarylate
  • the anode and cathode include, but are not limited to, one or more of a metal material, a carbon material, and a metal oxide.
  • the metal material includes one or more of Al, Ag, Cu, Mo, Au, Ba, Ca, and Mg.
  • the carbon material includes one or more of graphite, carbon nanotubes, graphene, and carbon fibers.
  • the metal oxide may be a doped or undoped metal oxide, including one or more of ITO, FTO, ATO, AZO, GZO, IZO, MZO, AMO, and also includes doped or undoped transparent
  • a composite electrode with a metal sandwiched between metal oxides wherein the composite electrode includes AZO / Ag / AZO, AZO / Al / AZO, ITO / Ag / ITO, ITO / Al / ITO, ZnO / Ag / ZnO, ZnO / Al / ZnO, TiO 2 / Ag / TiO 2 , TiO 2 / Al / TiO 2 , ZnS / Ag / ZnS, ZnS / Al / ZnS, TiO 2 / Ag / TiO 2 , TiO 2 / Al / TiO 2 , TiO 2 / Al / TiO 2 , ZnS / Ag / ZnS, ZnS
  • an electron injection layer may be provided between the composite electron transport layer and the cathode, and a hole blocking layer may be provided between the composite electron transport layer and the quantum dot light emitting layer.
  • a hole function layer (such as a hole transport layer, or a stacked hole injection layer and a hole transport layer) can be provided between the anode and the quantum dot light emitting layer, and the hole function layer and the quantum dot light emitting layer can also be provided.
  • An electron blocking layer is provided.
  • the hole injection layer is selected from one or more of PEDOT: PSS, CuPc, F4-TCNQ, HATCN, transition metal oxide, and transition metal sulfur-based compound.
  • the transition metal oxide includes one or more of NiOx, MoOx, WOx, CrOx, and CuO.
  • the metal sulfur-based compound includes one or more of MoSx, MoSex, WSx, WSex, and CuS.
  • the hole transporting layer is selected from the group consisting of poly (9,9-dioctylfluorene-CO-N- (4-butylphenyl) diphenylamine), polyvinylcarbazole, and poly (N, N'bis (4- Butylphenyl) -N, N'-bis (phenyl) benzidine), poly (9,9-dioctylfluorene-co-bis-N, N-phenyl-1,4-phenylenediamine) , 4,4 ', 4' '-tris (carbazole-9-yl) triphenylamine, 4,4'-bis (9-carbazole) biphenyl, N, N'-diphenyl-N,
  • the hole-transporting layer is selected from inorganic materials having hole-transporting capabilities, including but not limited to at least one of NiOx, MoOx, WOx, CrOx, CuO, MoSx, MoSex, WSx, WSex, CuS Species.
  • Another aspect of the present invention provides a method for preparing a quantum dot light emitting diode, including the following steps:
  • a composite electron transport layer is prepared on the cathode or quantum dot light emitting layer, and the composite electron transport layer contains an electron transport material and an ultraviolet absorbing material.
  • a composite electron transport layer is provided between the cathode in the quantum dot light emitting diode provided in the embodiment of the present invention and the quantum dot light emitting layer.
  • the composite electron transport layer contains an electron transport material and an ultraviolet absorbing material, and the ultraviolet absorbing material can be passivated. Surface defects of the electron transport material, thereby avoiding the quenching phenomenon of the quantum dot light emitting diode, and further improving the light emitting performance of the device.
  • a quantum dot light emitting layer is provided on the surface of the anode substrate at this time.
  • a composite electron transport layer containing an electron transporting material and an ultraviolet absorbing material is prepared on the quantum dot light emitting layer, and subsequently A cathode is prepared on the composite electron transport layer (a positive structure quantum dot light emitting diode is obtained).
  • a composite electron transport layer containing an electron transporting material and an ultraviolet absorbing material is prepared on the cathode substrate, and then a quantum dot light emitting layer is prepared on the composite electron transport layer, and then a quantum dot light emitting layer is prepared.
  • An anode was prepared on the substrate (to obtain a quantum dot light emitting diode with an inverted structure).
  • the step of preparing a composite electron transport layer on the cathode or the quantum dot light emitting layer includes:
  • the composite material is deposited on the cathode or quantum dot light emitting layer to obtain the composite electron transport layer composed of a mixture of the electron transport material and the ultraviolet absorbing material.
  • the composite electron transport layer is a composite electron transport layer composed of a mixture of the electron transport material and the ultraviolet absorbing material.
  • the step of depositing the composite material on the cathode or quantum dot light emitting layer to obtain the composite electron transport layer composed of a mixture of the electron transport material and the ultraviolet absorbing material includes: The material is dissolved in a solvent to prepare a mixed solution, and then the mixed solution is deposited on the cathode or the quantum dot light-emitting layer and annealed.
  • the step of preparing a composite electron transport layer on the cathode or the quantum dot light-emitting layer includes:
  • T011 depositing the electron transport material on the cathode or quantum dot light emitting layer to obtain an electron transport layer
  • T012 depositing the ultraviolet absorbing material on the electron transport layer to obtain an interface modification layer
  • the interface modification layer and the electron transport layer constitute the composite electron transport layer.
  • the step of preparing a composite electron transport layer on the cathode or quantum dot light-emitting layer includes:
  • T021 depositing the ultraviolet absorbing material on the cathode or quantum dot light emitting layer to obtain an interface modification layer
  • T022 depositing the electron transport material on the interface modification layer to obtain an electron transport layer
  • the interface modification layer and the electron transport layer constitute the composite electron transport layer.
  • the composite electron transport layer includes an electron transport layer composed of the electron transport material and an interface modification layer composed of the ultraviolet absorbing material, and the interface modification layer is disposed on the interface modification layer. At least one side of the electron transport layer.
  • step T012 depositing the ultraviolet absorbing material on the electron transport layer to obtain an interface modification layer includes dissolving the ultraviolet absorbing material in a solvent to obtain a solution containing the ultraviolet absorbing material, and then The solution containing the ultraviolet absorbing material is deposited on the electron transport layer and annealed.
  • depositing the ultraviolet absorbing material on the cathode or quantum dot light-emitting layer to obtain an interface modification layer includes dissolving the ultraviolet absorbing material in a solvent to obtain a solution containing the ultraviolet absorbing material, Then, the solution containing the ultraviolet absorbing material is deposited on the cathode or the quantum dot light emitting layer, and then annealed.
  • the packaging method of the quantum dot light-emitting diode obtained by the above preparation method may be partial packaging, full packaging, or no packaging, which is not strictly limited in the embodiments of the present invention.
  • a method for manufacturing a positive structure quantum dot light emitting diode includes the following steps:
  • Step S1 preparing an anode on the substrate
  • Step S2 preparing a hole injection layer on the anode
  • Step S3 preparing a hole transport layer on the hole injection layer
  • Step S4 preparing a quantum dot light emitting layer on the hole transport layer
  • Step S5 introducing an interface modification layer composed of the ultraviolet absorbing material as described above on the quantum dot light emitting layer;
  • Step S6 preparing an electron transport layer on the interface modification layer
  • Step S7 A cathode is prepared on the electron transport layer to obtain a quantum dot light emitting diode.
  • a method for manufacturing a positive structure quantum dot light emitting diode includes the following steps:
  • Step S1 preparing an anode on the substrate
  • Step S2 preparing a hole injection layer on the anode
  • Step S3 preparing a hole transport layer on the hole injection layer
  • Step S4 preparing a quantum dot light emitting layer on the hole transport layer
  • Step S5 preparing an electron transport layer on the quantum dot light emitting layer
  • Step S6 Introducing the interface modification layer composed of the ultraviolet absorbing material as described above on the electron transport layer;
  • Step S7 preparing a cathode on the interface modification layer to obtain a quantum dot light emitting diode.
  • a method for preparing an inverted structure quantum dot light emitting diode includes the following steps:
  • Step S1 preparing a cathode on the substrate
  • Step S2 preparing an electron transport layer on the cathode
  • Step S3 introducing an interface modification layer composed of the ultraviolet absorbing material as described above on the electron transport layer;
  • Step S4 preparing a quantum dot light emitting layer on the interface modification layer
  • Step S5 preparing a hole transport layer on the quantum dot light emitting layer
  • Step S6 preparing a hole injection layer on the hole transport layer
  • Step S7 preparing an anode on the hole injection layer to obtain a quantum dot light emitting diode
  • a method for preparing an inverted structure quantum dot light emitting diode includes the following steps:
  • Step S1 preparing a cathode on the substrate
  • Step S2 introducing an interface modification layer composed of the ultraviolet absorbing material as described above on the cathode;
  • Step S3 preparing an electron transport layer on the interface modification layer
  • Step S4 preparing a quantum dot light emitting layer on the electron transport layer
  • Step S5 preparing a hole transport layer on the quantum dot light emitting layer
  • Step S6 preparing a hole injection layer on the hole transport layer
  • Step S7 preparing an anode on the hole injection layer to obtain a quantum dot light emitting diode
  • the interface modification layer made of the ultraviolet absorbing material is prepared by a solution method, including but not limited to a spin coating method, a printing method, a blade coating method, and a dipping extraction method. Pull method, dipping method, spraying method, roll coating method, casting method, slit coating method, strip coating method.
  • the ultraviolet absorbing material is dissolved in a solvent to be formulated into a concentration of 0.03-120 mmol / L (more preferably, 0.05-30 mmol / L) of a solution containing an ultraviolet absorbing material, and then deposited on a specific functional layer in the preparation method by a solution method, and then at 25-120 ° C (more preferably , At 60 ⁇ 100 ° C) for 0-60min to obtain the interface modification layer.
  • the thickness of the interface modification layer is 2-90 nm.
  • the solvent is an organic solvent, including but not limited to one of a saturated hydrocarbon, an unsaturated hydrocarbon, an aromatic hydrocarbon, an alcohol solvent, an ether solvent, a ketone solvent, a nitrile solvent, an ester solvent, and one of their derivatives. Or mixed organic solvents of multiple compositions.
  • the solvent is preferably an alcohol solvent, including, but not limited to, one or more of a monohydric alcohol, a polyhydric alcohol, and an aromatic alcohol, including, but not limited to, methanol, ethanol, ethylene glycol, propanol, propylene glycol, One or more of glycerol, isopropanol, butanol, pentanol, hexanol, cyclohexanol, n-butanol, benzyl alcohol, and phenylethanol.
  • an alcohol solvent including, but not limited to, one or more of a monohydric alcohol, a polyhydric alcohol, and an aromatic alcohol, including, but not limited to, methanol, ethanol, ethylene glycol, propanol, propylene glycol, One or more of glycerol, isopropanol, butanol, pentanol, hexanol, cyclohexanol, n-butanol, benzy
  • the preparation methods of the other layers may be a chemical method or a physical method, wherein the chemical method includes but is not limited to chemical vapor deposition Method, continuous ion layer adsorption and reaction method, anodization method, electrolytic deposition method, co-precipitation method; physical methods include, but are not limited to, physical coating methods or solution methods, where the solution method includes but is not limited to spin Coating method, printing method, blade coating method, dipping and pulling method, dipping method, spraying method, roll coating method, casting method, slit coating method, strip coating method; physical coating methods include but are not limited to thermal evaporation One or more of a coating method, an electron beam evaporation coating method, a magnetron sputtering method, a multi-arc ion plating method, a physical vapor deposition method, an atomic layer deposition method, and
  • a method for manufacturing a positive structure quantum dot light emitting diode includes the following steps:
  • Step S1 preparing an anode on the substrate
  • Step S2 preparing a hole injection layer on the anode
  • Step S3 preparing a hole transport layer on the hole injection layer
  • Step S4 preparing a quantum dot light emitting layer on the hole transport layer
  • Step S5 mix the electron transport material with the ultraviolet absorbing material as described above in advance, prepare a mixed solution, and deposit it on the quantum dot light-emitting layer to form a composite of a mixture of the electron transport material and the ultraviolet absorbing material.
  • Step S6 A cathode is prepared on the composite electron transport layer described in step S5 to obtain a quantum dot light emitting diode.
  • a method for manufacturing an inverted structure quantum dot light emitting diode includes the following steps:
  • Step S1 preparing a cathode on the substrate
  • Step S2 mix the electron transport material with the ultraviolet absorbing material as described above in advance, prepare a mixed solution, and deposit it on the cathode to form a composite electron transport layer composed of the electron transport material and the ultraviolet absorbing material. ;
  • Step S3 preparing a quantum dot light emitting layer on the composite electron transport layer described in Step S2;
  • Step S4 preparing a hole transport layer on the quantum dot light emitting layer
  • Step S5 preparing a hole injection layer on the hole transport layer
  • Step S6 An anode is prepared on the hole injection layer to obtain a quantum dot light emitting diode.
  • the above two methods of manufacturing quantum dot light-emitting diodes, and the method of preparing the composite electron transport layer are as follows: firstly, the above-mentioned electron-transporting material and the above-mentioned ultraviolet absorbing material are mixed uniformly and dissolved in a solvent, It is formulated into a mixed solution, and then it is deposited on the specific functional layer in the above preparation method by a solution method to form a composite electron transport layer composed of an electron transport material and an ultraviolet absorbing material.
  • the composite electron transport layer is prepared by a solution method, including, but not limited to, a spin coating method, a printing method, a blade coating method, a dipping and pulling method, a dipping method, a spraying method, a roll coating method, a casting method, and a slit coating method. 2. Strip coating method.
  • the concentration of the electron transport material in the mixed solution is 0.05-200 mol / L
  • the concentration of the ultraviolet absorbing material is 0.03-90 mmol / L (more preferably, 0.05-23 mmol / L).
  • annealing at 25-120 ° C (more preferably, 30-100 ° C) is required for 0-60min.
  • the thickness of the composite electron transport layer is 2 to 170 nm.
  • the solvent is an organic solvent, including but not limited to one of saturated hydrocarbons, unsaturated hydrocarbons, aromatic hydrocarbons, alcohol solvents, ether solvents, ketone solvents, nitrile solvents, ester solvents, and their derivatives, or Mixed organic solvents of various compositions.
  • the solvent is preferably an alcoholic solvent, including, but not limited to, one or more of a monohydric alcohol, a polyhydric alcohol, and an aromatic alcohol, including, but not limited to, methanol, ethanol, ethylene glycol, propanol, propylene glycol, and glycerol. Or more, isopropyl alcohol, butanol, pentanol, hexanol, cyclohexanol, n-butanol, benzyl alcohol, and phenylethanol.
  • the preparation methods of the above two kinds of quantum dot light emitting diodes may be chemical methods or physical methods.
  • the chemical methods include, but are not limited to, chemical vapor deposition, continuous One or more of ionic layer adsorption and reaction methods, anodizing methods, electrolytic deposition methods, co-precipitation methods;
  • physical methods include, but are not limited to, physical coating methods or solution methods, where solution methods include but are not limited to spin coating methods, Printing method, blade coating method, dipping and pulling method, dipping method, spraying method, roll coating method, casting method, slit coating method, strip coating method;
  • physical coating methods include, but are not limited to, thermal evaporation coating method, One or more of an electron beam evaporation coating method, a magnetron sputtering method, a multi-arc ion coating method, a physical vapor deposition method, an atomic layer deposition method, and a pulsed laser deposition method.
  • an embodiment of the present invention further provides a printed quantum dot display screen, which includes the above-mentioned quantum dot light emitting diode of the embodiment of the present invention.
  • a quantum dot light emitting diode is prepared as follows:
  • erucyl malate is dissolved in methanol at a concentration of 0.2 mmol / L to obtain a erucyl malate solution, and then the following process steps are performed.
  • the erucyl malate solution prepared above was deposited on the CdSe / ZnS quantum dot light-emitting layer by spin coating, wherein the spin coating conditions were 3000 rpm. After the spin coating was completed, the film was annealed at 80 ° C for 30 min to obtain erucyl Malic acid layer
  • An Al cathode layer is evaporated on the ZnO electron transport layer to obtain a quantum dot light emitting diode.
  • a quantum dot light emitting diode is prepared as follows:
  • erucyl malate is dissolved in ethanol at a concentration of 0.5 mmol / L to obtain a erucyl malate solution, and then the following process steps are performed.
  • the erucyl malate solution prepared above is deposited on the ZnO electron transport layer by spin coating, wherein the spin coating conditions are 3000 rpm. After the spin coating is completed, the film is annealed at 80 ° C for 30 min to obtain an erucyl malate layer. ;
  • a quantum dot light emitting diode is prepared as follows:
  • erucyl malate is dissolved in ethanol at a concentration of 0.5 mmol / L to obtain a erucyl malate solution, and then the following process steps are performed.
  • the erucyl malate solution prepared above is deposited on the ZnO electron transport layer by spin coating, wherein the spin coating conditions are 3000 rpm. After the spin coating is completed, the film is annealed at 80 ° C for 30 minutes to obtain an erucyl malate layer. ;
  • a layer of HATCN is evaporated on the NPB layer;
  • An Al cathode layer is evaporated on the HATCN layer to obtain a quantum dot light emitting diode.
  • a quantum dot light emitting diode is prepared as follows:
  • erucyl malate is dissolved in ethanol at a concentration of 0.8 mmol / L to obtain a erucyl malate solution, and then the following process steps are performed.
  • the erucyl malate solution prepared above is deposited on ITO conductive glass by spin coating, wherein the spin coating conditions are 1500 rpm. After the spin coating is completed, the film is annealed at 100 ° C for 30 min to obtain an erucyl malate layer;
  • a layer of HATCN is evaporated on the NPB layer;
  • An Al cathode layer is evaporated on the HATCN layer to obtain a quantum dot light emitting diode.
  • a quantum dot light emitting diode is prepared as follows:
  • zinc oxide and erucylmalate are dissolved in ethanol to form a mixed solution of zinc oxide and erucylmalate, where the concentration of zinc oxide is 1 mmol / L, the concentration of erucyl malate is 0.2 mmol / L followed by the following process steps.
  • the mixed solution of the zinc oxide and erucylmalate prepared above is deposited on the CdSe / ZnS quantum dot light-emitting layer by spin coating, wherein the spin coating conditions are 3000 rpm. After the spin coating is completed, the thin film is heated and annealed at 80 ° C. 30min to obtain a composite electron transport layer;
  • a quantum dot light emitting diode is prepared as follows:
  • zinc oxide and erucylmalate are dissolved in ethanol to form a mixed solution of zinc oxide and erucylmalate, where the concentration of zinc oxide is 1 mmol / L, the concentration of erucyl malate is 0.2 mmol / L followed by the following process steps.
  • the mixed solution of the zinc oxide and erucylmalate prepared above is deposited on ITO conductive glass by spin coating, wherein the spin coating conditions are 1500 rpm. After the spin coating is completed, the film is annealed at 100 ° C for 30 minutes to obtain a composite. Electron transport layer
  • An Al cathode layer is deposited on the HATCN layer to obtain a quantum dot light emitting diode.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种量子点发光二极管及其制备方法。该量子点发光二极管,包括阳极、阴极以及设置在所述阳极和所述阴极之间的量子点发光层,所述阴极与所述量子点发光层之间设置有复合电子传输层,所述复合电子传输层含有电子传输材料和紫外线吸收材料。该量子点发光二极管的复合电子传输层含有电子传输材料和紫外线吸收材料,而紫外线吸收材料中的官能团与电子传输材料表面的空位或悬挂键结合,以钝化电子传输材料的表面缺陷,从而避免量子点发光二极管的发光淬灭现象,进而提高器件的发光性能。

Description

量子点发光二极管及其制备方法 技术领域
本发明属于显示技术领域,具体涉及一种量子点发光二极管及其制备方法。
背景技术
量子点(Quantum dot,QD)又被称为纳米晶,是三个维度的尺寸小于或者接近于波尔半径(一般直径不超过10nm)的粒子,通常为II-VI族或III-V族元素组成的纳米颗粒。正是由于量子点的尺寸极小,所以其内部电子在不同方向上的运动都会受到限制。因此其光学和电子属性不同于大型粒子,具有量子限域效应、表面效应、量子隧道效应、介电限域效应等特殊的物理效应。量子点技术的应用领域宽广,如半导体晶体管、太阳能电池、发光二极管(LED)、量子计算、医疗成像等,其中显示技术是量子点应用的最重要的领域之一。量子点发光二极管(Quantum dot light-emitting diode,QLED)是一种新兴的显示器件,其发光材料采用性能更加稳定的无机量子点。相对于有机荧光染料,量子点具有色彩饱和度好、光谱可调、发光强度大、色纯度高、荧光寿命长、单光源可激发多色荧光等优势。此外,QLED器件寿命长,封装工艺简单,有望成为下一代的平板显示器件,具有广阔的应用前景。
目前,QLED器件一般使用具有高载流子迁移率的金属氧化物或金属硫化物半导体作为电子传输层,如氧化锌、二氧化钛、氧化锡、氧化锆、硫化锌、硫化镉等。在具体应用过程中,一般是先采用溶液法制备出这些金属氧化物或金属硫化物半导体纳米颗粒,然后通过溶液成膜法制备成薄膜。虽然这些材料具有优异的电子注入和传输性能,但是其存在两方面的不足,其中一个方面是,由于这些材料大部分是通过溶液法合成的纳米颗粒,其表面及内部存在大量的缺陷,而这些缺陷会成为载流子的复合中心,引起器件的发光淬灭,从而降低器件的发光性能;另一方面,像二氧化钛、氧化锌等这类具有优异电子传输性能的金属氧化物材料,其本身也具有较强的光催化能力,即在光子的激发下能够起到光催化效应,例如,当这些材料受到大于禁带宽度能量的光子照射后,电子会从价带跃迁到导带,产生电子-空穴对,电子具有还原性,空穴具有氧化性,空穴与氧化物半导体颗粒表面的-OH(羟基)反应生成氧化性很高的OH自由基,活泼的OH自由基可以把许多有机物氧化。而在QLED器件内部,由于金属氧化物电子传输层与量子点层直接接触,金属氧化物(如氧化锌)的光催化作用会严重地损害量子点表面的有机配体,并且会影响量子点材料以及量子点/氧化锌和氧化锌/金属阴极的界面,从而极大地降低QLED器件的发光寿命,因此,现有技术还有待进一步的研究和发展。
技术问题
本发明的目的在于提供一种量子点发光二极管及其制备方法,旨在解决现有量子点发光二极管内的电子传输材料表面存在大量的缺陷,以致引起器件的发光淬灭、降低器件发光性能的技术问题。
技术解决方案
为实现上述发明目的,本发明采用的技术方案如下:
本发明一方面提供一种量子点发光二极管,包括阳极、阴极以及设置在所述阳极和所述阴极之间的量子点发光层,所述阴极与所述量子点发光层之间设置有复合电子传输层,所述复合电子传输层含有电子传输材料和紫外线吸收材料。
本发明另一方面提供一种量子点发光二极管的制备方法,包括如下步骤:
在阴极或量子点发光层上制备复合电子传输层,所述复合电子传输层含有电子传输材料和紫外线吸收材料。
有益效果
本发明提供的量子点发光二极管中的阴极与量子点发光层之间设置有复合电子传输层,该复合电子传输层含有电子传输材料和紫外线吸收材料,该紫外线吸收材料中的官能团与电子传输材料表面的空位或悬挂键结合,以钝化电子传输材料的表面缺陷,从而避免量子点发光二极管的发光淬灭现象,进而提高器件的发光性能。
本发明提供的量子点发光二极管的制备方法工艺简单,在阴极或量子点发光层上制备含有电子传输材料和紫外线吸收材料的复合电子传输层,该所述复合电子传输层中的紫外线吸收材料可以钝化电子传输材料的表面缺陷,从而避免量子点发光二极管的发光淬灭现象,进而提高器件的发光性能。
附图说明
图1为本发明实施例中量子点发光二极管的复合电子传输层的结构示意图;
图2为本发明实施例中量子点发光二极管的制备方法一流程示意图;
图3为本发明实施例中量子点发光二极管的制备方法另一流程示意图;
图4为本发明实施例中量子点发光二极管的制备方法再一流程示意图。
本发明的实施方式
为了使本发明要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图和实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
需要理解的是,本发明实施例中的术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
一方面,本发明实施例提供了一种量子点发光二极管,包括阳极、阴极以及设置在所述阳极和所述阴极之间的量子点发光层,所述阴极与所述量子点发光层之间设置有复合电子传输层,所述复合电子传输层含有电子传输材料和紫外线吸收材料。
本发明实施例提供的量子点发光二极管中的阴极与所述量子点发光层之间设置有复合电子传输层,该复合电子传输层含有电子传输材料和紫外线吸收材料,该紫外线吸收材料中的官能团与电子传输材料表面的空位或悬挂键结合,以钝化电子传输材料的表面缺陷,从而避免量子点发光二极管的发光淬灭现象,进而提高器件的发光性能。
进一步地,在本发明实施例提供的量子点发光二极管中,所述复合电子传输层包括所述电子传输材料组成的电子传输层和所述紫外线吸收材料组成的界面修饰层;其中,所述界面修饰层位于所述电子传输层和所述阴极之间;或者所述界面修饰层位于所述电子传输层和所述量子点发光层之间。或者,所述复合电子传输层包括层叠设置的第一界面修饰层、电子传输层和第二界面修饰层,所述电子传输层由所述电子传输材料组成,所述第一界面修饰层和第二界面修饰层由所述紫外线吸收材料组成;其中,所述第一界面修饰层位于所述电子传输层和所述阴极之间,所述第二界面修饰层位于所述电子传输层和所述量子点发光层之间。即本发明实施例的上述界面修饰层可以为一层,且层叠设置在电子传输层和阴极之间;或者该界面修饰层可以为一层,且层叠设置在电子传输层和量子点发光层之间;或者该界面修饰层可以为两层,电子传输层和阴极之间设一层、且电子传输层和量子点发光层之间一层。由紫外线吸收材料组成的界面修饰层设置在电子传输层表面,可以钝化电子传输层的表面缺陷,而且紫外线吸收材料中含有的配位基团(如图1中芥子酸酯的羟基或羧基),还能起到界面修饰的作用,增强两个界面之间的结合程度。更进一步地,当所述复合电子传输层包括一层界面修饰层时,所述界面修饰层的厚度为2-90nm。当所述复合电子传输层包括第一界面修饰层和第二界面修饰层时,该第一界面修饰层和第二界面修饰层的厚度为2-90nm。
进一步地,在本发明实施例提供的量子点发光二极管中,所述复合电子传输层为所述电子传输材料和所述紫外线吸收材料混合组成的复合电子传输层。紫外线吸收材料可以钝化电子传输材料的表面缺陷,当紫外线吸收材料与电子传输材料混合时,紫外线吸收材料可钝化复合电子传输层的内部缺陷。更进一步地,所述电子传输材料和所述紫外线吸收材料混合组成复合电子传输层时,所述复合电子传输层的厚度为2-170nm。在一实施例中,所述电子传输材料和所述紫外线吸收材料混合的摩尔比为(0.05-200):(0.03-90)。
进一步地,在本发明实施例提供的量子点发光二极管中,所述电子传输材料选自金属氧化物电子传输材料;金属氧化物电子传输材料(如二氧化钛、氧化锌等)具有优异的电子传输性能,但其也具有较强的光催化能力,即在光子的激发下能够起到光催化效应,当紫外光或含紫外光成分的光在金属氧化物电子传输材料的光催化作用下,对器件内部无机材料(包括量子点材料、氧化物纳米颗粒材料等)和/或有机材料(包括纳米颗粒的表面配体、有机传输层、有机修饰层等)造成破坏,从而产生对材料性质和器件性能不利影响的后果,如量子点表面配体脱落、量子点团聚、纳米颗粒表面缺陷增加、功能层界面缺陷增加、纳米颗粒能带变化、载流子传输势垒提高等。而本发明实施例中,在量子点发光层与金属氧化物电子传输材料组成的电子传输层之间的界面,和/或在金属氧化物电子传输材料组成的电子传输层内部,和/或在金属氧化物电子传输材料组成的电子传输层与阴极之间的界面,引入一种或多种该紫外线吸收材料,即所述金属氧化物电子传输材料和所述紫外线吸收材料混合组成的复合电子传输层,或所述金属氧化物电子传输材料组成的电子传输层的至少一表面设置所述紫外线吸收材料组成的界面修饰层;这样不仅可以钝化金属氧化物电子传输材料的表面缺陷,而且能够抑制紫外光对器件材料及器件性能造成影响,最终更加能够提高器件性能,以及延长器件寿命。
更进一步地,上述紫外线吸收材料选自肉桂酸、肉桂酸类衍生物、水杨酸、水杨酸类衍生物、苯甲酮、苯甲酮类衍生物、苯并三唑、苯并三唑类衍生物、氰基丙烯酸、氰基丙烯酸类衍生物、三嗪、三嗪类衍生物、苯甲酸、苯甲酸类衍生物、受阻胺类化合物、有机镍类化合物、苯基苯丙咪唑磺酸、对苯二亚甲基二樟脑磺酸、甲酚曲唑三硅氧烷、丁基甲氧基二苯甲酰基甲烷和4-甲基亚苄亚基樟脑中的至少一种。
在上述紫外线吸收材料中:所述肉桂酸类衍生物选自甲氧基肉桂酸辛酯、甲氧基肉桂酸异辛酯4-甲氧基肉桂酸-2-乙基己基酯、四双叔丁基季戊四醇羟基氧化肉桂酸酯、芥子酸和芥子酸衍生物(如包括芥子酸酯、芥子酰葡萄糖、芥子酰苹果酸、芥子酰胆碱中的一种或多种)中的至少一种。所述水杨酸类衍生物选自水杨酸辛酯、甲基水杨醇、3,5-二氯水杨酸苯酯、4,4’-亚异丙基双(苯酚水杨酸酯)、水杨酸对叔丁基苯酯和水杨酸对辛基苯酯中的至少一种。所述苯甲酮类衍生物选自2-羟基-4-正辛氧基二苯甲酮、2-羟基-4-甲氧基二苯甲酮、2,4-二羟基二苯甲酮、二苯甲酮-3、2-羟基-4-(2’-乙代己氧基)-二苯甲酮、2-羟基-4-十二烷基-二苯甲酮、2-羟基-4-甲氧基-2’-羧基二苯甲酮、2-羟基-4(2’-羟基-3’-丙烯酸氧基丙氧基)二苯甲酮、2-羟基-4-[2’-羟基-3’-(甲基丙烯酸氧基丙氧基)]二苯甲酮、2,2’-二羟基-4-正辛氧基二苯甲酮、2-羟基-4-甲氧基-4-氯代二苯甲酮、2-羟基-4-甲氧基-2’,4’-二氯二苯甲酮、1,3-双(3’-羟基-4’-苯甲酸基苯氧基)丙醇-2、2-羟基-4-十八烷氧基二苯甲酮、2,2’-二羟基-个甲氧基二苯甲酮、2,2’-二羟基-4,4’-二甲氧基二苯甲酮、2,2’,4,4’-四羟基二苯甲酮和2-羟基-4-丙烯酰氧乙氧基二苯甲酮中的至少一种。2-(2’-羟基-3’,5’-二叔苯基)-5-氯化苯并三唑、2-(2’-羟基-5’-甲基苯基)苯并三唑、2-(2’-羟基-5’-甲基苯基)苯并三唑、(2’-羟基-3’-叔丁基-5’-甲基苯基)-5-氯代苯并三唑、2-(2’-羟基-3’,5’-二叔丁基苯基)-5-氯代苯并三唑、甲基3-(3-(2H苯并三唑-2-基)5-叔丁基-4-羟基苯基)丙烯酸酯、2-(2’-羟基-3’,5’-二戊基苯基)苯并三唑、2-(2’-羟基-4’-正辛氧基苯基)苯并三唑、2-(2’-羟基-5’-特辛基苯基)苯并三唑、2-(2H-苯并三唑-2-基)-4-(叔丁基-6-仲丁基)苯酚、2-(2H-苯并三唑-2-基)-4,6-二(1-甲基-1-苯基乙基)苯酚、2,2’-亚甲基双(6-(2H-苯并三唑-2-基)-4-(1,1,3,3-四甲基丁基)苯酚)、2-(2H-苯并三唑-2-基)-6-(十二烷基)-4-甲基苯酚和亚甲基双-苯并三唑基四甲基丁基酚中的至少一种。所述氰基丙烯酸类衍生物选自2-氰基-3, 3’ -二苯基丙烯酸-2-乙基乙酯、2-氰基-3, 3’-二苯基丙烯酸乙酯和2-氰基-3,3-二苯基丙烯酸异辛酯中的至少一种。所述三嗪类衍生物选自2,4,6-三(2’正丁氧基苯基)-1,3,5-三嗪、乙基己基三嗪酮、二乙基己基丁酰胺基三嗪酮、三(2,2,6,6-四甲基-4-氧基-哌啶基)-1,3,5-三嗪、2-(4,6-二苯基-1,3,5-三嗪-2-基)-5-[(己基)氧基]-苯酚、2-[4,6-双(2,4-二甲苯基)-2-(1,3,5-三嗪基)]-5-辛氧基苯酚和双-乙基己氧苯酚甲氧苯基三嗪中的至少一种。所述苯甲酸类衍生物选自二乙基氨基羟基苯甲酰苯甲酸己酯、戊烷基二甲对胺基苯甲酸、辛-二甲基-对胺基苯甲酸、邻羟基苯甲酸苯酯、单苯甲酸间苯二酚酯、间苯二酚单苯甲酸酯、3,5-二叔丁基-4-羟基苯甲酸-2,4-二叔丁基苯酯和3,5-二叔丁基-4-羟基苯甲酸正十六酯中的至少一种。所述受阻胺类化合物选自乙基双(2,2,6,6-四甲基哌嗪酮)、4-苯甲酰氧基-2,2,6,6四甲基哌啶、2-(3,5-二叔丁基-4-羟基-苯苄)-2-丁基1,3-丙二酸二(1,2,2,6,6-五甲基-4-哌啶基)酯、四(2,2,6,6-四甲基-4-哌啶基)-1,2,3,4-丁烷四羧酸酯、双(2,2,6,6-四甲基哌啶基)癸二酸酯、聚-{[6-[(1,1,3,3,-四甲基丁基)-亚氨基]-1,3,5,-三嗪-2,4-二基][2-(2,2,6,6,-四甲基哌啶基)-次氨基-六亚甲基-[4-(2,2,6,6,-四甲基派啶基)-次氨基]]、丁二酸与4-羟基-2,2,6,6- 四甲基-1-哌啶醇的聚合体、[[6-[(1,l,3,3-四甲基丁基)胺基]均三嗪-2,4-二][[(2,2,6,6-四甲基-4-哌啶基)亚胺基]己甲叉[(2,2,6,6-四甲基-4-哌啶基)亚胺基]]的聚合体、双(或三)(2,2,6,6-四甲基-4-哌啶基)-双(或单)十三烷基-1,2,3,4-丁烷四羧酸酯、双(或三)(1,2,2,6,6-五甲基-4-哌啶基)-双(或单)十三烷基-l,2,3,4-丁烷四羧酸酯、4-(对甲苯磺酰胺基)-2,2,6,6-四甲基哌啶、双(1,2,2,6,6-五甲基4-哌啶基)-癸二酸酯、N-三乙酸(2,2,6,6-四甲基-4-哌啶基)酯、N-三乙酸(1,2,2,6,6-五甲基-4-哌啶基)酯、三(1,2,2,6,6-五甲基-4-哌啶基)-亚磷酸酯、聚-(4(2,2,6,6-四甲基哌啶基)亚胺基-六亚甲基[4-(2,2,6,6-四甲基哌啶基)亚胺基]-乙烯、双(1-辛氧基-2,2,6,6-四甲基-4-哌啶基)癸二酯和六甲基磷酰三胺中的至少一种。所述有机镍类化合物选自四正丁基二硫代氨基甲酸镍、2,2’-硫代双(对叔辛基苯酚)镍-正丁胺络合物、2,2’-硫代双(对叔辛基苯酚)镍和2,2’-硫代双(4-叔辛基酚氧基)镍中的至少一种。
其中,紫外线吸收材料优选自羟基肉桂酸类衍生物,具体地,选自羟基肉桂酸类衍生物中的芥子酸、芥子酸酯及其衍生物,包括但不限于芥子酰葡萄糖(Sinapoyl glucose)、芥子酰苹果酸(Sinapoyl malate)、芥子酰胆碱(Sinapoyl choline)中的一种或多种。具体地,所述芥子酸酯为一种芥子酸的脂衍生物,是一类拟南芥和其他十字花科植物中大量存在的羟基肉桂酸类衍生物,在植物中,其均匀地分布在叶面上,保护植物光合作用等生命过程不被过量的紫外线损害,是一种天然绿色环保的紫外线吸收材料,其能够有效地吸收紫外光,当吸收紫外光到达电子激发态后,会通过超快的光异构化方式转换回到基态,有效地避免紫外光成分对QLED器件内部的材料及器件性能造成不利影响。
如图1所示:芥子酸酯的化学结构中,一端含有丰富的羧基,能够很好地锚定在金属氧化物电子传输材料组成的电子传输层(如图1的氧化锌电子传输层)表面(该紫外线吸收材料设置在量子点发光层与电子传输层之间的界面,和/或电子传输层与阴极之间的界面),和/或在复合电子传输层内部与金属氧化物电子传输材料纳米颗粒相互连接(该紫外线吸收材料与金属氧化物电子传输材料混合组成复合电子传输层);另一端含有羟基和甲氧基,能够很好地锚定在量子点发光层表面(如果该紫外线吸收材料设置在量子点发光层与电子传输层之间的界面)或能够很好地锚定在阴极表面(如果该紫外线吸收材料设置在电子传输层与阴极之间的界面),从而有效地连接其上下的各层,并且有效地钝化电子传输层材料表面的缺陷态和悬挂键。此外,芥子酸酯具有共轭结构,连接上下功能层后,能够通过共轭结构有效地提高载流子的注入和传输效率。
在本发明实施例提供的量子点发光二极管中,电子传输层选自掺杂或非掺杂的金属氧化物、掺杂或非掺杂的金属硫化物中的一种或多种。其中,所述掺杂或非掺杂金属氧化物包括ZnO、TiO 2、SnO 2、Ta 2O 3、ZrO 2、NiO、TiLiO、ZnAlO、ZnMgO、ZnSnO、ZnLiO、InSnO中的一种或多种。所述掺杂或非掺杂金属硫化物包括CdS、ZnS、MoS、WS、CuS中的一种或多种。
所述量子点发光层的材料为II-VI族化合物、III-V族化合物、II-V族化合物、III-VI化合物、IV-VI族化合物、I-III-VI族化合物、II-IV-VI族化合物或IV族单质中的一种或多种。具体地,所述量子点发光层使用的半导体材料包括但不限于II-VI半导体的纳米晶,比如CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、HgS、HgSe、HgTe、PbS、PbSe、PbTe和其他二元、三元、四元的II-VI化合物;III-V族半导体的纳米晶,比如GaP、GaAs、InP、InAs和其他二元、三元、四元的III-V化合物;所述的用于电致发光的半导体材料还不限于II-V族化合物、III-VI化合物、IV-VI族化合物、I-III-VI族化合物、II-IV-VI族化合物、IV族单质等。其中,所述量子点发光层的材料还可以为掺杂或非掺杂的无机钙钛矿型半导体、和/或有机-无机杂化钙钛矿型半导体;具体地,所述的无机钙钛矿型半导体的结构通式为AMX 3,其中A为Cs +离子,M为二价金属阳离子,包括但不限于Pb 2+、Sn 2+、Cu 2+、Ni 2+、Cd 2+、Cr 2+、Mn 2+、Co 2+、Fe 2+、Ge 2+、Yb 2+、Eu 2+,X为卤素阴离子,包括但不限于Cl -、Br -、I -;所述的有机-无机杂化钙钛矿型半导体的结构通式为BMX 3,其中B为有机胺阳离子,包括但不限于CH 3(CH 2) n-2NH 3 + (n≥2)或NH 3(CH 2) nNH 3 2+ (n≥2)。当n=2时,无机金属卤化物八面体MX 6 4-通过共顶的方式连接,金属阳离子M位于卤素八面体的体心,有机胺阳离子B填充在八面体间的空隙内,形成无限延伸的三维结构;当 n>2时,以共顶的方式连接的无机金属卤化物八面体MX 6 4-在二维方向延伸形成层状结构,层间插入有机胺阳离子双分子层(质子化单胺)或有机胺阳离子单分子层(质子化双胺),有机层与无机层相互交叠形成稳定的二维层状结构;M为二价金属阳离子,包括但不限于Pb 2+、Sn 2+、Cu 2+、Ni 2+、Cd 2+、Cr 2+、Mn 2+、Co 2+、Fe 2+、Ge 2+、Yb 2+、Eu 2+;X为卤素阴离子,包括但不限于Cl -、Br -、I。
所述量子点发光二极管可以设置在衬底上,其中,所述衬底为刚性衬底或柔性衬底,其中,所述的刚性衬底包括但不限于玻璃、金属箔片中的一种或多种;所述的柔性衬底包括但不限于聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸乙二醇酯(PEN)、聚醚醚酮(PEEK)、聚苯乙烯(PS)、聚醚砜(PES)、聚碳酸酯(PC)、聚芳基酸酯(PAT)、聚芳酯(PAR)、聚酰亚胺(PI)、聚氯乙烯(PV)、聚乙烯(PE)、聚乙烯吡咯烷酮(PVP)、纺织纤维中的一种或多种。所述阳极和阴极包括但不限于金属材料、碳材料、金属氧化物中的一种或多种。其中,所述金属材料包括Al、Ag、Cu、Mo、Au、Ba、Ca、Mg中的一种或多种。所述碳材料包括石墨、碳纳米管、石墨烯、碳纤维中的一种或多种。所述金属氧化物可以是掺杂或非掺杂金属氧化物,包括ITO、FTO、ATO、AZO、GZO、IZO、MZO、AMO中的一种或多种,也包括掺杂或非掺杂透明金属氧化物之间夹着金属的复合电极,其中,所述复合电极包括AZO/Ag/AZO、AZO/Al/AZO、ITO/Ag/ITO、ITO/Al/ITO、ZnO/Ag/ZnO、ZnO/Al/ZnO、TiO 2/Ag/TiO 2、TiO 2/Al/TiO 2、ZnS/Ag/ZnS、ZnS/Al/ZnS、TiO 2/Ag/TiO 2、TiO 2/Al/TiO 2中的一种或多种。特别地,选用不同材料的阳极和阴极,可以搭配构建具有不同发光特点的量子点发光二极管,包括顶发射器件、底发射器件、全透明器件。
另外,在复合电子传输层与阴极之间,可以设置电子注入层,在复合电子传输层与量子点发光层之间,可以设置空穴阻挡层。而在阳极与量子点发光层之间可以设置空穴功能层(如空穴传输层,或层叠的空穴注入层和空穴传输层),空穴功能层与量子点发光层之间还可以设置电子阻挡层。其中,所述空穴注入层选自PEDOT:PSS、CuPc、F4-TCNQ、HATCN、过渡金属氧化物、过渡金属硫系化合物中的一种或多种。其中,所述过渡金属氧化物包括NiOx、MoOx、WOx、CrOx、CuO中的一种或多种。所述金属硫系化合物包括MoSx、MoSex、WSx、WSex、CuS中的一种或多种。所述空穴传输层选自聚(9,9-二辛基芴-CO-N-(4-丁基苯基)二苯胺)、聚乙烯咔唑、聚(N, N'双(4-丁基苯基)-N,N'-双(苯基)联苯胺)、聚(9,9-二辛基芴-共-双-N,N-苯基-1,4-苯二胺)、 4,4’,4’’-三(咔唑-9-基)三苯胺、 4,4'-二(9-咔唑)联苯、 N,N’-二苯基-N,N’-二(3-甲基苯基)-1,1’-联苯-4,4’-二胺、15 N,N’-二苯基-N,N’-(1-萘基)-1,1’-联苯-4,4’-二胺、石墨烯、C60中的至少一种。作为另一个实施例,所述空穴传输层选自具有空穴传输能力的无机材料,包括但不限于NiOx、MoOx、WOx、CrOx、CuO、MoSx、MoSex、WSx、WSex、CuS中的至少一种。
本发明另一方面提供一种量子点发光二极管的制备方法,包括如下步骤:
在阴极或量子点发光层上制备复合电子传输层,所述复合电子传输层含有电子传输材料和紫外线吸收材料。
本发明实施例提供的量子点发光二极管中的阴极与所述量子点发光层之间设置有复合电子传输层,该复合电子传输层含有电子传输材料和紫外线吸收材料,该紫外线吸收材料可以钝化电子传输材料的表面缺陷,从而避免量子点发光二极管的发光淬灭现象,进而提高器件的发光性能。
上述制备方法中:当基板为阳极基板时,此时阳极基板表面设置有量子点发光层,这样,在量子点发光层上制备含有电子传输材料和紫外线吸收材料的复合电子传输层,后续再在所述复合电子传输层上制备阴极(得到正型结构量子点发光二极管)。当基板为阴极基板时,此时在阴极基板上制备含有电子传输材料和紫外线吸收材料的复合电子传输层,后续再在所述复合电子传输层上制备量子点发光层,再在量子点发光层上制备阳极(得到反型结构量子点发光二极管)。
进一步地,如图2所示,所述在阴极或量子点发光层上制备复合电子传输层的步骤包括:
S01:将所述电子传输材料和紫外线吸收材料混合,得到复合材料;
S02:将所述复合材料沉积在所述阴极或量子点发光层上,得到由所述电子传输材料和所述紫外线吸收材料混合组成的所述复合电子传输层。
这样,最终得到的量子点发光二极管中,复合电子传输层为所述电子传输材料和所述紫外线吸收材料混合组成的复合电子传输层。
具体地,将所述复合材料沉积在所述阴极或量子点发光层上,得到由所述电子传输材料和所述紫外线吸收材料混合组成的所述复合电子传输层的步骤包括:将所述复合材料溶解在溶剂中,配制成混合溶液,然后将所述混合溶液沉积在在所述阴极或量子点发光层上,进行退火处理。
进一步地,如图3所示,所述在阴极或量子点发光层上制备复合电子传输层的步骤包括:
T011:将所述电子传输材料沉积在所述阴极或量子点发光层上,得到电子传输层;
T012:将所述紫外线吸收材料沉积到所述电子传输层上,得到界面修饰层;
其中,所述界面修饰层和所述电子传输层组成所述复合电子传输层。
或者,如图4所示,所述在阴极或量子点发光层上制备复合电子传输层的步骤包括:
T021:将所述紫外线吸收材料沉积到所述阴极或量子点发光层上,得到界面修饰层;
T022:将所述电子传输材料沉积在所述界面修饰层上,得到电子传输层;
其中,所述界面修饰层和所述电子传输层组成所述复合电子传输层。
或者,在所述阴极或量子点发光层上依次层叠制备第一界面修饰层、电子传输层和第二界面修饰层。这样,最终得到的量子点发光二极管中,所述复合电子传输层包括所述电子传输材料组成的电子传输层和所述紫外线吸收材料组成的界面修饰层,且所述界面修饰层设置在所述电子传输层的至少一面上。
其中,在步骤T012中,将所述紫外线吸收材料沉积到所述电子传输层上,得到界面修饰层的步骤包括:将所述紫外线吸收材料溶解在溶剂中,得到含紫外线吸收材料的溶液,然后将所述含紫外线吸收材料的溶液沉积在所述电子传输层上,进行退火处理。
在步骤T021中,将所述紫外线吸收材料沉积到所述阴极或量子点发光层上,得到界面修饰层的步骤包括:将所述紫外线吸收材料溶解在溶剂中,得到含紫外线吸收材料的溶液,然后将所述含紫外线吸收材料的溶液沉积在所述阴极或量子点发光层上,进行退火处理。
上述制备方法得到的量子点发光二极管,其封装方式可以为部分封装、全封装、或不封装,本发明实施例中没有严格限制。
对于由界面修饰层和电子传输层组成复合电子传输层,包括如下四种情况:
具体地,在一优选实施例中,一种正型结构量子点发光二极管的制备方法,包括以下步骤:
步骤S1:在衬底上制备阳极;
步骤S2:在阳极上制备空穴注入层;
步骤S3:在空穴注入层上制备空穴传输层;
步骤S4:在空穴传输层上制备量子点发光层;
步骤S5:在量子点发光层上引入如上所述紫外线吸收材料组成的界面修饰层;
步骤S6:在界面修饰层上制备电子传输层;
步骤S7:在电子传输层上制备阴极,得到量子点发光二极管。
具体地,在一优选实施例中,一种正型结构量子点发光二极管的制备方法,包括以下步骤:
步骤S1:在衬底上制备阳极;
步骤S2:在阳极上制备空穴注入层;
步骤S3:在空穴注入层上制备空穴传输层;
步骤S4:在空穴传输层上制备量子点发光层;
步骤S5:在量子点发光层上制备电子传输层;
步骤S6:在电子传输层上引入如上所述紫外线吸收材料组成的界面修饰层;
步骤S7:在界面修饰层上制备阴极,得到量子点发光二极管。
具体地,在一优选实施例中,一种反型结构量子点发光二极管的制备方法,包括以下步骤:
步骤S1:在衬底上制备阴极;
步骤S2:在阴极上制备电子传输层;
步骤S3:在电子传输层上引入如上所述紫外线吸收材料组成的界面修饰层;
步骤S4:在界面修饰层上制备量子点发光层;
步骤S5:在量子点发光层上制备空穴传输层;
步骤S6:在空穴传输层上制备空穴注入层;
步骤S7:在空穴注入层上制备阳极,得到量子点发光二极管;
具体地,在一优选实施例中,一种反型结构量子点发光二极管的制备方法,包括以下步骤:
步骤S1:在衬底上制备阴极;
步骤S2:在阴极上引入如上所述紫外线吸收材料组成的界面修饰层;;
步骤S3:在界面修饰层上制备电子传输层;
步骤S4:在电子传输层上制备量子点发光层;
步骤S5:在量子点发光层上制备空穴传输层;
步骤S6:在空穴传输层上制备空穴注入层;
步骤S7:在空穴注入层上制备阳极,得到量子点发光二极管;
其中,以上所述的四种量子点发光二极管的制备方法中,所述紫外线吸收材料制成的界面修饰层采用溶液法制备,包括但不限于旋涂法、印刷法、刮涂法、浸渍提拉法、浸泡法、喷涂法、滚涂法、浇铸法、狭缝式涂布法、条状涂布法。具体地,首先将紫外线吸收材料溶解在溶剂中,配制成浓度为0.03-120 mmol/L(更优选地,为0.05-30mmol/L)的含紫外线吸收材料的溶液,然后通过溶液法沉积在所述制备方法中的特定功能层上,然后于25-120℃(更优选地,为60~100℃)退火0-60min,得到界面修饰层。其中,所述界面修饰层的厚度为2-90nm。所述的溶剂为有机溶剂,包括但不限于饱和烃、不饱和烃、芳香烃、醇类溶剂、醚类溶剂、酮类溶剂、腈类溶剂、酯类溶剂、以及它们的衍生物中的一种或者是多种组成的混合有机溶剂。特别地,所述的溶剂优选为醇类溶剂,包括但不限于一元醇、多元醇和芳香醇中的一种或多种,具体包括但不限于甲醇、乙醇、乙二醇、丙醇、丙二醇、丙三醇、异丙醇、丁醇、戊醇、己醇、环己醇、正丁醇、苯甲醇、苯乙醇中的一种或多种。
其中,以上四种量子点发光二极管的制备方法,除了所述紫外线吸收材料组成的界面修饰层外,其他各层的制备方法可以是化学法或物理法,其中化学法包括但不限于化学气相沉积法、连续离子层吸附与反应法、阳极氧化法、电解沉积法、共沉淀法中的一种或多种;物理法包括但不限于物理镀膜法或溶液法,其中溶液法包括但不限于旋涂法、印刷法、刮涂法、浸渍提拉法、浸泡法、喷涂法、滚涂法、浇铸法、狭缝式涂布法、条状涂布法;物理镀膜法包括但不限于热蒸发镀膜法、电子束蒸发镀膜法、磁控溅射法、多弧离子镀膜法、物理气相沉积法、原子层沉积法、脉冲激光沉积法中的一种或多种。
对于由电子传输材料与紫外线吸收材料混合组成的复合电子传输层,包括如下两种情况:
具体地,在另一优选实施例中,一种正型结构量子点发光二极管的制备方法,包括以下步骤:
步骤S1:在衬底上制备阳极;
步骤S2:在阳极上制备空穴注入层;
步骤S3:在空穴注入层上制备空穴传输层;
步骤S4:在空穴传输层上制备量子点发光层;
步骤S5:提前将电子传输材料与如上所述的紫外线吸收材料混合均匀,配制成混合溶液,然后将其沉积在量子点发光层上,形成一层电子传输材料与紫外线吸收材料共同混合组成的复合电子传输层;
步骤S6:在步骤S5所述的复合电子传输层上制备阴极,得到量子点发光二极管。
具体地,在另一优选实施例中,一种反型结构量子点发光二极管的制备方法,包括以下步骤:
步骤S1:在衬底上制备阴极;
步骤S2:提前将电子传输材料与如上所述的紫外线吸收材料混合均匀,配制成混合溶液,然后将其沉积在阴极上,形成一层电子传输材料与紫外线吸收材料共同混合组成的复合电子传输层;
步骤S3:在步骤S2所述的复合电子传输层上制备量子点发光层;
步骤S4:在量子点发光层上制备空穴传输层;
步骤S5:在空穴传输层上制备空穴注入层;
步骤S6:空穴注入层上制备阳极,得到量子点发光二极管。
其中,以上两种量子点发光二极管的制备方法,所述复合电子传输层的制备方法具体为,首先将如上所述的电子传输材料与如上所述的紫外线吸收材料混合均匀,溶解在溶剂中,配制成混合溶液,然后采用溶液法将其沉积在上述制备方法中的特定功能层上,形成一层由电子传输材料与紫外线吸收材料共同组成的复合电子传输层。所述复合电子传输层采用溶液法制备,包括但不限于旋涂法、印刷法、刮涂法、浸渍提拉法、浸泡法、喷涂法、滚涂法、浇铸法、狭缝式涂布法、条状涂布法。所述混合溶液中,电子传输材料的浓度为0.05-200 mol/L,紫外线吸收材料的浓度为0.03-90 mmol/L(更优选地,为0.05-23 mmol/L)。特别地,当所述复合电子传输层制备完成后,需要于25-120℃(更优选地,为30-100℃)退火0-60min。优选地,所述的复合电子传输层的厚度为2~170 nm。溶剂为有机溶剂,包括但不限于饱和烃、不饱和烃、芳香烃、醇类溶剂、醚类溶剂、酮类溶剂、腈类溶剂、酯类溶剂、以及它们的衍生物中的一种或者是多种组成的混合有机溶剂。特别地,溶剂优选为醇类溶剂,包括但不限于一元醇、多元醇和芳香醇中的一种或多种,具体包括但不限于甲醇、乙醇、乙二醇、丙醇、丙二醇、丙三醇、异丙醇、丁醇、戊醇、己醇、环己醇、正丁醇、苯甲醇、苯乙醇中的一种或多种。
其中,以上两种量子点发光二极管的制备方法,除了所述的复合电子传输层外,其他各层的制备方法可以是化学法或物理法,其中化学法包括但不限于化学气相沉积法、连续离子层吸附与反应法、阳极氧化法、电解沉积法、共沉淀法中的一种或多种;物理法包括但不限于物理镀膜法或溶液法,其中溶液法包括但不限于旋涂法、印刷法、刮涂法、浸渍提拉法、浸泡法、喷涂法、滚涂法、浇铸法、狭缝式涂布法、条状涂布法;物理镀膜法包括但不限于热蒸发镀膜法、电子束蒸发镀膜法、磁控溅射法、多弧离子镀膜法、物理气相沉积法、原子层沉积法、脉冲激光沉积法中的一种或多种。
最后,本发明实施例还提供一种印刷量子点显示屏,包括本发明实施例的上述量子点发光二极管。
本发明先后进行过多次试验,现举一部分试验结果作为参考对发明进行进一步详细描述,下面结合具体实施例进行详细说明。
实施例1
一种量子点发光二极管,其制备过程如下:
首先将芥子酰苹果酸以浓度为0.2 mmol/L溶解在甲醇中,得到芥子酰苹果酸溶液,然后进行如下流程步骤。
A.在ITO导电玻璃上旋涂一层PEDOT:PSS层;
B.在PEDOT:PSS层上旋涂一层TFB层;
C.在TFB层上旋涂一层CdSe/ZnS量子点发光层;
D.将上述配制的芥子酰苹果酸溶液通过旋涂法沉积在CdSe/ZnS量子点发光层上,其中旋涂条件为3000rpm,旋涂结束后,将薄膜于80℃加热退火30min,得到芥子酰苹果酸层;
E.在芥子酰苹果酸层上旋涂一层ZnO电子传输层;
F.在ZnO电子传输层上蒸镀一层Al阴极层,得到量子点发光二极管。
实施例2
一种量子点发光二极管,其制备过程如下:
首先将芥子酰苹果酸以浓度为0.5 mmol/L溶解在乙醇中,得到芥子酰苹果酸溶液,然后进行如下流程步骤。
A.在ITO导电玻璃上旋涂一层PEDOT:PSS层;
B.在PEDOT:PSS层上旋涂一层TFB层;
C.在TFB层上旋涂一层CdSe/ZnS量子点发光层;
D.在CdSe/ZnS量子点发光层上旋涂一层ZnO电子传输层;
E.将上述配制的芥子酰苹果酸溶液通过旋涂法沉积在ZnO电子传输层上,其中旋涂条件为3000rpm,旋涂结束后,将薄膜于80℃加热退火30min,得到芥子酰苹果酸层;
F.在芥子酰苹果酸层上蒸镀一层Al阴极层,得到量子点发光二极管。
实施例3
一种量子点发光二极管,其制备过程如下:
首先将芥子酰苹果酸以浓度为0.5 mmol/L溶解在乙醇中,得到芥子酰苹果酸溶液,然后进行如下流程步骤。
A.在ITO导电玻璃上旋涂一层ZnO电子传输层;
B.将上述配制的芥子酰苹果酸溶液通过旋涂法沉积在ZnO电子传输层上,其中旋涂条件为3000rpm,旋涂结束后,将薄膜于80℃加热退火30min,得到芥子酰苹果酸层;
C.在芥子酰苹果酸层上旋涂一层CdSe/ZnS量子点发光层;
D.      在CdSe/ZnS量子点发光层上蒸镀一层TCTA层;
E.在TCTA层上整个度一层NPB层;
F.在NPB层上蒸镀一层HATCN层;
G.在HATCN层上蒸镀一层Al阴极层,得到量子点发光二极管。
实施例4
一种量子点发光二极管,其制备过程如下:
首先将芥子酰苹果酸以浓度为0.8 mmol/L溶解在乙醇中,得到芥子酰苹果酸溶液,然后进行如下流程步骤。
A.将上述配制的芥子酰苹果酸溶液通过旋涂法沉积在ITO导电玻璃上,其中旋涂条件为1500rpm,旋涂结束后,将薄膜于100℃加热退火30min,得到芥子酰苹果酸层;
B.在芥子酰苹果酸层上旋涂一层ZnO电子传输层;
C.在ZnO电子传输层上旋涂一层CdSe/ZnS量子点发光层;
D.在CdSe/ZnS量子点发光层上蒸镀一层TCTA层;
E.在TCTA层上整个度一层NPB层;
F.在NPB层上蒸镀一层HATCN层;
G.在HATCN层上蒸镀一层Al阴极层,得到量子点发光二极管。
实施例5
一种量子点发光二极管,其制备过程如下:
首先将氧化锌和芥子酰苹果酸溶解在乙醇中,形成氧化锌和芥子酰苹果酸的混合溶液,其中,氧化锌的浓度为1 mmol/L,芥子酰苹果酸的浓度为0.2 mmol/L,然后进行如下流程步骤。
A.在ITO导电玻璃上旋涂一层PEDOT:PSS层;
B.在PEDOT:PSS层上旋涂一层TFB层;
C.在TFB层上旋涂一层CdSe/ZnS量子点发光层;
D.将上述配制的氧化锌和芥子酰苹果酸的混合溶液通过旋涂法沉积在CdSe/ZnS量子点发光层上,其中旋涂条件为3000rpm,旋涂结束后,将薄膜于80℃加热退火30min,得到复合电子传输层;
E.在复合电子传输层上蒸镀一层Al阴极层,得到量子点发光二极管。
实施例6
一种量子点发光二极管,其制备过程如下:
首先将氧化锌和芥子酰苹果酸溶解在乙醇中,形成氧化锌和芥子酰苹果酸的混合溶液,其中,氧化锌的浓度为1 mmol/L,芥子酰苹果酸的浓度为0.2 mmol/L,然后进行如下流程步骤。
A.将上述配制的氧化锌和芥子酰苹果酸的混合溶液通过旋涂法沉积在ITO导电玻璃上,其中旋涂条件为1500rpm,旋涂结束后,将薄膜于100℃加热退火30min,得到复合电子传输层;
B.在复合电子传输层上旋涂一层CdSe/ZnS量子点发光层;
C.在CdSe/ZnS量子点发光层上蒸镀一层TCTA层;
D.在TCTA层上整个度一层NPB层;
E.在NPB层上蒸镀一层HATCN层;
F. 在HATCN层上蒸镀一层Al阴极层,得到量子点发光二极管。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (20)

  1. 一种量子点发光二极管,包括阳极、阴极以及设置在所述阳极和所述阴极之间的量子点发光层,其特征在于,所述阴极与所述量子点发光层之间设置有复合电子传输层,所述复合电子传输层含有电子传输材料和紫外线吸收材料。
  2. 如权利要求1所述的量子点发光二极管,其特征在于,所述复合电子传输层包括所述电子传输材料组成的电子传输层和所述紫外线吸收材料组成的界面修饰层;其中,
    所述界面修饰层位于所述电子传输层和所述阴极之间;或者,所述界面修饰层位于所述电子传输层和所述量子点发光层之间。
  3. 如权利要求1所述的量子点发光二极管,其特征在于,所述复合电子传输层包括层叠设置的第一界面修饰层、电子传输层和第二界面修饰层,所述电子传输层由所述电子传输材料组成,所述第一界面修饰层和第二界面修饰层由所述紫外线吸收材料组成;其中,
    所述第一界面修饰层位于所述电子传输层和所述阴极之间,所述第二界面修饰层位于所述电子传输层和所述量子点发光层之间。
  4. 如权利要求2所述的量子点发光二极管,其特征在于,所述界面修饰层的厚度为2-90nm。
  5. 如权利要求3所述的量子点发光二极管,其特征在于,所述第一界面修饰层的厚度为2-90nm;和/或,
    所述第二界面修饰层的厚度为2-90nm。
  6. 如权利要求1所述的量子点发光二极管,其特征在于,所述复合电子传输层由所述电子传输材料和所述紫外线吸收材料混合组成。
  7. 如权利要求6所述的量子点发光二极管,其特征在于,所述复合电子传输层的厚度为2-170nm;和/或,
    所述电子传输材料和所述紫外线吸收材料混合的摩尔比为(0.05-200):(0.03-90)。
  8. 如权利要求1所述的量子点发光二极管,其特征在于,所述电子传输材料选自金属氧化物电子传输材料;和/或
    所述紫外线吸收材料选自肉桂酸、肉桂酸类衍生物、水杨酸、水杨酸类衍生物、苯甲酮、苯甲酮类衍生物、苯并三唑、苯并三唑类衍生物、氰基丙烯酸、氰基丙烯酸类衍生物、三嗪、三嗪类衍生物、苯甲酸、苯甲酸类衍生物、受阻胺类化合物、有机镍类化合物、苯基苯丙咪唑磺酸、对苯二亚甲基二樟脑磺酸、甲酚曲唑三硅氧烷、丁基甲氧基二苯甲酰基甲烷和4-甲基亚苄亚基樟脑中的至少一种。
  9. 如权利要求8所述的量子点发光二极管,其特征在于,所述肉桂酸类衍生物选自甲氧基肉桂酸辛酯、甲氧基肉桂酸异辛酯4-甲氧基肉桂酸-2-乙基己基酯、四双叔丁基季戊四醇羟基氧化肉桂酸酯、芥子酸和芥子酸衍生物中的至少一种;和/或
    所述水杨酸类衍生物选自水杨酸辛酯、甲基水杨醇、3,5-二氯水杨酸苯酯、4,4’-亚异丙基双(苯酚水杨酸酯)、水杨酸对叔丁基苯酯和水杨酸对辛基苯酯中的至少一种;和/或
    所述苯甲酮类衍生物选自2-羟基-4-正辛氧基二苯甲酮、2-羟基-4-甲氧基二苯甲酮、2,4-二羟基二苯甲酮、二苯甲酮-3、2-羟基-4-(2’-乙代己氧基)-二苯甲酮、2-羟基-4-十二烷基-二苯甲酮、2-羟基-4-甲氧基-2’-羧基二苯甲酮、2-羟基-4(2’-羟基-3’-丙烯酸氧基丙氧基)二苯甲酮、2-羟基-4-[2’-羟基-3’-(甲基丙烯酸氧基丙氧基)]二苯甲酮、2,2’-二羟基-4-正辛氧基二苯甲酮、2-羟基-4-甲氧基-4-氯代二苯甲酮、2-羟基-4-甲氧基-2’,4’-二氯二苯甲酮、1,3-双(3’-羟基-4’-苯甲酸基苯氧基)丙醇-2、2-羟基-4-十八烷氧基二苯甲酮、2,2’-二羟基-个甲氧基二苯甲酮、2,2’-二羟基-4,4’-二甲氧基二苯甲酮、2,2’,4,4’-四羟基二苯甲酮和2-羟基-4-丙烯酰氧乙氧基二苯甲酮中的至少一种;和/或
    所述苯并三唑类衍生物选自2-(2’-羟基-3’,5’-二叔苯基)-5-氯化苯并三唑、2-(2’-羟基-5’-甲基苯基)苯并三唑、2-(2’-羟基-5’-甲基苯基)苯并三唑、(2’-羟基-3’-叔丁基-5’-甲基苯基)-5-氯代苯并三唑、2-(2’-羟基-3’,5’-二叔丁基苯基)-5-氯代苯并三唑、甲基3-(3-(2H苯并三唑-2-基)5-叔丁基-4-羟基苯基)丙烯酸酯、2-(2’-羟基-3’,5’-二戊基苯基)苯并三唑、2-(2’-羟基-4’-正辛氧基苯基)苯并三唑、2-(2’-羟基-5’-特辛基苯基)苯并三唑、2-(2H-苯并三唑-2-基)-4-(叔丁基-6-仲丁基)苯酚、2-(2H-苯并三唑-2-基)-4,6-二(1-甲基-1-苯基乙基)苯酚、2,2’-亚甲基双(6-(2H-苯并三唑-2-基)-4-(1,1,3,3-四甲基丁基)苯酚)、2-(2H-苯并三唑-2-基)-6-(十二烷基)-4-甲基苯酚和亚甲基双-苯并三唑基四甲基丁基酚中的至少一种;和/或
    所述氰基丙烯酸类衍生物选自2-氰基-3, 3’ -二苯基丙烯酸-2-乙基乙酯、2-氰基-3, 3’-二苯基丙烯酸乙酯和2-氰基-3,3-二苯基丙烯酸异辛酯中的至少一种;和/或
    所述三嗪类衍生物选自2,4,6-三(2’正丁氧基苯基)-1,3,5-三嗪、乙基己基三嗪酮、二乙基己基丁酰胺基三嗪酮、三(2,2,6,6-四甲基-4-氧基-哌啶基)-1,3,5-三嗪、2-(4,6-二苯基-1,3,5-三嗪-2-基)-5-[(己基)氧基]-苯酚、2-[4,6-双(2,4-二甲苯基)-2-(1,3,5-三嗪基)]-5-辛氧基苯酚和双-乙基己氧苯酚甲氧苯基三嗪中的至少一种;和/或
    所述苯甲酸类衍生物选自二乙基氨基羟基苯甲酰苯甲酸己酯、戊烷基二甲对胺基苯甲酸、辛-二甲基-对胺基苯甲酸、邻羟基苯甲酸苯酯、单苯甲酸间苯二酚酯、间苯二酚单苯甲酸酯、3,5-二叔丁基-4-羟基苯甲酸-2,4-二叔丁基苯酯和3,5-二叔丁基-4-羟基苯甲酸正十六酯中的至少一种;和/或
    所述受阻胺类化合物选自乙基双(2,2,6,6-四甲基哌嗪酮)、4-苯甲酰氧基-2,2,6,6四甲基哌啶、2-(3,5-二叔丁基-4-羟基-苯苄)-2-丁基1,3-丙二酸二(1,2,2,6,6-五甲基-4-哌啶基)酯、四(2,2,6,6-四甲基-4-哌啶基)-1,2,3,4-丁烷四羧酸酯、双(2,2,6,6-四甲基哌啶基)癸二酸酯、聚-{[6-[(1,1,3,3,-四甲基丁基)-亚氨基]-1,3,5,-三嗪-2,4-二基][2-(2,2,6,6,-四甲基哌啶基)-次氨基-六亚甲基-[4-(2,2,6,6,-四甲基派啶基)-次氨基]]、丁二酸与4-羟基-2,2,6,6- 四甲基-1-哌啶醇的聚合体、[[6-[(1,l,3,3-四甲基丁基)胺基]均三嗪-2,4-二][[(2,2,6,6-四甲基-4-哌啶基)亚胺基]己甲叉[(2,2,6,6-四甲基-4-哌啶基)亚胺基]]的聚合体、双(或三)(2,2,6,6-四甲基-4-哌啶基)-双(或单)十三烷基-1,2,3,4-丁烷四羧酸酯、双(或三)(1,2,2,6,6-五甲基-4-哌啶基)-双(或单)十三烷基-l,2,3,4-丁烷四羧酸酯、4-(对甲苯磺酰胺基)-2,2,6,6-四甲基哌啶、双(1,2,2,6,6-五甲基4-哌啶基)-癸二酸酯、N-三乙酸(2,2,6,6-四甲基-4-哌啶基)酯、N-三乙酸(1,2,2,6,6-五甲基-4-哌啶基)酯、三(1,2,2,6,6-五甲基-4-哌啶基)-亚磷酸酯、聚-(4(2,2,6,6-四甲基哌啶基)亚胺基-六亚甲基[4-(2,2,6,6-四甲基哌啶基)亚胺基]-乙烯、双(1-辛氧基-2,2,6,6-四甲基-4-哌啶基)癸二酯和六甲基磷酰三胺中的至少一种;和/或
    所述有机镍类化合物选自四正丁基二硫代氨基甲酸镍、2,2’-硫代双(对叔辛基苯酚)镍-正丁胺络合物、2,2’-硫代双(对叔辛基苯酚)镍和2,2’-硫代双(4-叔辛基酚氧基)镍中的至少一种。
  10. 如权利要求8所述的量子点发光二极管,其特征在于,所述金属氧化物电子传输材料选自ZnO、TiO 2、SnO 2、Ta 2O 3、ZrO 2、NiO、TiLiO、ZnAlO、ZnMgO、ZnSnO、ZnLiO和InSnO中的至少一种。
  11. 如权利要求1所述的量子点发光二极管,其特征在于,所述阴极与所述复合电子传输层之间设置有电子注入层;和/或,
    所述阳极与所述量子点发光层之间设置有空穴功能层。
  12. 一种量子点发光二极管的制备方法,其特征在于,包括如下步骤:
    在阴极或量子点发光层上制备复合电子传输层,所述复合电子传输层含有电子传输材料和紫外线吸收材料。
  13. 如权利要求12所述的制备方法,其特征在于,所述在阴极或量子点发光层上制备复合电子传输层的步骤包括:
    将所述电子传输材料和紫外线吸收材料混合,得到复合材料;
    将所述复合材料沉积在所述阴极或量子点发光层上,得到由所述电子传输材料和所述紫外线吸收材料混合组成的所述复合电子传输层。
  14. 如权利要求13所述的制备方法,其特征在于,将所述复合材料沉积在所述阴极或量子点发光层上,得到由所述电子传输材料和所述紫外线吸收材料混合组成的所述复合电子传输层的步骤包括:
    将所述复合材料溶解在溶剂中,配制成混合溶液,然后将所述混合溶液沉积在在所述阴极或量子点发光层上,进行退火处理。
  15. 如权利要求14所述的制备方法,其特征在于,所述混合溶液中,电子传输材料的浓度为0.05-200 mol/L;和/或,
    紫外线吸收材料的浓度为0.03-90 mmol/L。
  16. 如权利要求14所述的制备方法,其特征在于,所述退火处理的温度为25-120℃。
  17. 如权利要求12所述的制备方法,其特征在于,所述在阴极或量子点发光层上制备复合电子传输层的步骤包括:
    将所述电子传输材料沉积在所述阴极或量子点发光层上,得到电子传输层;
    将所述紫外线吸收材料沉积到所述电子传输层上,得到界面修饰层;
    其中,所述界面修饰层和所述电子传输层组成所述复合电子传输层。
  18. 如权利要求17所述的制备方法,其特征在于,将所述紫外线吸收材料沉积到所述电子传输层上,得到界面修饰层的步骤包括:
    将所述紫外线吸收材料溶解在溶剂中,得到含紫外线吸收材料的溶液,然后将所述含紫外线吸收材料的溶液沉积在所述电子传输层上,进行退火处理。
  19. 如权利要求12所述的制备方法,其特征在于,所述在阴极或量子点发光层上制备复合电子传输层的步骤包括:
    将所述紫外线吸收材料沉积到所述阴极或量子点发光层上,得到界面修饰层;
    将所述电子传输材料沉积在所述界面修饰层上,得到电子传输层;
    其中,所述界面修饰层和所述电子传输层组成所述复合电子传输层。
  20. 如权利要求19所述的制备方法,其特征在于,将所述紫外线吸收材料沉积到所述阴极或量子点发光层上,得到界面修饰层的步骤包括:
    将所述紫外线吸收材料溶解在溶剂中,得到含紫外线吸收材料的溶液,然后将所述含紫外线吸收材料的溶液沉积在所述阴极或量子点发光层上,进行退火处理。
PCT/CN2019/096499 2018-07-18 2019-07-18 量子点发光二极管及其制备方法 WO2020015697A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/772,762 US11485908B2 (en) 2018-07-18 2019-07-18 Quantum dot light-emitting diode and method for fabricating the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810804235.4A CN110739404B (zh) 2018-07-18 2018-07-18 量子点发光二极管及其制备方法
CN201810804235.4 2018-07-18

Publications (1)

Publication Number Publication Date
WO2020015697A1 true WO2020015697A1 (zh) 2020-01-23

Family

ID=69164117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096499 WO2020015697A1 (zh) 2018-07-18 2019-07-18 量子点发光二极管及其制备方法

Country Status (3)

Country Link
US (1) US11485908B2 (zh)
CN (1) CN110739404B (zh)
WO (1) WO2020015697A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112094642A (zh) * 2020-10-15 2020-12-18 合肥工业大学 一种含有红、绿二元色的黄色碳(氮)量子点的制备方法、产物及其应用
EP4131447A4 (en) * 2020-11-18 2023-11-08 TCL Technology Group Corporation LIGHT-EMITTING DIODE WITH QUANTUM DOTS AND PREPARATION METHOD THEREFOR

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113130782B (zh) * 2019-12-31 2022-10-11 Tcl科技集团股份有限公司 量子点发光二极管及其制备方法
CN111592788B (zh) * 2020-05-29 2022-09-16 合肥福纳科技有限公司 量子点发光二极管、量子点墨水及其制作方法
CN113754978B (zh) * 2020-06-05 2023-04-18 Tcl科技集团股份有限公司 量子点复合材料及其制备方法,量子点发光器件
CN113861960B (zh) * 2020-06-15 2024-04-23 Tcl科技集团股份有限公司 量子点复合材料、量子点发光二极管及其及其制备方法
CN113809245B (zh) * 2020-06-15 2022-11-04 Tcl科技集团股份有限公司 氧化锌纳米材料及其制备方法、半导体器件
CN111785843A (zh) * 2020-08-25 2020-10-16 京东方科技集团股份有限公司 量子点发光二极管及其制备方法、显示装置
CN114122271A (zh) * 2020-08-27 2022-03-01 Tcl科技集团股份有限公司 一种量子点发光二极管及其制备方法
CN112420971B (zh) * 2020-11-25 2023-04-18 合肥福纳科技有限公司 一种优化发光二极管的方法
CN112382732B (zh) * 2020-11-25 2023-01-24 合肥福纳科技有限公司 一种降低电子导体的电子传输性能的方法
CN117337625A (zh) * 2022-04-28 2024-01-02 京东方科技集团股份有限公司 发光器件及其制作方法、显示基板、显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1578561A (zh) * 2003-07-29 2005-02-09 三星Sdi株式会社 含有紫外光稳定剂的有机电致发光显示装置
CN103904178A (zh) * 2014-04-11 2014-07-02 浙江大学 量子点发光器件
CN105449110A (zh) * 2015-12-28 2016-03-30 Tcl集团股份有限公司 基于有机无机复合传输层的量子点发光二极管及制备方法
WO2016120721A1 (en) * 2015-01-27 2016-08-04 King Abdullah University Of Science And Technology Optoelectronic devices, low temperature preparation methods, and improved electron transport layers
CN109935714A (zh) * 2017-12-15 2019-06-25 Tcl集团股份有限公司 电子传输材料及其制备方法和发光二极管

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060018583A (ko) * 2004-08-25 2006-03-02 삼성전자주식회사 반도체 나노결정을 함유하는 백색 발광 유·무기하이브리드 전기 발광 소자
US9765226B2 (en) * 2014-03-27 2017-09-19 Disney Enterprises, Inc. Ultraviolet printing with luminosity control
CN105470387A (zh) * 2016-01-25 2016-04-06 深圳市华星光电技术有限公司 量子点发光器件及其制备方法及液晶显示装置
CN105679958B (zh) * 2016-04-20 2018-03-13 京东方科技集团股份有限公司 电致发光器件及其制作方法、显示装置
CN106190113A (zh) * 2016-07-18 2016-12-07 东北师范大学 紫外发射ZnO量子点与Ag纳米粒子异质结构复合体系
CN106409995B (zh) * 2016-11-01 2019-08-02 Tcl集团股份有限公司 Qled的制备方法
CN106410055A (zh) * 2016-11-07 2017-02-15 Tcl集团股份有限公司 一种量子点发光二极管及制备方法
KR20180054262A (ko) * 2016-11-15 2018-05-24 엘지디스플레이 주식회사 양자점 발광다이오드 및 이를 이용한 발광 표시장치
CN107293647A (zh) * 2017-06-13 2017-10-24 苏州大学 一种量子点发光二极管及其制备方法
WO2019069738A1 (ja) * 2017-10-04 2019-04-11 Dic株式会社 発光層の形成方法および発光素子の製造方法
CN107603340B (zh) * 2017-10-12 2020-10-30 京东方科技集团股份有限公司 一种氧化锌墨水及其制备方法、电子传输膜层和显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1578561A (zh) * 2003-07-29 2005-02-09 三星Sdi株式会社 含有紫外光稳定剂的有机电致发光显示装置
CN103904178A (zh) * 2014-04-11 2014-07-02 浙江大学 量子点发光器件
WO2016120721A1 (en) * 2015-01-27 2016-08-04 King Abdullah University Of Science And Technology Optoelectronic devices, low temperature preparation methods, and improved electron transport layers
CN105449110A (zh) * 2015-12-28 2016-03-30 Tcl集团股份有限公司 基于有机无机复合传输层的量子点发光二极管及制备方法
CN109935714A (zh) * 2017-12-15 2019-06-25 Tcl集团股份有限公司 电子传输材料及其制备方法和发光二极管

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112094642A (zh) * 2020-10-15 2020-12-18 合肥工业大学 一种含有红、绿二元色的黄色碳(氮)量子点的制备方法、产物及其应用
CN112094642B (zh) * 2020-10-15 2022-06-21 合肥工业大学 一种含有红、绿二元色的黄色碳(氮)量子点的制备方法、产物及其应用
EP4131447A4 (en) * 2020-11-18 2023-11-08 TCL Technology Group Corporation LIGHT-EMITTING DIODE WITH QUANTUM DOTS AND PREPARATION METHOD THEREFOR

Also Published As

Publication number Publication date
CN110739404A (zh) 2020-01-31
US11485908B2 (en) 2022-11-01
US20210371743A1 (en) 2021-12-02
CN110739404B (zh) 2021-04-02

Similar Documents

Publication Publication Date Title
WO2020015697A1 (zh) 量子点发光二极管及其制备方法
CN111384278B (zh) 一种量子点发光二极管及其制备方法
Li et al. Enhanced efficiency of InP-based red quantum dot light-emitting diodes
CN109935708A (zh) 发光二极管器件及其制备方法
KR101607478B1 (ko) 핵-껍질 구조의 나노입자를 이용한 역구조 유기태양전지 소자와 그 제조방법
KR102342350B1 (ko) 발광 소자 효율을 효과적으로 향상시키는 페로브스카이트 필름층, 소자 및 제조방법
Huang et al. Efficient polymer light-emitting diodes with ZnO nanoparticles and interpretation of observed sub-bandgap turn-on phenomenon
US20230023531A1 (en) Nanomaterial, preparation method thereof, and quantum dot light-emitting diode
WO2019024513A1 (zh) 量子点发光二极管及其制备方法
Mokarian Zanjani et al. Tailored ZnO Functional Nanomaterials for Solution‐Processed Quantum‐Dot Light‐Emitting Diodes
Chen et al. Simultaneous improvement of efficiency and lifetime of quantum dot light-emitting diodes with a bilayer hole injection layer consisting of PEDOT: PSS and solution-processed WO3
Zhao et al. Efficient perovskite light-emitting diodes with chemically bonded contact and regulated charge behavior
CN111384255A (zh) 一种量子点发光二极管及其制备方法
CN110739408B (zh) 量子点发光二极管及其制备方法
CN114695819A (zh) 一种量子点发光二极管及其制备方法
CN111384263B (zh) 量子点发光二极管及其制备方法
CN114695695A (zh) 量子点发光二极管及其制备方法
Shen et al. Electrode Doping and Dielectric Effect in Hole Injection into Organic Semiconductors through High Work-Function Oxides
CN112531123A (zh) 电子传输膜层的制备方法和量子点发光二极管的制备方法
CN111244301A (zh) 量子点发光二极管
CN109244252A (zh) Qled器件及其制备方法
WO2023051461A1 (zh) 氧化钼纳米材料及制备方法、光电器件
US20240107790A1 (en) Optoelectronic device
US20240081088A1 (en) Photoelectric devices
US20240040816A1 (en) Photoelectric devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19837878

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19837878

Country of ref document: EP

Kind code of ref document: A1