WO2020008222A1 - 電力変換ユニッ卜 - Google Patents

電力変換ユニッ卜 Download PDF

Info

Publication number
WO2020008222A1
WO2020008222A1 PCT/IB2018/000836 IB2018000836W WO2020008222A1 WO 2020008222 A1 WO2020008222 A1 WO 2020008222A1 IB 2018000836 W IB2018000836 W IB 2018000836W WO 2020008222 A1 WO2020008222 A1 WO 2020008222A1
Authority
WO
WIPO (PCT)
Prior art keywords
power conversion
terminal
conversion unit
bus bar
housing
Prior art date
Application number
PCT/IB2018/000836
Other languages
English (en)
French (fr)
Inventor
熊倉晋
Original Assignee
日産自動車株式会社
ルノー エス.ア.エス.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, ルノー エス.ア.エス. filed Critical 日産自動車株式会社
Priority to EP18925121.8A priority Critical patent/EP3820038A4/en
Priority to US17/257,380 priority patent/US12051981B2/en
Priority to JP2020528524A priority patent/JP7111161B2/ja
Priority to CN201880094552.XA priority patent/CN112262525A/zh
Priority to PCT/IB2018/000836 priority patent/WO2020008222A1/ja
Publication of WO2020008222A1 publication Critical patent/WO2020008222A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1422Printed circuit boards receptacles, e.g. stacked structures, electronic circuit modules or box like frames
    • H05K7/1427Housings
    • H05K7/1432Housings specially adapted for power drive units or power converters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1422Printed circuit boards receptacles, e.g. stacked structures, electronic circuit modules or box like frames
    • H05K7/1427Housings
    • H05K7/1432Housings specially adapted for power drive units or power converters
    • H05K7/14329Housings specially adapted for power drive units or power converters specially adapted for the configuration of power bus bars
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change

Definitions

  • the present invention relates to a power conversion unit.
  • the power conversion unit includes a power conversion module for converting between DC power and AC power formed by an inverter in a housing.
  • the power conversion module has a bus bar (first bus bar) for inputting / outputting DC power and AC power, and the first bus bar and a bus bar (second bus bar) included in an external device are fastened at a terminal serving as a connection base. .
  • the power conversion unit disclosed in JP2006-92931A is configured integrally with an external device that is a motor, and the first bus bar of the power conversion module and the second bus bar of the external device are formed of resin. It is concluded on the established terminal. Then, the terminal is fixed to a metal casing that separates the power conversion unit and the external device with a bolt or the like.
  • JP2006-92931A in order to ensure insulation between the bus bar fixed on the terminal and the lower part of the terminal and the metal housing fixed, the distance between the bus bar and the metal housing is reduced. It is necessary to enlarge the terminal so that it becomes sufficiently large. In addition, a space is required in the power conversion unit for fastening the terminal and the metal housing with bolts or the like, and there is a problem that the power conversion unit becomes large.
  • the present invention has been made to solve such a problem, and has an object to reduce the size of a power conversion unit.
  • a power conversion unit accommodates a power conversion module that converts power between DC and AC, a first bus bar that is connected to the power conversion module and inputs and outputs power, and a power conversion module. It has a housing and a terminal for connecting the first bus bar and a second bus bar connected to an external device. The terminal and at least a part of the housing are integrally formed of resin.
  • FIG. 1 is an exploded perspective view of the power conversion unit according to the first embodiment.
  • FIG. 2 is a sectional view of the power conversion unit.
  • FIG. 3 is a cross-sectional view of a power conversion unit of a comparative example.
  • FIG. 4 is a cross-sectional view of the power conversion unit according to the second embodiment.
  • FIG. 5A is a perspective view of a part of the power conversion unit according to the third embodiment.
  • FIG. 5B is a cross-sectional view of the power conversion unit.
  • FIG. 5C is a cross-sectional view of the power conversion unit.
  • FIG. 6 is a cross-sectional view of the power conversion unit according to the fourth embodiment.
  • FIG. 7 is a cross-sectional view of a power conversion unit of a comparative example.
  • FIG. 8 is a cross-sectional view of a power conversion unit according to a first modification.
  • FIG. 9 is a cross-sectional view of a power conversion unit according to a second modification
  • FIG. 1 is an exploded perspective view of the power conversion unit according to the first embodiment.
  • the direction from left to right in the figure is called the x axis
  • the direction from the right back to the left is called the y axis
  • the direction from bottom to top in the figure is called the z axis.
  • the power conversion unit 100 and the external device 200 constitute an integrated unit.
  • the power conversion unit 100 and the external device 200 constitute a motor unit.
  • the power conversion unit 100 includes a power conversion module 10, a first bus bar 20 connected to a terminal of the power conversion module 10, a housing 30 that houses the power conversion module 10, and a terminal 40 that connects the bus bars. It has a second bus bar 50 connected to a terminal of the external device 200, and a shield 60 for suppressing noise between the power conversion unit 100 and the external device 200.
  • the power conversion module 10 is configured by an inverter, and performs conversion between DC power and AC power. For example, the power conversion module 10 converts DC power input from a battery (not shown) into AC power, and outputs the converted AC power to the external device 200. Although two output-side bus bars are shown in this figure, three or more output-side bus bars may be provided.
  • the terminals of the power conversion module 10 are connected to the first bus bars 20A, 20B by fastening with the first bolts 21A, 21B.
  • the power conversion module 10 is fixed to the upper surface of the bottom 31 of the housing 30.
  • the housing 30 is composed of a bottom 31 made of resin and a box 32 made of metal.
  • the bottom 31 is made of, for example, an engineering plastic resin such as polyamide.
  • the box portion 32 is manufactured by die casting using a metal material such as aluminum. The box 32 is fixed to the bottom 31 so as to cover the power conversion module 10 and the terminal 40 provided on the bottom 31.
  • the terminal 40 is made of resin, and is configured integrally with the bottom 31 of the housing 30.
  • the terminal 40 further connects the first bus bars 20A and 20B connected to the power conversion module 10 and the second bus bars 50A and 50B connected to the external device 200 by fastening with the second bolts 51A and 51B. I do.
  • the first bus bars 20A and 20B and the second bus bars 50A and 50B are plate-like metal members made of tough pitch copper or the like.
  • the second busbars 50A and 50B are configured in an L shape having a bent portion. Further, the first bus bars 20A, 20B and the second bus bars 50A, 50B are provided with bolt holes in the vicinity of both ends through which the bolts pass when fastening with bolts.
  • the power conversion module 10 and the terminal 40 are provided with screw grooves that can be screwed with the first bolts 21A and 21B and the second bolts 51A and 51B.
  • the first bolts 21A and 21B provided so as to pass through the bolt holes provided in the left part of the drawing are screwed into the screwing grooves of the power conversion module 10, so that the first busbar 20A , 20B are fastened to the power conversion module 10.
  • Bolt holes provided in both ends of the first bus bars 20A and 20B on the right side in the drawing (positive direction on the x-axis) and ends of the second bus bars 50A and 50B on the left side (negative direction in the x-axis) are provided. They are stacked so as to overlap.
  • the second bolts 51A and 51B are passed through the bolt holes of the first bus bars 20A and 20B and the bolt holes of the second bus bars 50A and 50B, and screwed into the screw grooves of the terminal 40.
  • the first bus bars 20A, 20B and the second bus bars 50A, 50B are fastened.
  • the shield 60 is made of a metal such as iron or aluminum, and is manufactured by appropriately combining a press method and welding.
  • the shield 60 is fixed so as to cover the lower surface of the bottom 31, and blocks noise propagating between the power conversion module 10 and the external device 200.
  • Openings 61A and 61B are provided in the shield 60, and the second bus bars 50A and 50B reach the external device 200 through the openings 61A and 61B.
  • the external device 200 has a concave portion 201 having an opening on the upper surface (the surface on the z-axis positive direction side). In the recess 201, the second busbars 50A and 50B are electrically connected to the external device 200.
  • FIG. 2 is a cross-sectional view in the xz plane of the power conversion unit 100 along the first bus bar 20A and the second bus bar 50A.
  • the L-shaped second bus bar 50A extends through the opening 61A of the shield 60 into the recess 201 of the external device 200.
  • the second bus bar 50 ⁇ / b> A is electrically connected to the connection terminal 202 provided in the recess 201 by the third bolt 203.
  • FIG. 3 is a cross-sectional view of the power conversion unit 100 on the xz plane in the comparative example.
  • the terminal 40 and the bottom 31 are separate bodies, and the bottom 31 is made of metal like the box 32.
  • the terminal 40 has a flange 41 provided with a bolt hole. Then, the terminal 40 is fixed to the bottom 31 by the fourth bolt 70 passing through the hole of the flange 41 and screwing into a screw groove provided in the bottom 31. With such a configuration, the power conversion unit 100 becomes longer in the x-axis direction by the width of the flange 41 used for fastening by the fourth bolt 70.
  • a terminal is also provided separately on the input side of the power conversion module 10. This terminal is made of resin integrally with the terminal 40 and the bottom 31.
  • first bus bars 20A and 20B connected to the power conversion module 10 and second bus bars 50A and 50B connected to the external device 200 are connected on the terminal 40. You.
  • the terminal 40 and the bottom 31 of the housing 30 are integrally formed of resin.
  • the flange 41 used for fastening by the fourth bolt 70 is used.
  • the size of the power conversion unit 100 is increased by the width of the flange 41 (x-axis direction).
  • the terminal 40 and the bottom 31 are formed integrally.
  • the flange 41 that is configured to fasten the terminal 40 and the bottom 31 as in the comparative example is not required, and the power conversion unit 100 can be downsized.
  • the cost of parts and the manufacturing cost can be reduced by simplifying the configuration.
  • the first busbars 20A and 20B and the second busbars 50A and 50B fastened on the terminal 40 and the bottom 31 are compared with the case where the bottom 31 is made of metal. Since the distance between them is sufficiently large, it is not necessary to consider insulation properties, so that the terminal 40 can be downsized. Further, by forming the bottom 31 from a resin, the bottom 31 can be made thinner and lighter.
  • the terminal 40 is on the side where the power conversion module 10 is provided with respect to the bottom 31 of the housing 30, that is, on the upper surface side (the positive side in the z-axis direction) of the bottom 31.
  • the example shown inside the box part 32 was shown.
  • the terminal 40 is disposed outside the box 32 on the side where the external device 200 is provided with respect to the bottom 31, that is, on the lower side of the bottom 31 (negative z-axis direction). An example will be described.
  • FIG. 4 is a cross-sectional view of the power conversion unit 100 according to the second embodiment, taken along the xz plane.
  • the terminal 40 is provided integrally with the bottom 31 on the side where the external device 200 is provided with respect to the bottom 31 (negative side of the z-axis).
  • the shield 60 has an opening 62 whose cross section is substantially equal to that of the terminal 40.
  • the terminal 40 passes through the opening 62 of the shield 60 and is located in the recess 201 of the external device 200.
  • the first bus bar 20A is formed in an L shape having a bent portion. In the recess 201, the first bus bar 20A and the second bus bar 50A are fastened to the terminal 40 by the second bolt 51.
  • the power conversion module 10 and the terminal 40 are arranged on opposite sides of the bottom 31, that is, outside the box 32. Therefore, as compared with the first embodiment shown in FIG. 2, the power conversion module 10 and the terminal 40 are close to each other in the longitudinal direction (x-axis direction) on the projection surface in the thickness direction (z-axis direction) of the bottom 31.
  • the power conversion unit 100 can be downsized.
  • the terminal 40 provided on the lower surface (the surface on the negative side of the z-axis) of the bottom portion 31 is configured as an integrated unit of the power conversion unit 100 and the external device 200. Is housed in the recess 201 of the external device 200.
  • the first bus bar 20 and the second bus bar 50 connected to the external device 200 are connected to the second bus bar 50 in a state where the housing 31 is formed by connecting the bottom portion 31 and the box portion 32. It can be fastened using two bolts 51. Therefore, when the power conversion unit 100 and the external device 200 are connected to each other, since the housing 30 is already assembled, it is possible to prevent foreign substances such as dust and dust from entering the power conversion unit 100, and Handling becomes easy and the manufacturing process can be simplified.
  • FIG. 5A is a perspective view of a part of the power conversion unit 100 according to the third embodiment.
  • FIG. 5B is a diagram of the power conversion unit 100 as viewed from the y-axis positive direction side.
  • FIG. 5C is a diagram of the power conversion unit 100 as viewed from the side in the positive x-axis direction.
  • a cutout 33 extending in the z-axis direction is provided at a corner of the bottom 31 in the xy-direction plane.
  • a terminal 40 is provided so as to be flush with the inner surface of the notch 33 in the y-axis direction.
  • the first bus bar 20A is configured by bending a plate-shaped member having a constant width and a bent portion at the bent portion, and a first bus bar 20Ax extending in the x-axis direction and a first bus bar extending in the y-axis direction. 20Ay, a first bus bar 20Az extending in the z-axis direction, and a first bus bar fastening portion 20Af provided in the xz plane direction.
  • the first bus bar fastening portion 20Af is provided with a bolt hole through which the second bolt 51A passes.
  • the first bus bar 20B is provided in the first bus bar 20Bx extending in the x-axis direction, the first bus bar 20By extending in the y-axis direction, the first bus bar 20Bz extending in the z-axis direction, and in the xz plane direction.
  • the first bus bar fastening portion 20Bf is provided.
  • the first bus bar fastening portion 20Bf is provided with a hole through which the second bolt 51B passes.
  • First bus bar fastening portion 20Af and second bus bar 50A are fastened by second bolt 51A.
  • the first bus bar fastening portion 20Bf and the second bus bar 50B are fastened by the second bolt 51B.
  • a wall portion 80 is provided between the first bus bar 20A and the first bus bar 20B.
  • the wall portion 80 is made of resin integrally with the bottom portion 31 and the terminal 40.
  • the wall 80 has a wall 80x extending in the x-axis direction, a wall 80y extending in the y-axis, and a wall 80z extending in the z-axis.
  • the first bus bar 20Ax and the first bus bar 20Bx adjacent in the y-axis direction are insulated by the wall portion 80x extending in the x-axis direction and having a height in the z-axis direction.
  • the first bus bar 20Ay and the first bus bar 20By (not shown) adjacent in the x-axis direction are insulated by the wall portion 80y extending in the y-axis direction and having a height in the z-axis direction.
  • the first bus bar 20Az and the first bus bar 20Bz adjacent to each other in the x-axis direction are insulated by the wall portion 80z extending in the z-axis direction and having a width in the y-axis direction.
  • the wall 80 formed integrally with the terminal 40 and the bottom 31 of the housing 30 is provided.
  • the wall portion 80 insulates between the first bus bar 20A and the first bus bar 20B and between the second bus bar 50A and the second bus bar 50B.
  • the wall portion 80 is formed of resin integrally with the bottom portion 31 and the terminal 40, the degree of freedom of arrangement is high. Therefore, the wall portion 80 can be arranged not only near the fastening point by the second bolts 51A and 51B but also at a desired place between the power conversion module 10 and the terminal 40.
  • the fastening by the second bolts 51A and 51B is performed in a state where the second bolts 51A and 51B are pressed against the terminal 40 in the negative direction of the y-axis.
  • the terminal 40 is further configured integrally with the wall portion 80, the strength of the terminal 40 is improved, so that manufacturing defects can be reduced.
  • the strength of the terminal 40 in the y-axis direction can be improved by integrating the terminal 40 with the wall portion 80z having a width in the y-axis direction.
  • FIG. 6 is a cross-sectional view of the power conversion unit 100 according to the fourth embodiment in the xz plane.
  • the bottom portion 31 of the housing 30 and the terminal 40 include a coolant flow path 90 integrally formed. More specifically, a first flow path 91 having a thickness in the z direction and provided in the xy plane direction at the bottom 31 and a second flow path 92 provided to extend in the z axis direction at the terminal 40 and the bottom 31. Are provided.
  • the flow channel 90 is connected to an inlet (not shown) and an outlet (not shown) communicating with the outside of the housing 30 and the terminal 40, and a cooling device (not shown) provided outside via the inlet and the outlet. ) And the refrigerant can be circulated. With the configuration of the flow path 90 in this manner, the power conversion module 10 is cooled via the upper surface of the bottom 31 and the first bus bars 20A and 20B and the second bus bars 50A and 50B via the terminal 40. Is cooled.
  • FIG. 7 is a cross-sectional view of the power conversion unit 100 of the comparative example.
  • the bottom 31 is provided as a separate body of metal. Since the bottom 31 is made of metal, it is difficult to provide the first flow path 91 inside. Therefore, an opening or a groove is formed on the upper surface (the surface on the positive side in the z-axis direction) of the bottom portion 31 so as to contact the bottom surface of the power conversion module 10, and the opening or the groove is used as the first flow path 91.
  • a sealing member 93 is provided at the interface between the power conversion module 10 and the bottom 31, so as to surround the flow path 90 to prevent leakage of the refrigerant.
  • the sealing member 93 is unnecessary by providing the first flow path 91 inside the bottom portion 31 and the terminal 40 that are integrally formed.
  • the bottom 31 is formed of resin integrally with the terminal 40, the bottom 31 and the terminal It becomes relatively easy to provide the flow path 90 inside the 40.
  • the sealing member 93 is not required, and the configuration can be simplified. Further, it is not necessary to bring the flow path 90 into contact with the power conversion module 10, and the degree of freedom in designing the flow path 90 can be improved.
  • FIG. 8 is a cross-sectional view of the power conversion unit 100 according to the first modified example on the xz plane.
  • the second flow path 92 provided in the terminal 40 is omitted as compared with the fourth embodiment shown in FIG. Since the first flow path 91 provided in the bottom 31 extends to the vicinity of the terminal 40, the terminal 40 formed integrally with the bottom 31 is cooled, and the temperature rise of the first bus bars 20A and 20B is suppressed.
  • the first flow path 91 extended to the vicinity of the terminal 40 without the second flow path 92 shown in FIG. Thereby, the terminal 40 is cooled. Therefore, the configuration of the terminal 40 can be simplified, and the performance of the integrated unit can be improved by blocking the heat conduction between the power conversion unit 100 and the external device 200.
  • FIG. 9 is a cross-sectional view of the power conversion unit 100 according to the second modification on the xz plane.
  • a metal body 93 that reaches the inside of the first flow path 81 is provided in the terminal 40 as compared with the first modification shown in FIG.
  • the strength of the terminal 40 is lower than that in the case where the second flow path 92 is provided as shown in FIG. Since it is raised, deformation at the time of fastening by the second bolt 51A can be suppressed. Further, the metal body 93 made of a metal having a high thermal conductivity reaches the first flow path 91, and the terminal 40 is cooled through the metal body 93, so that the temperature of the first bus bars 20A and 20B rises. And the performance of the integrated unit can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Connection Or Junction Boxes (AREA)

Abstract

電力変換ユニットは、直流と交流との電力の変換を行う電力変換モジュールと、電力変換モジュールに接続され、電力の入出力を行う第1バスバと、電力変換モジュ一ルを収容する筐体と、第1バスバと、外部機器に接続される第2バスバとの接続を行うターミナルと、を有する。ターミナル、及び、筐体の少なくとも一部は、一体となつて樹脂により形成される。

Description

電力変換ユニット
 本発明は、電力変換ユニットに関するものである。
 電力変換ユニットは、インバータにより構成される直流電力と交流電力との変換を行う電力変換モジュールを筐体内に備える。電力変換モジュールは直流電力及び交流電力の入出力を行うバスバ(第1バスバ)を有し、第1バスバと外部機器の備えるバスバ(第2バスバ)とが、接続台であるターミナルにおいて締結される。
 例えば、JP2016−92931Aに開示されている電力変換ユニットは、モータである外部機器と一体となって構成されており、電力変換モジュールの第1バスバと外部機器の第2バスバとは、樹脂により構成されたターミナルの上において締結される。そして、ターミナルは、電力変換ユニットと外部機器とを区切る金属筐体にボルトなどによって固定される。
 JP2016−92931Aの技術によれば、ターミナル上に固定されるバスバとターミナルの下部と固定される金属筐体との間の絶縁性を確保するために、バスバと金属筐体との間の距離が十分大きくなるようにターミナルを大型化する必要がある。また、電力変換ユニット内においてターミナルと金属筐体とをボルト等で締結させるためのスペースが必要となり、電力変換ユニットが大型化してしまうという課題がある。
 本発明はこのような課題を解決するために発明されたもので、電力変換ユニットの小型化を図ることを目的とする。
 本発明のある態様の電力変換ユニットは、直流と交流との電力の変換を行う電力変換モジュールと、電力変換モジュールに接続され、電力の入出力を行う第1バスバと、電力変換モジュールを収容する筐体と、第1バスバと外部機器に接続される第2バスバとの接続を行うターミナルと、を有する。ターミナル、及び、筐体の少なくとも一部は、一体となって樹脂により形成される。
図1は、第1実施形態の電力変換ユニットの分解斜視図である。 図2は、電力変換ユニットの断面図である。 図3は、比較例の電力変換ユニットの断面図である。 図4は、第2実施形態の電力変換ユニットの断面図である。 図5Aは、第3実施形態の電力変換ユニットの一部の斜視図である。 図5Bは、電力変換ユニットの断面図である。 図5Cは、電力変換ユニットの断面図である。 図6は、第4実施形態の電力変換ユニットの断面図である。 図7は、比較例の電力変換ユニットの断面図である。 図8は、第1変形例の電力変換ユニットの断面図である。 図9は、第2変形例の電力変換ユニットの断面図である。
 本発明の実施形態に電力変換ユニットについて説明する。
 (第1実施形態)
 図1は、第1実施形態の電力変換ユニットの分解斜視図である。この図において、図左から右へ向かう方向をx軸、図右奥から左手前に向かう方向をy軸、図下から上へ向かう方向をz軸と称するものとする。
 電力変換ユニット100は、外部機器200とともに一体型のユニットを構成する。例えば、外部機器200がモータであれば、電力変換ユニット100と外部機器200とによりモーターユニットが構成される。
 電力変換ユニット100は、電力変換モジュール10と、電力変換モジュール10の端子と接続される第1バスバ20と、電力変換モジュール10を収容する筐体30と、バスバ同士の接続を行うターミナル40と、外部機器200の端子と接続される第2バスバ50と、電力変換ユニット100と外部機器200との間のノイズを抑制するシールド60とを有する。
 電力変換モジュール10は、インバータにより構成され、直流電力と交流電力との変換を行う。例えば、電力変換モジュール10は、バッテリ(不図示)から入力される直流電力を交流電力に変換し、変換した交流電力を外部機器200へと出力する。なお、この図においては、出力側のバスバが2つ記載されているが、出力側として3つ以上のバスバを有してもよい。電力変換モジュール10の端子は、第1バスバ20A、20Bと、第1ボルト21A、21Bによる締結によって接続されている。また、電力変換モジュール10は、筐体30の底部31の上面に固定されている。
 筐体30は、樹脂製の底部31と、金属製の箱部32とにより構成される。底部31は、例えば、ポリアミドなどのエンジニアリングプラスチック樹脂により構成される。箱部32は、アルミニウムなどの金属材でダイキャストにより製造される。箱部32は、底部31上に設けられる電力変換モジュール10やターミナル40を覆うように、底部31に固定される。
 ターミナル40は、樹脂製であり、筐体30の底部31と一体となって構成される。ターミナル40は、その上において、電力変換モジュール10と接続される第1バスバ20A、20Bと、外部機器200と接続される第2バスバ50A、50Bとを、第2ボルト51A、51Bによる締結により接続する。
 第1バスバ20A、20B、及び、第2バスバ50A、50Bは、タフピッチ銅などで構成される板状の金属部材である。第2バスバ50A、50Bは、屈曲部を有するL字状に構成される。また、第1バスバ20A、20B、及び、第2バスバ50A、50Bは、両端の近傍にボルトによる締結の際にボルトが通るボルト穴が設けられている。
 電力変換モジュール10、及び、ターミナル40には、第1ボルト21A、21B、及び、第2ボルト51A、51Bと螺合可能な螺合溝が設けられている。
 第1バスバ20A、20Bにおいては、図左部に設けられるボルト穴を通るように設けられる第1ボルト21A、21Bが、電力変換モジュール10の螺合溝と螺合することにより、第1バスバ20A、20Bは電力変換モジュール10に締結される。第1バスバ20A、20Bの図右側(x軸正方向側)の端部と、第2バスバ50A、50Bの図左側(x軸負方向側)の端部とは、両者に設けられるボルト穴が重なるように積層される。そして、第2ボルト51A、51Bを、重なって配置された第1バスバ20A、20Bのボルト穴と第2バスバ50A、50Bのボルト穴とを通し、ターミナル40の螺合溝とを螺合させる。このようにして、第1バスバ20A、20Bと、第2バスバ50A、50Bと、が締結される。
 シールド60は、鉄やアルミニウムなどの金属製であり、プレス工法と溶接とを適宜組み合わせて製造される。シールド60は、底部31の下面を覆うように固定され、電力変換モジュール10と外部機器200との間において伝播するノイズを遮断する。シールド60には開口61A、61Bが設けられており、第2バスバ50A、50Bが開口61A、61Bを通り外部機器200側へと到達する。
 外部機器200には、上面(z軸正方向側の面)に開口を有する凹部201を有する。凹部201内において、第2バスバ50A、50Bは外部機器200と電気的に接続される。
 図2は、第1バスバ20A及び第2バスバ50Aに沿った電力変換ユニット100のxz平面における断面図である。
 この図によれば、L字状の第2バスバ50Aは、シールド60の開口61Aを通り、外部機器200の凹部201内まで延伸する。そして、第2バスバ50Aは、凹部201内に設けられる接続端子202と、第3ボルト203により締結されて電気的に接続される。
 比較例として、ターミナル40と、筐体30の底部31とが別体として形成される例について説明する。
 図3は、比較例におけるxz平面における電力変換ユニット100の断面図である。ターミナル40と底部31とは別体であり、底部31は、箱部32と同様に金属で構成されているものとする。
 この図に示されるように、ターミナル40は、ボルト穴を備えるフランジ41を有する。そして、第4ボルト70がフランジ41の穴を通り、底部31に設けられる螺合溝と螺合することで、ターミナル40は底部31に固定される。このような構成となることで、電力変換ユニット100は、第4ボルト70による締結に用いられるフランジ41の幅だけx軸方向に長くなる。
 不図示ではあるが、電力変換モジュール10の入力側においてもターミナルが別途設けられている。このターミナルは、ターミナル40及び底部31と一体となって樹脂により構成されている。
 このように構成される第1実施形態によれば、以下の効果を得ることができる。
 第1実施形態の電力変換ユニット100は、電力変換モジュール10と接続される第1バスバ20A、20Bと、外部機器200と接続される第2バスバ50A、50Bとが、ターミナル40の上において接続される。そして、ターミナル40と、筐体30の底部31との両者は、一体となって樹脂により形成される。
 図3に示される比較例のように、底部31とターミナル40とが別体で構成される場合には、ターミナル40を底部31に固定するためには、第4ボルト70による締結に用いるフランジ41をターミナル40が有さなければならない。そのため、電力変換ユニット100は、フランジ41の幅(x軸方向)だけサイズが大きくなってしまう。
 これに対して本実施形態においては、ターミナル40と底部31とが一体となって形成される。そのため、比較例のようにターミナル40と底部31とを締結する構成であるフランジ41が不要になり、電力変換ユニット100を小型化できる。さらに、ターミナル40のフランジ41における第4ボルト70による締結が不要になるため、構成の簡略化により部品コスト及び製造コストを低減できる。
 また、底部31を樹脂化することで、底部31が金属製である場合と比較すると、ターミナル40上で締結される第1バスバ20A、20B、及び、第2バスバ50A、50Bと底部31との間の距離が十分大きくなり絶縁性を考慮しなくてもよくなるため、ターミナル40を小型化できる。また、底部31を樹脂で構成することで、底部31の肉薄形成及び軽量化を図ることができる。
 (第2実施形態)
 第1実施形態においては、ターミナル40が、筐体30の底部31に対して電力変換モジュール10が設けられる側、すなわち、底部31の上面側(z軸正方向側)であって筐体30の箱部32の内部に配置される例について示した。第2実施形態においては、ターミナル40が、底部31に対して外部機器200が設けられる側、すなわち、底部31の下面側(z軸負方向側)であって箱部32の外部に配置される例について説明する。
 図4は、第2実施形態の電力変換ユニット100のxz平面の断面図である。
 ターミナル40は、底部31に対して外部装置200が設けられる側(z軸負側)において、底部31と一体となって設けられる。そして、シールド60は、断面がターミナル40と略等しい開口62を有する。ターミナル40は、シールド60の開口62を通り、外部機器200の凹部201内に位置する。
 また、第1バスバ20Aは、屈曲部を有するL字状に構成される。凹部201内において、第1バスバ20A及び第2バスバ50Aは、ターミナル40と第2ボルト51により締結される。
 このように構成される第2実施形態により以下の効果を得ることができる。
 第2実施形態の電力変換ユニット100によれば、電力変換モジュール10とターミナル40とは、底部31に対して互いに反対側、すなわち、箱部32の外部に配置される。そのため、図2に示される第1実施形態と比較すると、底部31の厚さ方向(z軸方向)の投影面において、電力変換モジュール10とターミナル40とを長手方向(x軸方向)に近接して配置することができるため、電力変換ユニット100の小型化を図ることができる。
 第2実施形態の電力変換ユニット100によれば、底部31の下面(z軸負方向側の面)に設けられるターミナル40は、電力変換ユニット100と外部機器200との一体ユニットが構成される場合には、外部機器200の凹部201に収容される。このような一体ユニットを組み立てる場合には、底部31と箱部32とを接続させて筐体30を構成した状態で、第1バスバ20と外部機器200と接続される第2バスバ50とを第2ボルト51を用いて締結することができる。そのため、電力変換ユニット100と外部機器200とを接続させる際には筐体30がすでに組み立てられているので、電力変換ユニット100内へのゴミやちりなどの異物の混入を防ぐことができるとともに、取り扱いが容易になり製造工程を簡略化できる。
 (第3実施形態)
 第1及び第2実施形態においては、第1バスバ10Aと第1バスバ10Bとの間、及び、第2バスバ50Aと第2バスバ50Bとの間には何も設けられない例について説明した。第3実施形態においては、両者の間に樹脂からなる絶縁部材が設けられる例について説明する。
 図5Aは、第3実施形態の電力変換ユニット100の一部の斜視図である。
 図5Bは、電力変換ユニット100をy軸正方向の側から見た図である。
 図5Cは、電力変換ユニット100をx軸正方向の側から見た図である。
 これらの図に示されるように、底部31のxy方向の面内における角部にz軸方向に延在する切り欠き33が設けられている。切り欠き33のy軸方向の内面と面一となるようにターミナル40が設けられ。
 第1バスバ20Aは、等幅で屈曲部を有する板状部材が、屈曲部において折れ曲がることにより構成され、x軸方向に延在する第1バスバ20Axと、y軸方向に延在する第1バスバ20Ayと、z軸方向に延在する第1バスバ20Azと、xz面方向に設けられる第1バスバ締結部20Afとを有する。第1バスバ締結部20Afには第2ボルト51Aが通るボルト穴が設けられている。
 第1バスバ20Bは、x軸方向に延在する第1バスバ20Bxと、y軸方向に延在する第1バスバ20Byと、z軸方向に延在する第1バスバ20Bzと、xz面方向に設けられる第1バスバ締結部20Bfを有する。第1バスバ締結部20Bfには第2ボルト51Bが通る穴が設けられている。
 第1バスバ締結部20Afと、第2バスバ50Aとが、第2ボルト51Aによって締結される。また、第1バスバ締結部20Bfと、第2バスバ50Bとが、第2ボルト51Bによって締結される。
 第1バスバ20Aと第1バスバ20Bとの間には、壁部80が設けられている。壁部80は、底部31及びターミナル40と一体となって樹脂により構成される。壁部80は、x軸方向に延在する壁部80xと、y軸方向に延在する壁部80yと、z軸方向に延在する壁部80zとを有する。
 x軸方向に延在しz軸方向に高さを備える壁部80xによって、y軸方向に隣接する第1バスバ20Axと第1バスバ20Bxとが絶縁される。y軸方向に延在しz軸方向に高さを備える壁部80yによって、x軸方向に隣接する第1バスバ20Ayと第1バスバ20By(不図示)とが絶縁される。z軸方向に延在しy軸方向に幅を備える壁部80zによって、x軸方向に隣接する第1バスバ20Azと第1バスバ20Bzとが絶縁される。
 このように構成される第3実施形態により以下の効果を得ることができる。
 第3実施形態の電力変換ユニット100によれば、ターミナル40及び筐体30の底部31と一体となって形成される壁部80が設けられる。壁部80は、第1バスバ20Aと第1バスバ20Bとの間、及び、第2バスバ50Aと第2バスバ50Bとの間を絶縁する。このように構成されることで、壁部80を備えない場合と比較すると、衝撃や意図しない導電性部材の付着などにより、第1バスバ20Aと第1バスバ20Bと、及び、第2バスバ50Aと第2バスバ50Bとが接触するおそれを低減できる。
 さらに、壁部80は、底部31、及び、ターミナル40と一体に樹脂により形成されるため、配置の自由度が高い。そのため、第2ボルト51A、51Bによる締結点の近傍に限らず、電力変換モジュール10とターミナル40との間の所望の場所に壁部80を配置することができる。
 さらに、第2ボルト51A、51Bによる締結は、第2ボルト51A、51Bがターミナル40に対してy軸負の方向に押し付けられた状態で行われる。しかしながら、ターミナル40がさらに壁部80と一体となって構成されるため、ターミナル40の強度を向上するので製造不良を低減することができる。具体的には、ターミナル40がy軸方向に幅を備える壁部80zと一体となることで、ターミナル40のy軸方向の強度を向上させることができる。
 (第4実施形態)
 第1乃至第3実施形態において、電力変換モジュール10が空冷される例について説明したが、これに限らない。第4実施形態においては、筐体30の底部31などに冷媒流路が設けられ、電力変換モジュール10が冷媒によって冷却される例について説明する。
 図6は、第4実施形態の電力変換ユニット100のxz平面における断面図である。
 この図に示されるように、筐体30の底部31及びターミナル40は、一体となって構成される冷媒の流路90を備える。より詳細には、底部31において、z方向に厚みを持ちxy平面方向に設けられる第1流路91と、ターミナル40及び底部31においてz軸方向に延在するように設けられる第2流路92とが設けられる。流路90は、筐体30及びターミナル40の外部と連通する流入口(不図示)及び流出口(不図示)と接続され、流入口及び流出口を介して外部に設けられる冷却装置(不図示)と冷媒を循環可能に構成される。このように流路90が構成されることで、底部31の上面を介して電力変換モジュール10が冷却されるとともに、ターミナル40を介して第1バスバ20A、20B、及び、第2バスバ50A、50Bが冷却される。
 図7は、比較例の電力変換ユニット100の断面図である。この比較例においては、図3に示された比較例と同様に、底部31は金属の別体として設けられている。底部31は金属製のため、内部に第1流路91を設けるのは難しい。そのため、底部31の上面(z軸正方向側の面)において、電力変換モジュール10の底面と接触するように開口や溝を形成し、その開口や溝を第1流路91として用いる。電力変換モジュール10と底部31との界面においては、冷媒の漏洩を防ぐために流路90を取り囲むようにシーリング部材93が設けられる。これに対し、本実施形態においては、一体となって構成される底部31及びターミナル40の内部に第1流路91を設けることで、シーリング部材93が不要である。
 このように構成される第4実施形態により以下の効果を得ることができる。
 第4実施形態に示される電力変換ユニット100によれば、底部31がターミナル40と一体となって樹脂で形成されることにより、底部31が金属で構成される場合と比較すると、底部31及びターミナル40の内部に流路90を設けることが比較的容易になる。
 また、底部31が上面に開口する第1流路91を有する図7の比較例と比較すると、シーリング部材93が不要となり構成を簡略化できる。また、流路90を電力変換モジュール10と接触させる必要がなくなり、流路90の設計の自由度を向上させることができる。
 また、外部機器200から伝わる熱は、精密機器である電力変換モジュール10に対して第2バスバ50を介して到達する前に、ターミナル40において冷却される。そのため、許容限界温度が高い高性能な電力変換ユニット100と、発熱量が大きい高出力な外部機器200とを組み合わせることが可能となり、電力変換ユニット100と外部機器200とからなるユニットの性能向上を実現できる。
 (第1変形例)
 第4実施形態においては、筐体30の底部31及びターミナル40には、一体となって構成される流路90を備えたがこれに限らない。第1変形例においては流路90の他の構成について説明する。
 図8は、第1変形例の電力変換ユニット100のxz平面における断面図である。
 この図によれば、図6に示された第4実施形態と比較すると、ターミナル40内に設けられた第2流路92が省略されている。底部31に設けられる第1流路91がターミナル40の近傍まで延設されているので、底部31と一体形成されたターミナル40が冷却され、第1バスバ20A、20Bの温度上昇が抑制される。
 このような第1変形例の電力変換ユニット100によれば、ターミナル40内に図6に示される第2流路92を設けなくても、ターミナル40の近傍まで延設された第1流路91によってターミナル40が冷却される。そのため、ターミナル40の構成を単純化できるとともに、電力変換ユニット100と外部機器200との間の熱伝導の遮断による一体型ユニットの性能向上を図ることができる。
 (第2変形例)
 第1変形例においては、ターミナル40が第2流路82を有さない例について説明した。第2変形例においては、ターミナル40が第2流路82を有さない場合の他の構成について説明する。
 図9は、第2変形例の電力変換ユニット100のxz平面における断面図である。
 この図によれば、図8に示された第1変形例と比較すると、ターミナル40内に第1流路81内にまで到達する金属体93が設けられている。
 このような第2変形例の電力変換ユニット100によれば、ターミナル40内に金属体93が設けられるので、図6のように第2流路92が設けられる場合と比較するとターミナル40の強度が上がるので第2ボルト51Aによる締結時における変形を抑制できる。さらに、熱伝導率の高い金属で構成される金属体93が第1流路91まで到達することにより、金属体93を介してターミナル40が冷却されるので、第1バスバ20A、20Bの温度上昇が抑制されて、一体型ユニットの性能向上を図ることができる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。また、上記実施形態は、適宜組み合わせ可能である。

Claims (7)

  1.  直流と交流との電力の変換を行う電力変換モジュールと、
     前記電力変換モジュールに接続され、前記電力の入出力を行う第1バスバと、
     前記電力変換モジュールを収容する筐体と、
     前記第1バスバと、外部機器に接続される第2バスバとの接続を行うターミナルと、を有する電力変換ユニットであって、
     前記ターミナル、及び、前記筐体の少なくとも一部は、一体となって樹脂により形成される、電力変換ユニット。
  2.  請求項1に記載の電力変換ユニットであって、
     前記ターミナルは、前記筐体の外に設けられる、電力変換ユニット。
  3.  請求項2に記載の電力変換ユニットであって、
     前記ターミナルは、前記外部機器に設けられた凹部の内側に収容される、電力変換ユニット。
  4.  請求項1から3のいずれか1項に記載の電力変換ユニットであって、
     前記第1バスバ、及び、前記第1バスバと接続される前記第2バスバは、複数設けられ、
     前記ターミナル及び前記筐体の少なくとも一部には、前記樹脂により形成され、複数の前記第1バスバの間、及び、複数の前記第2バスバの間を絶縁する壁部が一体的に形成される、電力変換ユニット。
  5.  請求項1から4のいずれか1項に記載の電力変換ユニットであって、
     前記筐体及び前記ターミナルの内部に、冷媒が流れる流路が形成される、電力変換ユニット。
  6.  請求項1から4のいずれか1項に記載の電力変換ユニットであって、
     前記筐体の内部に、冷媒が流れる流路が形成され、
     前記流路は、前記ターミナルの近傍まで延設される、電力変換ユニット。
  7.  請求項6に記載の電力変換ユニットであって、
     前記ターミナルは、内部に金属体を有し、
     前記金属体は、前記流路まで到達する、電力変換ユニット。
PCT/IB2018/000836 2018-07-03 2018-07-03 電力変換ユニッ卜 WO2020008222A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18925121.8A EP3820038A4 (en) 2018-07-03 2018-07-03 POWER CONVERSION UNIT
US17/257,380 US12051981B2 (en) 2018-07-03 2018-07-03 Power conversion unit
JP2020528524A JP7111161B2 (ja) 2018-07-03 2018-07-03 電力変換ユニット
CN201880094552.XA CN112262525A (zh) 2018-07-03 2018-07-03 电力转换单元
PCT/IB2018/000836 WO2020008222A1 (ja) 2018-07-03 2018-07-03 電力変換ユニッ卜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2018/000836 WO2020008222A1 (ja) 2018-07-03 2018-07-03 電力変換ユニッ卜

Publications (1)

Publication Number Publication Date
WO2020008222A1 true WO2020008222A1 (ja) 2020-01-09

Family

ID=69059352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2018/000836 WO2020008222A1 (ja) 2018-07-03 2018-07-03 電力変換ユニッ卜

Country Status (5)

Country Link
US (1) US12051981B2 (ja)
EP (1) EP3820038A4 (ja)
JP (1) JP7111161B2 (ja)
CN (1) CN112262525A (ja)
WO (1) WO2020008222A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020099135A (ja) * 2018-12-18 2020-06-25 株式会社デンソー 電力変換ユニット
WO2023148501A1 (en) 2022-02-03 2023-08-10 C4X Discovery Limited Heterocyclic derivatives as malt1 inhibitors

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7255453B2 (ja) * 2019-11-06 2023-04-11 株式会社オートネットワーク技術研究所 回路構成体

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008245437A (ja) * 2007-03-28 2008-10-09 Hitachi Ltd アクチュエータ制御装置及び電動ブレーキ装置
JP2010129582A (ja) * 2008-11-25 2010-06-10 Yaskawa Electric Corp 電子機器および電子機器の製造方法
WO2012124074A1 (ja) * 2011-03-16 2012-09-20 トヨタ自動車株式会社 基板ユニット
JP2013084800A (ja) * 2011-10-11 2013-05-09 Panasonic Corp 電力変換装置
WO2014162712A1 (ja) * 2013-04-04 2014-10-09 パナソニック株式会社 電力変換装置およびジャンクションボックス
JP2016092931A (ja) 2014-10-31 2016-05-23 株式会社安川電機 駆動装置及びそれを備える乗り物
JP2017098418A (ja) * 2015-11-25 2017-06-01 株式会社オートネットワーク技術研究所 回路構成体、電気接続箱及び回路構成体の製造方法
JP2017195703A (ja) * 2016-04-20 2017-10-26 矢崎総業株式会社 電気接続箱

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3693245B2 (ja) * 2001-12-11 2005-09-07 株式会社デンソー 車両用電力用回路装置およびその製造方法
JP3760887B2 (ja) * 2002-04-26 2006-03-29 株式会社デンソー 車両用インバータ一体型モータ
JP3984579B2 (ja) * 2003-09-16 2007-10-03 株式会社オートネットワーク技術研究所 インバータ用コネクタ装置
JP4464806B2 (ja) * 2004-12-08 2010-05-19 三菱電機株式会社 電力変換装置
JP5506749B2 (ja) * 2011-07-25 2014-05-28 日立オートモティブシステムズ株式会社 電力変換装置
JP5893312B2 (ja) * 2011-09-27 2016-03-23 株式会社ケーヒン 半導体制御装置
CN103023279B (zh) 2011-09-27 2015-05-13 株式会社京浜 半导体控制装置
JP2014236604A (ja) 2013-06-03 2014-12-15 株式会社デンソー 電力変換装置
JP2016100943A (ja) 2014-11-19 2016-05-30 株式会社ケーヒン 電力変換装置
JP6327174B2 (ja) * 2015-02-20 2018-05-23 株式会社安川電機 駆動装置
JP6645024B2 (ja) 2015-04-01 2020-02-12 日立金属株式会社 配線部材
KR102131684B1 (ko) * 2016-04-28 2020-07-08 닛산 지도우샤 가부시키가이샤 차량 탑재용 전력 변환 장치
CN113330679A (zh) * 2019-02-18 2021-08-31 日产自动车株式会社 电力变换装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008245437A (ja) * 2007-03-28 2008-10-09 Hitachi Ltd アクチュエータ制御装置及び電動ブレーキ装置
JP2010129582A (ja) * 2008-11-25 2010-06-10 Yaskawa Electric Corp 電子機器および電子機器の製造方法
WO2012124074A1 (ja) * 2011-03-16 2012-09-20 トヨタ自動車株式会社 基板ユニット
JP2013084800A (ja) * 2011-10-11 2013-05-09 Panasonic Corp 電力変換装置
WO2014162712A1 (ja) * 2013-04-04 2014-10-09 パナソニック株式会社 電力変換装置およびジャンクションボックス
JP2016092931A (ja) 2014-10-31 2016-05-23 株式会社安川電機 駆動装置及びそれを備える乗り物
JP2017098418A (ja) * 2015-11-25 2017-06-01 株式会社オートネットワーク技術研究所 回路構成体、電気接続箱及び回路構成体の製造方法
JP2017195703A (ja) * 2016-04-20 2017-10-26 矢崎総業株式会社 電気接続箱

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3820038A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020099135A (ja) * 2018-12-18 2020-06-25 株式会社デンソー 電力変換ユニット
JP7099300B2 (ja) 2018-12-18 2022-07-12 株式会社デンソー 電力変換ユニット
WO2023148501A1 (en) 2022-02-03 2023-08-10 C4X Discovery Limited Heterocyclic derivatives as malt1 inhibitors

Also Published As

Publication number Publication date
US20210376750A1 (en) 2021-12-02
JPWO2020008222A1 (ja) 2021-08-02
CN112262525A (zh) 2021-01-22
EP3820038A1 (en) 2021-05-12
JP7111161B2 (ja) 2022-08-02
EP3820038A4 (en) 2021-07-14
US12051981B2 (en) 2024-07-30

Similar Documents

Publication Publication Date Title
US8963322B2 (en) Electric power conversion apparatus
JP5158176B2 (ja) 電力変換装置
JP5423654B2 (ja) 電力変換装置
JP5644712B2 (ja) 電源装置
US8724313B2 (en) Power conversion apparatus
JP5423655B2 (ja) 電力変換装置
WO2020008222A1 (ja) 電力変換ユニッ卜
WO2014061447A1 (ja) 電力変換装置
JP5024169B2 (ja) 電力変換装置
JP6429889B2 (ja) 電力変換装置
JP2014072938A (ja) 電力変換装置
US10461656B2 (en) Power conversion device having a cover that covers DC positive and negative terminals
JP5521978B2 (ja) 電力変換装置
JP6945671B2 (ja) 電力変換装置
JP6641463B2 (ja) 電力変換装置
JP6065815B2 (ja) 電力変換装置
KR20170055605A (ko) 커패시터 직접냉각방식의 인버터
CN115224955A (zh) 功率转换装置
JP2021119740A (ja) 電力変換装置
WO2023162052A1 (ja) 電力変換装置
JP2019126203A (ja) 電力変換装置
JP2024020757A (ja) 電力変換装置
JP2021106436A (ja) 駆動回路ユニット及び車両
JP2020089186A (ja) 電力変換装置
JP2019080004A (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18925121

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020528524

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018925121

Country of ref document: EP

Effective date: 20210203