WO2020004641A1 - 光学フィルタおよび情報取得装置 - Google Patents

光学フィルタおよび情報取得装置 Download PDF

Info

Publication number
WO2020004641A1
WO2020004641A1 PCT/JP2019/025903 JP2019025903W WO2020004641A1 WO 2020004641 A1 WO2020004641 A1 WO 2020004641A1 JP 2019025903 W JP2019025903 W JP 2019025903W WO 2020004641 A1 WO2020004641 A1 WO 2020004641A1
Authority
WO
WIPO (PCT)
Prior art keywords
dye
wavelength
transmittance
optical filter
layer
Prior art date
Application number
PCT/JP2019/025903
Other languages
English (en)
French (fr)
Inventor
長谷川 誠
和彦 塩野
崇 長田
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2020527695A priority Critical patent/JP7279718B2/ja
Priority to CN201980021777.7A priority patent/CN111936896B/zh
Publication of WO2020004641A1 publication Critical patent/WO2020004641A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/14Styryl dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters

Definitions

  • the present invention relates to an optical filter that sufficiently transmits a visible wavelength region and blocks light in a near-infrared wavelength region, and an information acquisition device including the optical filter.
  • an in-vehicle system having an information device such as a camera is mounted in a vehicle, and information signals such as road conditions are transmitted and received via a glass plate (for example, a windshield of the vehicle).
  • information acquisition devices such as cameras and sensors
  • Oncoming vehicles, preceding vehicles, pedestrians, traffic signs, lane boundaries Various driving assistances such as recognizing a line or the like and notifying the driver of danger can be performed.
  • a camera using a solid-state image sensor transmits light in the visible region (hereinafter, also referred to as “visible light”) and transmits light in the near-infrared region (hereinafter, “near-infrared light”) in order to reproduce color tone well and obtain a clear image. ) Is used.
  • a light absorption type glass filter that selectively absorbs light in the near infrared region.
  • the glass filter has problems that it is difficult to reduce the thickness and that the absorption peak is broad, and that visible light is absorbed to some extent in order to sufficiently absorb near-infrared light.
  • an optical filter that does not affect the transmittance of visible light has been required.
  • a technique has been developed in which a dielectric multilayer film is provided on a substrate to reflect and shield near-infrared light by light interference (for example, see Patent Document 1).
  • the near-infrared light can be blocked without substantially affecting the transmittance of visible light.
  • the dependence of the spectral transmittance curve on the incident angle depends on the incident angle, near-infrared light that should have high reflectance at high incident angles has high light transmittance, and near red light reflected by the dielectric multilayer film
  • the problem is that noise due to external light is generated. Therefore, there has been a demand for an optical filter that blocks near-infrared light without substantially affecting the transmittance of visible light and without depending on the incident angle.
  • An optical filter includes an absorption layer, a reflection layer, and a transparent substrate, and satisfies the following requirements (1) to (4).
  • the spectral transmittance curve at an incident angle of 0 ° has a wavelength at which the transmittance becomes 50% in a wavelength region of 640 nm to 760 nm.
  • the average transmittance at a wavelength of 750 nm to 1100 nm is 3% or less.
  • the spectral transmittance curve at an incident angle of 0 ° has a wavelength at which the transmittance becomes 50% in a wavelength region of 400 nm to 420 nm.
  • the average transmittance at a wavelength of 640 nm to 660 nm is 68% or more, and the minimum transmittance is 65% or more.
  • the present invention also provides an information acquisition device provided with the optical filter of the present invention.
  • the present invention while maintaining the transmittance
  • the obtained optical filter is obtained. Further, according to the present invention, it is possible to provide an information acquisition device such as a camera or a sensor that is excellent in color reproducibility, particularly red reproducibility, using the optical filter.
  • FIG. 1 is a cross-sectional view schematically illustrating an example of an optical filter according to an embodiment.
  • FIG. 2 is a cross-sectional view schematically illustrating another example of the optical filter according to the embodiment.
  • FIG. 3 is a cross-sectional view schematically illustrating another example of the optical filter according to the embodiment.
  • FIG. 4 is a cross-sectional view schematically illustrating another example of the optical filter according to the embodiment.
  • FIG. 5 shows spectral transmittance curves of the optical filter of Example 1 at various incident angles.
  • FIG. 6 shows spectral transmittance curves of the optical filter of Example 2 at various incident angles.
  • FIG. 7 shows spectral transmittance curves of the optical filter of Example 3 at various incident angles.
  • FIG. 8 shows the spectral transmittance curves of the optical filter of Example 4 at various incident angles.
  • NIR dye near-infrared absorbing dye
  • UV dye ultraviolet absorbing dye
  • the compound represented by the formula (I) is referred to as compound (I).
  • the dye comprising the compound (I) is also referred to as dye (I), and the same applies to other dyes.
  • a compound represented by the formula (A1) described below is referred to as a compound (A1), and a dye including the compound is also referred to as a dye (A1).
  • a transmittance of, for example, 90% or more means that the transmittance does not fall below 90% in the entire wavelength region.
  • a transmittance of, for example, 1% or less means that It means that the transmittance does not exceed 1% in the entire wavelength region.
  • “to” indicating a numerical range includes upper and lower limits.
  • the average transmittance is an arithmetic mean of transmittances measured at a specific wavelength interval (for example, 1 nm) in the entire wavelength range.
  • An optical filter according to an embodiment of the present invention (hereinafter, also referred to as “the present filter”) includes an absorbing layer, a reflecting layer, and a transparent substrate, and satisfies the following requirements (1) to (4).
  • the spectral transmittance curve at an incident angle of 0 ° has a wavelength at which the transmittance becomes 50% in a wavelength region of 640 nm to 760 nm.
  • the average transmittance at a wavelength of 750 nm to 1100 nm is 3% or less.
  • the spectral transmittance curve at an incident angle of 0 ° has a wavelength at which the transmittance becomes 50% in a wavelength region of 400 nm to 420 nm.
  • the average transmittance at a wavelength of 640 nm to 660 nm is 68% or more, and the minimum transmittance is 65% or more.
  • the present filter is an optical filter that satisfies the requirements of (1) to (4) and has excellent near-infrared light shielding property while maintaining good transmission of visible light, particularly red light. is there. Further, the present filter has an absorption layer, a reflection layer, and a transparent substrate, and is an optical filter in which a decrease in spectral characteristics at a high incident angle, for example, generation of light leakage or noise in the near infrared region is suppressed. It is. It is preferable that the present filter satisfies all of the requirements (1) to (4).
  • the requirement (1) is an index for setting a boundary on a long wavelength side of a transmission region in a visible region. From the relationship with the requirement (4), if there is a wavelength at which the transmittance becomes 50% in the wavelength region of 640 nm to 760 nm (hereinafter, referred to as “ ⁇ LO50-0 ”), the vicinity of the boundary with the near infrared region It can be evaluated as having high transparency up to a long wavelength region (red light).
  • ⁇ LO50-0 is preferably in a wavelength range of 680 nm to 720 nm, and more preferably in a wavelength range of 690 nm to 710 nm.
  • the requirement (2) is an index for achieving low transmittance in the near infrared region.
  • T 750-1100AVE When the average transmittance at a wavelength of 750 nm to 1100 nm (hereinafter referred to as “T 750-1100AVE ”) is 3% or less, it can be evaluated that the shielding property in the near infrared region is excellent.
  • T 750-1100AVE is preferably 1% or less.
  • the maximum transmittance in the same wavelength band is preferably 1% or less. 0.5% or less is more preferable.
  • the requirement (3) is an index for setting a boundary on the short wavelength side of the transmission region in the visible region. If there is a wavelength at which the transmittance becomes 50% in the wavelength region of 400 nm to 420 nm (hereinafter referred to as “ ⁇ SH50-0 ”), high transmittance is obtained up to a short wavelength region near the boundary with the near ultraviolet region. Then you can evaluate.
  • ⁇ SH50-0 is preferably in a wavelength range of 405 nm to 415 nm.
  • the requirement (4) is an index for achieving high transmittance of red light in the visible region.
  • the average transmittance (hereinafter, referred to as “ T640-660AVE ”) at a wavelength of 640 nm to 660 nm is 68% or more
  • the minimum transmittance (hereinafter, referred to as “ T640-660MIN ”) is 65% or more.
  • T 640-660AVE is preferably at least 70%, more preferably at least 80%.
  • T640-660MIN is preferably at least 70%, more preferably at least 75%.
  • the spectral transmittance curve at an incident angle of 0 ° has a wavelength ⁇ LO50-0 at which the transmittance becomes 50% in a wavelength range of 640 nm to 760 nm, and the spectral transmittance curve at an incident angle of 35 ° indicates a wavelength of 640 nm to 640 nm. It has a wavelength ⁇ LO50-35 at which the transmittance becomes 50% in the wavelength region of 760 nm, and the absolute value
  • the requirement (5) is an index that measures the incident angle dependence on the long wavelength side of the transmission region in the visible region. If
  • the filter preferably has heat resistance and light resistance depending on the intended use.
  • the filter when the filter is used in an information acquisition device such as a camera or a sensor and is mounted on a vehicle, the filter preferably has heat resistance and light resistance according to a use environment.
  • the absorption layer and the reflection layer are provided on the main surface of the transparent substrate.
  • the absorption layer and the reflection layer may be provided on the same main surface of the transparent substrate, or may be provided on different main surfaces.
  • the order of lamination is not particularly limited.
  • the present filter may include a plurality of absorption layers and a plurality of reflection layers. When a plurality of absorption layers and a plurality of reflection layers are provided, the main surface of the transparent substrate on which each layer is provided may be any main surface, and the order of lamination is not particularly limited.
  • the filter may have another functional layer.
  • another functional layer for example, an anti-reflection layer for suppressing a loss in transmittance of visible light may be mentioned.
  • an anti-reflection layer for suppressing a loss in transmittance of visible light may be mentioned.
  • FIG. 1 is a configuration example of an optical filter 10 ⁇ / b> A having a transparent substrate 13, an absorption layer 11 disposed on one main surface of the transparent substrate 13, and a reflective layer 12 provided on the other main surface of the transparent substrate 13. is there.
  • the phrase “provided with the absorption layer 11 on one main surface (upper) of the transparent substrate 13” is not limited to the case where the absorption layer 11 is provided in contact with the transparent substrate 13. Including the case where another functional layer is provided.
  • FIG. 2 shows an optical filter 10B including an absorption layer 11 on one main surface of a transparent substrate 13 and reflection layers 12a and 12b on the other main surface of the transparent substrate 13 and the main surface of the absorption layer 11. It is a structural example.
  • FIG. 3 shows an example of the configuration of an optical filter 10C having absorption layers 11a and 11b on both main surfaces of a transparent substrate 13 and reflection layers 12a and 12b on the main surfaces of the absorption layers 11a and 11b.
  • the two reflective layers 12a and 12b to be combined may be the same or different.
  • the reflective layers 12a and 12b reflect ultraviolet light and near-infrared light and have a property of transmitting visible light
  • the reflective layer 12a reflects ultraviolet light and light in the first near-infrared region
  • the reflection layer 12b may be configured to reflect ultraviolet light and light in the second near-infrared region.
  • the two absorbing layers 11a and 11b may be the same or different.
  • each of the absorption layers 11a and 11b may be a combination of a near infrared absorption layer and an ultraviolet absorption layer, or a combination of an ultraviolet absorption layer and a near infrared absorption layer.
  • FIG. 4 is an example of the configuration of an optical filter 10D having an antireflection layer 14 on the main surface of the absorption layer 11 of the optical filter 10A shown in FIG.
  • an antireflection layer may be provided on the absorption layer.
  • the antireflection layer may be configured to cover not only the outermost surface of the absorption layer but also the entire side surface of the absorption layer. In that case, the moisture-proof effect of the absorbing layer can be enhanced.
  • the present filter is designed to satisfy the characteristics (1) to (4) by, for example, the absorption characteristics of the absorption layer and the reflection characteristics of the reflection layer. Further, in addition to the above, the present filter may be designed to satisfy the characteristics (1) to (4) by giving the transparent substrate an absorbing ability for ultraviolet light and / or near infrared light.
  • the present filter preferably has an absorption layer containing an NIR dye as the absorption layer.
  • the absorption layer containing the NIR dye is typically a layer in which the NIR dye is uniformly dissolved or dispersed in a transparent resin.
  • One NIR dye may be used alone, or two or more NIR dyes may be used in combination.
  • the absorbing layer may further contain a dye other than the NIR dye, particularly a UV dye, as long as the effects of the present invention are not impaired.
  • the absorption layer may be, for example, an absorption layer composed of a plurality of layers, with the layer containing the NIR dye and the layer containing the UV dye being different layers.
  • NIR dyes As NIR dyes, squarylium dyes, cyanine dyes, phthalocyanine dyes, naphthalocyanine dyes, dithiol metal complex dyes, azo dyes, polymethine dyes, phthalide dyes, naphthoquinone dyes, anthraquinone dyes, indophenol dyes, pyrylium dyes, thiopyrylium dyes, At least one member selected from the group consisting of a cloconium dye, a tetrahydroquinoline dye, a triphenylmethane dye, an aminium dye and a diimonium dye is preferable.
  • NIR dyes squarylium dyes and cyanine dyes are preferred from the viewpoint of spectrum, and phthalocyanine dyes are preferred from the viewpoint of durability.
  • the transmittance of visible light particularly the transmittance on the long wavelength side of visible light
  • the NIR dye specifically, an NIR dye (A) having the following characteristics (i-1) to (i-5) (hereinafter, simply referred to as "dye (A)") is preferable.
  • the transparent resin having the following characteristics is a transparent resin contained in the absorption layer together with the dye (A).
  • the spectral characteristics (i-1) to (i-5) are characteristics at an incident angle of 0 °. The spectral characteristics of the dye (A) do not depend on the incident angle.
  • the maximum absorption wavelength ⁇ max (A) TR is in a wavelength range of 740 to 900 nm.
  • I-2 A wavelength of 435 to 480 nm in a spectral transmittance curve of a wavelength of 400 to 1100 nm, which is measured by including a transparent resin so that the transmittance at a maximum absorption wavelength ⁇ max (A) TR becomes 10%.
  • the average transmittance T 435-480 ave (A) TR of light in the region and the average transmittance T 480-590ave (A) TR for light in the wavelength region of 480-590 nm are both 90% or more.
  • the dye (A) preferably further has the following property (i-6).
  • the “mass extinction coefficient” of the dye is the mass extinction coefficient calculated by the above method.
  • the dye (A) has a maximum absorption wavelength ⁇ max (A) TR in the wavelength region of 740 to 900 nm in (i-1).
  • the maximum absorption wavelength ⁇ max (A) TR is preferably in a wavelength range of 740 to 860 nm.
  • the dye (A) has an average transmittance T 435-480ave (A) TR and an average transmittance T 480-590ave (A) TR of 90% or more in (i-2).
  • the average transmittance T 435-480ave (A) TR is preferably 91% or more, and the average transmittance T 480-590ave (A) TR is preferably 92% or more.
  • the dye (A) has a maximum absorption wavelength ⁇ max (A) DCM in the wavelength region of 730 to 900 nm in (i-3).
  • the maximum absorption wavelength ⁇ max (A) DCM is preferably in a wavelength range of 730 to 860 nm.
  • the dye (A) has an average transmittance T 435-480 ave (A) DCM of 90% or more and an average transmittance T 480-590 ave (A) DCM of 93% or more in (i-4).
  • the average transmittance T 435-480ave (A) DCM is preferably at least 93%, more preferably at least 95%.
  • the average transmittance T480-590ave (A) DCM is preferably at least 95%, more preferably at least 97%.
  • the dye (A) is different from the average transmittance T 435-480 ave (A) DCM and the average transmittance T 435-480 ave (A) TR and the average transmittance T 480-590 ave (A) DCM in (i-5). And the average transmittance T480-590ave (A) TR are both 10.5% or less.
  • the difference in the average transmittance T 435-480ave (A) DCM and the average transmittance T 435-480ave (A) TR is preferably 7% or less, the average transmittance T 480-590ave (A) DCM and the average transmittance T 480-
  • the difference of 590ave (A) TR is preferably 5% or less.
  • satisfying (i-5) means that the transmittance of visible light in dichloromethane can be maintained even in a transparent resin used in an optical filter.
  • a dye having a large maximum absorption wavelength also contributes to association, and it is difficult to reproduce sharp spectrum in dichloromethane in a transparent resin.
  • the dye (A) satisfies the above conditions (i-1) to (i-5), so that the dye (A) has a light absorption characteristic having a large maximum absorption wavelength and a high transmittance of visible light in dichloromethane. Can be maintained even in a transparent resin.
  • the dye (A) in (i-6) has a mass extinction coefficient of preferably 1000 / (cm ⁇ mass%) or more, more preferably 1500 / (cm ⁇ mass%) or more, and 1900 / (cm ⁇ mass%). ) Is more preferred.
  • the dye (A) preferably has heat resistance and light resistance in addition to the above-described optical characteristics, although it depends on the use of the imaging device or the like to which the present filter is applied.
  • the filter when the filter is used in an information acquisition device such as a camera or a sensor and is mounted on a vehicle, the filter preferably has heat resistance and light resistance according to a use environment.
  • the heat resistance and light resistance may be satisfied by one kind of dye, or may be satisfied by interaction of two or more kinds of plural dyes.
  • the molecular structure of the dye (A) is not particularly limited as long as the requirements of (i-1) to (i-5) are satisfied.
  • the dye (A) at least one selected from a squarylium dye, a cyanine dye and a phthalocyanine dye is preferable.
  • the dye (A) specifically, at least one selected from a cyanine dye represented by the following formula (A1) or (A2) and a squarylium dye represented by the following formula (II) is preferable.
  • R 101 to R 109 and R 121 to R 131 each independently represent a hydrogen atom, a halogen atom, an alkyl group or an alkoxy group having 1 to 15 carbon atoms which may have a substituent, or a C 5 to C 20 group; Indicates an aryl group.
  • R 110 to 114 and R 132 to 136 each independently represent a hydrogen atom, a halogen atom, or an alkyl or alkoxy group having 1 to 15 carbon atoms.
  • X - is a monovalent anion.
  • n1 and n2 are each independently 0 or 1.
  • the hydrogen atom bonded to the carbocycle containing — (CH 2 ) n1 — and the carbocycle containing — (CH 2 ) n2 — is a halogen atom or an alkyl group having 1 to 15 carbon atoms which may have a substituent. Alternatively, it may be substituted with an aryl group having 5 to 20 carbon atoms.
  • Each of the two rings Z is independently a 5- or 6-membered ring having 0 to 3 heteroatoms in the ring and optionally substituted; R 1 and R 2 , R 2 and R 3 , and R 1 and a carbon atom or a hetero atom constituting ring Z are connected to each other to form a heterocycle A1, a heterocycle B1 and a heterocycle C1 together with a nitrogen atom.
  • R 1 and R 2 each independently represent a hydrogen atom, a halogen atom or an unsaturated bond between carbon atoms, a hetero atom, a saturated or unsaturated
  • R 3 and R 4 may each independently include a hydrogen atom, a halogen atom, or a hetero atom between carbon atoms. Shows an alkyl group or an alkoxy group.
  • the alkyl group (including the alkyl group of the alkoxy group) may be linear, and may have a branched structure or a saturated ring structure.
  • the aryl group refers to a group bonded via a carbon atom constituting an aromatic ring of an aromatic compound, for example, a benzene ring, a naphthalene ring, a biphenyl, a furan ring, a thiophene ring, a pyrrole ring, and the like.
  • Examples of the optionally substituted alkyl or alkoxy group having 1 to 15 carbon atoms or the aryl group having 5 to 20 carbon atoms include a halogen atom and an alkoxy group having 1 to 10 carbon atoms. .
  • R 102 to R 105 , R 108 , R 109 , R 122 to R 127 , R 130 and R 131 each independently represent a hydrogen atom, an alkyl group having 1 to 15 carbon atoms or An alkoxy group or an aryl group having 5 to 20 carbon atoms is preferable, and a hydrogen atom is more preferable from the viewpoint of obtaining high visible light transmittance.
  • each of R 110 to R 114 and R 132 to R 136 is independently preferably a hydrogen atom or an alkyl group having 1 to 15 carbon atoms, from which a high visible light transmittance can be obtained. To a hydrogen atom.
  • R 106 , R 107 , R 128 and R 129 each independently represent a hydrogen atom, an alkyl group having 1 to 15 carbon atoms, or an aryl group having 5 to 20 carbon atoms (including a linear, cyclic or branched alkyl group; Or a hydrogen atom or an alkyl group having 1 to 15 carbon atoms. Further, R 106 and R 107 and R 128 and R 129 are preferably the same group.
  • R 101 and R 121 are preferably an alkyl group having 1 to 15 carbon atoms or an aryl group having 5 to 20 carbon atoms, and have a branch from the viewpoint of maintaining a high visible light transmittance in a transparent resin as in a solution.
  • An alkyl group having 1 to 15 carbon atoms is more preferable.
  • Examples of X ⁇ include I ⁇ , BF 4 ⁇ , PF 6 ⁇ , ClO 4 ⁇ , and an anion represented by the formula (X1) or (X2).
  • BF 4 ⁇ or PF 6 ⁇ is there.
  • a portion other than R 101 to R 114 in the dye (A1) is also referred to as a skeleton (A1). The same applies to other dyes.
  • R 101 to R 114 and X ⁇ are the same as in the case of the formula (A1).
  • R 115 to R 120 each independently represent a hydrogen atom, a halogen atom, an optionally substituted alkyl or alkoxy group having 1 to 15 carbon atoms, or an aryl group having 5 to 20 carbon atoms.
  • R 115 to R 120 are each independently preferably a hydrogen atom, an alkyl group having 1 to 15 carbon atoms, or an aryl group having 5 to 20 carbon atoms (which may include a linear, cyclic, or branched alkyl group); A hydrogen atom or an alkyl group having 1 to 15 carbon atoms is more preferred. Further, R 115 to R 120 are preferably the same group.
  • R 121 to R 136 and X ⁇ are the same as in the case of the formula (A2).
  • R 137 to R 142 each independently represent a hydrogen atom, a halogen atom, an optionally substituted alkyl or alkoxy group having 1 to 15 carbon atoms, or an aryl group having 5 to 20 carbon atoms.
  • Each of R 137 to R 142 is independently preferably a hydrogen atom, an alkyl group having 1 to 15 carbon atoms, or an aryl group having 5 to 20 carbon atoms (which may include a linear, cyclic, or branched alkyl group). An atom or an alkyl group having 1 to 15 carbon atoms is more preferred. Further, R 137 to R 142 are preferably the same group.
  • each of the atoms or groups bonded to each skeleton is represented by the following Tables 1 to And a compound which is an atom or a group represented by 4.
  • R 101 to R 109 are the same on both sides of the formula.
  • R 121 to R 131 are the same on the right and left sides of the formula.
  • R 110 to R 114 in Tables 1 and 2 and R 132 to R 136 in Tables 3 and 4 each represent an atom or a group bonded to the central benzene ring in each formula, and when all five are hydrogen atoms, H ".
  • any one of R 110 to R 114 is a substituent and the other is a hydrogen atom, only combinations of the sign and the substituent are described.
  • the description of “R 112 —C (CH 3 ) 3 ” indicates that R 112 is —C (CH 3 ) 3 and the others are hydrogen atoms.
  • R 132 -R 136 The same applies to R 132 -R 136 .
  • R 115 to R 120 in Table 1 and R 137 to R 142 in Table 3 each represent an atom or a group bonded to the central cyclohexane ring in Formulas (A11) and (A21), and when all six are hydrogen atoms Described as "H".
  • R 115 to R 120 is a substituent and the other is a hydrogen atom, only combinations of the sign and the substituent are described. The same applies to R 137 -R 142.
  • R 115 to R 118 in Table 2 and R 137 to R 140 in Table 4 represent atoms or groups bonded to the central cyclopentane ring in Formulas (A12) and (A22), and all four are hydrogen atoms. The case was described as "H”. In the case where any one of R 115 to R 118 is a substituent and the other is a hydrogen atom, only the combination of the sign and the substituent is described. The same applies to R 137 -R 140 .
  • Tables 1 to 4 do not show X ⁇ , but in any of the compounds, X ⁇ is BF 4 ⁇ or PF 6 ⁇ .
  • the dye (A11-1) the case where X ⁇ is BF 4 ⁇ is referred to as dye (A11-1B), and the case where X ⁇ is PF 6 ⁇ is referred to as dye (A11-1P).
  • dye (A11-1B) the case where X ⁇ is PF 6 ⁇ is referred to as dye (A11-1P).
  • dye (A11-1P) the case where X ⁇ is PF 6 ⁇ is referred to as dye (A11-1P).
  • -C 3 H 7 and -C 4 H 9 represent a linear propyl group and a butyl group, respectively.
  • Dye (A11-1B), dye (A11-1P), dye (A11-2B), dye (A11-2P), dye (A11-3B), dye (A11-3P), dye (A11-4B), dye (A11-4P), dye (A11-5B), dye (A11-5P) and the like are preferable.
  • Dye (A12-1B), dye (A12-1P), dye (A12-2B), dye (A12-2P), dye (A12-3B), dye (A12-3P), dye (A12-4B), dye (A12-4P), dye (A12-5B), dye (A12-5P) and the like are preferable.
  • Dye (A21-1B), dye (A21-1P), dye (A21-2B), dye (A21-2P), dye (A21-3B), dye (A21-3P), dye (A21-4B), dye (A21-4P), dye (A21-5B), dye (A21-5P) and the like are preferable.
  • Dye (A22-1B), dye (A22-1P), dye (A22-2B), dye (A22-2P), dye (A22-3B), dye (A22-3P), dye (A22-4B), dye (A22-4P), dye (A22-5B), dye (A22-5P) and the like are preferable.
  • the dye (A1) and the dye (A2) have different skeletons as described above, and accordingly, the wavelength region of the maximum absorption wavelength ⁇ max (A) TR is different.
  • the maximum absorption wavelength ⁇ max (A1) TR is generally in the wavelength range of 740 to 830 nm, depending on the type and combination of the atoms and groups bonded to the skeleton (A1).
  • the maximum absorption wavelength ⁇ max (A2) TR is generally in the wavelength range of 800 to 900 nm, depending on the type and combination of the atoms and groups bonded to the skeleton (A2).
  • the maximum absorption wavelength ⁇ max (A1) TR differs between the case where n1 of the skeleton (A1) is 1 and the case where n1 is 0.
  • the maximum absorption wavelength ⁇ max (A11) TR is generally in the wavelength range of 740 to 800 nm, depending on the type and combination of atoms and groups bonded to the skeleton (A11).
  • the maximum absorption wavelength ⁇ max (A12) TR is generally in a wavelength range of 800 to 830 nm, depending on the type and combination of atoms and groups bonded to the skeleton (A12).
  • the maximum absorption wavelength ⁇ max (A2) TR is different when n2 is 1 and when n2 is 0.
  • the maximum absorption wavelength ⁇ max (A21) TR is generally in the wavelength range of 800 to 830 nm, depending on the type and combination of the atoms and groups bonded to the skeleton (A21).
  • the maximum absorption wavelength ⁇ max (A22) TR is generally in the wavelength range of 830 to 900 nm, depending on the type and combination of atoms and groups bonded to the skeleton (A22).
  • the dyes (A1) and (A2) are described in, for example, Dyes and pigments 73 (2007) 344-352 and J.I. It can be manufactured by the method described in Heterocyclic @ chem, 42, 959 (2005).
  • Examples of the dye (II) include compounds represented by any of formulas (II-1) to (II-3).
  • R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, or an alkyl having 1 to 15 carbon atoms which may have a substituent.
  • R 3 to R 6 each independently represent a hydrogen atom, a halogen atom, or an alkyl group having 1 to 10 carbon atoms which may have a substituent.
  • R 1 , R 4 and R 9 to R 12 each independently represent a hydrogen atom, a halogen atom or an alkyl having 1 to 15 carbon atoms which may have a substituent.
  • R 7 and R 8 each independently represent a hydrogen atom, a halogen atom, or an alkyl group having 1 to 5 carbon atoms which may have a substituent.
  • R 1 and R 2 in the dye (II-1) and the dye (II-2) each independently represent an alkyl group having 1 to 15 carbon atoms from the viewpoint of solubility in a transparent resin, transparency of visible light, and the like.
  • an alkyl group having 7 to 15 carbon atoms is more preferable, and at least one of R 1 and R 2 is more preferably an alkyl group having a branched chain having 7 to 15 carbon atoms, and both R 1 and R 2 have carbon atoms.
  • Alkyl groups with 8 to 15 branches are particularly preferred.
  • R 3 is independently preferably a hydrogen atom, a halogen atom, or an alkyl group having 1 to 3 carbon atoms from the viewpoints of solubility in a transparent resin, transparency of visible light, and the like, and preferably represents a hydrogen atom, a halogen atom, or a methyl group. More preferred.
  • R 4 is preferably a hydrogen atom or a halogen atom, and particularly preferably a hydrogen atom, from the viewpoint of the steepness of the change near the boundary between the visible region and the near infrared region.
  • R 5 in the dye (II-1) and R 6 in the dye (II-2) are each independently preferably a hydrogen atom, a halogen atom, or an alkyl group having 1 to 5 carbon atoms which may be substituted with a halogen atom.
  • a hydrogen atom, a halogen atom and a methyl group are more preferred.
  • examples of the dye (II-1) and the dye (II-2) include compounds shown in Tables 5 and 6 below.
  • —C 8 H 17 , —C 4 H 9 , and —C 6 H 13 represent a linear octyl group, a butyl group, and a hexyl group, respectively.
  • R 1 in the dye (II-3) is independently preferably an alkyl group having 1 to 15 carbon atoms, and is preferably an alkyl group having 1 to 10 carbon atoms from the viewpoint of solubility in a transparent resin, visible light transmittance, and the like. Is more preferable, and an ethyl group or an isopropyl group is particularly preferable.
  • R 4 is preferably a hydrogen atom or a halogen atom, and particularly preferably a hydrogen atom, from the viewpoints of visible light transmittance and ease of synthesis.
  • R 7 and R 8 are independently preferably a hydrogen atom, a halogen atom, or an alkyl group having 1 to 5 carbon atoms which may be substituted with a halogen atom, and more preferably a hydrogen atom, a halogen atom, or a methyl group. .
  • R 9 to R 12 are independently preferably a hydrogen atom, a halogen atom, or an alkyl group having 1 to 5 carbon atoms which may be substituted with a halogen atom.
  • Examples of —CR 9 R 10 —CR 11 R 12 — include divalent organic groups represented by the following formulas (11-1) to (11-5). —C (CH 3 ) 2 —CH (CH 3 ) — (11-1) —C (CH 3 ) 2 —CH 2 — (11-2) —C (CH 3 ) 2 —CH (C 2 H 5 ) — (11-3) —C (CH 3 ) 2 —C (CH 3 ) (nC 3 H 7 ) —... (11-4) —C (CH 3 ) (CH 2 —CH (CH 3 ) 2 ) —CH (CH 3 ) —... (11-5)
  • dye (II-3) include compounds having a substituent shown in Table 7 below.
  • the maximum absorption wavelength ⁇ max (II) TR is generally in the wavelength range of 740 to 770 nm, depending on the type and combination of atoms and groups bonded to the skeleton (II).
  • the dye (II-3) is preferable from the viewpoint of the sharpness of the absorption peak and the maximum absorption wavelength.
  • Dye (II) can be produced by a known method, for example, a method described in WO 2017/135359.
  • the absorbing layer may contain one type of the dye (A) alone, or may contain two or more types in combination.
  • each dye (A) has a different maximum absorption wavelength ⁇ max (A) TR .
  • the difference between the maximum absorption wavelengths ⁇ max (A) TR of the two or more dyes (A) is, for example, preferably in the range of 20 to 120 nm, and more preferably 20 to 100 nm, in that near infrared light can be widely absorbed.
  • the individual compounds do not necessarily have to have the properties of the dye (A), and may have the properties of the dye (A) as a mixture.
  • the dye (A) As a preferable combination of two or more kinds of the dye (A), the dye (II) or the dye (A11) having the maximum absorption wavelength on the relatively short wavelength side of the dye (A) is set as the dye S, and the dye (A) is set on the relatively long wavelength side.
  • the dye (A22) having the maximum absorption wavelength is defined as the dye L, and the dye (A12) or the dye (A21) having the maximum absorption wavelength between the dye S and the maximum absorption wavelength of the dye L is grouped into the dye M, It is preferable to select and combine two or more types of the dye (A) from different groups of the dye S, the dye M, and the dye L.
  • the dye S and the dye M there are a combination of the dye S and the dye M, a combination of the dye S and the dye L, a combination of the dye M and the dye L, and a combination of the dye S, the dye M, and the dye L.
  • one or more types may be selected for each group. For example, when combining the dye S, the dye M, and the dye L, two types are selected from the dye S, and one type is selected from the dye M and the dye L, and a total of four types of dyes (A) are used. You may.
  • One of the maximum absorption wavelengths ⁇ max (A) TR is preferably in a wavelength region of 740 to 770 nm, and 745 is preferable.
  • the wavelength is more preferably in the wavelength range of 765 to 765 nm, the other is preferably in the wavelength range of 765 to 785 nm, and more preferably in the wavelength range of 770 to 780 nm.
  • the maximum absorption wavelength ⁇ max (A) TR of the dye M is preferably in a wavelength range of 795 to 815 nm, more preferably in a wavelength range of 800 to 810 nm.
  • the maximum absorption wavelength ⁇ max (A) TR of the dye L is preferably in a wavelength range of 820 to 850 nm, more preferably in a wavelength range of 830 to 850 nm.
  • the content of the NIR dye in the absorption layer is an amount that satisfies (1) to (4) when the present filter is configured by combining the absorption layer with a reflective layer or a transparent substrate described below.
  • the content of the NIR dye in the absorbing layer is controlled by the viewpoint of shielding the near-infrared light while suppressing the visible light transmittance, suppressing the incident angle dependence of the reflecting layer with respect to light incident at a high angle, and improving the transparency of the transparent resin. From the viewpoint of solubility of the resin, the amount is preferably 0.1 to 20 parts by mass, more preferably 1 to 20 parts by mass, based on 100 parts by mass of the transparent resin. When two or more NIR dyes are used, the total content of each NIR dye is preferably within the above range.
  • UV dye when the absorption layer contains a UV dye, specific examples include an oxazole dye, a merocyanine dye, a cyanine dye, a naphthalimide dye, an oxadiazole dye, an oxazine dye, an oxazolidine dye, a naphthalic acid dye, and a styryl dye.
  • examples include anthracene dyes, cyclic carbonyl dyes, and triazole dyes. Of these, oxazole dyes and merocyanine dyes are preferred.
  • One UV dye may be used alone in the absorbing layer, or two or more UV dyes may be used in combination.
  • the UV dye a dye (U) satisfying the following requirement (v-1) is preferable.
  • V-1 In the spectral transmittance curve at a wavelength of 350 to 800 nm measured by dissolving in dichloromethane, the maximum absorption wavelength ⁇ max (U) DCM is in the wavelength region of 360 to 415 nm.
  • the maximum absorption wavelength ⁇ max (U) DCM of the dye (U) is more preferably in a wavelength range of 370 to 415 nm, and still more preferably in a wavelength range of 390 to 410 nm.
  • the content of the UV dye in the absorption layer is 0% with respect to 100 parts by mass of the transparent resin from the viewpoint of good ultraviolet shielding properties and the solubility in the transparent resin while securing the transmittance of visible light. It is preferably from 1 to 20 parts by mass, more preferably from 1 to 20 parts by mass. When two or more UV dyes are used, the total content of each UV dye is preferably within the above range.
  • the transparent resin used for the absorption layer is a resin that transmits at least visible light.
  • the transparent resin satisfies the above-mentioned properties (i-1), (i-2) and (i-5) in relation to the dye (A). Is preferred.
  • Transparent resin for example, acrylic resin, epoxy resin, ene thiol resin, polycarbonate resin, polyether resin, polyarylate resin, polysulfone resin, polyethersulfone resin, polyparaphenylene resin, polyarylene ether phosphine oxide resin,
  • a polyimide resin, a polyamide imide resin, a polyolefin resin, a cyclic olefin resin, a polyester resin and the like are used.
  • the transparent resin is preferably a polyester resin, a polycarbonate resin, a polyimide resin, or an acrylimide resin. These resins may be used alone or in a combination of two or more.
  • polyester resins such as OKP4HT, OKP4, B-OKP2, and OKP-850 (all of which are manufactured by Osaka Gas Chemical Co., Ltd., trade names), Byron (registered trademark) 103 (manufactured by Toyobo Co., Ltd.) (Product name).
  • polycarbonate resin As the polycarbonate resin, LeXan (registered trademark) ML9103 (trade name, manufactured by sabic), EP5000 (trade name, manufactured by Mitsubishi Gas Chemical Co., Ltd.), SP3810 (trade name, manufactured by Teijin Limited), SP1516 (trade name, Teijin ( (Trade name), TS2020 (trade name, manufactured by Teijin Limited), xylex (registered trademark) 7507 (trade name, manufactured by sabic), and the like.
  • Neoprim registered trademark
  • C3650 trade name, manufactured by Mitsubishi Gas Chemical Co., Ltd.
  • C3G30 trade name, manufactured by Mitsubishi Gas Chemical Co., Ltd.
  • C3450 trade name, manufactured by Mitsubishi Gas Chemical Co., Ltd., commercial products
  • JL-20 manufactured by Shin Nippon Rika, trade name
  • FPC-0220 manufactured by Mitsubishi Gas Chemical Company, trade name
  • acrylimide resin examples include PLEXIMID8817 (trade name, manufactured by Daicel Evonik).
  • the transparent resin is appropriately selected from the viewpoints of transparency, solubility of the NIR dye, for example, the dye (A), and heat resistance. From the viewpoint of heat resistance, the transparent resin is preferably a resin having a high glass transition point (Tg), for example, a resin having a Tg of 140 ° C. or higher.
  • Tg glass transition point
  • Absorbing layer further, within a range that does not impair the effects of the present invention, adhesion imparting agent, color tone correction dye, leveling agent, antistatic agent, heat stabilizer, light stabilizer, antioxidant, dispersant, flame retardant, It may have optional components such as a lubricant and a plasticizer.
  • the thickness of the absorption layer is preferably 0.1 to 100 ⁇ m.
  • the total thickness of each layer is preferably from 0.1 to 100 ⁇ m. If the thickness is less than 0.1 ⁇ m, the desired optical properties may not be sufficiently exhibited, and if the thickness is more than 100 ⁇ m, the flatness of the layer may be reduced and the in-plane variation of the absorptivity may occur.
  • the thickness of the absorbing layer is more preferably 0.3 to 50 ⁇ m. In the case where another functional layer such as a reflective layer or an anti-reflection layer is provided, depending on the material, if the absorption layer is too thick, cracks or the like may occur. Therefore, the thickness of the absorbing layer is more preferably 0.3 to 10 ⁇ m.
  • the absorption layer is prepared by dissolving or dispersing, for example, a dye such as an NIR dye or a UV dye, a transparent resin or a raw material component of the transparent resin, and each component blended as necessary in a solvent to prepare a coating liquid. Then, it can be formed by applying it to a substrate, drying it, and curing it as needed.
  • the substrate may be a transparent substrate included in the present filter, or may be a releasable substrate used only when forming an absorption layer.
  • the solvent may be a dispersion medium that can be stably dispersed or a solvent that can be dissolved.
  • the coating liquid may also contain a surfactant for improving voids due to minute bubbles, dents due to adhesion of foreign substances, and repelling in a drying step. Further, for the application of the coating liquid, for example, a dip coating method, a cast coating method, a spin coating method, or the like can be used.
  • the coating layer is formed by applying the above coating liquid on a substrate and then drying the coating liquid.
  • a curing treatment such as heat curing and light curing is further performed.
  • the absorbing layer can also be manufactured into a film by extrusion molding, and this film may be laminated on another member of the present filter and integrated by thermocompression bonding or the like. For example, this film may be stuck on a transparent substrate.
  • the material of the transparent substrate in the present filter is not particularly limited as long as it transmits visible light, and may be a material that absorbs near-infrared light or near-ultraviolet light.
  • inorganic materials such as glass and crystals, and organic materials such as transparent resins can be used.
  • the glass that can be used for the transparent substrate examples include absorptive glass (near-infrared absorbing glass) containing copper ions in fluorophosphate-based glass and phosphate-based glass, soda lime glass, borosilicate glass, alkali-free glass, and quartz. Glass etc. are mentioned.
  • the “phosphate glass” also includes a silicate glass in which a part of the glass skeleton is made of SiO 2 .
  • ⁇ ⁇ Commercially available products may be used as the absorption type glass containing copper ions.
  • Examples of commercially available products include NF-60E, NF-50EX, NF-50T, NF-50TX, SP-50T, (AGC, trade name), BG-60, BG-61 CD5000 (manufactured by HOYA, trade name) and the like.
  • an alkali metal ion for example, Li ion or Na ion
  • an alkali metal ion having a small ionic radius existing on the main surface of the glass plate
  • an alkali ion having a larger ionic radius for example, by ion exchange.
  • Li ions are Na ions or K ions
  • Na ions are K ions.
  • polyester resins such as polyethylene terephthalate and polybutylene terephthalate
  • polyolefin resins such as polyethylene, polypropylene and ethylene-vinyl acetate copolymer
  • acrylics such as norbornene resin, polyacrylate and polymethyl methacrylate.
  • a birefringent crystal such as quartz, lithium niobate, or sapphire can be used.
  • the optical characteristics of the transparent substrate may have the above-mentioned optical characteristics as an optical filter obtained by laminating the above-mentioned absorption layer, reflection layer and the like. Sapphire is preferred as the crystalline material.
  • the transparent substrate is preferably made of an inorganic material, particularly glass or sapphire, from the viewpoint of shape stability related to long-term reliability such as optical characteristics and mechanical characteristics as an optical filter, and handling properties at the time of manufacturing the filter.
  • the linear expansion coefficient of the material constituting the transparent substrate is preferably 49 ⁇ 10 ⁇ 6 / ° C. or less, more preferably 10 ⁇ 10 ⁇ 6 / ° C. or less.
  • the linear expansion coefficient in the present specification is an average linear expansion coefficient at 0 ° C. to 300 ° C.
  • the average coefficient of linear expansion is the average slope of the strain-temperature curve in a specific temperature range.
  • the shape of the transparent substrate is not particularly limited, and may be a block shape, a plate shape, or a film shape.
  • the thickness is preferably, for example, 0.03 to 5 mm, and from the viewpoint of thinning, is 0.03 to 0.5 mm. Is more preferred. From the viewpoint of workability, a transparent substrate made of glass and having a thickness of 0.05 to 0.5 mm is preferable.
  • the reflection layer is made of, for example, a dielectric multilayer film and has a function of blocking light in a specific wavelength range.
  • the reflective layer for example, transmits visible light, and in particular, has sufficient wavelength selectivity to sufficiently transmit visible light to red light on the long wavelength side and to mainly reflect light of wavelengths other than the light-shielding region of the absorbing layer.
  • the reflection layer preferably has a reflection region that reflects near-infrared light.
  • the reflection region of the reflection layer may include a light shielding region in the near infrared region of the absorption layer.
  • the reflection layer is not limited to the above characteristics, and may be appropriately designed so as to further block light in a predetermined wavelength range, for example, a near ultraviolet range.
  • the reflective layer preferably satisfies the following requirement (ii-1).
  • (Ii-1) In the spectral transmittance curve at an incident angle of 0 °, the reflectance R 420-650 (0) at a wavelength of 420 nm to 650 nm is 1% or less.
  • the absorption characteristic of the absorption layer suppresses a decrease in spectral characteristics of the reflection layer at a high incident angle, for example, the occurrence of light leakage or noise in the near infrared region.
  • the absorption layer and the reflection layer preferably have the following relationship.
  • the absorption layer has a wavelength ⁇ ABSHT20-0 ° on the short wavelength side of a wavelength having a transmittance of 20% for light having an incident angle of 0 ° in a wavelength region of 680 to 770 nm.
  • ⁇ ABSHT20-0 ° the optical filter including a reflective layer
  • the relationship between the transmittance for light of incidence angle of 0 ° is the wavelength ⁇ RESHT20-0 ° short wavelength side showing the 20% in the reflective layer
  • Preferably satisfies the following requirement (iv-1). (Iv-1) ⁇ ABSHT20-0 ° +5 nm ⁇ ⁇ RESHT20-0 ° ⁇ ⁇ ABSHT20-0 ° +70 nm
  • the reflective layer further satisfies the following requirement (iv-2).
  • Iv-2 The average transmittance of light in the wavelength region from ⁇ RESHT20-0 ° to ⁇ RESHT20-0 ° +350 nm is 10% or less.
  • the wavelength ⁇ ABSUV50-0 ° on the long wavelength side showing a transmittance of 50% for light having an incident angle of 0 ° is in the wavelength range of 380 to 450 nm.
  • the ⁇ ABSUV50-0 ° is a wavelength ⁇ RESUV50 on the short wavelength side where the optical filter including the reflective layer has a transmittance of 50% in the range of 350 to 500 nm for light having an incident angle of 0 ° in the reflective layer. It is preferable that the relationship with ⁇ 0 ° satisfies the following relationship (v-1). (V-1) ⁇ RESUV50-0 ° ⁇ ⁇ ABSUV50-0 ° -25 nm
  • the reflection layer is composed of a dielectric multilayer film in which low-refractive-index dielectric films (low-refractive-index films) and high-refractive-index dielectric films (high-refractive-index films) are alternately stacked.
  • the high refractive index film preferably has a refractive index of 1.6 or more, and more preferably 2.2 to 2.5.
  • Examples of the material for the high refractive index film include Ta 2 O 5 , TiO 2 , and Nb 2 O 5 . Of these, TiO 2 is preferred from the viewpoints of film formability, reproducibility in refractive index, etc., stability, and the like.
  • the low refractive index film preferably has a refractive index of less than 1.6, more preferably 1.45 or more and less than 1.55.
  • the material of the low refractive index film include SiO 2 , SiO x N y, and the like. SiO 2 is preferred from the viewpoints of reproducibility, stability, economy, and the like in film formability.
  • the transmittance of the reflective layer changes sharply in the boundary wavelength region between the transmission region and the light shielding region.
  • the total number of laminated dielectric multilayer films constituting the reflective layer is preferably 15 or more, more preferably 25 or more, and even more preferably 30 or more.
  • the total number of laminations is preferably 100 or less, more preferably 75 or less, and still more preferably 60 or less.
  • the thickness of the dielectric multilayer film is preferably 2 to 10 ⁇ m.
  • the reflective layer satisfies the requirements for miniaturization, and can suppress the incident angle dependency while maintaining high productivity.
  • a vacuum film forming process such as a CVD method, a sputtering method, or a vacuum evaporation method, or a wet film forming process such as a spray method or a dipping method can be used.
  • the reflective layer may be provided with a predetermined optical characteristic by one layer (a group of dielectric multilayer films) or by a predetermined layer with two layers.
  • each reflective layer may have the same configuration or different configurations.
  • it usually comprises a plurality of reflective layers having different reflection bands.
  • one is a near-infrared reflective layer that shields light in a short-wavelength band in the near-infrared region
  • the other is a long-wavelength band and a near-ultraviolet region in the near-infrared region.
  • a near-infrared / near-ultraviolet reflective layer that shields light in both regions.
  • all of the reflective layers may be provided on one main surface of the transparent substrate. It may be provided on both main surfaces with being sandwiched.
  • antireflective layer examples include a dielectric multilayer film, an intermediate refractive index medium, and a moth-eye structure in which the refractive index changes gradually. Above all, a dielectric multilayer film is preferable from the viewpoint of optical efficiency and productivity.
  • the anti-reflection layer is obtained by alternately stacking dielectric films similarly to the reflection layer.
  • the present filter may include, as another component, for example, a component (layer) that gives absorption by inorganic fine particles or the like that controls transmission and absorption of light in a specific wavelength range.
  • a component (layer) that gives absorption by inorganic fine particles or the like that controls transmission and absorption of light in a specific wavelength range include ITO (Indium Tin Oxides), ATO (Antony-doped Tin Tin Oxides), cesium tungstate, and lanthanum boride.
  • ITO fine particles and cesium tungstate fine particles have a high visible light transmittance and have a light absorbing property over a wide range of infrared wavelengths exceeding 1200 nm, so that they can be used when such infrared light shielding properties are required. .
  • This filter includes an absorption layer, a reflection layer, and a transparent substrate, and satisfies all of the requirements (1) to (4). More preferably, the requirement (5) is satisfied.
  • This filter while maintaining good transmission of visible light, especially red light, was able to suppress reduction in near-infrared light shielding properties, particularly near infrared rays at high incidence angles. It is an optical filter.
  • This filter can provide an information acquisition device having excellent color reproducibility, particularly red color reproducibility when used in an information acquisition device such as a camera and a sensor.
  • the camera includes a solid-state imaging device, an imaging lens, and the present filter.
  • the present filter can be used, for example, disposed between an imaging lens and a solid-state imaging device, or directly attached to a solid-state imaging device, an imaging lens, or the like of an imaging device via an adhesive layer.
  • the present filter is used as a sensor cover, the sensor includes a sensor body, a color filter, and the present filter.
  • the present filter can be used, for example, directly attached to a sensor body, a color filter, or the like via an adhesive layer.
  • the information acquisition device such as a camera or a sensor having the filter can be applied to an information acquisition device mounted on a transport machine, for example, a train, an automobile, a ship, or an aircraft. In particular, it is suitable as an information acquisition device mounted on an automobile.
  • the dyes used in the absorption layer were synthesized as follows.
  • (NIR dye) Dye (A11-1B), dye (A12-1B), and dye (A22-1P) were synthesized as dye (A) by the method described in Dyes and pigments 73 (2007) 344-352. Further, the dye (II-3-2) was synthesized by the method described in International Publication No. WO 2017/135359.
  • UV dye A merocyanine dye (M-2) represented by the formula (M-2) was synthesized and prepared as a UV dye by a conventional method.
  • the maximum absorption wavelength ⁇ max (U) DCM measured by dissolving the merocyanine dye (M-2) in dichloromethane was 396 nm.
  • the dye (A) was dissolved in dichloromethane, and the light absorption spectrum at a wavelength of 400 to 1100 nm was measured to determine the maximum absorption wavelength ⁇ max (A) DCM . Furthermore, when the transmittance of ⁇ max (A) DCM is adjusted to 10%, the average transmittance T 435 to 480 ave (A) of light in the wavelength range of 435 to 480 nm (A) DCM and the light in the wavelength range of 480 to 590 nm are adjusted. The average transmittance T 480-590 ave (A) DCM with respect to was determined. An ultraviolet-visible spectrophotometer (U-4100, manufactured by Hitachi High-Technologies Corporation) was used to evaluate the optical properties of these dyes.
  • U-4100 manufactured by Hitachi High-Technologies Corporation
  • Table 8 shows the results.
  • T 435-480 in DMC indicates the average transmittance T 435-480ave (A) DCM
  • T 480-590 in DMC indicates the average transmittance T 480-590ave (A) DCM .
  • the light absorption characteristics when the dye (A) was dissolved in the transparent resin were measured as follows.
  • NeoPrim (registered trademark) C3G30 (trade name, polyimide resin, manufactured by Mitsubishi Gas Chemical Co., Ltd.) was used as the transparent resin.
  • the dye (A), the transparent resin, and cyclohexanone were sufficiently stirred and uniformly dissolved.
  • the obtained solution was applied on a glass plate (D263; manufactured by SCHOTT) and dried to obtain an absorbing layer having a film thickness shown in Table 8.
  • the amount of the dye added was adjusted so that the light transmittance at the maximum absorption wavelength ⁇ max (A) TR was 10%.
  • the spectral transmittance curve of the absorption layer was obtained using the spectral transmittance curve of the glass plate with an absorption layer having a wavelength of 400 to 1100 nm and the spectral transmittance curve of the glass plate.
  • the average transmittance T 435-480ave (A) TR (in the table, “T 435 in resin”) of light in the wavelength range of 435 to 480 nm and the average transmittance for light in the wavelength range of 480 to 590 nm
  • the ratio T 480-590ave (A) TR (in the table, “T 480-590 in resin”) was determined.
  • the difference between TR and the average transmittance T 480-590 ave (A) DCM (“Difference between T 480-590 ” in the table) was determined. Further, the mass extinction coefficient / (cm ⁇ mass%) was determined. Table 8 shows the results.
  • the dye concentrations in the table are parts by mass with respect to 100 parts by mass of the transparent resin when the transmittance of light at ⁇ max (A) TR is adjusted to 10%.
  • Examples 1 to 4 Production and evaluation of optical filter
  • An optical filter having the same configuration as the optical filter 10D shown in FIG. 4 was manufactured and evaluated as follows. Examples 1 to 4 are all examples of the present filter.
  • Substrate A manufactured by AGC, SP-50T, phosphate glass substrate containing copper ions, coefficient of linear expansion 5.0 ⁇ 100 ⁇ 10 ⁇ 6 / ° C., thickness 0.01 mm
  • Substrate B manufactured by SCHOTT, D263, borosilicate glass, linear expansion coefficient 7.2 ⁇ 10 ⁇ 6 / ° C., thickness 0.2 mm
  • Reflection layer A A reflection layer composed of a dielectric multilayer film in which TiO 2 films and SiO 2 films are alternately stacked, and whose relationship between the incident angle and the transmittance in each wavelength region is shown in Table 9.
  • R 420-650 indicates the maximum reflectance [%] of light in the wavelength region of 420 to 650 nm.
  • ⁇ RESHT20-0 ° is a wavelength on the short wavelength side showing a transmittance of 20% with respect to light having an incident angle of 0 ° in the reflective layer
  • ⁇ RESUV50-0 ° is light having an incident angle of 0 ° in the reflective layer.
  • it indicates a wavelength on the short wavelength side where the transmittance is 50% in the range of 350 to 500 nm.
  • the anti-reflection layer had the structure shown in Table 10 below.
  • optical filters of Examples 1 to 4 having the transparent substrate, the reflective layer, the absorption layer, and the antireflection layer shown in Table 11 were produced.
  • a reflective layer composed of a dielectric multilayer film was formed by alternately stacking TiO 2 films and SiO 2 films on a transparent substrate by an evaporation method.
  • the dye (A) and the UV dye shown in Table 11 were combined on the main surface of the glass substrate on the side opposite to the side where the reflective layer was formed, and the above-mentioned materials were used by using NeoPrim (registered trademark) C3G30 as a transparent resin.
  • An absorption layer was formed in the same manner.
  • Table 11 shows the thickness of the absorption layer obtained in each example.
  • an antireflection film shown in Table 10 was formed on the absorption layer by a vapor deposition method to obtain optical filters (NIR filters) of Examples 1 to 4.
  • the pigment content in Table 11 is a part by mass of the pigment with respect to 100 parts by mass of the transparent resin.
  • Tables 12 to 15 and FIGS. 5 to 8 show the relationship between the incident angle and the transmittance in each wavelength range in the obtained optical filters of Examples 1 to 4.
  • T 700 [%] is the transmittance at a wavelength of 700 nm
  • ⁇ LO50 [nm] is the wavelength at which the transmittance becomes 50% in the wavelength region of 640 nm to 760 nm
  • T 750-1100MAX [%] is the maximum transmittance and average transmittance at wavelengths of 750 nm to 1100 nm
  • ⁇ SH50 [nm] is the wavelength at which the transmittance becomes 50% in the wavelength region of 400 nm to 420 nm
  • T 640-660AVE [%] is the transmittance at a wavelength of 700 nm
  • ⁇ LO50 [nm] is the wavelength at which the transmittance becomes 50% in the wavelength region of 640 nm to 760 nm
  • T 750-1100MAX [%] is the maximum transmittance and average transmittance at wavelengths of 750 nm to 1100 nm
  • ⁇ SH50 [nm] is the wavelength at which the transmittance becomes 50% in
  • T 640-660 MIN [%] indicate an average transmittance and a minimum transmittance at wavelengths of 640 nm to 660 nm, respectively.
  • ⁇ LO50-0 - ⁇ LO50- ⁇ is the absolute value obtained by subtracting the is ⁇ LO50- ⁇ wavelength lambda LO50 the incident angle theta ° from lambda LO50-0 the wavelength lambda LO50 of the incident angle of 0 ° Indicates the value [nm].
  • the optical filter of the present invention while maintaining good transmission of visible light, particularly good red transmission, in the shielding properties of near-infrared light, the reduction of shielding properties of near-infrared light especially at high incident angles. It has good suppressed near-infrared shielding properties. In recent years, it is useful for use in information acquisition devices such as cameras and sensors for transport machines, which have been improved in performance.
  • 10A, 10B, 10C, 10D optical filter, 11, 11a, 11b: absorption layer, 12, 12a, 12b: reflection layer, 13: transparent substrate, 14: antireflection layer.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Optical Filters (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明は吸収層と、反射層と、透明基板とを備え、入射角0°の分光透過率曲線において、640nm~760nmの波長領域に透過率が50%となる波長を有し、波長750nm~1100nmの平均透過率が3%以下であり、400nm~420nmの波長領域に透過率が50%となる波長を有し、波長640nm~660nmの平均透過率が68%以上であり、最小透過率が65%以上である、光学フィルタ、および、該光学フィルタを備える情報取得装置に関する。

Description

光学フィルタおよび情報取得装置
 本発明は、可視波長領域を十分に透過し近赤外波長領域の光を遮断する光学フィルタおよび該光学フィルタを備えた情報取得装置に関する。
 近年、カメラ等の情報デバイスを有する車載システムを車内に搭載して、ガラス板(例えば車両のフロントガラス)を介して、道路状況等の情報信号の送受信を行うことが知られている。これらの車載システムは年々高度化しており、カメラやセンサ等の情報取得装置により取得した被写体の撮影画像や情報信号を解析することで、対向車、前走車、歩行者、交通標識、車線境界線等を認識し、運転者に危険を知らせる等の様々な運転の支援を行うことができる。
 一方、CCDやCMOS等の固体撮像素子を用いたカメラが広く使用されている。固体撮像素子を用いたカメラでは、色調を良好に再現し鮮明な画像を得るため、可視域の光(以下「可視光」ともいう)を透過し近赤外域の光(以下「近赤外光」ともいう)を遮断する光学フィルタが用いられる。
 このような、固体撮像素子を用いたカメラの光学フィルタとしては、近赤外域の光を選択的に吸収する光吸収型のガラスフィルタが知られている。しかしながら、ガラスフィルタは薄型化が困難であることや、吸収ピークがブロードであり、近赤外光を十分に吸収させるためには可視光がある程度吸収されることが問題であった。特に、車載用の情報取得装置においては、近赤外域に近い波長の赤色の可視光を感知することが重視されることから、可視光の透過率に影響を及ぼさない光学フィルタが求められていた。そこで、基板上に誘電体多層膜を設け、光の干渉によって近赤外域の光を反射して遮蔽する技術が開発されるようになった(例えば、特許文献1参照)。
日本国特開平5-207350号公報
 ここで、誘電体多層膜を用いた光学フィルタによれば、可視光の透過率に略影響を及ぼすことなく、近赤外光を遮断できる。しかしながら、入射角によって分光透過率曲線が変化する入射角依存性や、高入射角において高反射率を得るべき近赤外光が高透過率化する光抜け、誘電体多層膜が反射した近赤外光によるノイズが発生することが問題である。したがって、可視光の透過率に略影響を及ぼすことなく、入射角依存性なく近赤外光を遮断する光学フィルタが求められていた。
 本発明は、可視光の透過性、特には赤色の透過性を良好に維持しながら、近赤外光の遮蔽性において、特に高入射角における近赤外光の遮蔽性の低下が抑制された光学フィルタ、および該光学フィルタを用いた色再現性、特に赤色の再現性に優れるカメラやセンサ等の情報取得装置の提供を目的とする。
 本発明の一態様に係る光学フィルタは、吸収層と、反射層と、透明基板とを備え、下記(1)~(4)の要件を満たすことを特徴とする。
(1)入射角0°の分光透過率曲線において、640nm~760nmの波長領域に透過率が50%となる波長を有する。
(2)入射角0°の分光透過率曲線において、波長750nm~1100nmの平均透過率が3%以下である。
(3)入射角0°の分光透過率曲線において、400nm~420nmの波長領域に透過率が50%となる波長を有する。
(4)入射角0°の分光透過率曲線において、波長640nm~660nmの平均透過率が68%以上であり、最小透過率が65%以上である。
 本発明はまた、本発明の光学フィルタを備えた情報取得装置を提供する。
 本発明によれば、可視光の透過性、特には赤色の透過性を良好に維持しながら、近赤外光の遮蔽性において、特に高入射角における近赤外光の遮蔽性の低下が抑制された光学フィルタが得られる。さらに、本発明によれば、該光学フィルタを用いた色再現性、特に赤色の再現性に優れるカメラやセンサ等の情報取得装置を提供できる。
 車載におけるセンシングカメラにおいては、赤色帯域の透過性を良好にすることで赤信号や交通標識等を鮮明に認識することが可能となる。また、近赤外光の遮蔽性を高めることで他車からのLi-DARなどの赤外レーザーセンシングによるフレアの発生を抑制し良好な画像を得ることが可能となる。したがって、本発明の光学フィルタをこのような車載用のセンシングカメラに用いると、顕著な効果が得られる。
図1は一実施形態の光学フィルタの一例を概略的に示す断面図である。 図2は一実施形態の光学フィルタの他の例を概略的に示す断面図である。 図3は一実施形態の光学フィルタの他の例を概略的に示す断面図である。 図4は一実施形態の光学フィルタの他の例を概略的に示す断面図である。 図5は実施例の例1の光学フィルタの種々の入射角における分光透過率曲線である。 図6は実施例の例2の光学フィルタの種々の入射角における分光透過率曲線である。 図7は実施例の例3の光学フィルタの種々の入射角における分光透過率曲線である。 図8は実施例の例4の光学フィルタの種々の入射角における分光透過率曲線である。
 以下、本発明の実施の形態について説明する。
 本明細書において、近赤外線吸収色素を「NIR色素」、紫外線吸収色素を「UV色素」と略記することもある。
 本明細書において、式(I)で示される化合物を化合物(I)という。他の式で表される化合物も同様である。化合物(I)からなる色素を色素(I)ともいい、他の色素についても同様である。例えば、後述の式(A1)で示される化合物を化合物(A1)といい、該化合物からなる色素を色素(A1)ともいう。
 本明細書において、特定の波長域について、透過率が例えば90%以上とは、その全波長領域において透過率が90%を下回らないことをいい、同様に透過率が例えば1%以下とは、その全波長領域において透過率が1%を超えないことをいう。
 本明細書において、数値範囲を表す「~」では、上下限を含む。
 本明細書において、特定の波長域について、平均透過率とは、その全波長領域において特定の波長間隔(例えば1nm)で測定した透過率の相加平均である。
<光学フィルタ>
 本発明の一実施形態の光学フィルタ(以下、「本フィルタ」ともいう)は、吸収層と、反射層と、透明基板とを備え、下記(1)~(4)の要件を満足する。
(1)入射角0°の分光透過率曲線において、640nm~760nmの波長領域に透過率が50%となる波長を有する。
(2)入射角0°の分光透過率曲線において、波長750nm~1100nmの平均透過率が3%以下である。
(3)入射角0°の分光透過率曲線において、400nm~420nmの波長領域に透過率が50%となる波長を有する。
(4)入射角0°の分光透過率曲線において、波長640nm~660nmの平均透過率が68%以上であり、最小透過率が65%以上である。
 本フィルタは、(1)~(4)の要件を満足することで、可視光の透過性、特には赤色の透過性を良好に維持しながら、近赤外光の遮蔽性に優れる光学フィルタである。さらに、本フィルタは、吸収層と、反射層と、透明基板を有する構成であり、高入射角における分光特性の低下、例えば、近赤外域における光抜けやノイズ等の発生が抑制された光学フィルタである。なお、本フィルタは(1)~(4)の要件を全て満足することが好ましい。
 要件(1)は、可視域の透過領域の長波長側の境界を図る指標である。要件(4)との関係から、640nm~760nmの波長領域に透過率が50%となる波長(以下、「λLO50-0」と示す。)を有すれば、近赤外域との境界付近の長波長域(赤色光)まで高い透過性を有すると評価できる。λLO50-0は、680nm~720nmの波長領域にあることが好ましく、690nm~710nmの波長領域にあることがより好ましい。
 要件(2)は、近赤外域における低透過性を図る指標である。波長750nm~1100nmの平均透過率(以下、「T750-1100AVE」と示す。)が3%以下であれば、近赤外域の遮蔽性に優れると評価できる。T750-1100AVEは、1%以下が好ましい。
 さらに、カメラ以外のセンシングシステムであるLi-DARなどのレーザーレーダーに使用される波長850nm~1050nm帯の光とのクロストークを防ぐためには同波長帯における最大透過率は1%以下が好ましく、0.5%以下がより好ましい。
 要件(3)は、可視域の透過領域の短波長側の境界を図る指標である。400nm~420nmの波長領域に透過率が50%となる波長(以下、「λSH50-0」と示す。)を有すれば、近紫外域との境界付近の短波長域まで高い透過性を有すると評価できる。λSH50-0は、405nm~415nmの波長領域にあることが好ましい。
 要件(4)は、可視域の赤色光の高透過性を図る指標である。波長640nm~660nmの平均透過率(以下、「T640-660AVE」と示す。)が68%以上であり、最小透過率(以下、「T640-660MIN」と示す。)が65%以上であれば、赤色光の透過性が高いと評価できる。T640-660AVEは、70%以上が好ましく、80%以上がより好ましい。T640-660MINは、70%以上が好ましく、75%以上がより好ましい。
 本フィルタは、さらに以下の(5)の要件を満たすことが好ましい。
(5)入射角0°の分光透過率曲線において、640nm~760nmの波長領域に透過率が50%となる波長λLO50-0を有し、入射角35°の分光透過率曲線において、640nm~760nmの波長領域に透過率が50%となる波長λLO50-35を有し、かつ前記波長の差の絶対値|λLO50-0-λLO50-35|が11nm以下である。
 要件(5)は、可視域の透過領域の長波長側の入射角依存性を図る指標である。|λLO50-0-λLO50-35|が11nm以下であれば、可視域と近赤外域の境界付近での入射角依存性は低いと評価できる。|λLO50-0-λLO50-35|は、7nm以下が好ましい。
 本フィルタは、さらに使用用途に応じて、耐熱性や耐光性を有することが好ましい。例えば、本フィルタをカメラやセンサ等の情報取得装置に用いて車載用とする場合、使用環境に応じた耐熱性および耐光性を有することが好ましい。
 本フィルタにおいて、吸収層および反射層は、透明基板の主面上に設けられる。本フィルタは、吸収層と反射層を、透明基板の同一主面上に有してもよく、異なる主面上に有してもよい。吸収層と反射層を同一主面上に有する場合、これらの積層順は特に限定されない。本フィルタは、吸収層および反射層をそれぞれ複数有してもよい。吸収層および反射層をそれぞれ複数有する場合、各層が設けられる透明基板の主面は、いずれの主面であってもよく、積層順も特に限定されない。
 本フィルタは、また他の機能層を有してもよい。他の機能層としては、例えば可視光の透過率損失を抑制する反射防止層が挙げられる。特に、吸収層が最表面の構成をとる場合には、吸収層と空気との界面で反射による可視光透過率損失が発生するため、吸収層上に反射防止層を設けるとよい。
 次に、図面を用いて本フィルタの構成例について説明する。図1は、透明基板13と透明基板13の一方の主面上に配置された吸収層11と透明基板13の他方の主面上に設けられた反射層12を有する光学フィルタ10Aの構成例である。なお、「透明基板13の一方の主面(上)に、吸収層11を備える」とは、透明基板13に接触して吸収層11が備わる場合に限らず、透明基板13と吸収層11との間に、別の機能層が備わる場合も含む。透明基板13の他方の主面(上)に、反射層12を備える構成も同様であり、以下の構成も同様である。
 図2は、透明基板13の一方の主面に吸収層11を備え、透明基板13の他方の主面上および吸収層11の主面上に、反射層12aおよび12bを備えた光学フィルタ10Bの構成例である。
 図3は、透明基板13の両主面に吸収層11aおよび11bを備え、さらに吸収層11aおよび11bの主面上に、反射層12aおよび12bを備えた光学フィルタ10Cの構成例である。
 図2および図3において、組み合わせる二つの反射層12a、12bは、同一でも異なってもよい。例えば、反射層12a、12bは、紫外光および近赤外光を反射し、可視光を透過する特性を有し、反射層12aが、紫外光と第1の近赤外域の光を反射し、反射層12bが、紫外光と第2の近赤外域の光を反射する構成でもよい。
 また、図3において、二つの吸収層11aと11bは、同一でも異なってもよい。吸収層11aと11bが異なる場合、例えば、吸収層11aと11bが、各々、近赤外線吸収層と紫外線吸収層の組合せでもよく、紫外線吸収層と近赤外線吸収層の組合せでもよい。
 図4は、図1に示す光学フィルタ10Aの吸収層11の主面上に反射防止層14を備えた光学フィルタ10Dの構成例である。反射層が設けられず、吸収層が最表面の構成をとる場合には、吸収層上に反射防止層を設けるとよい。なお、反射防止層は、吸収層の最表面だけでなく、吸収層の側面全体も覆う構成でもよい。その場合、吸収層の防湿の効果を高められる。
 以下、吸収層、反射層、透明基板および反射防止層について説明する。本フィルタは、例えば、吸収層の吸収特性と反射層の反射特性により、(1)~(4)の特性を満たすように設計される。また、本フィルタは、これらに加えて、透明基板に紫外光および/または近赤外光に対する吸収能を持たせることで、(1)~(4)の特性を満たす設計としてもよい。
[吸収層]
 本フィルタは、吸収層として、NIR色素を含有する吸収層を有するのが好ましい。NIR色素を含有する吸収層は、典型的には、透明樹脂中にNIR色素が均一に溶解または分散した層である。NIR色素は1種を単独で用いてもよく、2種以上を組み合せて用いてもよい。該吸収層は、さらに、本発明の効果を損なわない範囲でNIR色素以外の色素、特にはUV色素を含有してもよい。
 本フィルタにおいて、吸収層は、例えば、NIR色素を含む層と、UV色素を含む層を別の層として複数の層からなる吸収層としてもよい。
 NIR色素としては、スクアリリウム色素、シアニン色素、フタロシアニン色素、ナフタロシアニン色素、ジチオール金属錯体色素、アゾ色素、ポリメチン色素、フタリド色素、ナフトキノン色素、アン卜ラキノン色素、インドフェノール色素、ピリリウム色素、チオピリリウム色素、ク口コニウム色素、テ卜ラデヒドオコリン色素、卜リフェニルメタン色素、アミニウム色素およびジイモニウム色素からなる群から選ばれる少なくとも1種が好ましい。
 これらのNIR色素のうちでもスクアリリウム色素、シアニン色素が分光上の観点から好ましく、耐久性の観点からはフタロシアニン色素が好ましい。
 NIR色素は、透明樹脂中に含有された場合に、可視光の透過性、特には可視光の長波長側の透過性が高いことが好ましい。NIR色素として、具体的には、以下の(i-1)~(i-5)の特性を有するNIR色素(A)(以下、単に「色素(A)」という。)が好ましい。なお、以下の特性における透明樹脂は、色素(A)とともに吸収層が含有する透明樹脂である。また、(i-1)~(i-5)の分光特性は入射角0°のときの特性である。色素(A)による分光特性は入射角依存性を有しない。
(i-1)透明樹脂に含有させて測定される波長400~1100nmの分光透過率曲線において、最大吸収波長λmax(A)TRが740~900nmの波長領域にある。
(i-2)透明樹脂に最大吸収波長λmax(A)TRにおける透過率が10%となるように含有させて測定される、波長400~1100nmの分光透過率曲線において、435~480nmの波長領域の光の平均透過率T435-480ave(A)TRおよび480~590nmの波長領域の光に対する平均透過率T480-590ave(A)TRがともに90%以上である。
(i-3)ジクロロメタンに溶解して測定される波長400~1100nmの分光透過率曲線において、最大吸収波長λmax(A)DCMが730~900nmの波長領域にある。
(i-4)ジクロロメタンに最大吸収波長λmax(A)DCMにおける透過率が10%となるように含有させて測定される、波長400~1100nmの分光透過率曲線において、435~480nmの波長領域の光の平均透過率T435-480ave(A)DCMが90%以上、かつ、480~590nmの波長領域の光に対する平均透過率T480-590ave(A)DCMが93%以上である。
(i-5)平均透過率T435-480ave(A)DCMと平均透過率T435-480ave(A)TRの差および平均透過率T480-590ave(A)DCMと平均透過率T480-590ave(A)TRの差がともに10.5%以下である。
 色素(A)は、さらに以下の(i-6)の特性を有することが好ましい。
(i-6)上記透明樹脂に含有させたときの質量吸光係数が300/(cm・質量%)以上である。
 なお、質量吸光係数は、波長350~1200nmの範囲における最大吸収波長での光の内部透過率T[%](=実測透過率[%]/(100-実測反射率[%])×100[%])を算出し、-log10(T/100)によって計算できる。以下、特に断りのない限り、色素の「質量吸光係数」は、上記方法により計算された質量吸光係数である。
 色素(A)は、(i-1)において、最大吸収波長λmax(A)TRが740~900nmの波長領域にある。最大吸収波長λmax(A)TRは、740~860nmの波長領域にあるのが好ましい。
 色素(A)は、(i-2)において、平均透過率T435-480ave(A)TRおよび平均透過率T480-590ave(A)TRがともに90%以上である。平均透過率T435-480ave(A)TRは91%以上が好ましく、平均透過率T480-590ave(A)TRは92%以上が好ましい。
 色素(A)は、(i-3)において、最大吸収波長λmax(A)DCMが730~900nmの波長領域にある。最大吸収波長λmax(A)DCMは、730~860nmの波長領域にあるのが好ましい。
 色素(A)は、(i-4)において、平均透過率T435-480ave(A)DCMが90%以上、かつ、平均透過率T480-590ave(A)DCMが93%以上である。平均透過率T435-480ave(A)DCMは93%以上が好ましく、95%以上がより好ましい。平均透過率T480-590ave(A)DCMは95%以上が好ましく、97%以上がより好ましい。
 色素(A)は、(i-5)において、平均透過率T435-480ave(A)DCMと平均透過率T435-480ave(A)TRの差および平均透過率T480-590ave(A)DCMと平均透過率T480-590ave(A)TRの差がともに10.5%以下である。平均透過率T435-480ave(A)DCMと平均透過率T435-480ave(A)TRの差は7%以下が好ましく、平均透過率T480-590ave(A)DCMと平均透過率T480-590ave(A)TRの差は5%以下が好ましい。
 色素(A)において、(i-5)を満足することは、ジクロロメタン中の可視光の透過率を、光学フィルタで使用する際の透明樹脂中でも維持できることを意味する。一般的には、最大吸収波長の大きい色素では会合の寄与もあり、ジクロロメタン中のシャープな分光を透明樹脂中では再現しづらいことが知られている。色素(A)は、上記(i-1)~(i-5)を満足することで、最大吸収波長が大きくかつジクロロメタン中の可視光の透過率が高い吸光特性を有しながら、該吸光特性を透明樹脂中でも維持できるという特徴を示す。
 色素(A)は、(i-6)において、質量吸光係数は、1000/(cm・質量%)以上が好ましく、1500/(cm・質量%)以上がより好ましく、1900/(cm・質量%)以上がさらに好ましい。
 本フィルタが適用される撮像装置等の用途にもよるが、色素(A)は、上記のような光学特性以外に耐熱性や耐光性を有することが好ましい。例えば、本フィルタをカメラやセンサ等の情報取得装置に用いて車載用とする場合、使用環境に応じた耐熱性および耐光性を有することが好ましい。耐熱性および耐光性は1種の色素で満たしてもよいが、2種以上の複数の色素による相互作用により満たしてもよい。
 色素(A)としては、(i-1)~(i-5)の要件を満たす限り、分子構造は特に制限されない。色素(A)として、スクアリリウム色素、シアニン色素およびフタロシアニン色素から選ばれる少なくとも1種が好ましい。色素(A)として、具体的には、下記式(A1)または式(A2)で表されるシアニン色素、および下記式(II)で示されるスクアリリウム色素から選ばれる少なくとも1種が好ましい。
Figure JPOXMLDOC01-appb-C000003
 ただし、式(A1)および(A2)中の記号は以下のとおりである。
 R101~R109およびR121~R131は、それぞれ独立に水素原子、ハロゲン原子、置換基を有してもよい炭素数1~15のアルキル基もしくはアルコキシ基、または、炭素数5~20のアリール基を示す。R110114およびR132136は、それぞれ独立に水素原子、ハロゲン原子、または、炭素数1~15のアルキル基もしくはアルコキシ基を示す。
 Xは一価のアニオンを示す。
 n1およびn2はそれぞれ独立に0または1である。-(CHn1-を含む炭素環、および、-(CHn2-を含む炭素環に結合する水素原子はハロゲン原子、置換基を有してもよい炭素数1~15のアルキル基または炭素数5~20のアリール基で置換されていてもよい。
Figure JPOXMLDOC01-appb-C000004
 ただし、式(II)中の記号は以下のとおりである。
 2つの環Zは、それぞれ独立して、ヘテロ原子を環中に0~3個有し、かつ置換されていてもよい、5員環または6員環であり、
 RとR、RとR、およびRと環Zを構成する炭素原子またはヘテロ原子は、互いに連結して窒素原子とともにそれぞれヘテロ環A1、ヘテロ環B1およびヘテロ環C1を形成していてもよく、ヘテロ環を形成していない場合、RおよびRは、それぞれ独立して、水素原子、ハロゲン原子、または、炭素原子間に不飽和結合、ヘテロ原子、飽和もしくは不飽和の環構造を含んでよく、置換基を有してもよい炭化水素基を示し、RおよびRは、それぞれ独立して、水素原子、ハロゲン原子、または炭素原子間にヘテロ原子を含んでもよいアルキル基もしくはアルコキシ基を示す。
 上記において、アルキル基(アルコキシ基が有するアルキル基を含む)は直鎖であってもよく、分岐構造や飽和環構造を含んでもよい。アリール基は芳香族化合物が有する芳香環、例えば、ベンゼン環、ナフタレン環、ビフェニル、フラン環、チオフェン環、ピロール環等を構成する炭素原子を介して結合する基をいう。置換基を有してもよい炭素数1~15のアルキル基もしくはアルコキシ基、または、炭素数5~20のアリール基における置換基としては、ハロゲン原子および炭素数1~10のアルコキシ基が挙げられる。
(色素(A1)および色素(A2))
 式(A1)、式(A2)において、R102~R105、R108、R109、R122~R127、R130およびR131はそれぞれ独立に水素原子、炭素数1~15のアルキル基もしくはアルコキシ基、または炭素数5~20のアリール基が好ましく、高い可視光透過率が得られる観点から水素原子がより好ましい。
 式(A1)、式(A2)において、R110~R114およびR132~R136はそれぞれ独立に水素原子、または炭素数1~15のアルキル基が好ましく、高い可視光透過率が得られる観点から水素原子がより好ましい。
 R106、R107、R128およびR129は、それぞれ独立に水素原子、炭素数1~15のアルキル基、または炭素数5~20のアリール基(鎖状、環状、分岐状のアルキル基を含んでもよい)が好ましく、水素原子、または炭素数1~15のアルキル基がより好ましい。また、R106とR107、R128とR129は、同じ基が好ましい。
 R101およびR121は、炭素数1~15のアルキル基、または炭素数5~20のアリール基が好ましく、透明樹脂中で溶液中と同様に高い可視光透過率を維持する観点から分岐を有する炭素数1~15のアルキル基がより好ましい。
 Xとしては、I、BF 、PF 、ClO 、または式(X1)もしくは(X2)で示されるアニオン等が挙げられ、好ましくは、BF 、またはPF である。
Figure JPOXMLDOC01-appb-C000005
 以下の説明において、色素(A1)における、R101~R114を除く部分を骨格(A1)ともいう。他の色素においても同様である。
 式(A1)において、n1が1の化合物を下式(A11)に、n1が0の化合物を下式(A12)に示す。
Figure JPOXMLDOC01-appb-C000006
 式(A11)および式(A12)において、R101~R114およびXは、式(A1)の場合と同様である。R115~R120は、それぞれ独立に水素原子、ハロゲン原子、置換基を有してもよい炭素数1~15のアルキル基もしくはアルコキシ基、または、炭素数5~20のアリール基を示す。R115~R120はそれぞれ独立に、水素原子、炭素数1~15のアルキル基、または炭素数5~20のアリール基(鎖状、環状、分岐状のアルキル基を含んでもよい)が好ましく、水素原子、または炭素数1~15のアルキル基がより好ましい。また、R115~R120は、同じ基であることが好ましい。
 式(A2)において、n2が1の化合物を下式(A21)に、n2が0の化合物を下式(A22)に示す。
Figure JPOXMLDOC01-appb-C000007
 式(A21)および式(A22)において、R121~R136およびXは、式(A2)の場合と同様である。R137~R142は、それぞれ独立に水素原子、ハロゲン原子、置換基を有してもよい炭素数1~15のアルキル基もしくはアルコキシ基、または、炭素数5~20のアリール基を示す。R137~R142はそれぞれ独立に水素原子、炭素数1~15のアルキル基、または炭素数5~20のアリール基(鎖状、環状、分岐状のアルキル基を含んでもよい)が好ましく、水素原子、または炭素数1~15のアルキル基がより好ましい。また、R137~R142は、同じ基であることが好ましい。
 式(A11)、式(A12)、式(A21)、式(A22)でそれぞれ示される化合物としては、より具体的には、それぞれ、各骨格に結合する原子または基が、以下の表1~4に示される原子または基である化合物が挙げられる。表1、表2に示す全ての化合物において、R101~R109は式の左右で全て同一である。表3、表4に示す全ての化合物において、R121~R131は式の左右で同一である。
 表1、表2におけるR110-R114および表3、表4におけるR132-R136は、各式の中央のベンゼン環に結合する原子または基を示し、5個全てが水素原子の場合「H」と記載した。R110-R114のうち、いずれかが置換基であり、それ以外が水素原子の場合、置換基である符号と置換基の組合せのみを記載した。例えば、「R112-C(CH」の記載はR112が-C(CHであり、それ以外は水素原子であることを示す。R132-R136についても同様である。
 表1におけるR115-R120および表3におけるR137-R142は、式(A11)、式(A21)における中央のシクロヘキサン環に結合する原子または基を示し、6個全てが水素原子の場合「H」と記載した。R115-R120のうち、いずれかが置換基であり、それ以外が水素原子の場合、置換基である符号と置換基の組合せのみを記載した。R137-R142についても同様である。
 表2におけるR115-R118および表4におけるR137-R140は、式(A12)、式(A22)における中央のシクロペンタン環に結合する原子または基を示し、4個全てが水素原子の場合「H」と記載した。R115-R118のうち、いずれかが置換基であり、それ以外が水素原子の場合、置換基である符号と置換基の組合せのみを記載した。R137-R140についても同様である。
 表1~表4には、Xを示さないが、いずれの化合物においてもXはBF またはPF である。色素(A11-1)においてXが、BF の場合を色素(A11-1B)、PF の場合を色素(A11-1P)と示す。表1~表4に示す他の色素においても同様である。表1~表4において、-Cおよび-Cは、直鎖のプロピル基およびブチル基をそれぞれ示す。
Figure JPOXMLDOC01-appb-T000008
 色素(A11)としては、これらの中でも、透明樹脂や、透明基板上に吸収層を形成する際に用いる溶媒(以下、「ホスト溶媒」ともいう)への溶解性、可視透過性の点から、色素(A11-1B)、色素(A11-1P)、色素(A11-2B)、色素(A11-2P)、色素(A11-3B)、色素(A11-3P)、色素(A11-4B)、色素(A11-4P)、色素(A11-5B)、色素(A11-5P)等が好ましい。
Figure JPOXMLDOC01-appb-T000009
 色素(A12)としては、これらの中でも、透明樹脂や、透明基板上に吸収層を形成する際に用いる溶媒(以下、「ホスト溶媒」ともいう)への溶解性、可視透過性の点から、色素(A12-1B)、色素(A12-1P)、色素(A12-2B)、色素(A12-2P)、色素(A12-3B)、色素(A12-3P)、色素(A12-4B)、色素(A12-4P)、色素(A12-5B)、色素(A12-5P)等が好ましい。
Figure JPOXMLDOC01-appb-T000010
 色素(A21)としては、これらの中でも、透明樹脂や、透明基板上に吸収層を形成する際に用いる溶媒(以下、「ホスト溶媒」ともいう)への溶解性、可視透過性の点から、色素(A21-1B)、色素(A21-1P)、色素(A21-2B)、色素(A21-2P)、色素(A21-3B)、色素(A21-3P)、色素(A21-4B)、色素(A21-4P)、色素(A21-5B)、色素(A21-5P)等が好ましい。
Figure JPOXMLDOC01-appb-T000011
 色素(A22)としては、これらの中でも、透明樹脂や、透明基板上に吸収層を形成する際に用いる溶媒(以下、「ホスト溶媒」ともいう)への溶解性、可視透過性の点から、色素(A22-1B)、色素(A22-1P)、色素(A22-2B)、色素(A22-2P)、色素(A22-3B)、色素(A22-3P)、色素(A22-4B)、色素(A22-4P)、色素(A22-5B)、色素(A22-5P)等が好ましい。
 色素(A1)と色素(A2)においては、上記のとおり骨格が異なり、それにより、最大吸収波長λmax(A)TRの波長領域が異なる。色素(A1)においては、骨格(A1)に結合する原子や基の種類や組み合わせにもよるが、最大吸収波長λmax(A1)TRが、概ね740~830nmの波長領域にある。色素(A2)においては、骨格(A2)に結合する原子や基の種類や組み合わせにもよるが、最大吸収波長λmax(A2)TRが、概ね800~900nmの波長領域にある。
 さらに、色素(A1)においては、骨格(A1)のn1が1の場合とn1が0の場合で最大吸収波長λmax(A1)TRが異なる。色素(A11)においては、骨格(A11)に結合する原子や基の種類や組み合わせにもよるが、最大吸収波長λmax(A11)TRが、概ね740~800nmの波長領域にある。また、色素(A12)においては、骨格(A12)に結合する原子や基の種類や組み合わせにもよるが、最大吸収波長λmax(A12)TRが、概ね800~830nmの波長領域にある。
 同様に、色素(A2)においても、n2が1の場合とn2が0の場合で最大吸収波長λmax(A2)TRが異なる。色素(A21)においては、骨格(A21)に結合する原子や基の種類や組み合わせにもよるが、最大吸収波長λmax(A21)TRが、概ね800~830nmの波長領域にある。また、色素(A22)においては、骨格(A22)に結合する原子や基の種類や組み合わせにもよるが、最大吸収波長λmax(A22)TRが、概ね830~900nmの波長領域にある。
 なお、色素(A1)、色素(A2)は、例えば、Dyes and pigments 73(2007) 344-352やJ.Heterocyclic chem,42,959(2005)に記載された方法で製造可能である。また、色素(A11-5P)、色素(A21-5P)は、市販品であるFew Chemicals社製の商品名、S2138およびS2139を使用できる。
(色素(II))
 色素(II)としては、例えば、式(II-1)~(II-3)のいずれかで示される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000012
 ただし、式(II-1)、式(II-2)中、RおよびRは、それぞれ独立に水素原子、ハロゲン原子、または、置換基を有してもよい炭素数1~15のアルキル基を示し、R~Rはそれぞれ独立に水素原子、ハロゲン原子、または、置換基を有してもよい炭素数1~10のアルキル基を示す。
 ただし、式(II-3)中、R、R、およびR~R12は、それぞれ独立に水素原子、ハロゲン原子、または、置換基を有してもよい炭素数1~15のアルキル基を示し、RおよびRはそれぞれ独立に水素原子、ハロゲン原子、または、置換基を有してもよい炭素数1~5のアルキル基を示す。
 色素(II-1)および色素(II-2)におけるRおよびRは、透明樹脂への溶解性、可視光透過性等の観点から、独立して、炭素数1~15のアルキル基が好ましく、炭素数7~15のアルキル基がより好ましく、RとRの少なくとも一方が、炭素数7~15の分岐鎖を有するアルキル基がさらに好ましく、RとRの両方が炭素数8~15の分岐鎖を有するアルキル基が特に好ましい。
 Rは、透明樹脂への溶解性、可視光透過性等の観点から、独立して、水素原子、ハロゲン原子、炭素数1~3のアルキル基が好ましく、水素原子、ハロゲン原子、メチル基がより好ましい。Rは、可視域と近赤外域の境界付近の変化の急峻性の観点から、水素原子、ハロゲン原子が好ましく、水素原子がとくに好ましい。色素(II-1)におけるRおよび色素(II-2)におけるRは、独立して、水素原子、ハロゲン原子、ハロゲン原子で置換されていてもよい炭素数1~5のアルキル基が好ましく、水素原子、ハロゲン原子、メチル基がより好ましい。
 色素(II-1)および色素(II-2)としては、より具体的に、それぞれ以下の表5および表6に示す化合物が挙げられる。表5および表6において、-C17、-C、-C13は、直鎖のオクチル基、ブチル基、ヘキシル基をそれぞれ示す。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 色素(II-3)におけるRは、透明樹脂への溶解性、可視光透過性等の観点から、独立して、炭素数1~15のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましく、エチル基、またはイソプロピル基が特に好ましい。
 Rは、可視光透過性、合成容易性の観点から、水素原子、またはハロゲン原子が好ましく、水素原子が特に好ましい。RおよびRは、独立して、水素原子、ハロゲン原子、またはハロゲン原子で置換されていてもよい炭素数1~5のアルキル基が好ましく、水素原子、ハロゲン原子、またはメチル基がより好ましい。
 R~R12は、独立して、水素原子、ハロゲン原子、またはハロゲン原子で置換されていてもよい炭素数1~5のアルキル基が好ましい。-CR10-CR1112-として、以下の式(11-1)~(11-5)で示される2価の有機基が挙げられる。
 -C(CH-CH(CH)-      …(11-1)
 -C(CH-CH-          …(11-2)
 -C(CH-CH(C)-      …(11-3)
 -C(CH-C(CH)(nC)- …(11-4)
 -C(CH)(CH-CH(CH)-CH(CH)-…(11-5)
 色素(II-3)としては、より具体的に、以下の表7に示す置換基を有する化合物が挙げられる。
Figure JPOXMLDOC01-appb-T000015
 色素(II)においては、骨格(II)に結合する原子や基の種類や組み合わせにもよるが、最大吸収波長λmax(II)TRは、概ね740~770nmの波長領域にある。色素(II)のうちでも、色素(II-3)が吸収ピークの急峻性と最大吸収波長の観点から好ましい。色素(II)は、公知の方法、例えば、国際公開第2017/135359号に記載された方法で製造可能である。
 吸収層は、色素(A)の1種を単独で含有してもよく、2種以上を組み合わせて含有してもよい。2種以上を含有する場合、各色素(A)の最大吸収波長λmax(A)TRが異なることが好ましい。2種以上の色素(A)における最大吸収波長λmax(A)TRの差は、近赤外光を幅広く吸収できる点で、例えば、20~120nmの範囲が好ましく、20~100nmがより好ましい。なお、色素(A)が2種以上の化合物からなる場合は、個々の化合物が色素(A)の性質を必ずしも有する必要はなく、混合物として、色素(A)の性質を有すればよい。
 色素(A)の好ましい2種以上の組み合わせとしては、色素(A)のうち比較的短波長側に最大吸収波長を有する色素(II)または色素(A11)を色素Sとし、比較的長波長側に最大吸収波長を有する色素(A22)を色素Lとし、色素Sと色素Lの最大吸収波長の間に最大吸収波長を有する色素(A12)または色素(A21)を色素Mにグループ分けして、色素S、色素Mおよび色素Lの異なるグループから色素(A)の2種以上を選択して組み合わせるのが好ましい。
 具体的には、色素Sと色素Mの組み合わせ、色素Sと色素Lの組み合わせ、色素Mと色素Lの組み合わせ、色素Sと色素Mと色素Lの組み合わせが挙げられる。さらに、これらの場合において、グループ毎に1種または2種以上を選択してもよい。例えば、色素Sと色素Mと色素Lを組み合せる場合に、色素Sから2種類を選択し、色素Mおよび色素Lからは1種類ずつを選択し、合計で4種類の色素(A)を用いてもよい。
 なお、色素Sは最大吸収波長λmax(A)TRの異なる2種を用いるのが好ましく、最大吸収波長λmax(A)TRは、一方が740~770nmの波長領域にあるのが好ましく、745~765nmの波長領域にあるのがより好ましく、他方が765~785nmの波長領域にあるのが好ましく、770~780nmの波長領域にあるのがより好ましい。色素Mの最大吸収波長λmax(A)TRは、795~815nmの波長領域にあるのが好ましく、800~810nmの波長領域にあるのがより好ましい。色素Lの最大吸収波長λmax(A)TRは、820~850nmの波長領域にあるのが好ましく、830~850nmの波長領域にあるのがより好ましい。
 吸収層においてNIR色素の含有量は、該吸収層が後述の反射層や透明基板と組み合せて本フィルタを構成した際に(1)~(4)を満足する量である。吸収層においてNIR色素の含有量は、可視光の透過率を確保しつつ、近赤外光を遮光し、高い角度で入射した光に対する反射層の入射角依存性を抑制する観点および透明樹脂への溶解性の観点から、透明樹脂100質量部に対して0.1~20質量部が好ましく、1~20質量部がより好ましい。NIR色素を2種以上使用する場合、各NIR色素の合計の含有量が上記範囲にあるのが好ましい。
 吸収層がUV色素を含有する場合のUV色素としては、具体例に、オキサゾール色素、メロシアニン色素、シアニン色素、ナフタルイミド色素、オキサジアゾール色素、オキサジン色素、オキサゾリジン色素、ナフタル酸色素、スチリル色素、アントラセン色素、環状カルボニル色素、トリアゾール色素等が挙げられる。この中でも、オキサゾール色素、メロシアニン色素等が好ましい。また、UV色素は、吸収層に1種を単独で用いてもよく、2種以上を併用してもよい。
 UV色素としては、下記(v-1)の要件を満たす色素(U)が好ましい。
(v-1)ジクロロメタンに溶解して測定される波長350~800nmの分光透過率曲線において、最大吸収波長λmax(U)DCMが、360~415nmの波長領域にある。
 色素(U)を使用すれば、最大吸収波長が適切かつ急峻な吸収スペクトルの立ち上がりをもつので430nm以降の透過率を低下させずに良好な紫外線遮蔽特性が得られる。色素(U)の最大吸収波長λmax(U)DCMは、370~415nmの波長領域にあるのがより好ましく、390~410nmの波長領域にあるのがさらに好ましい。
 吸収層中におけるUV色素の含有量は、可視光の透過率を確保しつつ、良好な紫外線遮蔽特性する観点および透明樹脂への溶解性の観点から、透明樹脂の100質量部に対して、0.1~20質量部が好ましく、1~20質量部がより好ましい。UV色素を2種以上使用する場合、各UV色素の合計の含有量が上記範囲にあるのが好ましい。
 吸収層に用いる透明樹脂は、少なくとも可視光を透過する樹脂である。吸収層が色素(A)を含有する場合には、透明樹脂は色素(A)との関係において前述の特性(i-1)、(i-2)および(i-5)を満足する透明樹脂が好ましい。
 透明樹脂は、例えば、アクリル樹脂、エポキシ樹脂、エン・チオール樹脂、ポリカーボネート樹脂、ポリエーテル樹脂、ポリアリレート樹脂、ポリサルホン樹脂、ポリエーテルサルホン樹脂、ポリパラフェニレン樹脂、ポリアリーレンエーテルフォスフィンオキシド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリオレフィン樹脂、環状オレフィン樹脂、およびポリエステル樹脂等から選ばれる1種以上が使用される。
 色素(A)を用いる場合、透明樹脂は、これらのなかでも、ポリエステル樹脂、ポリカーボネート樹脂、ポリイミド樹脂、アクリルイミド樹脂が好ましい。これらの樹脂は1種を単独で使用してもよく、2種以上を混合して使用してもよい。
 透明樹脂としては、市販品を用いてもよい。市販品としては、ポリエステル樹脂として、OKP4HT、OKP4、B-OKP2、OKP-850(以上、いずれも大阪ガスケミカル(株)製、商品名)、バイロン(登録商標)103(東洋紡(株)製、商品名)等が挙げられる。
 ポリカーボネート樹脂として、LeXan(登録商標)ML9103(sabic社製、商品名)、EP5000(三菱ガス化学(株)社製、商品名)、SP3810(帝人(株)製、商品名)、SP1516(帝人(株)製、商品名)、TS2020(帝人(株)製、商品名)、xylex(登録商標)7507(sabic社製、商品名)等が挙げられる。
 ポリイミド樹脂として、ネオプリム(登録商標)C3650(三菱ガス化学(株)製、商品名)、同C3G30(三菱ガス化学(株)製、商品名)、同C3450(三菱ガス化学(株)製、商品名)、JL-20(新日本理化製、商品名)、FPC-0220(三菱ガス化学(株)社製、商品名)(これらのポリイミド樹脂には、シリカが含まれていてもよい)等が挙げられる。
 アクリルイミド樹脂として、PLEXIMID8817(ダイセルエボニック社製、商品名)等が挙げられる。
 透明樹脂は、透明性、およびNIR色素、例えば、色素(A)の溶解性、ならびに耐熱性の観点から適宜選択される。透明樹脂は、耐熱性の観点からは、ガラス転移点(Tg)が高い、例えば、Tgが140℃以上の樹脂が好ましい。
 吸収層は、さらに、本発明の効果を損なわない範囲で、密着性付与剤、色調補正色素、レベリング剤、帯電防止剤、熱安定剤、光安定剤、酸化防止剤、分散剤、難燃剤、滑剤、可塑剤等の任意成分を有してもよい。
 本フィルタにおいて、吸収層の厚さは、0.1~100μmが好ましい。吸収層が複数層からなる場合、各層の合計の厚さが、0.1~100μmであるのが好ましい。厚さが0.1μm未満では、所望の光学特性を十分に発現できないおそれがあり、厚さが100μm超では、層の平坦性が低下し、吸収率の面内バラツキが生じるおそれがある。吸収層の厚さは、0.3~50μmがより好ましい。また、反射層や、反射防止層等の他の機能層を備えた場合、その材質によっては、吸収層が厚すぎると割れ等が生ずるおそれがある。そのため、吸収層の厚さは、0.3~10μmがより好ましい。
 吸収層は、例えば、NIR色素、UV色素等の色素と、透明樹脂または透明樹脂の原料成分と、必要に応じて配合される各成分とを、溶媒に溶解または分散させて塗工液を調製し、これを基材に塗工し乾燥させ、さらに必要に応じて硬化させて形成できる。上記基材は、本フィルタに含まれる透明基板でもよいし、吸収層を形成する際にのみ使用する剥離性の基材でもよい。また、溶媒は、安定に分散できる分散媒または溶解できる溶媒であればよい。
 また、塗工液は、微小な泡によるボイド、異物等の付着による凹み、乾燥工程でのはじき等の改善のため界面活性剤を含んでもよい。さらに、塗工液の塗工には、例えば、浸漬コーティング法、キャストコーティング法、またはスピンコート法等を使用できる。上記塗工液を基材上に塗工後、乾燥させることにより吸収層が形成される。また、塗工液が透明樹脂の原料成分を含有する場合、さらに熱硬化、光硬化等の硬化処理を行う。
 また、吸収層は、押出成形によりフィルム状に製造可能でもあり、このフィルムを本フィルタの他の部材に積層し熱圧着等により一体化させてもよい。例えば、このフィルムを透明基板上に貼着してもよい。
[透明基板]
 本フィルタにおける透明基板は、可視光を透過すれば、構成する材料は特に制限されず、近赤外光や近紫外光を吸収する材料でもよい。例えば、ガラスや結晶等の無機材料や、透明樹脂等の有機材料が挙げられる。
 透明基板に使用できるガラスとしては、フツリン酸塩系ガラスやリン酸塩系ガラス等に銅イオンを含む吸収型のガラス(近赤外線吸収ガラス)、ソーダライムガラス、ホウケイ酸ガラス、無アルカリガラス、石英ガラス等が挙げられる。なお、「リン酸塩系ガラス」は、ガラスの骨格の一部がSiOで構成されるケイリン酸塩ガラスも含む。
 銅イオンを含む吸収型のガラスは、市販品を用いてもよい。市販品として、具体的には、NF-50E、NF-50EX、NF-50T、NF-50TX、SP-50T、(AGC社製、商品名)等、BG-60、BG-61(以上、ショット社製、商品名)等、CD5000(HOYA社製、商品名)等が挙げられる。
 ガラスとしては、ガラス転移点以下の温度で、イオン交換により、ガラス板主面に存在するイオン半径が小さいアルカリ金属イオン(例えば、Liイオン、Naイオン)を、イオン半径のより大きいアルカリイオン(例えば、Liイオンに対してはNaイオンまたはKイオンであり、Naイオンに対してはKイオンである。)に交換して得られる化学強化ガラスを使用してもよい。
 透明基板の構成材料として使用できる樹脂としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル樹脂、ポリエチレン、ポリプロピレン、エチレン酢酸ビニル共重合体等のポリオレフィン樹脂、ノルボルネン樹脂、ポリアクリレート、ポリメチルメタクリレート等のアクリル樹脂、ウレタン樹脂、塩化ビニル樹脂、フッ素樹脂、ポリカーボネート樹脂、ポリビニルブチラール樹脂、ポリビニルアルコール樹脂、ポリイミド樹脂等が挙げられる。
 また、透明基板に使用できる結晶材料としては、水晶、ニオブ酸リチウム、サファイア等の複屈折性結晶が挙げられる。透明基板の光学特性は、上記吸収層、反射層等と積層して得られる光学フィルタとして、前述した光学特性を有するとよい。結晶材料としてはサファイアが好ましい。
 透明基板は、光学フィルタとしての光学特性、機械特性等の長期にわたる信頼性に係る形状安定性の観点、フィルタ製造時のハンドリング性等から、無機材料が好ましく、特にガラス、サファイアが好ましい。
 透明基板を構成する材料の線膨張係数は、49×10-6/℃以下が好ましく、10×10-6/℃以下がより好ましい。なお、本明細書における線膨張係数は、0℃~300℃での平均線膨張係数である。平均線膨張係数とは、特定の温度範囲における、ひずみ-温度曲線の平均の勾配である。
 透明基板の形状は特に限定されず、ブロック状、板状、フィルム状でもよく、その厚さは、例えば、0.03~5mmが好ましく、薄型化の観点からは、0.03~0.5mmがより好ましい。加工性の観点から言えば、ガラスからなる板厚0.05~0.5mmの透明基板が好ましい。
[反射層]
 反射層は、例えば、誘電体多層膜からなり、特定の波長域の光を遮蔽する機能を有する。反射層としては、例えば、可視光を透過し、特には、可視光の長波長側の赤色光まで十分に透過し、吸収層の遮光域以外の波長の光を主に反射する波長選択性を有するものが挙げられる。反射層は、近赤外光を反射する反射領域を有することが好ましい。この場合、反射層の反射領域は、吸収層の近赤外域における遮光領域を含んでもよい。反射層は、上記特性に限らず、所定の波長域の光、例えば、近紫外域をさらに遮断する仕様に適宜設計してよい。
 反射層は、以下の(ii-1)の要件を満足することが好ましい。
(ii-1)入射角0°の分光透過率曲線において、波長420nm~650nmの反射率R420-650(0)が1%以下である。
 本フィルタにおいては、反射層の高入射角における分光特性の低下、例えば、近赤外域における光抜けやノイズ等の発生を吸収層の吸収特性により抑制する関係が好ましい。具体的には、吸収層がNIR色素を含有し、反射層が近赤外光を反射する反射領域を有する場合、吸収層と反射層は以下の関係を有することが好ましい。
 吸収層は、入射角0°の光に対して透過率が20%を示す波長の短波長側の波長λABSHT20-0°が680~770nmの波長領域にあることが好ましい。そして、λABSHT20-0°は、反射層を含む光学フィルタが、該反射層において入射角0°の光に対して透過率が20%を示す短波長側の波長λRESHT20-0°との関係が下記(iv-1)の要件を満足することが好ましい。
(iv-1)λABSHT20-0°+5nm≦λRESHT20-0°≦λABSHT20-0°+70nm
(iv-1)を満たすことで吸収層の吸収帯と反射層のカット端の重なりを維持することができ光の漏れを少なくすることができる。
 反射層は、さらに下記(iv-2)の要件を満足することが好ましい。
(iv-2)λRESHT20-0°からλRESHT20-0°+350nmまでの波長領域の光における平均透過率が10%以下である。
 吸収層がUV色素を含有する場合、入射角0°の光に対して透過率が50%を示す波長の長波長側の波長λABSUV50-0°が380~450nmの波長領域にあることが好ましい。そして、λABSUV50-0°は、反射層を含む光学フィルタが、該反射層において入射角0°の光に対して350~500nmの範囲で透過率が50%を示す短波長側の波長λRESUV50-0°との関係が下記(v-1)の関係を満足することが好ましい。
(v-1)λRESUV50-0°≦λABSUV50-0°-25nm
 反射層は、低屈折率の誘電体膜(低屈折率膜)と高屈折率の誘電体膜(高屈折率膜)とを交互に積層した誘電体多層膜から構成される。高屈折率膜は、好ましくは、屈折率が1.6以上であり、より好ましくは2.2~2.5である。高屈折率膜の材料としては、例えばTa、TiO、Nbが挙げられる。これらのうち、成膜性、屈折率等における再現性、安定性等の点から、TiOが好ましい。
 一方、低屈折率膜は、好ましくは、屈折率1.6未満であり、より好ましくは1.45以上1.55未満である。低屈折率膜の材料としては、例えばSiO、SiO等が挙げられる。成膜性における再現性、安定性、経済性等の点から、SiOが好ましい。
 さらに、反射層は、透過域と遮光域の境界波長領域で透過率が急峻に変化することが好ましい。この目的のためには、反射層を構成する誘電体多層膜の合計積層数は、15層以上が好ましく、25層以上がより好ましく、30層以上がさらに好ましい。ただし、合計積層数が多くなると、反り等が発生したり、膜厚が増加したりするため、合計積層数は100層以下が好ましく、75層以下がより好ましく、60層以下がより一層好ましい。また、誘電体多層膜の膜厚は、2~10μmが好ましい。
 誘電体多層膜の合計積層数や膜厚が上記範囲内であれば、反射層は小型化の要件を満たし、高い生産性を維持しながら入射角依存性を抑制できる。また、誘電体多層膜の形成には、例えば、CVD法、スパッタリング法、真空蒸着法等の真空成膜プロセスや、スプレー法、ディップ法等の湿式成膜プロセス等を使用できる。
 反射層は、1層(1群の誘電体多層膜)で所定の光学特性を与えたり、2層で所定の光学特性を与えたりしてもよい。2層以上有する場合、各反射層は同じ構成でも異なる構成でもよい。反射層を2層以上有する場合、通常、反射帯域の異なる複数の反射層で構成される。
 例として、2層の反射層を設ける場合、一方を、近赤外域のうち短波長帯の光を遮蔽する近赤外反射層とし、他方を、該近赤外域の長波長帯および近紫外域の両領域の光を遮蔽する近赤外・近紫外反射層としてもよい。また、例えば、本フィルタが透明基板を有する場合に、2層以上の反射層を設ける際には、全てを透明基板の一方の主面上に設けてもよく、各反射層を、透明基板を挟んでその両主面上に設けてもよい。
[反射防止層]
 反射防止層としては、誘電体多層膜や中間屈折率媒体、屈折率が漸次的に変化するモスアイ構造などが挙げられる。中でも光学的効率、生産性の観点から誘電体多層膜が好ましい。反射防止層は、反射層と同様に誘電体膜を交互に積層して得られる。
 本フィルタは、他の構成要素として、例えば、特定の波長域の光の透過と吸収を制御する無機微粒子等による吸収を与える構成要素(層)などを備えてもよい。無機微粒子の具体例としては、ITO(Indium Tin Oxides)、ATO(Antimony-doped Tin Oxides)、タングステン酸セシウム、ホウ化ランタン等が挙げられる。ITO微粒子、タングステン酸セシウム微粒子は、可視光の透過率が高く、かつ1200nmを超える赤外波長領域の広範囲に光吸収性を有するため、かかる赤外光の遮蔽性を必要とする場合に使用できる。
 本フィルタは、吸収層と、反射層と、透明基板とを備え、(1)~(4)の要件を全て満足する。さらに好ましくは、(5)の要件を満足する。本フィルタは、可視光の透過性、特には赤色の透過性を良好に維持しながら、近赤外光の遮蔽性において、特に高入射角における近赤外光の遮蔽性の低下が抑制された光学フィルタである。
 本フィルタは、例えば、カメラ、センサ等の情報取得装置に使用した場合に、色再現性、特に赤色の色再現性に優れる情報取得装置を提供できる。本フィルタをカメラに用いる場合、カメラは、固体撮像素子と、撮像レンズと、本フィルタとを備える。本フィルタは、例えば、撮像レンズと固体撮像素子との間に配置されたり、撮像装置の固体撮像素子、撮像レンズ等に粘着剤層を介して直接貼着されたりして使用できる。本フィルタをセンサカバーとして用いる場合、センサは、センサ本体とカラーフィルタと本フィルタとを備える。本フィルタは、例えば、センサ本体やカラーフィルタ等に粘着剤層を介して直接貼着されたりして使用できる。
 本フィルタを有するカメラ、センサ等の情報取得装置は、輸送機、例えば、電車、自動車、船舶、航空機に搭載される情報取得装置に適用できる。特に、自動車に搭載される、情報取得装置として好適である。
 次に、本発明を実施例によりさらに具体的に説明する。ただし、本発明は以下の記載によっては限定されない。
 実施例において、吸収層に使用した色素を以下のとおり合成した。
(NIR色素)
 色素(A)として、色素(A11-1B)、色素(A12-1B)、色素(A22-1P)を、Dyes and pigments 73(2007) 344-352に記載の方法で合成した。また、色素(II-3-2)を国際公開第2017/135359号に記載された方法により合成した。
(UV色素)
 UV色素として式(M-2)で示されるメロシアニン色素(M-2)を常法により合成し準備した。メロシアニン色素(M-2)のジクロロメタンに溶解して測定される最大吸収波長λmax(U)DCMは、396nmであった。
Figure JPOXMLDOC01-appb-C000016
 上記色素(A)をジクロロメタンに溶解して波長400~1100nmの光吸収スペクトルを測定して、最大吸収波長λmax(A)DCMを求めた。さらに、λmax(A)DCMの透過率を10%に濃度調整したときの、435~480nmの波長領域の光の平均透過率T435-480ave(A)DCMおよび480~590nmの波長領域の光に対する平均透過率T480-590ave(A)DCMを求めた。これらの色素の光学特性の評価には、紫外可視分光光度計((株)日立ハイテクノロジーズ社製、U-4100形)を用いた。結果を表8に示す。表中、「DMC中T435-480」は、平均透過率T435-480ave(A)DCMを示し、「DMC中T480-590」は平均透過率T480-590ave(A)DCMを示す。
 また、色素(A)を透明樹脂に溶解させた際の吸光特性を以下のとおり測定した。透明樹脂として、ネオプリム(登録商標)C3G30(三菱ガス化学(株)製、商品名、ポリイミド樹脂)を使用した。色素(A)と、透明樹脂、シクロヘキサノンを十分に撹拌し、均一に溶解した。得られた溶液をガラス板(D263;SCHOTT製)上に塗布し、乾燥して表8に示す膜厚の吸収層を得た。色素の添加量は最大吸収波長λmax(A)TRでの光の透過率が10%になるように調整した。波長400~1100nmの吸収層付きガラス板の分光透過率曲線とガラス板の分光透過率曲線を用いて、吸収層の分光透過率曲線を得た。
 分光透過率曲線から435~480nmの波長領域の光の平均透過率T435-480ave(A)TR(表中、「樹脂中T435-480」)および480~590nmの波長領域の光に対する平均透過率T480-590ave(A)TR(表中、「樹脂中T480-590」)を求めた。また、平均透過率T435-480ave(A)TRと平均透過率T435-480ave(A)DCMの差(表中、「T435-480の差」)、および平均透過率T480-590ave(A)TRと平均透過率T480-590ave(A)DCMの差(表中、「T480-590の差」)を求めた。さらに、質量吸光係数/(cm・質量%)を求めた。結果を表8に示す。表中の色素濃度は、上記λmax(A)TRでの光の透過率が10%になるように調整した際の、透明樹脂100質量部に対する質量部である。
Figure JPOXMLDOC01-appb-T000017
[例1~4;光学フィルタの製造・評価]
 図4に示す光学フィルタ10Dと同様の構成の光学フィルタを以下のとおり製造し評価した。なお、例1~4は全て本フィルタの実施例である。
 透明基板として、以下の2種類のガラス製の基板A、B(大きさ;76mm×76mm)のいずれかを使用した。
基板A;AGC社製、SP-50T、銅イオンを含むリン酸ガラス基板、線膨張係数5.0×100×10-6/℃、厚さ0.01mm
基板B;SCHOTT製、D263、ホウケイ酸ガラス、線膨張係数7.2×10-6/℃、厚さ0.2mm
 反射層として、以下の反射層Aを透明基板上に形成した。
反射層A;TiO膜とSiO膜を交互に積層した誘電体多層膜からなり、入射角と各波長域における透過率の関係が表9に示される反射層。
 表9において、R420-650は、420~650nmの波長領域の光の最大反射率[%]を示す。λRESHT20-0°は、反射層において入射角0°の光に対して透過率が20%を示す短波長側の波長を、λRESUV50-0°は、反射層において入射角0°の光に対して350~500nmの範囲で透過率が50%を示す短波長側の波長を示す。
Figure JPOXMLDOC01-appb-T000018
 反射防止層は以下の表10に示す構成とした。
Figure JPOXMLDOC01-appb-T000019
(光学フィルタの製造)
 表11に示す、透明基板、反射層、吸収層および反射防止層を有する例1~4の光学フィルタを製造した。
 すなわち、透明基板に蒸着法により、TiO膜とSiO膜を交互に積層して誘電体多層膜からなる反射層を形成した。また、ガラス基板の反射層が形成されたのと反対側の主面上に、表11に示す色素(A)、UV色素を組み合わせて、透明樹脂としてネオプリム(登録商標)C3G30を用いて上記と同様の方法で吸収層を形成した。各例で得られた吸収層の厚みを表11に示す。さらに、吸収層上に、表10に示す反射防止膜を蒸着法により形成し、例1~4の光学フィルタ(NIRフィルタ)を得た。なお、表11中の色素含有量は、透明樹脂100質量部に対する色素の質量部である。
Figure JPOXMLDOC01-appb-T000020
(評価)
 得られた例1~例4の光学フィルタにおける入射角と各波長域における透過率の関係をそれぞれ表12~表15および図5~8に示す。
 表中、T700[%]は、波長700nmにおける透過率、λLO50[nm]は、640nm~760nmの波長領域で透過率が50%となる波長、T750-1100MAX[%]、T750-1100AVE[%]は、それぞれ波長750nm~1100nmの最大透過率、平均透過率、λSH50[nm]は、400nm~420nmの波長領域で透過率が50%となる波長、T640-660AVE[%]、T640-660MIN[%]は、それぞれ波長640nm~660nmの平均透過率、最小透過率を示す。また、|λLO50-0-λLO50-θ|は、入射角0°の波長λLO50であるλLO50-0から入射角θ°の波長λLO50であるλLO50-θを引いた値の絶対値[nm]を示す。
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2018年6月28日出願の日本特許出願(特願2018-123477)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の光学フィルタは、可視光の透過性、特には赤色の透過性を良好に維持しながら、近赤外光の遮蔽性において、特に高入射角における近赤外光の遮蔽性の低下が抑制された良好な近赤外線遮蔽特性を有する。近年、高性能化が進む、例えば、輸送機用のカメラやセンサ等の情報取得装置の用途に有用である。
 10A,10B,10C,10D…光学フィルタ、11,11a,11b…吸収層、12,12a,12b…反射層、13…透明基板、14…反射防止層。

Claims (15)

  1.  吸収層と、反射層と、透明基板とを備え、下記(1)~(4)の要件を満たすことを特徴とする光学フィルタ。
     (1)入射角0°の分光透過率曲線において、640nm~760nmの波長領域に透過率が50%となる波長を有する。
     (2)入射角0°の分光透過率曲線において、波長750nm~1100nmの平均透過率が3%以下である。
     (3)入射角0°の分光透過率曲線において、400nm~420nmの波長領域に透過率が50%となる波長を有する。
     (4)入射角0°の分光透過率曲線において、波長640nm~660nmの平均透過率が68%以上であり、最小透過率が65%以上である。
  2.  下記(5)の要件をさらに満たす請求項1に記載の光学フィルタ。
     (5)入射角0°の分光透過率曲線において、640nm~760nmの波長領域に透過率が50%となる波長λLO50-0を有し、入射角35°の分光透過率曲線において、640nm~760nmの波長領域に透過率が50%となる波長λLO50-35を有し、かつ前記波長の差の絶対値|λLO50-0-λLO50-35|が11nm以下である。
  3.  前記吸収層は、近赤外線吸収色素を含み、前記近赤外線吸収色素は、スクアリリウム色素、シアニン色素、フタロシアニン色素、ナフタロシアニン色素、ジチオール金属錯体色素、アゾ色素、ポリメチン色素、フタリド色素、ナフトキノン色素、アン卜ラキノン色素、インドフェノール色素、ピリリウム色素、チオピリリウム色素、ク口コニウム色素、テ卜ラデヒドオコリン色素、卜リフェニルメタン色素、アミニウム色素およびジイモニウム色素からなる群から選ばれる少なくとも1種である請求項1または2に記載の光学フィルタ。
  4.  前記吸収層は、近赤外線吸収色素と透明樹脂を含み、前記近赤外線吸収色素は下記(i-1)~(i-5)の特性を満足する近赤外線吸収色素(A)を含む請求項1~3のいずれか1項に記載の光学フィルタ。
    (i-1)前記透明樹脂に含有させて測定される波長400~1100nmの分光透過率曲線において、最大吸収波長λmax(A)TRが740~900nmの波長領域にある。
    (i-2)前記透明樹脂に最大吸収波長λmax(A)TRにおける透過率が10%となるように含有させて測定される、波長400~1100nmの分光透過率曲線において、435~480nmの波長領域の光の平均透過率T435-480ave(A)TRおよび480~590nmの波長領域の光に対する平均透過率T480-590ave(A)TRがともに90%以上である。
    (i-3)ジクロロメタンに溶解して測定される波長400~1100nmの分光透過率曲線において、最大吸収波長λmax(A)DCMが730~900nmの波長領域にある。
    (i-4)ジクロロメタンに最大吸収波長λmax(A)DCMにおける透過率が10%となるように含有させて測定される、波長400~1100nmの分光透過率曲線において、435~480nmの波長領域の光の平均透過率T435-480ave(A)DCMが90%以上、かつ、480~590nmの波長領域の光に対する平均透過率T480-590ave(A)DCMが93%以上である。
    (i-5)平均透過率T435-480ave(A)DCMと平均透過率T435-480ave(A)TRの差および平均透過率T480-590ave(A)DCMと平均透過率T480-590ave(A)TRの差がともに10.5%以下である。
  5.  前記近赤外線吸収色素(A)は、スクアリリウム色素、シアニン色素およびフタロシアニン色素から選ばれる少なくとも1種を含む請求項4記載の光学フィルタ。
  6.  前記近赤外線吸収色素(A)は、下記式(A1)または式(A2)で示されるシアニン色素および下記式(II)で示されるスクアリリウム色素から選ばれる少なくとも1種を含む請求項4または5に記載の光学フィルタ。
    Figure JPOXMLDOC01-appb-C000001
     
     ただし、式(A1)および(A2)中の記号は以下のとおりである。
     R101~R109およびR121~R131は、それぞれ独立に水素原子、ハロゲン原子、置換基を有してもよい炭素数1~15のアルキル基もしくはアルコキシ基、または、炭素数5~20のアリール基を示す。R110114およびR132136は、それぞれ独立に水素原子、ハロゲン原子、または、炭素数1~15のアルキル基もしくはアルコキシ基を示す。
     Xは一価のアニオンを示す。
     n1およびn2はそれぞれ独立に0または1である。-(CHn1-を含む炭素環、および、-(CHn2-を含む炭素環に結合する水素原子はハロゲン原子、置換基を有してもよい炭素数1~15のアルキル基または炭素数5~20のアリール基で置換されていてもよい。
    Figure JPOXMLDOC01-appb-C000002
     
     ただし、式(II)中の記号は以下のとおりである。
     2つの環Zは、それぞれ独立して、ヘテロ原子を環中に0~3個有し、かつ置換されていてもよい、5員環または6員環であり、
     RとR、RとR、およびRと環Zを構成する炭素原子またはヘテロ原子は、互いに連結して窒素原子とともにそれぞれヘテロ環A1、ヘテロ環B1およびヘテロ環C1を形成していてもよく、ヘテロ環を形成していない場合、RおよびRは、それぞれ独立して、水素原子、ハロゲン原子、または、炭素原子間に不飽和結合、ヘテロ原子、飽和もしくは不飽和の環構造を含んでよく、置換基を有してもよい炭化水素基を示し、RおよびRは、それぞれ独立して、水素原子、ハロゲン原子、または炭素原子間にヘテロ原子を含んでもよいアルキル基もしくはアルコキシ基を示す。
  7.  前記吸収層は、透明樹脂を含み、前記透明樹脂の100質量部に対して前記近赤外線吸収色素を0.01~20質量部含有する、請求項3~6のいずれか1項に記載の光学フィルタ。
  8.  前記透明基板は、線膨張係数が49×10-6/℃以下である請求項1~7のいずれか1項に記載の光学フィルタ。
  9.  前記透明基板の一方の主面上に前記吸収層を備え、前記透明基板の他方の主面上に前記反射層を備える請求項1~8のいずれか1項に記載の光学フィルタ。
  10.  前記透明基板の両方の主面上に前記吸収層および前記反射層を備える請求項1~8のいずれか1項に記載の光学フィルタ。
  11.  前記透明基板は、樹脂またはガラスを含む請求項1~10のいずれか1項に記載の光学フィルタ。
  12.  前記ガラスは、吸収型のガラスを含む請求項11に記載の光学フィルタ。
  13.  前記反射層は、入射角0°の分光透過率曲線において、波長420nm~650nmの反射率が1%以下である請求項1~12のいずれか1項に記載の光学フィルタ。
  14.  請求項1~13のいずれか1項に記載の光学フィルタを備える情報取得装置。
  15.  前記情報取得装置は、輸送機用である請求項14に記載の情報取得装置。
     
PCT/JP2019/025903 2018-06-28 2019-06-28 光学フィルタおよび情報取得装置 WO2020004641A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020527695A JP7279718B2 (ja) 2018-06-28 2019-06-28 光学フィルタおよび情報取得装置
CN201980021777.7A CN111936896B (zh) 2018-06-28 2019-06-28 滤光片和信息获取装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018123477 2018-06-28
JP2018-123477 2018-06-28

Publications (1)

Publication Number Publication Date
WO2020004641A1 true WO2020004641A1 (ja) 2020-01-02

Family

ID=68987215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025903 WO2020004641A1 (ja) 2018-06-28 2019-06-28 光学フィルタおよび情報取得装置

Country Status (3)

Country Link
JP (1) JP7279718B2 (ja)
CN (1) CN111936896B (ja)
WO (1) WO2020004641A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230152626A1 (en) * 2020-03-31 2023-05-18 Dai Nippon Printing Co., Ltd. Diffusing member, manufacturing method of diffusing member, planar light source device, display device, and dielectric multilayer film
WO2023167062A1 (ja) * 2022-03-02 2023-09-07 Agc株式会社 光学フィルタ
KR20240009425A (ko) 2021-05-17 2024-01-22 니혼 이타가라스 가부시키가이샤 광흡수체, 광흡수체를 갖는 물품, 및 광흡수성 조성물

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7309570B2 (ja) 2019-11-05 2023-07-18 株式会社豊田自動織機 内燃機関の制御装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101729A (ja) * 2005-09-30 2007-04-19 Pentax Corp 赤外カットコート膜、赤外カットコート膜を有する光学素子及び係る光学素子を有する内視鏡装置
JP2007526379A (ja) * 2004-03-05 2007-09-13 ビーエーエスエフ アクチェンゲゼルシャフト Nir吸収剤を含むオフセット及び/又は活版印刷用の印刷インキ及びオフセット及び/又は活版印刷用インキに溶解可能なnir吸収剤
JP2012117030A (ja) * 2010-11-12 2012-06-21 Shin-Etsu Chemical Co Ltd 近赤外光吸収色素化合物、近赤外光吸収膜形成材料、及びこれにより形成される近赤外光吸収膜
WO2014168190A1 (ja) * 2013-04-10 2014-10-16 旭硝子株式会社 赤外線遮蔽フィルタ、固体撮像素子、および撮像・表示装置
JP2016157123A (ja) * 2011-09-15 2016-09-01 Jsr株式会社 近赤外線カットフィルターおよび近赤外線カットフィルターを用いた装置
WO2017022708A1 (ja) * 2015-08-06 2017-02-09 株式会社Adeka 熱反応性組成物
WO2017135359A1 (ja) * 2016-02-02 2017-08-10 旭硝子株式会社 近赤外線吸収色素、光学フィルタおよび撮像装置
WO2018088561A1 (ja) * 2016-11-14 2018-05-17 日本板硝子株式会社 光吸収性組成物及び光学フィルタ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101511962A (zh) * 2006-08-31 2009-08-19 株式会社日本触媒 用于近红外线吸收性组合物的盐和近红外线吸收性压敏粘合剂组合物
KR101611807B1 (ko) * 2013-12-26 2016-04-11 아사히 가라스 가부시키가이샤 광학 필터
KR101453469B1 (ko) * 2014-02-12 2014-10-22 나우주 광학 필터 및 이를 포함하는 촬상 장치
WO2016114363A1 (ja) * 2015-01-14 2016-07-21 旭硝子株式会社 近赤外線カットフィルタおよび撮像装置
JP6202230B1 (ja) * 2015-12-01 2017-09-27 旭硝子株式会社 光学フィルタおよび撮像装置
TWM525451U (zh) * 2016-05-04 2016-07-11 白金科技股份有限公司 吸收式近紅外線濾光片及影像感測器
JP6742288B2 (ja) * 2017-11-01 2020-08-19 日本板硝子株式会社 赤外線吸収層用ゾル、赤外線吸収層の製造方法、赤外線カットフィルタの製造方法および赤外線吸収層用ゾルの製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007526379A (ja) * 2004-03-05 2007-09-13 ビーエーエスエフ アクチェンゲゼルシャフト Nir吸収剤を含むオフセット及び/又は活版印刷用の印刷インキ及びオフセット及び/又は活版印刷用インキに溶解可能なnir吸収剤
JP2007101729A (ja) * 2005-09-30 2007-04-19 Pentax Corp 赤外カットコート膜、赤外カットコート膜を有する光学素子及び係る光学素子を有する内視鏡装置
JP2012117030A (ja) * 2010-11-12 2012-06-21 Shin-Etsu Chemical Co Ltd 近赤外光吸収色素化合物、近赤外光吸収膜形成材料、及びこれにより形成される近赤外光吸収膜
JP2016157123A (ja) * 2011-09-15 2016-09-01 Jsr株式会社 近赤外線カットフィルターおよび近赤外線カットフィルターを用いた装置
WO2014168190A1 (ja) * 2013-04-10 2014-10-16 旭硝子株式会社 赤外線遮蔽フィルタ、固体撮像素子、および撮像・表示装置
WO2017022708A1 (ja) * 2015-08-06 2017-02-09 株式会社Adeka 熱反応性組成物
WO2017135359A1 (ja) * 2016-02-02 2017-08-10 旭硝子株式会社 近赤外線吸収色素、光学フィルタおよび撮像装置
WO2018088561A1 (ja) * 2016-11-14 2018-05-17 日本板硝子株式会社 光吸収性組成物及び光学フィルタ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230152626A1 (en) * 2020-03-31 2023-05-18 Dai Nippon Printing Co., Ltd. Diffusing member, manufacturing method of diffusing member, planar light source device, display device, and dielectric multilayer film
KR20240009425A (ko) 2021-05-17 2024-01-22 니혼 이타가라스 가부시키가이샤 광흡수체, 광흡수체를 갖는 물품, 및 광흡수성 조성물
WO2023167062A1 (ja) * 2022-03-02 2023-09-07 Agc株式会社 光学フィルタ

Also Published As

Publication number Publication date
JP7279718B2 (ja) 2023-05-23
CN111936896A (zh) 2020-11-13
CN111936896B (zh) 2022-10-21
JPWO2020004641A1 (ja) 2021-08-02

Similar Documents

Publication Publication Date Title
JP6332403B2 (ja) 光学フィルタおよび固体撮像素子
KR101913482B1 (ko) 근적외선 커트 필터 및 촬상 장치
WO2020004641A1 (ja) 光学フィルタおよび情報取得装置
JP6202230B1 (ja) 光学フィルタおよび撮像装置
JP6183041B2 (ja) 近赤外線カットフィルタ
JP6642578B2 (ja) 光学フィルタおよび撮像装置
JP7070555B2 (ja) 光学フィルタおよび撮像装置
JP2019012121A (ja) 光学フィルタおよび撮像装置
WO2023008291A1 (ja) 光学フィルタ
JPWO2019151344A1 (ja) 光学フィルタおよび撮像装置
WO2022024826A1 (ja) 光学フィルタ
JP2024069437A (ja) 光学フィルタおよび撮像装置
WO2022138252A1 (ja) 光学フィルタ
WO2022024941A1 (ja) 光学フィルタ
WO2022065170A1 (ja) 光学フィルタ
WO2022085636A1 (ja) 光学フィルタ
WO2023127670A1 (ja) 光学フィルタ
JP7342958B2 (ja) 光学フィルタおよび撮像装置
JP7415815B2 (ja) 光学フィルタ
WO2022024942A1 (ja) 光学フィルタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19825287

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020527695

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19825287

Country of ref document: EP

Kind code of ref document: A1