WO2022138252A1 - 光学フィルタ - Google Patents

光学フィルタ Download PDF

Info

Publication number
WO2022138252A1
WO2022138252A1 PCT/JP2021/045667 JP2021045667W WO2022138252A1 WO 2022138252 A1 WO2022138252 A1 WO 2022138252A1 JP 2021045667 W JP2021045667 W JP 2021045667W WO 2022138252 A1 WO2022138252 A1 WO 2022138252A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
laminated structure
wavelength
incident angle
optical filter
Prior art date
Application number
PCT/JP2021/045667
Other languages
English (en)
French (fr)
Inventor
崇 長田
和彦 塩野
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to CN202180087322.2A priority Critical patent/CN116648644A/zh
Priority to JP2022572151A priority patent/JPWO2022138252A1/ja
Publication of WO2022138252A1 publication Critical patent/WO2022138252A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters

Definitions

  • the present invention relates to an optical filter.
  • visible light In an image pickup device using a solid-state image sensor, in order to reproduce color tones well and obtain a clear image, light in the visible region (hereinafter also referred to as “visible light”) is transmitted, and light in the near infrared wavelength region (hereinafter referred to as “visible light”) is transmitted.
  • An optical filter that blocks also called “near-infrared light” is used.
  • dielectric thin films having different refractive indexes are alternately laminated on one side or both sides of a transparent substrate (dielectric multilayer film), and light to be shielded is reflected by utilizing light interference.
  • a transparent substrate dielectric multilayer film
  • Various methods such as a reflection type filter can be mentioned.
  • An optical filter that blocks near-infrared light is required to block a wide wavelength region of 750 to 1200 nm, but it is technically difficult to cover this with one type of multilayer film. Therefore, it is known to use a combination of a plurality of dielectric multilayer films having different near-infrared light reflection regions (Patent Document 1).
  • ripples may be amplified in the visible light region without canceling each other.
  • the dielectric multilayer film constituting the thin film laminated structure has a so-called incident angle dependence in which the light transmission characteristic shifts to the short wavelength side as the incident angle of light increases. Therefore, in the near-infrared light region near the boundary with the visible light region where the transmittance of the multilayer film changes rapidly, the reflection characteristics may deteriorate under high incident angle conditions.
  • the present invention has high transparency of visible light and high shielding property of near-infrared light, and an optical filter in which ripple generation in the visible light region and deterioration of shielding property in the near-infrared light region are suppressed even at a high incident angle.
  • the purpose is to provide.
  • a thin film laminated structure in which two or more multilayer films are composited by shifting the near-infrared light reflection region so that ripples in the visible light region cancel each other is used.
  • a gap is generated in the overlap of the near-infrared light reflection regions of each multilayer film, and light leakage is likely to occur, and it is particularly likely to occur at a high incident angle due to the incident angle dependence of the dielectric multilayer film. Therefore, it has been found that the above-mentioned problems can be solved by further providing a thin film laminated structure that reflects light in a wavelength region in which light escape occurs and by using a dye that absorbs light in such a wavelength region.
  • the present invention provides an optical filter having the following configuration.
  • Substrate and A first thin film laminated structure and a second thin film laminated structure that limit the transmission of light in the near-infrared wavelength region It is an optical filter equipped with
  • the substrate contains a resin film containing a dye that absorbs light in the near infrared wavelength region.
  • the first thin film laminated structure contains at least two dielectric multilayer films and is laminated as an outermost layer on one main surface side of the base material.
  • the second thin film laminated structure contains at least one dielectric multilayer film and is laminated as an outermost layer on the other main surface side of the base material.
  • the first thin film laminated structure satisfies the following optical properties (i-1A) and (i-1B).
  • the second thin film laminated structure satisfies the following optical characteristics (i-2A).
  • Optical filter. (I-1A) Maximum transmittance at a wavelength of 850 nm to 950 nm at an incident angle of 40 ° is 5% or more (i-1B) Maximum reflectance at a wavelength of 450 nm to 600 nm at an incident angle of 40 ° is 8% or less (i-2A) ) The average reflectance at a wavelength of 850 nm to 950 nm at an incident angle of 40 ° is 25% to 60%. [2] The optical filter according to [1], wherein the resin film satisfies all of the following optical characteristics (ii-1) to (ii-3).
  • the average internal transmittance at a wavelength of 850 nm to 950 nm at an incident angle of 0 ° is 60 to 90%.
  • the average internal transmittance at a wavelength of 850 nm to 950 nm at an incident angle of 30 ° is 60 to 90%.
  • the average internal transmittance at a wavelength of 850 nm to 950 nm at an incident angle of 40 ° is 60 to 90%.
  • the average internal transmittance at a wavelength of 660 nm to 730 nm at an incident angle of 30 ° is 10% or less
  • the second thin film laminated structure is laminated on the surface of the resin film, [1] to The optical filter according to any one of [3].
  • the average internal transmittance at a wavelength of 450 to 600 nm at an incident angle of 0 ° is 70% or more.
  • the second thin film laminated structure is a dielectric multilayer structure in which TiO 2 and SiO 2 are alternately laminated.
  • Membrane ratio (physical film thickness) total physical film thickness of SiO 2 / (total physical film thickness of TiO 2 + total physical film thickness of SiO 2 ) [7]
  • the present invention has high transparency of visible light and high shielding property of near-infrared light, and ripple generation in the visible light region and deterioration of shielding property in the near-infrared light region are suppressed even at a high incident angle.
  • Optical filters can be provided.
  • FIG. 1 is a cross-sectional view schematically showing an example of an optical filter of one embodiment.
  • FIG. 2 is a cross-sectional view schematically showing an example of an optical filter of one embodiment.
  • FIG. 3 is a cross-sectional view schematically showing an example of an optical filter of one embodiment.
  • FIG. 4 is a diagram showing a spectral transmittance curve of the first thin film laminated structure 1-4.
  • FIG. 5 is a diagram showing a spectral reflectance curve of the first thin film laminated structure 1-4.
  • FIG. 6 is a diagram showing a spectral transmittance curve of the first thin film laminated structure 1-5.
  • FIG. 7 is a diagram showing a spectral reflectance curve of the first thin film laminated structure 1-5.
  • FIG. 4 is a diagram showing a spectral transmittance curve of the first thin film laminated structure 1-4.
  • FIG. 5 is a diagram showing a spectral reflectance curve of the first thin film laminated structure 1-4.
  • FIG. 8 is a diagram showing a spectral transmittance curve of the second thin film laminated structure 2-1.
  • FIG. 9 is a diagram showing a spectral reflectance curve of the second thin film laminated structure 2-1.
  • FIG. 10 is a diagram showing a spectral transmittance curve of the second thin film laminated structure 2-2.
  • FIG. 11 is a diagram showing a spectral reflectance curve of the second thin film laminated structure 2-2.
  • FIG. 12 is a diagram showing a spectral transmittance curve of the optical filter of Example 3-1.
  • FIG. 13 is a diagram showing a spectral transmittance curve of the optical filter of Example 3-2.
  • FIG. 14 is a diagram showing a spectral transmittance curve of the optical filter of Example 3-3.
  • FIG. 15 is a diagram showing a spectral transmittance curve of the optical filter of Example 3-4.
  • FIG. 16 is a diagram showing a spectral transmittance curve of the optical filter of Example 3-5.
  • FIG. 17 is a diagram showing a spectral transmittance curve of the optical filter of Example 3-6.
  • the near-infrared absorbing dye may be abbreviated as "NIR dye”.
  • NIR dye the compound represented by the formula (I)
  • the dye composed of compound (I) is also referred to as dye (I), and the same applies to other dyes.
  • the group represented by the formula (I) is also referred to as a group (I), and the same applies to the groups represented by other formulas.
  • restrictive the transmission of light means that the transmittance of light when incident at an incident angle of 0 degrees (vertical incident) is less than 5% with respect to light having a predetermined wavelength.
  • the internal transmittance is a transmittance obtained by subtracting the influence of interfacial reflection from the actually measured transmittance represented by the formula ⁇ measured transmittance / (100-reflectance) ⁇ ⁇ 100.
  • the transmittance of the base material and the transmittance of the resin film including the case where the dye is contained in the resin are all "internal transmittance" even when it is described as “transmittance”.
  • the transmittance of the optical filter having the dielectric multilayer film is the measured transmittance.
  • a transmittance of 90% or more means that the transmittance does not fall below 90% in the entire wavelength region, that is, the minimum transmittance is 90% or more in the wavelength region.
  • a transmittance of 1% or less means that the transmittance does not exceed 1% in the entire wavelength region, that is, the maximum transmittance is 1% or less in the wavelength region. ..
  • the average transmittance and the average internal transmittance in a specific wavelength range are arithmetic means of the transmittance and the internal transmittance for each 1 nm in the wavelength range.
  • the optical characteristics can be measured using an ultraviolet-visible spectrophotometer.
  • "-" representing a numerical range includes an upper and lower limit.
  • the optical filter of the present invention includes a substrate and two thin film laminated structures that limit the transmission of light in the near infrared wavelength region.
  • the substrate contains a resin film containing a dye that absorbs light in the near infrared wavelength region.
  • the first thin film laminated structure contains at least two dielectric multilayer films and is laminated as the outermost layer on one main surface side of the substrate, and the second thin film laminated structure contains at least one dielectric multilayer film of the substrate. It is laminated as the outermost layer on the other main surface side. That is, the optical filter of the present invention includes at least three dielectric multilayer films.
  • the first thin film laminated structure and the second thin film laminated structure each satisfy specific optical characteristics described later.
  • the first thin film laminated structure is a composite of two or more dielectric multilayer films, and the near-infrared light reflection region is shifted so that the ripples in the visible light region of each multilayer film cancel each other out.
  • light loss occurs in a predetermined near-infrared wavelength region, specifically, a wavelength region of 850 nm to 950 nm.
  • the dye can exhibit absorption characteristics independently of the incident angle, by using a dye that absorbs near-infrared light, the dye reduces the shielding property of the near-infrared light region due to the incident angle dependence of the multilayer film. Can be complemented by.
  • FIG. 1 to 3 are sectional views schematically showing an example of an optical filter of one embodiment.
  • the optical filter 1 shown in FIG. 1 has a first thin film laminated structure 31 on one main surface side of the base material 10 and a second thin film laminated structure 32 on the other main surface side.
  • the first thin film laminated structure 31 has a dielectric multilayer film 31A and a dielectric multilayer film 31B.
  • the base material 10 has a support 11 and a resin film 12 laminated on one main surface side of the support.
  • the optical filter 1 shown in FIG. 2 is an example in which the base material 10 does not have a support and is composed of a resin film 12.
  • the optical filter 1 shown in FIG. 3 is an example in which the first thin film laminated structure 31 has a dielectric multilayer film 31A, a dielectric multilayer film 31B, and a dielectric multilayer film 31C.
  • the optical filter of the present invention has a first thin film laminated structure and a second thin film laminated structure that limit the transmission of light in the near infrared wavelength region, and each thin film laminated structure is mainly used for both base materials. Each is laminated as the outermost layer on the surface side.
  • the first thin film laminated structure is a complex having at least two dielectric multilayer films.
  • the first thin film laminated structure satisfies the following optical characteristics (i-1A) and (i-1B).
  • the first thin film laminated structure is designed by shifting the near-infrared light reflection region so that the ripples in the visible light region of two or more dielectric multilayer films cancel each other, resulting in light loss in the near-infrared wavelength region. do.
  • the optical characteristic (i-1A) means a wavelength region where light leakage occurs and a level at which light leakage is allowed.
  • T850-950 (40 deg) MAX is more preferably 6% or more, preferably 30% or less, and more preferably 20% or less.
  • R 450-600 (40 deg) MAX is more preferably 7% or less.
  • the first thin film laminated structure further satisfies the following optical characteristics (i-1C).
  • the average reflectance R 1000-1100 (40 deg) AVE at a wavelength of 1000 nm to 1100 nm at an incident angle of 40 ° satisfies 95% or more of the optical characteristics (i-1C) in the near infrared light region.
  • the light shielding property of 1000 nm to 1100 nm is excellent.
  • the second thin film laminated structure includes at least one dielectric multilayer film.
  • the second thin film laminated structure satisfies the following optical characteristics (i-2A).
  • (I-2A) Average reflectance R850-950 (40deg) AVE at a wavelength of 850 nm to 950 nm at an incident angle of 40 ° is 25% to 60%.
  • the optical characteristic (i-2A) it means that the light that could not be blocked by the light escape of the first thin film laminated structure can be blocked by the reflection characteristic of the second thin film laminated structure.
  • the R 850-950 (40 deg) AVE is 25% or more, the light leakage generated in the first thin film laminated structure can be effectively shielded, and the R 850-950 (40 deg) AVE is 60% or less. Therefore, it is possible to prevent the physical film thickness of the dielectric multilayer film from becoming excessively thick.
  • R850-950 (40 deg) AVE is preferably 30% to 55%.
  • the second thin film laminated structure further satisfies the following optical characteristics (i-2B).
  • T 450-600 (0 deg) AVE is preferably 90% or more.
  • the second thin film laminated structure further satisfies the following optical characteristics (i-2C).
  • (I-2C) Average reflectance R 1000-1100 (40 deg) AVE at a wavelength of 1000 nm to 1100 nm at an incident angle of 40 ° is 25% to 60%.
  • the optical characteristics (i-2C) it means that the light shielding property of 1000 nm to 1100 nm in the near infrared light region is particularly excellent.
  • the first thin film laminated structure and the second thin film laminated structure are configured to limit transmission in a desired wavelength range by a dielectric multilayer film.
  • the dielectric multilayer film is selected from a low refractive index dielectric film (low refractive index film), a medium refractive index dielectric film (medium refractive index film), and a high refractive index dielectric film (high refractive index film). It is a film having an optical function obtained by alternately stacking them. By design, it is possible to develop a function of controlling the transmission of light in a specific wavelength region and the limitation of light transmission by utilizing the interference of light.
  • the low refractive index, high refractive index, and medium refractive index mean that they have a high refractive index, a low refractive index, and an intermediate refractive index with respect to the refractive index of the adjacent layer.
  • the high refractive index film is a film having a refractive index of preferably 1.9 or more, more preferably 1.9 to 2.6 at a wavelength of 500 nm.
  • Examples of the material of the high refractive index film include Ta 2 O 5 , TIO 2 , and Nb 2 O 5 . Of these, TiO 2 is preferable from the viewpoints of film formation property, reproducibility in refractive index and the like, stability and the like.
  • the medium refractive index film is a film having a refractive index of preferably 1.5 to 2.1, more preferably 1.8 to 2.0 at a wavelength of 500 nm.
  • Examples of the material of the medium refractive index film include Al 2 O 3 , Y 2 O 3 , and ZrO 2 . Of these, from the viewpoint of stability and the like, Al2O3 , ZrO2, or a mixed material containing these two materials is preferable.
  • the low refractive index film is a film having a refractive index of preferably 1.8 or less, more preferably 1.3 to 1.6 at a wavelength of 500 nm.
  • Examples of the material of the low refractive index film include SiO 2 , MgF 2 , SiO x N y and the like. SiO 2 is preferable from the viewpoint of reproducibility, stability, economy and the like in terms of film forming property.
  • the second thin film laminated structure is a multilayer film in which TiO 2 and SiO 2 are alternately laminated, and the film ratio shown in the following formula is preferably 0.50 or more.
  • Membrane ratio (physical film thickness) total physical film thickness of SiO 2 / (total physical film thickness of TiO 2 + total physical film thickness of SiO 2 )
  • the film ratio is more preferably 0.55 or more, and further preferably 0.60 to 0.70.
  • the physical film thickness can be measured by a stylus type surface shape measuring device (Dektake 150, manufactured by ULVAC, Inc.).
  • the number of layers depends on the optical characteristics of the dielectric multilayer film, but the total number of thin films laminated is preferably 50 to 150 layers. .. When the total number of layers is 50 or more, the blocking performance at a wavelength of 800 nm to 1000 nm is sufficient. Further, when the total number of laminated layers is 150 or less, the tact time at the time of manufacturing the optical filter is not long, and the warp of the optical filter due to the dielectric multilayer film is unlikely to occur, which is not preferable.
  • the total number of laminated layers in the first thin film laminated structure is preferably 20 to 150, preferably 20 to 50 from the viewpoint of obtaining high light-shielding performance of near infrared rays.
  • the total number of laminated structures in the second thin film laminated structure is preferably 50 or less, more preferably less than 20, from the viewpoint of mass productivity.
  • the thin film thickness of the thin film laminated structure it is preferable that the thin film thickness satisfies the above-mentioned preferable number of laminated structures and is thin from the viewpoint of thinning the optical filter.
  • the physical film thickness of the first thin film laminated structure is preferably 3 ⁇ m or more from the viewpoint of obtaining desired optical characteristics, and preferably 15 ⁇ m or less from the viewpoint of suppressing warpage of the optical filter.
  • the film thickness of the second thin film laminated structure is preferably less than 3 ⁇ m, more preferably less than 2.5 ⁇ m, from the viewpoint of suppressing the generation of wrinkles in the resin layer.
  • the first thin film laminated structure and the second thin film laminated structure may be laminated on either main surface of the base material, but the second thin film laminated structure is laminated on the surface of the resin film of the base material. Is preferable.
  • the second thin film laminated structure having few dielectric multilayer films has a smaller number of laminated structures than the first thin film laminated structure.
  • the resin film in contact with the thin film laminated structure receives stronger stress as the number of thin films laminated increases.
  • wrinkles are generated in the resin film when the resin is softened by heat in an assembly process such as reflow, and the appearance quality becomes a problem.
  • the stress applied to the resin film is small and the generation of wrinkles is suppressed, which is preferable.
  • the thin film laminated structure is formed by, for example, a dry film forming process such as an IAD (Ion Assisted Deposition) vapor deposition method, a CVD method, a sputtering method, or a vacuum vapor deposition method, or a wet film forming process such as a spray method or a dip method. Etc. can be used.
  • a dry film forming process such as an IAD (Ion Assisted Deposition) vapor deposition method, a CVD method, a sputtering method, or a vacuum vapor deposition method, or a wet film forming process such as a spray method or a dip method. Etc. can be used.
  • the substrate has a resin film containing a dye (IR) and a resin that absorbs light in the near infrared wavelength region. Due to the absorption characteristics of the dye (IR), light leakage in the near-infrared wavelength region generated in the first thin film laminated structure can be blocked. Further, due to the absorption characteristics of the dye (IR), the deterioration of the shielding property in the near-infrared light region due to the incident angle dependence of the multilayer film can be complemented by the dye.
  • IR dye
  • the resin film satisfies all of the following optical characteristics (ii-1) to (ii-3).
  • (Ii-1) Average internal transmittance T850-950 (0deg) AVE at a wavelength of 850 nm to 950 nm at an incident angle of 0 ° is 60 to 90%.
  • Ii-3) Average internal transmittance T850-950 (40deg) AVE at a wavelength of 850 nm to 950 nm at an incident angle of 40 ° is 60 to 90%.
  • optical characteristics (ii-1) to (ii-3) it means that light can be shielded by the absorption characteristics of the dye (IR) in the incident angle condition and wavelength region where light leakage occurs in the first thin film laminated structure. do.
  • T850-950 (0 deg) AVE is more preferably 70-90%.
  • T850-950 (30 deg) AVE is more preferably 70-90%.
  • T850-950 (40 deg) AVE is more preferably 70-90%.
  • the resin film further satisfies the following optical characteristics (ii-4).
  • a wavelength of 660 nm to 730 nm is a boundary with the visible light region in the near infrared light region. This is a region where the reflection characteristics are likely to deteriorate (diagonal incident shift) at high incident angles due to the incident angle dependence of the dielectric multilayer film.
  • T 660-730 (30 deg) AVE is more preferably 20% or less.
  • the resin film further satisfies the following optical characteristics (ii-5).
  • the average internal transmittance T 450-600 (0 deg) AVE at a wavelength of 450 to 600 nm at an incident angle of 0 ° satisfies 70% or more of the optical characteristics (ii-5), so that the resin film transmits high visible light. It means having sex.
  • T 450-600 (0 deg) AVE is more preferably 60% or more.
  • the dye (IR) that absorbs light in the near-infrared wavelength region a dye having a maximum absorption wavelength of 570 to 950 nm in the resin constituting the resin film is preferable. By using such a dye, near infrared light can be effectively blocked.
  • Pigments (IR) include squarylium pigments, cyanine pigments, phthalocyanine pigments, naphthalocyanine pigments, dithiol metal complex pigments, azo pigments, polymethine pigments, phthalide pigments, naphthoquinone pigments, anthraquinone pigments, indophenol pigments, pyrylium pigments, thiopyrylium pigments, Examples thereof include croconium pigments, tetradehydrocholine pigments, triphenylmethane pigments, aminium pigments and diimonium pigments.
  • a squarylium dye and a cyanine dye are preferable from the viewpoint of spectral characteristics, and a phthalocyanine dye is preferable from the viewpoint of durability.
  • the dye (IR) may consist of one kind of compound or may contain two or more kinds of compounds.
  • the content of the NIR dye (IR) in the resin film is preferably 0.1 to 30 parts by mass, more preferably 0.1 to 15 parts by mass with respect to 100 parts by mass of the resin.
  • the above-mentioned content is the sum of each compound.
  • the resin film may contain other dyes, for example, an ultraviolet light absorbing dye, as long as the effects of the present invention are not impaired.
  • the ultraviolet light absorbing dye include oxazole dye, merocyanine dye, cyanine dye, naphthalimide dye, oxadiazole dye, oxazine dye, oxazolidine dye, naphthalic acid dye, styryl dye, anthracene dye, cyclic carbonyl dye, triazole dye and the like. Be done.
  • the merocyanine pigment is particularly preferable.
  • the base material in this filter may have a single-layer structure or a multi-layer structure.
  • the material of the base material may be an organic material or an inorganic material as long as it is a transparent material that transmits visible light, and is not particularly limited.
  • a resin base material composed of a resin film containing a resin and a NIR dye (IR) is preferable.
  • a composite base material in which a resin film containing a NIR dye (IR) is laminated on at least one main surface of the support is preferable.
  • the support is preferably made of a transparent resin or a transparent inorganic material.
  • the resin is not limited as long as it is a transparent resin, and is not limited to polyester resin, acrylic resin, epoxy resin, en-thiol resin, polycarbonate resin, polyether resin, polyarylate resin, polysulfone resin, polyether sulfone resin, and polyparaphenylene.
  • One or more transparent resins selected from resins, polyarylene ether phosphine oxide resins, polyamide resins, polyimide resins, polyamideimide resins, polyolefin resins, cyclic olefin resins, polyurethane resins, polystyrene resins and the like are used.
  • One of these resins may be used alone, or two or more of these resins may be mixed and used.
  • the polyimide resin is preferable because of its excellent solubility of the dye, low absorption on the UV side, high glass transition point (Tg), and excellent adhesion to the support and the dielectric multilayer film.
  • NIR dye NIR
  • other dyes these may be contained in the same resin film, or may be contained in different resin films.
  • glass or a crystalline material is preferable.
  • Glasses that can be used for the support include absorbent glass (near-infrared absorbing glass) containing copper ions in fluoride-based glass, phosphate-based glass, etc., soda lime glass, borosilicate glass, non-alkali glass, and quartz. Examples include glass.
  • phosphate-based glass and fluoride-based glass are preferable from the viewpoint of being able to absorb infrared light (particularly 900 to 1200 nm).
  • the "phosphate-based glass” also includes silicate glass in which a part of the skeleton of the glass is composed of SiO 2 .
  • alkali metal ions for example, Li ion and Na ion
  • alkali ions having a small ionic radius existing on the main surface of the glass plate can be converted into alkali ions having a larger ionic radius (for example) by ion exchange at a temperature below the glass transition point.
  • Li ion is Na ion or K ion
  • Na ion is K ion.
  • crystal material examples include birefringent crystals such as quartz, lithium niobate, and sapphire.
  • an inorganic material is preferable, and glass and sapphire are particularly preferable, from the viewpoint of shape stability related to long-term reliability such as optical properties and mechanical properties, and handleability at the time of filter manufacturing.
  • a dye (IR), a resin or a raw material component of the resin, and each component to be blended as necessary are dissolved or dispersed in a solvent to prepare a coating liquid, and this is applied to a support. It can be formed by working, drying and, if necessary, hardening.
  • the support may be a support included in the present filter, or may be a peelable support used only when forming a resin film.
  • the solvent may be a dispersion medium that can be stably dispersed or a solvent that can be dissolved.
  • the coating liquid may contain a surfactant for improving voids due to minute bubbles, dents due to adhesion of foreign substances, repelling in the drying process, and the like.
  • a dip coating method, a cast coating method, a spin coating method or the like can be used for the coating of the coating liquid.
  • a resin film is formed by applying the above coating liquid onto a support and then drying it.
  • further curing treatment such as heat curing and photocuring is performed.
  • the resin film can also be manufactured in the form of a film by extrusion molding.
  • the base material has a single-layer structure (resin base material) made of a resin film containing a dye (IR)
  • the resin film can be used as it is as the base material.
  • the base material has a multi-layer structure (composite base material) having a support and a resin film containing a dye (IR) laminated on at least one main surface of the support, this film is laminated on the support.
  • a base material can be manufactured by integrating by thermocompression bonding or the like.
  • the resin film may have one layer or two or more layers in the optical filter. When having two or more layers, each layer may have the same configuration or may be different.
  • the thickness of the resin film is preferably 20 to 150 ⁇ m when the base material has a single-layer structure (resin base material) made of a resin film containing a dye (IR).
  • the thickness of the resin film is determined. It is preferably 0.3 to 20 ⁇ m.
  • the optical filter has two or more resin films, the total thickness of each resin film is preferably in the above range.
  • the shape of the base material is not particularly limited, and may be block-shaped, plate-shaped, or film-shaped.
  • the thickness of the base material is preferably 300 ⁇ m or less from the viewpoint of reducing warpage during film formation of the dielectric multilayer film and reducing the height of the optical element, and is preferably 50 when the base material is a resin base material made of a resin film. It is about 300 ⁇ m, and when the base material is a composite base material including a support and a resin film, it is preferably 50 to 300 ⁇ m.
  • optical filter of the present invention having the above configuration preferably satisfies all of the following optical characteristics (iii-1) to (iii-5).
  • (Iii-1) Average transmittance at a wavelength of 400 to 600 nm at an incident angle of 0 ° T 400-600 (0 deg) AVE is 70% or more
  • (iii-2) Average reflectance at a wavelength of 450 to 600 nm at an incident angle of 40 ° R 450-600 (40 deg) AVE is 5% or less
  • iii-3) Average reflectance at a wavelength of 450 to 600 nm at an incident angle of 5 ° R 450-600 (5 deg) AVE is 3% or less
  • Maximum transmittance T 700-900 (40 deg) at a wavelength of 700 to 900 nm at 40 ° MAX is 15% or less
  • (iii-5) Average transmittance T 1000-1100 ( 40 deg) at a wavelength of 1000 to 1100
  • the optical filter of the present invention that satisfies all of the optical characteristics (iii-1) to (iii-5) has high transmission of visible light and high shielding property of near-infrared light, and has a visible light region even at a high incident angle. It is an optical filter in which the ripple of light is suppressed.
  • T 400-600 (0 deg) AVE is preferably 72% or more.
  • R 450-600 (40 deg) AVE is preferably 4% or less.
  • R 450-600 (5 deg) AVE is preferably 2.5% or less.
  • T 700-900 (40 deg) MAX is preferably 14% or less.
  • T 1000-1100 (40 deg) AVE is preferably 4.5% or less.
  • the optical filter of the present invention further satisfies the following optical characteristics (iii-6).
  • the maximum transmittance T850-950 (40deg) MAX at a wavelength of 850 nm to 950 nm at an incident angle of 40 ° is 20% or less.
  • T850-950 (40 deg) MAX is preferably 15% or less.
  • the optical filter of the present invention can provide an image pickup device having excellent color reproducibility when used in an image pickup device such as a digital still camera, for example.
  • an image pickup device includes a solid-state image pickup device, an image pickup lens, and an optical filter of the present invention.
  • the optical filter of the present invention can be used, for example, by being arranged between an image pickup lens and a solid-state image pickup element, or by being directly attached to a solid-state image pickup element, an image pickup lens, or the like of an image pickup device via an adhesive layer.
  • each optical characteristic was verified using optical thin film simulation software (TFCalc, manufactured by Software Spectra). Further, in the present application, the refractive index of each film at a wavelength of 500 nm is used as a representative value, but the simulation was performed in consideration of the wavelength dependence of the refractive index. When the incident angle is not specified, the optical characteristics are values simulated at an incident angle of 0 degrees (perpendicular to the main surface of the optical filter).
  • the dyes used in each example are as follows.
  • Compound 1 (Cyanine compound): Synthesized based on Days and pigments 73 (2007) 344-352.
  • Compound 2 (Squarylium Dye): Synthesized according to US Patent Application Publication No. 2014/0061505 and International Publication No. 2014/088063.
  • Compound 3 (merocyanine compound): Synthesized with reference to Japanese Patent No. 6504176.
  • Example 1-1 Resin film> A polyimide resin (C-3G30G manufactured by Mitsubishi Gas Chemical Company) was dissolved in an organic solvent (cyclohexanone) at a concentration of 10% by mass. To the solution of the polyimide resin prepared above, 0.05 parts by mass of compound 1, 2.76 parts by mass of compound 2 and 11.7 parts by mass of compound 3 were added to 100 parts by mass of the resin. The mixture was stirred for 2 hours while heating at 50 ° C. The dye-containing resin solution was applied to a glass substrate (alkaline glass, D263 manufactured by Schott) using a spin coat and sufficiently heated and dried to obtain a resin film (coating film) having a film thickness of 5 ⁇ m.
  • a glass substrate alkaline glass, D263 manufactured by Schott
  • Example 1-2 Resin film> Similar to Example 1-1, except that compound 1 was added in an amount of 0.44 parts by mass, compound 2 was added in an amount of 2.76 parts by mass, and compound 3 was added in an amount of 11.7 parts by mass with respect to 100 parts by mass of the resin. A resin film was obtained.
  • Example 2-1 Thin film laminated structure 1-1> A thin film laminated structure 1-1 was designed by combining three types of dielectric multilayer films having different number of layers and physical film thickness, in which TIM 2 film, SiO 2 film, and ZrO 2 film were alternately laminated. The number of layers and the physical film thickness are shown in Table 1 below.
  • Example 2-2 Thin film laminated structure 1-2> A thin film laminated structure 1-2 was designed by combining two types of dielectric multilayer films having different number of layers and different physical film thicknesses, in which TiO 2 films and SiO 2 films were alternately laminated. The number of layers and the physical film thickness are shown in Table 1 below.
  • Example 2-3 Thin film laminated structure 1-3> The thin film laminated structure 1-3 was designed in the same manner as in Example 2-2, except that the number of laminated layers of the TiO 2 film and the SiO 2 film and the physical film thickness were as shown in Table 1 below.
  • Example 2-4 Thin film laminated structure 1-4> The thin film laminated structure 1-4 was designed in the same manner as in Example 2-2, except that the number of laminated layers of the TiO 2 film and the SiO 2 film and the physical film thickness were as shown in Table 1 below.
  • Example 2-5 Thin film laminated structure 1-5> With reference to the description of Example 4 of Japanese Patent Application Laid-Open No. 2007-183525, a thin film laminate composed of a dielectric multilayer film in which a TiO 2 film and La 2 O 3 and Al 2 O 3 films are alternately laminated. Structure 1-5 was designed. The number of each layer is shown in Table 1 below.
  • Example 2-6 Thin film laminated structure 2-1> A thin film laminated structure 2-1 composed of a dielectric multilayer film in which TiO 2 films and SiO 2 films are alternately laminated was designed. The number of layers and the physical film thickness are shown in Table 1 below.
  • Example 2-7 Thin film laminated structure 2-2>
  • a thin film laminated structure 2-1 composed of a dielectric multilayer film in which a TiO 2 film and a SiO 2 film are alternately laminated was designed.
  • the number of layers is shown in Table 1 below.
  • the optical characteristics of the thin film laminated structures 1-1 to 1-5 and the optical characteristics of the thin film laminated structures 2-1 to 2-2 are shown in Table 1 below. Further, the spectral transmittance curves and the spectral reflectance curves of the thin film laminated structures 1-4 and 1-5 and the thin film laminated structures 2-1 and 2-2 are shown in FIGS. 4 to 11, respectively. Examples 2-1 to 2-7 are reference examples.
  • Example 3-1 Optical filter>
  • the resin film of Example 1-1 and the thin film laminated structure 2-1 are laminated on one main surface of a glass substrate (alkaline glass, D263 manufactured by Shott), and the thin film laminated structure 1-1 is laminated on the other main surface. And obtained an optical filter.
  • Example 3-2 Optical filter> An optical filter was obtained in the same manner as in Example 3-1 except that the thin film laminated structure 1-1 was replaced with the thin film laminated structure 1-2.
  • Example 3-3 Optical filter> An optical filter was obtained in the same manner as in Example 3-1 except that the thin film laminated structure 1-1 was replaced with the thin film laminated structure 1-3.
  • Example 3-4 Optical filter> An optical filter was obtained in the same manner as in Example 3-1 except that the thin film laminated structure 1-1 was replaced with the thin film laminated structure 1-3 and the resin film of Example 1-1 was replaced with the resin film of Example 1-2. rice field.
  • Example 3-5 Optical filter> An optical filter was obtained in the same manner as in Example 3-1 except that the thin film laminated structure 1-1 was replaced with the thin film laminated structure 1-4.
  • Example 3-6 Optical filter>
  • the thin film laminated structure 2-2 is laminated on one main surface of the glass substrate, and the thin film laminated structure 1- is laminated on the other main surface. 5 was laminated to obtain an optical filter.
  • the optical filter was evaluated for wrinkles by the following method.
  • wrinkle evaluation the optical filter was placed in an electric furnace set at 160 ° C. for 10 minutes to heat it, and then taken out of the electric furnace and cooled to room temperature.
  • the central part of the optical filter was observed with an optical microscope to confirm the presence or absence of wrinkles.
  • the optical filter had wrinkles that could be visually recognized, it was evaluated as x, and when there were no wrinkles that could be visually recognized, it was evaluated as ⁇ .
  • Table 1 The results are shown in Table 1.
  • the optical filters 3-1 to 3-5 have high transparency of visible light and high shielding property of near-infrared light, suppress the generation of ripple in the visible light region at a high incident angle, and also. It can be seen that the deterioration of the shielding property in the near-infrared light region at a high incident angle is also suppressed. Furthermore, the generation of wrinkles in the resin film was also suppressed. On the other hand, in the optical filter 3-6 in which two types of multilayer films were used and no dye was used in combination, ripples occurred in the visible light region at a high incident angle, and the transmission characteristics shifted at a high incident angle, resulting in near-red. A decrease in the shielding property of the external light region occurred.
  • the optical filter of the present invention has excellent transparency of visible light and has good near-infrared light shielding characteristics in which deterioration of near-infrared light shielding property is suppressed at a high incident angle.
  • the performance has been improved, and it is useful for applications of information acquisition devices such as cameras and sensors for transport aircraft.
  • Optical filter 10 ... Base material, 11 ... Support, 12 ... Resin film, 31 ... First thin film laminated structure, 31A, 31B, 31C ... Dielectric multilayer film, 32 ... Second thin film laminated structure

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Filters (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明は、近赤外光を吸収する色素を含有する樹脂膜を含む基材と、近赤外光の透過を制限する第1薄膜積層構造体および第2薄膜積層構造体と、を備えた光学フィルタであって、前記第1薄膜積層構造体は少なくとも2つの誘電体多層膜を含み前記基材の一方の主面側に最外層として積層され、前記第2薄膜積層構造体は少なくとも1つの誘電体多層膜を含み前記基材の他方の主面側に最外層として積層され、前記第1薄膜積層構造体は、特定の光学特性(i-1A)および(i-1B)を満たし、前記第2薄膜積層構造体は、特定の光学特性(i-2A)を満たす、光学フィルタに関する。

Description

光学フィルタ
 本発明は、光学フィルタに関する。
 固体撮像素子を用いた撮像装置には、色調を良好に再現し鮮明な画像を得るため、可視域の光(以下「可視光」ともいう)を透過し、近赤外波長領域の光(以下「近赤外光」ともいう)を遮断する光学フィルタが用いられる。
 このような光学フィルタとしては、例えば、透明基板の片面または両面に、屈折率が異なる誘電体薄膜を交互に積層(誘電体多層膜)し、光の干渉を利用して遮蔽したい光を反射する反射型のフィルタ等、様々な方式が挙げられる。
 近赤外光を遮断する光学フィルタには、750~1200nmの広い波長領域を遮光することが求められるところ、これを1種類の多層膜で網羅することは技術的に困難である。そこで、異なる近赤外光反射領域を有する複数の誘電体多層膜を組み合わせて用いることが知られている(特許文献1)。
日本国特開2007-183525号公報
 誘電体多層膜では、多層膜の積層数に応じて各層界面の反射光に起因する干渉により透過率の激しい変化、いわゆるリップルが生じ、光の入射角度が大きいほど強く発生しやすいことが知られている。
 上記特許文献1に記載の光学フィルタのように、近赤外光領域を広く遮光するために誘電体多層膜を複合すると、可視光領域においてリップルが打ち消しあわず増幅されるおそれがある。
 また、薄膜積層構造体を構成する誘電体多層膜は、光の入射角度が大きいほど光の透過特性が短波長側にシフトする、いわゆる入射角依存性がある。よって多層膜の透過率が急激に変化する、可視光領域との境界付近の近赤外光領域では、高入射角条件において反射特性が低下するおそれがある。
 本発明は、可視光の高い透過性と近赤外光の高い遮蔽性を有し、高入射角においても可視光領域のリップル発生と近赤外光領域の遮蔽性低下が抑制された光学フィルタの提供を目的とする。
 本発明では、可視光領域のリップルが打ち消しあうように近赤外光反射領域をシフトさせて2以上の多層膜を複合した薄膜積層構造体を用いる。ただし、かかる構造体では各多層膜の近赤外光反射領域の重なりに隙間が生じ、光抜けが発生しやすく、誘電体多層膜の入射角依存性により高入射角において特に発生しやすい。そこで光抜けが生じる波長領域の光を反射する薄膜積層構造体をさらに備え、かつ、かかる波長領域の光を吸収する色素を用いることで、上記課題を解決できることを見出した。
 すなわち本発明は、以下の構成を有する光学フィルタを提供する。
〔1〕基材と、
 近赤外波長領域内の光の透過を制限する第1薄膜積層構造体および第2薄膜積層構造体と、
 を備えた光学フィルタであって、
 前記基材は、近赤外波長領域内の光を吸収する色素を含有する樹脂膜を含み、
 前記第1薄膜積層構造体は少なくとも2つの誘電体多層膜を含み前記基材の一方の主面側に最外層として積層され、
 前記第2薄膜積層構造体は少なくとも1つの誘電体多層膜を含み前記基材の他方の主面側に最外層として積層され、
 前記第1薄膜積層構造体は、下記光学特性(i-1A)および(i-1B)を満たし、
 前記第2薄膜積層構造体は、下記光学特性(i-2A)を満たす、
 光学フィルタ。
(i-1A)入射角度40°での波長850nm~950nmにおける最大透過率が5%以上
(i-1B)入射角度40°での波長450nm~600nmにおける最大反射率が8%以下
(i-2A)入射角度40°での波長850nm~950nmにおける平均反射率が25%~60%
〔2〕前記樹脂膜は、下記光学特性(ii-1)~(ii-3)をすべて満たす、〔1〕に記載の光学フィルタ。
(ii-1)入射角度0°での波長850nm~950nmにおける平均内部透過率が60~90%
(ii-2)入射角度30°での波長850nm~950nmにおける平均内部透過率が60~90%
(ii-3)入射角度40°での波長850nm~950nmにおける平均内部透過率が60~90%
〔3〕前記樹脂膜は、下記光学特性(ii-4)をさらに満たす、〔1〕または〔2〕に記載の光学フィルタ。
(ii-4)入射角度30°での波長660nm~730nmにおける平均内部透過率が10%以下
〔4〕前記第2薄膜積層構造体は、前記樹脂膜表面に積層されている、〔1〕ないし〔3〕のいずれかに記載の光学フィルタ。
〔5〕前記樹脂膜は、下記光学特性(ii-5)をさらに満たす、〔1〕ないし〔4〕のいずれかに記載の光学フィルタ。
(ii-5)入射角度0°における波長450~600nmの平均内部透過率が70%以上
〔6〕前記第2薄膜積層構造体は、TiOとSiOとが交互に積層された誘電体多層膜を有し、下記式に示す膜比率が0.50以上である、〔1〕ないし〔5〕のいずれかに記載の光学フィルタ。
 膜比率(物理膜厚)=SiOの総物理膜厚/(TiOの総物理膜厚+SiOの総物理膜厚)
〔7〕前記樹脂膜は、ポリイミド系樹脂を含む〔1〕ないし〔6〕のいずれかに記載の光学フィルタ。
〔8〕下記光学特性(iii-1)~(iii-5)をすべて満たす、〔1〕ないし〔7〕のいずれかに記載の光学フィルタ。
(iii-1)入射角度0°での波長400~600nmにおける平均透過率が70%以上
(iii-2)入射角度40°での波長450~600nmにおける平均反射率が5%以下
(iii-3)入射角度5°での波長450~600nmにおける平均反射率が3%以下
(iii-4)入射角度40°での波長700~900nmにおける最大透過率が15%以下
(iii-5)入射角度40°での波長1000~1100nmにおける平均透過率が5%以下
 本発明によれば、可視光の高い透過性と近赤外光の高い遮蔽性を有し、高入射角においても可視光領域のリップル発生と近赤外光領域の遮蔽性低下が抑制された光学フィルタが提供できる。
図1は一実施形態の光学フィルタの一例を概略的に示す断面図である。 図2は一実施形態の光学フィルタの一例を概略的に示す断面図である。 図3は一実施形態の光学フィルタの一例を概略的に示す断面図である。 図4は第1薄膜積層構造体1-4の分光透過率曲線を示す図である。 図5は第1薄膜積層構造体1-4の分光反射率曲線を示す図である。 図6は第1薄膜積層構造体1-5の分光透過率曲線を示す図である。 図7は第1薄膜積層構造体1-5の分光反射率曲線を示す図である。 図8は第2薄膜積層構造体2-1の分光透過率曲線を示す図である。 図9は第2薄膜積層構造体2-1の分光反射率曲線を示す図である。 図10は第2薄膜積層構造体2-2の分光透過率曲線を示す図である。 図11は第2薄膜積層構造体2-2の分光反射率曲線を示す図である。 図12は例3-1の光学フィルタの分光透過率曲線を示す図である。 図13は例3-2の光学フィルタの分光透過率曲線を示す図である。 図14は例3-3の光学フィルタの分光透過率曲線を示す図である。 図15は例3-4の光学フィルタの分光透過率曲線を示す図である。 図16は例3-5の光学フィルタの分光透過率曲線を示す図である。 図17は例3-6の光学フィルタの分光透過率曲線を示す図である。
 以下、本発明の実施の形態について説明する。
 本明細書において、近赤外線吸収色素を「NIR色素」と略記することもある。
 本明細書において、式(I)で示される化合物を化合物(I)という。他の式で表される化合物も同様である。化合物(I)からなる色素を色素(I)ともいい、他の色素についても同様である。また、式(I)で表される基を基(I)とも記し、他の式で表される基も同様である。
 本明細書において、「光の透過を制限する」とは、所定の波長の光に関し、入射角0度(垂直入射)で入射した場合の光の透過率が5%未満であることをいう。
 本明細書において、内部透過率とは、{実測透過率/(100-反射率)}×100の式で示される、実測透過率から界面反射の影響を引いて得られる透過率である。
 本明細書において、基材の透過率、色素が樹脂に含有される場合を含む樹脂膜の透過率は、「透過率」と記載されている場合も全て「内部透過率」である。一方、誘電体多層膜を有する光学フィルタの透過率は、実測透過率である。
 本明細書において、特定の波長域について、透過率が例えば90%以上とは、その全波長領域において透過率が90%を下回らない、すなわちその波長領域において最小透過率が90%以上であることをいう。同様に、特定の波長域について、透過率が例えば1%以下とは、その全波長領域において透過率が1%を超えない、すなわちその波長領域において最大透過率が1%以下であることをいう。内部透過率においても同様である。特定の波長域における平均透過率および平均内部透過率は、該波長域の1nm毎の透過率および内部透過率の相加平均である。
 光学特性は、紫外可視分光光度計を用いて測定できる。
 本明細書において、数値範囲を表す「~」では、上下限を含む。
<光学フィルタ>
 本発明の光学フィルタは、基材と、近赤外波長領域内の光の透過を制限する2つの薄膜積層構造体と、を備える。基材は近赤外波長領域内の光を吸収する色素を含有する樹脂膜を含む。第1薄膜積層構造体は少なくとも2つの誘電体多層膜を含み基材の一方の主面側に最外層として積層され、第2薄膜積層構造体は少なくとも1つの誘電体多層膜を含み基材の他方の主面側に最外層として積層される。すなわち本発明の光学フィルタは、少なくとも3つの誘電体多層膜を含む。第1薄膜積層構造体および第2薄膜積層構造体は、それぞれ後述する特定の光学特性を満たす。
 第1薄膜積層構造体は2以上の誘電体多層膜の複合体であり、各多層膜の可視光領域のリップルが打ち消しあうように近赤外光反射領域をシフトさせている。その一方で、第1薄膜積層構造体は所定の近赤外波長領域、具体的には850nm~950nmの波長領域において光抜けが発生する。かかる光抜けを第2薄膜積層構造体の反射特性と樹脂膜に含まれる色素の吸収特性により遮断することで、光学フィルタ全体として可視光の高い透過性、近赤外光の高い遮蔽性、可視光領域のリップル低減が実現する。また、色素は入射角依存性なく吸収特性を発揮できるため、近赤外光を吸収する色素を用いることで、多層膜の入射角依存性に起因する近赤外光領域の遮蔽性低下を色素によって補完できる。
 図面を用いて本フィルタの構成例について説明する。図1~3は、一実施形態の光学フィルタの一例を概略的に示す断面図である。
 図1に示す光学フィルタ1は、基材10の一方の主面側に第1薄膜積層構造体31を有し、他方の主面側に第2薄膜積層構造体32を有する。図1において第1薄膜積層構造体31は誘電体多層膜31Aおよび誘電体多層膜31Bを有する。また、基材10は、支持体11と支持体の一方の主面側に積層された樹脂膜12とを有する。
 図2に示す光学フィルタ1は、基材10が、支持体を有さず樹脂膜12から構成された例である。
 図3に示す光学フィルタ1は、第1薄膜積層構造体31が、誘電体多層膜31A、誘電体多層膜31Bおよび誘電体多層膜31Cを有する例である。
<薄膜積層構造体>
 本発明の光学フィルタは、近赤外波長領域内の光の透過を制限する第1薄膜積層構造体および第2薄膜積層構造体を有し、各薄膜積層構造体は、基材の両方の主面側に最外層としてそれぞれ積層される。
 第1薄膜積層構造体は少なくとも2つの誘電体多層膜を有する複合体である。
 第1薄膜積層構造体は、下記光学特性(i-1A)および(i-1B)を満たす。
(i-1A)入射角度40°での波長850nm~950nmにおける最大透過率T850-950(40deg)MAXが5%以上
(i-1B)入射角度40°での波長450nm~600nmにおける最大反射率R450-600(40deg)MAXが8%以下
 第1薄膜積層構造体は2以上の誘電体多層膜の可視光領域のリップルが打ち消しあうように近赤外光反射領域をシフトさせて設計される結果、近赤外波長領域において光抜けが発生する。光学特性(i-1A)は光抜けが生じる波長領域と光抜けが許容されるレベルを意味する。T850-950(40deg)MAXはより好ましくは6%以上であり、また、好ましくは30%以下、より好ましくは20%以下である。
 光学特性(i-1B)を満たすことで、可視光領域の反射特性が低いことを意味する。これにより可視光領域においては良好な透過性を示す。R450-600(40deg)MAXはより好ましくは7%以下である。
 第1薄膜積層構造体はさらに、下記光学特性(i-1C)を満たすことが好ましい。
(i-1C)入射角度40°での波長1000nm~1100nmにおける平均反射率R1000-1100(40deg)AVEが95%以上
 光学特性(i-1C)を満たすことで、近赤外光領域のうち特に1000nm~1100nmの光の遮蔽性に優れることを意味する。
 第2薄膜積層構造体は少なくとも1つの誘電体多層膜を含む。
 第2薄膜積層構造体は下記光学特性(i-2A)を満たす。
(i-2A)入射角度40°での波長850nm~950nmにおける平均反射率R850-950(40deg)AVEが25%~60%
 光学特性(i-2A)を満たすことで、第1薄膜積層構造体の光抜けにより遮断できなかった光を、第2薄膜積層構造体の反射特性により遮断できることを意味する。R850-950(40deg)AVEが25%以上であることで、第1薄膜積層構造体にて生じた光抜けを効果的に遮蔽でき、また、R850-950(40deg)AVEが60%以下であることで誘電体多層膜の物理膜厚が過度に厚くなることを抑制できる。R850-950(40deg)AVEは好ましくは30%~55%である。
 第2薄膜積層構造体は下記光学特性(i-2B)をさらに満たすことが好ましい。
(i-2B)入射角度0°での波長450nm~600nmにおける平均透過率T450-600(0deg)AVEが80%以上
 光学特性(i-2B)を満たすことで、光学フィルタとして高い可視光透過率が得られることを意味する。T450-600(0deg)AVEは好ましくは90%以上である。
 第2薄膜積層構造体はさらに、下記光学特性(i-2C)を満たすことが好ましい。
(i-2C)入射角度40°での波長1000nm~1100nmにおける平均反射率R1000-1100(40deg)AVEが25%~60%
 光学特性(i-2C)を満たすことで、近赤外光領域のうち特に1000nm~1100nmの光の遮蔽性に優れることを意味する。
 第1薄膜積層構造体および第2薄膜積層構造体は、誘電体多層膜によって、所望の波長範囲の透過を制限するように構成される。誘電体多層膜は、低屈折率の誘電体膜(低屈折率膜)、中屈折率の誘電体膜(中屈折率膜)及び高屈折率の誘電体膜(高屈折率膜)から選択して交互に積層することで得られる光学的機能を有する膜である。設計により、光の干渉を利用して特定の波長領域の光の透過や、光の透過制限を制御する機能を発現させることができる。なお、低屈折率、高屈折率、中屈折率とは、隣接する層の屈折率に対して高い屈折率と低い屈折率、またその中間の屈折率を有することを意味する。
 高屈折率膜は、波長500nmにおける屈折率が好ましくは1.9以上、より好ましくは1.9~2.6の膜である。高屈折率膜の材料としては、例えばTa、TiO、Nbが挙げられる。これらのうち、成膜性、屈折率等における再現性、安定性等の点から、TiOが好ましい。
 中屈折率膜は、波長500nmにおける屈折率が好ましくは1.5~2.1、より好ましくは1.8~2.0の膜である。中屈折率膜の材料としては、例えばAl、Y、ZrOが挙げられる。これらのうち、安定性等の点から、Al、ZrO、もしくはこの2材料を含む混合材料が好ましい。
 低屈折率膜は、波長500nmにおける屈折率が好ましくは1.8以下、より好ましくは1.3~1.6の膜である。低屈折率膜の材料としては、例えばSiO、MgF、SiO等が挙げられる。成膜性における再現性、安定性、経済性等の点から、SiOが好ましい。
 第2薄膜積層構造体は、TiOとSiOとが交互に積層された多層膜であって、下記式に示す膜比率が0.50以上であることが好ましい。
 膜比率(物理膜厚)=SiOの総物理膜厚/(TiOの総物理膜厚+SiOの総物理膜厚)
 かかる構成により、第2薄膜積層構造体による波長850~950nmの反射特性、具体的には入射角度が40°における反射率が25~60%となる特性を得ることができる。膜比率は0.55以上であることがより好ましく、0.60~0.70がさらに好ましい。なお、物理膜厚は触針式表面形状測定器(Dektak150、株式会社アルバック社製)により測定できる。
 薄膜積層構造体は、異なる屈折率の薄膜を交互に積層して構成される場合、その層数は、誘電体多層膜の有する光学特性によるが、薄膜の合計積層数として50~150層が好ましい。合計積層数が50層以上であれば、波長800nm~1000nmの阻止性能が十分である。また、合計積層数が150層以下であれば、光学フィルタの製作時のタクトタイムが長くならず、誘電体多層膜に起因する光学フィルタの反りなどが発生しにくいため好ましくない。
 さらに、第1薄膜積層構造体における合計積層数は、近赤外線の高い遮光性能を得る観点から好ましくは20~150、好ましくは20~50である。第2薄膜積層構造体における合計積層数は、量産性の観点から好ましくは50以下、より好ましくは20未満である。
 薄膜積層構造体の物理膜厚としては、上記好ましい積層数を満たした上で、光学フィルタの薄型化の観点からは、薄い方が好ましい。
 第1薄膜積層構造体の物理膜厚としては所望の光学特性を得る観点から好ましくは3μm以上であり、また、光学フィルタの反りを抑制する観点から好ましくは15μm以下である。第2薄膜積層構造体の膜厚としては樹脂層のしわ発生を抑制する観点から好ましくは3μm未満であり、より好ましくは2.5μm未満である。
 第1薄膜積層構造体、第2薄膜積層構造体は、基材のいずれの主面に積層されていてもよいが、第2薄膜積層構造体が基材の樹脂膜表面に積層されていることが好ましい。誘電体多層膜が少ない第2薄膜積層構造体の方が第1薄膜積層構造体よりも積層数が小さい。薄膜積層構造体と接している樹脂膜は薄膜の積層数が多いほど強い応力を受ける。薄膜積層構造体からの応力が強いと、リフロー等の組み立て工程における熱により樹脂が軟化した際に樹脂膜にしわが発生し、外観品質が問題になる。積層数が小さい膜積層構造体の方を樹脂膜表面に積層することで、樹脂膜が受ける応力が小さく、しわの発生が抑制され好ましい。
 薄膜積層構造体は、その形成にあたっては、例えば、IAD(Ion Assisted Deposition)蒸着法、CVD法、スパッタ法、真空蒸着法等の乾式成膜プロセスや、スプレー法、ディップ法等の湿式成膜プロセス等を使用できる。
<基材>
 本発明の光学フィルタにおいて、基材は、近赤外波長領域内の光を吸収する色素(IR)および樹脂を含む樹脂膜を有する。色素(IR)の吸収特性により第1薄膜積層構造体で発生する近赤外波長領域における光抜けを遮断できる。また、色素(IR)の吸収特性により、多層膜の入射角依存性に起因する近赤外光領域の遮蔽性低下を色素によって補完できる。
 樹脂膜は下記光学特性(ii-1)~(ii-3)をすべて満たすことが好ましい。
(ii-1)入射角度0°での波長850nm~950nmにおける平均内部透過率T850-950(0deg)AVEが60~90%
(ii-2)入射角度30°での波長850nm~950nmにおける平均内部透過率T850-950(30deg)AVEが60~90%
(ii-3)入射角度40°での波長850nm~950nmにおける平均内部透過率T850-950(40deg)AVEが60~90%
 光学特性(ii-1)~(ii-3)を満たすことで、第1薄膜積層構造体において光抜けが生じる入射角条件および波長領域において、色素(IR)の吸収特性によっても遮光できることを意味する。
 T850-950(0deg)AVEはより好ましくは70~90%である。
 T850-950(30deg)AVEはより好ましくは70~90%である。
 T850-950(40deg)AVEはより好ましくは70~90%である。
 樹脂膜は、下記光学特性(ii-4)をさらに満たすことが好ましい。
(ii-4)入射角度30°での波長660nm~730nmにおける平均内部透過率T660-730(30deg)AVEが10%以下
 波長660nm~730nmは近赤外光領域の中でも可視光領域との境界に近く、誘電体多層膜の入射角依存性により高入射角での反射特性の低下(斜入射シフト)が起こりやすい領域である。光学特性(ii-4)を満たすことで、誘電体多層膜で反射しきれなかった近赤外光を、色素の吸収特性により遮断できることを意味する。T660-730(30deg)AVEはより好ましくは20%以下である。
 樹脂膜は、下記光学特性(ii-5)をさらに満たすことが好ましい。
(ii-5)入射角度0°における波長450~600nmの平均内部透過率T450-600(0deg)AVEが70%以上
 光学特性(ii-5)を満たすことで、樹脂膜は高い可視光透過性を有することを意味する。T450-600(0deg)AVEはより好ましくは60%以上である。
 近赤外波長領域内の光を吸収する色素(IR)としては、樹脂膜を構成する樹脂中において570~950nmに最大吸収波長を有する色素が好ましい。かかる色素を用いることで近赤外光を効果的に遮断できる。
 色素(IR)としては、スクアリリウム色素、シアニン色素、フタロシアニン色素、ナフタロシアニン色素、ジチオール金属錯体色素、アゾ色素、ポリメチン色素、フタリド色素、ナフトキノン色素、アントラキノン色素、インドフェノール色素、ピリリウム色素、チオピリリウム色素、クロコニウム色素、テトラデヒドオコリン色素、トリフェニルメタン色素、アミニウム色素およびジイモニウム色素等が挙げられる。
 これらのなかでも、分光特性の観点からはスクアリリウム色素、シアニン色素が好ましく、耐久性の観点からはフタロシアニン色素が好ましい。
 また、色素(IR)としては、1種類の化合物からなってもよく、2種以上の化合物を含んでもよい。
 樹脂膜におけるNIR色素(IR)の含有量は、樹脂100質量部に対し好ましくは0.1~30質量部、より好ましくは0.1~15質量部である。なお、2種以上の化合物を組み合わせる場合、上記含有量は各化合物の総和である。
 樹脂膜は、本発明の効果を損なわない範囲で、その他の色素、例えば紫外光吸収色素を含有してもよい。
 紫外光吸収色素としては、オキサゾール色素、メロシアニン色素、シアニン色素、ナフタルイミド色素、オキサジアゾール色素、オキサジン色素、オキサゾリジン色素、ナフタル酸色素、スチリル色素、アントラセン色素、環状カルボニル色素、トリアゾール色素等が挙げられる。この中でも、メロシアニン色素が特に好ましい。
 本フィルタにおける基材は、単層構造であっても、複層構造であってもよい。また基材の材質としては可視光を透過する透明性材料であれば有機材料でも無機材料でもよく、特に制限されない。
 基材が単層構造の場合、樹脂とNIR色素(IR)とを含む樹脂膜からなる樹脂基材が好ましい。
 基材が複層構造の場合、支持体の少なくとも一方の主面にNIR色素(IR)を含有する樹脂膜を積層した複合基材が好ましい。このとき支持体は透明樹脂または透明性無機材料からなることが好ましい。
 樹脂としては、透明樹脂であれば制限されず、ポリエステル樹脂、アクリル樹脂、エポキシ樹脂、エン・チオール樹脂、ポリカーボネート樹脂、ポリエーテル樹脂、ポリアリレート樹脂、ポリサルホン樹脂、ポリエーテルサルホン樹脂、ポリパラフェニレン樹脂、ポリアリーレンエーテルフォスフィンオキシド樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリオレフィン樹脂、環状オレフィン樹脂、ポリウレタン樹脂、およびポリスチレン樹脂等から選ばれる1種以上の透明樹脂が用いられる。これらの樹脂は1種を単独で使用してもよく、2種以上を混合して使用してもよい。
 なかでも、色素の溶解性に優れる点、UV側の吸収が少ない点、ガラス転移点(Tg)が高い点、支持体や誘電体多層膜との密着性に優れる点から、ポリイミド樹脂が好ましい。
 NIR色素(IR)やその他の色素として複数の化合物を用いる場合、これらは同一の樹脂膜に含まれてもよく、また、それぞれ別の樹脂膜に含まれてもよい。
 透明性無機材料としては、ガラスや結晶材料が好ましい。
 支持体に使用できるガラスとしては、フツリン酸塩系ガラスやリン酸塩系ガラス等に銅イオンを含む吸収型のガラス(近赤外線吸収ガラス)、ソーダライムガラス、ホウケイ酸ガラス、無アルカリガラス、石英ガラス等が挙げられる。
 ガラスとしては、赤外光(特に900~1200nm)を吸収できる観点から、リン酸塩系ガラス、フツリン酸塩系ガラスが好ましい。なお、「リン酸塩系ガラス」は、ガラスの骨格の一部がSiOで構成されるケイリン酸塩ガラスも含む。
 ガラスとしては、ガラス転移点以下の温度で、イオン交換により、ガラス板主面に存在するイオン半径が小さいアルカリ金属イオン(例えば、Liイオン、Naイオン)を、イオン半径のより大きいアルカリイオン(例えば、Liイオンに対してはNaイオンまたはKイオンであり、Naイオンに対してはKイオンである。)に交換して得られる化学強化ガラスを使用してもよい。
 支持体に使用できる結晶材料としては、水晶、ニオブ酸リチウム、サファイア等の複屈折性結晶が挙げられる。
 支持体としては、光学特性、機械特性等の長期にわたる信頼性に係る形状安定性の観点、フィルタ製造時のハンドリング性等から、無機材料が好ましく、特にガラス、サファイアが好ましい。
 樹脂膜は、色素(IR)と、樹脂または樹脂の原料成分と、必要に応じて配合される各成分とを、溶媒に溶解または分散させて塗工液を調製し、これを支持体に塗工し乾燥させ、さらに必要に応じて硬化させて形成できる。上記支持体は、本フィルタに含まれる支持体でもよいし、樹脂膜を形成する際にのみ使用する剥離性の支持体でもよい。また、溶媒は、安定に分散できる分散媒または溶解できる溶媒であればよい。
 また、塗工液は、微小な泡によるボイド、異物等の付着による凹み、乾燥工程でのはじき等の改善のため界面活性剤を含んでもよい。さらに、塗工液の塗工には、例えば、浸漬コーティング法、キャストコーティング法、またはスピンコート法等を使用できる。上記塗工液を支持体上に塗工後、乾燥させることにより樹脂膜が形成される。また、塗工液が透明樹脂の原料成分を含有する場合、さらに熱硬化、光硬化等の硬化処理を行う。
 また、樹脂膜は、押出成形によりフィルム状に製造可能でもある。基材が、色素(IR)を含む樹脂膜からなる単層構造(樹脂基材)である場合、樹脂膜をそのまま基材として用いることができる。基材が、支持体と、支持体の少なくとも一方の主面に積層した色素(IR)を含む樹脂膜とを有する複層構造(複合基材)である場合、このフィルムを支持体に積層し熱圧着等により一体化させることにより基材を製造できる。
 樹脂膜は、光学フィルタの中に1層有してもよく、2層以上有してもよい。2層以上有する場合、各層は同じ構成であっても異なってもよい。
 樹脂膜の厚さは、基材が、色素(IR)を含む樹脂膜からなる単層構造(樹脂基材)である場合、好ましくは20~150μmである。
 基材が、支持体と、支持体の少なくとも一方の主面に積層した色素(IR)を含有する樹脂膜とを有する複層構造(複合基材)である場合、樹脂膜の厚さは、好ましくは0.3~20μmである。なお、光学フィルタが樹脂膜を2層以上有する場合は、各樹脂膜の総厚が上記範囲であることが好ましい。
 基材の形状は特に限定されず、ブロック状、板状、フィルム状でもよい。
 また基材の厚さは、誘電体多層膜成膜時の反り低減、光学素子低背化の観点から、300μm以下が好ましく、基材が樹脂膜からなる樹脂基材である場合、好ましくは50~300μmであり、基材が支持体と樹脂膜を備える複合基材である場合、好ましくは50~300μmである。
<光学フィルタ(光学特性)>
 上記構成の本発明の光学フィルタは、下記光学特性(iii-1)~(iii-5)をすべて満たすことが好ましい。
(iii-1)入射角度0°での波長400~600nmにおける平均透過率T400-600(0deg)AVEが70%以上
(iii-2)入射角度40°での波長450~600nmにおける平均反射率R450-600(40deg)AVEが5%以下
(iii-3)入射角度5°での波長450~600nmにおける平均反射率R450-600(5deg)AVEが3%以下
(iii-4)入射角度40°での波長700~900nmにおける最大透過率T700-900(40deg)MAXが15%以下
(iii-5)入射角度40°での波長1000~1100nmにおける平均透過率T1000-1100(40deg)AVEが5%以下
 光学特性(iii-1)~(iii-5)をすべて満たす本発明の光学フィルタは、可視光の高い透過性と近赤外光の高い遮蔽性を有し、高入射角においても可視光領域のリップルが抑制された光学フィルタである。
 光学特性(iii-1)を満たすことで、波長400~600nmの可視光領域の透過性に優れることを意味する。T400-600(0deg)AVEは好ましくは72%以上である。
 光学特性(iii-2)を満たすことで、波長450~600nmの可視光領域においてリップルが小さいことを意味する。R450-600(40deg)AVEは好ましくは4%以下である。
 光学特性(iii-3)を満たすことで、可視光領域でリップルが小さいことを意味する。R450-600(5deg)AVEは好ましくは2.5%以下である。
 光学特性(iii-4)を満たすことで、高入射角においても700~900nmの近赤外光領域の遮蔽性に優れることを意味する。T700-900(40deg)MAXは、好ましくは14%以下である。
 光学特性(iii-5)を満たすことで、高入射角においても1000~1100nmの近赤外光領域の遮蔽性に優れることを意味する。T1000-1100(40deg)AVEは、好ましくは4.5%以下である。
 本発明の光学フィルタは、下記光学特性(iii-6)をさらに満たすことが好ましい。
(iii-6)入射角度40°での波長850nm~950nmにおける最大透過率T850-950(40deg)MAXが20%以下
 光学特性(iii-6)を満たすことで、第1薄膜積層構造体において許容された光抜けが、光学フィルタでは遮断されていることを意味する。T850-950(40deg)MAXは好ましくは15%以下である。
 本発明の光学フィルタは、例えば、デジタルスチルカメラ等の撮像装置に使用した場合に、色再現性に優れる撮像装置を提供できる。かかる撮像装置は、固体撮像素子と、撮像レンズと、本発明の光学フィルタとを備える。本発明の光学フィルタは、例えば、撮像レンズと固体撮像素子との間に配置されたり、撮像装置の固体撮像素子、撮像レンズ等に粘着剤層を介して直接貼着されたりして使用できる。
 次に、本発明を実施例によりさらに具体的に説明する。
 各光学特性は、光学薄膜シミュレーションソフト(TFCalc、Software Spectra社製)を用いて検証した。また、本願では波長500nmにおける各膜の屈折率を代表値として使用しているが、屈折率の波長依存性を考慮してシミュレーションを行った。
 なお、入射角度が特に明記されていない場合の光学特性は入射角0度(光学フィルタ主面に対し垂直方向)でシミュレーションした値である。
 各例で用いた色素は下記のとおりである。
化合物1(シアニン化合物):Dyes and pigments 73(2007) 344-352に基づき合成した。
化合物2(スクアリリウム色素):米国特許出願公開第2014/0061505号明細書および国際公開第2014/088063号に基づき合成した。
化合物3(メロシアニン化合物):日本国特許第6504176号公報を参考に合成した。
Figure JPOXMLDOC01-appb-C000001
<例1-1:樹脂膜>
 ポリイミド樹脂(三菱ガス化学製C-3G30G)を10質量%の濃度で有機溶媒(シクロヘキサノン)に溶解した。
 上記で調製したポリイミド樹脂の溶液に、樹脂100質量部に対し、化合物1を0.05質量部、化合物2を2.76質量部、化合物3を11.7質量部となるように添加し、50℃に加熱しながら2時間攪拌した。色素含有樹脂溶液を、スピンコートを用いてガラス基板(アルカリガラス、Schott製D263)に塗布し、十分に加熱乾燥して膜厚5μmの樹脂膜(塗工膜)を得た。
<例1-2:樹脂膜>
 樹脂100質量部に対し、化合物1を0.44質量部、化合物2を2.76質量部、化合物3を11.7質量部となるように添加した以外は、例1-1と同様に、樹脂膜を得た。
 各樹脂膜について、分光光度計で波長350nm~1200nmの波長範囲で入射方向に対して5degの入射方向で透過分光と反射分光を測定した。得られた分光透過率曲線と分光反射率曲線を用いて、分光内部透過率曲線を算出し、最大吸収波長における透過率が10%になるように規格化した。
  内部透過率(%)=透過率/(100-反射率)*100
 光学特性を後述の表1に示す。
 なお、例1-1および例1-2は参考例である。
<例2-1:薄膜積層構造体1-1>
 TiO膜、SiO膜、ZrO膜を交互に積層させた、積層数および物理膜厚が異なる3種類の誘電体多層膜を複合し、薄膜積層構造体1-1を設計した。各積層数および物理膜厚を後述の表1に示す。
<例2-2:薄膜積層構造体1-2>
 TiO膜とSiO膜を交互に積層させた、積層数および物理膜厚が異なる2種類の誘電体多層膜を複合し、薄膜積層構造体1-2を設計した。各積層数および物理膜厚を後述の表1に示す。
<例2-3:薄膜積層構造体1-3>
 TiO膜とSiO膜の積層数および物理膜厚を後述の表1に示すものとした以外は、例2-2と同様にして、薄膜積層構造体1-3を設計した。
<例2-4:薄膜積層構造体1-4>
 TiO膜とSiO膜の積層数および物理膜厚を後述の表1に示すものとした以外は、例2-2と同様にして、薄膜積層構造体1-4を設計した。
<例2-5:薄膜積層構造体1-5>
 日本国特開2007-183525号公報の実施例4の記載を参照して、TiO膜と、LaおよびAl膜とを交互に積層させた誘電体多層膜からなる薄膜積層構造体1-5を設計した。各積層数を後述の表1に示す。
<例2-6:薄膜積層構造体2-1>
 TiO膜とSiO膜を交互に積層させた誘電体多層膜からなる薄膜積層構造体2-1を設計した。積層数および物理膜厚を後述の表1に示す。
<例2-7:薄膜積層構造体2-2>
 日本国特開2007-183525号公報の実施例4の記載を参照して、TiO膜とSiO膜を交互に積層させた誘電体多層膜からなる薄膜積層構造体2-1を設計した。積層数を後述の表1に示す。
 薄膜積層構造体1-1~1-5の光学特性および薄膜積層構造体2-1~2-2の光学特性を後述の表1に示す。
 また、薄膜積層構造体1-4、1-5および薄膜積層構造体2-1、2-2の分光透過率曲線と分光反射率曲線を、それぞれ図4~11に示す。
 なお、例2-1~例2-7は参考例である。
<例3-1:光学フィルタ>
 ガラス基板(アルカリガラス、Schott製D263)の一方の主面に例1-1の樹脂膜、および薄膜積層構造体2-1を積層し、他方の主面に薄膜積層構造体1-1を積層し、光学フィルタを得た。
<例3-2:光学フィルタ>
 薄膜積層構造体1-1を薄膜積層構造体1-2に替えた点以外は例3-1と同様に光学フィルタを得た。
<例3-3:光学フィルタ>
 薄膜積層構造体1-1を薄膜積層構造体1-3に替えた点以外は例3-1と同様に光学フィルタを得た。
<例3-4:光学フィルタ>
 薄膜積層構造体1-1を薄膜積層構造体1-3に替え、例1-1の樹脂膜を例1-2の樹脂膜に替えた点以外は例3-1と同様に光学フィルタを得た。
<例3-5:光学フィルタ>
 薄膜積層構造体1-1を薄膜積層構造体1-4に替えた点以外は例3-1と同様に光学フィルタを得た。
<例3-6:光学フィルタ>
 日本国特開2007-183525号公報の実施例4の記載を参照して、ガラス基板の一方の主面に薄膜積層構造体2-2を積層し、他方の主面に薄膜積層構造体1-5を積層し、光学フィルタを得た。
 得られた各光学フィルタを、分光光度計を用い0deg、40degの入射方向で透過分光を測定し、また、5degの入射方向で反射分光を測定した。光学特性を下記表に示す。
 また、光学フィルタ3-1~3-6の分光透過率曲線をそれぞれ図12~17に示す。
 なお、例3-1~3-5は実施例であり、例3-6は比較例である。
 また、下記方法により、光学フィルタについてしわ評価を行った。
 しわ評価は、光学フィルタを160℃に設定した電気炉内に10分間入れて加熱し、のちに電気炉から取り出し、常温まで降温させた。次いで、光学フィルタの中央部を光学顕微鏡にて観察し、しわの有無を確認した。光学フィルタに目視で認識可能なしわがある場合は×、目視で認識可能なしわがない場合は〇とした。
 結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
 上記結果より、光学フィルタ3-1~3-5は、可視光の高い透過性と近赤外光の高い遮蔽性を有し、高入射角における可視光領域のリップル発生が抑制され、また、高入射角における近赤外光領域の遮蔽性低下も抑制されていることが分かる。さらに、樹脂膜におけるしわ発生も抑制された。
 一方、用いた多層膜が2種類で、色素を併用しなかった光学フィルタ3-6は、高入射角における可視光領域でリップルが発生し、また、高入射角において透過特性がシフトし近赤外光領域の遮蔽性低下が発生した。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2020年12月25日出願の日本特許出願(特願2020-217100)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の光学フィルタは、可視光の透過性に優れ、かつ、高入射角における近赤外光の遮蔽性の低下が抑制された良好な近赤外光遮蔽特性を有する。近年、高性能化が進む、例えば、輸送機用のカメラやセンサ等の情報取得装置の用途に有用である。
1…光学フィルタ、10…基材、11…支持体、12…樹脂膜、31…第1薄膜積層構造体、31A、31B、31C…誘電体多層膜、32…第2薄膜積層構造体

Claims (8)

  1.  基材と、
     近赤外波長領域内の光の透過を制限する第1薄膜積層構造体および第2薄膜積層構造体と、
     を備えた光学フィルタであって、
     前記基材は、近赤外波長領域内の光を吸収する色素を含有する樹脂膜を含み、
     前記第1薄膜積層構造体は少なくとも2つの誘電体多層膜を含み前記基材の一方の主面側に最外層として積層され、
     前記第2薄膜積層構造体は少なくとも1つの誘電体多層膜を含み前記基材の他方の主面側に最外層として積層され、
     前記第1薄膜積層構造体は、下記光学特性(i-1A)および(i-1B)を満たし、
     前記第2薄膜積層構造体は、下記光学特性(i-2A)を満たす、
     光学フィルタ。
    (i-1A)入射角度40°での波長850nm~950nmにおける最大透過率が5%以上
    (i-1B)入射角度40°での波長450nm~600nmにおける最大反射率が8%以下
    (i-2A)入射角度40°での波長850nm~950nmにおける平均反射率が25%~60%
  2.  前記樹脂膜は、下記光学特性(ii-1)~(ii-3)をすべて満たす、請求項1に記載の光学フィルタ。
    (ii-1)入射角度0°での波長850nm~950nmにおける平均内部透過率が60~90%
    (ii-2)入射角度30°での波長850nm~950nmにおける平均内部透過率が60~90%
    (ii-3)入射角度40°での波長850nm~950nmにおける平均内部透過率が60~90%
  3.  前記樹脂膜は、下記光学特性(ii-4)をさらに満たす、請求項1または請求項2に記載の光学フィルタ。
    (ii-4)入射角度30°での波長660nm~730nmにおける平均内部透過率が10%以下
  4.  前記第2薄膜積層構造体は、前記樹脂膜表面に積層されている、請求項1ないし請求項3のいずれか1項に記載の光学フィルタ。
  5.  前記樹脂膜は、下記光学特性(ii-5)をさらに満たす、請求項1ないし請求項4のいずれか1項に記載の光学フィルタ。
    (ii-5)入射角度0°における波長450~600nmの平均内部透過率が70%以上
  6.  前記第2薄膜積層構造体は、TiOとSiOとが交互に積層された誘電体多層膜を有し、下記式に示す膜比率が0.50以上である、請求項1ないし請求項5のいずれか1項に記載の光学フィルタ。
     膜比率(物理膜厚)=SiOの総物理膜厚/(TiOの総物理膜厚+SiOの総物理膜厚)
  7.  前記樹脂膜は、ポリイミド系樹脂を含む請求項1ないし請求項6のいずれか1項に記載の光学フィルタ。
  8.  下記光学特性(iii-1)~(iii-5)をすべて満たす、請求項1ないし請求項7のいずれか1項に記載の光学フィルタ。
    (iii-1)入射角度0°での波長400~600nmにおける平均透過率が70%以上
    (iii-2)入射角度40°での波長450~600nmにおける平均反射率が5%以下
    (iii-3)入射角度5°での波長450~600nmにおける平均反射率が3%以下
    (iii-4)入射角度40°での波長700~900nmにおける最大透過率が15%以下
    (iii-5)入射角度40°での波長1000~1100nmにおける平均透過率が5%以下
PCT/JP2021/045667 2020-12-25 2021-12-10 光学フィルタ WO2022138252A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180087322.2A CN116648644A (zh) 2020-12-25 2021-12-10 光学滤光片
JP2022572151A JPWO2022138252A1 (ja) 2020-12-25 2021-12-10

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-217100 2020-12-25
JP2020217100 2020-12-25

Publications (1)

Publication Number Publication Date
WO2022138252A1 true WO2022138252A1 (ja) 2022-06-30

Family

ID=82157847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045667 WO2022138252A1 (ja) 2020-12-25 2021-12-10 光学フィルタ

Country Status (4)

Country Link
JP (1) JPWO2022138252A1 (ja)
CN (1) CN116648644A (ja)
TW (1) TW202234096A (ja)
WO (1) WO2022138252A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023167062A1 (ja) * 2022-03-02 2023-09-07 Agc株式会社 光学フィルタ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016043166A1 (ja) * 2014-09-19 2016-03-24 旭硝子株式会社 光学フィルタ
WO2016171219A1 (ja) * 2015-04-23 2016-10-27 旭硝子株式会社 光学フィルタおよび撮像装置
WO2018155634A1 (ja) * 2017-02-24 2018-08-30 株式会社オプトラン カメラ構造、撮像装置
WO2019189039A1 (ja) * 2018-03-30 2019-10-03 Agc株式会社 光学フィルタ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016043166A1 (ja) * 2014-09-19 2016-03-24 旭硝子株式会社 光学フィルタ
WO2016171219A1 (ja) * 2015-04-23 2016-10-27 旭硝子株式会社 光学フィルタおよび撮像装置
WO2018155634A1 (ja) * 2017-02-24 2018-08-30 株式会社オプトラン カメラ構造、撮像装置
WO2019189039A1 (ja) * 2018-03-30 2019-10-03 Agc株式会社 光学フィルタ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023167062A1 (ja) * 2022-03-02 2023-09-07 Agc株式会社 光学フィルタ

Also Published As

Publication number Publication date
TW202234096A (zh) 2022-09-01
JPWO2022138252A1 (ja) 2022-06-30
CN116648644A (zh) 2023-08-25

Similar Documents

Publication Publication Date Title
KR101913482B1 (ko) 근적외선 커트 필터 및 촬상 장치
WO2017030174A1 (ja) 光学フィルタおよび撮像装置
JP7279718B2 (ja) 光学フィルタおよび情報取得装置
WO2023008291A1 (ja) 光学フィルタ
JPWO2019049884A1 (ja) 光学フィルタおよび撮像装置
WO2022024826A1 (ja) 光学フィルタ
WO2022138252A1 (ja) 光学フィルタ
JP7456525B2 (ja) 光学フィルタおよび撮像装置
WO2022024941A1 (ja) 光学フィルタ
WO2023127670A1 (ja) 光学フィルタ
WO2023210475A1 (ja) 光学フィルタ
WO2023210474A1 (ja) 光学フィルタ
WO2022065170A1 (ja) 光学フィルタ
WO2023022118A1 (ja) 光学フィルタ
WO2022024942A1 (ja) 光学フィルタ
JP7342958B2 (ja) 光学フィルタおよび撮像装置
WO2024048511A1 (ja) 光学フィルタ
WO2024048513A1 (ja) 光学フィルタ
WO2022085636A1 (ja) 光学フィルタ
WO2023167062A1 (ja) 光学フィルタ
WO2022034739A1 (ja) 光学フィルタ
WO2024048512A1 (ja) 光学フィルタ
WO2024048507A1 (ja) 光学フィルタ
WO2023218937A1 (ja) 光学フィルタ及びuv色素
WO2024048510A1 (ja) 光学フィルタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910401

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022572151

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180087322.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910401

Country of ref document: EP

Kind code of ref document: A1