WO2022024941A1 - 光学フィルタ - Google Patents

光学フィルタ Download PDF

Info

Publication number
WO2022024941A1
WO2022024941A1 PCT/JP2021/027411 JP2021027411W WO2022024941A1 WO 2022024941 A1 WO2022024941 A1 WO 2022024941A1 JP 2021027411 W JP2021027411 W JP 2021027411W WO 2022024941 A1 WO2022024941 A1 WO 2022024941A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
transmittance
dye
spectral
resin
Prior art date
Application number
PCT/JP2021/027411
Other languages
English (en)
French (fr)
Inventor
和彦 塩野
雄一朗 折田
拓郎 島田
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2022540257A priority Critical patent/JPWO2022024941A1/ja
Priority to CN202180059451.0A priority patent/CN116194810A/zh
Publication of WO2022024941A1 publication Critical patent/WO2022024941A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters

Definitions

  • the present invention relates to an optical filter that transmits light in the visible wavelength region and blocks light in the near infrared wavelength region.
  • visible light In an image pickup device using a solid-state image sensor, in order to reproduce color tones well and obtain a clear image, light in the visible region (hereinafter also referred to as “visible light”) is transmitted, and light in the near infrared wavelength region (hereinafter referred to as “visible light”) is transmitted.
  • An optical filter that blocks also called “near-infrared light” is used.
  • dielectric thin films having different refractive indexes are alternately laminated on one side or both sides of a transparent substrate (dielectric multilayer film), and reflection that reflects the light to be shielded by utilizing the interference of light is used.
  • a transparent substrate dielectric multilayer film
  • reflection that reflects the light to be shielded by utilizing the interference of light.
  • type filters can be mentioned.
  • An optical filter having a dielectric multilayer film should obtain a change in the spectral transmission curve depending on the incident angle and high reflectance at a high incident angle because the optical film thickness of the dielectric multilayer film changes depending on the incident angle of light.
  • the problems are light loss that increases the transmittance of near-infrared light and noise due to near-infrared light reflected by the dielectric multilayer film.
  • Patent Document 1 describes an optical filter provided with a layer containing a near-infrared absorbing dye in order to reduce the dependence on the incident angle.
  • the optical filter described in Patent Document 1 has room for improvement in terms of transparency in the visible light region. Therefore, the present invention has a high transparency of visible light, particularly a shielding property of near-infrared light at a high incident angle such as light loss in terms of shielding property of near-infrared light while maintaining good transparency of blue light. It is an object of the present invention to provide an optical filter in which a decrease in the amount of light is suppressed.
  • the present invention provides an optical filter having the following configuration.
  • An optical filter including a base material and a dielectric multilayer film laminated as an outermost layer on at least one main surface side of the base material.
  • the base material contains a resin film containing a dye (A) which is a near-infrared absorbing dye and a resin.
  • the dye (A) has the following spectral characteristics (i-1) to (i-4) in the spectral transmittance curve of the coating film obtained by dissolving the dye (A) in the resin and coating it on an alkaline glass plate. ) Are all satisfied.
  • the absolute value of the difference between IR50a and IR50b is 200 nm or more (i-3)
  • the relationship between the absorbance A 440 at a wavelength of 440 nm and the absorbance A 700 at a wavelength of 700 nm is A 440 / A 700 ⁇ 0.14.
  • the relationship between the absorbance A 490 at a wavelength of 490 nm and the absorbance A 700 at a wavelength of 700 nm is A 490 / A 700 ⁇ 0.10.
  • the present invention has high transparency of visible light and high shielding property of near-infrared light, particularly high transmission of blue light, and deterioration of shielding property of near-infrared light at a high incident angle.
  • Suppressed optical filters can be provided.
  • FIG. 1 is a cross-sectional view schematically showing an example of an optical filter of one embodiment.
  • FIG. 2 is a cross-sectional view schematically showing another example of the optical filter of one embodiment.
  • FIG. 3 is a cross-sectional view schematically showing another example of the optical filter of one embodiment.
  • FIG. 4 is a cross-sectional view schematically showing another example of the optical filter of one embodiment.
  • FIG. 5 is a diagram showing a spectral transmittance curve in dichloromethane and a spectral transmittance curve in a cycloolefin resin of Compound 6.
  • FIG. 6 is a diagram showing a spectral transmittance curve of the optical filter of Example 3-1.
  • the near-infrared absorbing dye may be abbreviated as "NIR dye” and the ultraviolet absorbing dye may be abbreviated as "UV dye”.
  • NIR dye near-infrared absorbing dye
  • UV dye ultraviolet absorbing dye
  • the compound represented by the formula (I) is referred to as a compound (I).
  • the dye composed of compound (I) is also referred to as dye (I), and the same applies to other dyes.
  • the group represented by the formula (I) is also referred to as a group (I), and the same applies to the groups represented by other formulas.
  • the internal transmittance is a transmittance obtained by subtracting the influence of interfacial reflection from the actually measured transmittance represented by the formula ⁇ measured transmittance / (100-reflectance) ⁇ ⁇ 100.
  • the transmittance of the base material and the spectroscopy of the transmittance of the resin film including the case where the dye is contained in the resin are all "internal transmittance" even when it is described as "transmittance”.
  • the transmittance measured by dissolving the dye in a solvent such as dichloromethane and the transmittance of the optical filter having the dielectric multilayer film are the measured transmittances.
  • the absorbance is converted from the (internal) transmittance from the formula of -log10 ((internal) transmittance / 100).
  • a transmittance of 90% or more means that the transmittance does not fall below 90% in the entire wavelength region, that is, the minimum transmittance is 90% or more in the wavelength region.
  • a transmittance of 1% or less means that the transmittance does not exceed 1% in the entire wavelength region, that is, the maximum transmittance is 1% or less in the wavelength region. ..
  • the average transmittance and the average internal transmittance in a specific wavelength range are arithmetic means of the transmittance and the internal transmittance for each 1 nm in the wavelength range.
  • "-" representing a numerical range includes an upper and lower limit.
  • the optical filter of one embodiment of the present invention includes a base material and a dielectric multilayer film laminated as an outermost layer on at least one main surface side of the base material.
  • FIG. 1 are sectional views schematically showing an example of an optical filter of one embodiment.
  • the optical filter 1A shown in FIG. 1 is an example in which the dielectric multilayer film 30 is provided on one main surface side of the base material 10.
  • “having a specific layer on the main surface side of the base material” is not limited to the case where the layer is provided in contact with the main surface of the base material, and another function is provided between the base material and the layer. Including cases where layers are provided.
  • the optical filter 1B shown in FIG. 2 is an example in which the dielectric multilayer film 30 is provided on both main surface sides of the base material 10.
  • the optical filter 1C shown in FIG. 3 is an example in which the base material 10 has a support 11 and a resin film 12 laminated on one main surface side of the support 11.
  • the optical filter 1C further has a dielectric multilayer film 30 on the resin film 12 and on the main surface side of the support 11 on which the resin film 12 is not laminated.
  • the optical filter 1D shown in FIG. 4 is an example in which the base material 10 has a support 11 and a resin film 12 laminated on both main surface sides of the support 11.
  • the optical filter 1D further has a dielectric multilayer film 30 on each resin film 12.
  • the substrate contains the dye (A) and the resin.
  • the substrate comprises a resin film containing the dye (A) and the resin.
  • the dye (A) is a near infrared absorption (NIR) dye. Since the base material contains a dye that absorbs near-infrared rays, the absorption characteristics of the base material cause deterioration of spectral characteristics at high incident angles of the dielectric multilayer film, for example, light omission and noise in the near-infrared region. It can be suppressed.
  • NIR near infrared absorption
  • the dye (A) preferably has a maximum absorption wavelength of 600 to 900 nm in dichloromethane.
  • the dye (A) exhibits specific spectral characteristics in the resin used for the base material. Specifically, the coating film obtained by dissolving the dye (A) in a resin and coating it on an alkaline glass plate satisfies all of the following spectral characteristics (i-1) to (i-4).
  • the absolute value of the difference between IR50a and IR50b is 200 nm or more (i-3)
  • the relationship between the absorbance A 440 at a wavelength of 440 nm and the absorbance A 700 at a wavelength of 700 nm is A 440 / A 700 ⁇ 0.14.
  • the relationship between the absorbance A 490 at a wavelength of 490 nm and the absorbance A 700 at a wavelength of 700 nm is A 490 / A 700 ⁇ 0.10.
  • This filter containing the dye (A) exhibiting the above spectral characteristics (i-1) to (i-4) in the resin is highly transparent while maintaining good transparency of visible light, particularly blue light.
  • This is an optical filter in which the deterioration of the shielding property of near-infrared light at the incident angle is suppressed.
  • the dielectric multilayer film can efficiently prevent light leakage in the wavelength band of 750 to 900 nm, where light with a high incident angle cannot be completely blocked and light leakage is likely to occur.
  • the dye (A) itself has a broad absorption property in the resin, it is efficient only with the dye (A) while maintaining good transmittance in the visible light region without combining a plurality of types of NIR dyes. It can block the near infrared region.
  • the near-infrared region can be widely shielded from light, but the transmittance in the visible light region tends to decrease at the same time. In the present invention, this can be avoided by using the dye (A).
  • the absolute value of the spectral characteristic (i-1) is preferably 190 nm or more, more preferably 210 nm or more, and particularly preferably 230 nm or more. Further, the wider the absorption width is, the more preferable it is, so that the upper limit is not limited, but it is usually 270 nm or less.
  • the absolute value in the spectral characteristic (i-2) is preferably 210 nm or more, more preferably 230 nm or more. Further, the wider the absorption width is, the more preferable it is, so that the upper limit is not limited, but it is usually 270 nm or less.
  • the spectral characteristic (i-3) is preferably A 440 / A 700 ⁇ 0.11, and more preferably A 440 / A 700 ⁇ 0.10.
  • the spectral characteristic (i-4) is preferably A 490 / A 700 ⁇ 0.08, and more preferably A 490 / A 700 ⁇ 0.07.
  • the dye (A) further exhibits the following spectral characteristics (i-5) in the resin. That is, it is preferable that the coating film containing the dye (A) and the resin satisfies the following spectral characteristics (i-5).
  • the product of the content of the dye (A) in the coating film and the thickness of the coating film is 20 (mass% ⁇ ⁇ m) or less.
  • the spectral characteristic (i-5) is preferably 15 (mass% ⁇ ⁇ m) or less, more preferably 12 (mass% ⁇ ⁇ m) or less, and preferably 1 (mass% ⁇ ⁇ m) or more.
  • the dye (A) further exhibits the following spectral characteristics (i-6) in the resin. That is, it is preferable that the coating film containing the dye (A) and the resin satisfies the following spectral characteristics (i-6).
  • i-6 The relationship between A 570 at a wavelength of 570 nm and absorbance A 700 at a wavelength of 700 nm is A 570 / A 700 ⁇ 0.10. By satisfying the spectral characteristics (i-6), it means that the transparency of green light is excellent.
  • the spectral characteristic (i-6) is preferably A 570 / A 700 ⁇ 0.05, and more preferably A 570 / A 700 ⁇ 0.03.
  • the dye (A) further exhibits the following spectral characteristics (i-7) in the resin. That is, it is preferable that the coating film containing the dye (A) and the resin satisfies the following spectral characteristics (i-7).
  • i-7 The relationship between the absorbance A 630 at a wavelength of 630 nm and the absorbance A 700 at a wavelength of 700 nm is A 630 / A 700 ⁇ 0.12. By satisfying the spectral characteristics (i-7), it means that the transparency of red light is excellent.
  • the spectral characteristic (i-7) is preferably A 630 / A 700 ⁇ 0.11, and more preferably A 630 / A 700 ⁇ 0.08.
  • the dye (A) further exhibits the following spectral characteristics (i-8) in the resin. That is, it is preferable that the coating film containing the dye (A) and the resin satisfies the following spectral characteristics (i-8).
  • the average internal transmittance T 700-800 in the spectral transmittance curve having a wavelength of 700 to 800 nm is 2 to 25%. By satisfying the spectral characteristics (i-8), it means that light leakage of high incident light can be suppressed.
  • the spectral characteristic (i-8) is preferably 2 to 20%, more preferably 2 to 18%.
  • the dye (A) further satisfies the following properties (ii-1) and (ii-2).
  • the shortest wavelength at which the transmittance is 30% at a wavelength of 600 to 900 nm is IR30a.
  • the longest wavelength with a transmittance of 30% is IR30b (DIC)
  • the shortest wavelength with a transmittance of 50% is IR50a (DIC)
  • the longest wavelength with a transmittance of 50% is IR50b (DIC)
  • the transmittance at a wavelength of 600 to 900 nm is 10%.
  • the shortest wavelength with a transmittance of 30% is IR30a ( PO )
  • the longest wavelength with a transmittance of 30% is IR30b (PO)
  • the shortest wavelength with a transmittance of 50% is IR50a (PO) .
  • IR50b (PO) When the longest wavelength with a rate of 50% is IR50b (PO) , (Ii-1)
  • the absolute value of the difference between IR30a ( PO) and IR30b (PO) is 2.8 times or more the absolute value of the difference between IR30a ( DIC) and IR30b (DIC) (ii-2)
  • IR50a ( ii-2) The absolute value of the difference between PO) and IR50b (PO) is at least three times the absolute value of the difference between IR50a ( DIC) and IR50b (DIC) , and the spectral characteristics (ii-1) and (ii-2) are satisfied.
  • the dye (A) means that the absorption width in the resin is significantly wider than the absorption width in dichloromethane in the near-infrared light absorption band having a wavelength of 600 to 900 nm.
  • the resin is the same as the resin contained in the base material.
  • the absolute value of the spectral characteristic (ii-1) is more preferably 3 times or more, and particularly preferably 4 times or more.
  • the absolute value of the spectral characteristics (ii-2) is more preferably 3.2 times or more, and particularly preferably 4 times or more.
  • a cyanine dye is preferable, and an external salt-type cyanine dye having an anion group outside the molecule is more preferable. Since the external salt-type cyanine dye forms an associated state in the resin and the near-infrared light absorption band tends to be broadened, the above spectral characteristics (i-1) to (i-8), (ii-1) and (iii) -2) is easy to satisfy.
  • the cyanine dye is preferably a compound represented by the following formula (A1) or a compound represented by the following formula (A2).
  • R 101 to R 109 and R 121 to R 131 have an alkyl group or an alkoxy group having 1 to 15 carbon atoms or an alkoxy group having 5 to 20 carbon atoms, which may independently have a hydrogen atom, a halogen atom, and a substituent, respectively.
  • R 110 to 114 and R 132 to 136 independently represent a hydrogen atom, a halogen atom, or an alkyl group or an alkoxy group having 1 to 15 carbon atoms, respectively.
  • X - represents a monovalent anion.
  • n1 and n2 are independently 0 or 1, respectively.
  • the hydrogen atom bonded to the carbon ring containing-(CH 2 ) n1- and the carbon ring containing-(CH 2 ) n2- is a halogen atom and an alkyl group having 1 to 15 carbon atoms which may have a substituent. Alternatively, it may be substituted with an aryl group having 5 to 20 carbon atoms.
  • R 102 to R 105 , R 108 , R 109 , R 122 to R 127 , R 130 and R 131 are independently hydrogen atoms and alkyl groups having 1 to 15 carbon atoms, respectively.
  • An alkoxy group or an aryl group having 5 to 20 carbon atoms is preferable, and a hydrogen atom is more preferable from the viewpoint of obtaining a high visible light transmittance.
  • R 110 to R 114 and R 132 to R 136 are preferably hydrogen atoms independently or alkyl groups having 1 to 15 carbon atoms, respectively, from the viewpoint of obtaining high visible light transmittance. From hydrogen atom is more preferable.
  • R 106 , R 107 , R 128 and R 129 each independently contain a hydrogen atom, an alkyl group having 1 to 15 carbon atoms, or an aryl group having 5 to 20 carbon atoms (chain, cyclic or branched alkyl group). It may be), and a hydrogen atom or an alkyl group having 1 to 15 carbon atoms is more preferable. Further, R 106 and R 107 , and R 128 and R 129 preferably have the same group.
  • R 101 and R 121 are preferably an alkyl group having 1 to 15 carbon atoms or an aryl group having 5 to 20 carbon atoms, and have a branch from the viewpoint of maintaining high visible light transmittance in a transparent resin as in a solution. Alkyl groups having 1 to 15 carbon atoms are more preferable.
  • Examples of X- include I- , BF 4- , PF 6- , ClO 4- , an anion represented by the formula (X1) or (X2), and the like , preferably BF 4- or PF 6- . be.
  • the portion of the dye (A1) excluding R 101 to R 114 is also referred to as a skeleton (A1). The same applies to other dyes.
  • R 101 to R 114 and X ⁇ are the same as in the case of the formula (A1).
  • R 115 to R 120 represent an alkyl group or an alkoxy group having 1 to 15 carbon atoms which may independently have a hydrogen atom, a halogen atom and a substituent, or an aryl group having 5 to 20 carbon atoms, respectively.
  • Each of R 115 to R 120 is preferably a hydrogen atom, an alkyl group having 1 to 15 carbon atoms, or an aryl group having 5 to 20 carbon atoms (may include a chain, cyclic, or branched alkyl group).
  • a hydrogen atom or an alkyl group having 1 to 15 carbon atoms is more preferable. Further, it is preferable that R 115 to R 120 have the same group.
  • the compound having n2 of 1 is represented by the following formula (A21), and the compound having n2 of 0 is represented by the following formula (A22).
  • R 121 to R 136 and X ⁇ are the same as in the case of the formula (A2).
  • R 137 to R 142 represent an alkyl group or an alkoxy group having 1 to 15 carbon atoms which may independently have a hydrogen atom, a halogen atom and a substituent, or an aryl group having 5 to 20 carbon atoms, respectively.
  • R 137 to R 142 are each independently a hydrogen atom, an alkyl group having 1 to 15 carbon atoms, or an aryl group having 5 to 20 carbon atoms (may include a chain, cyclic, or branched alkyl group), and hydrogen is preferable. Atoms or alkyl groups having 1 to 15 carbon atoms are more preferable. Further, it is preferable that R 137 to R 142 have the same group.
  • R 132 -R 136 , R 137 -R 143 , R 122 -R 127 , R 132 -R 136 , and R 137 -R 140 in Table 4 are all described as "H" when they are hydrogen atoms.
  • the dye (A11) includes (A11-1) to (A11-4) and (A11-9) to (A11-12) from the viewpoints of synthesis, solubility in resin, heat resistance, and light resistance. , (A11-17) to (A11-20) are preferable.
  • the dye (A12) is (A12-1) to (A12-4), (A12-9) to (A12-12) from the viewpoint of synthesis, solubility in resin, heat resistance, and light resistance. , (A12-17) to (A12-20) are preferable.
  • the dye (A21) is (A21-1) to (A21-4), (A21-9) to (A21-12) from the viewpoint of synthesis, solubility in resin, heat resistance, and light resistance. , (A21-17) to (A21-20) are preferable.
  • the dye (A22) is (A22-1) to (A22-4), (A22-9) to (A22-12) from the viewpoint of synthesis, solubility in resin, heat resistance, and light resistance.
  • (A22-17) to (A22-20) are preferable.
  • (A22-17) to (A22-20) are preferable from the viewpoints of broadness, ability to block light from 700 to 850 nm in a wide band from the viewpoint of maximum absorption wavelength, and maintenance of high visible transmittance.
  • the dye (A1) and the dye (A2) are, for example, Dies and pigments 73 (2007) 344-352 and J.M. It can be produced by the method described in Heterocyclic chem, 42,959 (2005).
  • the resin film may contain one kind of dye (A1) and one kind of dye (A2) alone, or may contain two or more kinds in combination.
  • the content of the dye (A) in the resin film is preferably 2 to 25 parts by mass, more preferably 2 to 20 parts by mass with respect to 100 parts by mass of the resin from the viewpoint of satisfying desired spectral characteristics without deteriorating the resin characteristics. It is a department.
  • the substrate in the optical film of the present invention may further contain a dye (B) having a maximum absorption wavelength of 600 to 900 nm in dichloromethane in addition to the dye (A) as the NIR dye. This makes it possible to block near-infrared light more efficiently.
  • the dye (B) includes squalylium dye, phthalocyanine dye, naphthalocyanine dye, dithiol metal complex dye, azo dye, polymethine dye, phthalide dye, naphthoquinone dye, anthro-laquinone dye, indophenol dye, pyrylium dye, thiopyrylium dye, and ku. At least one selected from the group consisting of a mouth conium pigment, a te-radihidoocolin pigment, a diphenylmethane pigment, an aminium pigment and a diinmonium pigment is preferable.
  • the dye (B) preferably contains at least one dye selected from a squarylium dye, a phthalocyanine dye, and a diinmonium dye.
  • the compound represented by the following formula (I) is preferable.
  • R 24 and R 26 are independently hydrogen atom, halogen atom, hydroxyl group, alkyl group or alkoxy group having 1 to 6 carbon atoms, acyloxy group having 1 to 10 carbon atoms, -NR 27 R 28 (R 27 and R 27 and).
  • R 28 is an independent hydrogen atom and an alkyl group having 1 to 20 carbon atoms
  • R 30 may each have one or more hydrogen atoms substituted with a halogen atom, a hydroxyl group, a carboxy group, a sulfo group, or a cyano group, and is unsaturated between carbon atoms.
  • K is 2 or 3).
  • R 21 and R 22 , R 22 and R 25 , and R 21 and R 23 are linked to each other to form a heterocycle A, a heterocycle B, and a heterocycle C having 5 or 6 members, respectively, together with a nitrogen atom. May be good.
  • R 21 and R 22 have a divalent group ⁇ Q— to which the hydrogen atom is bonded, such as an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 10 carbon atoms, or an aryl group having 6 to 10 carbon atoms.
  • a divalent group ⁇ Q— to which the hydrogen atom is bonded such as an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 10 carbon atoms, or an aryl group having 6 to 10 carbon atoms.
  • An alkylene group or an alkyleneoxy group which may be substituted with an acyloxy group having 1 to 10 carbon atoms which may have a substituent is shown.
  • R 22 and R 25 when the heterocycle B is formed, and R 21 and R 23 when the heterocycle C is formed are divalent groups to which they are bonded-X1 - Y1 - and-, respectively.
  • X 2 -Y 2- the side that binds to nitrogen is X 1 and X 2
  • X 1 and X 2 are the groups represented by the following formulas (1x) or (2x), respectively
  • Y 1 and Y 2 are the groups, respectively. It is a group represented by any of the following formulas (1y) to (5y).
  • Y 1 and Y 2 may be single bonds, respectively, and in that case, oxygen atoms may be provided between carbon atoms. ..
  • the four Zs are independently hydrogen atoms, hydroxyl groups, alkyl or alkoxy groups having 1 to 6 carbon atoms, or -NR 38 R 39 (R 38 and R 39 are independent, respectively. Indicates a hydrogen atom or an alkyl group having 1 to 20 carbon atoms).
  • R 31 to R 36 are independent hydrogen atoms, an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 10 carbon atoms, and R 37 is an alkyl group having 1 to 6 carbon atoms or 6 to 10 carbon atoms. Indicates an aryl group.
  • R 27 , R 28 , R 29 , R 31 to R 37 , R 21 to R 23 when no heterocycle is formed, and R 25 are 5-membered rings coupled to any other of these. Alternatively, a 6-membered ring may be formed. R 31 and R 36 , and R 31 and R 37 may be directly coupled.
  • R 21 and R 22 each independently have a hydrogen atom, an alkyl group or an allyl group having 1 to 6 carbon atoms which may have a substituent, or a substituent.
  • An aryl group or an alaryl group having 6 to 11 carbon atoms which may be possessed is shown.
  • R 23 and R 25 independently represent a hydrogen atom, a halogen atom, or an alkyl group or an alkoxy group having 1 to 6 carbon atoms.
  • the compound represented by the formula (I-1) is preferable from the viewpoint of increasing the visible light transmittance.
  • X 1 is preferably a group (2x), and Y 1 is preferably a single bond or a group (1y).
  • R 31 to R 36 a hydrogen atom or an alkyl group having 1 to 3 carbon atoms is preferable, and a hydrogen atom or a methyl group is more preferable.
  • Specific examples of ⁇ Y 1 ⁇ X 1 ⁇ include divalent organic groups represented by the formulas (11-1) to (12-3).
  • R 21 independently contains the formula (1) from the viewpoint of solubility, heat resistance, and steepness of change near the boundary between the visible region and the near infrared region in the spectral transmittance curve.
  • the group represented by 4-1) or the formula (4-2) is more preferable.
  • R 71 to R 75 independently represent a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms.
  • Compound (I) can be produced, for example, by the known methods described in US Pat. No. 5,543,086, US Patent Application Publication No. 2014/0061505, and International Publication No. 2014/088063.
  • phthalocyanine pigment examples include the phthalocyanine pigment described in Japanese Patent No. 5884953 and International Publication No. 2019/168090.
  • diinmonium dye examples include the diimmonium dye described in International Publication No. 2014/168189.
  • the resin film may contain one type of dye (B) alone, or may contain two or more types in combination.
  • the content of the dye (B) in the resin film is preferably 2 to 25 parts by mass, more preferably 2 to 20 parts by mass with respect to 100 parts by mass of the resin.
  • the substrate may contain other dyes, such as UV dyes, in addition to the NIR dyes.
  • UV dyes include oxazole-based, merocyanine-based, cyanine-based, naphthalimide-based, oxadiazole-based, oxazine-based, oxazolidine-based, naphthalic acid-based, styryl-based, anthracene-based, cyclic carbonyl-based, and triazole-based. Pigments can be mentioned.
  • one type of UV dye may be used alone, or two or more types may be used in combination.
  • the base material in this filter may have a single-layer structure or a multi-layer structure.
  • the material of the base material may be an organic material or an inorganic material as long as it is a transparent material that transmits visible light of 400 to 700 nm, and is not particularly limited.
  • a resin base material composed of a resin and a resin film containing the NIR dye (A) is preferable.
  • the base material has a multi-layer structure, a composite base material in which a resin film containing the NIR dye (A) is laminated on at least one main surface of the support is preferable.
  • the support is preferably made of a transparent resin or a transparent inorganic material.
  • the resin in the resin layer is preferably a transparent resin.
  • a polymer composed of an alicyclic compound is preferable from the viewpoint that the NIR dye (A) forms an associated state and the near-infrared light absorption band is easily broadened.
  • examples of such a polymer include a cyclic alkane resin and a cyclic olefin resin, and one of these resins may be used alone or a mixture of two or more thereof may be used.
  • the base material contains a NIR dye (B) or another dye
  • these dyes may be contained in a resin film containing the NIR dye (A), or may be contained in another resin film.
  • the transparent resin includes polyester resin, acrylic resin, epoxy resin, en-thiol resin, polycarbonate resin, polyether resin, polyarylate resin, polysulfone resin, polyether sulfone resin, and polyparaphenylene.
  • One or more transparent resins selected from resins, polyarylene ether phosphine oxide resins, polyamide resins, polyimide resins, polyamideimide resins, polyolefin resins, cyclic olefin resins, polyurethane resins, polystyrene resins and the like are used.
  • glass or a crystalline material is preferable.
  • Glasses that can be used for the support include absorbent glass (near infrared absorber glass) containing copper ions in boiling phosphate glass, phosphate glass, etc., soda lime glass, borosilicate glass, non-alkali glass, etc. Examples include quartz glass.
  • absorbent glass is preferable depending on the purpose, and phosphate-based glass and boiling phosphate-based glass are preferable from the viewpoint of absorbing infrared light. When it is desired to take in a large amount of red light (600 to 700 nm), alkaline glass, non-alkali glass, and quartz glass are preferable.
  • the "phosphate-based glass” also includes silicate glass in which a part of the skeleton of the glass is composed of SiO 2 .
  • alkali metal ions for example, Li ion and Na ion
  • alkali ions having a small ion radius existing on the main surface of the glass plate are converted into alkali ions having a larger ion radius (for example) by ion exchange at a temperature below the glass transition point.
  • crystal material examples include birefringent crystals such as quartz, lithium niobate, and sapphire.
  • an inorganic material is preferable, and glass and sapphire are particularly preferable, from the viewpoint of shape stability related to long-term reliability such as spectral characteristics and mechanical characteristics, and handleability at the time of filter manufacturing.
  • the dye (A), the resin or the raw material component of the resin, and each component to be blended as necessary are dissolved or dispersed in a solvent to prepare a coating liquid, and the coating liquid is applied to the support. It can be formed by working, drying, and then curing if necessary.
  • the support may be a support included in the present filter, or may be a peelable support used only when forming a resin film.
  • the solvent may be a dispersion medium that can be stably dispersed or a solvent that can be dissolved.
  • the coating liquid may contain a surfactant for improving voids due to minute bubbles, dents due to adhesion of foreign substances, repelling in the drying process, and the like.
  • a dip coating method, a cast coating method, a spin coating method or the like can be used for the coating of the coating liquid.
  • a resin film is formed by applying the above coating liquid on the support and then drying it.
  • further curing treatment such as heat curing and photocuring is performed.
  • the resin film can also be manufactured in the form of a film by extrusion molding.
  • the base material has a single-layer structure (resin base material) made of a resin film containing the dye (A)
  • the resin film can be used as it is as the base material.
  • the base material has a multi-layer structure (composite base material) having a support and a resin film containing a dye (A) laminated on at least one main surface of the support, this film is laminated on the support.
  • a base material can be manufactured by integrating by thermocompression bonding or the like.
  • the resin film may have one layer or two or more layers in the optical filter. When having two or more layers, each layer may have the same configuration or may be different.
  • the thickness of the resin film is preferably 5 ⁇ m or less, more preferably 3 ⁇ m. It is as follows.
  • the thickness of the resin film is preferably 0.5 ⁇ m or more.
  • the total thickness of each layer is preferably 0.5 to 10 ⁇ m.
  • the base material has a single-layer structure (resin base material) made of a resin film containing the dye (A)
  • the thickness of the resin film is preferably 50 to 300 ⁇ m.
  • the optical filter of the present invention can efficiently block near-infrared light over a wide range even if the dye content is low. Therefore, the resin film containing the dye (A) can be thinned.
  • the shape of the base material is not particularly limited, and may be block-shaped, plate-shaped, or film-shaped.
  • the thickness of the base material is preferably 300 ⁇ m or less from the viewpoint of reducing warpage during film formation of the dielectric multilayer film and reducing the profile of the optical filter, and is preferably 50 when the base material is a resin base material made of a resin film. It is about 300 ⁇ m, and when the base material is a composite base material including a support and a resin film, it is preferably 100 to 300 ⁇ m.
  • the dielectric multilayer film is laminated as the outermost layer on at least one main surface side of the substrate.
  • At least one of the dielectric multilayer films is designed as a near-infrared reflective layer (hereinafter, also referred to as an NIR reflective layer).
  • the other side of the dielectric multilayer film is preferably designed as a NIR reflective layer, a reflective layer having a reflective region other than the near infrared region, or an antireflection layer.
  • the NIR reflective layer is a dielectric multilayer film designed to shield light in the near infrared region.
  • the NIR reflective layer has, for example, wavelength selectivity that transmits visible light and mainly reflects light in the near-infrared region other than the light-shielding region of the resin film.
  • the reflection region of the NIR reflection layer may include a light-shielding region in the near-infrared region of the resin film.
  • the NIR reflection layer is not limited to the NIR reflection characteristic, and may be appropriately designed to have specifications for further blocking light in a wavelength range other than the near-infrared region, for example, the near-ultraviolet region.
  • the NIR reflective layer is composed of, for example, a dielectric multilayer film in which a low refractive index dielectric film (low refractive index film) and a high refractive index dielectric film (high refractive index film) are alternately laminated.
  • the high refractive index film preferably has a refractive index of 1.6 or more, more preferably 2.2 to 2.5.
  • Examples of the material of the high refractive index film include Ta 2 O 5 , TIO 2 , and Nb 2 O 5 . Of these, TiO 2 is preferable from the viewpoints of film formation property, reproducibility in refractive index and the like, stability and the like.
  • the low refractive index film preferably has a refractive index of less than 1.6, more preferably 1.45 or more and less than 1.55.
  • the material of the low refractive index film include SiO 2 , SiO x N y and the like. SiO 2 is preferable from the viewpoint of reproducibility, stability, economy and the like in terms of film forming property.
  • the transmittance of the NIR reflective layer changes sharply in the boundary wavelength region between the transmissive region and the light-shielding region.
  • the total number of laminated dielectric multilayer films constituting the reflective layer is preferably 15 or more, more preferably 25 or more, and even more preferably 30 or more.
  • the total number of layers is preferably 100 layers or less, more preferably 75 layers or less, and even more preferably 60 layers or less.
  • the film thickness of the reflective layer is preferably 2 to 10 ⁇ m as a whole.
  • the NIR reflective layer can satisfy the requirements for miniaturization, and can suppress the dependence on the incident angle while maintaining high productivity.
  • a vacuum film forming process such as a CVD method, a sputtering method or a vacuum vapor deposition method
  • a wet film forming process such as a spray method or a dip method can be used.
  • one layer may give a predetermined spectral characteristic, or two layers may give a predetermined spectral characteristic.
  • each reflective layer may have the same configuration or a different configuration.
  • it is usually composed of a plurality of reflective layers having different reflection bands.
  • one is a near-infrared reflective layer that shields light in the short wavelength band of the near-infrared region, and the other is both the long-wavelength band and the near-ultraviolet region in the near-infrared region. It may be used as a near-infrared / near-ultraviolet reflective layer that shields the light of.
  • the antireflection layer examples include a dielectric multilayer film, an intermediate refractive index medium, and a moth-eye structure in which the refractive index gradually changes. Of these, a dielectric multilayer film is preferable from the viewpoint of optical efficiency and productivity.
  • the antireflection layer is obtained by alternately laminating dielectric films like the reflection layer.
  • the optical filter of the present invention has the above configuration and satisfies all of the following spectral characteristics (iii-1) to (iii-7).
  • (Iii-1) Average transmittance T440-490 (0deg) AVE in the spectral transmittance curve with a wavelength of 440 to 490 nm and an incident angle of 0 degrees is 85% or more (iii-2) with a wavelength of 440 to 490 nm and an incident angle of 30 degrees.
  • Average transmittance T 440-490 (30 deg) in the spectral transmittance curve AVE is 85% or more (iii-3)
  • AVE is 90% or more (iii-4) wavelength 500 to 570 nm, average transmittance T 500-570 ( 30 deg) in the spectral transmittance curve with an incident angle of 30 degrees 90% or more (iii-5) wavelength 700 to 850 nm, Maximum transmittance T 700-850 (0deg) MAX in the spectral transmittance curve with an incident angle of 0 degrees is 3% or less (iii-6) Wavelength 700 to 850 nm, maximum transmittance T 700 in a spectral transmittance curve with an incident angle of 30 degrees -850 (30 deg) MAX is 1% or less (iii-7) Maximum transmittance T 700-850 (60 deg) MAX in the spectral transmittance curve with a wavelength of 700 to 850 nm and an incident angle of 60 degrees is 1% or less.
  • the spectral characteristics (iii-1) to (iii-4) By satisfying the spectral characteristics (iii-1) to (iii-4), an optical filter having excellent transparency in the visible light region, particularly blue light, can be obtained even for light having a high incident angle.
  • the spectral characteristics (iii-1) and (iii-2) are preferably 86% or more.
  • the spectral characteristics (iii-3) and (iii-4) are preferably 92% or more.
  • the spectral characteristic (iii-5) is preferably 2% or less.
  • the spectral characteristic (iii-6) is preferably 0.7% or less.
  • the spectral characteristic (iii-7) is preferably 0.8% or less.
  • the filter may include, for example, a component (layer) that provides absorption by inorganic fine particles or the like that controls the transmission and absorption of light in a specific wavelength range.
  • the inorganic fine particles include ITO (Indium Tin Oxides), ATO (Antimony-topped Tin Oxides), cesium tungstate, and lanthanum boride.
  • the ITO fine particles and the cesium tungstate fine particles have high visible light transmittance and have light absorption over a wide range in the infrared wavelength region exceeding 1200 nm, and thus can be used when such infrared light shielding properties are required. ..
  • This filter can provide an image pickup device having excellent color reproducibility when used in an image pickup device such as a digital still camera, for example.
  • An image pickup device using this filter includes a solid-state image pickup element, an image pickup lens, and this filter.
  • This filter can be used, for example, by being arranged between an image pickup lens and a solid-state image pickup element, or by being directly attached to a solid-state image pickup element, an image pickup lens, or the like of an image pickup device via an adhesive layer.
  • An ultraviolet-visible spectrophotometer (UH-4150 type manufactured by Hitachi High-Technologies Corporation) was used for the measurement of each spectral characteristic.
  • the spectral characteristics when the incident angle is not particularly specified are values measured at an incident angle of 0 degrees (perpendicular to the optical filter).
  • the dyes used in each example are as follows.
  • Compounds 1-9 (cyanine compounds): Dyes and pigments73 (2007) p. It was synthesized with reference to the synthesis method described in 344-352.
  • Compound 10 (Squarylium compound): Synthesized with reference to International Publication No. 2014/088063.
  • Compound 11 (Squarylium compound): Synthesized with reference to Japanese Patent Application Laid-Open No. 2017-110209.
  • Example 1-1 Spectral characteristics of NIR dye in resin> NIR dye compound 1 (7.5% by mass) and a polyimide resin (C-3G30G manufactured by Mitsubishi Gas Chemical Company, Inc.) diluted with an organic solvent (cyclohexanone) were mixed, and the polyimide solution and the dye were sufficiently dissolved.
  • the obtained dye solution is applied to a glass substrate (alkaline glass, D263 manufactured by Shotto) using a spin coat, and sufficiently heated to remove the organic solvent to remove a dye-containing resin thin film (coating film) having a thickness of 1 ⁇ m. )created.
  • Examples 1-2 to 1-18> Except for the fact that the NIR dye shown in the table below was used in place of the NIR dye compound 1 at the content shown in the table below, and one of the following resins was used in place of the polyimide resin, and the thickness of the thin film was set to the value shown in the table below.
  • a dye-containing resin thin film was prepared in the same manner as in Example 1-1, and transmission spectroscopy was measured.
  • Polyester resin Cycloolefin resin manufactured by Osaka Gas Chemical Co., Ltd .: ARTON F4520 manufactured by JSR Corporation The results are shown in the table below.
  • Examples 1-10 to 1-14 are examples, and examples 1-1 to 1-9 and 1-15 to 1-18 are comparative examples.
  • the external salt-type cyanine dye exhibited a wide range of absorption characteristics of near-infrared light while maintaining high transmittance of blue light in the alicyclic compound polymer. ..
  • IR50 width and IR30 width were compared for solution spectroscopy and resin spectroscopy with the same NIR dye. Further, in FIG. 5, for compound 6, the solution spectroscopy of Example 2-4 and the resin spectroscopy of Example 2-11 are shown. The solid line is resin spectroscopy and the broken line is solution spectroscopy.
  • IR50 width (PO) (nm) Absolute value of the difference between IR50a (PO) and IR50b (PO)
  • Examples 2-1 to 2-7 are reference examples, Examples 2-8 to 2-12 are examples, and Examples 2-13 to 2-14 are comparative examples.
  • Example 3-1 Spectral characteristics of optical filter>
  • the NIR dye of Compound 11 was added to a polyimide resin (C-3G30G manufactured by Mitsubishi Gas Chemical Company) in an amount of 5.25% by mass based on the resin, and cyclohexanone was further added as a solvent to sufficiently dissolve the compound 11 (dye solution 1).
  • 2% by mass of the NIR dye of Compound 6 was added to the cycloolefin resin (ARTON resin F4520 manufactured by JSR) with respect to the resin, and cyclohexanone was further added as a solvent to sufficiently dissolve the compound 6 (dye solution 2).
  • An ultraviolet / infrared cut multilayer film having a transmission band of 400 nm to 700 nm was deposited on a glass substrate (alkaline glass, D263 manufactured by shotto).
  • the dye solution 1 was spin-coated on the surface opposite to the ultraviolet / infrared cut multilayer film, and the resin film 1 having a thickness of 1 ⁇ m was applied.
  • the dye solution 2 was spin-coated on the resin film 1 and the resin film 2 having a thickness of 1.6 ⁇ m was applied.
  • a dielectric multilayer film (antireflection film) composed of SiO 2 and TiO 2 was formed by thin film deposition on a resin film composed of two layers to prepare an optical filter 3-1.
  • Example 3-2 The optical filter 3-2 was produced in the same manner as in Example 3-1 except that the content of the compound 11 at the time of producing the resin film 1 was 5.5% by mass and the resin film 2 was not applied.
  • Example 3-1 is an example, and Example 3-2 is a comparative example.
  • the optical filter of Example 3-1 has high transmittance in the visible light region of 440 to 490 nm and 500 to 570 nm at both incident angles of 0 degrees and 30 degrees, and has a light-shielding property in the infrared light region after 700 nm.
  • light leakage was reduced because the maximum transmittance was low even at oblique incident angles of 30 degrees and 60 degrees in the wavelength region of 700 to 850 nm.
  • the optical filter of the present invention maintains good near-infrared light shielding and visible light transmission, particularly blue light transmission, while near-infrared light shielding, especially near high incident angles. It has good near-infrared light shielding characteristics in which deterioration of infrared light shielding is suppressed. In recent years, the performance has been improved, and it is useful for applications of information acquisition devices such as cameras and sensors for transport aircraft.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Filters (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明は、基材と、前記基材の少なくとも一方の主面側に最外層として積層された誘電体多層膜とを備える光学フィルタであって、前記基材は、近赤外線吸収色素である色素(A)と樹脂とを含む樹脂膜を含み、前記色素(A)は、前記色素(A)を前記樹脂に溶解してアルカリガラス板上に塗工した塗工膜の分光透過率曲線において、特定の分光特性を満たす光学フィルタに関する。

Description

光学フィルタ
 本発明は、可視波長領域の光を透過し、近赤外波長領域の光を遮断する光学フィルタに関する。
 固体撮像素子を用いた撮像装置には、色調を良好に再現し鮮明な画像を得るため、可視域の光(以下「可視光」ともいう)を透過し、近赤外波長領域の光(以下「近赤外光」ともいう)を遮断する光学フィルタが用いられる。
 このような光学フィルタは、例えば、透明基板の片面または両面に、屈折率が異なる誘電体薄膜を交互に積層(誘電体多層膜)し、光の干渉を利用して遮蔽したい光を反射する反射型のフィルタ等、様々な方式が挙げられる。誘電体多層膜を有する光学フィルタは、光の入射角により誘電体多層膜の光学膜厚が変化するために、入射角による分光透過率曲線の変化や、高入射角において高反射率を得るべき近赤外光が高透過率化する光抜け、誘電体多層膜が反射した近赤外光によるノイズが発生することが問題である。このようなフィルタを使用すると、固体撮像素子の分光感度が入射角の影響を受けるおそれがある。したがって、可視光の透過率に略影響を及ぼすことなく、入射角依存性なく近赤外光を遮断する光学フィルタが求められていた。
 ここで、特許文献1には入射角依存性を低減するために近赤外線吸収色素を含む層を備えた光学フィルタが記載されている。
国際公開第2019/168090号
 しかしながら特許文献1に記載の光学フィルタでは、可視光領域の透過性の点で改善の余地があった。
 よって本発明は、可視光の高い透過性、特に、青色光の透過性を良好に維持しながら、近赤外光の遮蔽性において、光抜け等の高入射角における近赤外光の遮蔽性の低下が抑制された光学フィルタの提供を目的とする。 
 本発明は、以下の構成を有する光学フィルタを提供する。
[1] 基材と、前記基材の少なくとも一方の主面側に最外層として積層された誘電体多層膜とを備える光学フィルタであって、
 前記基材は、近赤外線吸収色素である色素(A)と樹脂とを含む樹脂膜を含み、
 前記色素(A)は、前記色素(A)を前記樹脂に溶解してアルカリガラス板上に塗工した塗工膜の分光透過率曲線において、下記分光特性(i-1)~(i-4)を全て満たす光学フィルタ。
(i-1)波長600~800nmにおいて透過率が30%となる最も短い波長をIR30aとし、波長700~1200nmにおいて透過率が30%となる最も長い波長をIR30bとしたとき、
 IR30aとIR30bとの差の絶対値が170nm以上
(i-2)波長600~800nmにおいて透過率が50%となる最も短い波長をIR50aとし、波長700~1200nmにおいて透過率が50%となる最も長い波長をIR50bとしたとき、
 IR50aとIR50bとの差の絶対値が200nm以上
(i-3)波長440nmにおける吸光度A440と波長700nmにおける吸光度A700との関係がA440/A700≦0.14
(i-4)波長490nmにおける吸光度A490と波長700nmにおける吸光度A700との関係がA490/A700≦0.10
 本発明によれば、可視光の高い透過性、近赤外光の高い遮蔽性を有し、特に、青色光の透過性が高く、かつ高入射角における近赤外光の遮蔽性の低下が抑制された光学フィルタが提供できる。
図1は一実施形態の光学フィルタの一例を概略的に示す断面図である。 図2は一実施形態の光学フィルタの別の一例を概略的に示す断面図である。 図3は一実施形態の光学フィルタの別の一例を概略的に示す断面図である。 図4は一実施形態の光学フィルタの別の一例を概略的に示す断面図である。 図5は、化合物6のジクロロメタン中の分光透過率曲線およびシクロオレフィン樹脂中の分光透過率曲線を示す図である。 図6は例3-1の光学フィルタの分光透過率曲線を示す図である。
 以下、本発明の実施の形態について説明する。
 本明細書において、近赤外線吸収色素を「NIR色素」、紫外線吸収色素を「UV色素」と略記することもある。
 本明細書において、式(I)で示される化合物を化合物(I)という。他の式で表される化合物も同様である。化合物(I)からなる色素を色素(I)ともいい、他の色素についても同様である。また、式(I)で表される基を基(I)とも記し、他の式で表される基も同様である。
 本明細書において、内部透過率とは、{実測透過率/(100-反射率)}×100の式で示される、実測透過率から界面反射の影響を引いて得られる透過率である。
 本明細書において、基材の透過率、色素が樹脂に含有される場合を含む樹脂膜の透過率の分光は、「透過率」と記載されている場合も全て「内部透過率」である。一方、色素をジクロロメタン等の溶媒に溶解して測定される透過率、誘電体多層膜を有する光学フィルタの透過率は、実測透過率である。
 本明細書において、吸光度は-log10((内部)透過率/100)の式より、(内部)透過率から換算される。
 本明細書において、特定の波長域について、透過率が例えば90%以上とは、その全波長領域において透過率が90%を下回らない、すなわちその波長領域において最小透過率が90%以上であることをいう。同様に、特定の波長域について、透過率が例えば1%以下とは、その全波長領域において透過率が1%を超えない、すなわちその波長領域において最大透過率が1%以下であることをいう。内部透過率においても同様である。特定の波長域における平均透過率および平均内部透過率は、該波長域の1nm毎の透過率および内部透過率の相加平均である。
 本明細書において、数値範囲を表す「~」では、上下限を含む。
<光学フィルタ>
 本発明の一実施形態の光学フィルタ(以下、「本フィルタ」ともいう)は、基材と、基材の少なくとも一方の主面側に最外層として積層された誘電体多層膜とを備える。
 図面を用いて本フィルタの構成例について説明する。図1~4は、一実施形態の光学フィルタの一例を概略的に示す断面図である。
 図1に示す光学フィルタ1Aは、基材10の一方の主面側に誘電体多層膜30を有する例である。なお、「基材の主面側に特定の層を有する」とは、基材の主面に接触して該層が備わる場合に限らず、基材と該層との間に、別の機能層が備わる場合も含む。
 図2に示す光学フィルタ1Bは、基材10の両方の主面側に誘電体多層膜30を有する例である。
 図3に示す光学フィルタ1Cは、基材10が、支持体11と、支持体11の一方の主面側に積層された樹脂膜12とを有する例である。光学フィルタ1Cはさらに、樹脂膜12の上と、支持体11の樹脂膜12が積層されていない主面側に、誘電体多層膜30をそれぞれ有する。
 図4に示す光学フィルタ1Dは、基材10が、支持体11と、支持体11の両方の主面側に積層された樹脂膜12とを有する例である。光学フィルタ1Dはさらに、それぞれの樹脂膜12の上に、誘電体多層膜30を有する。
<基材>
 本発明の光学フィルタにおいて、基材は色素(A)および樹脂を含む。好ましくは、基材は、色素(A)および樹脂を含む樹脂膜を含む。
<NIR色素(A)>
 色素(A)は近赤外線吸収(NIR)色素である。基材が近赤外線を吸収する色素を含有することで、誘電体多層膜の高入射角における分光特性の低下、例えば、近赤外域における光抜けやノイズ等の発生を、基材の吸収特性により抑制できる。
 色素(A)はジクロロメタン中で600~900nmに最大吸収波長を有することが好ましい。
 色素(A)は、基材に用いられる樹脂中で特定の分光特性を示す。具体的には、色素(A)を樹脂に溶解してアルカリガラス板上に塗工した塗工膜が下記分光特性(i-1)~(i-4)を全て満たす。
(i-1)波長600~800nmにおいて透過率が30%となる最も短い波長をIR30aとし、波長700~1200nmにおいて透過率が30%となる最も長い波長をIR30bとしたとき、
 IR30aとIR30bとの差の絶対値が170nm以上
(i-2)波長600~800nmにおいて透過率が50%となる最も短い波長をIR50aとし、波長700~1200nmにおいて透過率が50%となる最も長い波長をIR50bとしたとき、
 IR50aとIR50bとの差の絶対値が200nm以上
(i-3)波長440nmにおける吸光度A440と波長700nmにおける吸光度A700との関係がA440/A700≦0.14
(i-4)波長490nmにおける吸光度A490と波長700nmにおける吸光度A700との関係がA490/A700≦0.10
 樹脂中で上記分光特性(i-1)~(i-4)を示す色素(A)を含む本フィルタは、可視光の透過性、特に、青色光の透過性を良好に維持しながら、高入射角における近赤外光の遮蔽性の低下が抑制された光学フィルタである。
 分光特性(i-1)および分光特性(i-2)を満たすことで、近赤外光を幅広い波長範囲でブロードに吸収できることを意味する。これにより、誘電体多層膜では高入射角の光を遮光しきれず光抜けが生じやすい波長750~900nmの帯域において、光抜けを効率的に防ぐことができる。さらに色素(A)自体が樹脂中でブロードな吸収特性を有することで、複数種類のNIR色素を組み合わせずとも、可視光領域の透過率を良好に維持しつつ、色素(A)のみで効率的に近赤外領域を遮光できる。複数種のNIR色素を組み合わせると、近赤外領域を幅広く遮光できるが、可視光領域の透過率も同時に低下する傾向にあるが、本発明では色素(A)を用いることでこれを回避できる。
 分光特性(i-1)における絶対値は、好ましくは190nm以上、より好ましくは210nm以上、特に好ましくは230nm以上である。また、吸収幅が広いほど好ましいため上限は制限されないが、通常270nm以下である。
 分光特性(i-2)における絶対値は、好ましくは210nm以上、より好ましくは230nm以上である。また、吸収幅が広いほど好ましいため上限は制限されないが、通常270nm以下である。
 分光特性(i-3)および分光特性(i-4)を満たすことで、青色光の透過性に優れることを意味する。
 分光特性(i-3)は好ましくはA440/A700≦0.11であり、より好ましくはA440/A700≦0.10である。
 分光特性(i-4)は好ましくはA490/A700≦0.08であり、より好ましくはA490/A700≦0.07である。
 色素(A)は、樹脂中で下記分光特性(i-5)をさらに示すことが好ましい。すなわち、色素(A)と樹脂を含む上記塗工膜において下記分光特性(i-5)を満たすことが好ましい。
(i-5)前記塗工膜における前記色素(A)の含有量と前記塗工膜の厚さの積が20(質量%・μm)以下
 分光特性(i-5)を満たすことで、NIR色素(A)の含有量が少なくとも幅広い波長範囲で近赤外光を吸収できる。分光特性(i-5)は、好ましくは15(質量%・μm)以下、より好ましくは12(質量%・μm)以下であり、また好ましくは1(質量%・μm)以上である。
 色素(A)は、樹脂中で下記分光特性(i-6)をさらに示すことが好ましい。すなわち、色素(A)と樹脂を含む上記塗工膜において下記分光特性(i-6)を満たすことが好ましい。
(i-6)波長570nmにおけるA570と波長700nmにおける吸光度A700との関係がA570/A700≦0.10
 分光特性(i-6)を満たすことで、緑色光の透過性に優れることを意味する。分光特性(i-6)は好ましくはA570/A700≦0.05であり、より好ましくはA570/A700≦0.03である。
 色素(A)は、樹脂中で下記分光特性(i-7)をさらに示すことが好ましい。すなわち、色素(A)と樹脂を含む上記塗工膜において下記分光特性(i-7)を満たすことが好ましい。
(i-7)波長630nmにおける吸光度A630と波長700nmにおける吸光度A700との関係がA630/A700≦0.12
 分光特性(i-7)を満たすことで、赤色光の透過性に優れることを意味する。分光特性(i-7)は好ましくはA630/A700≦0.11であり、より好ましくはA630/A700≦0.08である。
 色素(A)は、樹脂中で下記分光特性(i-8)をさらに示すことが好ましい。すなわち、色素(A)と樹脂を含む上記塗工膜において下記分光特性(i-8)を満たすことが好ましい。
(i-8)波長700~800nmの分光透過率曲線における平均内部透過率T700-800が2~25%
 分光特性(i-8)を満たすことで、高入射の光抜けを抑制できることを意味する。分光特性(i-8)は好ましくは2~20%であり、より好ましくは2~18%である。
 色素(A)は下記特性(ii-1)および(ii-2)をさらに満たすことが好ましい。
 最大吸収波長における透過率が10%となるように前記色素(A)をジクロロメタンに溶解して測定される分光透過率曲線において、波長600~900nmにおいて透過率が30%となる最も短い波長をIR30a(DIC)とし、透過率が30%となる最も長い波長をIR30b(DIC)とし、透過率が50%となる最も短い波長をIR50a(DIC)とし、透過率が50%となる最も長い波長をIR50b(DIC)とし、
 最大吸収波長における透過率が10%となるように前記色素(A)を前記樹脂に溶解してアルカリガラス板上に塗工した塗工膜の分光透過率曲線において、波長600~900nmにおいて透過率が30%となる最も短い波長をIR30a(PO)とし、透過率が30%となる最も長い波長をIR30b(PO)とし、透過率が50%となる最も短い波長をIR50a(PO)とし、透過率が50%となる最も長い波長をIR50b(PO)としたとき、
(ii-1)IR30a(PO)とIR30b(PO)との差の絶対値が、IR30a(DIC)とIR30b(DIC)との差の絶対値の2.8倍以上
(ii-2)IR50a(PO)とIR50b(PO)との差の絶対値が、IR50a(DIC)とIR50b(DIC)との差の絶対値の3倍以上
 分光特性(ii-1)および(ii-2)を満たすことで、色素(A)は、波長600~900nmの近赤外光吸収帯域において、ジクロロメタン中の吸収幅よりも樹脂中での吸収幅が著しく広いことを意味する。ここで、樹脂とは基材に含まれる樹脂と同一である。
 分光特性(ii-1)における絶対値としてはより好ましくは3倍以上、特に好ましくは4倍以上である。
 分光特性(ii-2)における絶対値としてはより好ましくは3.2倍以上、特に好ましくは4倍以上である。
 色素(A)としてはシアニン色素が好ましく、アニオン基を分子外に有する外部塩型のシアニン色素がより好ましい。外部塩型のシアニン色素は樹脂中で会合状態を形成し近赤外光吸収帯がブロード化しやすいため、上記分光特性(i-1)~(i-8)、(ii-1)および(ii-2)を満たしやすい。
 シアニン色素としては具体的には下記式(A1)に示す化合物または下記式(A2)に示す化合物が好ましい。
Figure JPOXMLDOC01-appb-C000002
 ただし、式(A1)および(A2)中の記号は以下のとおりである。
 R101~R109およびR121~R131は、それぞれ独立に水素原子、ハロゲン原子、置換基を有してもよい炭素数1~15のアルキル基もしくはアルコキシ基、または、炭素数5~20のアリール基を示す。R110114およびR132136は、それぞれ独立に水素原子、ハロゲン原子、または、炭素数1~15のアルキル基もしくはアルコキシ基を示す。
 Xは一価のアニオンを示す。
 n1およびn2はそれぞれ独立に0または1である。-(CHn1-を含む炭素環、および、-(CHn2-を含む炭素環に結合する水素原子はハロゲン原子、置換基を有してもよい炭素数1~15のアルキル基または炭素数5~20のアリール基で置換されていてもよい。
 式(A1)、式(A2)において、R102~R105、R108、R109、R122~R127、R130およびR131はそれぞれ独立に水素原子、炭素数1~15のアルキル基もしくはアルコキシ基、または炭素数5~20のアリール基が好ましく、高い可視光透過率が得られる観点から水素原子がより好ましい。
 式(A1)、式(A2)において、R110~R114およびR132~R136はそれぞれ独立に水素原子、または炭素数1~15のアルキル基が好ましく、高い可視光透過率が得られる観点から水素原子がより好ましい。
 R106、R107、R128およびR129は、それぞれ独立に水素原子、炭素数1~15のアルキル基、または炭素数5~20のアリール基(鎖状、環状、分岐状のアルキル基を含んでもよい)が好ましく、水素原子、または炭素数1~15のアルキル基がより好ましい。また、R106とR107、R128とR129は、同じ基が好ましい。
 R101およびR121は、炭素数1~15のアルキル基、または炭素数5~20のアリール基が好ましく、透明樹脂中で溶液中と同様に高い可視光透過率を維持する観点から分岐を有する炭素数1~15のアルキル基がより好ましい。
 Xとしては、I、BF 、PF 、ClO 、または式(X1)もしくは(X2)で示されるアニオン等が挙げられ、好ましくは、BF 、またはPF である。
Figure JPOXMLDOC01-appb-C000003
 以下の説明において、色素(A1)における、R101~R114を除く部分を骨格(A1)ともいう。他の色素においても同様である。
 式(A1)において、n1が1の化合物を下式(A11)に、n1が0の化合物を下式(A12)に示す。
Figure JPOXMLDOC01-appb-C000004
 式(A11)および式(A12)において、R101~R114およびXは、式(A1)の場合と同様である。R115~R120は、それぞれ独立に水素原子、ハロゲン原子、置換基を有してもよい炭素数1~15のアルキル基もしくはアルコキシ基、または、炭素数5~20のアリール基を示す。R115~R120はそれぞれ独立に、水素原子、炭素数1~15のアルキル基、または炭素数5~20のアリール基(鎖状、環状、分岐状のアルキル基を含んでもよい)が好ましく、水素原子、または炭素数1~15のアルキル基がより好ましい。また、R115~R120は、同じ基であることが好ましい。
 式(A2)において、n2が1の化合物を下式(A21)に、n2が0の化合物を下式(A22)に示す。
Figure JPOXMLDOC01-appb-C000005
 式(A21)および式(A22)において、R121~R136およびXは、式(A2)の場合と同様である。R137~R142は、それぞれ独立に水素原子、ハロゲン原子、置換基を有してもよい炭素数1~15のアルキル基もしくはアルコキシ基、または、炭素数5~20のアリール基を示す。R137~R142はそれぞれ独立に水素原子、炭素数1~15のアルキル基、または炭素数5~20のアリール基(鎖状、環状、分岐状のアルキル基を含んでもよい)が好ましく、水素原子、または炭素数1~15のアルキル基がより好ましい。また、R137~R142は、同じ基であることが好ましい。
 式(A11)、式(A12)、式(A21)、式(A22)でそれぞれ示される化合物としては、より具体的には、それぞれ、各骨格に結合する原子または基が、以下の表1~4に示される原子または基である化合物が挙げられる。表1、表2に示す全ての化合物において、R101~R109は式の左右で全て同一である。表3、表4に示す全ての化合物において、R121~R131は式の左右で同一である。
 表1におけるR102-R105、R110-R114、R115-R120、表2におけるR102-R105、R110-R114、R115-R118、表3におけるR122-R127、R132-R136、R137-R143、表4におけるR122-R127、R132-R136、R137-R140は、全てが水素原子の場合「H」と記載した。
Figure JPOXMLDOC01-appb-T000006
 色素(A11)としては、合成上の観点、樹脂への溶解性の観点、耐熱、耐光性の観点から(A11-1)~(A11-4)、(A11-9)~(A11-12)、(A11-17)~(A11-20)が好ましい。
Figure JPOXMLDOC01-appb-T000007
 色素(A12)としては、合成上の観点、樹脂への溶解性の観点、耐熱、耐光性の観点から(A12-1)~(A12-4)、(A12-9)~(A12-12)、(A12-17)~(A12-20)が好ましい。
Figure JPOXMLDOC01-appb-T000008
 色素(A21)としては、合成上の観点、樹脂への溶解性の観点、耐熱、耐光性の観点から(A21-1)~(A21-4)、(A21-9)~(A21-12)、(A21-17)~(A21-20)が好ましい。
Figure JPOXMLDOC01-appb-T000009
 色素(A22)としては、合成上の観点、樹脂への溶解性の観点、耐熱、耐光性の観点から(A22-1)~(A22-4)、(A22-9)~(A22-12)、(A22-17)~(A22-20)が好ましい。特に(A22-17)~(A22-20)がブロード性、最大吸収波長の点から700~850nmを広帯域に遮光でき、かつ、可視透過率を高く維持できる観点から好ましい。
 なお、色素(A1)、色素(A2)は、例えば、Dyes and pigments 73(2007) 344-352やJ.Heterocyclic chem,42,959(2005)に記載された方法で製造可能である。
 樹脂膜は、色素(A1)及び色素(A2)の1種を単独で含有してもよく、2種以上を組み合せて含有してもよい。
 樹脂膜における色素(A)の含有量は、樹脂特性を低下させずに所望の分光特性を満たす観点から、樹脂100質量部に対して好ましくは2~25質量部、より好ましくは2~20質量部である。
<NIR色素(B)>
 本発明の光学フィルムにおける基材は、NIR色素として、色素(A)の他にジクロロメタン中で600~900nmに最大吸収波長を有する色素(B)をさらに含有してもよい。これにより近赤外光をより効率的に遮断できる。
 色素(B)としては、スクアリリウム色素、フタロシアニン色素、ナフタロシアニン色素、ジチオール金属錯体色素、アゾ色素、ポリメチン色素、フタリド色素、ナフトキノン色素、アン卜ラキノン色素、インドフェノール色素、ピリリウム色素、チオピリリウム色素、ク口コニウム色素、テ卜ラデヒドオコリン色素、卜リフェニルメタン色素、アミニウム色素およびジインモニウム色素からなる群から選ばれる少なくとも1種が好ましい。
 色素(B)としては、スクアリリウム色素、フタロシアニン色素、およびジインモニウム色素から選ばれる少なくとも1つの色素を含むことが好ましい。
 スクアリリウム色素としては、下記式(I)に示す化合物が好ましい。
Figure JPOXMLDOC01-appb-C000010
 ただし、式(I)中の記号は以下のとおりである。
 R24およびR26は、それぞれ独立して、水素原子、ハロゲン原子、水酸基、炭素数1~6のアルキル基もしくはアルコキシ基、炭素数1~10のアシルオキシ基、-NR2728(R27およびR28は、それぞれ独立して、水素原子、炭素数1~20のアルキル基、-C(=O)-R29(R29は、水素原子、置換基を有してもよい炭素数1~20のアルキル基もしくは炭素数6~11のアリール基または、置換基を有していてもよく、炭素原子間に酸素原子を有してもよい炭素数7~18のアルアリール基)、-NHR30、または、-SO-R30(R30は、それぞれ1つ以上の水素原子がハロゲン原子、水酸基、カルボキシ基、スルホ基、またはシアノ基で置換されていてもよく、炭素原子間に不飽和結合、酸素原子、飽和もしくは不飽和の環構造を含んでよい炭素数1~25の炭化水素基)を示す。)、または、下記式(S)で示される基(R41、R42は、独立して、水素原子、ハロゲン原子、または炭素数1~10のアルキル基もしくはアルコキシ基を示す。kは2または3である。)を示す。
Figure JPOXMLDOC01-appb-C000011
 R21とR22、R22とR25、およびR21とR23は、互いに連結して窒素原子と共に員数が5または6のそれぞれ複素環A、複素環B、および複素環Cを形成してもよい。
 複素環Aが形成される場合のR21とR22は、これらが結合した2価の基-Q-として、水素原子が炭素数1~6のアルキル基、炭素数6~10のアリール基または置換基を有していてもよい炭素数1~10のアシルオキシ基で置換されてもよいアルキレン基、またはアルキレンオキシ基を示す。
 複素環Bが形成される場合のR22とR25、および複素環Cが形成される場合のR21とR23は、これらが結合したそれぞれ2価の基-X-Y-および-X-Y-(窒素に結合する側がXおよびX)として、XおよびXがそれぞれ下記式(1x)または(2x)で示される基であり、YおよびYがそれぞれ下記式(1y)~(5y)から選ばれるいずれかで示される基である。XおよびXが、それぞれ下記式(2x)で示される基の場合、YおよびYはそれぞれ単結合であってもよく、その場合、炭素原子間に酸素原子を有してもよい。
Figure JPOXMLDOC01-appb-C000012
 式(1x)中、4個のZは、それぞれ独立して水素原子、水酸基、炭素数1~6のアルキル基もしくはアルコキシ基、または-NR3839(R38およびR39は、それぞれ独立して、水素原子または炭素数1~20のアルキル基を示す)を示す。R31~R36はそれぞれ独立して水素原子、炭素数1~6のアルキル基または炭素数6~10のアリール基を、R37は炭素数1~6のアルキル基または炭素数6~10のアリール基を示す。
 R27、R28、R29、R31~R37、複素環を形成していない場合のR21~R23、およびR25は、これらのうちの他のいずれかと互いに結合して5員環または6員環を形成してもよい。R31とR36、R31とR37は直接結合してもよい。
 複素環を形成していない場合の、R21およびR22は、それぞれ独立して、水素原子、置換基を有していてもよい炭素数1~6のアルキル基もしくはアリル基、または置換基を有していてもよい炭素数6~11のアリール基もしくはアルアリール基を示す。複素環を形成していない場合の、R23およびR25は、それぞれ独立して、水素原子、ハロゲン原子、または、炭素数1~6のアルキル基もしくはアルコキシ基を示す。
 化合物(I)としては、例えば、可視光透過率を高くできる観点から式(I-1)で示される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000013
 式(I-1)中の記号は、式(I)における同記号の各規定と同じであり、好ましい態様も同様である。
 化合物(I-1)において、Xとしては、基(2x)が好ましく、Yとしては、単結合または基(1y)が好ましい。この場合、R31~R36としては、水素原子または炭素数1~3のアルキル基が好ましく、水素原子またはメチル基がより好ましい。なお、-Y-X-として、具体的には、式(11-1)~(12-3)で示される2価の有機基が挙げられる。
 -C(CH-CH(CH)-      …(11-1)
 -C(CH-CH-          …(11-2)
 -C(CH-CH(C)-      …(11-3)
 -C(CH-C(CH)(nC)- …(11-4)
 -C(CH-CH-CH-       …(12-1)
 -C(CH-CH-CH(CH)-   …(12-2)
 -C(CH-CH(CH)-CH-   …(12-3)
 また、化合物(I-1)において、R21は、溶解性、耐熱性、さらに分光透過率曲線における可視域と近赤外域の境界付近の変化の急峻性の観点から、独立して、式(4-1)または式(4-2)で示される基がより好ましい。
Figure JPOXMLDOC01-appb-C000014
 式(4-1)および式(4-2)中、R71~R75は、独立して、水素原子、ハロゲン原子、または炭素数1~4のアルキル基を示す。
 化合物(I)は、例えば米国特許第5,543,086号明細書、米国特許出願公開第2014/0061505号明細書、国際公開第2014/088063号に記載された公知の方法で製造できる。
 フタロシアニン色素としては、例えば、日本国特許第5884953号公報、国際公開第2019/168090号に記載されるフタロシアニン色素が挙げられる。
 ジインモニウム色素としては、例えば、国際公開第2014/168189号に記載されるジインモニウム色素が挙げられる。
 樹脂膜は、色素(B)の1種を単独で含有してもよく、2種以上を組み合せて含有してもよい。
 樹脂膜における色素(B)の含有量は、樹脂100質量部に対して好ましくは2~25質量部、より好ましくは2~20質量部である。
<その他の色素>
 基材は、NIR色素以外に、他の色素、例えばUV色素を含有してもよい。
 UV色素は、具体例に、オキサゾール系、メロシアニン系、シアニン系、ナフタルイミド系、オキサジアゾール系、オキサジン系、オキサゾリジン系、ナフタル酸系、スチリル系、アントラセン系、環状カルボニル系、トリアゾール系等の色素が挙げられる。また、UV色素は、1種を単独で用いてもよく、2種以上を併用してもよい。
<基材構成>
 本フィルタにおける基材は、単層構造であっても、複層構造であってもよい。また基材の材質としては400~700nmの可視光を透過する透明性材料であれば有機材料でも無機材料でもよく、特に制限されない。
 基材が単層構造の場合、樹脂とNIR色素(A)を含む樹脂膜からなる樹脂基材が好ましい。
 基材が複層構造の場合、支持体の少なくとも一方の主面にNIR色素(A)を含有する樹脂膜を積層した複合基材が好ましい。このとき支持体は透明樹脂または透明性無機材料からなることが好ましい。
 樹脂層における樹脂は、透明樹脂が好ましい。透明樹脂としては、NIR色素(A)が会合状態を形成し近赤外光吸収帯がブロード化しやすい観点から、脂環式化合物から構成されるポリマーが好ましい。かかるポリマーとしては、環状アルカン樹脂、環状オレフィン樹脂が挙げられ、これらの樹脂は1種を単独で使用してもよく、2種以上を混合して使用してもよい。
 基材がNIR色素(B)や他の色素を含む場合、これらの色素はNIR色素(A)を含有する樹脂膜に含まれてもよく、また、別の樹脂膜に含まれてもよい。別の樹脂膜を積層する場合、透明樹脂としてはポリエステル樹脂、アクリル樹脂、エポキシ樹脂、エン・チオール樹脂、ポリカーボネート樹脂、ポリエーテル樹脂、ポリアリレート樹脂、ポリサルホン樹脂、ポリエーテルサルホン樹脂、ポリパラフェニレン樹脂、ポリアリーレンエーテルフォスフィンオキシド樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリオレフィン樹脂、環状オレフィン樹脂、ポリウレタン樹脂、およびポリスチレン樹脂等から選ばれる1種以上の透明樹脂が用いられる。
 透明性無機材料としては、ガラスや結晶材料が好ましい。
 支持体に使用できるガラスとしては、沸リン酸塩系ガラスやリン酸塩系ガラス等に銅イオンを含む吸収型のガラス(近赤外線吸収ガラス)、ソーダライムガラス、ホウケイ酸ガラス、無アルカリガラス、石英ガラス等が挙げられる。ガラスとしては、目的に応じて吸収ガラスが好ましく、赤外光を吸収する観点ではリン酸塩系ガラス、沸リン酸塩系ガラスが好ましい。赤色光(600~700nm)を多く取り込みたい際は、アルカリガラス、無アルカリガラス、石英ガラスが好ましい。なお、「リン酸塩系ガラス」は、ガラスの骨格の一部がSiOで構成されるケイリン酸塩ガラスも含む。
 ガラスとしては、ガラス転移点以下の温度で、イオン交換により、ガラス板主面に存在するイオン半径が小さいアルカリ金属イオン(例えば、Liイオン、Naイオン)を、イオン半径のより大きいアルカリイオン(例えば、Liイオンに対してはNaイオンまたはKイオンであり、Naイオンに対してはKイオンである。)に交換して得られる化学強化ガラスを使用してもよい。
 支持体に使用できる結晶材料としては、水晶、ニオブ酸リチウム、サファイア等の複屈折性結晶が挙げられる。
 支持体としては、分光特性、機械特性等の長期にわたる信頼性に係る形状安定性の観点、フィルタ製造時のハンドリング性等から、無機材料が好ましく、特にガラス、サファイアが好ましい。
 樹脂膜は、色素(A)と、樹脂または樹脂の原料成分と、必要に応じて配合される各成分とを、溶媒に溶解または分散させて塗工液を調製し、これを支持体に塗工し乾燥させ、さらに必要に応じて硬化させて形成できる。上記支持体は、本フィルタに含まれる支持体でもよいし、樹脂膜を形成する際にのみ使用する剥離性の支持体でもよい。また、溶媒は、安定に分散できる分散媒または溶解できる溶媒であればよい。
 また、塗工液は、微小な泡によるボイド、異物等の付着による凹み、乾燥工程でのはじき等の改善のため界面活性剤を含んでもよい。さらに、塗工液の塗工には、例えば、浸漬コーティング法、キャストコーティング法、またはスピンコート法等を使用できる。上記塗工液を支持体上に塗工後、乾燥させることにより樹脂膜が形成される。また、塗工液が透明樹脂の原料成分を含有する場合、さらに熱硬化、光硬化等の硬化処理を行う。
 また、樹脂膜は、押出成形によりフィルム状に製造可能でもある。基材が、色素(A)を含む樹脂膜からなる単層構造(樹脂基材)である場合、樹脂膜をそのまま基材として用いることができる。基材が、支持体と、支持体の少なくとも一方の主面に積層した色素(A)を含む樹脂膜とを有する複層構造(複合基材)である場合、このフィルムを支持体に積層し熱圧着等により一体化させることにより基材を製造できる。
 樹脂膜は、光学フィルタの中に1層有してもよく、2層以上有してもよい。2層以上有する場合、各層は同じ構成であっても異なってもよい。
 基材が、支持体と、色素(A)および樹脂を含有する樹脂膜とを有する複層構造(複合基材)である場合、樹脂膜の厚さは、好ましくは5μm以下、より好ましくは3μm以下である。また、樹脂膜の厚さは好ましくは0.5μm以上である。樹脂膜が複数層からなる場合、各層の合計の厚さは、0.5~10μmが好ましい。
 また、基材が、色素(A)を含む樹脂膜からなる単層構造(樹脂基材)である場合、樹脂膜の厚さは、好ましくは50~300μmである。
 本発明の光学フィルタは、特定の分光特性を満たすNIR色素(A)を含有することで、色素含有量が少なくても近赤外光を広範囲に効率的に遮光できる。このため色素(A)を含む樹脂膜を薄膜化できる。
 基材の形状は特に限定されず、ブロック状、板状、フィルム状でもよい。
 また基材の厚さは、誘電体多層膜成膜時の反り低減、光学フィルタ低背化の観点から、300μm以下が好ましく、基材が樹脂膜からなる樹脂基材である場合は好ましくは50~300μmであり、基材が支持体と樹脂膜を備える複合基材である場合、好ましくは100~300μmである。
<誘電体多層膜>
 本フィルタにおいて、誘電体多層膜は、基材の少なくとも一方の主面側に最外層として積層される。
 本フィルタにおいて、誘電体多層膜の少なくとも一方は近赤外線反射層(以下、NIR反射層とも記載する。)として設計されることが好ましい。誘電体多層膜の他方はNIR反射層、近赤外域以外の反射域を有する反射層、または反射防止層として設計されることが好ましい。
 NIR反射層は、近赤外域の光を遮蔽するように設計された誘電体多層膜である。NIR反射層としては、例えば、可視光を透過し、樹脂膜の遮光域以外の近赤外域の光を主に反射する波長選択性を有する。なお、NIR反射層の反射領域は、樹脂膜の近赤外域における遮光領域を含んでもよい。NIR反射層は、NIR反射特性に限らず、近赤外域以外の波長域の光、例えば、近紫外域をさらに遮断する仕様に適宜設計してよい。
 NIR反射層は、例えば、低屈折率の誘電体膜(低屈折率膜)と高屈折率の誘電体膜(高屈折率膜)とを交互に積層した誘電体多層膜から構成される。高屈折率膜は、好ましくは、屈折率が1.6以上であり、より好ましくは2.2~2.5である。高屈折率膜の材料としては、例えばTa、TiO、Nbが挙げられる。これらのうち、成膜性、屈折率等における再現性、安定性等の点から、TiOが好ましい。
 一方、低屈折率膜は、好ましくは、屈折率が1.6未満であり、より好ましくは1.45以上1.55未満である。低屈折率膜の材料としては、例えばSiO、SiO等が挙げられる。成膜性における再現性、安定性、経済性等の点から、SiOが好ましい。
 さらに、NIR反射層は、透過域と遮光域の境界波長領域で透過率が急峻に変化することが好ましい。この目的のためには、反射層を構成する誘電体多層膜の合計積層数は、15層以上が好ましく、25層以上がより好ましく、30層以上がさらに好ましい。ただし、合計積層数が多くなると、反り等が発生したり、膜厚が増加したりするため、合計積層数は100層以下が好ましく、75層以下がより好ましく、60層以下がより一層好ましい。また、反射層の膜厚は、全体として2~10μmが好ましい。
 誘電体多層膜の合計積層数や膜厚が上記範囲内であれば、NIR反射層は小型化の要件を満たし、高い生産性を維持しながら入射角依存性を抑制できる。また、誘電体多層膜の形成には、例えば、CVD法、スパッタリング法、真空蒸着法等の真空成膜プロセスや、スプレー法、ディップ法等の湿式成膜プロセス等を使用できる。
 NIR反射層は、1層(1群の誘電体多層膜)で所定の分光特性を与えたり、2層で所定の分光特性を与えたりしてもよい。2層以上有する場合、各反射層は同じ構成でも異なる構成でもよい。反射層を2層以上有する場合、通常、反射帯域の異なる複数の反射層で構成される。2層の反射層を設ける場合、一方を、近赤外域のうち短波長帯の光を遮蔽する近赤外反射層とし、他方を、該近赤外域の長波長帯および近紫外域の両領域の光を遮蔽する近赤外・近紫外反射層としてもよい。
 反射防止層としては、誘電体多層膜や中間屈折率媒体、屈折率が漸次的に変化するモスアイ構造などが挙げられる。中でも光学的効率、生産性の観点から誘電体多層膜が好ましい。反射防止層は、反射層と同様に誘電体膜を交互に積層して得られる。
<光学フィルタ>
 本発明の光学フィルタは、上記構成とすることで下記分光特性(iii-1)~(iii-7)を全て満たすことが好ましい。
(iii-1)波長440~490nm、入射角0度の分光透過率曲線における平均透過率T440-490(0deg)AVEが85%以上
(iii-2)波長440~490nm、入射角30度の分光透過率曲線における平均透過率T440-490(30deg)AVEが85%以上
(iii-3)波長500~570nm、入射角0度の分光透過率曲線における平均透過率T500-570(0deg)AVEが90%以上
(iii-4)波長500~570nm、入射角30度の分光透過率曲線における平均透過率T500-570(30deg)AVEが90%以上
(iii-5)波長700~850nm、入射角0度の分光透過率曲線における最大透過率T700-850(0deg)MAXが3%以下
(iii-6)波長700~850nm、入射角30度の分光透過率曲線における最大透過率T700-850(30deg)MAXが1%以下
(iii-7)波長700~850nm、入射角60度の分光透過率曲線における最大透過率T700-850(60deg)MAXが1%以下
 分光特性(iii-1)~(iii-4)を満たすことで、高入射角の光であっても可視光領域、特に青色光の透過性に優れた光学フィルタが得られる。
 分光特性(iii-1)および(iii-2)は好ましくは86%以上である。
 分光特性(iii-3)および(iii-4)は好ましくは92%以上である。
 分光特性(iii-5)~(iii-7)を満たすことで、高入射角の光であっても光抜けなく、近赤外光の遮蔽性が高い光学フィルタが得られる。
 分光特性(iii-5)は好ましくは2%以下である。
 分光特性(iii-6)は好ましくは0.7%以下である。
 分光特性(iii-7)は好ましくは0.8%以下である。
 本フィルタは、他の構成要素として、例えば、特定の波長域の光の透過と吸収を制御する無機微粒子等による吸収を与える構成要素(層)などを備えてもよい。無機微粒子の具体例としては、ITO(Indium Tin Oxides)、ATO(Antimony-doped Tin Oxides)、タングステン酸セシウム、ホウ化ランタン等が挙げられる。ITO微粒子、タングステン酸セシウム微粒子は、可視光の透過率が高く、かつ1200nmを超える赤外波長領域の広範囲に光吸収性を有するため、かかる赤外光の遮蔽性を必要とする場合に使用できる。
 本フィルタは、例えば、デジタルスチルカメラ等の撮像装置に使用した場合に、色再現性に優れる撮像装置を提供できる。本フィルタを用いた撮像装置は、固体撮像素子と、撮像レンズと、本フィルタとを備える。本フィルタは、例えば、撮像レンズと固体撮像素子との間に配置されたり、撮像装置の固体撮像素子、撮像レンズ等に粘着剤層を介して直接貼着されたりして使用できる。
 次に、本発明を実施例によりさらに具体的に説明する。
 各分光特性の測定には、紫外可視分光光度計((株)日立ハイテクノロジーズ社製、UH-4150形)を用いた。
 なお、入射角度が特に明記されていない場合の分光特性は入射角0度(光学フィルタに対し垂直方向)で測定した値である。
 各例で用いた色素は下記のとおりである。
化合物1~9(シアニン化合物):Dyes and pigments73(2007)p.344-352記載の合成手法を参考に合成した。
化合物10(スクアリリウム化合物):国際公開第2014/088063号を参考に合成した。
化合物11(スクアリリウム化合物):日本国特開2017-110209号公報を参考に合成した。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
<例1-1:NIR色素の樹脂中の分光特性>
 NIR色素化合物1(7.5質量%)と有機溶媒(シクロヘキサノン)で希釈したポリイミド樹脂(三菱ガス化学製C-3G30G)とを混合し、ポリイミド溶液と色素を十分に溶解させた。
 得られた色素溶液をガラス基板(アルカリガラス、shotto製D263)にスピンコートを用いて塗工して、十分に加熱して有機溶媒を除去することで厚み1μmの色素含有樹脂薄膜(塗工膜)を作成した。
 得られた薄膜について、波長350nm~1200nmの波長範囲で、0degの入射方向における透過分光、5degの入射方向における反射分光を測定した。
 透過率は下記式で表す内部透過率で示した。
 内部透過率(%)={実測透過率(0deg)/(100-反射率(5deg))}×100
 また吸光度は下記式より内部透過率から換算した値を示す。
 吸光度=-log10(内部透過率/100)
<例1-2~1-18>
 NIR色素化合物1に替えて下記表に示すNIR色素を下記表に示す含有量で用い、ポリイミド樹脂に替えて下記いずれかの樹脂を用い、薄膜の厚さを下記表に示す値とした以外は例1-1と同様の方法で色素含有樹脂薄膜を作成し、透過分光を測定した。
ポリエステル樹脂:大阪ガスケミカル製
シクロオレフィン樹脂:JSR社製ARTON F4520
 結果を下記表に示す。
 なお、例1-10~1-14は実施例であり、例1-1~1-9、1-15~1-18は比較例である。
IR50幅(nm):IR50aとIR50bとの差の絶対値
IR30幅(nm):IR30aとIR30bとの差の絶対値
Figure JPOXMLDOC01-appb-T000019
 例1-10~1-14の結果より、外部塩型のシアニン色素は、脂環式化合物ポリマー中において、青色光の高い透過率を維持しつつ、近赤外光の幅広い吸収特性を示した。
<樹脂分光と溶液分光の対比>
<例2-1~2-7:溶液分光>
 下記表に示すNIR色素をジクロロメタンに溶解性させて、波長350nm~1200nmの溶液分光を測定した。最大吸収波長の透過率が10%になるように計算した分光特性を下記表に示す。
<例2-8~2-14:樹脂分光>
 例1-10~1-16で製造した薄膜の透過分光、反射分光から、最大吸収波長の透過率が10%になるように計算した分光特性を下記表に示す。
 NIR色素が同一の溶液分光と樹脂分光について、IR50幅とIR30幅を対比した。
 また、図5に、化合物6について、例2-4の溶液分光と、例2-11の樹脂分光を掲載した。実線が樹脂分光、破線が溶液分光である。
IR30幅(DIC)(nm):IR30a(DIC)とIR30b(DIC)との差の絶対値
IR30幅(PO)(nm):IR30a(PO)とIR30b(PO)との差の絶対値
IR50幅(DIC)(nm):IR50a(DIC)とIR50b(DIC)との差の絶対値
IR50幅(PO)(nm):IR50a(PO)とIR50b(PO)との差の絶対値
IR30幅(対ジクロロメタン):IR30幅(DIC)に対するIR30幅(PO)の比
IR50幅(対ジクロロメタン):IR50幅(DIC)に対するIR50幅(PO)の比
 例2-1~例2-7は参考例であり、例2-8~2-12は実施例であり、例2-13~2-14は比較例である。
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
 上記結果より、NIR色素として外部塩型のシアニン色素を用いた例2-8~2-12では、IR30の幅およびIR50の幅が溶液中よりも樹脂中において大幅に拡大した。
すなわち、樹脂中において吸収分光がブロード化した。
<例3-1:光学フィルタの分光特性>
 ポリイミド樹脂(三菱ガス化学製C-3G30G)に化合物11のNIR色素を樹脂に対して5.25質量%添加し、さらに溶媒としてシクロヘキサノンを添加し十分に溶解させた(色素溶液1)。
 シクロオレフィン樹脂(JSR社製ARTON樹脂F4520)に化合物6のNIR色素を樹脂に対して2質量%添加し、さらに溶媒としてシクロヘキサノンを添加し十分に溶解させた(色素溶液2)。
 ガラス基板(アルカリガラス、shotto製D263)に、400nm~700nmに透過帯域をもつ紫外・赤外カット多層膜を蒸着した。紫外・赤外カット多層膜と反対の面に色素溶液1をスピンコートし、厚さ1μmの樹脂膜1を塗工した。樹脂膜1の上に色素溶液2をスピンコートし厚さ1.6μmの樹脂膜2を塗工した。2層からなる樹脂膜の上にSiOとTiOから構成される誘電体多層膜(反射防止膜)を蒸着により成膜し、光学フィルタ3-1を作製した。
<例3-2>
 樹脂膜1作製時の化合物11の含有量を5.5質量%とし、樹脂膜2を塗工しなかった以外は例3-1と同様にして、光学フィルタ3-2を作製した。
 各光学フィルタについて、分光光度計で波長350nm~1200nmの波長範囲で0deg、30deg、60degの入射方向における透過分光を測定した。結果を下記表に示す。
 また、光学フィルタ3-1の分光透過率曲線を図6に示す。
 例3-1が実施例、例3-2が比較例である。
Figure JPOXMLDOC01-appb-T000022
 上記結果より、例3-1の光学フィルタは440~490nmと500~570nmの可視光領域の透過率が入射角0度と30度のいずれにおいても高く、700nm以降の赤外光領域の遮光性に優れ、また、700~850nmの波長領域において入射角30度と60度の斜入射でも最大透過率が低いことから光抜けが低減できたことが分かる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2020年7月29日出願の日本特許出願(特願2020-128621)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の光学フィルタは、近赤外光の遮蔽性と可視光の透過性、特には青色光の透過性を良好に維持しながら、近赤外光の遮蔽性において、特に高入射角における近赤外光の遮蔽性の低下が抑制された良好な近赤外光遮蔽特性を有する。近年、高性能化が進む、例えば、輸送機用のカメラやセンサ等の情報取得装置の用途に有用である。
1A、1B、1C、1D…光学フィルタ、10…基材、11…支持体、12…樹脂膜、30…誘電体多層膜

Claims (12)

  1.  基材と、前記基材の少なくとも一方の主面側に最外層として積層された誘電体多層膜とを備える光学フィルタであって、
     前記基材は、近赤外線吸収色素である色素(A)と樹脂とを含む樹脂膜を含み、
     前記色素(A)は、前記色素(A)を前記樹脂に溶解してアルカリガラス板上に塗工した塗工膜の分光透過率曲線において、下記分光特性(i-1)~(i-4)を全て満たす光学フィルタ。
    (i-1)波長600~800nmにおいて透過率が30%となる最も短い波長をIR30aとし、波長700~1200nmにおいて透過率が30%となる最も長い波長をIR30bとしたとき、
     IR30aとIR30bとの差の絶対値が170nm以上
    (i-2)波長600~800nmにおいて透過率が50%となる最も短い波長をIR50aとし、波長700~1200nmにおいて透過率が50%となる最も長い波長をIR50bとしたとき、
     IR50aとIR50bとの差の絶対値が200nm以上
    (i-3)波長440nmにおける吸光度A440と波長700nmにおける吸光度A700との関係がA440/A700≦0.14
    (i-4)波長490nmにおける吸光度A490と波長700nmにおける吸光度A700との関係がA490/A700≦0.10
  2.  前記色素(A)は、前記塗工膜の分光透過率曲線において、下記分光特性(i-5)をさらに満たす、請求項1に記載の光学フィルタ。
    (i-5)前記塗工膜における前記色素(A)の含有量と前記塗工膜の厚さの積が20(質量%・μm)以下
  3.  前記色素(A)は、前記塗工膜の分光透過率曲線において、下記分光特性(i-6)をさらに満たす、請求項1または2に記載の光学フィルタ。
    (i-6)波長570nmにおける吸光度A570と波長700nmにおける吸光度A700との関係がA570/A700≦0.11
  4.  前記色素(A)は、前記塗工膜の分光透過率曲線において、下記分光特性(i-7)をさらに満たす、請求項1~3のいずれか1項に記載の光学フィルタ。
    (i-7)波長630nmにおける吸光度A630と波長700nmにおける吸光度A700との関係がA630/A700≦0.12
  5.  前記色素(A)は、前記塗工膜の分光透過率曲線において、下記分光特性(i-8)をさらに満たす、請求項1~4のいずれか1項に記載の光学フィルタ。
    (i-8)波長700~800nmの分光透過率曲線における平均内部透過率T700-800が2~25%
  6.  前記分光特性(i-1)において、IR30aとIR30bとの差の絶対値が190nm以上であり、
     前記分光特性(i-2)において、IR50aとIR50bとの差の絶対値が230nm以上であり、
     前記分光特性(i-3)において、A440/A700≦0.11であり、
     前記分光特性(i-4)において、A490/A700≦0.07である、
     請求項1~5のいずれか1項に記載の光学フィルタ。
  7.  前記基材は、支持体と前記樹脂膜を含み、前記樹脂膜は前記支持体の少なくとも一方の主面に積層され、前記樹脂膜の厚さが5μm以下である、請求項1~6のいずれか1項に記載の光学フィルタ。
  8.  前記色素(A)が下記特性(ii-1)および(ii-2)を満たす、請求項1~5のいずれか1項に記載の光学フィルタ。
     最大吸収波長における透過率が10%となるように前記色素(A)をジクロロメタンに溶解して測定される分光透過率曲線において、
      波長600~900nmにおいて透過率が30%となる最も短い波長をIR30a(DIC)とし、透過率が30%となる最も長い波長をIR30b(DIC)とし、透過率が50%となる最も短い波長をIR50a(DIC)とし、透過率が50%となる最も長い波長をIR50b(DIC)とし、
     最大吸収波長における透過率が10%となるように前記色素(A)を前記樹脂に溶解してアルカリガラス板上に塗工した塗工膜の分光透過率曲線において、
      波長600~900nmにおいて透過率が30%となる最も短い波長をIR30a(PO)とし、透過率が30%となる最も長い波長をIR30b(PO)とし、透過率が50%となる最も短い波長をIR50a(PO)とし、透過率が50%となる最も長い波長をIR50b(PO)としたとき、
    (ii-1)IR30a(PO)とIR30b(PO)との差の絶対値が、IR30a(DIC)とIR30b(DIC)との差の絶対値の3倍以上
    (ii-2)IR50a(PO)とIR50b(PO)との差の絶対値が、IR50a(DIC)とIR50b(DIC)との差の絶対値の2.8倍以上
  9.  前記樹脂が脂環式化合物から構成されるポリマーである、請求項1~8のいずれか1項に記載の光学フィルタ。
  10.  前記色素(A)が、下記式(A1)に示す化合物および下記式(A2)に示す化合物の少なくとも一方を含む、請求項1~9のいずれか1項に記載の光学フィルタ。
    Figure JPOXMLDOC01-appb-C000001
     ただし、式(A1)および(A2)中の記号は以下のとおりである。
     R101~R109およびR121~R131は、それぞれ独立に水素原子、ハロゲン原子、置換基を有してもよい炭素数1~15のアルキル基もしくはアルコキシ基、または、炭素数5~20のアリール基を示す。R110114およびR132136は、それぞれ独立に水素原子、ハロゲン原子、または、炭素数1~15のアルキル基もしくはアルコキシ基を示す。
     Xは一価のアニオンを示す。
     n1およびn2はそれぞれ独立に0または1である。-(CHn1-を含む炭素環、および、-(CHn2-を含む炭素環に結合する水素原子はハロゲン原子、置換基を有してもよい炭素数1~15のアルキル基または炭素数5~20のアリール基で置換されていてもよい。
  11.  前記樹脂膜は、スクアリリウム色素、フタロシアニン色素、およびジインモニウム色素から選ばれる少なくとも1つの色素(B)をさらに含む、請求項10に記載の光学フィルタ。
  12.  下記分光特性(iii-1)~(iii-7)を全て満たす、請求項1~11のいずれか1項に記載の光学フィルタ。
    (iii-1)波長440~490nm、入射角0度の分光透過率曲線における平均透過率T440-490(0deg)AVEが85%以上
    (iii-2)波長440~490nm、入射角30度の分光透過率曲線における平均透過率T440-490(30deg)AVEが85%以上
    (iii-3)波長500~570nm、入射角0度の分光透過率曲線における平均透過率T500-570(0deg)AVEが90%以上
    (iii-4)波長500~570nm、入射角30度の分光透過率曲線における平均透過率T500-570(30deg)AVEが90%以上
    (iii-5)波長700~850nm、入射角0度の分光透過率曲線における最大透過率T700-850(0deg)MAXが3%以下
    (iii-6)波長700~850nm、入射角30度の分光透過率曲線における最大透過率T700-850(30deg)MAXが1%以下
    (iii-7)波長700~850nm、入射角60度の分光透過率曲線における最大透過率T700-850(60deg)MAXが1%以下
PCT/JP2021/027411 2020-07-29 2021-07-21 光学フィルタ WO2022024941A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022540257A JPWO2022024941A1 (ja) 2020-07-29 2021-07-21
CN202180059451.0A CN116194810A (zh) 2020-07-29 2021-07-21 滤光片

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-128621 2020-07-29
JP2020128621 2020-07-29

Publications (1)

Publication Number Publication Date
WO2022024941A1 true WO2022024941A1 (ja) 2022-02-03

Family

ID=80035533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027411 WO2022024941A1 (ja) 2020-07-29 2021-07-21 光学フィルタ

Country Status (3)

Country Link
JP (1) JPWO2022024941A1 (ja)
CN (1) CN116194810A (ja)
WO (1) WO2022024941A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023095901A1 (ja) * 2021-11-29 2023-06-01 三井化学株式会社 光学部品形成用樹脂組成物、成形体、および光学部品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019022069A1 (ja) * 2017-07-27 2019-01-31 Jsr株式会社 近赤外線カットフィルターおよび該近赤外線カットフィルターを用いた装置
WO2019151348A1 (ja) * 2018-02-05 2019-08-08 Agc株式会社 光学フィルタおよび撮像装置
WO2019168090A1 (ja) * 2018-03-02 2019-09-06 Jsr株式会社 光学フィルター、カメラモジュールおよび電子機器
JP2021081520A (ja) * 2019-11-15 2021-05-27 Agc株式会社 光学フィルタ、並びにこれを用いた光学装置及び指紋検出装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019022069A1 (ja) * 2017-07-27 2019-01-31 Jsr株式会社 近赤外線カットフィルターおよび該近赤外線カットフィルターを用いた装置
WO2019151348A1 (ja) * 2018-02-05 2019-08-08 Agc株式会社 光学フィルタおよび撮像装置
WO2019168090A1 (ja) * 2018-03-02 2019-09-06 Jsr株式会社 光学フィルター、カメラモジュールおよび電子機器
JP2021081520A (ja) * 2019-11-15 2021-05-27 Agc株式会社 光学フィルタ、並びにこれを用いた光学装置及び指紋検出装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023095901A1 (ja) * 2021-11-29 2023-06-01 三井化学株式会社 光学部品形成用樹脂組成物、成形体、および光学部品

Also Published As

Publication number Publication date
JPWO2022024941A1 (ja) 2022-02-03
CN116194810A (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
WO2017094858A1 (ja) 光学フィルタおよび撮像装置
JP7070555B2 (ja) 光学フィルタおよび撮像装置
JP7456525B2 (ja) 光学フィルタおよび撮像装置
JP7279718B2 (ja) 光学フィルタおよび情報取得装置
WO2023008291A1 (ja) 光学フィルタ
JP2019164269A (ja) 光学フィルタ、近赤外線吸収色素および撮像装置
WO2022024826A1 (ja) 光学フィルタ
US20240192413A1 (en) Optical filter
WO2022024941A1 (ja) 光学フィルタ
WO2022138252A1 (ja) 光学フィルタ
WO2022065170A1 (ja) 光学フィルタ
WO2022024942A1 (ja) 光学フィルタ
JP7552271B2 (ja) 光学フィルタ
WO2023127670A1 (ja) 光学フィルタ
WO2023022118A1 (ja) 光学フィルタ
WO2022085636A1 (ja) 光学フィルタ
WO2023167062A1 (ja) 光学フィルタ
JP7511103B2 (ja) 光学フィルタ
JP7511102B2 (ja) 光学フィルタ
CN114402235B (zh) 滤光片和成像装置
CN118829909A (zh) 滤光片
JP2022001928A (ja) 光学フィルタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21850926

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022540257

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21850926

Country of ref document: EP

Kind code of ref document: A1