WO2020001540A1 - 改性y型分子筛、包含它的催化裂化催化剂、及其制备和应用 - Google Patents

改性y型分子筛、包含它的催化裂化催化剂、及其制备和应用 Download PDF

Info

Publication number
WO2020001540A1
WO2020001540A1 PCT/CN2019/093279 CN2019093279W WO2020001540A1 WO 2020001540 A1 WO2020001540 A1 WO 2020001540A1 CN 2019093279 W CN2019093279 W CN 2019093279W WO 2020001540 A1 WO2020001540 A1 WO 2020001540A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular sieve
type molecular
modified
weight
content
Prior art date
Application number
PCT/CN2019/093279
Other languages
English (en)
French (fr)
Inventor
袁帅
周灵萍
田辉平
沙浩
陈振宇
张蔚琳
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司石油化工科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810714296.1A external-priority patent/CN110652999B/zh
Priority claimed from CN201810715238.0A external-priority patent/CN110653001B/zh
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司石油化工科学研究院 filed Critical 中国石油化工股份有限公司
Priority to US17/256,943 priority Critical patent/US11504702B2/en
Priority to SG11202013116TA priority patent/SG11202013116TA/en
Priority to AU2019296826A priority patent/AU2019296826A1/en
Priority to EP19825723.0A priority patent/EP3815784A4/en
Priority to JP2020573127A priority patent/JP7352584B2/ja
Publication of WO2020001540A1 publication Critical patent/WO2020001540A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/085Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/088Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/65150-500 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/16After treatment, characterised by the effect to be obtained to increase the Si/Al ratio; Dealumination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/32Reaction with silicon compounds, e.g. TEOS, siliconfluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/36Steaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/302Viscosity
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/308Gravity, density, e.g. API
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects

Definitions

  • the present application relates to the technical field of molecular sieves and catalytic cracking, and more particularly, to a modified Y-type molecular sieve, a catalytic cracking catalyst containing the same, a method for preparing the same, and applications.
  • high-silicon Y-type molecular sieves also known as Y-type zeolites
  • hydrothermal method performs multiple rare-earth ion exchanges and multiple high-temperature roasting of NaY molecular sieves to prepare rare-earth high-silicon Y molecular sieves.
  • Molecular sieve which is also the most common method for preparing high silicon Y molecular sieve.
  • the preparation of rare-earth high-silicon Y-type molecular sieves by the hydrothermal method has the following disadvantages: Because the structure of the molecular sieves is destroyed by excessively harsh hydrothermal treatment conditions, Y-type molecular sieves with high silicon-aluminum ratio cannot be obtained; The stability and formation of new acid centers are beneficial, but too much extra-framework aluminum reduces the selectivity of the molecular sieve; in addition, many of the dealumination holes in the molecular sieve cannot be filled in time by the silicon that migrates out of the framework, often causing molecular sieves Lattice defects, low crystal retention of molecular sieves.
  • the conventional Y-type molecular sieve contains only rare earth, silicon, aluminum and other elements, its structure and performance adjustment are limited to a certain range, which often causes the product composition to stabilize within a certain range. Therefore, the thermal and hydrothermal stability of the rare earth-containing high-silicon Y-type molecular sieve prepared by the hydrothermal method is poor, which is reflected in the low lattice collapse temperature and the low crystallinity retention rate and specific surface area retention rate after hydrothermal aging. , Poor selectivity.
  • NaY molecular sieves are first exchanged with rare earth ions and then subjected to water vapor treatment.
  • the method is difficult to remove aluminum from molecular sieve during water vapor treatment due to the shielding effect and support of rare earth ions.
  • the unit cell parameter before treatment was increased to 2.465-2.475nm, and after treatment was 2.420-2.464nm.
  • the temperature required to lower the unit cell parameter was higher (593-733 ° C).
  • the raw material NaY molecular sieve has a SiO 2 / Al 2 O 3 ratio of 6.0.
  • the method is also to perform a hydrothermal treatment after the rare earth exchange of NaY, which also has the disadvantages of the aforementioned US patents US4584287 and US4429053 .
  • Gas-phase chemistry Another method for producing high-silicon Y-type molecular sieves is gas-phase chemistry, which is another important method for preparing high-silicon molecular sieves first reported by Beyer and Mankui in 1980.
  • Gas-phase chemistry generally uses SiCl 4 under nitrogen protection to react with anhydrous NaY molecular sieves at a certain temperature. The whole reaction process makes full use of the external Si source provided by SiCl 4 to complete the dealumination and silicon supplementation reactions by isomorphous substitution once.
  • the amount of isomeric C4 produced by the catalyst prepared using conventional Y molecular sieves and the content of isomeric hydrocarbons in gasoline are stable within a certain range and difficult to increase.
  • Zhu Huayuan Acta Petrolei Sinica (Petroleum Processing), 2001, 17 (6): 6-10) and others studied the effect of modified zeolite containing magnesium on the performance of FCC catalysts.
  • the study reported that FCC catalysts containing Mg and Ca molecular sieves have strong conversion capacity for heavy oils, high hydrogen transfer reactivity, and high isobutane product content.
  • the Y-type molecular sieve prepared by the method disclosed in this document has poor thermal and hydrothermal stability, and can only increase the content of isobutane under certain conditions, but cannot effectively increase the content of isomeric hydrocarbons in gasoline.
  • the performance of the ultra-stable molecular sieves prepared by the hydrothermal method or the gas phase method in the prior art cannot satisfy the current requirements for processing heavy oil and inferior oil and improving the quality of gasoline.
  • One of the objectives of the present application is to provide a highly stable modified Y-type molecular sieve, a preparation method and application thereof.
  • the molecular sieve is suitable for heavy oil catalytic cracking processing, and can produce more isomerized C4 and improve isomerization in gasoline. Hydrocarbon content.
  • Another object of the present application is to provide a catalytic cracking catalyst containing the modified Y-type molecular sieve, and a preparation method and application thereof.
  • the catalyst has high thermal and hydrothermal stability, and can improve gasoline, isomeric C4, and gasoline. Yield of intermediate isomers, and coke selectivity is good.
  • the present application provides a modified Y-type molecular sieve, on a dry basis and based on the weight of the modified Y-type molecular sieve, the calcium content of the modified Y-type molecular sieve is based on calcium oxide CaO is about 0.3-4% by weight, rare earth content is about 2-7% by weight based on rare earth oxide RE 2 O 3 , sodium content is not more than about 0.5% by weight based on sodium oxide Na 2 O, and total pore volume is about 0.33 -0.39mL / g, in which the pore volume of the secondary pores with a pore size of 2-100nm accounts for about 10-25% of the total pore volume, the unit cell constant is about 2.440-2.455nm, and the non-framework aluminum content accounts for the total aluminum content
  • the percentage of B acid to L acid is not less than about 20%
  • the lattice collapse temperature is not less than about 1050 ° C
  • the present application provides a method for preparing a modified Y-type molecular sieve, including the following steps:
  • step (1) The Y-type molecular sieve obtained in step (1) is calcined at a temperature of about 350-480 ° C and a steam atmosphere of about 30-90 vol% for about 4.5-7 hours, and optionally dried to obtain a cell with a reduced cell constant.
  • the Y-type molecular sieve with the reduced cell constant on a dry basis is about 0.1-0.7: 1 by weight.
  • the Y-type molecular sieve obtained in step (2) is contacted with silicon tetrachloride gas to react.
  • the reaction temperature is about 200-650 ° C. and the reaction time is about 10 minutes to about 5 hours to obtain the modified Y-type molecular sieve.
  • the present application provides a modified Y-type molecular sieve prepared by the method for preparing a modified Y-type molecular sieve.
  • the present application provides a catalytic cracking catalyst, based on the weight of the catalytic cracking catalyst, containing about 10-50% by weight of the modified Y-type molecular sieve according to the present invention on a dry basis, and alumina. About 10-40% by weight of alumina binder and about 10-80% by weight of clay on a dry basis.
  • the present application provides an application of the modified Y-type molecular sieve according to the present invention in the catalytic cracking of a hydrocarbon oil, comprising contacting the hydrocarbon oil with a catalytic cracking catalyst comprising the modified Y-type molecular sieve.
  • the modified Y-type molecular sieve provided by the present application has high thermal and hydrothermal stability, and can be used as an active component of a catalytic cracking catalyst for conversion of heavy oil or inferior oil; it can also be used for gasoline adsorption desulfurization to improve The octane number of gasoline after desulfurization; it can also be used to reduce the isomerization of lubricating oil.
  • the modified Y-type molecular sieve When the modified Y-type molecular sieve is used in the catalytic cracking of hydrocarbon oil, the modified Y-type molecular sieve has higher conversion capacity of heavy oil, higher liquefied gas yield, isomeric C4 yield, and gasoline yield. The content is higher, the light oil yield and total liquid yield are also higher, and the coke selectivity is better. It can be used to produce gasoline with higher isohydrocarbon content and C4 isohydrocarbon.
  • the catalytic cracking catalyst according to the present application using the molecular sieve as an active component has high hydrothermal stability. When used for catalytic cracking of heavy oil, it has higher conversion activity and conversion efficiency of heavy oil than the existing catalytic cracking catalyst containing Y-type molecular sieve. Lower coke selectivity can obtain higher gasoline yield, light oil yield, total liquid yield and isomeric C4 yield, and more isohydrocarbons are found in gasoline.
  • any specific numerical value (including the end of the numerical range) disclosed herein is not limited to the exact value of the value, but should be understood to also encompass values close to the exact value, such as within the range of ⁇ 5% of the exact value All possible values. And, for the disclosed numerical range, one or more new points can be obtained by arbitrarily combining between the endpoint values of the range, between the endpoint values and the specific point values within the range, and between the specific point values. Numerical ranges, these new numerical ranges should also be considered as specifically disclosed herein.
  • any matter or matter not mentioned applies directly to those known in the art without any change.
  • any embodiment described herein can be freely combined with one or more other embodiments described herein, and the technical solutions or technical ideas formed thereby are regarded as part of the original disclosure or original record of the present invention, and should not be It is considered to be something new that has not been disclosed or anticipated herein unless the person skilled in the art believes that the combination is obviously unreasonable.
  • RIPP Test Method edited by Yang Cuiding et al., Science Press, September 1990, first edition, pp. 263-268, 412-415, and 424- Page 426, ISBN: 7-03-001894-X, which is incorporated herein by reference in its entirety.
  • isomeric hydrocarbon refers to a linear isoparaffin and a linear isoparene.
  • Increasing the content of heterogeneous hydrocarbons is conducive to improving the quality of gasoline, for example, the octane number of gasoline can not be reduced while reducing the content of aromatics and olefins.
  • isomeric C4 refers to chained isoparaffins and chained isoolefins having 4 carbon atoms, such as isobutane and isobutene.
  • the expression "conventional unit cell-sized Y-type molecular sieve” means that the unit cell constant of the Y-type molecular sieve is in the range of the unit cell constant of the conventional NaY molecular sieve, and preferably in the range of about 2.465 nm to about 2.472 nm.
  • normal pressure means a pressure of about 1 atm.
  • the dry basis weight of a substance refers to the weight of the solid product obtained by firing the substance at 800 ° C for 1 hour.
  • Y molecular sieve and “Y zeolite” are used interchangeably, and the terms “NaY molecular sieve” and “NaY zeolite” are also used interchangeably.
  • a soluble calcium salt solution is also called a calcium salt solution
  • a soluble rare earth salt solution is also called a rare earth salt solution.
  • the calcium salt may be various calcium salts soluble in a solvent such as water, preferably calcium chloride and / or calcium nitrate.
  • the rare earth salt can be various rare earth salts that are soluble in solvents such as water, preferably rare earth chloride and / or rare earth nitrate.
  • the rare earth is, for example, one or more of La, Ce, Pr, Nd, and mixed rare earth.
  • the mixed rare earth contains one or more of La, Ce, Pr, and Nd, or Contains at least one of rare earths other than La, Ce, Pr, and Nd.
  • the present application provides a modified Y-type molecular sieve having a calcium content of about 0.3-4% by weight based on calcium oxide, such as about 0.5-3.5% by weight, about 0.9-3% by weight, or about 0.9.
  • rare earth content is about 2-7 wt% based on rare earth oxide, preferably about 2.5-6.5 wt%, such as about 2.5-4.5% wt; sodium content is not more than about 0.5 wt% based on sodium oxide May be about 0.1-0.5% by weight, such as about 0.13-0.4% by weight, preferably about 0.15-0.5% by weight, such as about 0.2-0.5% by weight, about 0.3-0.5% by weight, 0.20-0.45% by weight, or 0.25- 0.4% by weight.
  • the modified Y-type molecular sieve of the present application is substantially free of other modified ions or elements other than calcium and rare earth, including but not limited to P, Mg, Ga, Cr, Zn, Cu, etc., such as
  • the content (in terms of oxides) of other modified ions or elements other than calcium and rare earth is less than about 0.1% by weight, such as less than about 0.05% by weight or less than about 0.01, based on the dry basis weight of the modified Y-type molecular sieve weight%.
  • the percentage of the pore volume of the secondary pores having a pore diameter (referring to a diameter) of 2-100 nm to the total pore volume is about 10-25%, preferably about 15-23%, such as About 15-21% or 17-21%.
  • the percentage of non-framework aluminum content to the total aluminum content is not higher than about 20%, for example, about 10-20% or about 13-19%.
  • the modified Y-type molecular sieve of the present application is a high-silicon Y-type molecular sieve, and its framework silicon-aluminum ratio (calculated as SiO 2 / Al 2 O 3 molar ratio) is about 7.3-14.0, for example, about 8-12.6.
  • the lattice collapse temperature (also referred to as the structure collapse temperature) of the modified Y-type molecular sieve of the present application is not lower than about 1050 ° C.
  • the lattice collapse temperature of the molecular sieve is about 1050-1080 ° C, such as about 1050-1063 ° C or 1052-1065 ° C.
  • the ratio of the amount of B acid to the amount of L acid in the total acid amount measured at 200 ° C by a pyridine adsorption infrared method is not less than about 2.30, and preferably about 2.4-3.5, 2.4- 4.2 or 2.3-5.0.
  • the unit cell constant of the modified Y-type molecular sieve of the present application is about 2.440-2.455 nm, for example, about 2.442-2.452 nm.
  • the relative crystallinity of the modified Y-type molecular sieve of the present application is not less than about 58%, such as about 58-68%, about 59-63%, about 60-70%, or about 60- 66%.
  • the modified Y-type molecular sieve provided in the present application has a crystal retention of not less than about 35% after aging for 17 hours at 800 ° C, atmospheric pressure, and 100% by volume of water vapor atmosphere, for example, about 36-45%, about 38- 44%, about 35-48%, or about 39-45%.
  • the specific surface area of the modified Y-type molecular sieve of the present application is about 620-670 m 2 / g, for example, about 630-660 m 2 / g.
  • the total pore volume of the modified Y-type molecular sieve of the present application is about 0.33-0.39 mL / g, preferably about 0.35-0.39 mL / g, for example, about 0.35-0.375 mL / g.
  • the micropore volume of the modified Y-type molecular sieve of the present application is about 0.25-0.35 mL / g, for example, about 0.26-0.32 mL / g or about 0.28-0.31 mL / g.
  • the modified Y-type molecular sieve of the present application is prepared by a method for preparing a modified Y-type molecular sieve described below.
  • the modified Y-type molecular sieve of the present application has high thermal and hydrothermal stability and high selectivity of isomeric hydrocarbons. When used for catalytic cracking of heavy oil, it has higher conversion activity of heavy oil and lower coke selection than the existing Y-type molecular sieve. It can achieve higher gasoline yield, heterogeneous C4 yield, light oil yield and total liquid yield, and the obtained gasoline has more isohydrocarbons.
  • the present application provides a method for preparing a modified Y-type molecular sieve, including the following steps:
  • the Y-type molecular sieve obtained in step (1) is calcined at a temperature of about 350-480 ° C and a steam atmosphere of about 30-90 vol% for about 4.5-7 hours, and optionally dried to obtain a cell with a reduced cell constant.
  • the Y-type molecular sieve with the reduced cell constant on a dry basis is about 0.1-0.7: 1 by weight.
  • the Y-type molecular sieve obtained in step (2) is contacted with silicon tetrachloride gas to react.
  • the reaction temperature is about 200-650 ° C. and the reaction time is about 10 minutes to about 5 hours to obtain the modified Y-type molecular sieve.
  • the method includes the following steps:
  • the conventional cell-sized Y-type molecular sieve containing calcium and rare earths with reduced sodium content is at a temperature of about 350-480 ° C and an atmosphere containing about 30-90 vol% water vapor (also referred to as about 30-90 vol% water vapor atmosphere). Or about 30-90% water vapor) for about 4.5-7 hours; and
  • step (3) contacting the Y-type molecular sieve sample having a reduced cell constant with SiCl 4 gas at a temperature of about 200-650 ° C., wherein SiCl 4 : the unit cell obtained in step (2) on a dry basis
  • the weight ratio of the reduced Y-type molecular sieve is about 0.1-0.7: 1, the reaction time is about 10 minutes to about 5 hours, and then washed and filtered to obtain a modified Y-type molecular sieve.
  • the water content of the Y-type molecular sieve with the reduced cell constant used in step (3) does not exceed about 1% by weight. If the water content in the Y-type molecular sieve obtained in the step (2) modification (in the Y-type molecular sieve sample obtained by roasting) does not exceed about 1% by weight, it can be directly used in contact with silicon tetrachloride to perform the reaction. (2) The Y-type molecular sieve obtained in the calcination has a water content exceeding 1% by weight, and the Y-type molecular sieve having the reduced cell constant obtained in the step (2) is dried so that the water content thereof is less than about 1% by weight.
  • the contact described in step (1) may be an ion exchange (for example, first contact with a rare earth salt solution) by sequentially contacting a NaY molecular sieve with a soluble calcium salt solution and a soluble rare earth salt. , And then contact the calcium salt solution; or first contact with the calcium salt solution, and then contact with the rare earth salt solution), or the NaY molecular sieve and a solution containing a soluble calcium salt and a soluble rare earth salt (this application is also referred to as soluble calcium salt And a mixed solution of rare earth salts).
  • the mixed solution of the soluble calcium salt and the rare earth salt can be obtained by mixing the soluble calcium salt and the soluble rare earth salt with a solvent such as water.
  • the NaY molecular sieve can be purchased commercially or prepared according to existing methods.
  • the cell constant of the NaY molecular sieve is about 2.465-2.472nm
  • the framework silicon-aluminum ratio (SiO 2 / Al 2 O 3 molar ratio) is about 4.5-5.2
  • the relative crystallinity is about 85% or more.
  • it is about 85-95%
  • the sodium content is about 13.0-13.8% by weight based on sodium oxide.
  • the exchange temperature is preferably about 15-95 ° C, such as about 65-95 ° C
  • the exchange time is preferably about 30-120 minutes, such as about 45-90 minutes, by weight
  • NaY Molecular sieves on a dry basis: calcium salts (as CaO): rare earth salts (as RE 2 O 3 ): H 2 O are about 1: 0.009-0.28: 0.005-0.09: 5-15.
  • the rare earth salt is a soluble rare earth salt
  • the calcium salt is a soluble calcium salt.
  • the weight ratio of NaY molecular sieve: calcium salt: rare earth salt: H 2 O is about 1: 0.009-0.27: 0.005-0.09: 5-15.
  • the mixture of NaY molecular sieve, calcium salt, rare earth salt and water is stirred at about 15-95 ° C, such as about 65-95 ° C, preferably about 30-120 minutes for exchange of calcium ions, rare earth ions and sodium ions.
  • the water is, for example, decationized water, deionized water, or a mixture thereof.
  • the NaY molecular sieve, calcium salt, rare earth salt and water are formed into a mixture.
  • the NaY molecular sieve and water are formed into a slurry, and then calcium salt and / or calcium salt aqueous solution, rare earth salt and / or rare earth salt are added to the slurry.
  • Aqueous solution is added to the slurry.
  • the purpose of washing in step (1) is to wash out the exchanged sodium ions.
  • deionized water or decationized water can be used for washing.
  • the calcium content of the conventional cell-sized Y-type molecular sieve containing calcium and rare earths with reduced sodium content obtained in step (1) is about 0.3-10% by weight as CaO, for example, about 0.9-9% by weight, about 0.4 -6% by weight, about 1-5% by weight, about 2-4% by weight, about 0.3-4% by weight, about 3-6% by weight, about 3.5-5.5% by weight, or about 4-9% by weight;
  • the rare earth content is expressed by Re 2 O 3 is about 2-8% by weight, about 2.1-7% by weight, about 3-7% by weight or about 4-6% by weight;
  • the sodium content does not exceed about 9% by weight as sodium oxide, for example, about 5.0- 8.5% by weight or about 5.5-7.5% by weight, and the unit cell constant is about 2.465-2.472 nm.
  • the baking temperature described in step (2) is about 380-460 ° C
  • the baking atmosphere is about 40-80 vol% water vapor atmosphere
  • the baking time is about 5-6 hours.
  • the water vapor atmosphere contains about 30-90 vol%, preferably about 40-80 vol% water vapor, and may further contain other gases, such as air, helium, or nitrogen. One or more.
  • the Y-type molecular sieve having a reduced unit cell constant as described in step (2) has a unit cell constant of about 2.450-2.462 nm.
  • step (2) further comprises drying the molecular sieve obtained by roasting, so that the water content in the Y-type molecular sieve with a reduced cell constant is preferably not more than about 1% by weight.
  • step (3) the weight ratio of SiCl 4: Y zeolite (on a dry basis) is about 0.3-0.6: 1, and the reaction temperature is about 350-500 ° C.
  • the washing method described in step (3) may use a conventional washing method, and may be washed with water, such as decationized water or deionized water, for the purpose of removing residual Na + , Cl in the zeolite. - Al 3+ and soluble by-products and the like.
  • water such as decationized water or deionized water
  • the washing conditions may be: the weight ratio of the washing water to the molecular sieve is about 5-20: 1, such as about 6-15: 1, the pH is about 2.5-5.0, and the washing temperature is about 30-60 ° C.
  • the washing is performed to wash the washing liquid was not detected in the free Na +, Cl - and the like Al 3+ ions, the washing liquid after washing is generally in the Na +, Cl - and the respective Al 3+ ions
  • the content is not more than about 0.05% by weight.
  • the method for preparing the modified Y-type molecular sieve of the present application includes the following steps:
  • the NaY molecular sieve also known as NaY zeolite
  • a mixed solution of soluble calcium salt and rare earth salt for ion exchange reaction, filtration, and washing to obtain a conventional unit cell size of calcium and rare earth with reduced sodium content.
  • the ion exchange is performed under the conditions of stirring at a temperature of about 15-95 ° C, preferably about 65-95 ° C, for about 30-120 minutes;
  • the method for preparing calcium and rare earth modified Y-type molecular sieve can prepare a high-silicon Y-type molecular sieve with a certain secondary pore structure with high crystallinity, high thermal stability and high hydrothermal stability.
  • the calcium and rare earth molecular sieve The distribution of medium aluminum is uniform, and the content of non-framework aluminum is small.
  • the modified Y-type molecular sieve is used for heavy oil conversion.
  • the coke selectivity is good and the heavy oil cracking activity is high.
  • the iso-hydrocarbon content in gasoline improve liquefied gas yield, light oil yield and total liquid yield.
  • the present application provides a modified Y-type molecular sieve prepared according to the modified Y-type molecular sieve preparation method of the present application.
  • the present application provides a catalytic cracking catalyst based on the weight of the catalytic cracking catalyst, which includes about 10-50% by weight of the modified Y-type molecular sieve of the present application on a dry basis, oxidized by About 10 to 40% by weight of alumina binder on aluminum and about 10 to 80% by weight of clay on a dry basis.
  • the catalytic cracking catalyst of the present application may further contain molecular sieves other than the modified Y-type molecular sieves. Based on the weight of the catalyst, the content of the other molecular sieves on a dry basis may be About 0 to 40% by weight, such as about 0 to 30% by weight or about 1 to 20% by weight.
  • the other molecular sieves may be selected from various molecular sieves suitable for use in a catalytic cracking catalyst, such as one or more of zeolites having an MFI structure, Beta zeolites, other Y-type zeolites, and non-zeolite molecular sieves.
  • the content of the other Y-type molecular sieve is not more than about 40% by weight on a dry basis, for example, it may be about 1-40% by weight or about 0-20% by weight.
  • the other Y-type zeolites such as one or more of REY, REHY, DASY, SOY, PSRY, one or more of MFI structure zeolites such as HZSM-5, ZRP, ZSP, beta zeolites such as H ⁇ zeolite, non- Zeolite molecular sieves, for example, one or more of aluminum phosphate molecular sieve (AlPO molecular sieve), silicon aluminum phosphorus molecular sieve (SAPO molecular sieve).
  • AlPO molecular sieve aluminum phosphate molecular sieve
  • SAPO molecular sieve silicon aluminum phosphorus molecular sieve
  • the content of the modified Y-type molecular sieve on a dry basis is about 15-45% by weight, for example, about 25-40% by weight.
  • the clay may be selected from various clays suitable as a component of the catalytic cracking catalyst, and these clays are well known to those skilled in the art, such as kaolin, polykaolin, montmorillonite, silicon One or more of diatomaceous earth, halloysite, soapstone, rectorite, sepiolite, attapulgite, hydrotalcite, bentonite.
  • the content of the clay in the catalytic cracking catalyst of the present application is about 20-55% by weight or about 30-50% by weight on a dry basis.
  • the catalytic cracking catalyst contains 25 to 40% by weight of the modified Y-type molecular sieve on a dry basis, 20 to 35% by weight of the alumina binder, and 30-50% by weight of the clay on a dry basis.
  • the content of the alumina binder is preferably about 20-35% by weight.
  • the alumina binder described in this application may be selected from one or more of various forms of alumina, hydrated alumina, and aluminum sols commonly used in catalytic cracking catalysts. For example, it may be selected from ⁇ -alumina, ⁇ -Alumina, ⁇ -alumina, ⁇ -alumina, Pseudoboemite, Boehmite, Gibbsite, Bayerite, and alumina sol Species or several species, preferably pseudoboehmite and alumina sol.
  • the catalytic cracking catalyst may contain about 2-15% by weight of aluminum oxide, preferably about 3-10% by weight of aluminum oxide, and / or about 10-30% by weight, preferably about 15-% by weight of aluminum oxide. 25% by weight pseudo-boehmite.
  • the catalytic cracking catalyst of the present application can be prepared by conventional methods, for example, it can be prepared by referring to existing methods, such as the methods described in Chinese Patent Application Publications CN1098130A and CN1362472A.
  • the preparation process generally includes the steps of forming a slurry including modified Y-type molecular sieve, binder, clay and water, spray drying, optional washing and drying, wherein the spray drying, washing and drying steps used are all prior art. There are no special requirements for the application.
  • the present application provides a method for preparing a catalytic cracking catalyst, including the following steps: providing a modified Y-type molecular sieve according to the present application to form the modified Y-type molecular sieve, alumina binder, and clay And water slurry as well as spray drying.
  • the present application provides the use of a modified Y-type molecular sieve according to the present application in catalytic cracking of a hydrocarbon oil, comprising contacting the hydrocarbon oil with a catalytic cracking catalyst comprising the modified Y-type molecular sieve of the present application.
  • the present application provides a catalytic cracking method, including the step of contacting a heavy oil feedstock with the catalytic cracking catalyst of the present application under the conditions of heavy oil fluid catalytic cracking reaction conditions.
  • the heavy oil may be one of various heavy hydrocarbon oil feedstocks known in the art, such as one of vacuum wax, atmospheric residue, vacuum residue, and heavy deasphalted oil. Or more.
  • the reaction conditions of the heavy oil fluid catalytic cracking may be those commonly used in the art, for example, the reaction temperature may be about 480-530 ° C, the reaction time may be about 1-10 seconds, and the agent oil The ratio may be about 3-20: 1 by weight.
  • the rare earth content is about 2-7 wt% based on RE 2 O 3 oxide, the sodium content does not exceed about 0.5 wt% based on sodium oxide Na 2 O, and the total pore volume is about 0.33-0.39 mL / g, with a pore size of 2
  • the pore volume of -100nm secondary pores as a percentage of the total pore volume is about 10-25%, the unit cell constant is about 2.440-2.455nm, and the percentage of non-skeletal aluminum content in the total aluminum content is not higher than about 20%.
  • the lattice collapse temperature is not less than about 1050 ° C, and the ratio of the amount of B acid to the amount of L acid in the total acid amount measured at 200 ° C by the pyridine adsorption infrared method is not less than about 2.30.
  • A5 The modified Y-type molecular sieve according to any one of the preceding items, wherein the ratio of the amount of B acid to the amount of L acid in the total acid amount measured by pyridine adsorption infrared method at 200 ° C is about 2.3-5.0, about 2.4-4.2 or about 2.4-3.5.
  • modified Y-type molecular sieve according to any one of the preceding items, wherein the relative crystal retention of the modified Y-type molecular sieve after aging for 17 hours at 800 ° C, atmospheric pressure, and 100% water vapor atmosphere is about 35% or more, for example, about 36-45% or about 35-45%.
  • modified Y-type molecular sieve according to any one of the preceding items, wherein the relative crystallinity of the modified Y-type molecular sieve is about 58-68%.
  • the modified Y-type molecular sieve according to any one of the preceding items wherein the calcium content of the modified Y-type molecular sieve is about 0.5-3.5% by weight based on calcium oxide CaO, and the rare earth content is based on rare earth oxide RE 2 O 3 of from about 2.5-6.5% by weight, a sodium content of sodium oxide Na 2 O of from about 0.2 to 0.5 wt%, lattice constant of about skeleton silica alumina molar ratio 2.442-2.452nm ratio SiO 2 / Al 2 O 3 That's about 8-12.6.
  • modified Y-type molecular sieve according to any one of the preceding items, wherein the O1s electronic binding energy of the modified Y-type molecular sieve is not greater than about 532.70 eV, for example, about 532.55-532.65 eV.
  • a method for preparing a modified Y-type molecular sieve comprising the following steps:
  • step (1) The Y-type molecular sieve obtained in step (1) is calcined at a temperature of about 350-480 ° C and a steam atmosphere of about 30-90 vol% for about 4.5-7 hours, and optionally dried to obtain a cell with a reduced cell constant.
  • the Y-type molecular sieve with the reduced cell constant on a dry basis is about 0.1-0.7: 1 by weight.
  • the Y-type molecular sieve obtained in step (2) is contacted with silicon tetrachloride gas to react.
  • the reaction temperature is about 200-650 ° C. and the reaction time is about 10 minutes to about 5 hours to obtain the modified Y-type molecular sieve.
  • step (1) has a calcium content of about 0.3-10% by weight as CaO, for example, about 0.9-9% by weight, and a rare earth content of RE 2 O 3 is about 2-8% by weight, such as about 2.1-7% by weight, sodium content is about 4-8.8% by weight as Na 2 O, such as about 5.0-8.5% by weight, and the cell constant is about 2.465-2.472 nm.
  • A13 A method according to any one of items A10-A12, wherein in step (1) in accordance with NaY zeolite: soluble calcium salt: rare earth salt soluble :H 2 O of about 1:0.009-0.28:0.005-0.09 : 5-15 weight ratio NaY molecular sieve, soluble calcium salt, soluble rare earth salt and water are mixed for ion exchange.
  • step (1) NaY molecular sieve is mixed with water, and soluble calcium salt and / or soluble calcium salt solution and soluble rare earth salt and / Or soluble rare earth salt solution for ion exchange reaction;
  • the conditions of the ion exchange reaction are: the exchange temperature is about 15-95 ° C, and the exchange time is about 30-120 minutes;
  • the soluble calcium salt solution and the soluble rare earth salt solution are an aqueous solution of the soluble calcium salt and the soluble rare earth salt; and / or
  • the soluble calcium salt is calcium chloride and / or calcium nitrate
  • the soluble rare earth salt is rare earth chloride and / or rare earth nitrate
  • step (2) the baking temperature is about 380-460 ° C, and the baking atmosphere is about 40-80% of a water vapor atmosphere,
  • the firing time is about 5-6 hours.
  • A16 The method according to any one of items A10-A15, wherein the cell constant of the Y-type molecular sieve having the reduced cell constant obtained in step (2) is about 2.450-2.462 nm, and the water content does not exceed about 1% by weight.
  • step (3) further comprises washing the obtained modified Y-type molecular sieve with water, and the washing conditions include: molecular sieve: H 2 O is about 1: 5-20 The pH value is about 2.5-5.0, and the washing temperature is about 30-60 ° C.
  • a modified Y-type molecular sieve prepared by the method according to any one of items A10-A17.
  • a catalytic cracking catalyst based on the weight of the catalytic cracking catalyst, containing about 10-50% by weight of a modified Y-type molecular sieve on a dry basis, and about 10-40% by weight of alumina based on alumina A binder and about 10-80% by weight of clay on a dry basis; wherein the modified Y-type molecular sieve is the modified Y-type molecular sieve according to any one of items A1-A9 and A18.
  • modified Y-type molecular sieve according to any one of items A1-A9 and A18 in the catalytic cracking of a hydrocarbon oil, comprising combining the hydrocarbon oil with a solution containing any one of items A1-A9 and A18. Catalytic cracking catalyst contact of modified Y molecular sieve.
  • a modified Y-type molecular sieve characterized in that the modified Y-type molecular sieve has a calcium oxide content of about 0.3-4% by weight, a rare earth oxide content of about 2-7% by weight, and a sodium oxide content of not more than about 0.5 % By weight, the total pore volume is about 0.33-0.39 mL / g, the pore volume of the secondary pores with a pore size of 2-100 nm of the modified Y-type molecular sieve as a percentage of the total pore volume is about 10% -25%, and the unit cell The constant is about 2.440-2.455nm.
  • the non-framework aluminum content in the modified Y-type molecular sieve is not higher than about 20% of the total aluminum content, the lattice collapse temperature is not lower than about 1050 ° C, and the pyridine adsorption infrared method is used.
  • the ratio of the amount of B acid to the amount of L acid in the total acid amount of the modified Y-type molecular sieve measured at 200 ° C. is not less than about 2.30.
  • modified Y-type molecular sieve according to item B1 wherein the percentage of non-framework aluminum content in the modified Y-type molecular sieve to the total aluminum content is about 13-19%, and the framework silicon-aluminum ratio is SiO 2 / The Al 2 O 3 molar ratio is about 7.3-14.
  • modified Y-type molecular sieve according to item B1 wherein the modified Y-type molecular sieve has a lattice collapse temperature of about 1050-1080 ° C or 1050 ° -1063 ° C.
  • the modified Y-type molecular sieve according to item B1 characterized in that the ratio of the amount of B acid to the amount of L acid in the total acid amount of the modified Y-type molecular sieve measured at 200 ° C by pyridine adsorption infrared method is about 2.3-5.0 or 2.4-4.2 or 2.4-3.5.
  • modified Y-type molecular sieve according to item B1 wherein the relative crystal retention of the modified Y-type molecular sieve is about 35% after aging at 800 ° C, atmospheric pressure, and 100% water vapor atmosphere for 17 hours.
  • the above is, for example, about 36-45% or 35-48%.
  • modified Y-type molecular sieve according to any one of items B1-B7, wherein the modified Y-type molecular sieve has a calcium oxide content of about 0.3-4% by weight and a rare earth oxide content of about 2-7% by weight
  • the sodium oxide content is about 0.2-0.5% by weight
  • the unit cell constant is about 2.442-2.452nm
  • the framework silicon-aluminum ratio is about 8-12.6.
  • a method for preparing a modified Y-type molecular sieve comprising the following steps:
  • the above-mentioned conventional cell size Y-type molecular sieve containing calcium and rare earth with reduced sodium oxide content is calcined at a temperature of 350-480 ° C and a 30-90 vol% water vapor atmosphere for 4.5-7 hours, and optionally dried to obtain a cell constant.
  • the Y-type molecular sieve with reduced cell constant on a dry basis 0.1-0.7: 1 weight ratio
  • the Y-type molecular sieve with reduced cell constant is contacted with silicon tetrachloride gas, and the reaction temperature
  • the temperature is about 200 ° C to 650 ° C, and the reaction time is 10 minutes to 5 hours. Washing and filtering are performed to obtain a modified Y-type molecular sieve.
  • step (1) the calcium content of the conventional unit cell size calcium and rare earth sieve with reduced sodium oxide content is about 0.4 in terms of CaO -10% by weight, the content of rare earth is about 2-8% by weight based on RE 2 O 3 , the content of sodium oxide is about 4-8.8% by weight, for example, about 5.5-8.5% by weight, and the cell constant is about 2.465-2.472nm.
  • step (1) the NaY molecular sieve is contacted with a soluble calcium salt and a rare earth salt solution to perform an ion exchange reaction according to NaY molecular sieve: soluble calcium salt: soluble rare earth salt:
  • the weight ratio of H 2 O 1: 0.009-0.28: 0.005-0.09: 5-15 forms a mixture of NaY molecular sieve, soluble calcium salt, soluble rare earth salt and water, and stirs.
  • step (1) contacting the NaY molecular sieve with a soluble calcium salt and a rare earth salt solution to perform an ion exchange reaction includes: mixing the NaY molecular sieve with water and stirring Add soluble calcium salt and / or soluble calcium salt solution and soluble rare earth salt and / or soluble rare earth salt solution for ion exchange reaction, filtration, and washing; the conditions of ion exchange reaction are: exchange temperature is about 15-95 °C, exchange time is 30-120 minutes; the soluble calcium salt solution and the rare earth salt solution are an aqueous solution of the soluble calcium salt and the soluble rare earth salt; the soluble calcium salt is, for example, about calcium chloride and / or calcium nitrate, and the soluble rare earth The salt is, for example, about rare earth chloride and / or rare earth nitrate.
  • step (2) the roasting temperature is about 380-460 ° C, the roasting atmosphere is 40-80% water vapor atmosphere, and the roasting time is 5-6 hour.
  • a catalytic cracking catalyst comprising a modified Y-type molecular sieve in an amount of 10% to 50% by weight on a dry basis, an alumina binder in an amount of 10% to 40% by weight on an alumina basis, and 10% by weight on a dry basis -80% by weight clay; the modified Y-type molecular sieve has a calcium oxide content of about 0.3-4% by weight, a rare earth oxide content of about 2-7% by weight, a sodium oxide content of not more than about 0.5% by weight, and total pores The volume is about 0.33-0.39 mL / g.
  • the pore volume of the secondary pores with a pore size of 2-100 nm of the modified Y-type molecular sieve as a percentage of the total pore volume is about 10% -25%, and the cell constant is about 2.440- 2.455nm, the percentage of non-framework aluminum content in the modified Y-type molecular sieve is not higher than about 20%, the lattice collapse temperature is not lower than about 1050 ° C, and measured at 200 ° C by pyridine adsorption infrared method
  • the ratio of the amount of B acid to the amount of L acid in the total acid amount of the modified Y-type molecular sieve is not less than about 2.30.
  • the catalytic cracking catalyst according to item C1 wherein the percentage of the pore volume of the secondary pores with a pore diameter of 2-100 nm in the modified Y-type molecular sieve to the total pore volume is about 15% -21%, The percentage of non-framework aluminum content to the total aluminum content is about 13-19%, the framework silicon-aluminum ratio is about 7.3-14 based on the SiO 2 / Al 2 O 3 molar ratio, and the molecular sieve lattice collapse temperature is about 1050-1080 ° C.
  • the catalytic cracking catalyst according to item C1 characterized in that the relative crystal retention of the modified Y-type molecular sieve is about 35% after severe aging for 17 hours at 800 ° C, atmospheric pressure, and 100% water vapor atmosphere.
  • the above is, for example, about 36-45%.
  • a method for preparing a catalytic cracking catalyst comprising the steps of preparing a modified Y-type molecular sieve, forming a slurry including the modified Y-type molecular sieve, an alumina binder, clay and water, and spray drying, wherein, the The preparation method of modified Y molecular sieve includes the following steps:
  • NaY molecular sieves are contacted with soluble calcium salts and rare earth salts for ion exchange reaction, filtered, washed, and optionally dried to obtain conventional cell size Y molecular sieves containing calcium and rare earths with reduced sodium oxide content;
  • the above-mentioned conventional cell size Y-type molecular sieve containing calcium and rare earth with reduced sodium oxide content is calcined at a temperature of 350-480 ° C and a 30-90 vol% water vapor atmosphere for 4.5-7 hours, and optionally dried to obtain a cell constant.
  • the Y-type molecular sieve with reduced cell constant on a dry basis 0.1-0.7: 1 weight ratio
  • the Y-type molecular sieve with reduced cell constant is contacted with silicon tetrachloride gas, and the reaction temperature
  • the temperature is about 200 ° C to 650 ° C, and the reaction time is 10 minutes to 5 hours. Washing and filtering are performed to obtain a modified Y-type molecular sieve.
  • the Y-type molecular sieve having a conventional unit cell size of calcium and rare earths having a reduced sodium oxide content has a unit cell constant of about 2.465-2.472 nm, the content of sodium oxide does not exceed about 8.8% by weight;
  • the unit cell constant of the Y-type molecular sieve with reduced unit cell constant obtained in step (2) is about 2.450-2.462 nm, and the unit cell with the reduced unit cell constant of the Y-type
  • the water content in the molecular sieve does not exceed about 1% by weight.
  • step (1) the calcium content of the conventional cell size of calcium and rare earth containing a reduced type of sodium oxide in the Y-type molecular sieve is about 0.4 as CaO -3.9% by weight, the content of rare earth is about 2-7% by weight in terms of Re 2 O 3 , the content of sodium oxide is about 4-8.8% by weight, for example, about 5.5-8.5% by weight, and the cell constant is about 2.465-2.472nm.
  • step (1) contacting the NaY molecular sieve with a soluble calcium salt and a rare earth salt solution to perform an ion exchange reaction includes: mixing the NaY molecular sieve with water and stirring Add soluble calcium salt and / or soluble calcium salt solution and soluble rare earth salt and / or soluble rare earth salt solution for ion exchange reaction, filtration, and washing; the conditions of ion exchange reaction are: exchange temperature is about 15-95 °C, exchange time is 30-120 minutes; the soluble calcium salt solution and the rare earth salt solution are an aqueous solution of the soluble calcium salt and the soluble rare earth salt; the soluble calcium salt is, for example, about calcium chloride and / or calcium nitrate, and the soluble rare earth The salt is, for example, about rare earth chloride and / or rare earth nitrate.
  • step (2) the baking temperature is about 380-460 ° C, the baking atmosphere is 40-80% water vapor atmosphere, and the baking time is 5-6 hour.
  • washing method described in step (3) is washing with water
  • the washing temperature is about 30-60 ° C.
  • a catalytic cracking method comprising the step of contacting a heavy oil with a catalytic cracking catalyst under FCC conditions, characterized in that the catalytic cracking catalyst is the catalytic cracking catalyst according to any one of items C1-C5;
  • the FCC conditions are, for example, a reaction temperature of about 480-530 ° C, a reaction time of 1-10 seconds, and an agent-to-oil ratio of 3-20: 1 by weight.
  • NaY molecular sieves were provided by Qilu Branch of Sinopec Catalyst Co., Ltd.
  • the sodium content was 13.5% by weight based on sodium oxide, and the framework silicon-aluminum ratio (SiO 2 / Al 2 O 3 molar ratio) ) Is 4.6, the unit cell constant is 2.470nm, and the relative crystallinity is 90%; calcium chloride and calcium nitrate are chemically pure reagents produced by Sinopharm Chemical Reagent Co., Ltd. (Shanghai test), and rare earth chloride and rare earth nitrate are Beijing Chemical Chemically pure reagents produced by the factory.
  • the proposed boehmite is an industrial product produced by Shandong Aluminum Plant, with a solid content of 61% by weight; kaolin is a special kaolin for cracking catalysts produced by Suzhou China Kaolin Company, with a solid content of 76% by weight; aluminum sol is provided by Qilu Branch of Sinopec , Wherein the alumina content is 21% by weight.
  • SiO 2 / Al 2 O 3 (2.5858-a 0 ) ⁇ 2 / (a 0 -2.4191)]
  • a 0 is the unit cell constant and the unit is nm.
  • the total silicon-aluminum ratio of the molecular sieve is calculated based on the Si and Al element content determined by X-ray fluorescence spectroscopy.
  • the skeleton silicon-aluminum ratio determined by XRD method and the total silicon-aluminum ratio determined by XRF can calculate the ratio of skeleton Al to total Al. Calculate the ratio of non-skeletal Al to total Al.
  • the crystal structure collapse temperature was measured by differential thermal analysis (DTA).
  • the type of the acid center of the molecular sieve and the amount of the acid center thereof were determined by infrared analysis using pyridine adsorption.
  • Experimental instrument Bruker's IFS113V FT-IR (Fourier transform infrared) spectrometer. The pyridine adsorption infrared method was used to determine the acid content at 200 ° C.
  • Experimental method The sample was self-supported and tabletted, placed in an in-situ cell of an infrared spectrometer, and sealed. The temperature was raised to 400 ° C, and the vacuum was evacuated to 10 -3 Pa, and the temperature was maintained for 2 hours to remove the gas molecules adsorbed by the sample.
  • the temperature was lowered to room temperature, and the introduction pressure was 2.67Pa.
  • the pyridine vapor was maintained at equilibrium for 30 minutes.
  • the infrared spectra of pyridine adsorbed intensity 1540cm -1 and 1450 cm -1 characteristic adsorption peaks, to give a total molecular sieves Relative amount of acid center (B acid center) and Lewis acid center (L acid center).
  • the method for measuring the secondary pore volume is as follows: in accordance with the RIPP 151-190 standard method (see “Analytical Method for Petrochemical Engineering (RIPP Test Method)", edited by Yang Cuiding, etc., Science Press, First edition, September 1990, pp. 424-426) Determine the total pore volume of the molecular sieve according to the adsorption isotherm, and then determine the micropore volume of the molecular sieve from the adsorption isotherm according to the T mapping method, and subtract the total pore volume. Micropore volume gives secondary pore volume.
  • the O1s electron binding energy of the obtained molecular sieve was determined by the following method: XPS experiments were performed on an ESCALab250 X-ray photoelectron spectrometer from Thermo Fisher Company, where the excitation source was a monochromatic Al K ⁇ X Ray, energy is 1486.6eV, power is 150W; permeation energy used for narrow scan is 30eV; basic vacuum during analysis is about 6.5 ⁇ 10 -10 mbar; C1s peak (284.8eV) which can use alkyl carbon or polluted carbon Calibration; the processing software is Avantage 5.952, which comes with the instrument.
  • the binding energy value is determined according to the obtained XPS data.
  • a Y-type molecular sieve having a sodium content of 7.2% by weight, a calcium content of 3.8% by weight as CaO, and a rare earth content of 4.7% by weight as RE 2 O 3 . Thereafter, it was calcined at a temperature of 470 ° C. and 70% by volume of water vapor for 5 hours to obtain a Y-type molecular sieve having a cell constant of 2.458 nm. Thereafter, a drying treatment was performed to reduce the water content to less than 1% by weight. Then, according to the weight ratio of SiCl 4: Y zeolite 0.4: 1, SiCl 4 gas heated and vaporized was passed in and reacted at a temperature of 500 ° C. for 1 hour, and then washed with 20 liters of decationized water, and then Filtration gave a modified Y-type molecular sieve, which was designated as SZ3. Its physical and chemical properties are listed in Table 1.
  • a second hydrothermal modification treatment was performed.
  • the hydrothermal treatment was performed at a temperature of 650 ° C under 100% water vapor for 5 hours to obtain two ion exchanges and two hydrothermal superstable hydrothermal superstable without calcium and rare earth.
  • Y-type molecular sieve, denoted as DZ1 and its physical and chemical properties are listed in Table 1.
  • hydrothermal modification treatment takes 2000 g of NaY molecular sieve (dry basis), add to 20 liters of decationized aqueous solution and stir to mix well, add 1000 g (NH 4 ) 2 SO 4 , stir, heat to 90-95 ° C for 1 hour, then filter and wash After the filter cake is dried at 120 ° C, hydrothermal modification treatment is performed.
  • the conditions of the hydrothermal modification treatment are baking at 100 ° C for 5 hours at a temperature of 650 ° C. After that, it was added to a 20 liter decationized aqueous solution and stirred to make it mix well.
  • SiCl 4 gas heated and vaporized was passed in and reacted at a temperature of 580 ° C. for 1.5 hours. After that, it was washed with 20 liters of decationized water and then filtered.
  • a gas-phase high-silicon ultra-stable Y-type molecular sieve was obtained, which is denoted as DZ3, and its physical and chemical properties are listed in Table 1.
  • the modified Y-type molecular sieve of the present application has the following advantages at the same time: the sodium content in terms of sodium oxide is low, the silicon-aluminum in the molecular sieve is relatively high and the non-framework aluminum content is small, and the secondary pores in the molecular sieve are 2.0-100 nm
  • the volume percentage of the total pore volume is high, and the B acid / L acid (the ratio of the total amount of B acid to the amount of L acid) is high. It is determined when the molecular sieve has a small cell constant and contains a certain amount of calcium and rare earth. Higher crystallinity value and higher thermal stability.
  • the modified Y-type molecular sieve of the present application has a relatively high degree of crystal retention after aging under the severe conditions of 800 ° C and 17 hours under the condition that the molecular sieve sample is bare, indicating that the modified Y-type of the present application Molecular sieves have high hydrothermal stability.
  • Examples 4-8 illustrate the catalytic cracking activity and stability of a catalyst comprising the modified Y-type molecular sieve of the present application.
  • the modified Y-type molecular sieves SZ1, SZ2, and SZ3 prepared in Examples 1-3 were prepared into a catalyst, and the catalyst numbers were: SC1, SC2, SC3, SC4, and SC5. After the obtained catalyst was aged at 800 ° C. for 4 hours or 17 hours with 100% water vapor, the light oil microreactivity was evaluated. The evaluation results are shown in Table 3.
  • the SZ2 and SZ3 molecular sieves were used in place of the SZ1 molecular sieves, respectively, and SC2 and SC3 catalysts were prepared according to the same method as the SC1 catalyst preparation.
  • the obtained SC2 and SC3 catalysts each contained 30% by weight of the modified Y molecular sieve, 42% by weight of kaolin, 25% by weight of pseudoboehmite, and 3% by weight of aluminum sol.
  • SC4 and SC5 catalysts were prepared using SZ2 molecular sieves according to the method basically the same as the above-mentioned preparation of SC1 catalysts, wherein the amount of each preparation raw material was appropriately adjusted so that, on a dry basis, the obtained SC4 catalyst contained 25% by weight of SZ2 molecular sieves and 47% by weight of kaolin. 24% by weight of pseudoboehmite and 4% by weight of aluminum sol; the obtained SC5 catalyst contained 40% by weight of SZ2 molecular sieve, 30% by weight of kaolin, 20% by weight of boehmite and 10% by weight of aluminum sol.
  • Light oil microinverse activity (MA) (gasoline production below 216 ° C + gas production + coke production) in the product / total amount of feed ⁇ 100%.
  • Comparative Examples 4-6 illustrate the catalytic cracking activity and stability of the catalyst containing the ultra-stable Y-type molecular sieves prepared in Comparative Examples 1-3.
  • the corresponding catalysts DC1, DC2, and DC3 were prepared using the ultra-stable Y-type molecular sieves DZ1, DZ2, and DZ3 prepared in Comparative Examples 1-3, respectively.
  • the obtained catalysts DC1, DC2, and DC3 all contained 30% by weight of ultra-stable Y-type molecular sieve, 42% by weight of kaolin, 25% by weight of pseudoboehmite, and 3% by weight of aluminum sol.
  • the catalysts were aged at 800 ° C for 4 hours or 17 hours with 100% water vapor, the light oil micro-reverse activity was evaluated.
  • the evaluation methods are shown in Examples 4-8.
  • the evaluation results are shown in Table 3.
  • Examples 9-13 illustrate the catalytic cracking performance of a catalyst comprising a modified Y-type molecular sieve of the present application.
  • the SC1, SC2, SC3, SC4 and SC5 catalysts were aged at 800 ° C, atmospheric pressure and 100% water vapor, and their catalytic cracking performance was evaluated on a small fixed fluidized bed reactor (ACE).
  • ACE small fixed fluidized bed reactor
  • the cracked gas and product oil were respectively Collected by gas chromatography.
  • the catalyst loading is 9g
  • the reaction temperature is 500 ° C
  • the weight hourly space velocity is 16h -1
  • the agent-to-oil ratio (weight ratio) is shown in Table 5
  • the raw oil properties of the ACE experiment are shown in Table 4, and the evaluation results are shown in Table 5.
  • Isomeric C4 hydrocarbon content isobutane content (weight,%) + isobutene content (weight,%).
  • Comparative Examples 7-9 illustrate the catalytic cracking performance of the catalyst containing the ultra-stable Y-type zeolite prepared in Comparative Examples 1-3.
  • the catalytic cracking catalyst prepared by using the molecular sieve of the present application as an active component has high hydrothermal stability, and shows higher conversion activity of heavy oil when used in catalytic cracking of heavy oil.
  • Significantly lower coke selectivity, significantly improved total liquid yield, light oil yield, and gasoline yield, and the content of isomeric C4 hydrocarbons and the content of isomeric hydrocarbons in gasoline also increased significantly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

一种改性Y型分子筛及其制备和应用,该改性Y型分子筛的钙含量以氧化钙计为约0.3-4重量%,稀土含量以氧化稀土计为约2-7重量%,钠含量以氧化钠计不超过约0.5重量%,总孔体积为约0.33-0.39mL/g,其中孔径为2-100nm的二级孔的孔体积占总孔体积的百分比为约10-25%,晶胞常数为约2.440-2.455nm,非骨架铝含量占总铝含量的百分比不高于约20%,晶格崩塌温度不低于约1050℃,并且,用吡啶吸附红外法在200℃时测定的总酸量中B酸量与L酸量的比值不低于约2.30。该改性Y型分子筛及包含它的催化裂化催化剂用于重油催化裂化时具有更高的重油转化活性和较低的焦炭选择性,能得到更高的汽油收率和异构C4收率,且所得汽油中具有更高的异构烃含量。

Description

改性Y型分子筛、包含它的催化裂化催化剂、及其制备和应用
相关申请的交叉引用
本申请要求申请人于2018年6月29日向中国专利局提交的申请号为201810714296.1、名称为“一种多产异构C4的高稳定性改性Y型分子筛及其制备方法”的专利申请的优先权,以及申请人2018年6月29日向中国专利局提交的申请号为201810715238.0、名称为“一种催化裂化催化剂”的专利申请的优先权,上述专利申请的内容经此引用全文并入本文。
技术领域
本申请涉及分子筛和催化裂化的技术领域,更具体地涉及一种改性Y型分子筛、包含它的催化裂化催化剂、它们的制备方法和应用。
背景技术
目前,工业上制取高硅Y型分子筛(也称Y型沸石)主要采用水热法,该法将NaY分子筛进行多次稀土离子交换和多次高温焙烧,可以制备出含稀土的高硅Y型分子筛,这也是制备高硅Y型分子筛最为常规的方法。但是,水热法制备稀土高硅Y型分子筛存在以下不足:由于过于苛刻的水热处理条件会破坏分子筛的结构,不能得到硅铝比很高的Y型分子筛;骨架外铝的产生虽对提高分子筛的稳定性和形成新的酸中心有益,但过多的骨架外铝降低了分子筛的选择性;另外,分子筛中的许多脱铝空穴不能及时被骨架上迁移出的硅补上,往往造成分子筛的晶格缺陷,分子筛的结晶保留度较低。而且由于常规Y型分子筛中仅含有稀土、硅、铝等元素,其结构和性能调整局限于一定范围内,往往造成产物组成稳定于一定范围内。因此,水热法制备出的含稀土高硅Y型分子筛的热及水热稳定性较差,表现在其晶格崩塌温度低,经水热老化后其结晶度保留率及比表面积保留率低,选择性较差。
美国专利US4584287和US4429053中,将NaY分子筛先用稀土离子交换而后进行水蒸气处理,所述方法由于稀土离子的屏蔽作用和支撑使水蒸汽处理过程中分子筛的铝脱除比较困难,分子筛在水蒸汽处 理前的晶胞参数增大到2.465-2.475nm,而处理后为2.420-2.464nm,降低晶胞参数所需温度较高(593-733℃)。
美国专利US5340957和US5206194提供的方法中,原料NaY分子筛的SiO 2/Al 2O 3比为6.0,其方法也是将NaY进行稀土交换后,再进行水热处理,同样存在前述美国专利US4584287和US4429053的缺点。
另外一种生产高硅Y型分子筛的方法是气相化学法,气相化学法是Beyer和Mankui在1980年首先报道的制备高硅分子筛的另一种重要方法。气相化学法一般采用氮气保护下的SiCl 4与无水NaY分子筛在一定温度下进行反应。整个反应过程充分利用SiCl 4提供的外来Si源,通过同晶取代一次完成脱铝和补硅反应。美国专利US4273753、US4438178,中国专利申请公开CN1382525A,CN1194941A,CN1683244A公开了利用SiCl 4气相化学脱铝制超稳Y型分子筛的方法。但是,单纯的气相超稳分子筛几乎没有二级孔。
此外,用常规Y分子筛制备的催化剂所产异构C4的量和汽油中异构烃的含量稳定于一定范围而很难提高。朱华元(石油学报(石油加工),2001,17(6):6-10)等人研究了含镁改性分子筛对FCC催化剂性能的影响。该研究报导说含Mg、Ca分子筛的FCC催化剂的重油转化能力强、氢转移反应活性高、具有较高的异丁烷产物含量。但是,采用该文献所公开方法制备的Y型分子筛的热和水热稳定性较差,且一定条件下只能提高异丁烷的含量,而不能有效提高汽油中的异构烃含量。
现有技术中的水热法或气相法制备的超稳分子筛的性能均不能很好地满足当前加工重质油及劣质油并提升汽油质量的需要。
上文描述的内容仅作为本申请的背景提供,本文中未以任何方式承认上述内容在本申请的提交日前已经公开成为本领域的现有技术。
发明内容
本申请的目的之一是提供一种高稳定性的改性Y型分子筛、其制备方法和应用,该分子筛适用于重质油催化裂化加工,并且能够多产异构C4和提高汽油中异构烃含量。本申请的另一目的是提供一种包含所述改性Y型分子筛的催化裂化催化剂、及其制备方法和应用,该催化剂的热及水热稳定性高,能够提高汽油、异构C4和汽油中异构烃的 产率,且焦炭选择性好。
为了实现上述目的,一方面,本申请提供了一种改性Y型分子筛,以干基计并以所述改性Y型分子筛的重量为基准,该改性Y型分子筛的钙含量以氧化钙CaO计为约0.3-4重量%,稀土含量以氧化稀土RE 2O 3计为约2-7重量%,钠含量以氧化钠Na 2O计不超过约0.5重量%,总孔体积为约0.33-0.39mL/g,其中孔径为2-100nm的二级孔的孔体积占总孔体积的百分比为约10-25%,晶胞常数为约2.440-2.455nm,非骨架铝含量占总铝含量的百分比不高于约20%,晶格崩塌温度不低于约1050℃,并且,用吡啶吸附红外法在200℃时测定的总酸量中B酸量与L酸量的比值不低于约2.30。
另一方面,本申请提供了一种改性Y型分子筛的制备方法,包括以下步骤:
(1)将NaY分子筛与可溶性钙盐和可溶性稀土盐的溶液接触进行离子交换反应,得到钠含量降低的含钙和稀土的Y型分子筛;
(2)将步骤(1)得到的Y型分子筛在约350-480℃的温度、约30-90体积%的水蒸汽气氛下焙烧约4.5-7小时,任选干燥,得到晶胞常数降低的Y型分子筛;
(3)按照SiCl 4∶以干基计的所述晶胞常数降低的Y型分子筛为约0.1-0.7∶1的重量比将步骤(2)得到的Y型分子筛与四氯化硅气体接触反应,反应温度为约200-650℃,反应时间为约10分钟至约5小时,得到所述改性Y型分子筛。
再一方面,本申请提供了通过所述的改性Y型分子筛制备方法制备得到的改性Y型分子筛。
再一方面,本申请提供了一种催化裂化催化剂,以所述催化裂化催化剂的重量为基准,含有以干基计约10-50重量%的根据本发明的改性Y型分子筛、以氧化铝计约10-40重量%的氧化铝粘结剂和以干基计约10-80重量%的粘土。
又一方面,本申请提供了根据本发明的改性Y型分子筛在烃油催化裂化中的应用,包括将所述烃油与包含所述改性Y型分子筛的催化裂化催化剂接触。
本申请提供的改性Y型分子筛,具有较高的热和水热稳定性,可以用作催化裂化催化剂的活性组元,用于重油或劣质油转化;还可以 用于汽油吸附脱硫,以改善脱硫后汽油的辛烷值;也可用于润滑油异构降凝。所述改性Y型分子筛用在烃油催化裂化中时,具有较高的重油转化能力,较高的液化气收率、异构C4收率,和汽油收率,且所得汽油中异构烃含量更高,轻质油收率和总液收也较高,并具有较好的焦炭选择性。可用于多产具有较高异构烃含量的汽油同时多产C4异构烃。
以此分子筛为活性组元的根据本申请的催化裂化催化剂具有较高的水热稳定性,用于重油催化裂化时,较现有含Y型分子筛的催化裂化催化剂具有更高的重油转化活性和较低的焦炭选择性,能获得更高的汽油收率、轻质油收率、总液收和异构C4收率,且汽油中具有更多的异构烃。
具体实施方式
以下将通过具体的实施方式对本申请作出进一步的详细描述,应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请,但不以任何方式限制本发明。
在本文中所披露的任何具体数值(包括数值范围的端点)都不限于该数值的精确值,而应当理解为还涵盖了接近该精确值的值,例如在该精确值±5%范围内的所有可能的数值。并且,对于所披露的数值范围而言,在该范围的端点值之间、端点值与范围内的具体点值之间,以及各具体点值之间可以任意组合而得到一个或多个新的数值范围,这些新的数值范围也应被视为在本文中具体公开。
除非另有说明,本文所用的术语具有与本领域技术人员通常所理解的相同的含义,如果术语在本文中有定义,且其定义与本领域的通常理解不同,则以本文的定义为准。
本申请中,除了明确说明的内容之外,未提到的任何事宜或事项均直接适用本领域已知的那些而无需进行任何改变。而且,本文描述的任何实施方式均可以与本文描述的一种或多种其他实施方式自由结合,由此形成的技术方案或技术思想均视为本发明原始公开或原始记载的一部分,而不应被视为是本文未曾披露或预期过的新内容,除非本领域技术人员认为该结合明显不合理。
本发明中涉及的RIPP试验方法具体可参见《石油化工分析方法 (RIPP试验方法)》,杨翠定等编,科学出版社,1990年9月第一版,第263-268、412-415和424-426页,ISBN:7-03-001894-X,其经此引用全文并入本文。
在本文中提及的所有专利和非专利文献,包括但不限于教科书和期刊文章等,均通过引用方式全文并入本文。
在本申请中,术语“异构烃”是指链状异构烷烃和链状异构烯烃。异构烃含量提高有利于改善汽油品质,例如可以在降低芳烃和烯烃含量的情况下使汽油辛烷值不降低。
在本申请中,术语“异构C4”是指具有4个碳原子的链状异构烷烃和链状异构烯烃,例如异丁烷和异丁烯。
在本申请中,表述“常规晶胞大小的Y型分子筛”表示该Y型分子筛的晶胞常数在常规NaY分子筛的晶胞常数的范围内,优选在约2.465nm至约2.472nm的范围内。
在本申请中,术语“常压”表示压力为约1atm。
在本申请中,物质的干基重量是指该物质在800℃焙烧1小时得到的固体产物重量。
在本申请中,术语“Y型分子筛”和“Y型沸石”可互换使用,且术语“NaY分子筛”和“NaY沸石”也可互换使用。
在本申请中,可溶性钙盐溶液也称钙盐溶液,可溶性稀土盐溶液也称稀土盐溶液。所述的钙盐可以为各种可溶于溶剂如水中的钙盐,优选为氯化钙和/或硝酸钙。所述的稀土盐可以为各种可溶于溶剂如水中的稀土盐,优选为氯化稀土和/或硝酸稀土。所述的稀土例如La、Ce、Pr、Nd以及混合稀土中的一种或多种,优选地,所述的混合稀土中含有La、Ce、Pr和Nd中的一种或多种,或还含有除La、Ce、Pr和Nd以外的稀土中的至少一种。
在第一方面,本申请提供了一种改性Y型分子筛,其钙含量以氧化钙计为约0.3-4重量%,例如为约0.5-3.5重量%、约0.9-3重量%或约0.9-4重量%;稀土含量以氧化稀土计为约2-7重量%,优选为约2.5-6.5重量%,例如约2.5-4.5%重量%;钠含量以氧化钠计为不超过约0.5重量%,可以为约0.1-0.5重量%,例如约0.13-0.4重量%,优选为约0.15-0.5重量%,例如约0.2-0.5重量%、约0.3-0.5重量%、0.20-0.45重量%或0.25-0.4重量%。
在优选的实施方式中,本申请的改性Y型分子筛基本不含除钙和稀土之外的其他改性离子或元素,包括但不限于P、Mg、Ga、Cr、Zn和Cu等,例如除钙和稀土之外的其他改性离子或元素各自的含量(以氧化物计)小于所述改性Y型分子筛的干基重量的约0.1重量%,例如小于约0.05重量%或小于约0.01重量%。
在本申请的改性Y型分子筛中,孔径(指直径)为2-100nm的二级孔的孔体积占总孔体积的百分比为约10-25%,优选为约15-23%,例如为约15-21%或17-21%。
在本申请的改性Y型分子筛中,非骨架铝含量占总铝含量的百分比不高于约20%,例如为约10-20%或约13-19%。
本申请的改性Y型分子筛为高硅Y型分子筛,其骨架硅铝比(以SiO 2/Al 2O 3摩尔比计)为约7.3-14.0,例如为约8-12.6。
本申请的改性Y型分子筛的晶格崩塌温度(也称结构崩塌温度)不低于约1050℃。优选地,该分子筛的晶格崩塌温度为约1050-1080℃,例如为约1050-1063℃或1052-1065℃。
在本申请的改性Y型分子筛中,用吡啶吸附红外法在200℃时测定的总酸量中B酸量与L酸量的比值不低于约2.30,优选为约2.4-3.5、2.4-4.2或2.3-5.0。
本申请的改性Y型分子筛的晶胞常数为约2.440-2.455nm,例如为约2.442-2.452nm。
在优选的实施方式中,本申请的改性Y型分子筛的相对结晶度为不低于约58%,例如为约58-68%、约59-63%、约60-70%或约60-66%。
本申请提供的改性Y型分子筛,在800℃、常压、100体积%水蒸汽气氛下老化17小时后的结晶保留度不低于约35%,例如为约36-45%、约38-44%、约35-48%或约39-45%。
在优选的实施方式中,本申请的改性Y型分子筛的比表面积为约620-670m 2/g,例如为约630-660m 2/g。
本申请的改性Y型分子筛的总孔体积为约0.33-0.39mL/g,优选为约0.35-0.39mL/g,例如为约0.35-0.375mL/g。
在优选的实施方式中,本申请的改性Y型分子筛的微孔体积为约0.25-0.35mL/g,例如为约0.26-0.32mL/g或约0.28-0.31mL/g。
在优选的实施方式中,本申请的改性Y型分子筛通过下文所述的 改性Y型分子筛制备方法制备得到。
本申请的改性Y型分子筛的热和水热稳定性高,异构烃选择性高,用于重油催化裂化时,较现有Y型分子筛具有更高的重油转化活性和较低的焦炭选择性,能实现更高的汽油收率、异构C4收率,轻质油收率和总液收,且所得汽油中具有更多的异构烃。
在第二方面,本申请提供了一种改性Y型分子筛的制备方法,包括以下步骤:
(1)将NaY分子筛与可溶性钙盐和可溶性稀土盐的溶液接触进行离子交换反应,得到钠含量降低的含钙和稀土的Y型分子筛;
(2)将步骤(1)得到的Y型分子筛在约350-480℃的温度、约30-90体积%的水蒸汽气氛下焙烧约4.5-7小时,任选干燥,得到晶胞常数降低的Y型分子筛;以及
(3)按照SiCl 4∶以干基计的所述晶胞常数降低的Y型分子筛为约0.1-0.7∶1的重量比将步骤(2)得到的Y型分子筛与四氯化硅气体接触反应,反应温度为约200-650℃,反应时间为约10分钟至约5小时,得到所述改性Y型分子筛。
在某些具体实施方式中,所述方法包括以下步骤:
(1)将NaY分子筛与可溶性钙盐和可溶性稀土盐的溶液接触进行离子交换反应,过滤、洗涤,得到钠含量降低的含钙和稀土的常规晶胞大小的Y型分子筛;
(2)将所述钠含量降低的含钙和稀土的常规晶胞大小的Y型分子筛进行改性处理,任选干燥,得到晶胞常数降低的Y型分子筛,所述改性处理为将所述钠含量降低的含钙和稀土的常规晶胞大小的Y型分子筛在约350-480℃的温度、含约30-90体积%水蒸汽的气氛(也称约30-90体积%水蒸汽气氛或称约30-90%水蒸汽)下焙烧约4.5-7小时;以及
(3)将所述晶胞常数降低的Y型分子筛样品与SiCl 4气体在温度为约200-650℃的条件下接触反应,其中SiCl 4∶ 以干基计的步骤(2)得到的晶胞常数降低的Y型分子筛的重量比为约0.1-0.7∶1,反应时间为约10分钟至约5小时,然后经洗涤、过滤,得到改性Y型分子筛。
在某些具体实施方式中,步骤(3)中使用的所述晶胞常数降低的Y型分子筛的水含量不超过约1重量%。如果步骤(2)改性处理得到 的Y型分子筛中(焙烧得到的Y型分子筛样品中)水含量不超过约1重量%,可以直接用于与四氯化硅接触进行所述反应,如果步骤(2)焙烧得到的Y型分子筛中水含量超过1重量%,则对步骤(2)焙烧得到的所述晶胞常数降低的Y型分子筛进行干燥使其水含量低于约1重量%。
在本申请的改性Y型分子筛制备方法中,步骤(1)中所述的接触,可以是将NaY分子筛与可溶性钙盐溶液和可溶性稀土盐先后接触进行离子交换(例如先与稀土盐溶液接触,然后与钙盐溶液接触;或者先与钙盐溶液接触,然后与稀土盐溶液接触),也可以是将NaY分子筛与含有可溶性钙盐和可溶性稀土盐的溶液(本申请也称为可溶性钙盐和稀土盐的混合溶液)接触。所述可溶性钙盐和稀土盐的混合溶液可以通过将可溶性钙盐和可溶性稀土盐与溶剂例如水混合得到。
所述NaY分子筛,可以商购或者按照现有方法制备。在具体实施方式中,所述NaY分子筛的晶胞常数为约2.465-2.472nm,骨架硅铝比(SiO 2/Al 2O 3摩尔比)为约4.5-5.2,相对结晶度为约85%以上,例如为约85-95%,钠含量以氧化钠计为约13.0-13.8重量%。
在步骤(1)的离子交换反应中,交换温度优选为约15-95℃,例如为约65-95℃,交换时间优选为约30-120分钟,例如约45-90分钟,以重量计NaY分子筛(以干基计)∶钙盐(以CaO计)∶稀土盐(以RE 2O 3计)∶H 2O为约1∶0.009-0.28∶0.005-0.09∶5-15。所述的稀土盐为可溶性稀土盐,所述的钙盐为可溶性钙盐。
在一种优选实施方式中,在步骤(1)的离子交换反应中,按照NaY分子筛∶钙盐∶稀土盐∶H 2O为约1∶0.009-0.27∶0.005-0.09∶5-15的重量比将NaY分子筛、钙盐、稀土盐和水形成混合物,在约15-95℃、例如约65-95℃搅拌,优选搅拌约30-120分钟进行钙离子和稀土离子与钠离子的交换。所述的水例如为脱阳离子水、去离子水或其混合物。其中,将NaY分子筛、钙盐、稀土盐和水形成混合物,可以是将NaY分子筛和水形成浆液,然后在所述的浆液中加入钙盐和/或钙盐水溶液、稀土盐和/或稀土盐水溶液。
在本申请方法的优选实施方式中,步骤(1)所述的洗涤,目的是洗去交换出的钠离子,例如,可以使用去离子水或脱阳离子水洗涤。优选地,步骤(1)得到的钠含量降低的含钙和稀土的常规晶胞大小的 Y型分子筛的钙含量以CaO计为约0.3-10重量%,例如为约0.9-9重量、约0.4-6重量%、约1-5重量%、约2-4重量%、约0.3-4重量%、约3-6重量、约3.5-5.5重量%或约4-9重量%;稀土含量以Re 2O 3计为约2-8重量%、约2.1-7重量%、约3-7重量或约4-6重量%;钠含量以氧化钠计不超过约9重量%,例如为约5.0-8.5重量%或约5.5-7.5重量%,晶胞常数为约2.465-2.472nm。
在本申请方法的优选实施方式中,步骤(2)所述的焙烧温度为约380-460℃,焙烧气氛为约40-80体积%的水蒸汽气氛,焙烧时间为约5-6小时。
在本申请方法的优选实施方式中,所述的水蒸汽气氛中含有约30-90体积%、优选约40-80体积%水蒸气,此外还可含有其它气体,例如空气、氦气或氮气中的一种或多种。
在本申请方法的优选实施方式中,步骤(2)中所述的晶胞常数降低的Y型分子筛,其晶胞常数为约2.450-2.462nm。
在本申请方法的优选实施方式中,步骤(2)中还包括将焙烧得到的分子筛进行干燥,以使所述晶胞常数降低的Y型分子筛中的水含量优选不超过约1重量%。
在本申请方法的优选实施方式中,步骤(3)中,SiCl 4∶Y型沸石(以干基计)的重量比为约0.3-0.6∶1,反应温度为约350-500℃。
在本申请方法的优选实施方式中,步骤(3)所述的洗涤方法可以采用常规的洗涤方法,可用水洗涤例如脱阳离子水或去离子水洗涤,目的是除去沸石中残存的Na +,Cl -及Al 3+等可溶性副产物。例如,洗涤条件可以为:洗涤水与分子筛的重量比为约5-20∶1,例如约6-15∶1,pH值为约2.5-5.0,洗涤温度为约30-60℃。优选地,所述洗涤进行到使洗涤后的洗涤液中检测不出游离的Na +,Cl -及Al 3+等离子,通常洗涤后的洗涤液中Na +,Cl -及Al 3+离子各自的含量为不超过约0.05重量%。
在一种优选实施方式中,本申请的改性Y型分子筛制备方法包括以下步骤:
(1)将NaY分子筛(也称NaY沸石)与可溶性钙盐和稀土盐的混合溶液接触进行离子交换反应,过滤,洗涤,得到钠含量降低的含钙和稀土的常规晶胞大小的Y型分子筛,所述离子交换在搅拌、温度 为约15-95℃、优选约65-95℃的条件下进行约30-120分钟;
(2)将所述钠含量降低的含钙和稀土的常规晶胞大小的Y型分子筛在约350-480℃的温度、含约30-90体积%的水蒸汽气氛下焙烧约4.5-7小时,干燥,得到水含量低于约1重量%的晶胞常数降低的Y型分子筛;所述晶胞常数降低的Y型分子筛的晶胞常数为约2.450-2.462nm;以及
(3)将所述水含量低于约1重量%的晶胞常数降低的Y型分子筛与经加热汽化的SiCl 4气体接触,其中SiCl 4∶所述晶胞常数降低的Y型分子筛(以干基计)的重量比为约0.1-0.7∶1,在温度为约200-650℃的条件下接触反应约10分钟至约5小时,经洗涤和过滤,得到所述的改性Y型分子筛。
本申请提供的钙和稀土改性Y型分子筛制备方法,可以制备高结晶度、高热稳定性及高水热稳定性的具有一定二级孔结构的高硅Y型分子筛,该含钙和稀土分子筛中铝分布均匀,非骨架铝含量少,该改性Y型分子筛用于重油转化,焦炭选择性好,重油裂化活性高,可以提高分子筛用于重油转化时的汽油收率、异构C4收率和汽油中异构烃含量,提高液化气收率、轻质油收率和总液收。
在第三方面,本申请提供了根据本申请的改性Y型分子筛制备方法制备得到的改性Y型分子筛。
在第四方面,本申请提供了一种催化裂化催化剂,以所述催化裂化催化剂的重量为基准,其包括以干基计约10-50重量%的本申请的改性Y型分子筛、以氧化铝计约10-40重量%的氧化铝粘结剂和以干基计约10-80重量%的粘土。
在某些具体实施方式中,本申请的催化裂化催化剂还可含有所述改性Y型分子筛以外的其它分子筛,以所述催化剂的重量为基准,以干基计所述其它分子筛的含量可以为约0-40重量%,例如为约0-30重量%或约1-20重量%。所述其它分子筛可选自各种适用于在催化裂化催化剂中使用的分子筛,例如具有MFI结构沸石、Beta沸石、其它Y型沸石、非沸石分子筛中的一种或几种。优选地,以干基计,所述其它Y型分子筛的含量为不超过约40重量%,例如可以为约1-40重量%或约0-20重量%。所述其它Y型沸石例如REY、REHY,DASY、SOY、PSRY中的一种或多种,MFI结构沸石例如HZSM-5、ZRP、ZSP中的 一种或多种,beta沸石例如Hβ沸石,非沸石分子筛例如磷酸铝分子筛(AlPO分子筛)、硅铝磷分子筛(SAPO分子筛)中的一种或多种。
在本申请催化剂的优选实施方式中,以干基计所述改性Y型分子筛的含量为约15-45重量%,例如为约25-40重量%。
在本申请的催化裂化催化剂中,所述粘土可选自各种适合作为催化裂化催化剂组分的粘土,这些粘土为本领域技术人员所熟知,例如为高岭土、多水高岭土、蒙脱土、硅藻土、埃洛石、皂石、累托土、海泡石、凹凸棒石、水滑石、膨润土中的一种或几种。优选地,以干基计,本申请的催化裂化催化剂中所述粘土的含量为约20-55重量%或约30-50重量%。
在一优选实施方式中,所述催化裂化催化剂含有以干基计25-40重量%的所述改性Y型分子筛、以氧化铝计20-35重量%的所述氧化铝粘结剂和以干基计30-50重量%的所述粘土。
在本申请的催化裂化催化剂中,所述氧化铝粘结剂的含量优选为约20-35重量%。本申请所述氧化铝粘结剂可选自催化裂化催化剂中通常使用的各种形态的氧化铝、水合氧化铝以及铝溶胶中的一种或几种,例如可选自γ-氧化铝、η-氧化铝、θ-氧化铝、χ-氧化铝、拟薄水铝石(Pseudoboemite)、一水铝石(Boehmite)、三水铝石(Gibbsite)、拜耳石(Bayerite)和铝溶胶中的一种或几种,优选拟薄水铝石和铝溶胶。例如,所述催化裂化催化剂中可含有以氧化铝计为约2-15重量%优选约3-10重量%的铝溶胶,和/或以氧化铝计约10-30重量%、优选约15-25重量%的拟薄水铝石。
本申请的催化裂化催化剂可采用常规方法制备,例如可参考现有方法,如中国专利申请公开CN1098130A、CN1362472A所描述的方法制备。制备过程通常包括形成包括改性Y型分子筛、粘结剂、粘土和水的浆液、喷雾干燥、任选洗涤和干燥的步骤,其中采用的喷雾干燥、洗涤和干燥步骤均为现有技术,本申请没有特殊要求。
在第五方面,本申请提供了一种催化裂化催化剂的制备方法,包括如下步骤:提供根据本申请的改性Y型分子筛,形成包括所述改性Y型分子筛、氧化铝粘结剂、粘土和水的浆液,以及喷雾干燥。
在第六方面,本申请提供了根据本申请的改性Y型分子筛在烃油催化裂化中的应用,包括将所述烃油与包含本申请的改性Y型分子筛 的催化裂化催化剂接触。
在第七方面,本申请提供了一种催化裂化方法,包括在重油流化催化裂化反应条件下,使重油原料与本申请的催化裂化催化剂接触反应的步骤。
在本申请的催化裂化方法中,所述重油可以为本领域已知的各种重质烃油原料,例如减压蜡油、常压渣油、减压渣油和重脱沥青油中的一种或多种。
在本申请的催化裂化方法中,所述重油流化催化裂化的反应条件可以为本领域常用的那些,例如反应温度可以为约480-530℃,反应时间可以为约1-10秒,剂油比可以为约3-20∶1重量比。
在本申请的某些优选实施方式中,提供了如下的技术方案:
A1.一种改性Y型分子筛,以干基计并以所述改性Y型分子筛的重量为基准,该改性Y型分子筛的钙含量以氧化钙CaO计为约0.3-4重量%,稀土含量以氧化稀土RE 2O 3计为约2-7重量%,钠含量以氧化钠Na 2O计不超过约0.5重量%,总孔体积为约0.33-0.39mL/g,其中孔径为2-100nm的二级孔的孔体积占总孔体积的百分比为约10-25%,晶胞常数为约2.440-2.455nm,非骨架铝含量占总铝含量的百分比不高于约20%,晶格崩塌温度不低于约1050℃,并且,用吡啶吸附红外法在200℃时测定的总酸量中B酸量与L酸量的比值不低于约2.30。
A2.按照项目A1所述的改性Y型分子筛,其中孔径为2-100nm的二级孔的孔体积占总孔体积的百分比为约15-21%,优选约17-21%。
A3.按照项目A1或A2所述的改性Y型分子筛,其中非骨架铝含量占总铝含量的百分比为约13-19%,骨架硅铝比以SiO 2/Al 2O 3摩尔比计为约7.3-14。
A4.按照前述项目中任一项所述的改性Y型分子筛,其中该改性Y型分子筛的晶格崩塌温度为约1050-1080℃或约1050-1063℃。
A5.按照前述项目中任一项所述的改性Y型分子筛,其中用吡啶吸附红外法在200℃时测定的总酸量中B酸量与L酸量的比值为约2.3-5.0、约2.4-4.2或约2.4-3.5。
A6.按照前述项目中任一项所述的改性Y型分子筛,其中在800℃、常压、100%水蒸气气氛下老化17小时后,该改性Y型分子筛的相对结晶保留度为约35%以上,例如为约36-45%或约35-48%。
A7.按照前述项目中任一项所述的改性Y型分子筛,其中该改性Y型分子筛的相对结晶度为约58-68%。
A8.按照前述项目中任一项所述的改性Y型分子筛,其中该改性Y型分子筛的钙含量以氧化钙CaO计为约0.5-3.5重量%,稀土含量以氧化稀土RE 2O 3计为约2.5-6.5重量%,钠含量以氧化钠Na 2O计为约0.2-0.5重量%,晶胞常数为约2.442-2.452nm,骨架硅铝比以SiO 2/Al 2O 3摩尔比计为约8-12.6。
A9.按照前述项目中任一项所述的改性Y型分子筛,其中该改性Y型分子筛的O1s电子结合能不大于约532.70eV,例如为约532.55-532.65eV。
A10.一种改性Y型分子筛的制备方法,包括以下步骤:
(1)将NaY分子筛与可溶性钙盐和可溶性稀土盐的溶液接触进行离子交换反应,得到钠含量降低的含钙和稀土的Y型分子筛;
(2)将步骤(1)得到的Y型分子筛在约350-480℃的温度、约30-90体积%的水蒸汽气氛下焙烧约4.5-7小时,任选干燥,得到晶胞常数降低的Y型分子筛;
(3)按照SiCl 4∶以干基计的所述晶胞常数降低的Y型分子筛为约0.1-0.7∶1的重量比将步骤(2)得到的Y型分子筛与四氯化硅气体接触反应,反应温度为约200-650℃,反应时间为约10分钟至约5小时,得到所述改性Y型分子筛。
A11.按照项目A10所述的方法,其中步骤(1)得到的Y型分子筛的晶胞常数为约2.465-2.472nm,钠含量以氧化钠计不超过约8.8重量%。
A12.按照项目A10或A11所述的方法,其中步骤(1)得到的Y型分子筛中,钙含量以CaO计为约0.3-10重量%,例如约0.9-9重量%,稀土含量以RE 2O 3计为约2-8重量%,例如约2.1-7重量%,钠含量以Na 2O计为约4-8.8重量%,例如约5.0-8.5重量%,晶胞常数为约2.465-2.472nm。
A13.按照项目A10-A12中任一项所述的方法,其中在步骤(1)中,按照NaY分子筛∶可溶性钙盐∶可溶性稀土盐∶H 2O为约1∶0.009-0.28∶0.005-0.09∶5-15的重量比将NaY分子筛、可溶性钙盐、可溶性稀土盐和水混合进行离子交换。
A14.按照项目A10-A13中任一项所述的方法,其中在步骤(1)中,将NaY分子筛与水混合,搅拌下加入可溶性钙盐和/或可溶性钙盐溶液以及可溶性稀土盐和/或可溶性稀土盐溶液进行离子交换反应;
离子交换反应的条件为:交换温度为约15-95℃,交换时间为约30-120分钟;
优选地,所述的可溶性钙盐溶液和所述可溶性稀土盐溶液为可溶性钙盐和可溶性稀土盐的水溶液;和/或
优选地,所述的可溶性钙盐为氯化钙和/或硝酸钙,所述的可溶性稀土盐为氯化稀土和/或硝酸稀土。
A15.按照项目A10-A14中任一项所述的方法,其中在步骤(2)中,所述焙烧温度为约380-460℃,所述焙烧气氛为约40-80%的水蒸汽气氛,所述焙烧时间为约5-6小时。
A16.按照项目A10-A15中任一项所述的方法,其中步骤(2)中得到的所述晶胞常数降低的Y型分子筛的晶胞常数为约2.450-2.462nm,水含量不超过约1重量%。
A17.按照项目A10-A16中任一项所述的方法,其中步骤(3)进一步包括用水对所得改性Y型分子筛进行洗涤,洗涤条件包括:分子筛∶H 2O为约1∶5-20,pH值为约2.5-5.0,洗涤温度为约30-60℃。
A18.通过项目A10-A17中任一项所述的方法制备得到的改性Y型分子筛。
A19.一种催化裂化催化剂,以所述催化裂化催化剂的重量为基准,含有以干基计约10-50重量%的改性Y型分子筛、以氧化铝计约10-40重量%的氧化铝粘结剂和以干基计约10-80重量%的粘土;其中,所述改性Y型分子筛为项目A1-A9和A18中任一项所述的改性Y型分子筛。
A20.项目A1-A9和A18中任一项所述的改性Y型分子筛在烃油催化裂化中的应用,包括将所述烃油与包含项目A1-A9和A18中任一项所述的改性Y型分子筛的催化裂化催化剂接触。
B1.一种改性Y型分子筛,其特征在于,该改性Y型分子筛的氧化钙含量为约0.3-4重量%,氧化稀土含量为约2-7重量%,氧化钠含量不超过约0.5重量%,总孔体积为约0.33-0.39mL/g,该改性Y型分子筛的孔径为2-100nm的二级孔的孔体积占总孔体积的百分比为约10%-25%,晶胞常数为约2.440-2.455nm,该改性Y型分子筛中非骨架 铝含量占总铝含量的百分比不高于约20%,晶格崩塌温度不低于约1050℃,并且,用吡啶吸附红外法在200℃时测定的该改性Y型分子筛的总酸量中B酸量与L酸量的比值不低于约2.30。
B2.按照项目B1所述的改性Y型分子筛,其特征在于,该改性Y型分子筛中孔径为2-100nm的二级孔的孔体积占总孔体积的百分比为约15%-21%。
B3.按照项目B1所述的改性Y型分子筛,其特征在于,该改性Y型分子筛中非骨架铝含量占总铝含量的百分比为约13-19%,骨架硅铝比以SiO 2/Al 2O 3摩尔比计为约7.3-14。
B4.按照项目B1所述的改性Y型分子筛,其特征在于,该改性Y型分子筛晶格崩塌温度为约1050-1080℃或1050℃-1063℃。
B5.按照项目B1所述的改性Y型分子筛,其特征在于,用吡啶吸附红外法在200℃时测定的该改性Y型分子筛总酸量中B酸量与L酸量的比值为约2.3-5.0或2.4-4.2或2.4-3.5。
B6.按照项目B1所述的改性Y型分子筛,其特征在于,在800℃、常压、100%水蒸气气氛17小时老化后,该改性Y型分子筛的相对结晶保留度为约35%以上例如为约36-45%或35-48%。
B7.按照项目B1所述的改性Y型分子筛,其特征在于,该改性Y型分子筛的相对结晶度为约58-68%。
B8.按照项目B1-B7任一所述的改性Y型分子筛,其特征在于,该改性Y型分子筛的氧化钙含量为约0.3-4重量%,氧化稀土含量为约2-7重量%,氧化钠含量为约0.2-0.5重量%,晶胞常数为约2.442-2.452nm,骨架硅铝比为约8-12.6。
B9.一种改性Y型分子筛的制备方法,该方法包括以下步骤:
将NaY分子筛与可溶性钙盐和稀土盐溶液接触进行离子交换反应,过滤、洗涤,任选干燥,得到氧化钠含量降低的含钙和稀土的常规晶胞大小的Y型分子筛;
将上述氧化钠含量降低的含钙和稀土的常规晶胞大小的Y型分子筛在温度350-480℃、30-90体积%水蒸汽气氛下焙烧4.5-7小时,任选干燥,得到晶胞常数降低的Y型分子筛;
按照SiCl 4∶以干基计的所述晶胞常数降低的Y型分子筛=0.1-0.7∶1的重量比将所述晶胞常数降低的Y型分子筛与四氯化硅气体接触反 应,反应温度为约200℃-650℃,反应时间为10分钟至5小时,洗涤和过滤,得到改性Y型分子筛。
B10.按照项目B9所述的方法,其特征在于,步骤(1)中所述氧化钠含量降低的含钙和稀土的常规晶胞大小的Y型分子筛,其晶胞常数为约2.465-2.472nm,氧化钠含量不超过约8.8重量%。
B11.按照项目B9所述的方法,其特征在于,步骤(1)中,所述氧化钠含量降低的含钙和稀土的常规晶胞大小的Y型分子筛中,钙含量以CaO计为约0.4-10重量%,稀土含量以RE 2O 3计为约2-8重量%,氧化钠含量为约4-8.8重量%例如为约5.5-8.5重量%,晶胞常数为约2.465-2.472nm。
B12.按照项目B9所述的方法,其特征在于,步骤(1)所述将NaY分子筛与可溶性钙盐与稀土盐溶液接触进行离子交换反应为,按照NaY分子筛∶可溶性钙盐∶可溶性稀土盐∶H 2O=1∶0.009-0.28∶0.005-0.09∶5-15的重量比将NaY分子筛、可溶性钙盐、可溶性稀土盐和水形成混合物,搅拌。
B13.按照项目B9或B12所述的方法,其特征在于,步骤(1)所述将NaY分子筛与可溶性钙盐和稀土盐溶液接触进行离子交换反应,包括:将NaY分子筛与水混合,搅拌下加入可溶性钙盐和/或可溶性钙盐溶液以及可溶性稀土盐和/或可溶性稀土盐溶液进行离子交换反应,过滤,洗涤;离子交换反应的条件为:交换温度为约15-95℃,交换时间为30-120分钟;所述的可溶性钙盐溶液和稀土盐溶液为可溶性钙盐和可溶性稀土盐的水溶液;所述的可溶性钙盐例如为约氯化钙和/或硝酸钙,所述的可溶性稀土盐例如为约氯化稀土和/或硝酸稀土。
B14.按照项目B9所述的方法,其特征在于,步骤(2)所述焙烧温度为约380-460℃,所述焙烧气氛为40-80%水蒸汽气氛,所述焙烧时间为5-6小时。
B15.按照项目B9所述的方法,其特征在于,步骤(2)中得到的所述晶胞常数降低的Y型分子筛的晶胞常数为约2.450-2.462nm,所述的晶胞常数降低的Y型分子筛中的水含量不超过约1重量%。
B16.按照项目B9所述的方法,其特征在于,步骤(3)所述的洗涤方法为用水洗涤,洗涤条件为,分子筛∶H 2O=1∶6-15,pH值为2.5-5.0,洗涤温度为约30-60℃。
C1.一种催化裂化催化剂,含有以干基计10重量%-50重量%的改性Y型分子筛、以氧化铝计10重量-40重量%的氧化铝粘结剂和以干基计10重量-80重量%的粘土;所述的改性Y型分子筛的氧化钙含量为约0.3-4重量%,氧化稀土含量为约2-7重量%,氧化钠含量不超过约0.5重量%,总孔体积为约0.33-0.39mL/g,该改性Y型分子筛的孔径为2-100nm的二级孔的孔体积占总孔体积的百分比为约10%-25%,晶胞常数为约2.440-2.455nm,该改性Y型分子筛中非骨架铝含量占总铝含量的百分比不高于约20%,晶格崩塌温度不低于约1050℃,并且,用吡啶吸附红外法在200℃时测定的该改性Y型分子筛的总酸量中B酸量与L酸量的比值不低于约2.30。
C2.按照项目C1所述的催化裂化催化剂,其特征在于,所述改性Y型分子筛中孔径为2-100nm的二级孔的孔体积占总孔体积的百分比为约15%-21%,非骨架铝含量占总铝含量的百分比为约13-19%,骨架硅铝比以SiO 2/Al 2O 3摩尔比计为约7.3-14,分子筛晶格崩塌温度为约1050-1080℃例如为约1050℃-1063℃,用吡啶吸附红外法在200℃时测定的所述改性Y型分子筛总酸量中B酸量与L酸量的比值为约2.4-4.2。
C3.按照项目C1所述的催化裂化催化剂,其特征在于,在800℃、常压、100%水蒸气气氛17小时苛刻老化后,所述改性Y型分子筛的相对结晶保留度为约35%以上例如为约36-45%。
C4.按照项目C1所述的催化裂化催化剂,其特征在于,所述改性Y型分子筛的相对结晶度为约58-68%。
C5.按照项目C1-C4任一所述的催化裂化催化剂,其特征在于,所述改性Y型分子筛的氧化钙含量为约0.3-4重量%,氧化稀土含量为约2-7重量%,氧化钠含量为约0.2-0.5重量%,晶胞常数为约2.442-2.452nm,骨架硅铝比为约8-12.6。
C6.一种催化裂化催化剂的制备方法,包括制备改性Y型分子筛,形成包括所述改性Y型分子筛、氧化铝粘结剂、粘土和水的浆液,喷雾干燥的步骤,其中,所述改性Y型分子筛的制备方法包括以下步骤:
将NaY分子筛与可溶性钙盐和稀土盐接触进行离子交换反应,过滤、洗涤,任选干燥,得到氧化钠含量降低的含钙和稀土的的常规晶胞大小的Y型分子筛;
将上述氧化钠含量降低的含钙和稀土的常规晶胞大小的Y型分子筛在温度350-480℃、30-90体积%水蒸汽气氛下焙烧4.5-7小时,任选干燥,得到晶胞常数降低的Y型分子筛;
按照SiCl 4∶以干基计的所述晶胞常数降低的Y型分子筛=0.1-0.7∶1的重量比将所述晶胞常数降低的Y型分子筛与四氯化硅气体接触反应,反应温度为约200℃-650℃,反应时间为10分钟至5小时,洗涤和过滤,得到改性Y型分子筛。
C7.据项目C6所述的方法,其特征在于,步骤(1)中所述氧化钠含量降低的含钙和稀土的的常规晶胞大小的Y型分子筛,其晶胞常数为约2.465-2.472nm,氧化钠含量不超过约8.8重量%;步骤(2)中得到的所述晶胞常数降低的Y型分子筛的晶胞常数为约2.450-2.462nm,所述的晶胞常数降低的Y型分子筛中的水含量不超过约1重量%。
C8.根据项目C7所述的方法,其特征在于,步骤(1)中,所述氧化钠含量降低的含钙和稀土的常规晶胞大小的Y型分子筛中,钙含量以CaO计为约0.4-3.9重量%,稀土含量以Re 2O 3计为约2-7重量%,氧化钠含量为约4-8.8重量%例如为约5.5-8.5重量%,晶胞常数为约2.465-2.472nm。
C9.根据项目C6所述的方法,其特征在于,步骤(1)所述将NaY分子筛与可溶性钙盐和稀土盐溶液接触进行离子交换反应为,按照NaY分子筛∶可溶性钙盐∶可溶性稀土盐∶H 2O=1∶0.009-0.28∶0.005-0.09∶5-15的重量比将NaY分子筛、可溶性钙盐、可溶性稀土盐和水形成混合物,搅拌。
C10.根据项目C6或C9所述的方法,其特征在于,步骤(1)所述将NaY分子筛与可溶性钙盐和稀土盐溶液接触进行离子交换反应,包括:将NaY分子筛与水混合,搅拌下加入可溶性钙盐和/或可溶性钙盐溶液以及可溶性稀土盐和/或可溶性稀土盐溶液进行离子交换反应,过滤,洗涤;离子交换反应的条件为:交换温度为约15-95℃,交换时间为30-120分钟;所述的可溶性钙盐溶液和稀土盐溶液为可溶性钙盐和可溶性稀土盐的水溶液;所述的可溶性钙盐例如为约氯化钙和/或硝酸钙,所述的可溶性稀土盐例如为约氯化稀土和/或硝酸稀土。
C11.根据项目C6所述的方法,其特征在于,步骤(2)所述焙烧 温度为约380-460℃,所述焙烧气氛为40-80%水蒸汽气氛,所述焙烧时间为5-6小时。
C12.根据项目C6所述的方法,其特征在于,步骤(3)所述的洗涤方法为用水洗涤,洗涤条件为,分子筛∶H 2O=1∶6-15,pH值最为2.5-5.0,洗涤温度为约30-60℃。
C13.一种催化裂化方法,包括在FCC条件下,将重油与催化裂化催化剂接触反应的步骤,其特征在于,所述的催化裂化催化剂为项目C1-C5任意一项所述的催化裂化催化剂;所述的FCC条件例如:反应温度为约480-530℃,反应时间1-10秒,剂油比为3-20∶1重量比。
实施例
下面的实施例将对本申请予以进一步的说明,但并不因此而限制本申请。
原料:以下各实施例中和对比例中,NaY分子筛为中国石化催化剂有限公司齐鲁分公司提供,钠含量以氧化钠计为13.5重量%,骨架硅铝比(SiO 2/Al 2O 3摩尔比)为4.6,晶胞常数为2.470nm,相对结晶度为90%;氯化钙和硝酸钙为国药集团化学试剂有限公司(沪试)生产的化学纯试剂,氯化稀土和硝酸稀土为北京化工厂生产的化学纯试剂。拟薄水铝石为山东铝厂生产工业产品,固含量61重量%;高岭土为苏州中国高岭土公司生产的裂化催化剂专用高岭土,固含量76重量%;铝溶胶由中国石化催化剂有限公司齐鲁分公司提供,其中氧化铝含量21重量%。
对比例和实施例中所用化学试剂未特别注明的,其规格为化学纯。
分析方法:在各对比例和实施例中,分子筛的元素含量由X射线荧光光谱法测定;分子筛的晶胞常数、相对结晶度由X射线粉末衍射法(XRD)采用RIPP145-90、RIPP146-90标准方法(见《石油化工分析方法(RIPP试验方法)》杨翠定等编,科学出版社,1990年9月第一版,第412-415页)测定,分子筛的骨架硅铝比由下式计算而得:
SiO 2/Al 2O 3=(2.5858-a 0)×2/(a 0-2.4191)]
其中,a 0为晶胞常数,单位为nm。
分子筛的总硅铝比依据X射线荧光光谱法测定的Si与Al元素含量计算的,由XRD法测定的骨架硅铝比与XRF测定的总硅铝比可计 算骨架Al与总Al的比值,进而计算非骨架Al与总Al的比值。晶体结构崩塌温度由差热分析法(DTA)测定。
在各对比例和实施例中,分子筛的酸中心类型及其酸量采用吡啶吸附的红外法分析测定。实验仪器:美国Bruker公司IFS113V型FT-IR(傅立叶变换红外)光谱仪。用吡啶吸附红外法在200℃时测定酸量实验方法:将样品自支撑压片,置于红外光谱仪的原位池中密封。升温至400℃,并抽真空至10 -3Pa,恒温2h,脱除样品吸附的气体分子。降至室温,导入压力为2.67Pa吡啶蒸气保持吸附平衡30min。然后升温至200℃,抽真空至10 -3Pa下脱附30min,降至室温摄谱,扫描波数范围:1400cm -1-1700cm -1,获得样品经200℃脱附的吡啶吸附红外光谱图。根据吡啶吸附红外光谱图中1540cm -1和1450cm -1特征吸附峰的强度,得到分子筛中总的
Figure PCTCN2019093279-appb-000001
酸中心(B酸中心)与Lewis酸中心(L酸中心)的相对量。
在各对比例和实施例中,其中所说二级孔体积的测定方法如下:按照RIPP 151-90标准方法(参见《石油化工分析方法(RIPP试验方法)》,杨翠定等编,科学出版社,1990年9月第一版,第424-426页)根据吸附等温线测定出分子筛的总孔体积,然后从吸附等温线按照T作图法测定出分子筛的微孔体积,将总孔体积减去微孔体积得到二级孔体积。
在各对比例和实施例中,所得分子筛的O1s电子结合能通过如下方式测定:XPS实验在Thermo Fisher公司的ESCALab250型X射线光电子能谱仪上进行,其中激发源为单色化Al K αX射线,能量为1486.6eV,功率为150W;窄扫描所用通透能为30eV;分析时的基础真空约为6.5×10 -10mbar;结合能用烷基碳或污染碳的C1s峰(284.8eV)校正;处理软件为仪器自带软件Avantage 5.952。根据所得的XPS数据确定所述结合能值。
实施例1
取2000克NaY分子筛(以干基计)加入到20升脱阳离子水溶液中搅拌使其混合均匀,加入345ml的Ca(NO 3) 2溶液(以CaO计的溶液浓度为248g/L),然后加入300ml的RE(NO 3) 3溶液(稀土溶液浓度以RE 2O 3计为319g/L),搅拌,升温至90-95℃保持1小时,然后过滤、 洗涤,滤饼于120℃干燥,得到晶胞常数为2.471nm、钠含量以氧化钠计为6.6重量%、钙含量以CaO计为4.9重量%、稀土含量以RE 2O 3计为4.4重量%的Y型分子筛。之后在温度390℃,含50体积%水蒸汽和50体积%空气的气氛下焙烧6小时,得到晶胞常数为2.455nm的Y型分子筛,之后,进行干燥处理,使其水含量低于1重量%。然后按照SiCl 4∶Y型分子筛(干基计)=0.5∶1的重量比,通入经加热汽化的SiCl 4气体,在温度为400℃的条件下,反应2小时,之后,用20升脱阳离子水洗涤,然后过滤,得到本申请的改性Y型分子筛,记为SZ1,其物化性质列于表1中。
将SZ1在裸露状态经800℃、常压、100%水蒸气老化17小时后,用XRD方法分析SZ1老化前后的分子筛的相对结晶度,并计算老化后的相对结晶保留度,结果见表2,其中:
Figure PCTCN2019093279-appb-000002
实施例2
取2000克NaY分子筛(以干基计)加入到25升脱阳离子水溶液中搅拌使其混合均匀,加入368ml的CaCl 2溶液(以CaO计的溶液浓度为:248g/L)、400ml的RECl 3溶液(以RE 2O 3计的溶液浓度为:319g/L),搅拌,升温至90-95℃,保持1小时,然后过滤、洗涤,滤饼于120℃干燥,得到晶胞常数为2.471nm、钠含量以氧化钠计为5.2重量%、钙含量以CaO计为8.7重量%、稀土含量以RE 2O 3计为5.7重量%的Y型分子筛。之后于温度450℃,80%水蒸汽下焙烧5.5小时,得到晶胞常数为2.461nm的Y型分子筛,之后,进行干燥处理,使其水含量低于1重量%。然后按照SiCl 4∶Y型沸石=0.6∶1的重量比,通入经加热汽化的SiCl 4气体,在温度为480℃的条件下,反应1.5小时,之后,用20升脱阳离子水洗涤,然后过滤,得到改性Y型分子筛,记为SZ2,其物化性质列于表1中。
将SZ2在裸露状态经800℃、常压、100%水蒸气老化后(即在100%水蒸汽气氛下老化17小时后),用XRD方法分析了SZ2老化前后的沸石的结晶度并计算了老化后的相对结晶保留度,结果见表2。
实施例3
取2000克NaY分子筛(干基)加入到22升脱阳离子水溶液中搅拌使其混合均匀,加入214ml的CaCl 2溶液(以CaO计的溶液浓度为248g/L),285ml的RECl 3溶液(以RE 2O 3计的稀土溶液浓度为319g/L)搅拌,升温至90-95℃保持搅拌1小时,然后过滤、洗涤,滤饼于120℃干燥,得到晶胞常数为2.471nm、钠含量以氧化钠计为7.2重量%、钙含量以CaO计为3.8重量%、稀土含量以RE 2O 3计为4.7重量%的Y型分子筛。之后于温度470℃,70体积%水蒸汽下焙烧5小时,得到晶胞常数为2.458nm的Y型分子筛,之后,进行干燥处理,使其水含量低于1重量%。然后按照SiCl 4∶Y型沸石=0.4∶1的重量比,通入经加热汽化的SiCl 4气体,在温度为500℃的条件下,反应1小时,之后,用20升脱阳离子水洗涤,然后过滤,得到改性Y型分子筛,记为SZ3,其物化性质列于表1中。
将SZ3在裸露状态经800℃、常压、100%水蒸气老化后,用XRD方法分析SZ3老化前后的沸石的结晶度并计算了老化后的相对结晶保留度,结果见表2。
对比例1
取2000克NaY分子筛(干基)加入到20升脱阳离子水溶液中搅拌使其混合均匀,加入1000克(NH 4) 2SO 4,搅拌,升温至90-95℃保持1小时,然后过滤、洗涤,滤饼于120℃干燥之后进行水热改性处理,水热处理条件为温度650℃,100%水蒸汽下焙烧5小时。之后,加入到20升脱阳离子水溶液中搅拌使其混合均匀,加入1000克(NH 4) 2SO 4,搅拌,升温至90-95℃保持1小时,然后过滤、洗涤,滤饼于120℃干燥之后进行第二次水热改性处理,水热处理条件为温度650℃,100%水蒸汽下焙烧5小时,得到两次离子交换两次水热超稳的不含钙和稀土的水热超稳Y型分子筛,记为DZ1,其物化性质列于表1中。
将DZ1在裸露状态经800℃、常压、100%水蒸气老化后,用XRD方法分析了DZ1老化前后的沸石的结晶度并计算了老化后的相对结晶保留度,结果见表2。
对比例2
取2000克NaY分子筛(干基)加入到20升脱阳离子水溶液中搅拌使其混合均匀,加入1000克(NH 4) 2SO 4,搅拌,升温至90-95℃保持1小时,然后过滤、洗涤,滤饼于120℃干燥之后进行水热改性处理,水热改性处理条件为温度650℃、100%水蒸汽下焙烧5小时。之后,加入到20升脱阳离子水溶液中搅拌使其混合均匀,加入203ml的Ca(NO 3) 2溶液(以CaO计的溶液浓度为248g/L),再加入100ml的RE(NO 3) 3溶液(以RE 2O 3计稀土溶液浓度为:319g/L)及900克(NH 4) 2SO 4,搅拌,升温至90-95℃保持1小时,然后过滤、洗涤,滤饼于120℃干燥之后进行第二次水热改性处理,水热改性处理条件为温度650℃,100%水蒸汽下焙烧5小时,得到两次离子交换两次水热超稳的含稀土的水热超稳Y型分子筛,记为DZ2,其物化性质列于表1中。
将DZ2在裸露状态经800℃、常压、100%水蒸气老化后,用XRD方法分析了DZ2老化前后的沸石的结晶度并计算了老化后的相对结晶保留度,结果见表2。
对比例3
取2000克NaY分子筛(干基)加入到20升脱阳离子水溶液中搅拌使其混合均匀,加入243ml的Ca(NO 3) 2溶液(以CaO计的溶液浓度为248g/L),加入325ml的RE(NO 3) 3溶液(319g/L)搅拌,升温至90-95℃保持1小时,然后过滤、洗涤,并进行分子筛干燥处理,使其水含量低于1重%,之后进行气相超稳改性处理。按照SiCl 4∶Y型沸石=0.4∶1的重量比,通入经加热汽化的SiCl 4气体,在温度为580℃的条件下,反应1.5小时,之后,用20升脱阳离子水洗涤,然后过滤,得到气相高硅超稳Y型分子筛,记为DZ3,其物化性质列于表1中。
将DZ3在裸露状态经800℃、常压、100%水蒸气老化后,用XRD方法分析了DZ3老化前后的沸石的结晶度并计算了老化后的相对结晶保留度,结果见表2。
表1 实施例1-3和对比例1-3制备的分子筛的性质
Figure PCTCN2019093279-appb-000003
由表1可见,本申请的改性Y型分子筛同时具备以下优点:以氧化钠计的钠含量低,分子筛的硅铝比较高且非骨架铝含量较少,分子筛中二级孔2.0-100nm孔体积占总孔体积百分比较高,并且B酸/L酸(总的B酸酸量与L酸酸量之比)较高,在分子筛晶胞常数较小且含有一定钙和稀土含量时测定的结晶度值较高,具有较高的热稳定性。
表2 实施例1-3和对比例1-3制备的分子筛的水热稳定性
Figure PCTCN2019093279-appb-000004
由表2可知,本申请的改性Y型分子筛,在分子筛样品裸露状态下经过800℃,17小时的苛刻条件老化后,样品具有较高的相对结晶保留度,表明本申请的改性Y型分子筛具有高的水热稳定性。
实施例4-8
实施例4-8说明包含本申请的改性Y型分子筛的催化剂的催化裂化活性及其稳定性。
将实施例1-3制备的改性Y型分子筛SZ1、SZ2、SZ3制备成催化剂,催化剂编号依次为:SC1、SC2、SC3、SC4和SC5。将所得催化剂经800℃,4小时或17小时100%水蒸气老化后,评价其轻油微反活性,评价结果列于表3中。
催化剂制备方法:
SC1催化剂
取714.5克氧化铝含量为21重量%的铝溶胶加入1565.5克脱阳离子水中,开启搅拌,加入2763克固含量为76重量%的高岭土分散60分钟。取2049克氧化铝含量为61重量%的拟薄水铝石加入8146克脱阳离子水中,在搅拌状态下加入210ml质量浓度为36%的盐酸,酸化60分钟后加入分散好的高岭土浆液,然后加入1500克(干基)磨细的SZ1分子筛,搅拌均匀后,进行喷雾干燥和洗涤处理,烘干得到催化剂SC1。其中,以干基计,所得SC1催化剂含有所述改性Y型分子筛30重量%,高岭土42重量%,拟薄水铝石25重量%和铝溶胶3重量%。
SC2和SC3催化剂
分别使用SZ2和SZ3分子筛替代所述SZ1分子筛,按照与上述SC1催化剂制备相同的方法制备SC2和SC3催化剂。其中,以干基计,所得SC2和SC3催化剂均含有所述改性Y型分子筛30重量%,高岭土42重量%,拟薄水铝石25重量%和铝溶胶3重量%。
SC4和SC5催化剂
使用SZ2分子筛按照与上述SC1催化剂制备基本相同的方法制备SC4和SC5催化剂,其中适当调整各制备原料的用量,使得以干基计,所得SC4催化剂中含有SZ2分子筛25重量%,高岭土47重量%,拟薄水铝石24重量%和铝溶胶4重量%;所得SC5催化剂中含有SZ2分子筛40重量%,高岭土30重量%,拟薄水铝石20重量%和铝溶胶10重量%。
轻油微反活性评价方法:
采用RIPP92-90的标准方法(参见《石油化工分析方法(RIPP试验方法))》,杨翠定等编,科学出版社,1990年9月第一版,第263-268页)评价各催化剂样品的轻油微反活性,催化剂装量为5.0g,反应温度为460℃,原料油为馏程235-337℃大港轻柴油,产物组成由气相色谱分析,根据产物组成计算出轻油微反活性。
轻油微反活性(MA)=(产物中低于216℃的汽油产量+气体产量+焦炭产量)/进料总量×100%。
对比例4-6
对比例4-6说明包含对比例1-3制备的超稳Y型分子筛的催化剂的催化裂化活性及其稳定性。
按照实施例4-8的催化剂制备方法,分别采用对比例1-3制备的超稳Y型分子筛DZ1、DZ2及DZ3制备得到相应的催化剂DC1、DC2及DC3。其中,以干基计,所得催化剂DC1、DC2及DC3均含有超稳Y型分子筛30重量%,高岭土42重量%,拟薄水铝石25重量%和铝溶胶3重量%。将各催化剂经800℃,4小时或17小时100%水蒸气老化后,评价其轻油微反活性。评价方法见实施例4-8,评价结果列于表 3中。
表3 实施例4-8和对比例4-6的测试结果
Figure PCTCN2019093279-appb-000005
实施例9-13
实施例9-13说明包含本申请的改性Y型分子筛的催化剂的催化裂化反应性能。
将SC1、SC2、SC3、SC4及SC5催化剂经800℃、常压、100%水蒸气老化后,在小型固定流化床反应器(ACE)上评价其催化裂化反应性能,裂化气和产品油分别收集由气相色谱分析。催化剂装量为9g,反应温度500℃,重时空速为16h -1,剂油比(重量比)见表5,ACE实验的原料油性质见表4,评价结果见表5。
汽油中异构烃含量(重量,%)=汽油中异构烷烃含量(重量,%)+汽油中异构烯烃含量(重量,%)。
异构C4烃含量(重量,%)=异丁烷含量(重量,%)+异丁烯含量(重量,%)。
对比例7-9
对比例7-9说明包含对比例1-3制备的超稳Y型沸石的催化剂的催化裂化反应性能。
将DC1、DC2及DC3催化剂经800℃、常压、100%水蒸气老化后,在小型固定流化床反应器(ACE)上评价其催化裂化反应性能,评价方法见实施例9-13,ACE实验的原料性质见表4,评价结果列于表5 中。
表4 ACE实验的原料性质
Figure PCTCN2019093279-appb-000006
表5 实施例9-13和对比例7-9的测试结果
Figure PCTCN2019093279-appb-000007
由表3及表5所列的结果可见,以本申请的分子筛为活性组元制备的催化裂化催化剂具有很高的水热稳定性,用于重油催化裂化中时显示出更高的重油转化活性、明显更低的焦炭选择性,明显提高的总液收、轻质油收率和汽油收率,并且异构C4烃含量和汽油中异构烃的含量也明显提高。
在上文的说明书中,已经参照特定的实施方式描述了本发明的构思。然而,本领域技术人员可以理解,在不脱离所附的权利要求中限定的本发明范围的情况下可以做出各种修改和变更。因此,说明书和附图应认为是说明性的,而不是限制性的,并且所有这类修改和变更 应当涵盖在本发明的范围之内。
可以理解,本文为清楚起见以独立的多个实施方式的形式描述的某些特征也可以作为组合提供在单一的实施方式中。相反,为简要起见以单一实施方式的形式描述的多个不同特征也可以单独地或以任何子组合的形式提供。

Claims (15)

  1. 一种改性Y型分子筛,以干基计并以所述改性Y型分子筛的重量为基准,该改性Y型分子筛的钙含量以氧化钙计为约0.3-4重量%,稀土含量以氧化稀土计为约2-7重量%,钠含量以氧化钠计不超过约0.5重量%,总孔体积为约0.33-0.39mL/g,其中孔径为2-100nm的二级孔的孔体积占总孔体积的百分比为约10-25%,晶胞常数为约2.440-2.455nm,非骨架铝含量占总铝含量的百分比不高于约20%,晶格崩塌温度不低于约1050℃,并且,用吡啶吸附红外法在200℃时测定的总酸量中B酸量与L酸量的比值不低于约2.30。
  2. 按照权利要求1所述的改性Y型分子筛,其中该改性Y型分子筛的孔径为2-100nm的二级孔的孔体积占总孔体积的百分比为约15-21%,优选约17-21%;和/或
    该改性Y型分子筛的非骨架铝含量占总铝含量的百分比为约13-19%,骨架硅铝比以SiO 2/Al 2O 3摩尔比计为约7.3-14。
  3. 按照前述权利要求中任一项所述的改性Y型分子筛,其中该改性Y型分子筛的晶格崩塌温度为约1050-1080℃或约1050-1063℃;和/或
    优选地,该改性Y型分子筛用吡啶吸附红外法在200℃时测定的总酸量中B酸量与L酸量的比值为约2.3-5.0、约2.4-4.2或约2.4-3.5。
  4. 按照前述权利要求中任一项所述的改性Y型分子筛,其中在800℃、常压、100%水蒸气气氛下老化17小时后,该改性Y型分子筛的相对结晶保留度为约35%以上,例如为约36-45%或约35-48%;和/或
    优选地,该改性Y型分子筛的相对结晶度为约58-68%。
  5. 按照前述权利要求中任一项所述的改性Y型分子筛,其中该改性Y型分子筛的钙含量以氧化钙计为约0.5-3.5重量%,稀土含量以氧化稀土计为约2.5-6.5重量%,钠含量以氧化钠计为约0.2-0.5重量%,晶胞常数为约2.442-2.452nm,骨架硅铝比以SiO 2/Al 2O 3摩尔比计为约8-12.6。
  6. 按照前述权利要求中任一项所述的改性Y型分子筛,其中该改性Y型分子筛的O1s电子结合能不大于约532.70eV,例如为约 532.55-532.65eV。
  7. 一种改性Y型分子筛的制备方法,包括以下步骤:
    (1)将NaY分子筛与可溶性钙盐和可溶性稀土盐的溶液接触进行离子交换反应,得到钠含量降低的含钙和稀土的Y型分子筛;
    (2)将步骤(1)得到的Y型分子筛在约350-480℃的温度、约30-90体积%的水蒸汽气氛下焙烧约4.5-7小时,任选干燥,得到晶胞常数降低的Y型分子筛;以及
    (3)按照SiCl 4∶以干基计的所述晶胞常数降低的Y型分子筛为约0.1-0.7∶1的重量比将步骤(2)得到的Y型分子筛与四氯化硅气体接触反应,反应温度为约200-650℃,反应时间为约10分钟至约5小时,得到所述改性Y型分子筛。
  8. 按照权利要求7所述的方法,其中步骤(1)得到的Y型分子筛的晶胞常数为约2.465-2.472nm,钠含量以氧化钠计不超过约8.8重量%;
    优选地,步骤(1)得到的Y型分子筛中,钙含量以氧化钙计为约0.3-10重量%,例如约0.9-9重量%,稀土含量以氧化稀土计为约2-8重量%,例如约2.1-7重量%,钠含量以氧化钠计为约4-8.8重量%,例如约5.0-8.5重量%,晶胞常数为约2.465-2.472nm。
  9. 按照权利要求7或8所述的方法,其中在步骤(1)中,按照NaY分子筛∶可溶性钙盐∶可溶性稀土盐∶H2O为约1∶0.009-0.28∶0.005-0.09∶5-15的重量比将NaY分子筛、可溶性钙盐、可溶性稀土盐和水混合进行离子交换。
  10. 按照权利要求7-9中任一项所述的方法,其中在步骤(1)中,将NaY分子筛与水混合,搅拌下加入可溶性钙盐和/或可溶性钙盐溶液以及可溶性稀土盐和/或可溶性稀土盐溶液进行离子交换反应;
    离子交换反应的条件为:交换温度为约15-95℃,交换时间为约30-120分钟;
    优选地,所述的可溶性钙盐溶液和所述可溶性稀土盐溶液为可溶性钙盐和可溶性稀土盐的水溶液;和/或
    优选地,所述的可溶性钙盐为氯化钙和/或硝酸钙,所述的可溶性稀土盐为氯化稀土和/或硝酸稀土。
  11. 按照权利要求7-10中任一项所述的方法,其中在步骤(2)中, 所述焙烧温度为约380-460℃,所述焙烧气氛为约40-80%的水蒸汽气氛,所述焙烧时间为约5-6小时;
    优选地,步骤(2)中得到的所述晶胞常数降低的Y型分子筛的晶胞常数为约2.450-2.462nm,水含量不超过约1重量%。
  12. 按照权利要求7-11中任一项所述的方法,其中步骤(3)进一步包括用水对所得改性Y型分子筛进行洗涤,洗涤条件包括:分子筛∶H 2O为约1∶5-20,pH值为约2.5-5.0,洗涤温度为约30-60℃。
  13. 通过权利要求7-12中任一项所述的方法制备得到的改性Y型分子筛。
  14. 一种催化裂化催化剂,以所述催化裂化催化剂的重量为基准,含有以干基计约10-50重量%的改性Y型分子筛、以氧化铝计约10-40重量%的氧化铝粘结剂和以干基计约10-80重量%的粘土;其中,所述改性Y型分子筛为权利要求1-6和13中任一项所述的改性Y型分子筛。
  15. 权利要求1-6和13中任一项所述的改性Y型分子筛在烃油催化裂化中的应用,包括将所述烃油与包含权利要求1-6和13中任一项所述的改性Y型分子筛的催化裂化催化剂接触。
PCT/CN2019/093279 2018-06-29 2019-06-27 改性y型分子筛、包含它的催化裂化催化剂、及其制备和应用 WO2020001540A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/256,943 US11504702B2 (en) 2018-06-29 2019-06-27 Modified Y-type molecular sieve, catalytic cracking catalyst comprising the same, its preparation and application thereof
SG11202013116TA SG11202013116TA (en) 2018-06-29 2019-06-27 Modified Y-type molecular sieve, catalytic cracking catalyst comprising the same, its preparation and application thereof
AU2019296826A AU2019296826A1 (en) 2018-06-29 2019-06-27 Modified Y type molecular sieve, catalytic cracking catalyst having same, and preparation method therefor and application thereof
EP19825723.0A EP3815784A4 (en) 2018-06-29 2019-06-27 MODIFIED Y-TYPE MOLECULAR SIEVE, CATALYTIC CRACKING CATALYST INCLUDING IT, ITS PREPARATION PROCESS AND ITS APPLICATION
JP2020573127A JP7352584B2 (ja) 2018-06-29 2019-06-27 改質y型分子篩、それを含む接触分解触媒、その製造及びその適用

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810714296.1A CN110652999B (zh) 2018-06-29 2018-06-29 一种多产异构c4的高稳定性改性y型分子筛及其制备方法
CN201810714296.1 2018-06-29
CN201810715238.0A CN110653001B (zh) 2018-06-29 2018-06-29 一种催化裂化催化剂
CN201810715238.0 2018-06-29

Publications (1)

Publication Number Publication Date
WO2020001540A1 true WO2020001540A1 (zh) 2020-01-02

Family

ID=68986275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/093279 WO2020001540A1 (zh) 2018-06-29 2019-06-27 改性y型分子筛、包含它的催化裂化催化剂、及其制备和应用

Country Status (8)

Country Link
US (1) US11504702B2 (zh)
EP (1) EP3815784A4 (zh)
JP (1) JP7352584B2 (zh)
AU (1) AU2019296826A1 (zh)
SA (1) SA520420902B1 (zh)
SG (1) SG11202013116TA (zh)
TW (1) TWI805793B (zh)
WO (1) WO2020001540A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114100671A (zh) * 2020-08-26 2022-03-01 中国石油天然气股份有限公司 催化裂化催化剂及其制备方法与应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116020522A (zh) * 2021-10-26 2023-04-28 中国石油化工股份有限公司 一种重油催化裂化催化剂及其制备方法

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4273753A (en) 1979-09-10 1981-06-16 Mobil Oil Corporation De-aluminization of aluminosilicates
US4429053A (en) 1981-12-04 1984-01-31 Union Oil Company Of California Rare earth-containing Y zeolite compositions
US4438178A (en) 1982-10-27 1984-03-20 Fiber Industries, Inc. Adhesive activated polyester fibrous material
US4584287A (en) 1981-12-04 1986-04-22 Union Oil Company Of California Rare earth-containing Y zeolite compositions
US5206194A (en) 1991-06-20 1993-04-27 Union Oil Company Of America Process for reactivating a deactivated crystalline molecular sieve group VIII metal catalyst
CN1098130A (zh) 1993-07-29 1995-02-01 中国石油化工总公司 一种裂化催化剂及其制备方法
CN1194941A (zh) 1997-03-31 1998-10-07 中国石油化工总公司 一种含富硅超稳y沸石的催化剂组合物的制备
US5925235A (en) * 1997-12-22 1999-07-20 Chevron U.S.A. Inc. Middle distillate selective hydrocracking process
CN1362472A (zh) 2001-01-04 2002-08-07 中国石油化工股份有限公司 一种催化裂化催化剂的制备方法
CN1382525A (zh) 2001-04-28 2002-12-04 中国石油化工股份有限公司 一种稀土高硅y型沸石的制备方法
CN1388064A (zh) * 2001-05-30 2003-01-01 中国石油化工股份有限公司 一种高硅y沸石的制备方法
CN1683244A (zh) 2004-04-14 2005-10-19 中国石油化工股份有限公司 一种分子筛的气相抽铝补硅方法
CN101618347A (zh) * 2008-07-04 2010-01-06 中国石油化工股份有限公司 一种含y分子筛的加氢裂化催化剂载体及其制备方法
CN102020289A (zh) * 2009-09-10 2011-04-20 中国石油化工股份有限公司 一种超稳y沸石及其制备和应用方法
CN102029177A (zh) * 2009-09-28 2011-04-27 中国石油化工股份有限公司 一种裂化催化剂及其制备方法
CN108452835A (zh) * 2017-02-22 2018-08-28 中国石油化工股份有限公司 一种催化裂化催化剂
CN108452825A (zh) * 2017-02-21 2018-08-28 中国石油化工股份有限公司 一种镁改性高硅超稳y型分子筛及其制备方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA891483A (en) * 1972-01-25 E. Pickert Paul Hydrocarbon reforming process and catalyst composition therefor
US4750988A (en) * 1983-09-28 1988-06-14 Chevron Research Company Vanadium passivation in a hydrocarbon catalytic cracking process
CN1031791C (zh) * 1992-12-17 1996-05-15 中国石油化工总公司石油化工科学研究院 一种高硅丫型分子筛的制备方法
CN1200079C (zh) * 2001-04-28 2005-05-04 中国石油化工股份有限公司 含磷y型沸石裂化催化剂及其制备方法
CN1162327C (zh) 2001-04-28 2004-08-18 中国石油化工股份有限公司 一种稀土y型沸石
CA2445597C (en) 2001-04-28 2011-01-04 China Petroleum And Chemical Corporation A rare earth zeolite y and the preparation process thereof
CN1286565C (zh) 2003-06-30 2006-11-29 中国石油化工股份有限公司 一种含分子筛的烃类裂化催化剂及其制备方法
CN101450320B (zh) * 2007-12-04 2011-04-06 中国石油化工股份有限公司抚顺石油化工研究院 一种含y分子筛的加氢裂化催化剂及其制备方法
CA2830370A1 (en) * 2011-04-08 2012-10-11 Rive Technology, Inc. Mesoporous framework-modified zeolites
SG11201503301VA (en) 2012-10-26 2015-06-29 China Petroleum & Chemical Process and apparatus for preparing a molecular sieve and a catalytic cracking catalyst
US9943836B2 (en) 2013-10-22 2018-04-17 China Petroleum & Chemical Corporation Metal modified Y zeolite, its preparation and use
CN104556132B (zh) * 2013-10-28 2017-07-25 中国石油化工股份有限公司 一种高硅铝比zsm‑5分子筛的制备方法
JP6793004B2 (ja) 2015-11-11 2020-12-02 日揮触媒化成株式会社 残油分解活性流動接触分解用触媒及びその製造方法
RU2621345C1 (ru) 2016-08-03 2017-06-02 Акционерное общество "Газпромнефть-Омский НПЗ" Способ приготовления катализатора крекинга с щелочноземельными элементами
SG11201907465WA (en) 2017-02-21 2019-09-27 China Petroleum & Chem Corp Modified Y-type molecular sieve, preparation thereof and catalyst comprising the same

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4273753A (en) 1979-09-10 1981-06-16 Mobil Oil Corporation De-aluminization of aluminosilicates
US4429053A (en) 1981-12-04 1984-01-31 Union Oil Company Of California Rare earth-containing Y zeolite compositions
US4584287A (en) 1981-12-04 1986-04-22 Union Oil Company Of California Rare earth-containing Y zeolite compositions
US4438178A (en) 1982-10-27 1984-03-20 Fiber Industries, Inc. Adhesive activated polyester fibrous material
US5206194A (en) 1991-06-20 1993-04-27 Union Oil Company Of America Process for reactivating a deactivated crystalline molecular sieve group VIII metal catalyst
US5340957A (en) 1991-06-20 1994-08-23 Union Oil Company Of California Hydrocracking process using a reactivated catalyst
CN1098130A (zh) 1993-07-29 1995-02-01 中国石油化工总公司 一种裂化催化剂及其制备方法
CN1194941A (zh) 1997-03-31 1998-10-07 中国石油化工总公司 一种含富硅超稳y沸石的催化剂组合物的制备
US5925235A (en) * 1997-12-22 1999-07-20 Chevron U.S.A. Inc. Middle distillate selective hydrocracking process
CN1362472A (zh) 2001-01-04 2002-08-07 中国石油化工股份有限公司 一种催化裂化催化剂的制备方法
CN1382525A (zh) 2001-04-28 2002-12-04 中国石油化工股份有限公司 一种稀土高硅y型沸石的制备方法
CN1388064A (zh) * 2001-05-30 2003-01-01 中国石油化工股份有限公司 一种高硅y沸石的制备方法
CN1683244A (zh) 2004-04-14 2005-10-19 中国石油化工股份有限公司 一种分子筛的气相抽铝补硅方法
CN101618347A (zh) * 2008-07-04 2010-01-06 中国石油化工股份有限公司 一种含y分子筛的加氢裂化催化剂载体及其制备方法
CN102020289A (zh) * 2009-09-10 2011-04-20 中国石油化工股份有限公司 一种超稳y沸石及其制备和应用方法
CN102029177A (zh) * 2009-09-28 2011-04-27 中国石油化工股份有限公司 一种裂化催化剂及其制备方法
CN108452825A (zh) * 2017-02-21 2018-08-28 中国石油化工股份有限公司 一种镁改性高硅超稳y型分子筛及其制备方法
CN108452835A (zh) * 2017-02-22 2018-08-28 中国石油化工股份有限公司 一种催化裂化催化剂

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CUIDING YANG ET AL.: "Petrochemical Analysis Methods (RIPP Test Methods", September 1990, SCIENCE PRESS, pages: 263 - 268,412-415,424-426
HUAYUAN ZHU ET AL., ACTA PETROLEI SINICA (PETROLEUM PROCESSING SECTION, vol. 17, no. 6, 2001, pages 6 - 10

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114100671A (zh) * 2020-08-26 2022-03-01 中国石油天然气股份有限公司 催化裂化催化剂及其制备方法与应用

Also Published As

Publication number Publication date
US20210268486A1 (en) 2021-09-02
TW202000594A (zh) 2020-01-01
EP3815784A1 (en) 2021-05-05
AU2019296826A1 (en) 2021-02-04
TWI805793B (zh) 2023-06-21
JP2021529152A (ja) 2021-10-28
SA520420902B1 (ar) 2023-10-29
SG11202013116TA (en) 2021-02-25
US11504702B2 (en) 2022-11-22
JP7352584B2 (ja) 2023-09-28
EP3815784A4 (en) 2021-10-06

Similar Documents

Publication Publication Date Title
TWI778020B (zh) 含鎂的改性y型分子篩、其製備方法及包含它的催化劑
CN108452829B (zh) 一种催化裂化催化剂
TWI805793B (zh) 改性y型分子篩、包含它的催化裂解催化劑、及其製備和用途
US11517887B2 (en) Modified Y-type molecular sieve, catalytic cracking catalyst comprising the same, their preparation and application thereof
TWI812772B (zh) 改性y型分子篩、包含它的催化裂解催化劑、及其製備和用途
CN110833850B (zh) 催化裂化催化剂及其制备方法和应用
US11691132B2 (en) Modified Y-type molecular sieve, catalytic cracking catalyst comprising the same, their preparation and application thereof
CN110653002B (zh) 一种催化裂化催化剂
TWI812773B (zh) 改性y型分子篩、包含它的催化裂解催化劑、及其製備和用途
CN110833854B (zh) 催化裂化催化剂及其制备方法和应用
TWI802718B (zh) 改性y型分子篩、包含它的催化裂解催化劑、及其製備和用途
RU2802819C2 (ru) Модифицированные молекулярные сита типа y, катализатор каталитического крекинга, содержащий их, его получение и их применение
CN110653001B (zh) 一种催化裂化催化剂
CN110652997B (zh) 一种多产双甲基异构烃的高稳定性改性y型分子筛及其制备方法
CN110841696A (zh) 一种用于加工加氢lco的催化裂化催化剂及其制备方法
CN110652999B (zh) 一种多产异构c4的高稳定性改性y型分子筛及其制备方法
RU2804255C2 (ru) Модифицированные молекулярные сита типа y, катализатор каталитического крекинга, содержащий их, его получение и их применение
CN110652998B (zh) 一种多产异构烃的高稳定性改性y型分子筛及其制备方法
CN108452836B (zh) 一种催化裂化催化剂
CN110653000B (zh) 一种催化裂化催化剂及其制备和应用
CN110841690B (zh) 一种改性y型分子筛及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19825723

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020573127

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019825723

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019296826

Country of ref document: AU

Date of ref document: 20190627

Kind code of ref document: A