WO2019245160A1 - 유기 발광 소자 - Google Patents

유기 발광 소자 Download PDF

Info

Publication number
WO2019245160A1
WO2019245160A1 PCT/KR2019/005353 KR2019005353W WO2019245160A1 WO 2019245160 A1 WO2019245160 A1 WO 2019245160A1 KR 2019005353 W KR2019005353 W KR 2019005353W WO 2019245160 A1 WO2019245160 A1 WO 2019245160A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
layer
compound
organic
emitting device
Prior art date
Application number
PCT/KR2019/005353
Other languages
English (en)
French (fr)
Other versions
WO2019245160A9 (ko
Inventor
허정오
이상빈
홍성길
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201980004396.8A priority Critical patent/CN111095587B/zh
Priority to US16/646,960 priority patent/US10950801B2/en
Priority to EP19822718.3A priority patent/EP3667749B1/en
Publication of WO2019245160A1 publication Critical patent/WO2019245160A1/ko
Publication of WO2019245160A9 publication Critical patent/WO2019245160A9/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/27Combination of fluorescent and phosphorescent emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers

Definitions

  • the present specification relates to an organic light emitting device.
  • the organic light emitting phenomenon is an example of converting an electric current into visible light by an internal process of a specific organic molecule.
  • the principle of the organic light emitting phenomenon is as follows.
  • An organic light emitting device using this principle may generally be composed of an organic material layer including a cathode and an anode, and an organic material layer disposed therebetween, such as a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer.
  • the materials used in the organic light emitting device are pure organic materials or complex compounds in which organic materials and metals are complexed, and depending on the purpose, hole injection materials, hole transport materials, light emitting materials, electron transport materials, electron injection materials, etc. It can be divided into.
  • the hole injection material or the hole transport material an organic material having a p-type property, that is, an organic material which is easily oxidized and has an electrochemically stable state during oxidation, is mainly used.
  • organic materials having n-type properties that is, organic materials that are easily reduced and have an electrochemically stable state at the time of reduction are mainly used.
  • the light emitting layer material a material having a p-type property and an n-type property at the same time, that is, a material having a stable form in both oxidation and reduction states, and a material having high luminous efficiency that converts it to light when excitons are formed desirable.
  • the present specification provides an organic light emitting device having high luminous efficiency and / or long life.
  • the cathode An anode provided opposite the cathode; A light emitting layer provided between the cathode and the anode; And an organic material layer provided between the cathode and the light emitting layer, the organic material layer including a compound (A) including a hetero atom and a cyano group, wherein the compound (A) satisfies Equation 1 and Equation 2 below.
  • a light emitting device Provided is a light emitting device.
  • the compound (A) according to the exemplary embodiment of the present specification includes a hetero atom and a cyano group
  • the molecular arrangement is influenced by the dipole moment.
  • the improvement of the film quality by the molecular arrangement has a secondary life improvement effect because it controls the speed of electrons transferred from the organic material layer including the compound (A) to the light emitting layer.
  • an organic light emitting device including the same in the organic material layer since the compound (A) satisfies Equation 1 and Equation 2, an organic light emitting device including the same in the organic material layer has an improved electron injection ability, so that an excessive amount of electrons are simultaneously injected into the light emitting layer. It is prevented, there is an electron control effect, by the film quality improved by the increased dipole moment, there is an effect that the life of the organic light emitting device is improved.
  • the compound (A) according to the exemplary embodiment of the present specification satisfies the values of Equation 1 and Equation 2, the injection ability of the electrons coming from the cathode is improved, thereby providing a low driving voltage and high luminous efficiency.
  • Compound (A) according to an exemplary embodiment of the present specification is excellent in solubility in organic solvents can be a solution process, the large area of the device is possible.
  • 1 to 6 illustrate examples of organic light emitting diodes according to an exemplary embodiment of the present specification.
  • the cathode An anode provided opposite the cathode; A light emitting layer provided between the cathode and the anode; And an organic material layer provided between the cathode and the light emitting layer, the organic material layer including a compound (A) including a hetero atom and a cyano group, wherein the compound (A) satisfies Equation 1 and Equation 2 below.
  • a light emitting device Provided is a light emitting device.
  • solubility refers to a property in which a solute is soluble in a specific solvent, and may be expressed as the number of grams of a solute that can be dissolved in 100 g of a solvent at a constant temperature.
  • the dipole moment is a physical quantity indicating the degree of polarity and may be calculated by Equation 1 below.
  • the value of the dipole moment can be obtained.
  • the molecular density can be obtained by calculating charges and dipoles for each atom using a method called Hirshfeld Charge Analysis, and calculating them according to the following formula, and the dipole moment is put into the above equation 1 Obtain Dipole Moment.
  • Compound (A) according to an exemplary embodiment of the present specification includes a cyano group which can greatly increase the dipole moment without significantly affecting the shape of the entire molecule.
  • electron affinity means energy released when a compound becomes anion by combining with an electron, and can be measured by a method used in the art such as a photoelectron emission method, a transfer method, and an electron transmission method. have.
  • Equation 2 the calculation of the electron affinity Ea through quantum mechanics
  • Equation 2 Means energy with a charge of 0, X + , or X ⁇ in a structure whose geometry is optimized to cation, anion or neutral.
  • the electron affinity means the difference between the safest energy of the anion and the safest energy of the anion in the safest structure of the neutral structure, and may mean the energy released when one electron is added in the neutral state.
  • Equation 2 the value of Equation 2 was obtained for each of the neutral structure having an electron value of 0 and the anion having an electron value of ⁇ 1, and then calculated the energy and then the electron affinity according to the above formula.
  • Structural optimization and energy calculations were calculated using Density Functional Theory (DFT) using B3LYP and 6-31G * basis functions through the Material Science Suite, Schr ⁇ dinger's quantum chemistry calculation program.
  • DFT Density Functional Theory
  • Compound (A) satisfying Equation 1 is excellent in the ability to inject the electrons coming from the cathode, can provide a low driving voltage and high luminous efficiency, can be laminated in the organic light emitting device When the dense film can be provided, it is possible to provide a long life organic light emitting device.
  • Absolute value of dipole moment of compound having the same core as but not containing cyano group For
  • the value of above Absolute value of the electron affinity of a compound having the same core as the compound of but not containing a cyano group ( For) Since the value of satisfies the above Equation 2, the electron injection ability is improved to prevent the excessive amount of electrons to be injected into the light emitting layer at the same time, there is an electron control effect, so that the compound satisfying the Equation 1 and The lifespan of the organic light emitting device including the organic material layer including A) is improved.
  • Formula 1 is represented by the following formula 1-1.
  • Formula 1 is represented by the following formula 1-2.
  • the organic material layer is a hole blocking layer, an electron transport layer, an electron injection layer, or an electron injection and transport layer.
  • the organic material layer is a hole blocking layer.
  • the organic material layer is an electron transport layer.
  • the organic material layer is an electron injection layer.
  • the organic material layer is an electron injection and transport layer.
  • a hole blocking layer provided between the light emitting layer and the organic material layer, the hole blocking layer is provided in contact with the light emitting layer, the organic material layer is an electron injection and transport layer.
  • the light blocking layer further comprises a hole blocking layer provided between the organic material layer, the hole blocking layer is provided in contact with the light emitting layer, the organic material layer is an electron injection layer.
  • a hole blocking layer provided between the light emitting layer and the organic material layer, the hole blocking layer is provided in contact with the light emitting layer, the organic material layer is an electron transport layer.
  • the electron mobility of the compound (A) is 10 -12 cm 2 / Vs or more and 10 2 cm 2 / Vs or less under 0.1 MV / cm electric field conditions.
  • the electron transporting ability to the light emitting layer is improved, and accordingly, the number of excitons generated in the light emitting layer can be increased to expect high device efficiency.
  • Electron mobility and hole mobility can be measured by methods used in the art. Specifically, a method of time of flight (TOF) or space charge limited current (SCLC) measurement may be used, but is not limited thereto.
  • TOF time of flight
  • SCLC space charge limited current
  • the electron mobility measured by the time of flight (TOF) of the compound (A) is 10 -12 cm 2 / Vs or more and 10 2 cm 2 / Vs or less.
  • the charge mobility in order to measure a space charge limited current (SCLC), the charge mobility may be measured using a film thickness of 1000 nm or more.
  • Basophenanthroline Basophenanthroline
  • lithium quinolate 2%)
  • the compound 200 nm Deposited.
  • Bathophenanthroline Bathophenanthroline
  • lithium quinolate 2%)
  • aluminum aluminium was deposited by 100 nm or more to prepare a sample.
  • hexanitrile hexaazatrylphenylene was heated to a thickness of 5 nm on the ITO substrate by vacuum deposition, 200 nm of the compound was deposited, and then aluminum was deposited at 100 nm or more to prepare a sample. .
  • the current density (mA / cm 2 ) to the voltage of the sample (Voltage) the electron mobility in the space charge limited current (SCLC) region can be calculated.
  • the glass transition temperature (Tg) of the organic material layer is more than 100 °C 200 °C.
  • Tg glass transition temperature
  • the glass transition temperature may be measured by a method used in the art, and specifically, a differential scanning calorimeter (DSC) may be used, but is not limited thereto.
  • DSC differential scanning calorimeter
  • the glass transition temperature can be measured before lamination of the organic material layer, and the glass transition temperature of the organic material layer after lamination is the same.
  • the reference material and the sample are simultaneously heated at a constant rate of temperature rise and measured from the peak area curve obtained by measuring the energy input difference between the two as a function of temperature due to the endotherm or heat generation due to phase change and pyrolysis of the sample.
  • a differential scanning calorimeter Q100 (manufactured by TA Instruments) is used as the measuring instrument.
  • the light emitting layer includes a host and a dopant, and the maximum emission wavelength of the dopant is in a range of 420 nm to 520 nm.
  • the dopant is a blue fluorescent dopant.
  • the organic light emitting device is a blue organic light emitting device including a compound (A) satisfying Equation 1 and Formula 2 as an organic material layer between the cathode and the light emitting layer.
  • the host may include one or more materials.
  • the host includes at least one of the compounds represented by the formula 1-1 and 1-2.
  • the energy level of the organic material layer and the light emitting layer is appropriately made, and thus the amount of electrons moving from the organic material layer to the light emitting layer is easily controlled, thereby improving the lifespan of the organic light emitting device.
  • L31 to L35 are the same as or different from each other, and each independently a direct bond; Substituted or unsubstituted arylene group; Or a substituted or unsubstituted heteroarylene group,
  • Ar31 to Ar35 are the same as or different from each other, and each independently a substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroaryl group,
  • R1 and R2 are the same as or different from each other, and each independently hydrogen; Or a substituted or unsubstituted aryl group,
  • r1 is an integer of 1 to 8
  • r2 is an integer from 1 to 7
  • R1 When r1 is 2 or more, two or more of R1 are the same as or different from each other,
  • R2 When r2 is 2 or more, two or more of R2 are the same as or different from each other.
  • substituted means that a hydrogen atom bonded to a carbon atom of the compound is replaced with another substituent, and the position to be substituted is not limited to a position where the hydrogen atom is substituted, that is, a position where a substituent can be substituted, if two or more substituted , Two or more substituents may be the same or different from each other.
  • substituted or unsubstituted is deuterium; Halogen group; Cyano group; Alkyl groups; Aryl group; And it is substituted with one or more substituents selected from the group consisting of a heteroaryl group, two or more substituents in the substituents exemplified above are substituted, or means that do not have any substituents.
  • a substituent to which two or more substituents are linked may be a biphenyl group. That is, the biphenyl group may be an aryl group or may be interpreted as a substituent to which two phenyl groups are linked.
  • the halogen group may be fluorine, chlorine, bromine or iodine.
  • the alkyl group may be linear or branched chain, carbon number is not particularly limited, but is preferably 1 to 30.
  • Specific examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n-pentyl , Isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl, n -Heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-o
  • the aryl group is not particularly limited, but preferably has 6 to 30 carbon atoms, and the aryl group may be monocyclic or polycyclic.
  • the aryl group is a monocyclic aryl group
  • carbon number is not particularly limited, but is preferably 6 to 30 carbon atoms.
  • the monocyclic aryl group may be a phenyl group, a biphenyl group, a terphenyl group, etc., but is not limited thereto.
  • Carbon number is not particularly limited when the aryl group is a polycyclic aryl group. It is preferable that it is C10-30.
  • the polycyclic aryl group may be a naphthyl group, anthracene group, phenanthrene group, triphenylene group, pyrene group, phenylene group, perylene group, chrysene group, fluorene group, but is not limited thereto.
  • the fluorene group may be substituted, and adjacent groups may combine with each other to form a ring.
  • adjacent means a substituent substituted on an atom directly connected to an atom to which the substituent is substituted, a substituent positioned closest to the substituent, or another substituent substituted on an atom to which the substituent is substituted.
  • two substituents substituted at the ortho position in the benzene ring and two substituents substituted at the same carbon in the aliphatic ring may be interpreted as "adjacent" groups.
  • the heteroaryl group includes one or more atoms other than carbon and heteroatoms, and specifically, the heteroatoms may include one or more atoms selected from the group consisting of O, N, Se, and S, and the like. Although carbon number is not particularly limited, it is preferably 2 to 30 carbon atoms, the heteroaryl group may be monocyclic or polycyclic.
  • heterocyclic group examples include thiophene group, furan group, pyrrole group, imidazole group, thiazole group, oxazole group, oxadiazole group, pyridyl group, bipyridyl group, pyrimidyl group, triazine group, triazole group, acridine group , Pyridazine group, pyrazine group, quinoline group, quinazoline group, quinoxaline group, phthalazine group, pyrido pyrimidyl group, pyrido pyrazine group, pyrazino pyrazine group, isoquinoline group, indole group, carbazole group, benz Oxazole group, benzimidazole group, benzothiazolyl group, benzocarbazole group, benzothiophene group, dibenzothiophene group, benzofuran group, dibenzofuran group, phenanthroline group,
  • the arylene group refers to a divalent group having two bonding positions in the aryl group.
  • the description of the aforementioned aryl group can be applied except that they are each divalent.
  • the heteroarylene group means a divalent group having two bonding positions in the heteroaryl group.
  • the description of the aforementioned heteroaryl group can be applied except that they are each divalent.
  • the L31 to L35 are the same as or different from each other, and each independently a direct bond; Or an arylene group.
  • the L31 to L35 are the same as or different from each other, and each independently a direct bond; Phenylene group; Naphthylene group; Or a divalent anthracene group.
  • Ar31 to Ar35 are the same as or different from each other, and each independently an aryl group unsubstituted or substituted with deuterium; Or a heteroaryl group unsubstituted or substituted with an aryl group.
  • Ar31 to Ar35 are the same as or different from each other, and each independently a substituted or unsubstituted phenyl group with deuterium; Biphenyl group; Naphthyl group; Thiophene group unsubstituted or substituted with a phenyl group; Dibenzofuran group; Dibenzothiophene group; Benzo [b] naphtho [1,2-d] furan groups; Benzo [b] naphtho [2,3-d] furan groups; Or a benzo [d] naphtho [1,2-b] furan group.
  • R1 is hydrogen; Or an aryl group unsubstituted or substituted with an aryl group.
  • R1 is hydrogen; Or a naphthyl group unsubstituted or substituted with a phenyl group.
  • R2 is hydrogen
  • the host is any one or more selected from the following compounds.
  • the organic material layer further includes a metal composite.
  • the metal composite is a metal composite; Or alkaline earth metal complexes.
  • the organic material layer further includes an alkali metal complex or an alkaline earth metal complex
  • extraction of electrons from the cathode may be facilitated.
  • the metal complex is represented by the following formula (2).
  • A is hydrogen; heavy hydrogen; Halogen group; Cyano group; Substituted or unsubstituted alkyl group; Substituted or unsubstituted alkenyl group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroaryl group,
  • the curve shows the bond and two or three atoms needed to form a five or six membered ring having M, which atoms are unsubstituted or substituted with one or two or more of the same substituents as A, and
  • M is an alkali metal or alkaline earth metal.
  • the alkenyl group may be linear or branched chain, carbon number is not particularly limited, but is preferably 2 to 30.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2- ( Naphthyl-1-yl) vinyl-1-yl, 2,2-bis (diphenyl-1-yl) vinyl-1-yl, stilbenyl group, styrenyl group, and the like, but are not limited thereto.
  • Chemical Formula 2 is represented by the following Chemical Formula 2-1 or 2-2.
  • the structures of Formulas 2-1 and 2-2 are each independently deuterium; Halogen group; Nitrile group; Nitro group; Hydroxyl group; Substituted or unsubstituted alkyl group; Substituted or unsubstituted alkenyl group; Substituted or unsubstituted aryl group; And a substituted or unsubstituted hydrocarbon ring substituted or unsubstituted with one or more substituents selected from the group consisting of a substituted or unsubstituted heteroaryl group, or adjacent groups are bonded to each other; Or a substituted or unsubstituted heteroring.
  • a “ring” means a substituted or unsubstituted hydrocarbon ring; Or a substituted or unsubstituted hetero ring.
  • the hydrocarbon ring may be an aromatic, aliphatic or a condensed ring of aromatic and aliphatic, and may be selected from examples of the aryl group except for the above-described monovalent.
  • the heterocycle includes one or more atoms other than carbon and heteroatoms, and specifically, the heteroatoms may include one or more atoms selected from the group consisting of O, N, Se, and S, and the like.
  • the heterocycle may be monocyclic or polycyclic, may be aromatic, aliphatic or a condensed ring of aromatic and aliphatic, and may be selected from examples of the heteroaryl group except that it is not monovalent.
  • Chemical Formula 2 is selected from the following structures.
  • the organic material layer further comprises a metal composite
  • the compound (A): the metal composite includes a weight ratio of 1: 9 to 9: 1.
  • the weight ratio When the weight ratio is satisfied, electron extraction from the cathode can be facilitated, so that the voltage of the device can be appropriately adjusted between 2 V and 5 V.
  • the metal complex When the metal complex is included in a weight ratio of less than 1, the extraction of electrons from the cathode is significantly reduced to increase the voltage. Conversely, when excessively included in a weight ratio of more than 9, electron extraction is easy but the mobility of electrons is greatly reduced. Voltage rise due to electron mobility.
  • the compound (A) is a compound containing a heterocyclic ring containing at least one N.
  • the heterocyclic ring containing at least one N may be a 5-membered ring or a 6-membered ring, and the ring including the 5- or 6-membered ring may be monocyclic or polycyclic.
  • the heterocyclic ring containing at least one of N is any one of the following structures.
  • X1 is NR, S, O or CRR ',
  • X2 to X4 are each N or CR ",
  • R, R 'and R are the same as or different from each other, and are each independently monovalent organic groups, and hydrocarbon or heterocycles may be condensed to the structure.
  • condensation of a hydrocarbon ring or a hetero ring may mean that the hydrocarbon ring or hetero ring is bonded to each other to form a polycyclic ring.
  • an organic group an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, etc. are mentioned.
  • This organic group may contain the bond and substituents other than hydrocarbon groups, such as a hetero atom, in the said organic group.
  • the organic group may be any of linear, branched and cyclic.
  • the monovalent organic group means a monovalent group having one bonding position in an organic compound.
  • the organic group may form a cyclic structure, may form a cyclic structure, and may include a hetero atom to form a bond as long as the effects of the invention are not impaired.
  • the bond containing hetero atoms such as an oxygen atom, a nitrogen atom, and a silicon atom
  • the cyclic structure may include the aforementioned aromatic ring, aliphatic ring, and the like, and may be monocyclic or polycyclic.
  • the hetero ring including at least one of N may be any one of the following structures, but is not limited thereto.
  • the structure is deuterium; Alkyl groups; Aryl group; And it may be substituted or unsubstituted with one or two or more substituents selected from the group consisting of a heterocyclic group.
  • the compound (A) is a compound containing a heterocyclic and cyano group containing at least one N.
  • the compound (A) is selected from the following compounds.
  • the organic light emitting device may include two or more light emitting layers.
  • the two or more light emitting layers may be provided in contact with each other, or may include an additional organic material layer between the two light emitting layers.
  • the organic light emitting device includes two or more light emitting layers, and includes a charge generating layer between two adjacent light emitting layers among the two or more light emitting layers, and the charge generating layer includes an n-type organic compound layer and p. It may include a type organic compound layer.
  • the n-type organic compound layer and the p-type organic compound layer included in the charge generating layer are NP bonded.
  • the p-type organic compound layer is selected from the group consisting of a hole injection layer, a hole transport layer, an electron blocking layer and a light emitting layer
  • the n-type organic compound layer is an electron transport layer, an electron injection layer, a hole blocking layer and a light emitting layer It is selected from the group consisting of.
  • n-type means n-type semiconductor characteristics.
  • n-type is a property that electrons are injected or transported through a lower unoccupied molecular orbital (LUMO) energy level, which can be defined as a property of a material in which electron mobility is greater than hole mobility.
  • p-type means p-type semiconductor characteristics.
  • p-type is a property of injecting or transporting holes through a high occupied molecular orbital (HOMO) energy level, which may be defined as a property of a material in which the hole mobility is greater than the electron mobility.
  • the compound or organic compound layer having n-type characteristics may be referred to as an n-type compound or n-type organic compound layer.
  • the compound or organic compound layer having a p-type characteristic may be referred to as a p-type compound or p-type organic compound layer.
  • n-type doping may mean that it is doped to have n-type characteristics.
  • the charge generating layer is a layer that generates charge without applying an external voltage, and generates two or more light emitting layers in the organic light emitting device by generating charges between adjacent light emitting layers among the light emitting layers. .
  • the NP junction may mean not only physical contact between the second electron transport layer, which is an n-type organic compound layer, and the p-type organic compound layer, but also an interaction in which holes and electrons may be easily generated and transported.
  • the NP junction when the NP junction is formed, it may be easy to form holes or electrons by an external voltage or a light source. Therefore, it is possible to prevent the rise of the driving voltage for the injection of holes.
  • the maximum light emission wavelength of at least two of the two or more light emitting layers is the same or different from each other.
  • the maximum emission wavelength means a wavelength at the maximum value of the spectral distribution.
  • the maximum light emission wavelength of at least two layers of the two or more light emitting layers are different from each other.
  • At least one of the two or more light emitting layers includes a phosphorescent dopant, and at least one includes a fluorescent dopant.
  • the organic light emitting diode including a fluorescent layer and / or a phosphorescent layer.
  • the peak wavelength of the photoluminescence spectrum is 400 nm to 500 nm
  • the peak wavelength of the photoluminescence spectrum is 510 nm to 580 nm
  • the peak wavelength of the photoluminescence spectrum is 610 From nm to 680 nm, those skilled in the art can use one or two or more layers in combination with light emitting layers having different peak wavelengths as necessary.
  • the phosphorescent dopant and the fluorescent dopant may use a dopant generally used in the art.
  • the organic light emitting device includes a first light emitting layer provided between the anode and an organic material layer including the compound (A); And a second light emitting layer provided on the first light emitting layer.
  • the first emission layer and the second emission layer may be provided in contact with each other, and an additional organic layer may be provided between the first emission layer and the second emission layer.
  • the organic light emitting device includes a first light emitting layer provided between a part of the organic material layer including the anode and the compound (A); And a second light emitting layer provided on the remaining part between the anode and the organic material layer including the compound (A).
  • An insulating structure may be included between the first light emitting layer and the second light emitting layer.
  • the first emission layer and the second emission layer may be provided side by side on the same surface of the organic material layer including the compound (A).
  • one side of the first light emitting layer and one side of the second light emitting layer may be provided in contact with each other.
  • the first light emitting layer and the second light emitting layer provided side by side may be provided in contact with the same surface of the organic material layer including the compound (A).
  • an additional layer may be provided between the first light emitting layer provided side by side and the organic material layer including the second light emitting layer and the compound (A).
  • the additional layer may be a hole blocking layer and / or an electron transport layer.
  • the organic light emitting device includes a first light emitting layer provided between the anode and the organic material layer containing the compound (A); And a second light emitting layer provided on the first light emitting layer, and a third light emitting layer provided on the second light emitting layer.
  • the first light emitting layer, the second light emitting layer, and the third light emitting layer may be provided in contact with each other, and between the first light emitting layer and the second light emitting layer and / or between the second light emitting layer and the third light emitting layer. Additional organic layer may be provided.
  • the maximum light emission wavelengths of the first light emitting layer, the second light emitting layer, and the third light emitting layer are different from each other.
  • the maximum light emission wavelength of the first light emitting layer, the second light emitting layer, and the third light emitting layer is the same.
  • the first emission layer, the second emission layer, and the third emission layer may include a blue fluorescent dopant, and the maximum emission wavelength of the dopant may be in a range of 420 nm to 520 nm.
  • the structure of the organic light emitting device according to the present invention may have a structure as shown in FIGS. 1 to 6, but is not limited thereto.
  • the electron transport layer 501 may be an organic layer including the compound (A).
  • the electron transport layer 501 may be an organic material layer including the compound (A), and the second light emitting layer 402 and the first light emitting layer 403 may be provided in contact with each other, and an additional organic material layer may be provided. Can be.
  • an anode 201 and a hole transport layer 301 are provided on the substrate 101, and a first light emitting layer 402 and a second light emitting layer 403 are provided on the hole transport layer 301.
  • the structure of the organic light emitting device in which the electron transport layer 501 and the cathode 601 are sequentially stacked on the light emitting layer 402 and the second light emitting layer 403 is illustrated.
  • the electron transport layer 501 may be an organic material layer including the compound (A).
  • the electron transport layer 501 may be an organic material layer including the compound (A), and the first emission layer 402, the second emission layer 403, and the third emission layer 404 may be in contact with each other.
  • An additional organic layer may be provided between the first light emitting layer 402 and the second light emitting layer 403 and / or between the second light emitting layer 403 and the third light emitting layer 404.
  • FIG. 5 illustrates an organic light emitting diode in which an anode 201, a hole transport layer 301, a light emitting layer 401, a hole blocking layer 701, an electron injection and transport layer 502, and a cathode 601 are sequentially stacked on a substrate 101.
  • the electron injection and transport layer 502 may be an organic layer including the compound (A).
  • a hole injection layer may be further provided between the anode 201 and the hole transport layer 301, and FIG. 6 further illustrates the hole injection layer.
  • the electron injection and transport layer 502 may be an organic layer including the compound (A).
  • the organic material layer including the compound (A) may be a hole blocking layer, an electron injection layer, or an electron injection and transport layer instead of the electron transport layer 501.
  • the organic light emitting device of the present specification includes an organic material layer including a compound (A) including the hetero atom and a cyano group between the cathode and the light emitting layer, wherein the compound (A) satisfies Equations 1 and 2 above.
  • the organic light emitting device of the present disclosure may be manufactured by sequentially stacking an anode, an organic material layer, and a cathode on a substrate. At this time, the anode is formed by depositing a metal or conductive metal oxide or an alloy thereof on the substrate by using a physical vapor deposition (PVD) method such as sputtering or e-beam evaporation.
  • PVD physical vapor deposition
  • an organic material layer including a hole injection layer, a hole transport layer, an electron blocking layer, a light emitting layer, an electron transport layer, and an electron injection layer thereon, and then depositing a material that can be used as a cathode thereon.
  • an organic light emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
  • an organic light emitting device may be manufactured by sequentially depositing an anode material, an organic material layer, and a cathode material on a substrate.
  • the organic material layer of the organic light emitting device of the present specification may have a multilayer structure in which one or more organic material layers are stacked.
  • the organic light emitting device includes one or two or more layers selected from the group consisting of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, an electron blocking layer, and a hole blocking layer. It may further include.
  • the organic material layers may be formed of the same material or different materials.
  • the anode material a material having a large work function is generally preferred to facilitate hole injection into the organic material layer.
  • the positive electrode material that can be used in the present invention include metals such as vanadium, chromium, copper, zinc, gold or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); ZnO: Al or SNO 2 : Combination of metals and oxides such as Sb; Conductive polymers such as poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PEDOT), polypyrrole and polyaniline, and the like, but are not limited thereto.
  • the cathode material is generally a material having a small work function to facilitate electron injection into the organic material layer.
  • the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead or alloys thereof; Multilayer structure materials such as LiF / Al or LiO 2 / Al, and the like, but are not limited thereto.
  • the hole injection material is a layer for injecting holes from an electrode, and the hole injection material has a capability of transporting holes, and thus has a hole injection effect at an anode, an excellent hole injection effect for a light emitting layer or a light emitting material, and is generated in a light emitting layer.
  • the compound which prevents the movement of the excited excitons to the electron injection layer or the electron injection material, and is excellent in thin film formation ability is preferable.
  • the highest occupied molecular orbital (HOMO) of the hole injection material is between the work function of the positive electrode material and the HOMO of the surrounding organic material layer.
  • hole injection material examples include metal porphyrin, oligothiophene, arylamine-based organic material, hexanitrile hexaazatriphenylene-based organic material, quinacridone-based organic material, and perylene-based Organic materials, anthraquinone, and polyaniline and polythiophene-based conductive polymers, but are not limited thereto.
  • the electron blocking layer is a layer which can prevent the electrons injected from the electron injection layer from passing through the light emitting layer to the hole injection layer to improve the life and efficiency of the device, and if necessary, using a known material using a known material It may be formed in a suitable portion between the injection layers.
  • the hole transport layer is a layer that receives holes from the hole injection layer and transports holes to the light emitting layer.
  • the hole transport material is a material capable of transporting holes from the anode or the hole injection layer to the light emitting layer.
  • the material is suitable. Specific examples thereof include an arylamine-based organic material, a conductive polymer, and a block copolymer having a conjugated portion and a non-conjugated portion together, but are not limited thereto.
  • the light emitting material may be formed by transporting and combining holes and electrons from the hole transporting layer and the electron transporting layer, respectively, to provide light in the visible light region.
  • the material which can be produced a material having good quantum efficiency with respect to fluorescence or phosphorescence is preferable.
  • Specific examples thereof include 8-hydroxyquinoline aluminum complex (Alq 3 ); Carbazole series compounds; Dimerized styryl compounds; BAlq; 10-hydroxybenzoquinoline-metal compound; Benzoxazole, benzthiazole and benzimidazole series compounds; Poly (p-phenylenevinylene) (PPV) -based polymers; Spiro compounds; Polyfluorene, rubrene and the like, but are not limited thereto.
  • Alq 3 8-hydroxyquinoline aluminum complex
  • Carbazole series compounds Dimerized styryl compounds
  • BAlq 10-hydroxybenzoquinoline-metal compound
  • Benzoxazole, benzthiazole and benzimidazole series compounds include Poly (p-phenylenevinylene) (PPV) -based polymers; Spiro compounds; Polyfluorene, rubrene and the like, but are not limited thereto.
  • the light emitting layer may include a host material and a dopant material.
  • the host material is a condensed aromatic ring derivative or a heterocyclic containing compound.
  • the condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, and fluoranthene compounds
  • the heterocyclic containing compounds include carbazole derivatives, dibenzofuran derivatives and ladder types. Furan compounds, pyrimidine derivatives, and the like, but are not limited thereto.
  • the fluorescent light emitting layer may be distyrylarylene (DSA), distyrylarylene derivative, distyrylbenzene (DSB), distyrylbenzene derivative, or DPVBi (4,4'-bis (2,2 ') as a host material. 1 or 2 or more are selected from the group consisting of -diphenyl vinyl) -1,1'-biphenyl), DPVBi derivatives, spiro-DPVBi and spiro-6P (spiro-sexyphenyl).
  • the fluorescent layer is selected from the group consisting of styrylamine, perylene, and DSBP (distyrylbiphenyl) as a dopant material.
  • the electron injection layer is a layer that injects electrons from an electrode, has an ability of transporting electrons, has an electron injection effect from a cathode, an electron injection effect with respect to a light emitting layer or a light emitting material, and hole injection of excitons generated in the light emitting layer.
  • the compound which prevents the movement to a layer and is excellent in thin film formation ability is preferable.
  • fluorenone anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, anthrone and the derivatives thereof, metal Complex compounds, nitrogen-containing five-membered ring derivatives, and the like, but are not limited thereto.
  • Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis (8-hydroxyquinolinato) zinc, bis (8-hydroxyquinolinato) copper, bis (8-hydroxyquinolinato) manganese, Tris (8-hydroxyquinolinato) aluminum, tris (2-methyl-8-hydroxyquinolinato) aluminum, tris (8-hydroxyquinolinato) gallium, bis (10-hydroxybenzo [h] Quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8-quinolinato) chlorogallium, bis (2-methyl-8-quinolinato) ( o-cresolato) gallium, bis (2-methyl-8-quinolinato) (1-naphtolato) aluminum, bis (2-methyl-8-quinolinato) (2-naphtolato) gallium, It is not limited to this.
  • the hole blocking layer is a layer that blocks the reaching of the cathode of the hole, and may be generally formed under the same conditions as the hole injection layer. Specifically, there are oxadiazole derivatives, triazole derivatives, phenanthroline derivatives, BCP, aluminum complexes, and the like, but are not limited thereto.
  • the organic light emitting device may be a top emission type, a bottom emission type, or a double side emission type according to a material used.
  • the organic light emitting diode according to the present disclosure may be a normal type in which the lower electrode is an anode and the upper electrode is a cathode, or may be an inverted type in which the lower electrode is a cathode and the upper electrode is an anode.
  • the structure according to the exemplary embodiment of the present specification may act on a principle similar to that applied to an organic light emitting device in an organic electronic device including an organic solar cell, an organic photoconductor, and an organic transistor.
  • a glass substrate (corning 7059 glass) coated with ITO (Indium Tin Oxide) having a thickness of 1000 ⁇ was placed in distilled water in which a dispersant was dissolved, and ultrasonically washed. Fischer Co. products were used for the detergent, and Millipore Co. Secondly filtered distilled water was used as a filter of the product. After washing ITO for 30 minutes, ultrasonic washing was performed twice with distilled water for 10 minutes. After washing the distilled water, the ultrasonic washing in the order of isopropyl alcohol, acetone, methanol solvent and dried.
  • ITO Indium Tin Oxide
  • Hexonitrile hexaazatriphenylene (HAT: hexanitrile hexaazatriphenylene) was thermally vacuum deposited to a thickness of 500 kPa on the prepared ITO transparent electrode to form a hole injection layer. Thereafter, HT1 (400 kPa), which is a material for transporting holes, was vacuum deposited, and the host BH1 and the dopant BD1 compound were vacuum deposited to a thickness of 300 kPa as a light emitting layer.
  • HAT hexanitrile hexaazatriphenylene
  • the lithium fluoride of the cathode was 0.3 ⁇ / sec
  • aluminum is deposited at a rate of 2 ⁇ / sec
  • the organic light emitting device was manufactured by maintaining 7 to 5 ⁇ 10 ⁇ 6 torr.
  • DM means dipole moment
  • Experimental Example 1-1 except that instead of using the compound of Experimental Example 1-1 of Table 1 as BH1 and the electron injection and transport layer as the host of the light emitting layer in Experimental Example 1-1 An organic light emitting device was manufactured in the same manner as in 1-1.
  • the organic light emitting diode manufactured in the above Experimental Example measured the driving voltage and the luminous efficiency at a current density of 10 mA / cm 2 , and measured the time (LT98) to be 98% of the initial luminance at a current density of 20 mA / cm 2 . It was. The results are shown in Table 1 below.
  • Experimental Example 1-1 except that instead of using the compound of Experimental Example 1-1 of Table 1 as BH1 and the electron injection and transport layer as the host of the light emitting layer in Experimental Example 1-1 An organic light emitting device was manufactured in the same manner as in 1-1.
  • the organic light emitting diode manufactured in Comparative Example was measured for driving voltage and luminous efficiency at a current density of 10 mA / cm 2 , and a time (LT98) of 98% of initial luminance at a current density of 20 mA / cm 2 was measured. It was. The results are shown in Table 2 below.
  • Experimental Example 1-1 instead of using the compound of Experimental Example 1-1 of Table 1 as BH1 and the electron injection and transport layer as the host of the light emitting layer, the compounds of Table 3 were used, respectively, and the ET1 was placed on the light emitting layer.
  • An organic light-emitting device was manufactured in the same manner as in Experimental Example 1-1, except that No was deposited.
  • the organic light emitting diode manufactured in the above Experimental Example measured the driving voltage and the luminous efficiency at a current density of 10 mA / cm 2 , and measured the time (LT98) to be 98% of the initial luminance at a current density of 20 mA / cm 2 . It was. The results are shown in Table 3 below.
  • Experimental Example 1-1 instead of using the compound of Experimental Example 1-1 of Table 1 as BH1 and the electron injection and transport layer as the host of the emission layer, the compounds of Table 4 were used, respectively, and the ET1 was placed on the emission layer.
  • An organic light-emitting device was manufactured in the same manner as in Experimental Example 1-1, except that No was deposited.
  • the organic light emitting diode manufactured in Comparative Example was measured for driving voltage and luminous efficiency at a current density of 10 mA / cm 2 , and measured at 98% of the initial luminance at a current density of 20 mA / cm 2 (LT98). It was. The results are shown in Table 4 below.
  • Compound A (compound including a hetero atom and a cyano group) according to one embodiment of the present specification satisfies Equations 1 and 2, and the compound (A) of the organic light emitting device
  • the organic light emitting device having the same core as the compound (A), but having no cyano group, has a lower driving voltage, better efficiency, and longer life.
  • the organic light emitting device including the hetero atom and the cyano group and applying the compound A satisfying Formulas 1 and 2 has a low driving voltage, excellent efficiency, and long life.
  • DM dipole moment
  • EA electron affinity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 명세서는 캐소드; 상기 캐소드와 대향하여 구비되는 애노드; 상기 캐소드와 상기 애노드 사이에 구비되는 발광층; 및 상기 캐소드와 상기 발광층 사이에 구비되고, 헤테로 원자 및 시아노기를 포함하는 화합물(A)을 포함하는 유기물층을 포함하고, 상기 화합물(A)는 식 1 및 식 2를 만족하는 것인 유기 발광 소자에 관한 것이다.

Description

유기 발광 소자
본 명세서는 유기 발광 소자에 관한 것이다.
본 명세서는 2018년 6월 18일에 한국특허청에 제출된 한국특허출원 제10-2018-0069503호의 출원일의 이익을 주장하며, 그 내용은 전부 본 명세서에 포함된다.
유기 발광 현상은 특정 유기 분자의 내부 프로세스에 의하여 전류가 가시광으로 전환되는 예의 하나이다. 유기 발광 현상의 원리는 다음과 같다.
양극과 음극 사이에 유기물층을 위치시켰을 때 두 전극 사이에 전압을 걸어주게 되면 음극과 양극으로부터 각각 전자와 정공이 유기물층으로 주입된다. 유기물층으로 주입된 전자와 정공은 재결합하여 엑시톤(exciton)을 형성하고, 이 엑시톤이 다시 바닥 상태로 떨어지면서 빛이 나게 된다. 이러한 원리를 이용하는 유기 발광 소자는 일반적으로 음극과 양극 및 그 사이에 위치한 유기물층, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층을 포함하는 유기물층으로 구성될 수 있다.
유기 발광 소자에서 사용되는 물질로는 순수 유기 물질 또는 유기 물질과 금속이 착물을 이루는 착화합물이 대부분을 차지하고 있으며, 용도에 따라 정공주입 물질, 정공수송 물질, 발광 물질, 전자수송 물질, 전자주입 물질 등으로 구분될 수 있다. 여기서, 정공주입 물질이나 정공수송 물질로는 p-타입의 성질을 가지는 유기물질, 즉 쉽게 산화가 되고 산화시에 전기화학적으로 안정한 상태를 가지는 유기물이 주로 사용되고 있다. 한편, 전자주입 물질이나 전자수송 물질로는 n-타입 성질을 가지는 유기 물질, 즉 쉽게 환원이 되고 환원시에 전기화학적으로 안정한 상태를 가지는 유기물이 주로 사용되고 있다. 발광층 물질로는 p-타입 성질과 n-타입 성질을 동시에 가진 물질, 즉 산화와 환원 상태에서 모두 안정한 형태를 갖는 물질이 바람직하며, 엑시톤이 형성되었을 때 이를 빛으로 전환하는 발광 효율이 높은 물질이 바람직하다.
당 기술분야에서는 높은 효율의 유기 발광 소자의 개발이 요구되고 있다.
본 명세서는 높은 발광 효율 및/또는 장수명의 유기 발광 소자를 제공한다.
본 명세서의 일 실시상태에 따르면, 캐소드; 상기 캐소드와 대향하여 구비되는 애노드; 상기 캐소드와 상기 애노드 사이에 구비되는 발광층; 및 상기 캐소드와 상기 발광층 사이에 구비되고, 헤테로 원자 및 시아노기를 포함하는 화합물(A)을 포함하는 유기물층을 포함하고, 상기 화합물(A)는 하기 식 1 및 하기 식 2를 만족하는 것인 유기 발광 소자를 제공한다.
[식 1]
Figure PCTKR2019005353-appb-I000001
상기 식 1에 있어서,
Figure PCTKR2019005353-appb-I000002
은 상기 화합물(A)의 쌍극자 모멘트(dipole moment)의 절대값을 의미하며,
[식 2]
Figure PCTKR2019005353-appb-I000003
상기 식 2에 있어서,
Figure PCTKR2019005353-appb-I000004
은 상기 화합물(A)의 쌍극자 모멘트(dipole moment)의 절대값을 의미하고,
Figure PCTKR2019005353-appb-I000005
는 상기
Figure PCTKR2019005353-appb-I000006
의 화합물과 동일한 코어를 가지나, 시아노기를 포함하지 않는 화합물의 쌍극자 모멘트(dipole moment)의 절대값을 의미하며,
Figure PCTKR2019005353-appb-I000007
는 상기 화합물(A)의 전자 친화도의 절대값을 의미하고,
Figure PCTKR2019005353-appb-I000008
는 상기
Figure PCTKR2019005353-appb-I000009
의 화합물과 동일한 코어를 가지나, 시아노기 포함하지 않는 화합물의 전자 친화도의 절대값을 의미한다.
본 명세서의 일 실시상태에 따른 화합물(A)는 헤테로 원자 및 시아노기를 포함하므로, 쌍극자 모멘트가 크게 증가되어 이를 포함하는 유기물층이 막(film)을 형성하는 경우, 쌍극자 모멘트의 영향으로 분자 배열이 더 잘 일어나 막질이 단단해지므로, 이를 포함하는 유기 발광 소자의 수명이 향상되는 효과가 있다. 상기 분자 배열에 의한 막질의 개선은 상기 화합물(A)를 포함하는 유기물층에서 발광층으로 전달되는 전자의 속도를 조절하기 때문에 2차 수명 개선 효과가 있다.
본 명세서의 일 실시상태에 따르면, 상기 화합물(A)는 상기 식 1 및 식 2를 만족하므로, 이를 유기물층에 포함하는 유기 발광 소자는 전자 주입 능력이 향상되어 과도한 양의 전자가 동시에 발광층으로 주입되는 것을 방지하여, 전자 조절 효과가 있으며, 증가된 쌍극자 모멘트로 개선된 막질에 의하여, 유기 발광 소자의 수명이 개선되는 효과가 있다.
본 명세서의 일 실시상태에 따른 화합물(A)는 상기 식 1 및 식 2의 값을 만족하므로, 캐소드로부터 들어오는 전자의 주입 능력이 향상되어, 낮은 구동 전압 및 높은 발광 효율을 제공할 수 있다.
본 명세서의 일 실시상태에 따른 화합물(A)는 유기 용매에 대한 용해도가 우수하여 용액 공정이 가능하여, 소자의 대면적화가 가능하다.
도 1 내지 6은 본 명세서의 일 실시상태에 따른 유기 발광 소자의 예를 도시한 것이다.
[부호의 설명]
101: 기판
201: 애노드
301: 정공수송층
401: 발광층
402: 제1 발광층
403: 제2 발광층
404: 제3 발광층
501: 전자수송층
502: 전자 주입 및 수송층
601: 캐소드
701: 정공차단층
801: 정공주입층
이하, 본 명세서를 상세히 설명한다.
본 명세서의 일 실시상태에 따르면, 캐소드; 상기 캐소드와 대향하여 구비되는 애노드; 상기 캐소드와 상기 애노드 사이에 구비되는 발광층; 및 상기 캐소드와 상기 발광층 사이에 구비되고, 헤테로 원자 및 시아노기를 포함하는 화합물(A)을 포함하는 유기물층을 포함하고, 상기 화합물(A)는 하기 식 1 및 하기 식 2를 만족하는 것인 유기 발광 소자를 제공한다.
[식 1]
Figure PCTKR2019005353-appb-I000010
상기 식 1에 있어서,
Figure PCTKR2019005353-appb-I000011
은 상기 화합물(A)의 쌍극자 모멘트(dipole moment)의 절대값을 의미하며,
[식 2]
Figure PCTKR2019005353-appb-I000012
상기 식 2에 있어서,
Figure PCTKR2019005353-appb-I000013
은 상기 화합물(A)의 쌍극자 모멘트(dipole moment)의 절대값을 의미하고,
Figure PCTKR2019005353-appb-I000014
는 상기
Figure PCTKR2019005353-appb-I000015
의 화합물과 동일한 코어를 가지나, 시아노기를 포함하지 않는 화합물의 쌍극자 모멘트(dipole moment)의 절대값을 의미하며,
Figure PCTKR2019005353-appb-I000016
는 상기 화합물(A)의 전자 친화도의 절대값을 의미하고,
Figure PCTKR2019005353-appb-I000017
는 상기
Figure PCTKR2019005353-appb-I000018
의 화합물과 동일한 코어를 가지나, 시아노기 포함하지 않는 화합물의 전자 친화도의 절대값을 의미한다.
본 명세서에서 "용해도(solubility)"는 용질이 특정 용매에 대하여 녹는 성질을 의미하는 것으로, 일정한 온도에서 용매 100g에 녹을 수 있는 용질의 g수로 표기될 수 있다.
본 명세서에 있어서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에서 쌍극자 모멘트(dipole moment)는 극성의 정도를 나타내는 물리량으로서, 하기 수학식 1로 계산될 수 있다.
[수학식 1]
Figure PCTKR2019005353-appb-I000019
상기의 수학식 1에서 분자 밀도(Molecular density)를 계산으로 구하여, 쌍극자 모멘트의 값을 얻을 수 있다. 예컨대, 분자 밀도는 Hirshfeld Charge Analysis라는 방법을 사용하여 각 원자별 전하(Charge) 및 쌍극자(Dipole)를 구하고, 하기 식에 따라 계산하여 얻을 수 있으며, 그 계산 결과를 상기 수학식 1에 넣어 쌍극자 모멘트(Dipole Moment)를 구할 수 있다.
Figure PCTKR2019005353-appb-I000020
Figure PCTKR2019005353-appb-I000021
Figure PCTKR2019005353-appb-I000022
본 명세서의 일 실시상태에 따른 화합물(A)는 전체적인 분자의 모양에는 크게 영향을 주지 않고, 쌍극자 모멘트를 크게 증가시킬 수 있는 시아노기를 포함한다.
본 명세서에서 전자친화도(electron affinity)란 화합물이 전자와 결합하여 음이온이 될 때 방출되는 에너지를 의미하며, 광전자 방출법, 이동법, 전자 투과법 등으로 당업계에서 사용되는 방법으로 측정할 수 있다.
본 명세서에서 실험적인 측정 방법에 준하고, 양자 역학을 통한 상기 전자친화도(Ea)의 계산은 하기 수학식 2를 이용하여 계산할 수 있다.
[수학식 2]
Figure PCTKR2019005353-appb-I000023
상기 수학식 2에서
Figure PCTKR2019005353-appb-I000024
는 기하학(geometry)이 양이온(cation), 음이온(amion) 또는 중성(neutral)으로 최적화된 구조에서 전하(charge)가 0, X+, 또는 X- 인 에너지를 의미한다.
즉, 전자 친화도는 중성 구조의 가장 안전한 구조의 에너지에서 음이온의 가장 안전한 에너지의 차이를 의미하며, 중성 상태에서 전자 한 개를 추가할 때 방출한 에너지를 의미할 수 있다.
구체적으로 상기 수학식 2의 값은 전자가가 0인 중성 구조와 전자가가 -1인 음이온에 대해서 각각 안정한 구조를 구하고 에너지를 계산한 후에 위 식에 따라 전자친화도를 구하였다. 구조 최적화와 에너지 계산은 Schrφdinger 社의 양자화학 계산 프로그램인 Material Science Suite을 통해 B3LYP 범함수와 6-31G* 기저함수를 를 이용해서 밀도범함수 이론(DFT)으로 계산했다.
본 명세서의 일 실시상태에 따른 상기 식 1을 만족하는 화합물(A)는 캐소드로부터 들어오는 전자의 주입 능력이 우수하여, 낮은 구동 전압 및 높은 발광 효율을 제공할 수 있으며, 유기 발광 소자 내에서 적층될 때 치밀한 막을 제공할 수 있어 장수명의 유기 발광 소자를 제공할 수 있다.
또한, 동시에 상기
Figure PCTKR2019005353-appb-I000025
의 화합물과 동일한 코어를 가지나, 시아노기를 포함하지 않는 화합물의 쌍극자 모멘트(dipole moment)의 절대값(
Figure PCTKR2019005353-appb-I000026
)에 대한
Figure PCTKR2019005353-appb-I000027
의 값이 상기
Figure PCTKR2019005353-appb-I000028
의 화합물과 동일한 코어를 가지나, 시아노기 포함하지 않는 화합물의 전자 친화도의 절대값(
Figure PCTKR2019005353-appb-I000029
)에 대한
Figure PCTKR2019005353-appb-I000030
의 값이 더 큰 상기 식 2를 만족하므로, 전자 주입 능력이 향상되어 과도한 양의 전자가 동시에 발광층으로 주입되는 것을 방지하여, 전자 조절 효과가 있으므로, 상기 식 1 및 식 2를 만족하는 상기 화합물(A)를 포함하는 유기물층을 포함하는 유기 발광 소자의 수명이 개선되는 효과가 있다.
본 명세서의 일 실시상태에 따르면, 상기 식 1은 하기 식 1-1로 표시된다.
[식 1-1]
Figure PCTKR2019005353-appb-I000031
본 명세서의 일 실시상태에 따르면, 상기 식 1은 하기 식 1-2로 표시된다.
[식 1-2]
Figure PCTKR2019005353-appb-I000032
상기 식 1-1 및 1-2에 있어서,
Figure PCTKR2019005353-appb-I000033
의 정의는 전술한 바와 같다.
본 명세서의 일 실시상태에 따르면, 상기 유기물층은 정공차단층, 전자수송층, 전자주입층, 또는 전자 주입 및 수송층이다.
본 명세서의 일 실시상태에 따르면, 상기 유기물층은 정공차단층이다.
본 명세서의 일 실시상태에 따르면, 상기 유기물층은 전자수송층이다.
본 명세서의 일 실시상태에 따르면, 상기 유기물층은 전자주입층이다.
본 명세서의 일 실시상태에 따르면, 상기 유기물층은 전자 주입 및 수송층이다.
본 명세서의 일 실시상태에 따르면, 상기 발광층과 상기 유기물층 사이에 구비된 정공차단층을 더 포함하고, 상기 정공차단층은 발광층에 접하여 구비되며, 상기 유기물층은 전자 주입 및 수송층이다.
본 명세서의 일 실시상태에 따르면, 상기 발광층과 상기 유기물층 사이에 구비된 정공차단층을 더 포함하고, 상기 정공차단층은 발광층에 접하여 구비되며, 상기 유기물층은 전자주입층이다.
본 명세서의 일 실시상태에 따르면, 상기 발광층과 상기 유기물층 사이에 구비된 정공차단층을 더 포함하고, 상기 정공차단층은 발광층에 접하여 구비되며, 상기 유기물층은 전자수송층이다.
본 명세서의 일 실시상태에 따르면, 상기 화합물(A)의 전자 이동도는 0.1 MV/cm 전계 조건에서 10-12 cm2/Vs 이상 102 cm2/Vs 이하이다. 이 경우, 발광층으로의 전자 수송 능력이 향상되고, 이에 따라 발광층 내에서 생성되는 엑시톤의 수를 증가시켜 높은 소자 효율을 기대할 수 있다.
전자 이동도 및 정공 이동도는 당업계에서 사용되는 방법으로 측정할 수 있다. 구체적으로 비행 시간법 (TOF; Time of Flight) 또는 공간 전하 제한된 전류 (SCLC; Space Charge Limited Current) 측정의 방법을 사용할 수 있으며 이에 한정하지 않는다.
본 명세서의 일 실시상태에 따르면, 상기 화합물(A)의 비행 시간법(TOF; Time of Flight)으로 측정한 전자 이동도는 10-12 cm2/Vs 이상 102 cm2/Vs이하 이다.
본 명세서에서 공간 전하 제한된 전류 (SCLC; Space Charge Limited Current)를 측정하기 위하여 물질의 막 두께를 1000 nm이상으로 하여 전하 이동도를 측정할 수 있다.
구체적으로, 본 명세서의 하나의 실시상태에 있어서, ITO 기판 상에 바소페난트롤린(Bathophenanthroline)과 리튬 퀴놀레이트 (2%)를 진공 중에서 가열하여 100 nm 두께로 증착한 후, 상기 화합물을 200 nm 증착하였다. 상기 층 위에 바소페난트롤린(Bathophenanthroline)과 리튬 퀴놀레이트 (2%)를 다시 100 nm 두께로 증착한 후, 알루미늄 (aluminium)을 100 nm 이상 증착하여, 샘플을 제조하였다. 상기 샘플의 전압 (Voltage) 에 대한 전류밀도 (currently density: mA/cm2)를 측정하여, 공간 전하 제한된 전류 (SCLC; Space Charge Limited Current)영역에서 전자 이동도를 계산할 수 있다.
또한, ITO 기판 상에 헥사니트릴 헥사아자트릴페닐렌을 진공 중에서 가열하여 5 nm 두께로 증착한 후, 상기 화합물을 200 nm 증착한 후, 알루미늄(aluminium)을 100 nm 이상 증착하여, 샘플을 제조하였다. 상기 샘플의 전압(Voltage)에 대한 전류밀도(currently density: mA/cm2)를 측정하여, 공간 전하 제한된 전류(SCLC; Space Charge Limited Current) 영역에서 전자 이동도를 계산할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 유기물층의 유리 전이 온도(Tg)는 100℃ 초과 200 ℃ 이하이다. 유리 전이 온도가 상기의 범위의 경우에는 열적 안정성이 우수한 유기 발광 소자를 적용할 수 있다.
본 명세서에서 유리 전이 온도는 당업계에서 사용되는 방법으로 측정할 수 있으며, 구체적으로 시차 주사 열량계(differential scanning calorimeter(DSC))를 사용할 수 있으나, 이에만 한정되는 것은 아니다.
상기 유리 전이 온도의 측정은 유기물층의 적층 전 측정할 수 있으며, 적층 후의 유기물층의 유리 전이 온도는 동일하다.
구체적으로, 기준 물질과 시료를 동시에 일정한 온도 상승률로 가열하여 시료의 상변화와 열분해로 인한 흡열 혹은 발열로 인하여 양자 간에 에너지 입력차를 온도의 함수로서 측정하여 얻은 피크형 면적 곡선으로부터 측정한다. 측정 기기로서는 시차 주사 열량계 Q100(TA Instruments 제품)을 이용한다.
본 명세서의 일 실시상태에 따르면, 상기 발광층은 호스트 및 도펀트를 포함하고, 상기 도펀트의 최대 발광 파장은 420nm 내지 520nm 범위 내이다.
본 명세서의 일 실시상태에 따르면, 상기 도펀트는 청색 형광 도펀트이다.
본 명세서에서 상기 유기 발광 소자는 캐소드와 발광층 사이의 유기물층으로 상기 식 1 및 식 2를 만족하는 화합물(A)를 포함하는 청색 유기 발광 소자로 청색 발광을 하는 유기 발광 소자의 수명 개선 효과가 있다.
본 명세서의 일 실시상태에 따르면, 상기 호스트는 1 종 이상의 재료를 포함할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 호스트는 하기 화학식 1-1 및 1-2로 표시되는 화합물 중 적어도 하나를 포함한다. 하기 화합물을 포함하는 경우, 상기 유기물층과 발광층의 에너지 준위가 적절하게 이루어져, 상기 유기물층에서 발광층으로 이동하는 전자량 조절이 용이하므로, 유기 발광 소자의 수명이 개선되는 효과가 있다.
[화학식 1-1]
Figure PCTKR2019005353-appb-I000034
[화학식 1-2]
Figure PCTKR2019005353-appb-I000035
상기 화학식 1-1 및 1-2에 있어서,
L31 내지 L35는 서로 같거나 상이하고, 각각 독립적으로 직접결합; 치환 또는 비치환된 아릴렌기; 또는 치환 또는 비치환된 헤테로아릴렌기이고,
Ar31 내지 Ar35는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이며,
R1 및 R2는 서로 같거나 상이하고, 각각 독립적으로 수소; 또는 치환 또는 비치환된 아릴기이고,
r1은 1 내지 8의 정수이며,
r2는 1 내지 7의 정수이고,
상기 r1가 2 이상인 경우, 2 이상의 상기 R1은 서로 같거나 상이하며,
상기 r2가 2 이상인 경우, 2 이상의 상기 R2는 서로 같거나 상이하다.
본 명세서에 있어서 치환기의 예시들은 아래에서 설명하나, 이에 한정되는 것은 아니다.
상기 "치환"이라는 용어는 화합물의 탄소 원자에 결합된 수소 원자가 다른 치환기로 바뀌는 것을 의미하며, 치환되는 위치는 수소 원자가 치환되는 위치 즉, 치환기가 치환 가능한 위치라면 한정하지 않으며, 2 이상 치환되는 경우, 2 이상의 치환기는 서로 동일하거나 상이할 수 있다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 시아노기; 알킬기; 아릴기; 및 헤테로아릴기로 이루어진 군에서 선택된 1 이상의 치환기로 치환되었거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환기로 치환되거나, 또는 어떠한 치환기도 갖지 않는 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 바이페닐기일 수 있다. 즉, 바이페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다.
본 명세서에 있어서, 할로겐기는 불소, 염소, 브롬 또는 요오드가 될 수 있다.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 30인 것이 바람직하다. 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 시클로펜틸메틸, 시클로헥실메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나, 탄소수 6 내지 30인 것이 바람직하며, 상기 아릴기는 단환식 또는 다환식일 수 있다.
상기 아릴기가 단환식 아릴기인 경우 탄소수는 특별히 한정되지 않으나, 탄소수 6 내지 30인 것이 바람직하다. 구체적으로 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
상기 아릴기가 다환식 아릴기인 경우 탄소수는 특별히 한정되지 않으나. 탄소수 10 내지 30인 것이 바람직하다. 구체적으로 다환식 아릴기로는 나프틸기, 안트라센기, 페난트렌기, 트리페닐렌기, 파이렌기, 페날렌기, 페릴렌기, 크라이센기, 플루오렌기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 상기 플루오렌기는 치환될 수 있으며, 인접한 기들이 서로 결합하여 고리를 형성할 수 있다.
상기 플루오렌기가 치환되는 경우,
Figure PCTKR2019005353-appb-I000036
,
Figure PCTKR2019005353-appb-I000037
,
Figure PCTKR2019005353-appb-I000038
,
Figure PCTKR2019005353-appb-I000039
,
Figure PCTKR2019005353-appb-I000040
Figure PCTKR2019005353-appb-I000041
등이 될 수 있다. 다만, 이에 한정되는 것은 아니다.
본 명세서에 있어서, "인접한" 기는 해당 치환기가 치환된 원자와 직접 연결된 원자에 치환된 치환기, 해당 치환기와 입체구조적으로 가장 가깝게 위치한 치환기, 또는 해당 치환기가 치환된 원자에 치환된 다른 치환기를 의미할 수 있다. 예컨대, 벤젠고리에서 오르토(ortho)위치로 치환된 2개의 치환기 및 지방족 고리에서 동일 탄소에 치환된 2개의 치환기는 서로 "인접한" 기로 해석될 수 있다.
본 명세서에 있어서, 헤테로아릴기는 탄소가 아닌 원자, 이종원자를 1 이상 포함하는 것으로서, 구체적으로 상기 이종 원자는 O, N, Se 및 S 등으로 이루어진 군에서 선택되는 원자를 1 이상 포함할 수 있다. 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 30인 것이 바람직하며, 상기 헤테로아릴기는 단환식 또는 다환식일 수 있다. 헤테로고리기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 피리딜기, 바이피리딜기, 피리미딜기, 트리아진기, 트리아졸기, 아크리딘기, 피리다진기, 피라진기, 퀴놀린기, 퀴나졸린기, 퀴녹살린기, 프탈라진기, 피리도 피리미딜기, 피리도 피라진기, 피라지노 피라진기, 이소퀴놀린기, 인돌기, 카바졸기, 벤즈옥사졸기, 벤즈이미다졸기, 벤조티아졸릴기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨란기, 디벤조퓨란기, 페난쓰롤린기(phenanthroline), 페난트리딘기, 이소옥사졸기, 티아디아졸기, 및 페노티아진기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 아릴렌기는 아릴기에 결합 위치가 두 개 있는 것 즉 2가기를 의미한다. 이들은 각각 2가기인 것을 제외하고는 전술한 아릴기의 설명이 적용될 수 있다.
본 명세서에 있어서, 헤테로아릴렌기는 헤테로아릴기에 결합 위치가 두 개 있는 것 즉 2가기를 의미한다. 이들은 각각 2가기인 것을 제외하고는 전술한 헤테로아릴기의 설명이 적용될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 L31 내지 L35는 서로 같거나 상이하고, 각각 독립적으로 직접결합; 또는 아릴렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L31 내지 L35는 서로 같거나 상이하고, 각각 독립적으로 직접결합; 페닐렌기; 나프틸렌기; 또는 2가의 안트라센기이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar31 내지 Ar35는 서로 같거나 상이하고, 각각 독립적으로 중수소로 치환 또는 비치환된 아릴기; 또는 아릴기로 치환 또는 비치환된 헤테로아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar31 내지 Ar35는 서로 같거나 상이하고, 각각 독립적으로 중수소로 치환 또는 비치환된 페닐기; 바이페닐기; 나프틸기; 페닐기로 치환 또는 비치환된 티오펜기; 디벤조퓨란기; 디벤조티오펜기; 벤조[b]나프토[1,2-d]퓨란기; 벤조[b]나프토[2,3-d]퓨란기; 또는 벤조[d]나프토[1,2-b]퓨란기이다.
본 명세서의 일 실시상태에 따르면, 상기 R1은 수소; 또는 아릴기로 치환 또는 비치환된 아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 R1은 수소; 또는 페닐기로 치환 또는 비치환된 나프틸기이다.
본 명세서의 일 실시상태에 따르면, 상기 R2는 수소이다.
본 명세서의 일 실시상태에 따르면, 상기 호스트는 하기 화합물 중에서 선택되는 어느 하나 이상이다.
Figure PCTKR2019005353-appb-I000042
Figure PCTKR2019005353-appb-I000043
Figure PCTKR2019005353-appb-I000044
Figure PCTKR2019005353-appb-I000045
본 명세서의 일 실시상태에 따르면, 상기 유기물층은 금속 복합체를 더 포함한다.
본 명세서의 일 실시상태에 따르면, 상기 금속 복합체는 금속 복합체; 또는 알칼리 토금속 복합체이다.
상기 유기물층이 알칼리 금속 복합체 또는 알칼리 토금속 복합체를 더 포함하는 경우, 캐소드로부터 전자의 추출을 용이하게 할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 금속 복합체는 하기 화학식 2로 표시된다.
[화학식 2]
Figure PCTKR2019005353-appb-I000046
상기 화학식 2에 있어서,
A는 수소; 중수소; 할로겐기; 시아노기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이고,
곡선은 M을 갖는 5원 또는 6원 고리를 형성하는데 필요한 결합 및 2 또는 3개의 원자를 나타내고, 상기 원자는 1 또는 2 이상의 A의 정의와 동일한 치환기로 치환 또는 비치환되며,
M은 알칼리 금속 또는 알칼리 토금속이다.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 30인 것이 바람직하다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 2는 하기 화학식 2-1 또는 2-2로 표시된다.
[화학식 2-1]
Figure PCTKR2019005353-appb-I000047
[화학식 2-2]
Figure PCTKR2019005353-appb-I000048
화학식 2-1 및 2-2에 따르면,
M은 상기 화학식 2에서 정의한 바와 동일하고,
상기 화학식 2-1 및 2-2의 구조는 각각 독립적으로 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 아릴기; 및 치환 또는 비치환된 헤테로아릴기로 이루어진 군에서 선택되는 1 이상의 치환기로 치환 또는 비치환되거나, 인접하는 기가 서로 결합하여 치환 또는 비치환된 탄화수소고리; 또는 치환 또는 비치환된 헤테로고리를 형성한다.
본 명세서에 있어서, 인접한 기가 서로 결합하여 형성되는 치환 또는 비치환된 고리에서, "고리"는 치환 또는 비치환된 탄화수소고리; 또는 치환 또는 비치환된 헤테로고리를 의미한다.
본 명세서에 있어서, 탄화수소고리는 방향족, 지방족 또는 방향족과 지방족의 축합고리일 수 있으며, 상기 1가가 아닌 것을 제외하고 상기 아릴기의 예시 중에서 선택될 수 있다.
본 명세서에 있어서, 헤테로고리는 탄소가 아닌 원자, 이종원자를 1 이상 포함하는 것으로서, 구체적으로 상기 이종 원자는 O, N, Se 및 S 등으로 이루어진 군에서 선택되는 원자를 1 이상 포함할 수 있다. 상기 헤테로고리는 단환 또는 다환일 수 있으며, 방향족, 지방족 또는 방향족과 지방족의 축합고리일 수 있으며, 1가가 아닌 것을 제외하고 상기 헤테로아릴기의 예시 중에서 선택될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 2는 하기 구조 중에서 선택된다.
Figure PCTKR2019005353-appb-I000049
Figure PCTKR2019005353-appb-I000050
본 명세서의 일 실시상태에 따르면, 상기 유기물층은 금속 복합체를 더 포함하고, 상기 화합물(A): 상기 금속 복합체를 1:9 내지 9:1의 중량비로 포함한다.
상기 중량비를 만족하는 경우, 캐소드로부터의 전자 추출을 용이하게 할 수 있으므로 소자의 전압을 2 V 내지 5 V 사이에서 적절하게 조절이 가능하다. 상기 금속 복합체가 1 미만의 중량비로 포함될 경우, 캐소드로 부터의 전자 추출이 현저히 저하되어 전압이 크게 증가하고, 반대로 9 초과의 중량비로 과다하게 포함될 경우 전자 추출은 용이하지만 전자의 이동도를 크게 떨어뜨려 전자 이동도에 의한 전압 상승이 나타난다.
본 명세서의 일 실시상태에 따르면, 상기 화합물(A)는 N을 적어도 하나 포함하는 헤테로고리를 포함하는 화합물이다.
본 명세서의 일 실시상태에 따르면, 상기 N을 적어도 하나 포함하는 헤테로고리는 5원고리 또는 6원 고리일 수 있으며, 상기 5원 고리 또는 6원 고리를 포함하는 고리는 단환 또는 다환일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 N을 적어도 하나 포함하는 헤테로고리는 하기 구조 중 어느 하나이다.
Figure PCTKR2019005353-appb-I000051
X1은 NR, S, O 또는 CRR'이고,
X2 내지 X4는 각각 N 또는 CR"이고,
R, R' 및 R"는 서로 동일하거나 상이하고, 각각 독립적으로 1가의 유기기이며, 상기 구조에 탄화수소고리 또는 헤테로고리가 축합될 수 있다.
본 명세서에서 탄화수소고리 또는 헤테로고리가 축합된다는 것의 의미는 상기 구조에 탄화수소고리 또는 헤테로고리가 서로 결합하여 다환의 고리를 형성하는 것을 의미할 수 있다.
본 명세서에서 유기기로는 알킬기, 알케닐기, 시클로알킬기, 아릴기 등을 들 수 있다. 이 유기기는 상기 유기기 중에 헤테로 원자 등의 탄화수소기 이외의 결합이나 치환기를 포함하고 있어도 된다. 또한, 상기 유기기는 직쇄상, 분기쇄상, 환상 중 어느 것이어도 된다.
본 명세서에서 1가의 유기기란 유기 화합물에 결합 위치가 1개 있는 1가기를 의미한다.
또한, 상기 유기기는 환상구조를 형성할 수도 있으며, 환상 구조를 형성할 수도 있으며, 발명의 효과가 손상되지 않는 한 헤테로 원자를 포함하여 결합을 형성할 수 있다.
구체적으로 산소 원자, 질소 원자, 규소 원자 등의 헤테로 원자를 포함하는 결합을 들 수 있다. 구체예로는, 시아노 결합, 에테르 결합, 티오에테르 결합, 카르보닐 결합, 티오카르보닐 결합, 에스테르 결합, 아미드 결합, 우레탄 결합, 이미노 결합(-N=C(-Q)-, -C(=NQ)-: Q는 수소 원자 또는 유기기를 나타낸다), 카보네이트 결합, 설포닐 결합, 설피닐 결합, 아조 결합 등을 들 수 있으며, 이를 한정하지 않는다.
상기 환상 구조로는 전술한 방향족 고리, 지방족고리 등이 있을 수 있으며, 단환 또는 다환일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 N을 적어도 하나 포함하는 헤테로고리는 하기 구조 중 어느 하나일 수 있으나, 이를 한정하지 않는다.
Figure PCTKR2019005353-appb-I000052
Figure PCTKR2019005353-appb-I000053
Figure PCTKR2019005353-appb-I000054
Figure PCTKR2019005353-appb-I000055
Figure PCTKR2019005353-appb-I000056
Figure PCTKR2019005353-appb-I000057
Figure PCTKR2019005353-appb-I000058
Figure PCTKR2019005353-appb-I000059
Figure PCTKR2019005353-appb-I000060
Figure PCTKR2019005353-appb-I000061
Figure PCTKR2019005353-appb-I000062
상기 구조는 중수소; 알킬기; 아릴기; 및 헤테로고리기로 이루어진 군에서 선택되는 1 또는 2 이상의 치환기로 치환 또는 비치환될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 화합물(A)는 N을 적어도 하나 포함하는 헤테로고리 및 시아노기를 포함하는 화합물이다.
본 명세서의 일 실시상태에 따르면, 상기 화합물(A)는 하기 화합물 중에서 선택된다.
Figure PCTKR2019005353-appb-I000063
Figure PCTKR2019005353-appb-I000064
Figure PCTKR2019005353-appb-I000065
Figure PCTKR2019005353-appb-I000066
Figure PCTKR2019005353-appb-I000067
Figure PCTKR2019005353-appb-I000068
Figure PCTKR2019005353-appb-I000069
Figure PCTKR2019005353-appb-I000070
Figure PCTKR2019005353-appb-I000071
Figure PCTKR2019005353-appb-I000072
본 명세서의 일 실시상태에 있어서, 상기 유기 발광 소자는 2층 이상의 발광층을 포함할 수 있다. 상기 2층 이상의 발광층은 서로 접하여 구비될 수도 있으며, 두 층의 발광층 사이에 추가의 유기물층을 포함하여 구비될 수도 있다.
본 명세서의 일 실시상태에 있어서, 상기 유기 발광 소자는 2 이상의 발광층을 포함하고, 상기 2 이상의 발광층 중 인접하는 2개의 발광층 사이에 전하발생층을 포함하며, 상기 전하발생층은 n형 유기물층 및 p형 유기물층을 포함할 수 있다.
또 하나의 실시상태에 있어서, 상기 전하발생층에 포함되는 n형 유기물층과 상기 p형 유기물층은 NP 접합한다.
본 명세서의 일 실시상태에 있어서, 상기 p형 유기물층은 정공주입층, 정공수송층, 전자저지층 및 발광층으로 이루어진 군에서 선택되고, n형 유기물층은 전자수송층, 전자주입층, 정공저지층 및 발광층으로 이루어진 군에서 선택된다.
본 명세서에서, n형이란 n형 반도체 특성을 의미한다. 다시 말하면, n형이란 LUMO(lowest unoccupied molecular orbital) 에너지 준위를 통하여 전자를 주입받거나 수송하는 특성이며, 이는 전자의 이동도가 정공의 이동도 보다 큰 물질의 특성으로서 정의할 수 있다. 반대로, p형이란 p형 반도체 특성을 의미한다. 다시 말하면, p형은 HOMO(highest occupied molecular orbital) 에너지 준위를 통하여 정공을 주입받거나 수송하는 특성이며, 이는 정공의 이동도가 전자의 이동도보다 큰 물질의 특성으로서 정의될 수 있다. 본 명세서에 있어서, n형 특성을 갖는 화합물 또는 유기물층은 n형 화합물 또는 n형 유기물층으로 언급될 수 있다. 또한, p형 특성을 갖는 화합물 또는 유기물층은 p형 화합물 또는 p형 유기물층으로 언급될 수 있다. 또한, n형 도핑은 n형 특성을 갖도록 도핑되었다는 것을 의미할 수 있다.
본 명세서에 있어서, 전하발생층이란 외부 전압의 인가 없이 전하를 발생하는 층으로, 2 층 이상의 발광층 중 인접한 발광층 사이에서 전하를 발생함으로써 유기 발광 소자에 포함된 2개 이상의 발광층이 발광할 수 있도록 한다.
본 명세서에서 상기 NP 접합이란 n 형 유기물층인 제2 전자수송층과 p형 유기물층이 물리적으로 접촉하는 것뿐 아니라, 정공 및 전자의 발생과 수송이 용이하게 진행될 수 있는 상호 작용을 의미할 수 있다.
본 명세서의 일 실시상태에 따라, NP 접합이 형성되면, 외부의 전압이나 광원에 의하여 정공이나 전자의 형성이 용이할 수 있다. 따라서, 정공의 주입을 위한 구동 전압의 상승을 방지할 수 있다.
또 하나의 실시상태에 있어서, 상기 2층 이상의 발광층 중 적어도 2층의 최대 발광 파장은 서로 동일하거나 상이하다.
본 명세서에서 최대 발광 파장은 스펙트럼 분포의 최대치에서의 파장을 의미한다.
본 명세서의 일 실시상태에 있어서, 상기 2층 이상의 발광층 중 적어도 2층의 최대 발광 파장은 서로 상이하다.
본 명세서의 일 실시상태에 있어서, 상기 2층 이상의 발광층 중 적어도 하나는 인광성 도펀트를 포함하고, 적어도 하나는 형광성 도펀트를 포함한다.
본 명세서의 일 실시상태와 같이, 상기 서로 상이한 2층 이상의 발광층을 포함하여, 청색 형광, 녹색 인광, 적색 인광의 적층; 청색 형광, 녹황색 인광의 적층으로 백색 발광 소자를 제조할 수 있다. 구체적으로 본 명세서의 일 실시상태에 따른 유기 발광 소자는 형광발광층 및/또는 인광발광층을 포함할 수 있다.
예컨대, 청색의 경우, 광발광 스펙트럼의 피크 파장은 400 nm 내지 500 nm 이고, 녹색의 경우, 광발광 스펙트럼의 피크 파장은 510 nm 내지 580 nm 이며, 적색의 경우, 광발광스펙트럼의 피크 파장은 610 nm 내지 680 nm 으로, 당업자는 서로 상이한 피크 파장을 갖는 발광층을 필요에 따라 1층 또는 2층 이상을 조합하여 사용할 수 있다.
본 명세서에서 상기 인광성 도펀트 및 형광성 도펀트는 당업계에서 일반적으로 사용되는 도펀트를 사용할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 유기 발광 소자는 상기 애노드와 상기 화합물(A)를 포함하는 유기물층 사이에 구비되는 제1 발광층; 및 상기 제1 발광층 상에 구비되는 제2 발광층을 포함한다.
이 경우, 상기 제1 발광층 및 상기 제2 발광층은 서로 접하여 구비될 수 있으며, 상기 제1 발광층과 상기 제2 발광층 사이에 추가의 유기물층이 구비될 수 있다.
본 명세서의 다른 실시상태에 있어서, 상기 유기 발광 소자는 상기 애노드와 상기 화합물(A)를 포함하는 유기물층 사이의 일부에 구비되는 제1 발광층; 및 상기 애노드와 상기 화합물(A)를 포함하는 유기물층 사이의 나머지 일부에 구비되는 제2 발광층을 포함한다. 상기 제1 발광층과 제2 발광층 사이에 절연구조를 포함할 수도 있다.
이 경우, 상기 제1 발광층과 상기 제2 발광층은 상기 화합물(A)를 포함하는 유기물층의 동일한 면에 나란히 구비될 수 있다. 하나의 실시상태에 있어서, 제1 발광층의 일측면과 상기 제2 발광층의 일측면이 서로 접하여 구비될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 나란히 구비된 제1 발광층과 상기 제2 발광층은 상기 화합물(A)를 포함하는 유기물층의 동일한 면에 접하여 구비될 수 있다.
또 다른 실시상태에 있어서, 상기 나란히 구비된 제1 발광층과 상기 제2 발광층과 상기 화합물(A)를 포함하는 유기물층 사이에 추가의 층이 구비될 수 있다. 본 명세서의 일 실시상태에 있어서, 상기 추가의 층은 정공차단층 및/또는 전자수송층일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 유기 발광 소자는 상기 애노드와 상기 화합물(A)를 포함하는 유기물층 사이에 구비되는 제1 발광층; 및 상기 제1 발광층 상에 구비되는 제2 발광층을 포함하고, 상기 제2 발광층 상에 구비되는 제3 발광층을 포함한다.
이 경우, 상기 제1 발광층, 상기 제2 발광층, 및 상기 제3 발광층은 서로 접하여 구비될 수 있으며, 상기 제1 발광층과 상기 제2 발광층 사이 및/또는 상기 제2 발광층과 상기 제3 발광층 사이에 추가의 유기물층이 구비될 수 있다.
또 다른 실시상태에 있어서, 상기 제1 발광층, 상기 제2 발광층, 및 상기 제3 발광층의 최대 발광 파장은 서로 상이하다.
또 다른 실시상태에 있어서, 상기 제1 발광층, 상기 제2 발광층, 및 상기 제3 발광층의 최대 발광 파장은 서로 동일하다.
또 다른 실시상태에 있어서, 상기 제1 발광층, 상기 제2 발광층, 및 상기 제3 발광층은 청색 형광 도펀트를 포함할 수 있으며, 상기 도펀트의 최대 발광 파장은 420nm 내지 520nm 범위 내일 수 있다.
예컨대, 본 발명에 따른 유기 발광 소자의 구조는 도 1 내지 6에서 나타낸 것과 같은 구조를 가질 수 있으나, 이에만 한정되는 것은 아니다.
도 1에는 기판(101) 위에 애노드(201), 정공 수송층(301), 발광층(401), 전자수송층(501) 및 캐소드(601)이 순차적으로 적층된 유기 발광 소자의 구조가 예시되어 있다. 도 1에서 상기 전자수송층(501)은 상기 화합물(A)를 포함하는 유기물층일 수 있다.
도 2에는 기판(101) 위에 애노드(201), 정공 수송층(301), 제1 발광층(402), 제2 발광층(403), 전자수송층(501) 및 캐소드(601)이 순차적으로 적층된 유기 발광 소자의 구조가 예시되어 있다. 도 2에서 상기 전자수송층(501)는 상기 화합물(A)를 포함하는 유기물층일 수 있으며, 상기 제2 발광층(402) 및 제1 발광층(403)은 서로 접하여 구비될 수 있고, 추가의 유기물층이 구비될 수 있다.
도 3에는 기판(101) 위에 애노드(201), 정공 수송층(301)이 구비되고, 상기 정공수송층(301) 상에 제1 발광층(402) 및 제2 발광층(403)이 구비되며, 상기 제1 발광층(402) 및 제2 발광층(403) 상에 전자수송층(501) 및 캐소드(601)이 순차적으로 적층된 유기 발광 소자의 구조가 예시되어 있다. 도 3에서 상기 전자수송층(501) 은 상기 화합물(A)를 포함하는 유기물층일 수 있다.
도 4에는 기판(101) 위에 애노드(201), 정공 수송층(301), 제1 발광층(402), 제2 발광층(403), 제3 발광층(404), 전자수송층(501) 및 캐소드(601)이 순차적으로 적층된 유기 발광 소자의 구조가 예시되어 있다. 도 4에서 상기 전자수송층(501)는 상기 화합물(A)를 포함하는 유기물층일 수 있으며, 상기 제1 발광층(402), 상기 제2 발광층(403), 및 상기 제3 발광층(404)은 서로 접하여 구비될 수 있으며, 상기 제1 발광층(402)과 상기 제2 발광층(403) 사이 및/또는 상기 제2 발광층(403)과 상기 제3 발광층(404) 사이에 추가의 유기물층이 구비될 수 있다.
도 5에는 기판(101) 위에 애노드(201), 정공 수송층(301), 발광층(401), 정공차단층(701), 전자 주입 및 수송층(502) 및 캐소드(601)이 순차적으로 적층된 유기 발광 소자의 구조가 예시되어 있다. 도 5에서 상기 전자 주입 및 수송층(502)은 상기 화합물(A)를 포함하는 유기물층일 수 있다. 또한, 상기 애노드(201)과 정공수송층(301)사이에 정공주입층이 추가로 구비될 수 있으며, 상기 정공 주입층이 추가로 구비된 것이 도 6이다. 도 6에는 기판(101) 위에 애노드(201), 정공 주입층(801), 정공 수송층(301), 발광층(401), 정공차단층(701), 전자 주입 및 수송층(502) 및 캐소드(601)이 순차적으로 적층된 유기 발광 소자의 구조가 예시되어 있다. 도 6에서 상기 전자 주입 및 수송층(502)은 상기 화합물(A)를 포함하는 유기물층일 수 있다.
상기 도 1 내지 6는 본 명세서의 실시상태에 따른 예시적인 구조이며, 다른 유기물층을 더 포함할 수 있다. 또한, 상기 도 1 내지 4에 있어서, 상기 화합물(A)를 포함하는 유기물층은 전자수송층(501) 대신에 정공차단층, 전자주입층, 또는 전자주입 및 수송층일 수도 있다.
본 명세서의 유기 발광 소자는 상기 캐소드와 발광층 사이에 상기 헤테로 원자 및 시아노기를 포함하는 화합물(A)을 포함하는 유기물층을 포함하고, 상기 화합물(A)이 상기 식 1 및 식 2를 만족을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다.예컨대, 본 명세서의 유기 발광 소자는 기판 상에 애노드, 유기물층 및 캐소드를 순차적으로 적층시킴으로써 제조할 수 있다. 이 때 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 애노드를 형성하고, 그 위에 정공 주입층, 정공 수송층, 전자차단층, 발광층, 전자수송층 및 전자주입층을 포함하는 유기물층을 형성한 후, 그 위에 캐소드로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다. 이와 같은 방법 외에도, 기판 상에 캐소드 물질부터 유기물층, 애노드 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다. 이와 같은 방법 외에도, 기판 상에 애노드 물질부터 유기물층, 캐소드 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다.
본 명세서의 유기 발광 소자의 유기물층은 1층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 유기 발광 소자는 정공 주입층, 정공 수송층, 발광층, 전자수송층, 전자주입층, 전자차단층 및 정공 차단층으로 이루어진 군에서 선택되는 1 층 또는 2 층 이상을 더 포함할 수 있다.
상기 유기 발광 소자가 복수개의 유기물층을 포함하는 경우, 상기 유기물층은 동일한 물질 또는 다른 물질로 형성될 수 있다.
상기 애노드 물질로는 통상 유기물층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 본 발명에서 사용될 수 있는 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SNO2 : Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 캐소드 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공 주입 물질로는 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정 되는 것은 아니다.
상기 전자차단층은 전자주입층으로부터 주입된 전자가 발광층을 지나 정공주입층으로 진입하는 것을 방지하여 소자의 수명과 효율을 향상시킬 수 있는 층이고, 필요한 경우에 공지의 재료를 사용하여 발광층과 정공주입층의 사이에 적절한 부분에 형성될 수 있다.
상기 정공수송층은 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로는 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 유기 발광 소자가 본 명세서의 일 실시상태에 따른 발광층 이외의 추가의 발광층을 더 포함하는 경우, 발광 물질로는 정공 수송층과 전자수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 구체적인 예로는 8-히드록시-퀴놀린 알루미늄 착물(Alq3); 카르바졸 계열 화합물; 이량체화 스티릴(dimerized styryl) 화합물; BAlq; 10-히드록시벤조 퀴놀린-금속 화합물; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자; 스피로(spiro) 화합물; 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 발광층은 호스트 재료 및 도펀트 재료를 포함할 수 있다. 호스트 재료는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등이 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 카바졸 유도체, 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되지 않는다.
상기 형광 발광층은 호스트 물질로 디스티릴아릴렌(distyrylarylene; DSA), 디스티릴아릴렌 유도체, 디스티릴벤젠(distyrylbenzene; DSB), 디스티릴벤젠 유도체, DPVBi (4,4'-bis(2,2'-diphenyl vinyl) -1,1'-biphenyl), DPVBi 유도체, 스피로-DPVBi 및 스피로-6P(spiro-sexyphenyl)로 이루어진 군에서 1 또는 2 이상이 선택된다.
상기 형광 발광층은 도펀트 물질로 스티릴아민(styrylamine)계, 페릴렌(pherylene)계 및 DSBP(distyrylbiphenyl)계로 이루어진 군에서 1 또는 2 이상이 선택된다.
상기 전자주입층은 전극으로부터 전자를 주입하는 층으로, 전자를 수송하는 능력을 갖고, 음극으로부터의 전자주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공 주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물이 바람직하다. 구체적으로는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 함질소 5원환 유도체 등이 있으나, 이에 한정되지 않는다.
상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되지 않는다.
상기 정공 차단층은 정공의 음극 도달을 저지하는 층으로, 일반적으로 정공주입층과 동일한 조건으로 형성될 수 있다. 구체적으로 옥사디아졸 유도체나 트리아졸 유도체, 페난트롤린 유도체, BCP, 알루미늄 착물 (aluminum complex) 등이 있으나, 이에 한정되지 않는다.
본 명세서에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
또한, 본 명세서에 따른 유기 발광 소자는 하부 전극이 애노드이고 상부전극이 캐소드인 정구조(normal type)일 수 있고, 하부전극이 캐소드이고 상부전극이 애노드인 역구조(inverted type)일 수도 있다.
본 명세서의 일 실시상태에 따른 구조는 유기 태양 전지, 유기 감광체, 유기 트랜지스터 등을 비롯한 유기 전자 소자에서도 유기 발광 소자에 적용되는 것과 유사한 원리로 작용할 수 있다.
이하, 본 명세서를 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 명세서에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 명세서의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.
실험예. 유기 발광 소자의 제작
실험예 1-1
ITO(인듐주석산화물)가 1000Å 두께로 박막 코팅된 유리 기판 (corning 7059 glass)을, 분산제를 녹인 증류수에 넣고 초음파로 세척하였다. 세제는 Fischer Co.의 제품을 사용하였으며, 증류수는 Millipore Co. 제품의 필터(Filter)로 2차 걸러진 증류수를 사용하였다. ITO를 30 분간 세척한 후, 증류수로 2 회 반복하여 초음파 세척을 10 분간 진행하였다. 증류수 세척이 끝난 후 이소프로필알콜, 아세톤, 메탄올 용제 순서로 초음파 세척을 하고 건조시켰다.
이렇게 준비된 ITO 투명 전극 위에 헥사니트릴 헥사아자트리페닐렌 (HAT: hexanitrile hexaazatriphenylene)를 500 Å의 두께로 열 진공 증착하여 정공주입층을 형성하였다. 그 위에 정공을 수송하는 물질인 HT1(400 Å)을 진공증착한 후 발광층으로 호스트 BH1과 도판트 BD1 화합물을 300 Å의 두께로 진공 증착하였다. 상기 발광층 위에 ET1 화합물을 50Å 두께로 정공차단층(전자조절층)을 증착한 후, 하기 표 1의 실험예 1-1의 화합물과 LiQ(Lithium Quinolate)를 1:1의 중량비로 진공증착하여 350Å의 두께로 전자 주입 및 수송층을 형성하였다. 상기 전자 주입 및 수송층 위에 순차적으로 12Å두께로 리튬플로라이드(LiF)와 2,000Å 두께로 알루미늄을 증착하여 음극을 형성하였다. 유기발광소자를 제조하였다.
상기의 과정에서 유기물의 증착속도는 0.4 내지 0.7Å/sec를 유지하였고, 음극의 리튬플로라이드는 0.3Å/sec, 알루미늄은 2Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2×10-7 ~5×10-6 torr를 유지하여, 유기 발광 소자를 제작하였다.
Figure PCTKR2019005353-appb-I000073
Figure PCTKR2019005353-appb-I000074
상기 화합물에 있어서, DM은 쌍극자 모멘트를 의미한다.
추가 실험예 1
상기 실험예 1-1에서 상기 발광층의 호스트로 BH1 및 상기 전자 주입 및 수송층으로 하기 표 1의 실험예 1-1의 화합물을 사용하는 대신 하기 표 1의 화합물을 각각 사용하는 것을 제외하고는 실험예 1-1과 동일한 방법으로 유기 발광 소자를 제조하였다.
상기 실험예에서 제조한 유기 발광 소자를 10 mA/cm2의 전류 밀도에서 구동 전압과 발광 효율을 측정하였고, 20 mA/cm2의 전류 밀도에서 초기 휘도 대비 98%가 되는 시간(LT98)을 측정하였다. 그 결과를 하기 표 1에 나타내었다.
Figure PCTKR2019005353-appb-T000001
Figure PCTKR2019005353-appb-I000075
Figure PCTKR2019005353-appb-I000076
Figure PCTKR2019005353-appb-I000077
Figure PCTKR2019005353-appb-I000078
Figure PCTKR2019005353-appb-I000079
Figure PCTKR2019005353-appb-I000080
Figure PCTKR2019005353-appb-I000081
Figure PCTKR2019005353-appb-I000082
Figure PCTKR2019005353-appb-I000083
Figure PCTKR2019005353-appb-I000084
Figure PCTKR2019005353-appb-I000085
Figure PCTKR2019005353-appb-I000086
Figure PCTKR2019005353-appb-I000087
Figure PCTKR2019005353-appb-I000088
Figure PCTKR2019005353-appb-I000089
Figure PCTKR2019005353-appb-I000090
Figure PCTKR2019005353-appb-I000091
Figure PCTKR2019005353-appb-I000092
Figure PCTKR2019005353-appb-I000093
Figure PCTKR2019005353-appb-I000094
Figure PCTKR2019005353-appb-I000095
Figure PCTKR2019005353-appb-I000096
비교예 1
상기 실험예 1-1에서 상기 발광층의 호스트로 BH1 및 상기 전자 주입 및 수송층으로 상기 표 1의 실험예 1-1의 화합물을 사용하는 대신 하기 표 2의 화합물을 각각 사용하는 것을 제외하고는 실험예 1-1과 동일한 방법으로 유기 발광 소자를 제조하였다.
상기 비교예에서 제조한 유기 발광 소자를 10 mA/cm2의 전류 밀도에서 구동 전압과 발광 효율을 측정하였고, 20 mA/cm2의 전류 밀도에서 초기 휘도 대비 98%가 되는 시간(LT98)을 측정하였다. 그 결과를 하기 표 2에 나타내었다.
Figure PCTKR2019005353-appb-T000002
Figure PCTKR2019005353-appb-I000097
Figure PCTKR2019005353-appb-I000098
Figure PCTKR2019005353-appb-I000099
추가 실험예 2
상기 실험예 1-1에서 상기 발광층의 호스트로 BH1 및 상기 전자 주입 및 수송층으로 상기 표 1의 실험예 1-1의 화합물을 사용하는 대신 하기 표 3의 화합물을 각각 사용하고, 상기 발광층 위에 상기 ET1을 증착하지 않는 것을 제외하고는 실험예 1-1과 동일한 방법으로 유기 발광 소자를 제조하였다.
상기 실험예에서 제조한 유기 발광 소자를 10 mA/cm2의 전류 밀도에서 구동 전압과 발광 효율을 측정하였고, 20 mA/cm2의 전류 밀도에서 초기 휘도 대비 98%가 되는 시간(LT98)을 측정하였다. 그 결과를 하기 표 3에 나타내었다.
Figure PCTKR2019005353-appb-T000003
Figure PCTKR2019005353-appb-I000100
Figure PCTKR2019005353-appb-I000101
Figure PCTKR2019005353-appb-I000102
비교예 2
상기 실험예 1-1에서 상기 발광층의 호스트로 BH1 및 상기 전자 주입 및 수송층으로 상기 표 1의 실험예 1-1의 화합물을 사용하는 대신 하기 표 4의 화합물을 각각 사용하고, 상기 발광층 위에 상기 ET1을 증착하지 않는 것을 제외하고는 실험예 1-1과 동일한 방법으로 유기 발광 소자를 제조하였다.
상기 비교예에서 제조한 유기 발광 소자를 10 mA/cm2의 전류 밀도에서 구동 전압과 발광 효율을 측정하였고, 20 mA/cm2의 전류 밀도에서 초기 휘도 대비 98%가 되는 시간(LT98)을 측정하였다. 그 결과를 하기 표 4에 나타내었다.
Figure PCTKR2019005353-appb-T000004
Figure PCTKR2019005353-appb-I000103
Figure PCTKR2019005353-appb-I000104
상기 표 1 및 3의 결과와 같이, 본 명세서의 일 실시상태에 따른 화합물 A(헤테로 원자 및 시아노기를 포함하는 화합물)은 식 1 및 2를 만족하고, 상기 화합물(A)를 유기 발광 소자의 전자 주입 및 수송층에 적용한 결과 상기 화합물(A)와 동일한 코어를 가지나, 시아노기를 포함하지 않는 화합물을 적용한 유기 발광 소자 보다 구동전압이 낮고, 효율이 우수하며, 장수명의 효과를 보였다.
반면, 표 2 및 4의 결과와 같이 헤테로원자를 포함하나, 시아노기를 포함하지 않아, 본 명세서의 화합물 A와 상이하거나, 헤테로원자 및 시아노기를 포함하나, 상기 식 1 및 2를 만족하지 않는 경우, 본 명세서의 일 실시상태에 따른 식 1 및 2를 만족하는 화합물 A를 유기 발광 소자에 적용한 경우 보다, 구동전압이 높고, 효율 및 수명이 저하되는 결과를 보였다.
따라서, 헤테로 원자 및 시아노기를 포함하고, 식 1 및 2를 만족하는 화합물 A를 적용한 유기 발광 소자는 구동전압이 낮고, 효율이 우수하며, 장수명의 효과가 있다.
상기 표 1 내지 4에 있어서, DM은 쌍극자 모멘트를 의미하고, EA는 전자 친화도를 의미한다.

Claims (15)

  1. 캐소드;
    상기 캐소드와 대향하여 구비되는 애노드;
    상기 캐소드와 상기 애노드 사이에 구비되는 발광층; 및
    상기 캐소드와 상기 발광층 사이에 구비되고, 헤테로 원자 및 시아노기를 포함하는 화합물(A)을 포함하는 유기물층을 포함하고, 상기 화합물(A)는 하기 식 1 및 하기 식 2를 만족하는 것인 유기 발광 소자:
    [식 1]
    Figure PCTKR2019005353-appb-I000105
    상기 식 1에 있어서,
    Figure PCTKR2019005353-appb-I000106
    은 상기 화합물(A)의 쌍극자 모멘트(dipole moment)의 절대값을 의미하며,
    [식 2]
    Figure PCTKR2019005353-appb-I000107
    상기 식 2에 있어서,
    Figure PCTKR2019005353-appb-I000108
    은 상기 화합물(A)의 쌍극자 모멘트(dipole moment)의 절대값을 의미하고,
    Figure PCTKR2019005353-appb-I000109
    는 상기
    Figure PCTKR2019005353-appb-I000110
    의 화합물과 동일한 코어를 가지나, 시아노기를 포함하지 않는 화합물의 쌍극자 모멘트(dipole moment)의 절대값을 의미하며,
    Figure PCTKR2019005353-appb-I000111
    는 상기 화합물(A)의 전자 친화도의 절대값을 의미하고,
    Figure PCTKR2019005353-appb-I000112
    는 상기
    Figure PCTKR2019005353-appb-I000113
    의 화합물과 동일한 코어를 가지나, 시아노기 포함하지 않는 화합물의 전자 친화도의 절대값을 의미한다.
  2. 청구항 1에 있어서, 상기 유기물층은 정공차단층, 전자수송층, 전자주입층, 또는 전자주입 및 수송층인 것인 유기 발광 소자.
  3. 청구항 1에 있어서, 상기 발광층과 상기 유기물층 사이에 구비된 정공차단층을 더 포함하고, 상기 정공차단층은 발광층에 접하여 구비되며, 상기 유기물층은 전자 주입 및 수송층인 것인 유기 발광 소자.
  4. 청구항 1에 있어서, 상기 화합물(A)의 전자 이동도는 0.1 MV/cm 전계 조건에서 10-12 cm2/Vs 이상 102 cm2/Vs 이하인 것인 유기 발광 소자.
  5. 청구항 1에 있어서, 상기 유기물층의 유리 전이 온도(Tg)는 100℃ 초과 200 ℃ 이하인 것인 유기 발광 소자.
  6. 청구항 1에 있어서, 상기 발광층은 호스트 및 도펀트를 포함하고, 상기 도펀트의 최대 발광 파장은 420nm 내지 520nm 범위 내인 것인 유기 발광 소자.
  7. 청구항 6에 있어서, 상기 도펀트는 청색 형광 도펀트인 것인 유기 발광 소자.
  8. 청구항 1에 있어서, 상기 유기물층은 금속 복합체를 더 포함하고, 상기 화합물(A): 상기 금속 복합체를 1:9 내지 9:1의 중량비로 포함하는 것인 유기 발광 소자.
  9. 청구항 1에 있어서, 상기 화합물(A)는 N을 적어도 하나 포함하는 헤테로고리를 포함하는 화합물인 것인 유기 발광 소자.
  10. 청구항 1에 있어서, 상기 유기 발광 소자는 2층 이상의 발광층을 포함하는 것인 유기 발광 소자.
  11. 청구항 10에 있어서, 상기 2층 이상의 발광층 중 적어도 2층의 최대 발광 파장은 서로 상이한 것인 유기 발광 소자.
  12. 청구항 10에 있어서, 상기 2층 이상의 발광층 중 적어도 하나는 인광성 도펀트를 포함하고,
    적어도 하나는 형광성 도펀트를 포함하는 것인 유기 발광 소자.
  13. 청구항 1에 있어서, 상기 유기 발광 소자는 상기 애노드와 상기 화합물(A)를 포함하는 유기물층 사이에 구비되는 제1 발광층; 및
    상기 제1 발광층 상에 구비되는 제2 발광층을 포함하는 것인 유기 발광 소자.
  14. 청구항 1에 있어서, 상기 유기 발광 소자는 상기 애노드와 상기 화합물(A)를 포함하는 유기물층 사이의 일부에 구비되는 제1 발광층; 및
    상기 애노드와 상기 화합물(A)를 포함하는 유기물층 사이의 나머지 일부에 구비되는 제2 발광층을 포함하는 것인 유기 발광 소자.
  15. 청구항 1에 있어서, 상기 유기 발광 소자는 상기 애노드와 상기 화합물(A)를 포함하는 유기물층 사이에 구비되는 제1 발광층; 및
    상기 제1 발광층 상에 구비되는 제2 발광층을 포함하고,
    상기 제2 발광층 상에 구비되는 제3 발광층을 포함하는 것인 유기 발광 소자.
PCT/KR2019/005353 2018-06-18 2019-05-03 유기 발광 소자 WO2019245160A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980004396.8A CN111095587B (zh) 2018-06-18 2019-05-03 有机发光器件
US16/646,960 US10950801B2 (en) 2018-06-18 2019-05-03 Organic light-emitting device
EP19822718.3A EP3667749B1 (en) 2018-06-18 2019-05-03 Organic light-emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180069503A KR101966306B1 (ko) 2018-06-18 2018-06-18 유기 발광 소자
KR10-2018-0069503 2018-06-18

Publications (2)

Publication Number Publication Date
WO2019245160A1 true WO2019245160A1 (ko) 2019-12-26
WO2019245160A9 WO2019245160A9 (ko) 2020-05-28

Family

ID=66104092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/005353 WO2019245160A1 (ko) 2018-06-18 2019-05-03 유기 발광 소자

Country Status (5)

Country Link
US (1) US10950801B2 (ko)
EP (1) EP3667749B1 (ko)
KR (1) KR101966306B1 (ko)
CN (1) CN111095587B (ko)
WO (1) WO2019245160A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111233832A (zh) * 2020-01-08 2020-06-05 上海传勤新材料有限公司 一种含有芴和三嗪的有机电子材料及其应用
KR20220023697A (ko) * 2020-08-21 2022-03-02 주식회사 엘지화학 유기 발광 소자
EP3896061A4 (en) * 2018-12-13 2022-11-16 Solus Advanced Materials Co., Ltd. ORGANIC COMPOUND AND ORGANIC ELECTROLUMINESCENT DEVICE USING THE SAME

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102536248B1 (ko) 2017-06-21 2023-05-25 삼성디스플레이 주식회사 헤테로시클릭 화합물 및 이를 포함한 유기 발광 소자
KR102536246B1 (ko) * 2018-03-23 2023-05-25 삼성디스플레이 주식회사 헤테로고리 화합물 및 이를 포함한 유기 발광 소자
KR101966306B1 (ko) * 2018-06-18 2019-04-05 주식회사 엘지화학 유기 발광 소자
CN112236879A (zh) * 2018-09-03 2021-01-15 株式会社Lg化学 有机发光器件
WO2020222433A1 (ko) * 2019-05-02 2020-11-05 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
CN113678275A (zh) * 2019-05-15 2021-11-19 株式会社Lg化学 有机发光器件
WO2021091165A1 (ko) * 2019-11-05 2021-05-14 주식회사 엘지화학 유기 발광 소자
CN115124482A (zh) * 2019-11-28 2022-09-30 南京高光半导体材料有限公司 一种基于三亚苯基的有机化合物及有机电致发光材料和器件
CN114031605B (zh) * 2021-12-06 2023-09-29 武汉天马微电子有限公司 一种含有氰基萘的有机化合物及其在有机发光器件和面板中的应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101580429B1 (ko) * 2015-01-02 2015-12-24 주식회사 엘지화학 유기 발광 소자
KR20160111320A (ko) * 2015-03-16 2016-09-26 주식회사 엘지화학 유기 발광 소자
KR20160126862A (ko) * 2015-04-24 2016-11-02 주식회사 엘지화학 유기 발광 소자
KR20170073567A (ko) * 2014-10-27 2017-06-28 주식회사 엘지화학 유기 전계 발광 소자
KR20180069503A (ko) 2016-12-15 2018-06-25 현대자동차주식회사 복합재 리프 스프링모듈 조립장치 및 그 조립방법
KR101966306B1 (ko) * 2018-06-18 2019-04-05 주식회사 엘지화학 유기 발광 소자

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105131938B (zh) * 2015-07-29 2017-11-24 中节能万润股份有限公司 一种有机电致发光材料及其应用
CN108063188B (zh) 2016-11-08 2020-08-11 株式会社Lg化学 有机发光元件
US11211563B2 (en) 2017-03-09 2021-12-28 Lg Chem, Ltd. Organic light emitting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170073567A (ko) * 2014-10-27 2017-06-28 주식회사 엘지화학 유기 전계 발광 소자
KR101580429B1 (ko) * 2015-01-02 2015-12-24 주식회사 엘지화학 유기 발광 소자
KR20160111320A (ko) * 2015-03-16 2016-09-26 주식회사 엘지화학 유기 발광 소자
KR20160126862A (ko) * 2015-04-24 2016-11-02 주식회사 엘지화학 유기 발광 소자
KR20180069503A (ko) 2016-12-15 2018-06-25 현대자동차주식회사 복합재 리프 스프링모듈 조립장치 및 그 조립방법
KR101966306B1 (ko) * 2018-06-18 2019-04-05 주식회사 엘지화학 유기 발광 소자

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3667749A4
VENUGOPAL, T. ET AL.: "Nondoped blue fluorescent OLED based on cyanophenanthrimidazole-styryl-triphenylamine/carbazole materials", JOURNAL OF PHYSICAL ORGANIC CHEMISTRY, vol. 30, no. 12, 10 March 2017 (2017-03-10), pages e3695, XP055665111 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3896061A4 (en) * 2018-12-13 2022-11-16 Solus Advanced Materials Co., Ltd. ORGANIC COMPOUND AND ORGANIC ELECTROLUMINESCENT DEVICE USING THE SAME
CN111233832A (zh) * 2020-01-08 2020-06-05 上海传勤新材料有限公司 一种含有芴和三嗪的有机电子材料及其应用
CN111233832B (zh) * 2020-01-08 2023-12-01 上海传勤新材料有限公司 一种含有芴和三嗪的有机电子材料及其应用
KR20220023697A (ko) * 2020-08-21 2022-03-02 주식회사 엘지화학 유기 발광 소자
KR102633323B1 (ko) 2020-08-21 2024-02-05 주식회사 엘지화학 유기 발광 소자

Also Published As

Publication number Publication date
EP3667749A1 (en) 2020-06-17
KR101966306B1 (ko) 2019-04-05
US20200287142A1 (en) 2020-09-10
US10950801B2 (en) 2021-03-16
EP3667749A4 (en) 2020-11-11
CN111095587B (zh) 2021-05-28
WO2019245160A9 (ko) 2020-05-28
EP3667749B1 (en) 2022-08-03
CN111095587A (zh) 2020-05-01

Similar Documents

Publication Publication Date Title
WO2019245160A1 (ko) 유기 발광 소자
WO2016171406A2 (ko) 유기 발광 소자
WO2019235873A1 (ko) 유기 발광 소자
WO2018221871A1 (ko) 유기 발광 소자
WO2017204594A1 (ko) 유기 발광 소자
WO2014010823A1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 전자 소자
WO2014081168A1 (ko) 플루오란텐 화합물 및 이를 포함하는 유기 전자 소자
WO2013154378A1 (ko) 새로운 함질소 헤테로환 화합물 및 이를 이용한 유기 전자 소자
WO2020046049A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2015152650A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2019146946A1 (ko) 유기발광소자
WO2019235902A1 (ko) 다환 화합물 및 이를 포함하는 유기전자소자
WO2020040514A1 (ko) 유기 발광 소자
WO2015152651A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2020096326A1 (ko) 유기 발광 소자
WO2019240473A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2017164614A1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 발광 소자
WO2020149596A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2018030786A1 (ko) 화합물 및 이를 포함하는 유기발광소자
WO2020022811A1 (ko) 유기발광소자
WO2022154283A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2017171375A1 (ko) 화합물 및 이를 포함하는 유기 전자 소자
WO2019177393A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2019194594A1 (ko) 화합물 및 이를 포함하는 유기 전자 소자
WO2021080254A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19822718

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019822718

Country of ref document: EP

Effective date: 20200310

NENP Non-entry into the national phase

Ref country code: DE