WO2019240034A1 - ネットワーク管理システム、管理装置、中継装置、方法およびプログラム - Google Patents

ネットワーク管理システム、管理装置、中継装置、方法およびプログラム Download PDF

Info

Publication number
WO2019240034A1
WO2019240034A1 PCT/JP2019/022719 JP2019022719W WO2019240034A1 WO 2019240034 A1 WO2019240034 A1 WO 2019240034A1 JP 2019022719 W JP2019022719 W JP 2019022719W WO 2019240034 A1 WO2019240034 A1 WO 2019240034A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
relay
server
terminals
destination
Prior art date
Application number
PCT/JP2019/022719
Other languages
English (en)
French (fr)
Inventor
雅 高木
雅裕 吉田
和哉 松尾
純 塩田
航哉 森
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2020525524A priority Critical patent/JP6962467B2/ja
Priority to EP22180449.5A priority patent/EP4089979A1/en
Priority to US17/252,195 priority patent/US11477124B2/en
Priority to EP19819432.6A priority patent/EP3809647B1/en
Priority to CN201980037895.7A priority patent/CN112292839B/zh
Publication of WO2019240034A1 publication Critical patent/WO2019240034A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2425Traffic characterised by specific attributes, e.g. priority or QoS for supporting services specification, e.g. SLA
    • H04L47/2433Allocation of priorities to traffic types
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0805Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability
    • H04L43/0817Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability by checking functioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0876Network utilisation, e.g. volume of load or congestion level
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/10Active monitoring, e.g. heartbeat, ping or trace-route
    • H04L43/106Active monitoring, e.g. heartbeat, ping or trace-route using time related information in packets, e.g. by adding timestamps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/28Flow control; Congestion control in relation to timing considerations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/56Provisioning of proxy services
    • H04L67/567Integrating service provisioning from a plurality of service providers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0876Network utilisation, e.g. volume of load or congestion level
    • H04L43/0894Packet rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks

Definitions

  • One embodiment of the present invention relates to a network management system, a management device, a relay device, a method, and a program.
  • IoT Internet of Things
  • sensing device or “terminal capable of transmitting data”
  • Sensing devices are diverse and the number of devices is enormous.
  • various types of data generated by the sensing device and various types of applications that utilize the generated data.
  • IoT In order to further enhance the value creation by IoT, it is indispensable to combine and use a wide variety of data, and there is a growing demand for the realization of technology for distributing and utilizing data across services in different fields. (For example, refer nonpatent literature 1).
  • data from a sensing device having a sensor function capable of acquiring a wide variety of data is once transmitted and stored in a database server via a wireless network or a fixed network.
  • the database server stores data received from the sensing device in the database using time and device ID as keys.
  • the application server that intends to use the data needs to select and acquire specific data necessary for the operation of the application from the data stored in the database.
  • the application on the application server issues a query such as SQL to the database to acquire necessary data. Since data of each time from the past to the present is stored in the database, it is also possible to acquire only data of a specific time with a condition. Also, only data having a specific device ID can be acquired with conditions.
  • the data transmitted from the sensing device has different data sizes and acquisition frequencies. If the data size transmitted from each device is large or if the number of devices is large, the amount of data transmitted from the sensing device will increase, and there will be a difference between the sensing device and server, between the server and application, etc. The network section was congested.
  • This invention was made paying attention to the above circumstances, and its purpose is to efficiently acquire a wide variety of data transmitted from a sensing device while reducing network congestion. To provide network management technology.
  • a first aspect of the present invention includes a plurality of terminals that can transmit data, a plurality of destination devices that perform predetermined processing based on data transmitted from the plurality of terminals, A relay device arranged via a network between the plurality of terminals and the plurality of destination devices; a plurality of terminals; the plurality of destination devices; and a network management device capable of communicating with the relay device.
  • the network management device receives a request regarding data required by each destination device from the plurality of destination devices, and the plurality of destination devices based on the request
  • a relay data instruction unit that generates a relay data instruction signal for instructing the attribute of data to be relayed every time and transmits the signal to the relay device, and The relay device acquires the relay data instruction signal transmitted from the network management device, and based on the relay data instruction signal, the data transmitted from the plurality of terminals based on the relay data instruction signal
  • a data integration unit that identifies and integrates data to be relayed for each destination device, and a relay data transmission control unit that transmits the integrated data to each of the plurality of destination devices. is there.
  • the network management device monitors the performance of the network, the network performance monitoring unit, and the plurality of network performance monitoring results based on the monitoring result of the network performance.
  • a transmission control unit that generates a control signal for controlling at least one of a data transmission amount from the terminal and a data transmission amount from the relay device, and transmits the control signal to at least one of the plurality of terminals and the relay device; It is what I did.
  • a plurality of terminals that can transmit data, a plurality of destination devices that perform predetermined processing based on data transmitted from the plurality of terminals, and the plurality of terminals and the plurality of terminals
  • a request receiving unit for receiving a request regarding data required by each destination device from the plurality of destination devices, in a network management device capable of communicating with a relay device disposed between the destination devices via a network;
  • a relay data instruction unit that generates a relay data instruction signal for instructing an attribute of data to be relayed for each of the plurality of destination apparatuses based on the request and transmits the relay data instruction signal to the relay apparatus; .
  • a plurality of terminals that can transmit data and a plurality of destination apparatuses that perform predetermined processing based on data transmitted from the plurality of terminals are arranged via a network.
  • An instruction signal acquisition unit that acquires a relay data instruction signal that instructs an attribute of data to be relayed for each of the plurality of destination apparatuses, and the plurality of terminals based on the relay data instruction signal
  • a data integration unit that identifies and integrates data to be relayed for each of the plurality of destination devices, and relay data that transmits the integrated data to each of the plurality of destination devices
  • a transmission control unit is arranged via a network.
  • a wide variety of data transmitted from a plurality of terminals is once acquired by a relay device arranged between the plurality of terminals and the destination device.
  • the relay device in accordance with an instruction from the network management device, data is distributed and integrated for each destination device, and then directly transmitted as integrated data from the relay device to each destination device.
  • each destination device can efficiently acquire necessary data without searching for specific data from a database storing a large variety of data.
  • the processing load on the destination device can be greatly reduced, and the responsiveness of the application in the destination device that uses data can be improved.
  • traffic between the relay device and the destination device can be suppressed to a necessary minimum, network congestion can be reduced.
  • the network management device monitors the performance of the network related to the relay device, and in accordance with the monitoring result, the transmission amount is set to the terminal or relay device that transmits data.
  • a control signal for controlling is transmitted. Therefore, as a result of monitoring the performance of the network, when it is determined that the load on the network or the relay device is increasing, the amount of transmission from the terminal or the relay device can be controlled so as to reduce the load.
  • the processing load of the relay device itself can be reduced flexibly and effectively.
  • each aspect of the present invention it is possible to provide a network management technique that can efficiently acquire a wide variety of data transmitted from a terminal while reducing network congestion.
  • FIG. 1 is a diagram showing the overall configuration of a network management system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a hardware configuration of the management server according to the embodiment of the present invention.
  • FIG. 3 is a block diagram showing a software configuration of the management server according to the embodiment of the present invention.
  • FIG. 4 is a block diagram showing a hardware configuration of the relay server according to the embodiment of the present invention.
  • FIG. 5 is a block diagram showing a software configuration of the relay server according to the embodiment of the present invention.
  • FIG. 6 is a sequence diagram showing an example of the flow of control signals in the network management system shown in FIG.
  • FIG. 7 is a diagram showing an example of a data flow in the network management system shown in FIG.
  • FIG. 1 is a diagram showing an overall configuration of a network management system 100 according to the first embodiment of the present invention.
  • This system 100 includes a plurality of sensing devices SD1, SD2, SD3,... SDn (hereinafter collectively referred to as “sensing devices” as terminals capable of transmitting data, which can communicate with each other via communication networks NW1, NW2, and NW3. SDV), destination servers DSV1, DSV2,... DSVn (hereinafter collectively referred to as “destination server DSV”) as destination devices, relay server 20 as a relay device, and these devices And a management server 10 as a management device for managing the entire network.
  • sensing devices SD1, SD2, SD3,... SDn
  • destination server DSV destination servers
  • relay server 20 as a relay device
  • a management server 10 as a management device for managing the entire network.
  • the communication networks NW1, NW2, and NW3 include, for example, an IP (Internet Protocol) network represented by the Internet and a plurality of access networks for accessing the IP network.
  • IP Internet Protocol
  • the access network not only a wired network using an optical fiber, but also a mobile phone network operating under a standard such as 3G or 4G, a wireless LAN (Local Area Network), or the like is used.
  • the communication networks NW1, NW2, and NW3 do not need to be separate networks, and two or three of the NW1, NW2, and NW3 may constitute a single network.
  • these communication networks NW1, NW2, and NW3 are collectively referred to as a network NW.
  • Each sensing device SD as a terminal capable of transmitting data is, for example, an IoT-related device having a plurality of sensor functions, and includes manufacturing, automobile (autonomous driving), agriculture, medical, healthcare, distribution, and finance. Various data may be collected in an arbitrary field such as other service industries.
  • the sensing device SD transmits the collected data to the relay server 20 via the network NW.
  • the operation of the sensing device SD is also managed by the management server 10 via the network NW.
  • the destination server DSV performs a predetermined process based on data collected by the sensing device SD such as an application server or a database server (including a server managed and operated by a service provider on the Web).
  • the destination server DSV receives necessary data from the relay server 20 via the network NW.
  • the operation of the destination server DSV is also managed by the management server 10 via the network NW.
  • the relay server 20 includes, for example, a server computer, a personal computer, and the like, is arranged via the network NW between the sensing device SD and the destination server DSV, receives data collected by the sensing device SD, and receives the data of the destination server DSV. It works to relay to each.
  • the operation of the relay server 20 is also managed by the management server 10 via the network NW.
  • the relay server 20 receives data transmitted from the sensing device SD via the network NW, receives an instruction from the management server 10, and is required by each destination server DSV based on the instruction. Can be identified, categorized, consolidated, stored, and then transmitted to the destination server DSV.
  • data integration refers to combining a plurality of types of data having the same data generation date and time into a single archive using a compression technique such as ZIP.
  • the relay server 20 can also prioritize the integrated data and relay it to the destination server DSV based on an instruction from the management server 10. For example, priority control may be performed such that, among the destination servers DSV, the integrated data is preferentially transmitted to the application server ASV, and the integrated data is transmitted to the database server DBSV when there is a sufficient load on the network or server. it can.
  • the management server 10 communicates with the sensing device SD, the relay server 20, and the destination server DSV via the network NW, and manages and controls their operations. Therefore, the management target of the management server 10 is not limited to the network NW. Below, the structure of the management server 10 and the relay server 20 is further demonstrated.
  • FIG. 2 is a block diagram showing an example of the hardware configuration of the management server 10 shown in FIG.
  • the management server 10 includes, for example, a server computer, a personal computer, and the like, and includes a hardware processor 12A such as a CPU (Central Processing Unit).
  • a program memory 12B, a data memory 13, and a communication interface 11 are connected to the hardware processor 12A via a bus 15.
  • the communication interface 11 enables data transmission / reception with various devices via the network NW.
  • a protocol defined by the network NW is used.
  • the communication interface 11 includes, for example, one or more wired or wireless communication interfaces.
  • the wired interface for example, a wired LAN is used, and as the wireless interface, an interface adopting a low power wireless data communication standard such as a wireless LAN or Bluetooth (registered trademark) is used.
  • the program memory 12B uses a combination of a nonvolatile memory such as HDD (Hard Disk Drive) and SSD (Solid State Drive), which can be written and read at any time, and a nonvolatile memory such as a ROM as a storage medium.
  • a nonvolatile memory such as HDD (Hard Disk Drive) and SSD (Solid State Drive)
  • a nonvolatile memory such as a ROM as a storage medium.
  • the program necessary for executing various processes is stored.
  • the data memory 13 is a combination of a non-volatile memory such as HDD or SSD that can be written and read at any time and a volatile memory such as RAM (Random Access Memory) as a storage medium. Used to store data acquired and created in the process of
  • FIG. 3 is a block diagram showing the software configuration of the management server 10 shown in FIG. 1 in association with the hardware configuration shown in FIG.
  • the management server 10 detects the sensing devices SD1,... As the terminals capable of transmitting data via the network NW. . . SDn, relay server 20, and application servers ASV1,. . . ASVn (collectively referred to as “application server ASV”) and database servers DBSV1,. . . It is possible to communicate with DBSVn (collectively referred to as “database server DBSV”).
  • the sensing device SD can include a wide variety of devices.
  • Each application server ASV can each include one or more applications.
  • each database server DBSV can include one or more databases, respectively.
  • the destination server DSV can include various devices that utilize data transmitted by the sensing device SD.
  • the storage area of the data memory 13 includes a sensing device information storage unit 131, a device / relay server NW performance storage unit 132, a relay server / application server NW performance storage unit 133, and a relay server / database server NW performance storage.
  • the sensing device information storage unit 131 is used to store information on each sensing device SD, for example, information such as the type of data generated by each sensing device SD and the transmission frequency.
  • the device / relay server NW performance storage unit 132 is used to store information on the network performance between each sensing device SD and the relay server 20.
  • the inter-relay server / application server NW performance storage unit 133 is used to store information relating to the network performance between the relay server 20 and the application server ASV.
  • the NW performance storage unit 134 between the relay server and the database server is used for storing information regarding the network performance between the relay server 20 and the database server DBSV.
  • the NW performance storage units 132 to 133 do not have to be separate, and may be an integrated storage unit.
  • the relay server information storage unit 135 is information related to the relay server 20, for example, load information of the relay server 20 (for example, the amount of received data in the relay server 20 and the ratio of the storage area occupied for temporary storage of sensing data). Used to store
  • the application server information storage unit 136 is used to store information related to each application server ASV, for example, information related to data required by each application server ASV.
  • the database server information storage unit 137 is used to store information related to each database server DBSV, for example, information related to data stored in each database server DBSV.
  • the processing unit 12 includes the hardware processor 12A and the program memory 12B.
  • a processing function unit using software a sensing device management unit 121, a network performance monitoring unit 122, a relay server management unit 123, an application A server management unit 124 and a database server management unit 125 are provided. These processing function units are realized by causing the hardware processor 12A to execute a program stored in the program memory 12B.
  • the processing unit 12 may also be realized in various other formats including integrated circuits such as ASIC (Application Specific Integrated Circuit) and FPGA (field-programmable gate array).
  • ASIC Application Specific Integrated Circuit
  • FPGA field-programmable gate array
  • the sensing device management unit 121 manages information of all the sensing devices SD under the relay server 20, and cooperates with the relay server management unit 123 to transmit data formats and data transmissions transmitted from the respective sensing devices SD. It has a function of adjusting the frequency, and includes a sensing device information acquisition unit 1211 and a sensing data transmission control unit 1212.
  • the sensing device information acquisition unit 1211 acquires information about each sensing device SD via the communication interface 11 and performs processing for storing the acquired information in the sensing device information storage unit 131.
  • the acquired information on each sensing device SD includes, for example, a device ID, a type of data generated by the device, a data format, a data transmission frequency, and the like.
  • the sensing data transmission control unit 1212 functions as a transmission control unit for a control signal for the sensing device SD, and performs a process of transmitting a signal for instructing the transmission frequency of data and the format of data to be transmitted to each sensing device SD. .
  • the sensing data transmission control unit 1212 functions as a transmission control unit for a control signal for the sensing device SD, and performs a process of transmitting a signal for instructing the transmission frequency of data and the format of data to be transmitted to each sensing device SD.
  • the frequency of data transmission from the sensing device SD is reduced, or the data format is reduced to a smaller data size. By doing so, the load of the relay server 20 can be reduced.
  • Each sensing device SD transmits data to the relay server 20 according to the data transmission frequency and data format instructed from the sensing data transmission control unit 1212.
  • the network performance monitoring unit 122 monitors the performance of the network related to the management server 10 or the relay server 20, and in this embodiment, in order to grasp the performance information of each network section, the NW between the device and the relay server A monitoring unit 1221, a relay server / application server NW monitoring unit 1222, and a relay server / database server NW monitoring unit 1223 are provided.
  • the network performance for example, performance information such as the maximum bandwidth of the network and the current usage rate can be monitored.
  • the number of bytes per unit time (bytes / sec) of reception / transmission data at the reception or transmission port of the relay server 20 may be monitored as network performance.
  • the network performance monitoring unit 122 further calculates an optimal transmission frequency from each sensing device SD or the relay server 20 so as to reduce network congestion, and sends the calculated optimal frequency value to the sensing device management unit 121. You can also be notified.
  • the device-relay server NW monitoring unit 1221 performs processing for monitoring the network performance between each sensing device SD and the relay server 20.
  • the relay server / application server NW monitoring unit 1222 performs a process of monitoring network performance between the relay server 20 and each application server ASV.
  • the relay server / database server NW monitoring unit 1223 performs processing for monitoring the network performance between the relay server 20 and each database server DBSV.
  • the relay server management unit 123 monitors the load on the relay server 20, manages a method for integrating data on the relay server 20, and performs processing for instructing the relay server 20 regarding the integration method.
  • a load monitoring unit 1231, a data integration instruction unit 1232, and a relay control unit 1233 are provided.
  • the relay server load monitoring unit 1231 performs processing for monitoring the load of the relay server 20, and directly monitors the load of the relay server 20, such as monitoring the amount of received data and the free memory capacity of the relay server 20. Can do. Alternatively, the relay server load monitoring unit 1231 may indirectly estimate the load of the relay server 20 based on the monitoring result by the network performance monitoring unit 122. The relay server load monitoring unit 1231 can further determine whether or not the load of the relay server 20 exceeds a predetermined threshold value.
  • the data integration instruction unit 1232 functions as a relay data instruction unit, and performs processing to instruct the relay server 20 about the attribute of data to be relayed for each destination server DSV based on a request from each destination server DSV.
  • the data attributes include, for example, data acquisition date, ID of the sensing device that collected and transmitted the data, data type, data format, and the like.
  • the data integration instruction unit 1232 generates and transmits a signal that instructs the relay server 20 to identify, distribute, and integrate data to be relayed for each destination server DSV.
  • the data integration instructing unit 1232 integrates data to be relayed to the application server ASV (application data) and integrates data to be relayed to the database server DBSV (database data). Is instructed to the relay server 20.
  • the data integration instruction unit 1232 can instruct the relay server 20 to select and integrate data having a specific data format acquired in a specific period for the specific application server ASV1. .
  • the relay control unit 1233 functions as a control signal transmission control unit for the relay server 20, and transmits (relays) the relay server 20 to each destination server DSV based on the monitoring results of the network performance and the load of the relay server 20. Process to control. For example, when it is determined that the network performance has deteriorated, the relay control unit 1233 sets a priority for each destination server DSV in order to suppress the traffic, and prioritizes the destination server with a high priority with a high transmission frequency. A control signal for instructing a destination server with a low rank to transmit at a low transmission frequency can be generated and transmitted to the relay server 20.
  • the relay server management unit 123 has a function of adjusting the load on the network and the relay server 20 by cooperating with the sensing device management unit 121. For example, when a large amount of data arrives at the relay server 20 and the load on the relay server 20 exceeds a certain level, the data transmission frequency from the sensing device SD is reduced, or the data format is reduced to a format with a small data size. By doing so, the load of the relay server 20 can be reduced.
  • the application server management unit 124 manages which data of the sensing device SD is required for each application included in the application server ASV among the destination servers DSV. For example, the application server management unit 124 receives a request regarding data (or its attributes) required by each application from each application server ASV as a request reception unit, and stores information included in the received request in the application server information storage unit 136. Process to store. Further, the application server management unit 124 performs processing for notifying the relay server management unit 123 that the request has been accepted. Note that the application server ASV managed by the application server management unit 124 may be one or plural.
  • the database server management unit 125 manages which data of the sensing device SD must be stored in each database included in the database server DBSV among the destination servers DSV. For example, the database server management unit 125 receives a request regarding data to be accumulated in each database from each database server DBSV as a request reception unit, and performs processing for storing information included in the received request in the database server information storage unit 137. . Further, the database server management unit 125 performs processing for notifying the relay server management unit 123 that the request has been accepted. Note that the database server DBSV managed by the database server management unit 125 may be one or plural.
  • FIG. 4 is a block diagram showing an example of the hardware configuration of the relay server 20 shown in FIG.
  • the relay server 20 includes, for example, a server computer or a personal computer, and includes a hardware processor 22A such as a CPU.
  • a program memory 22B, a data memory 23, and a communication interface 21 are connected to the hardware processor 22A via a bus 25.
  • the communication interface 21 enables data transmission / reception with various devices via the network NW.
  • a protocol defined by the network NW is used.
  • the communication interface 21 includes, for example, one or more wired or wireless communication interfaces.
  • the wired interface for example, a wired LAN is used, and as the wireless interface, an interface adopting a low power wireless data communication standard such as a wireless LAN or Bluetooth (registered trademark) is used.
  • the program memory 22B is a storage medium that uses a combination of a nonvolatile memory such as HDD and SSD, which can be written and read at any time, and a nonvolatile memory such as a ROM, and is necessary for executing various processes.
  • the program is stored.
  • the data memory 23 uses a combination of a nonvolatile memory such as HDD or SSD, which can be written and read at any time, and a volatile memory such as RAM, as a storage medium, and is acquired in the course of performing various processes. And used to store the created data.
  • a nonvolatile memory such as HDD or SSD
  • a volatile memory such as RAM
  • FIG. 5 is a block diagram showing the software configuration of the relay server 20 shown in FIG. 1 in association with the hardware configuration shown in FIG.
  • the relay server 20 is connected to the sensing devices SD1,. . . SDn, management server 10, and application servers ASV1,. . . ASVn and database server DBSV1,. . . It is possible to communicate with DBSVn.
  • the sensing device SD can include a wide variety of devices.
  • Each application server ASV can each include one or more applications.
  • each database server DBSV can include one or more databases, respectively.
  • the destination server DSV can include various devices that utilize data transmitted by the sensing device SD.
  • the storage area of the data memory 23 includes a sensing data storage unit 231, a data integration instruction storage unit 232, and a relay instruction storage unit 233.
  • the sensing data storage unit 231 is used for storing data acquired from each sensing device SD together with a device ID, time information, and the like.
  • the data integration instruction storage unit 232 is used to store an instruction received from the management server 10 regarding integration of data to be relayed for each destination server DSV.
  • the relay instruction storage unit 233 is used to store an instruction received from the management server 10 regarding relay (transmission) from the relay server 20 to each destination server DSV.
  • the processing unit 22 includes the hardware processor 22A and the program memory 22B, and includes an information acquisition unit 221 and a relay data processing unit 222 as processing function units using software. Each of these processing function units is realized by causing the hardware processor 22A to execute a program stored in the program memory 22B.
  • the processing unit 22 may also be realized in various other formats including an integrated circuit such as an ASIC or FPGA.
  • the information acquisition unit 221 is for acquiring various types of information, and includes a sensing data acquisition unit 2211, a data integration instruction acquisition unit 2212, and a relay instruction acquisition unit 2213.
  • the sensing data acquisition unit 2211 performs processing for acquiring data transmitted from each sensing device SD via the communication interface 21 and storing the data in the sensing data storage unit 231.
  • the data integration instruction acquisition unit 2212 acquires an instruction regarding the integration of data to be relayed to each destination server DSV from the management server 10 via the communication interface 21 and stores the instruction in the data integration instruction storage unit 232.
  • the relay instruction acquisition unit 2213 acquires an instruction related to data relay (transmission) from the relay server 20 to each destination server DSV from the management server 10 via the communication interface 21 and stores the instruction in the relay instruction storage unit 233. Do.
  • the relay data processing unit 222 performs various processes on the relay data based on various information acquired by the information acquisition unit 221, and includes a data integration unit 2221 and a relay data transmission control unit 2222. .
  • the data integration unit 2221 reads out the data integration instruction stored in the data integration instruction storage unit 232, and identifies what information each destination server DSV needs based on the instruction. If the data required by each destination server DSV is included in a plurality of types of data stored in the sensing data storage unit 231, the data is read out, distributed for each destination server DSV, and integrated. . The integrated data is output to the relay data transmission control unit 2222. Alternatively, the integrated data may be temporarily stored in a storage unit (not shown).
  • the relay data transmission control unit 2222 reads the relay instruction stored in the relay instruction storage unit 233, and performs processing for controlling the relay of data to each destination server DSV based on the instruction. For example, the relay data transmission control unit 2222 relays (transmits) the integrated data to each destination server DSV according to the transmission frequency or transmission priority designated for each destination server DSV based on the relay instruction.
  • relaying all received sensing data with high priority may cause network congestion. Even in that case, by controlling the transmission (relay) from the relay server 20, for example, according to the network performance, only specific data among a plurality of types of data transmitted from the sensing device SD is given high priority. Network congestion can be reduced by transmitting or transmitting only data of a device having a specific device ID with high priority.
  • the network management system 100 of the present invention can be realized by a computer and a program, and can be recorded on a recording medium or provided through a network.
  • FIG. 6 is a sequence diagram showing the processing procedure and processing contents
  • FIG. 7 is a diagram showing a data flow in the system 100.
  • the network management system 100 shown in FIGS. 6 and 7 includes a plurality of sensing devices SD as terminals capable of transmitting data, an application server ASV and a database server DBSV as destination devices or destination servers, a sensing device SD and an application. It includes a relay server 20 arranged between the server ASV and the database server DBSV, and a management server 10 that can communicate with them. 6 and 7, management between the sensing device SD and the relay server 20, between the relay server 20 and the destination server (the application server ASV and the database server DBSV), and each of the sensing device SD, the relay server 20, and the destination server. Assume that communication with the server 10 is established in advance via a network.
  • each sensing device SD is a device having a sensor function capable of acquiring a plurality of types of data (air temperature, humidity, image, sound, etc.). These multiple types of data differ in data size and frequency of acquisition. For example, the temperature data is small size data and can be acquired every second, while the image data is large size data and can be acquired every minute.
  • the devices SD1,. . . SDn has the same function and generates the same four types of data A, data B, data C, and data D.
  • the application server ASV and the database server DBSV may be distributed at a plurality of locations.
  • Each of the plurality of sensing devices SD transmits various data to the relay server 20 at a preset transmission frequency and data format together with information indicating the device identification ID and the acquisition date and time.
  • step S102 the management server 10 starts from each destination server DSV (in this embodiment, from each of the application servers ASV1, ... ASVn and the database servers DBSV1, ... DBSVn), respectively.
  • a request for necessary data is received under the control of the database server management unit 125.
  • the application server management unit 124 acquires information related to data required by each application under management, stores the information in the application server information storage unit 136, and notifies the relay server management unit 123 of the information.
  • the database server management unit 125 acquires information regarding data that each database under management needs to store, stores the information in the database server information storage unit 137, and notifies the relay server management unit 123 of the information.
  • the data required for the operation of the application # 1 included in the application server ASV1 is data A, data B, data C, data D among data A and data B.
  • data A, data B, data C, and data D are required for the database # 1 included in the database server DBSV1.
  • the order of data acquisition by the relay server 20 and acceptance of requests by the management server 10 in FIG. 6 is merely shown for convenience of explanation, and may be performed at any timing and in any order.
  • the management server 10 that has received the request from each destination server DSV through the application server management unit 124 and the database server management unit 125 controls the relay server 20 in step S103 under the control of the relay server management unit 123 based on the request.
  • a data integration instruction for instructing integration of data to be relayed for each destination server DSV is generated and transmitted.
  • the management server 10 integrates data A and data B for the application # 1, and integrates data A, data B, data C, and data D for the database # 1. Send instructions.
  • the relay server 20 that has received this data integration instruction stores the data necessary for each destination server DSV among a plurality of types of data transmitted from the sensing device SD in step S104 under the control of the data integration unit 2221.
  • the data is selectively read from the unit 231 and combined.
  • the relay server 20 reads data A and data B from a plurality of types of data transmitted from the sensing device SD for the application # 1 included in the application server ASV1, and archives (compresses) the data as one file. Perform the process.
  • the relay server 20 selectively selects data A, data B, data C, and data D required by the database # 1 included in the database server DBSV1 from the sensing data storage unit 231 under the control of the data integration unit 2221. Are integrated into one file.
  • step S105 the management server 10 monitors network performance, such as the maximum bandwidth of the network and the current usage rate, under the control of the network performance monitoring unit 122, and determines whether there is sufficient bandwidth in the network. To do.
  • network performance such as the maximum bandwidth of the network and the current usage rate
  • the management server 10 controls the operation of the relay server 20 so as to reduce the load on the communication path based on the monitoring result of the network performance under the control of the network performance monitoring unit 122 and the relay server management unit 123.
  • the data relay instruction can be generated and transmitted to the relay server 20. For example, if it is determined that there is not enough bandwidth in the network, the management server 10 preferentially relays data from the relay server 20 to the application server ASV without causing network congestion. An instruction to reduce the transmission frequency of data to be transmitted to the DBSV can be generated and transmitted to the relay server 20.
  • step S107 the relay server 20 that has received the data relay instruction from the management server 10 relays (transmits) the integrated data to each destination server DSV in accordance with the instruction.
  • the relay server 20 reduces the transmission frequency to the database server DSBV and transmits data preferentially to the application server ASV.
  • data can be efficiently relayed to the application server without causing network congestion.
  • the management server 10 monitors the network performance between each sensing device SD and the relay server 20 and the load of the relay server 20 in step S108. For example, the management server 10 monitors the data reception amount in the relay server 20 under the control of the relay server load monitoring unit 1231.
  • the management server 10 When it is determined that the network performance has deteriorated or the data reception amount of the relay server 20 has exceeded a certain threshold, the management server 10 performs processing for suppressing the transmission amount from the sensing device SD to the relay server 20 It can be performed. That is, in step S109, the management server 10 can generate a data transmission instruction for instructing an optimal transmission frequency or transmission data format under the control of the sensing data transmission control unit 1212, and transmit the data transmission instruction to each sensing device SD. . Note that the processing in steps S108 to S109 is not limited to the timing shown in the figure, and can be performed as needed at any timing.
  • Each sensing device SD that has received this data transmission instruction from the management server 10 continues to transmit data to the relay server 20 based on the instructed transmission frequency or data format.
  • FIG. 6 the processing illustrated in FIG. 6 is merely illustrated in an exemplary order for convenience of explanation. Each process is not limited to the example of FIG. 6, but can be performed at any time.
  • the sensing device SD that acquires data and the destination server DSV that uses the data A relay server 20 is arranged between them, and a plurality of types of data are integrated on the communication path. As a result, it is possible to efficiently collect data from various and enormous sensing devices SD, and to implement data exchange for accurately transmitting and receiving various applications.
  • the management server 10 performs optimal data integration for each application on the relay server 20 even when the types of applications under management increase, and the relay server 20 sends each application server to the application server. Data can be efficiently transmitted to the ASV.
  • the relay server 20 is provided between the sensing device SD and the destination server DSV, and the sensing device management unit 121 and the relay server management unit 123 are linked to each other in the relay server 20.
  • the format of data transmitted from each sensing device SD and the frequency of transmission can be adjusted according to the network performance.
  • the frequency of data transmission from the sensing device SD is reduced, or the data format is reduced to the data size.
  • the load on each network and the relay server 20 can be reduced.
  • the network performance monitoring unit 122 notifies the sensing device management unit 121 of the performance of the network from each sensing device SD to the relay server 20, so that the management server 10 allows each sensing device SD.
  • the transmission frequency of data transmitted from the network can be controlled to an optimum value, and network congestion can be avoided.
  • the network performance monitoring unit 122 notifies the relay server management unit 123 of the network performance from the relay server 20 to each destination server DSV, whereby the management server 10 is relayed (transmitted) from the relay server 20.
  • the data transmission frequency or transmission priority can be optimally controlled, and network congestion between the relay server 20 and the destination server DSV can be avoided. Furthermore, as described above, by setting a priority for relaying data from the relay server 20 to each destination server DSV, it is possible to improve communication resource utilization efficiency while avoiding congestion.
  • a network management system 100 according to the second embodiment of the present invention is an automobile driving support system having a network communication function.
  • the second embodiment can adopt the same configuration as that described with reference to FIGS. 1 to 7 with respect to the first embodiment.
  • 2nd Embodiment is described using the same code
  • the network management system 100 can be implemented as follows as an example.
  • Sensing device SD Automobile NW1: Mobile phone network NW2, NW3: Optical fiber network Relay server 20: Edge server Application server ASV1: Server with operation command function
  • Application server ASV2 Creation and distribution of dynamic map (including moving objects) Server with function
  • Database server DBSV1 Server for storing accident / traffic congestion map
  • Database server DBSV2 Server for storing sign / white line map
  • an automobile SD is equipped with a plurality of sensors such as a GPS receiver, a gyro sensor, a camera, and a LiDAR distance measuring sensor, and senses the vehicle position and surrounding conditions.
  • the vehicle SD is equipped with a vehicle-mounted device (not shown) having a communication function.
  • the vehicle-mounted device collects these sensor data, and the engine speed, accelerator opening, brake pressure, steering wheel
  • the information inside the vehicle such as the steering angle is also collected by mirroring CAN (Controller (Area Network) communication packets.
  • the vehicle-mounted device transmits the collected data to the edge server 20 through the mobile phone network NW1 or the like.
  • the generation frequency of sensor data varies depending on the sensor type, such as the position information is about 10 times per second, the camera image is about 24 to 60 frames per second, and the LiDAR point cloud data is about 5 to 20 frames per second.
  • the frequency varies depending on the vehicle type and model year.
  • the data acquisition frequency required by the destination server DSV varies greatly depending on the application. For example, it is desirable to acquire data as frequently as possible in the use of the operation command function. On the other hand, it is sufficient to acquire data once every few seconds for dynamic map creation, once every few minutes for accident / congestion map update, and once every few days to several months for sign / white line map update It is.
  • the application server management unit 124 of the management server 10 needs each application from each application server ASV in step S102, as described in the first embodiment. And a process for storing information included in the received request in the application server information storage unit 136.
  • the application server ASV1 having a driving command function requests to collect data from all the vehicles as frequently as possible.
  • the application server ASV2 which has a function for creating and distributing a dynamic map, does not need to collect data from all the vehicles, and only takes a few seconds of data that does not overlap the sensing range based on information such as the position and traveling direction of each vehicle. It is requested to collect at a frequency of about once.
  • the database server management unit 125 of the management server 10 receives each database from each database server DBSV in step S102, as described in the first embodiment.
  • a request for data to be stored in the server is received, and information included in the received request is stored in the database server information storage unit 137.
  • the database server DBSV1 that stores the accident / congestion map requests data transmission about once every few minutes for map update.
  • the database server DBSV2 that stores the sign / white line map requests data transmission about once every several days to several months. Therefore, data transmission from the car SD to the edge server 20 is performed at an arbitrary time zone. Can be done.
  • these database servers DBSV1 and DBSV2 do not require data collection from all the vehicles, and it is sufficient to collect only the data whose sensing ranges do not overlap based on information such as the position and traveling direction of each vehicle.
  • the management server 10 transmits necessary data to the automobile SD as a sensing device at a necessary frequency or timing under the control of the sensing data transmission control unit 1212.
  • a control signal instructing transmission to the edge server 20 can be generated and transmitted to the automobile SD in step S109.
  • the management server 10 controls the type of data to be transmitted to the relay server 20, the transmission frequency to be transmitted to the relay server 20, and the relay server 20 under the control of the sensing data transmission control unit 1212.
  • a control signal indicating the time zone or timing to be transmitted can be generated and transmitted.
  • the management server 10 details the instructions in the control signal, for example, data attributes (data size, data format, etc.), transmission frequency, transmission time zone. It is possible to adjust the transmission timing and the like.
  • the management server 10 according to the second embodiment performs the load control on the network NW1 as the mobile phone network based on the monitoring result of the device-relay server NW monitoring unit 1221.
  • a control signal can be generated and transmitted.
  • the management server 10 compresses the data for each car SD and sends it to the relay server 20 under the control of the sensing data transmission control unit 1212. Can be instructed to reduce the transmission frequency, or can be instructed to change the transmission time zone from the midnight time zone to the early morning time zone.
  • the management server 10 transmits image data collectively at night to each automobile SD under the control of the sensing data transmission control unit 1212, and transmits a CAN packet at a specific frequency such as every 10 minutes. It is also possible to instruct to perform transmission according to the data format.
  • Each vehicle SD that has received the control signal can adjust the data size by changing the sampling frequency, for example, in accordance with the instruction, and can transmit it to the relay server 20 at the instructed timing.
  • Each automobile SD can also store sensing data in the storage unit of the vehicle-mounted device and transmit them collectively in a time zone instructed by a control signal from the management server 10.
  • the management server 10 may be configured to transmit different control signals to each automobile SD.
  • the management server 10 can also instruct the car SD extracted at random to stop transmission to the relay server 20 for a certain period of time.
  • the automobile SD that has received this instruction stops transmission of sensing data for the designated period.
  • the management server 10 may instruct the automobile SD to discard the sensing data during the transmission stop period, or may instruct the vehicle SD to accumulate and transmit the data when the transmission is resumed. .
  • the management server 10 can instruct each sensing device SD to transmit only necessary data to the relay server 20 in response to a request from the destination server DSV.
  • the load on the mobile phone network NW1 can be minimized.
  • data used for updating the sign / white line map such as an image whose real-time property is not important, it is possible to expect load leveling of the cellular phone network NW1 by transmitting the data collectively in the midnight time zone with a sufficient communication band.
  • the subsequent application since a plurality of data are integrated and delivered to the destination server DSV, the subsequent application does not need to perform data waiting processing, and processing delay caused by this does not occur.
  • the data integration function of the present invention it is possible to reduce the overhead of TCP / IP communication when transmitting minute data and improve the utilization efficiency of the network. This is because by collecting a plurality of data, the payload can be increased to increase the packet length, and the ratio of the header to the entire packet can be reduced.
  • the present invention is not limited to the above embodiment.
  • the transmission of data from the relay server 20 to each destination server DSV has been described as setting the transmission priority for each destination server DSV.
  • the priority is set from another viewpoint.
  • the priority order can be set for each type of sensing device SD or device ID, for each type of sensing data, or for each type of destination server DSV.
  • the priority order can be determined in advance or can be adjusted dynamically.
  • each unit of the management server 10 or the relay server 20 is not limited to the content described in the above embodiment.
  • the network performance monitoring unit 122 of the management server 10 has been described as calculating the optimum data transmission frequency so that the network is not congested.
  • the sensing data transmission control unit 1212 of the management server 10 the relay It may be implemented by other processing units such as the server load monitoring unit 1231 and the relay control unit 1233, or may be implemented by a combination thereof.
  • a plurality of terminals or sensing devices SD a single relay device or relay server 20, a plurality of application servers ASV, a plurality of database servers DBSV, a plurality of applications, and a plurality of databases exist. Although described, these may be single or plural. It is also conceivable that a part of the function of the management server 10 is provided in the relay server 20 or a part of the function of the relay server 20 is provided in the management server 10. Further, the integration of data in the relay server 20 can be designed to be integrated in an arbitrary unit such as for each application, for each application server, for each database, for each database server.
  • the application server ASV and the database server DBSV have been described as examples of the destination server DSV to which the relay server 20 relays data transmitted from the sensing device SD. It can also be included.
  • sensing device SD and the type of sensing data can be variously modified and implemented without departing from the gist of the present invention.
  • the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage.
  • various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment.
  • a network between a plurality of terminals capable of transmitting data, a plurality of destination devices each performing predetermined processing based on data transmitted from the plurality of terminals, and the plurality of terminals and the plurality of destination devices A network management system, comprising: a relay device disposed via a plurality of terminals; the plurality of destination devices; and a management device capable of communicating with the relay device, The management device A request receiving unit that receives a request regarding data required by each destination device from the plurality of destination devices; A relay data instruction unit that generates a relay data instruction signal for instructing an attribute of data to be relayed for each of the plurality of destination devices based on the request and transmits the relay data instruction signal to the relay device; The relay device is An instruction signal acquisition unit for acquiring the relay data instruction signal transmitted from the management device; A data integration unit that identifies
  • the management device A network performance monitoring unit for monitoring the performance of the network; Based on a monitoring result of the network performance, a control signal for controlling at least one of a data transmission amount from the plurality of terminals and a data transmission amount from the relay device is generated, and the plurality of terminals and the relay device are generated.
  • the network management system according to C1 further comprising a transmission control unit that transmits to at least one of the above.
  • a plurality of terminals capable of transmitting data, a plurality of destination apparatuses that perform predetermined processing based on data transmitted from the plurality of terminals, and a network between the plurality of terminals and the plurality of destination apparatuses
  • a management device capable of communicating with a relay device arranged
  • a request receiving unit that receives a request regarding data required by each destination device from the plurality of destination devices
  • a management apparatus comprising: a relay data instruction unit that generates a relay data instruction signal instructing an attribute of data to be relayed for each of the plurality of destination apparatuses based on the request and transmits the relay data instruction signal to the relay apparatus.
  • a relay device arranged via a network between a plurality of terminals capable of transmitting data and a plurality of destination devices that respectively perform predetermined processing based on data transmitted from the plurality of terminals,
  • An instruction signal acquisition unit for acquiring a relay data instruction signal for instructing data to be relayed for each of the plurality of destination devices;
  • a data integration unit that identifies and integrates data to be relayed for each of the plurality of destination devices out of data transmitted from the plurality of terminals based on the relay data instruction signal;
  • a relay device comprising: a relay data transmission control unit that transmits the integrated data to each of the plurality of destination devices.
  • a plurality of terminals capable of transmitting data, a plurality of destination apparatuses that perform predetermined processing based on data transmitted from the plurality of terminals, and a network between the plurality of terminals and the plurality of destination apparatuses
  • a management device capable of communicating with a relay device arranged in a A process in which the management device receives a request regarding data required by each destination device from the plurality of destination devices; And a step of generating a relay data instruction signal for instructing an attribute of data to be relayed for each of the plurality of destination devices based on the request and transmitting the relay data indication signal to the relay device.
  • [C6] A method executed by a relay device arranged via a network between a plurality of terminals capable of transmitting data and a plurality of destination devices each performing predetermined processing based on data transmitted from the plurality of terminals.
  • the relay device obtaining a relay data instruction signal that instructs data to be relayed for each of the plurality of destination devices;
  • the relay device identifies and integrates data to be relayed for each of the plurality of destination devices out of the data transmitted from the plurality of terminals based on the relay data instruction signal;
  • the relay device comprising: transmitting the integrated data to each of the plurality of destination devices.
  • the program which makes a processor perform the process by each part of the management apparatus as described in said C3.
  • a network performance monitoring unit for monitoring the performance of the network; Based on a monitoring result of the network performance, a control signal for controlling at least one of a data transmission amount from the plurality of terminals and a data transmission amount from the relay device is generated, and the plurality of terminals and the relay device are generated.
  • the management apparatus according to C3, further comprising: a transmission control unit that transmits to at least one of the above.
  • a network performance monitoring unit for monitoring the performance of the network; Based on a monitoring result of the performance of the network, a control signal for controlling at least one of a data transmission frequency from the plurality of terminals and a data transmission frequency from the relay device is generated, and the plurality of terminals and the relay device are generated.
  • the management apparatus further comprising: a transmission control unit that transmits to at least one of the above.
  • a priority is set for each of the plurality of destination devices, a control signal instructing to control data transmission to the plurality of destination devices according to the priority is generated, and transmitted to the relay device.
  • the management device according to C3, further including a control unit.
  • the management apparatus Based on the request for data required by each destination device, the type of data to be transmitted from the plurality of terminals to the relay device, the transmission frequency from the plurality of terminals to the relay device, and the plurality of terminals
  • the management apparatus further including a transmission control unit that generates a control signal for controlling at least one of transmission time zones to the relay apparatus and transmits the control signal to the plurality of terminals.
  • a network management system (100) comprising a management device (10) capable of communicating with The management device (10)
  • a request receiving unit (124, 125) configured to receive a request regarding data required by each destination device from the plurality of destination devices (DSV); Based on the request, a relay data instruction unit (1232) configured to generate a relay data instruction signal instructing an attribute of data to be relayed for each of the plurality of destination devices (DSV) and transmit the signal to the relay device.
  • the relay device (20) An instruction signal acquisition unit (2212) configured to acquire the relay data instruction signal transmitted from the management device; A data integration unit (2221) configured to identify and integrate data to be relayed for each of the plurality of destination devices out of data transmitted from the plurality of terminals based on the relay data instruction signal When, A relay data transmission control unit (2222) configured to transmit the integrated data to each of the plurality of destination devices.
  • a network performance monitoring unit (122) configured to monitor the performance of the network; Based on a monitoring result of the network performance, a control signal for controlling at least one of a data transmission amount from the plurality of terminals and a data transmission amount from the relay device is generated, and the plurality of terminals and the relay device are generated.
  • a network performance monitoring unit (122) configured to monitor the performance of the network; Based on a monitoring result of the performance of the network, a control signal for controlling at least one of a data transmission frequency from the plurality of terminals and a data transmission frequency from the relay device is generated, and the plurality of terminals and the relay device are generated.
  • a priority order is set for each of the plurality of destination devices, and a control signal instructing to control data transmission to the plurality of destination devices is generated according to the priority order and transmitted to the relay device.
  • the type of data to be transmitted from the plurality of terminals to the relay device, the transmission frequency from the plurality of terminals to the relay device, and the plurality of terminals C14 further includes a transmission control unit (1233) configured to generate a control signal for controlling at least one of transmission time zones to the relay device and transmit the control signal to the plurality of terminals.
  • [C20] A method performed by the management apparatus (10) of the system according to C13, The management device accepts a request regarding data required by each destination device from the plurality of destination devices; A method comprising: generating, based on the request, a relay data instruction signal for instructing an attribute of data to be relayed for each of the plurality of destination devices based on the request.
  • [C21] A method implemented by the relay device (20) of the system according to C13, The relay device acquires a relay data instruction signal instructing data to be relayed for each of the plurality of destination devices; The relay device identifies and integrates data to be relayed for each of the plurality of destination devices out of the data transmitted from the plurality of terminals based on the relay data instruction signal; The relay apparatus comprising: transmitting the integrated data to each of the plurality of destination apparatuses.
  • a program comprising instructions that, when executed by a computer, cause the computer to execute the method described in C20.
  • [C23] A program comprising instructions that, when executed by a computer, cause the computer to execute the method described in C21.
  • Relay server information storage unit 136 ... Application server information storage unit 137 ... Database server information storage unit 221 ... Information acquisition unit 222 ... Relay data processing unit 231 ... Sensing data storage unit 232 ... Data integration instruction storage unit 233 ... Relay instruction storage unit DESCRIPTION OF SYMBOLS 1211 ... Sensing device information acquisition part 1212 ... Sensing data transmission control part 1221 ... NW monitoring part between device and relay servers 1222 ... NW monitoring part between relay servers and application servers 1223 ... NW monitoring part between relay servers and database servers 1231 ... Relay server Load monitoring unit 1232 ... Data integration instruction unit 1233 ... Relay control unit 2211 ... Sensing data acquisition unit 2212 ... Data integration instruction acquisition unit 2213 ... Relay instruction acquisition unit 2221 ... Data integration unit 2222 ... Relay data transmission Control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Information Transfer Between Computers (AREA)

Abstract

ネットワークの輻輳を軽減しつつ、端末から送信される多種多様なデータを効率的に取得できるネットワーク管理技術を提供する。データを送信可能な複数の端末と、データに基づいて所定の処理を行う複数の宛先装置と、それらの間に配置された中継装置と、端末、宛先装置、および中継装置と通信可能な管理装置とを具備する、ネットワーク管理システムにあって、管理装置が、複数の宛先装置から必要なデータに関する要求を受け付け、要求に基づいて、宛先装置ごとに中継すべきデータを統合するよう中継装置に指示する。指示を受けた中継装置は、指示に基づいて、複数の端末から送信されたデータのうち、複数の宛先装置の各々について中継すべきデータを識別し統合し、統合されたデータを複数の宛先装置の各々に送信する。

Description

ネットワーク管理システム、管理装置、中継装置、方法およびプログラム
 この発明の一態様は、ネットワーク管理システム、管理装置、中継装置、方法およびプログラムに関する。
 近年のIoT(Internet of Things:モノのインターネット)技術の普及により、製造業、自動車業(自動運転支援)、農業などの様々な分野で、多種多様なセンサを活用したデータ収集とその解析が進んでいる。IoTでは、ネットワークに接続されたセンサなどのデバイス(以下、「センシングデバイス」または「データを送信可能な端末」とも言う)から生成されるデータがクラウド上に収集され、種々のアプリケーションのために活用されている。
 センシングデバイスは、種類が多様であり、その台数も膨大である。また、センシングデバイスによって生成されるデータの種類も多様であり、生成されたデータを活用するアプリケーションの種類も多様である。IoTによる価値創出をさらに高めるためには、多種多様なデータを組み合わせて活用することが不可欠であり、異なる分野のサービス間で横断的にデータを流通させ活用する技術の実現に対する要望が高まっている(例えば、非特許文献1参照)。
 従来、多種多様なデータを取得可能なセンサ機能をもつセンシングデバイスからのデータは、無線ネットワークや固定ネットワークを介して、いったんデータベースサーバに送信され蓄積される。データベースサーバは、センシングデバイスから受信したデータを、時間やデバイスIDをキーとしてデータベースに蓄積する。ここで、データを利用しようとするアプリケーションサーバは、データベースに蓄積されたデータの中から、アプリケーションの動作に必要な特定のデータを選択して取得する必要がある。例えば、アプリケーションサーバ上のアプリケーションは、データベースに対してSQLなどのクエリを発行して、必要なデータを取得する。データベースには過去から現在に至るまでの各時間のデータが格納されているため、特定の時間のデータのみを条件付きで取得することもできる。また、特定のデバイスIDを持つデータのみを条件付きで取得することもできる。
 ところが、データベースには、データサイズ、取得日時、取得頻度が異なるデータが大量に蓄積されているので、各アプリケーションがデータベースから必要な特定のデータを選択(検索)し抽出するには長い時間を要することになり、効率的ではない。
 また、センシングデバイスから送信されるデータは、データサイズや取得頻度がそれぞれ異なっている。各デバイスから送信されるデータサイズが大きい場合や、デバイスの台数が多い場合、センシングデバイスから送信されるデータ送信量が大きくなってしまい、センシングデバイスとサーバの間、サーバとアプリケーションの間など、各ネットワーク区間の輻輳を招いていた。
 この発明は、上記事情に着目してなされたもので、その目的とするところは、ネットワークの輻輳を軽減しつつ、センシングデバイスから送信される多種多様なデータを効率的に取得できるようにする、ネットワーク管理技術を提供することにある。
 上記課題を解決するためにこの発明の第1の態様は、データを送信可能な複数の端末と、上記複数の端末から送信されたデータに基づいてそれぞれ所定の処理を行う複数の宛先装置と、上記複数の端末と上記複数の宛先装置との間にネットワークを介して配置される中継装置と、上記複数の端末、上記複数の宛先装置、および上記中継装置と通信可能なネットワーク管理装置とを具備する、ネットワーク管理システムにあって、上記ネットワーク管理装置が、上記複数の宛先装置から、各宛先装置が必要とするデータに関する要求を受け付ける要求受付部と、上記要求に基づいて、上記複数の宛先装置ごとに中継すべきデータの属性について指示する中継データ指示信号を生成し上記中継装置に送信する、中継データ指示部とを備え、上記中継装置が、上記ネットワーク管理装置から送信された上記中継データ指示信号を取得する指示信号取得部と、上記中継データ指示信号に基づいて、上記複数の端末から送信されたデータのうち、上記複数の宛先装置の各々について中継すべきデータを識別し統合する、データ統合部と、上記統合されたデータを上記複数の宛先装置の各々に送信する、中継データ送信制御部とを備えるようにしたものである。
 この発明の第2の態様は、上記第1の態様において、上記ネットワーク管理装置が、上記ネットワークの性能を監視する、ネットワーク性能監視部と、上記ネットワークの性能の監視結果に基づいて、前記複数の端末からのデータ送信量および前記中継装置からのデータ送信量の少なくとも一方を制御するための制御信号を生成し上記複数の端末および上記中継装置の少なくとも一方に送信する、送信制御部とをさらに備えるようにしたものである。
 この発明の第3の態様は、データを送信可能な複数の端末、上記複数の端末から送信されたデータに基づいてそれぞれ所定の処理を行う複数の宛先装置、および上記複数の端末と上記複数の宛先装置との間にネットワークを介して配置される中継装置と通信可能なネットワーク管理装置にあって、上記複数の宛先装置から、各宛先装置が必要とするデータに関する要求を受け付ける要求受付部と、上記要求に基づいて、上記複数の宛先装置ごとに中継すべきデータの属性について指示する中継データ指示信号を生成し上記中継装置に送信する、中継データ指示部とを具備するようにしたものである。
 この発明の第4の態様は、データを送信可能な複数の端末と、上記複数の端末から送信されたデータに基づいてそれぞれ所定の処理を行う複数の宛先装置との間にネットワークを介して配置される中継装置にあって、上記複数の宛先装置ごとに中継すべきデータの属性について指示する中継データ指示信号を取得する指示信号取得部と、上記中継データ指示信号に基づいて、上記複数の端末から送信されたデータのうち、上記複数の宛先装置の各々について中継すべきデータを識別し統合する、データ統合部と、上記統合されたデータを上記複数の宛先装置の各々に送信する、中継データ送信制御部とを具備するようにしたものである。
 この発明の第1、第3または第4の態様によれば、複数の端末から送信された多種多様なデータは、いったん、複数の端末と宛先装置との間に配置された中継装置によって取得される。そして、当該中継装置において、ネットワーク管理装置からの指示に応じて、宛先装置ごとにデータが振り分けられ統合されたのち、中継装置から各宛先装置へと統合データとして直接送信される。このため、各宛先装置は、多種多様かつ膨大なデータを蓄積するデータベースの中から特定のデータを検索することなく、必要とするデータを効率的に取得することができる。これにより、宛先装置の処理負荷を大きく低減できるとともに、データを利用する宛先装置内のアプリケーションの応答性を向上させることができる。また、中継装置と宛先装置との間のトラヒックも必要最小限に抑えることができるので、ネットワークの輻輳を低減することができる。
 この発明の第2の態様によれば、ネットワーク管理装置により、中継装置に関連するネットワークの性能が監視され、その監視の結果に応じて、データを送信する端末または中継装置に対して送信量を制御するための制御信号が送信される。したがって、ネットワークの性能の監視の結果、ネットワークまたは中継装置の負荷が増大していると判定されたときには、負荷を軽減するように端末または中継装置からの送信量を制御できるので、ネットワーク全体の輻輳ならびに中継装置自体の処理負荷を柔軟にかつ効果的に軽減することができる。
 すなわちこの発明の各態様によれば、ネットワークの輻輳を軽減しつつ、端末から送信される多種多様なデータを効率的に取得できる、ネットワーク管理技術を提供することができる。
図1は、この発明の一実施形態に係るネットワーク管理システムの全体構成を示す図である。 図2は、この発明の一実施形態に係る管理サーバのハードウェア構成を示すブロック図である。 図3は、この発明の一実施形態に係る管理サーバのソフトウェア構成を示すブロック図である。 図4は、この発明の一実施形態に係る中継サーバのハードウェア構成を示すブロック図である。 図5は、この発明の一実施形態に係る中継サーバのソフトウェア構成を示すブロック図である。 図6は、図1に示したネットワーク管理システムにおける制御信号の流れの一例を示すシーケンス図である。 図7は、図1に示したネットワーク管理システムにおけるデータフローの一例を示す図である。
 以下、図面を参照してこの発明に係わる実施形態を説明する。 
 [第1の実施形態]
 (構成)
 (1)システム
 図1は、この発明の第1の実施形態に係るネットワーク管理システム100の全体構成を示す図である。このシステム100は、通信ネットワークNW1,NW2,NW3を介して互いに通信可能な、データを送信可能な端末としての複数のセンシングデバイスSD1,SD2,SD3,・・・SDn(以下、まとめて「センシングデバイスSD」とも言う)と、宛先装置としての宛先サーバDSV1,DSV2,・・・DSVn(以下、まとめて「宛先サーバDSV」とも言う)と、中継装置としての中継サーバ20と、これらの装置を含むネットワーク全体の管理を担う管理装置としての管理サーバ10とを備えている。
 通信ネットワークNW1,NW2,NW3は、例えばインターネットに代表されるIP(Internet Protocol)網と、このIP網に対しアクセスするための複数のアクセス網とから構成される。アクセス網としては、光ファイバーを使用した有線網はもとより、例えば3Gまたは4G等の規格の下で動作する携帯電話網や、無線LAN(Local Area Network)等が用いられる。なお、通信ネットワークNW1,NW2,NW3は、別個のネットワークである必要はなく、NW1,NW2およびNW3のうちの2つまたは3つが単一のネットワークを構成するものであってもよい。以下、これらの通信ネットワークNW1,NW2,NW3をまとめてネットワークNWと言う。
 データを送信可能な端末としての各センシングデバイスSDは、例えば、複数のセンサ機能を有するIoT関連デバイスであり、製造業、自動車業(自動運転)、農業、医療、ヘルスケア、流通業、金融業、その他のサービス業など、任意の分野において種々のデータを収集するものであってよい。センシングデバイスSDは、収集したデータをネットワークNWを介して中継サーバ20に送信する。センシングデバイスSDはまた、ネットワークNWを介して管理サーバ10によって動作を管理されている。
 宛先サーバDSVは、アプリケーションサーバやデータベースサーバ(例えば、サービス事業者がWeb上で管理運用するサーバを含む)など、センシングデバイスSDによって収集されたデータに基づいて所定の処理を行うものである。宛先サーバDSVは、ネットワークNWを介して中継サーバ20から必要なデータを受信する。宛先サーバDSVはまた、ネットワークNWを介して管理サーバ10によって動作を管理されている。
 中継サーバ20は、例えばサーバコンピュータやパーソナルコンピュータ等からなり、センシングデバイスSDと宛先サーバDSVとの間にネットワークNWを介して配置され、センシングデバイスSDによって収集されたデータを受信し、宛先サーバDSVの各々に中継する働きをする。中継サーバ20はまた、ネットワークNWを介して管理サーバ10によって動作を管理されている。
 この実施形態では、中継サーバ20は、ネットワークNWを介して、センシングデバイスSDから送信されたデータを受信し、管理サーバ10から指示を受信し、当該指示に基づいて、各宛先サーバDSVによって必要とされるデータを識別し、分類し、統合し、記憶したのち、宛先サーバDSVに送信することができる。この実施形態では、データの統合とは、同じデータ生成日時をもつ複数種類のデータを、ZIP等の圧縮技術を用いて1つのアーカイブにまとめることを指す。中継サーバ20はまた、管理サーバ10からの指示に基づいて、統合されたデータに優先順位をつけて宛先サーバDSVへ中継することもできる。例えば、宛先サーバDSVのうち、アプリケーションサーバASVへ優先的に統合データを送信し、データベースサーバDBSVへはネットワークやサーバの負荷に余裕があるときに統合データを送信するなどの優先制御を行うことができる。
 管理サーバ10は、ネットワークNWを介して、センシングデバイスSD、中継サーバ20、および宛先サーバDSVと通信し、それらの動作を管理および制御する。したがって、管理サーバ10の管理対象は、ネットワークNWに限定されない。以下で、管理サーバ10および中継サーバ20の構成についてさらに説明する。
 (2)管理サーバ
 (2-1)ハードウェア構成
 図2は、図1に示した管理サーバ10のハードウェア構成の一例を示すブロック図である。 
 管理サーバ10は、例えばサーバコンピュータやパーソナルコンピュータ等からなり、例えば、CPU(Central Processing Unit)等のハードウェアプロセッサ12Aを有する。そして、このハードウェアプロセッサ12Aに対し、プログラムメモリ12B、データメモリ13、および通信インタフェース11を、バス15を介して接続したものとなっている。
 通信インタフェース11は、ネットワークNWを介して種々の装置との間でデータの送受信を可能にする。通信プロトコルは、ネットワークNWで規定されるプロトコルが使用される。通信インタフェース11は、例えば1つ以上の有線または無線の通信インタフェースを含む。有線インタフェースとしては、例えば有線LANが使用され、また無線インタフェースとしては、例えば無線LANやBluetooth(登録商標)などの小電力無線データ通信規格を採用したインタフェースが使用される。
 プログラムメモリ12Bは、記憶媒体として、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)等の随時書込みおよび読出しが可能な不揮発性メモリと、ROM等の不揮発性メモリとを組み合わせて使用したもので、各種処理を実行するために必要なプログラムが格納されている。
 データメモリ13は、記憶媒体として、例えば、HDDまたはSSD等の随時書込みおよび読出しが可能な不揮発性メモリと、RAM(Random Access Memory)等の揮発性メモリとを組み合わせて使用したもので、各種処理を行う過程で取得および作成されたデータを記憶するために用いられる。
 (2-2)ソフトウェア構成
 図3は、図1に示した管理サーバ10のソフトウェア構成を、図2に示したハードウェア構成と関連付けて示すブロック図である。
 管理サーバ10は、上述のように、ネットワークNWを介して、データを送信可能な端末としてのセンシングデバイスSD1,...SDn、中継サーバ20、ならびに宛先サーバDSVとしてのアプリケーションサーバASV1,...ASVn(まとめて「アプリケーションサーバASV」とも言う)およびデータベースサーバDBSV1,...DBSVn(まとめて「データベースサーバDBSV」とも言う)と通信可能である。上述のように、センシングデバイスSDには多種多様なデバイスが含まれ得る。各アプリケーションサーバASVは、それぞれ1つまたは複数のアプリケーションを含むことができる。同様に、各データベースサーバDBSVは、それぞれ1つまたは複数のデータベースを含むことができる。また、宛先サーバDSVには、アプリケーションサーバASVおよびデータベースサーバDBSV以外にも、センシングデバイスSDによって送信されたデータを活用する種々の装置が含まれ得る。
 データメモリ13の記憶領域は、センシングデバイス情報記憶部131と、デバイス・中継サーバ間NW性能記憶部132と、中継サーバ・アプリケーションサーバ間NW性能記憶部133と、中継サーバ・データベースサーバ間NW性能記憶部134と、中継サーバ情報記憶部135と、アプリケーションサーバ情報記憶部136と、データベースサーバ情報記憶部137とを備える。
 センシングデバイス情報記憶部131は、各センシングデバイスSDに関する情報、例えば、各センシングデバイスSDが生成するデータの種類や送信頻度などの情報を格納するために使用される。
 デバイス・中継サーバ間NW性能記憶部132は、各センシングデバイスSDと中継サーバ20との間のネットワーク性能に関する情報を格納するために使用される。
 中継サーバ・アプリケーションサーバ間NW性能記憶部133は、中継サーバ20とアプリケーションサーバASVとの間のネットワーク性能に関する情報を格納するために使用される。
 中継サーバ・データベースサーバ間NW性能記憶部134は、中継サーバ20とデータベースサーバDBSVとの間のネットワーク性能に関する情報を格納するために使用される。NW性能記憶部132~133は、別個のものである必要はなく、一体の記憶部であってもよい。
 中継サーバ情報記憶部135は、中継サーバ20に関する情報、例えば、中継サーバ20の負荷情報(例えば、中継サーバ20における受信データ量や、センシングデータの一時格納に占有されている記憶領域の割合など)を格納するために使用される。
 アプリケーションサーバ情報記憶部136は、各アプリケーションサーバASVに関する情報、例えば、各アプリケーションサーバASVが必要とするデータに関する情報を格納するために使用される。
 データベースサーバ情報記憶部137は、各データベースサーバDBSVに関する情報、例えば、各データベースサーバDBSVが格納するデータに関する情報を格納するために使用される。
 処理部12は、上記ハードウェアプロセッサ12Aと、上記プログラムメモリ12Bとから構成され、ソフトウェアによる処理機能部として、センシングデバイス管理部121と、ネットワーク性能監視部122と、中継サーバ管理部123と、アプリケーションサーバ管理部124と、データベースサーバ管理部125とを備える。これらの処理機能部は、いずれもプログラムメモリ12Bに格納されたプログラムを、上記ハードウェアプロセッサ12Aに実行させることにより実現される。処理部12は、また、ASIC(Application Specific Integrated Circuit)やFPGA(field-programmable gate array)などの集積回路を含む、他の多様な形式で実現されてもよい。
 センシングデバイス管理部121は、中継サーバ20の配下にあるすべてのセンシングデバイスSDの情報を管理するとともに、中継サーバ管理部123と互いに連携して各センシングデバイスSDから送信されるデータ形式やデータ送信の頻度を調整する機能を有しており、センシングデバイス情報取得部1211と、センシングデータ送信制御部1212とを備える。
 センシングデバイス情報取得部1211は、各センシングデバイスSDの情報を通信インタフェース11を介して取得し、取得した情報をセンシングデバイス情報記憶部131に格納する処理を行う。取得される各センシングデバイスSDの情報としては、例えば、デバイスID、デバイスが生成するデータの種類、データの形式、データの送信頻度などが含まれる。
 センシングデータ送信制御部1212は、センシングデバイスSDに対する制御信号の送信制御部として機能し、各センシングデバイスSDに対し、データの送信頻度および送信するデータの形式などを指示する信号を送信する処理を行う。例えば、中継サーバ20に大量のデータが到着し、中継サーバ20の負荷が一定以上になった場合に、センシングデバイスSDからのデータ送信の頻度を下げたり、データ形式をよりデータサイズの小さいものにすることで、中継サーバ20の負荷を下げることができる。各センシングデバイスSDは、センシングデータ送信制御部1212から指示されたデータの送信頻度とデータの形式に従って、中継サーバ20に対してデータを送信する。
 ネットワーク性能監視部122は、管理サーバ10または中継サーバ20に関連するネットワークの性能を監視するものであり、この実施形態では、各ネットワーク区間の性能情報を把握するために、デバイス・中継サーバ間NW監視部1221と、中継サーバ・アプリケーションサーバ間NW監視部1222と、中継サーバ・データベースサーバ間NW監視部1223とを備える。ネットワーク性能としては、例えば、ネットワークの最大帯域幅や現在の使用率などの性能情報を監視することができる。あるいは、中継サーバ20の受信または送信ポートにおける受信/送信データの単位時間あたりのバイト数(bytes/sec)をネットワーク性能として監視してもよい。ネットワーク性能監視部122は、さらに、ネットワークの輻輳を軽減するように各センシングデバイスSDまたは中継サーバ20からの最適な送信頻度を算出し、算出された最適な頻度の値をセンシングデバイス管理部121に通知することもできる。
 デバイス・中継サーバ間NW監視部1221は、各センシングデバイスSDと中継サーバ20との間のネットワーク性能を監視する処理を行う。
 中継サーバ・アプリケーションサーバ間NW監視部1222は、中継サーバ20と各アプリケーションサーバASVとの間のネットワーク性能を監視する処理を行う。
 中継サーバ・データベースサーバ間NW監視部1223は、中継サーバ20と各データベースサーバDBSVとの間のネットワーク性能を監視する処理を行う。
 中継サーバ管理部123は、中継サーバ20の負荷を監視するとともに、中継サーバ20上でデータを統合する方法を管理し、その統合方法について中継サーバ20に指示する処理を行うものであり、中継サーバ負荷監視部1231と、データ統合指示部1232と、中継制御部1233とを備える。
 中継サーバ負荷監視部1231は、中継サーバ20の負荷を監視する処理をするものであり、中継サーバ20の受信データ量やメモリの空き容量を監視するなど、中継サーバ20の負荷を直接監視することができる。あるいは、中継サーバ負荷監視部1231は、ネットワーク性能監視部122による監視結果に基づいて中継サーバ20の負荷を間接的に推定するものであってもよい。中継サーバ負荷監視部1231はさらに、中継サーバ20の負荷が所定のしきい値を超えたか否かを判定することができる。
 データ統合指示部1232は、中継データ指示部として機能し、各宛先サーバDSVからの要求に基づいて、宛先サーバDSVごとに中継すべきデータの属性について中継サーバ20に対して指示する処理を行う。データの属性には、例えば、データの取得日時、データを収集し送信したセンシングデバイスのID、データの種類、データの形式などが含まれる。データ統合指示部1232は、中継サーバ20に対し、宛先サーバDSVごとに中継すべきデータを識別し、振り分け、統合するよう指示する信号を生成して送信する。この実施形態では、データ統合指示部1232は、アプリケーションサーバASVに中継すべきデータ(アプリケーション用のデータ)の統合の方法と、データベースサーバDBSVに中継すべきデータ(データベース用のデータ)の統合の方法を、中継サーバ20に対して指示する処理を行う。例えば、データ統合指示部1232は、中継サーバ20に対し、特定のアプリケーションサーバASV1のために、特定の期間に取得された特定のデータ形式を有するデータを選択して統合するよう指示することができる。
 中継制御部1233は、中継サーバ20に対する制御信号の送信制御部として機能し、各ネットワーク性能および中継サーバ20の負荷の監視結果に基づいて、中継サーバ20から各宛先サーバDSVへの送信(中継)を制御する処理を行う。例えば、中継制御部1233は、ネットワーク性能が低下したと判定されたら、通信量を抑制するため、宛先サーバDSVごとに優先順位を設定し、優先順位の高い宛先サーバには高い送信頻度で、優先順位の低い宛先サーバには低い送信頻度で送信するよう指示する制御信号を生成して、中継サーバ20に送信することができる。
 このように、中継サーバ管理部123は、センシングデバイス管理部121と互いに連携することで、ネットワークおよび中継サーバ20の負荷を調整する機能を有する。例えば、中継サーバ20に大量のデータが到着し、中継サーバ20の負荷が一定以上になった場合に、センシングデバイスSDからのデータ送信頻度を下げたり、データの形式をデータサイズの小さい形式にしたりすることで、中継サーバ20の負荷を下げることができる。
 アプリケーションサーバ管理部124は、宛先サーバDSVのうちアプリケーションサーバASVに含まれる各アプリケーションが、センシングデバイスSDのどのデータを必要としているかを管理する。アプリケーションサーバ管理部124は、例えば、各アプリケーションサーバASVから各アプリケーションが必要とするデータ(またはその属性)に関する要求を要求受付部として受け付け、受け付けた要求に含まれる情報をアプリケーションサーバ情報記憶部136に格納する処理を行う。また、アプリケーションサーバ管理部124は、要求を受け付けた旨を中継サーバ管理部123に通知する処理を行う。なお、アプリケーションサーバ管理部124が管理するアプリケーションサーバASVは、1つであっても複数であってもよい。
 データベースサーバ管理部125は、宛先サーバDSVのうちデータベースサーバDBSVに含まれる各データベースにセンシングデバイスSDのどのデータを蓄積しなければならないかを管理する。データベースサーバ管理部125は、例えば、各データベースサーバDBSVから各データベースに蓄積すべきデータに関する要求を要求受付部として受け付け、受け付けた要求に含まれる情報をデータベースサーバ情報記憶部137に格納する処理を行う。また、データベースサーバ管理部125は、要求を受け付けた旨を中継サーバ管理部123に通知する処理を行う。なお、データベースサーバ管理部125が管理するデータベースサーバDBSVは、1つであっても複数であってもよい。
 (3)中継サーバ
 (3-1)ハードウェア構成
 図4は、図1に示した中継サーバ20のハードウェア構成の一例を示すブロック図である。 
 中継サーバ20は、例えばサーバコンピュータやパーソナルコンピュータ等からなり、例えば、CPU等のハードウェアプロセッサ22Aを有する。そして、このハードウェアプロセッサ22Aに対し、プログラムメモリ22B、データメモリ23、および通信インタフェース21を、バス25を介して接続したものとなっている。
 通信インタフェース21は、ネットワークNWを介して種々の装置との間でデータの送受信を可能にする。通信プロトコルは、ネットワークNWで規定されるプロトコルが使用される。通信インタフェース21は、例えば1つ以上の有線または無線の通信インタフェースを含む。有線インタフェースとしては、例えば有線LANが使用され、また無線インタフェースとしては、例えば無線LANやBluetooth(登録商標)などの小電力無線データ通信規格を採用したインタフェースが使用される。
 プログラムメモリ22Bは、記憶媒体として、例えばHDDやSSD等の随時書込みおよび読出しが可能な不揮発性メモリと、ROM等の不揮発性メモリとを組み合わせて使用したもので、各種処理を実行するために必要なプログラムが格納されている。
 データメモリ23は、記憶媒体として、例えば、HDDまたはSSD等の随時書込みおよび読出しが可能な不揮発性メモリと、RAM等の揮発性メモリとを組み合わせて使用したもので、各種処理を行う過程で取得および作成されたデータを記憶するために用いられる。
 (3-2)ソフトウェア構成
 図5は、図1に示した中継サーバ20のソフトウェア構成を、図4に示したハードウェア構成と関連付けて示すブロック図である。
 中継サーバ20は、上述のように、ネットワークNWを介して、センシングデバイスSD1,...SDn、管理サーバ10、ならびに宛先サーバDSVとしてのアプリケーションサーバASV1,...ASVnおよびデータベースサーバDBSV1,...DBSVnと通信可能である。上述のように、センシングデバイスSDには多種多様なデバイスが含まれ得る。各アプリケーションサーバASVは、それぞれ1つまたは複数のアプリケーションを含むことができる。同様に、各データベースサーバDBSVは、それぞれ1つまたは複数のデータベースを含むことができる。また、宛先サーバDSVには、アプリケーションサーバASVおよびデータベースサーバDBSV以外にも、センシングデバイスSDによって送信されたデータを活用する種々の装置が含まれ得る。
 データメモリ23の記憶領域は、センシングデータ記憶部231と、データ統合指示記憶部232と、中継指示記憶部233とを備える。
 センシングデータ記憶部231は、各センシングデバイスSDから取得されたデータをデバイスIDや時刻情報などとともに格納するために使用される。
 データ統合指示記憶部232は、管理サーバ10から受信した、宛先サーバDSVごとに中継すべきデータの統合に関する指示を格納するために使用される。
 中継指示記憶部233は、管理サーバ10から受信した、中継サーバ20から各宛先サーバDSVへの中継(送信)に関する指示を格納するために使用される。
 処理部22は上記ハードウェアプロセッサ22Aと、上記プログラムメモリ22Bとから構成され、ソフトウェアによる処理機能部として、情報取得部221と、中継データ処理部222とを備える。これらの処理機能部は、いずれもプログラムメモリ22Bに格納されたプログラムを、上記ハードウェアプロセッサ22Aに実行させることにより実現される。処理部22は、また、ASICやFPGAなどの集積回路を含む、他の多様な形式で実現されてもよい。
 情報取得部221は、種々の情報を取得するためのものであり、センシングデータ取得部2211と、データ統合指示取得部2212と、中継指示取得部2213とを備える。
 センシングデータ取得部2211は、各センシングデバイスSDから送信されたデータを通信インタフェース21を介して取得し、センシングデータ記憶部231に格納する処理を行う。
 データ統合指示取得部2212は、管理サーバ10から通信インタフェース21を介して、各宛先サーバDSVに中継すべきデータの統合に関する指示を取得し、データ統合指示記憶部232に格納する処理を行う。
 中継指示取得部2213は、管理サーバ10から通信インタフェース21を介して、中継サーバ20から各宛先サーバDSVへのデータの中継(送信)に関する指示を取得し、中継指示記憶部233に格納する処理を行う。
 中継データ処理部222は、情報取得部221によって取得された種々の情報に基づいて中継データに対して各種の処理を行うものであり、データ統合部2221と、中継データ送信制御部2222とを備える。
 データ統合部2221は、データ統合指示記憶部232に記憶されたデータ統合指示を読み出し、当該指示に基づいて、各宛先サーバDSVがどのような情報を必要としているかを識別する。そして、センシングデータ記憶部231に格納された複数種類のデータの中に各宛先サーバDSVが必要としているデータが含まれる場合には、それらを読み出し、宛先サーバDSVごとに振り分け、統合する処理を行う。統合されたデータは、中継データ送信制御部2222に出力される。あるいは、統合されたデータは、図示しない記憶部にいったん蓄積されてもよい。
 中継データ送信制御部2222は、中継指示記憶部233に記憶された中継指示を読み出し、当該指示に基づいて、各宛先サーバDSVへのデータの中継を制御する処理を行う。例えば、中継データ送信制御部2222は、中継指示に基づいて、宛先サーバDSVごとに指定された送信頻度または送信優先度にしたがって、統合されたデータを各宛先サーバDSVに中継(送信)する。
 各センシングデバイスSDから送信されたデータサイズが大きい場合やセンシングデバイスSDの台数が多い場合、受信したすべてのセンシングデータを高い優先度で中継すれば、ネットワークの輻輳をまねくおそれがある。その場合にも、中継サーバ20からの送信(中継)を制御することによって、例えば、ネットワーク性能に応じて、センシングデバイスSDから送信された複数種類のデータの中から特定のデータのみを高優先で送信したり、特定のデバイスIDを持つデバイスのデータのみを高優先で送信したりすることにより、ネットワークの輻輳を軽減することができる。
 なお、本発明のネットワーク管理システム100は、コンピュータとプログラムによっても実現でき、プログラムを記録媒体に記録することも、ネットワークを通して提供することも可能である。
 (動作)
 次に、以上のように構成されたネットワーク管理システム100の各装置による情報処理動作を説明する。図6はその処理手順と処理内容を示すシーケンス図であり、図7は当該システム100内のデータフローを示す図である。
 図6および図7に示したネットワーク管理システム100は、データを送信可能な端末としての複数のセンシングデバイスSDと、宛先装置または宛先サーバとしてのアプリケーションサーバASVおよびデータベースサーバDBSVと、センシングデバイスSDとアプリケーションサーバASVおよびデータベースサーバDBSVとの間に配置された中継サーバ20と、これらと通信可能な管理サーバ10とを含む。図6および図7において、センシングデバイスSDと中継サーバ20の間、中継サーバ20と宛先サーバ(アプリケーションサーバASVおよびデータベースサーバDBSV)の間、ならびにセンシングデバイスSD、中継サーバ20および宛先サーバの各々と管理サーバ10との間に、あらかじめネットワークを介して通信が確立されているものとする。
 各センシングデバイスSDは、この実施形態では、複数種類のデータ(気温、湿度、画像、音声など)を取得可能なセンサ機能をもつデバイスである。これら複数種類のデータは、それぞれデータサイズや取得できる頻度が異なっている。例えば、気温データは小さいサイズのデータであり、1秒ごとに取得することができるが、画像データは大きいサイズのデータであり、1分ごとに取得することができる。この実施形態では、簡単のために、デバイスSD1,...SDnは同じ機能を有し、同じ4つの種類のデータA,データB,データC,データDを生成するものとする。なお、アプリケーションサーバASVおよびデータベースサーバDBSVは、それぞれ、複数拠点に分散していてもよい。
 複数のセンシングデバイスSDは、それぞれ、デバイス識別IDや取得日時を表す情報とともに、あらかじめ設定された送信頻度およびデータ形式で種々のデータを中継サーバ20へと送信する。
 これらのデータは、中継サーバ20により、ステップS101において取得され、センシングデータ記憶部231に記憶される。
 一方、ステップS102において、管理サーバ10は、各宛先サーバDSVから(この実施形態ではアプリケーションサーバASV1,...ASVnおよびデータベースサーバDBSV1,...DBSVnの各々から)、それぞれアプリケーションサーバ管理部124およびデータベースサーバ管理部125の制御の下、必要とするデータに関する要求を受け付けている。アプリケーションサーバ管理部124は、管理下にある各アプリケーションが必要とするデータに関する情報を取得し、アプリケーションサーバ情報記憶部136に格納するとともに、中継サーバ管理部123に通知する。データベースサーバ管理部125は、管理下にある各データベースが格納する必要のあるデータに関する情報を取得し、データベースサーバ情報記憶部137に格納するとともに、中継サーバ管理部123に通知する。
 この実施形態では、図7に示されるように、アプリケーションサーバASV1に含まれるアプリケーション#1の動作に必要なデータは、データA,データB,データC,データDのうち、データAおよびデータBの2種類であり、データベースサーバDBSV1に含まれるデータベース#1にはデータA,データB,データC,データDの4種類が必要である。なお、図6における中継サーバ20によるデータの取得と、管理サーバ10による要求の受付けの順序は、説明の便宜上示したものにすぎず、それぞれ任意のタイミングおよび任意の順序で実施されてよい。
 アプリケーションサーバ管理部124およびデータベースサーバ管理部125を通じて各宛先サーバDSVからの要求を受信した管理サーバ10は、要求に基づいて、中継サーバ管理部123の制御の下、ステップS103において、中継サーバ20に対し、宛先サーバDSVごとに中継すべきデータの統合を指示するデータ統合指示を生成し送信する。例えば、管理サーバ10は、アプリケーション#1向けにはデータAとデータBを統合し、データベース#1向けにはデータA,データB,データC,データDを統合するように、中継サーバにデータ統合指示を送信する。
 このデータ統合指示を受信した中継サーバ20は、データ統合部2221の制御の下、ステップS104において、センシングデバイスSDから送信された複数種類のデータのうち宛先サーバDSVごとに必要なデータをセンシングデータ記憶部231から選択的に読み出し、組み合わせる処理を行う。例えば、中継サーバ20は、アプリケーションサーバASV1に含まれるアプリケーション#1のために、センシングデバイスSDから送信された複数種類のデータの中からデータAとデータBを読み出し、1つのファイルとしてアーカイブ(圧縮)する処理を行う。同様に、中継サーバ20は、データ統合部2221の制御の下、データベースサーバDBSV1に含まれるデータベース#1が必要とするデータA,データB,データC,データDをセンシングデータ記憶部231から選択的に読み出し、1つのファイルとして統合する処理を行う。
 なお、アプリケーションサーバASV1に複数のアプリケーションが含まれる場合、各アプリケーション用にデータを選択して統合し、さらにそれらをアプリケーションサーバASV1用に再統合することも可能である。
 一方、管理サーバ10は、ステップS105において、ネットワーク性能監視部122の制御の下、ネットワークの最大帯域や現在の使用率など、ネットワーク性能の監視を行い、ネットワークに十分な帯域があるかないかを判定する。監視対象のネットワークには、任意のネットワークを含めることができるが、この実施形態では、ステップS105において、便宜上、中継サーバと各宛先サーバDSVとの間のネットワークを監視しているものとする。
 管理サーバ10は、ステップS106において、ネットワーク性能監視部122および中継サーバ管理部123の制御の下、ネットワーク性能の監視結果に基づいて通信経路の負荷を軽減するように中継サーバ20の動作を制御するためのデータ中継指示を生成し、その指示を中継サーバ20に対して送信することができる。例えば、ネットワークに十分な帯域がないと判定された場合、管理サーバ10は、ネットワークの輻輳をまねくことなく中継サーバ20からアプリケーションサーバASVへ優先的にデータを中継させるため、中継サーバ20からデータベースサーバDBSVへ送信するデータの送信頻度を下げるようにとの指示を生成し、中継サーバ20に送信することができる。
 管理サーバ10からデータ中継指示を受信した中継サーバ20は、次いで、ステップS107において、当該指示に従って、各宛先サーバDSVへと統合データを中継(送信)する。例えば、中継サーバ20は、データベースサーバDSBVへの送信頻度を下げ、アプリケーションサーバASVへ優先的にデータを送信する。これにより、ネットワークの輻輳をまねくことなく、効率的にアプリケーションサーバへデータを中継することができる。
 また一方、管理サーバ10は、ステップS108において、各センシングデバイスSDと中継サーバ20との間のネットワーク性能および中継サーバ20の負荷を監視している。例えば、管理サーバ10は、中継サーバ負荷監視部1231の制御の下、中継サーバ20におけるデータ受信量を監視する。
 ネットワーク性能が低下した、または中継サーバ20のデータ受信量が一定のしきい値を超えたと判定された場合、管理サーバ10は、センシングデバイスSDから中継サーバ20への送信量を抑制するための処理を行うことができる。すなわち、管理サーバ10は、ステップS109において、センシングデータ送信制御部1212の制御の下、最適な送信頻度または送信データ形式について指示するデータ送信指示を生成し、各センシングデバイスSDに送信することができる。なお、ステップS108~S109の処理は、図示したタイミングだけに限定されず、任意のタイミングで随時行うことができる。
 管理サーバ10からこのデータ送信指示を受信した各センシングデバイスSDは、指示された送信頻度またはデータ形式に基づいて、引き続き中継サーバ20にデータを送信する。
 なお、上述のように、図6に示した処理は、説明の便宜上、例示的な順序で示したものにすぎない。各処理は、図6の例に限定されず、任意のタイミングで随時実施することができる。
 (効果)
 以上述べたように、第1の実施形態においては、IoTに活用される情報を含むデータをネットワークを介して利用する際に、データを取得するセンシングデバイスSDとデータを利用する宛先サーバDSVとの間に中継サーバ20を配置し、通信経路上で複数種類のデータを統合するようにしている。これにより、多種多様かつ膨大なセンシングデバイスSDからのデータを効率よく収集し、様々なアプリケーションに対して的確かつスケーラブルに送受信するデータ交換を実現することができる。
 すなわち、センシングデバイスSDからのデータを蓄積してアプリケーションに利用するというユースケースにおいて、中継サーバ20上でデータの振分けおよび統合を行うことにより、アプリケーションサーバASVやデータベースサーバDBSVに効率的にデータを中継できるようになる。アプリケーションサーバASVは、自分が必要としているデータのみが中継サーバ20から届くため、データベースに蓄積された大量のデータの中から必要なデータを検索する必要がない。膨大な台数のセンシングデバイスSDからデータが送信される場合でも、中継サーバ20が必要なデータのみを振り分けて中継するので、各アプリケーションは、データを効率的かつ直接的に取得できるようになる。上記第1の実施形態によれば、管理サーバ10は、管理下にあるアプリケーションの種類が増えた場合でも、中継サーバ20上で各アプリケーションに最適なデータ統合を行い、中継サーバ20から各アプリケーションサーバASVに効率的にデータを送信することができる。
 また、センシングデバイスから送信されるデータサイズが大きい場合や、デバイスの台数が多い場合に、データ送信量が大きくなってしまい、センシングデバイスからデータベースまでのネットワーク区間が輻輳するという問題があった。しかし、上記第1の実施形態のように、センシングデバイスSDと宛先サーバDSVとの間に中継サーバ20を設け、中継サーバ20においてセンシングデバイス管理部121と中継サーバ管理部123とを互いに連携させることにより、ネットワーク性能に応じて各センシングデバイスSDから送信されるデータの形式や送信の頻度を調整することができる。例えば、中継サーバ20に大量のデータが到着し、ネットワークまたは中継サーバ20の負荷が一定の閾値を超えた場合に、センシングデバイスSDからのデータ送信頻度を下げたり、データの形式をデータサイズの小さい形式にしたりすることで、各ネットワークおよび中継サーバ20の負荷を軽減することができる。すなわち、上記第1の実施形態では、ネットワーク性能監視部122が各センシングデバイスSDから中継サーバ20までのネットワークの性能をセンシングデバイス管理部121に通知することにより、管理サーバ10は、各センシングデバイスSDから送信されるデータの送信頻度を最適な値に制御できるようになり、ネットワークの輻輳を回避することができる。
 また同様に、ネットワーク性能監視部122が中継サーバ20から各宛先サーバDSVまでのネットワークの性能を中継サーバ管理部123に通知することにより、管理サーバ10は、中継サーバ20から中継(送信)されるデータの送信頻度または送信優先度を最適に制御できるようになり、中継サーバ20と宛先サーバDSVとの間のネットワークの輻輳を回避することができる。さらに、上述のように、中継サーバ20から各宛先サーバDSVへのデータの中継に優先順位を設定することにより、輻輳を回避しつつ、通信リソースの利用効率を向上させることもできる。
 このように、第1の実施形態によれば、多種多様な情報が膨大なセンシングデータとして取得されるIoT環境において、通信経路上で複数の種類のデータを統合することにより、効率的にデータを利用することができる。これにより、多種多様なデータを異なる分野のサービス間で横断的に流通させ活用することができ、IoTにおけるさらなる価値創出をもたらすことが期待される。
 [第2の実施形態]
 この発明の第2の実施形態に係るネットワーク管理システム100は、ネットワーク通信機能を有する自動車の運転支援システムである。なお、第2の実施形態は、第1の実施形態に関して図1~図7を参照して説明したのと同じ構成を採用することができる。以下では、第2の実施形態について、第1の実施形態と同じ符号を使用して説明し、第1の実施形態と重複する詳細な説明は省略する。
 この発明の第2の実施形態に係るネットワーク管理システム100は、一例として以下のように実施することができる。
   センシングデバイスSD:自動車
   NW1:携帯電話網
   NW2,NW3:光ファイバー網
   中継サーバ20:エッジサーバ
   アプリケーションサーバASV1:運転司令機能を有するサーバ
   アプリケーションサーバASV2:(移動物体も記載した)動的地図の作成・配信機能を有するサーバ
   データベースサーバDBSV1:事故/渋滞マップを格納するサーバ
   データベースサーバDBSV2:標識/白線マップを格納するサーバ
 一般に、自動車SDには、GPS受信機やジャイロセンサ、カメラ、LiDAR測距センサなど、複数のセンサが搭載され、自車位置や周囲の状況をセンシングする。また、自動車SDには、通信機能を有する車載器(図示せず)が搭載され、この車載器が、これらのセンサデータを収集するとともに、エンジンの回転数やアクセル開度、ブレーキ圧、ハンドルの操舵角といった車両内部の情報についても、CAN(Controller Area Network)通信パケットをミラーリングして収集する。車載器は、収集したデータを、携帯電話網NW1などを通じて、エッジサーバ20に対して送信する。
 ここで、センサデータの生成頻度は、位置情報が毎秒10回程度、カメラ画像が毎秒24~60フレーム程度、LiDAR点群データが毎秒5~20フレーム程度、とセンサ種別によって異なり、CANパケットの発生頻度は車種や年式によっても異なる。
 データサイズの観点では、カメラ画像やLiDAR点群は数MByteと大きいため、データ送信に時間が掛かる。一方で、CANパケットは数Byteと非常に小さいため、データ送信は短時間で済む。それゆえ、自動車SDにおいて同時刻に取得されたカメラ画像とCANパケットであっても、送達完了時刻にはズレが生じやすい。
 また、宛先サーバDSVによって要求されるデータの取得頻度は、用途により大きく異なる。例えば、運転指令機能の用途では可能な限り高頻度にデータを取得することが望ましい。他方で、動的地図の作成用途では数秒に1回、事故/渋滞マップの更新用途では数分に1回、標識/白線マップの更新用途では数日~数ヶ月に1回のデータ取得で十分である。
 さらに、取得するデータの網羅性についても、全車両からのデータ収集が必要な用途と、内容の重複したデータを排除すべき用途がある。例えば、運転司令機能では全車両からデータを収集することが必須である。一方、動的地図の作成や事故/渋滞マップの更新では、各車両の位置や進行方向などの情報に基づきセンシング範囲が重複しないデータのみを収集すれば十分であり、データ分析処理の負荷軽減の観点からも内容の重複したデータは除外することが望ましい。
 このような複雑な要求に対応するため、従来は、全てのセンサデータを自動車SDから回収してデータベースに蓄積し、各アプリケーションサーバASVは、データベースサーバDBSVに対してSQLクエリを発行して必要なデータを取得していた。このようなアプローチでは、データベースが肥大化してデータ検索に時間が掛かるばかりでなく、生成されたセンサデータ全てが携帯電話網に流れ込むため、走行車両数の時間変動に起因する携帯電話網への負荷変動を制御することができなかった。
 第2の実施形態に係るネットワーク管理システム100では、管理サーバ10のアプリケーションサーバ管理部124は、ステップS102において、第1の実施形態で説明したのと同様に、各アプリケーションサーバASVから各アプリケーションが必要とするデータに関する要求を受け付け、受け付けた要求に含まれる情報をアプリケーションサーバ情報記憶部136に格納する処理を行う。ここで、第2の実施形態では、例えば、運転指令機能を有するアプリケーションサーバASV1は、すべての車両から、可能な限り高頻度に、データを収集することを要求する。一方、動的地図の作成・配信機能を有するアプリケーションサーバASV2は、すべての車両からのデータ収集を必要とせず、各車両の位置や進行方向などの情報に基づきセンシング範囲が重複しないデータのみを数秒に1回程度の頻度で収集することを要求する。
 また、第2の実施形態に係るネットワーク管理システム100では、管理サーバ10のデータベースサーバ管理部125は、ステップS102において、第1の実施形態で説明したのと同様に、各データベースサーバDBSVから各データベースに蓄積すべきデータに関する要求を受け付け、受け付けた要求に含まれる情報をデータベースサーバ情報記憶部137に格納する処理を行う。ここで、第2の実施形態では、例えば、事故/渋滞マップを格納するデータベースサーバDBSV1は、マップ更新のために、数分に1回程度のデータ送信を要求する。一方、標識/白線マップを格納するデータベースサーバDBSV2は、数日~数か月に1回程度のデータ送信を要求し、したがって、自動車SDからエッジサーバ20へのデータ送信は、任意の時間帯に行われることができる。またこれらのデータベースサーバDBSV1およびDBSV2は、全車両からのデータ収集を必要とせず、やはり各車両の位置や進行方向などの情報に基づきセンシング範囲が重複しないデータのみを収集すれば十分である。
 したがって、管理サーバ10は、上記のような要求に応答して、センシングデータ送信制御部1212の制御の下、センシングデバイスとしての自動車SDに対し、必要なデータを必要な頻度またはタイミングで中継サーバ(エッジサーバ)20に送信するよう指示する制御信号を生成し、ステップS109において自動車SDに送信することができる。例えば、管理サーバ10は、センシングデータ送信制御部1212の制御の下、各自動車SDに対して、中継サーバ20に送信すべきデータの種類、中継サーバ20に送信すべき送信頻度、および中継サーバ20に送信すべき時間帯またはタイミングを指示する制御信号を生成し送信することができる。
 このとき、管理サーバ10は、ネットワーク性能監視部122から得られる監視結果をもとに、制御信号における指示の詳細、例えば、データの属性(データサイズやデータ形式など)、送信頻度、送信時間帯、送信タイミング等を調整することが可能である。特に、第2の実施形態に係る管理サーバ10は、デバイス・中継サーバ間NW監視部1221の監視結果に基づいて、携帯電話網としてのネットワークNW1の負荷制御をすべく、各自動車SDに対して制御信号を生成し送信することができる。
 例えば、携帯電話網NW1の負荷が高いと判定された場合、管理サーバ10は、センシングデータ送信制御部1212の制御の下、各自動車SDに対して、データを圧縮してから中継サーバ20に送るよう指示することができ、送信頻度を下げるよう指示することができ、または送信時間帯を深夜時間帯から早朝時間帯に変更するよう指示することができる。あるいは管理サーバ10は、センシングデータ送信制御部1212の制御の下、各自動車SDに対して、画像データは夜間にまとめて送信し、CANパケットは10分おきなどの特定の頻度で送信するなど、データ形式に応じた送信を行うよう指示することもできる。
 制御信号を受信した各自動車SDは、指示にしたがって、例えばサンプリング周波数を変更してデータサイズを調整し、指示されたタイミングで中継サーバ20に送信することができる。各自動車SDはまた、車載器の記憶部にセンシングデータを蓄積しておき、管理サーバ10からの制御信号で指示された時間帯にまとめて送信することができる。
 また、管理サーバ10は、各自動車SDに対して異なる制御信号を送信するように構成されてもよい。例えば、管理サーバ10は、ランダムに抽出された自動車SDに対して、一定時間中継サーバ20への送信を停止するように指示することもできる。この指示を受け取った自動車SDは、指示された期間、センシングデータの送信を停止する。管理サーバ10は、自動車SDに対し、送信停止期間のセンシングデータを破棄するように指示してもよいし、記憶部に蓄積しておいて送信再開時にまとめて送信するように指示してもよい。
(効果)
 第2の実施形態に係る発明によれば、管理サーバ10は、宛先サーバDSVからの要求に応じて必要なデータだけを中継サーバ20に送信するよう各センシングデバイスSDに指示することができる。このように、アプリケーションが必要とする最低限のセンサデータだけを選択的に収集できるので、携帯電話網NW1への負荷を最小限に抑えることができる。また、標識/白線マップの更新に用いる画像などリアルタイム性が重要でないデータに関しては、通信帯域に余裕のある深夜時間帯にまとめて送信することで、携帯電話網NW1の負荷平準化も期待できる。
 また、本発明では、複数のデータを統合してひとかたまりにした上で宛先サーバDSVに送達するため、後段のアプリケーションではデータの待ち合わせ処理を行う必要がなく、これに起因する処理遅延も発生しない。
さらに、本発明のデータ統合機能の副次的な効果として、微小なデータを送信する際のTCP/IP通信のオーバーヘッドを削減し、ネットワークの利用効率を改善することができる。これは、複数のデータをまとめることで、ペイロードを増やしてパケット長を伸ばし、パケット全体に占めるヘッダの割合を低減できるためである。
 [他の実施形態]
 なお、この発明は上記実施形態に限定されるものではない。 
 例えば、上記実施形態においては、中継サーバ20から各宛先サーバDSVへのデータの送信について、宛先サーバDSVごとに送信の優先順位を設定するものとして説明したが、他の観点から優先順位を設定することもできる。例えば、センシングデバイスSDの種類やデバイスIDごとに、センシングデータの種類ごとに、または宛先サーバDSVの種類ごとに優先順位を設定することもできる。優先順位は、あらかじめ定めておくこともでき、動的に調整できるようにしてもよい。あるいは、ネットワーク性能に応じた複数の条件を設定しておき、例えば、トラヒックが一定量を超えるときには優先順位の高い中継だけが実行されるように構成することも可能である。これにより、アプリケーションの応答性の制御やリソースの利用効率の管理を柔軟に行うことができる。
 また、管理サーバ10または中継サーバ20の各部による具体的な処理は、上記実施形態で説明した内容に限定されない。例えば、上記実施形態では、管理サーバ10のネットワーク性能監視部122が、ネットワークが輻輳しないような最適なデータ送信頻度を算出するものとして説明したが、管理サーバ10のセンシングデータ送信制御部1212、中継サーバ負荷監視部1231、中継制御部1233など、他の処理部によって実施されてもよく、これらの組合せによって実施されてもよい。
 また、上記実施形態においては、複数の端末もしくはセンシングデバイスSD、単一の中継装置もしくは中継サーバ20、複数のアプリケーションサーバASV、複数のデータベースサーバDBSV、複数のアプリケーションおよび複数のデータベースが存在するものとして説明したが、これらは単一であっても複数であってもよい。また、管理サーバ10の機能の一部を中継サーバ20に設ける、または中継サーバ20の機能の一部を管理サーバ10に設けることも考えられる。また、中継サーバ20におけるデータの統合は、アプリケーションごと、アプリケーションサーバごと、データベースごと、データベースサーバごとなど、任意の単位で統合するように設計することも可能である。
 さらに、上記実施形態では、センシングデバイスSDから送信されたデータを中継サーバ20が中継する先の宛先サーバDSVとして、アプリケーションサーバASVおよびデータベースサーバDBSVを例示して説明したが、他のサーバまたは装置を含めることもできる。
 その他、センシングデバイスSDおよびセンシングデータの種類等についても、この発明の要旨を逸脱しない範囲で種々変形して実施可能である。
 要するにこの発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態に亘る構成要素を適宜組み合せてもよい。
 (付記)
 上記各実施形態の一部または全部は、特許請求の範囲のほか以下の付記に示すように記載することも可能であるが、これに限られない。 
[C1]
 データを送信可能な複数の端末と、前記複数の端末から送信されたデータに基づいてそれぞれ所定の処理を行う複数の宛先装置と、前記複数の端末と前記複数の宛先装置との間にネットワークを介して配置される中継装置と、前記複数の端末、前記複数の宛先装置、および前記中継装置と通信可能な管理装置とを具備する、ネットワーク管理システムであって、
 前記管理装置は、
  前記複数の宛先装置から、各宛先装置が必要とするデータに関する要求を受け付ける要求受付部と、
  前記要求に基づいて、前記複数の宛先装置ごとに中継すべきデータの属性について指示する中継データ指示信号を生成し前記中継装置に送信する、中継データ指示部と
 を備え、
 前記中継装置は、
  前記管理装置から送信された前記中継データ指示信号を取得する指示信号取得部と、
  前記中継データ指示信号に基づいて、前記複数の端末から送信されたデータのうち、前記複数の宛先装置の各々について中継すべきデータを識別し統合する、データ統合部と、
  前記統合されたデータを前記複数の宛先装置の各々に送信する、中継データ送信制御部とを備える、ネットワーク管理システム。
[C2]
 前記管理装置は、
  前記ネットワークの性能を監視する、ネットワーク性能監視部と、
  前記ネットワークの性能の監視結果に基づいて、前記複数の端末からのデータ送信量および前記中継装置からのデータ送信量の少なくとも一方を制御するための制御信号を生成し前記複数の端末および前記中継装置の少なくとも一方に送信する、送信制御部とをさらに備える、上記C1に記載のネットワーク管理システム。
[C3]
 データを送信可能な複数の端末、前記複数の端末から送信されたデータに基づいてそれぞれ所定の処理を行う複数の宛先装置、および前記複数の端末と前記複数の宛先装置との間にネットワークを介して配置される中継装置と通信可能な管理装置であって、
  前記複数の宛先装置から、各宛先装置が必要とするデータに関する要求を受け付ける要求受付部と、
  前記要求に基づいて、前記複数の宛先装置ごとに中継すべきデータの属性について指示する中継データ指示信号を生成し前記中継装置に送信する、中継データ指示部とを具備する管理装置。
[C4]
 データを送信可能な複数の端末と、前記複数の端末から送信されたデータに基づいてそれぞれ所定の処理を行う複数の宛先装置との間にネットワークを介して配置される中継装置であって、
 前記複数の宛先装置ごとに中継すべきデータについて指示する中継データ指示信号を取得する指示信号取得部と、
 前記中継データ指示信号に基づいて、前記複数の端末から送信されたデータのうち、前記複数の宛先装置の各々について中継すべきデータを識別し統合する、データ統合部と、
 前記統合されたデータを前記複数の宛先装置の各々に送信する、中継データ送信制御部とを具備する中継装置。
[C5]
 データを送信可能な複数の端末、前記複数の端末から送信されたデータに基づいてそれぞれ所定の処理を行う複数の宛先装置、および前記複数の端末と前記複数の宛先装置との間にネットワークを介して配置される中継装置と通信可能な管理装置が実行する方法であって、
  前記管理装置が、前記複数の宛先装置から、各宛先装置が必要とするデータに関する要求を受け付ける過程と、
  前記管理装置が、前記要求に基づいて、前記複数の宛先装置ごとに中継すべきデータの属性について指示する中継データ指示信号を生成し前記中継装置に送信する過程とを備える、方法。
[C6]
 データを送信可能な複数の端末と、前記複数の端末から送信されたデータに基づいてそれぞれ所定の処理を行う複数の宛先装置との間にネットワークを介して配置される中継装置が実行する方法であって、
  前記中継装置が、前記複数の宛先装置ごとに中継すべきデータについて指示する中継データ指示信号を取得する過程と、
  前記中継装置が、前記中継データ指示信号に基づいて、前記複数の端末から送信されたデータのうち、前記複数の宛先装置の各々について中継すべきデータを識別し統合する過程と、
  前記中継装置が、前記統合されたデータを前記複数の宛先装置の各々に送信する過程とを備える、方法。
[C7]
 上記C3に記載の管理装置の各部による処理をプロセッサに実行させるプログラム。
[C8]
 上記C4に記載の中継装置の各部による処理をプロセッサに実行させるプログラム。
[C9]
 前記ネットワークの性能を監視する、ネットワーク性能監視部と、
 前記ネットワークの性能の監視結果に基づいて、前記複数の端末からのデータ送信量および前記中継装置からのデータ送信量の少なくとも一方を制御するための制御信号を生成し前記複数の端末および前記中継装置の少なくとも一方に送信する、送信制御部とをさらに備える、上記C3に記載の管理装置。
[C10]
 前記ネットワークの性能を監視する、ネットワーク性能監視部と、
 前記ネットワークの性能の監視結果に基づいて、前記複数の端末からのデータ送信頻度および前記中継装置からのデータ送信頻度の少なくとも一方を制御するための制御信号を生成し前記複数の端末および前記中継装置の少なくとも一方に送信する、送信制御部とをさらに備える、上記C3に記載の管理装置。
[C11]
 前記複数の宛先装置の各々に対して優先順位を設定し、当該優先順位に応じて前記複数の宛先装置へのデータ送信を制御するよう指示する制御信号を生成し前記中継装置に送信する、送信制御部をさらに備える、上記C3に記載の管理装置。
[C12]
 各宛先装置が必要とするデータに関する前記要求に基づいて、前記複数の端末から前記中継装置に送信すべきデータの種類、前記複数の端末から前記中継装置への送信頻度、および前記複数の端末から前記中継装置への送信時間帯のうちの少なくとも1つを制御するための制御信号を生成し前記複数の端末に送信する、送信制御部をさらに備える、上記C3に記載の管理装置。
[C13]
 データを送信可能な複数の端末(SD)と、前記複数の端末(SD)から送信されたデータに基づいてそれぞれ所定の処理を行う複数の宛先装置(DSV)と、前記複数の端末(SD)と前記複数の宛先装置(DSV)との間にネットワークを介して配置される中継装置(20)と、前記複数の端末(SD)、前記複数の宛先装置(DSV)、および前記中継装置(20)と通信可能な管理装置(10)とを具備する、ネットワーク管理システム(100)であって、
 前記管理装置(10)は、
  前記複数の宛先装置(DSV)から、各宛先装置が必要とするデータに関する要求を受け付けるように構成された、要求受付部(124,125)と、
  前記要求に基づいて、前記複数の宛先装置(DSV)ごとに中継すべきデータの属性について指示する中継データ指示信号を生成し前記中継装置に送信するように構成された、中継データ指示部(1232)と
 を備え、
 前記中継装置(20)は、
  前記管理装置から送信された前記中継データ指示信号を取得するように構成された、指示信号取得部(2212)と、
  前記中継データ指示信号に基づいて、前記複数の端末から送信されたデータのうち、前記複数の宛先装置の各々について中継すべきデータを識別し統合するように構成された、データ統合部(2221)と、
  前記統合されたデータを前記複数の宛先装置の各々に送信するように構成された、中継データ送信制御部(2222)とを備える、
ネットワーク管理システム。
[C14]
 上記C13記載のシステムにおいて使用される管理装置(10)。
[C15]
 前記ネットワークの性能を監視するように構成された、ネットワーク性能監視部(122)と、
 前記ネットワークの性能の監視結果に基づいて、前記複数の端末からのデータ送信量および前記中継装置からのデータ送信量の少なくとも一方を制御するための制御信号を生成し前記複数の端末および前記中継装置の少なくとも一方に送信するように構成された、送信制御部(1212,123)とをさらに備える、上記C14に記載の管理装置(10)。
[C16]
 前記ネットワークの性能を監視するように構成された、ネットワーク性能監視部(122)と、
 前記ネットワークの性能の監視結果に基づいて、前記複数の端末からのデータ送信頻度および前記中継装置からのデータ送信頻度の少なくとも一方を制御するための制御信号を生成し前記複数の端末および前記中継装置の少なくとも一方に送信するように構成された、送信制御部(1212,1233)とをさらに備える、上記C14に記載の管理装置(10)。
[C17]
 前記複数の宛先装置の各々に対して優先順位を設定し、当該優先順位に応じて前記複数の宛先装置へのデータ送信を制御するよう指示する制御信号を生成し前記中継装置に送信するように構成された、送信制御部(1233)をさらに備える、上記C14に記載の管理装置(10)。
[C18]
 各宛先装置が必要とするデータに関する前記要求に基づいて、前記複数の端末から前記中継装置に送信すべきデータの種類、前記複数の端末から前記中継装置への送信頻度、および前記複数の端末から前記中継装置への送信時間帯のうちの少なくとも1つを制御するための制御信号を生成し前記複数の端末に送信するように構成された、送信制御部(1233)をさらに備える、上記C14に記載の管理装置(10)。
[C19]
 上記C13記載のシステムにおいて使用される中継装置(20)。
[C20]
 上記C13記載のシステムの管理装置(10)により実施される方法であって、
  前記管理装置が、前記複数の宛先装置から、各宛先装置が必要とするデータに関する要求を受け付けることと、
  前記管理装置が、前記要求に基づいて、前記複数の宛先装置ごとに中継すべきデータの属性について指示する中継データ指示信号を生成し前記中継装置に送信することとを備える方法。
[C21]
 上記C13記載のシステムの中継装置(20)により実施される方法であって、
  前記中継装置が、前記複数の宛先装置ごとに中継すべきデータについて指示する中継データ指示信号を取得することと、
  前記中継装置が、前記中継データ指示信号に基づいて、前記複数の端末から送信されたデータのうち、前記複数の宛先装置の各々について中継すべきデータを識別し統合することと、
  前記中継装置が、前記統合されたデータを前記複数の宛先装置の各々に送信することとを備える方法。
[C22]
 コンピュータによって実行されたときに、上記C20記載の方法をコンピュータに実行させる命令を備えるプログラム。
[C23]
 コンピュータによって実行されたときに、上記C21記載の方法をコンピュータに実行させる命令を備えるプログラム。
 10…管理サーバ
 11…通信インタフェース
 12…処理部
 12A…ハードウェアプロセッサ
 12B…プログラムメモリ
 13…データメモリ
 15…バス
 20…中継サーバ
 21…通信インタフェース
 22…処理部
 22A…ハードウェアプロセッサ
 22B…プログラムメモリ 23…データメモリ
 25…バス
 100…ネットワーク管理システム
 121…センシングデバイス管理部
 122…ネットワーク性能監視部
 123…中継サーバ管理部
 124…アプリケーションサーバ管理部
 125…データベースサーバ管理部
 131…センシングデバイス情報記憶部
 132…デバイス・中継サーバ間NW性能記憶部
 133…中継サーバ・アプリケーションサーバ間NW性能記憶部
 134…中継サーバ・データベースサーバ間NW性能記憶部
 135…中継サーバ情報記憶部
 136…アプリケーションサーバ情報記憶部
 137…データベースサーバ情報記憶部
 221…情報取得部
 222…中継データ処理部
 231…センシングデータ記憶部
 232…データ統合指示記憶部
 233…中継指示記憶部
 1211…センシングデバイス情報取得部
 1212…センシングデータ送信制御部
 1221…デバイス・中継サーバ間NW監視部
 1222…中継サーバ・アプリケーションサーバ間NW監視部
 1223…中継サーバ・データベースサーバ間NW監視部
 1231…中継サーバ負荷監視部
 1232…データ統合指示部
 1233…中継制御部
 2211…センシングデータ取得部
 2212…データ統合指示取得部
 2213…中継指示取得部
 2221…データ統合部
 2222…中継データ送信制御部

Claims (10)

  1.  データを送信可能な複数の端末、前記複数の端末から送信されたデータに基づいてそれぞれ所定の処理を行う複数の宛先装置、および前記複数の端末と前記複数の宛先装置との間にネットワークを介して配置される中継装置と通信可能な管理装置であって、
     プロセッサと、当該プロセッサに接続されたメモリとを備えており、
     前記プロセッサが、
      前記複数の宛先装置から、各宛先装置が必要とするデータに関する要求を受け付け、前記要求を前記メモリに記憶させ、
      前記メモリに記憶された前記要求に基づいて、前記複数の宛先装置ごとに中継すべきデータの属性について指示する中継データ指示信号を生成し、前記中継装置に送信する、
     ように構成された、管理装置。
  2.  前記プロセッサがさらに、
      前記ネットワークの性能を監視し、
      前記ネットワークの性能の監視結果に基づいて、前記複数の端末からのデータ送信量および前記中継装置からのデータ送信量の少なくとも一方を制御するための制御信号を生成し前記複数の端末および前記中継装置の少なくとも一方に送信する、
     ように構成された、請求項1に記載の管理装置。
  3.  前記プロセッサがさらに、
      前記ネットワークの性能を監視し、
      前記ネットワークの性能の監視結果に基づいて、前記複数の端末からのデータ送信頻度および前記中継装置からのデータ送信頻度の少なくとも一方を制御するための制御信号を生成し前記複数の端末および前記中継装置の少なくとも一方に送信する、
     ように構成された、請求項1に記載の管理装置。
  4.  前記プロセッサがさらに、
      前記複数の宛先装置の各々に対して優先順位を設定し、当該優先順位に応じて前記複数の宛先装置へのデータ送信を制御するよう指示する制御信号を生成し前記中継装置に送信する、
     ように構成された、請求項1に記載の管理装置。
  5.  前記プロセッサがさらに、
      前記メモリに記憶された前記要求に基づいて、前記複数の端末から前記中継装置に送信すべきデータの種類、前記複数の端末から前記中継装置への送信頻度、および前記複数の端末から前記中継装置への送信時間帯のうちの少なくとも1つを制御するための制御信号を生成し、前記複数の端末に送信する、
     ように構成された、請求項1に記載の管理装置。
  6.  データを送信可能な複数の端末と、前記複数の端末から送信されたデータに基づいてそれぞれ所定の処理を行う複数の宛先装置との間にネットワークを介して配置される中継装置であって、
     プロセッサと、当該プロセッサに接続されたメモリとを備えており、
     前記プロセッサが、
      前記複数の宛先装置ごとに中継すべきデータについて指示する中継データ指示信号を取得し、前記中継データ指示信号を前記メモリに記憶させ、
     前記メモリに記憶された前記中継データ指示信号に基づいて、前記複数の端末から送信されたデータのうち、前記複数の宛先装置の各々について中継すべきデータを識別して統合し、
     前記統合されたデータを前記複数の宛先装置の各々に送信する、
     ように構成された、中継装置。
  7.  データを送信可能な複数の端末、前記複数の端末から送信されたデータに基づいてそれぞれ所定の処理を行う複数の宛先装置、および前記複数の端末と前記複数の宛先装置との間にネットワークを介して配置される中継装置と通信可能な、プロセッサおよびメモリを備える管理装置が実行する管理方法であって、
      前記管理装置が、前記複数の宛先装置から、各宛先装置が必要とするデータに関する要求を受け付け、前記要求を前記メモリに記憶させることと、
      前記管理装置が、前記メモリに記憶された前記要求に基づいて、前記複数の宛先装置ごとに中継すべきデータの属性について指示する中継データ指示信号を生成し、前記中継装置に送信することと、
     を備える管理方法。
  8.  データを送信可能な複数の端末と、前記複数の端末から送信されたデータに基づいてそれぞれ所定の処理を行う複数の宛先装置との間にネットワークを介して配置される、プロセッサおよびメモリを備える中継装置が実行する中継方法であって、
      前記中継装置が、前記複数の宛先装置ごとに中継すべきデータについて指示する中継データ指示信号を取得し、前記中継データ指示信号を前記メモリに記憶させることと、
      前記メモリに記憶された前記中継データ指示信号に基づいて、前記複数の端末から送信されたデータのうち、前記複数の宛先装置の各々について中継すべきデータを識別して統合することと、
      前記統合されたデータを前記複数の宛先装置の各々に送信することと、
     を備える中継方法。
  9.  データを送信可能な複数の端末、前記複数の端末から送信されたデータに基づいてそれぞれ所定の処理を行う複数の宛先装置、および前記複数の端末と前記複数の宛先装置との間にネットワークを介して配置される中継装置と通信可能な管理装置における、動作管理のためのプログラムを記憶した非一時的な有形のコンピュータ可読記憶媒体であって、前記プログラムは、
      前記複数の宛先装置から、各宛先装置が必要とするデータに関する要求を受け付けることと、
      前記要求に基づいて、前記複数の宛先装置ごとに中継すべきデータの属性について指示する中継データ指示信号を生成し、前記中継装置に送信することと、
     をプロセッサに実行させるための命令とを備える、コンピュータ可読記憶媒体。
  10.  データを送信可能な複数の端末と、前記複数の端末から送信されたデータに基づいてそれぞれ所定の処理を行う複数の宛先装置との間にネットワークを介して配置される中継装置における、中継動作のためのプログラムを記憶した非一時的な有形のコンピュータ可読記憶媒体であって、前記プログラムは、
    であって、
      前記複数の宛先装置ごとに中継すべきデータについて指示する中継データ指示信号を取得することと、
      前記中継データ指示信号に基づいて、前記複数の端末から送信されたデータのうち、前記複数の宛先装置の各々について中継すべきデータを識別して統合することと、
      前記統合されたデータを前記複数の宛先装置の各々に送信することと、
     をプロセッサに実行させるための命令とを備える、コンピュータ可読記憶媒体。
PCT/JP2019/022719 2018-06-15 2019-06-07 ネットワーク管理システム、管理装置、中継装置、方法およびプログラム WO2019240034A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020525524A JP6962467B2 (ja) 2018-06-15 2019-06-07 ネットワーク管理システム、管理装置、中継装置、方法およびプログラム
EP22180449.5A EP4089979A1 (en) 2018-06-15 2019-06-07 Network management system, management device, relay device, method, and program
US17/252,195 US11477124B2 (en) 2018-06-15 2019-06-07 Network management system, management device, relay device, method, and program
EP19819432.6A EP3809647B1 (en) 2018-06-15 2019-06-07 Network management device, method and program
CN201980037895.7A CN112292839B (zh) 2018-06-15 2019-06-07 网络管理系统、管理装置、中继装置、方法以及程序介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-114719 2018-06-15
JP2018114719 2018-06-15

Publications (1)

Publication Number Publication Date
WO2019240034A1 true WO2019240034A1 (ja) 2019-12-19

Family

ID=68842553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022719 WO2019240034A1 (ja) 2018-06-15 2019-06-07 ネットワーク管理システム、管理装置、中継装置、方法およびプログラム

Country Status (5)

Country Link
US (1) US11477124B2 (ja)
EP (2) EP4089979A1 (ja)
JP (2) JP6962467B2 (ja)
CN (1) CN112292839B (ja)
WO (1) WO2019240034A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021111795A (ja) * 2020-01-06 2021-08-02 富士通株式会社 ネットワークシステム、通信制御装置、および通信制御方法
WO2021186926A1 (ja) * 2020-03-16 2021-09-23 住友電気工業株式会社 スイッチ装置、車載通信システムおよび通信方法
WO2021186925A1 (ja) * 2020-03-16 2021-09-23 住友電気工業株式会社 スイッチ装置、車載通信システムおよび通信方法
WO2022149250A1 (ja) * 2021-01-08 2022-07-14 日本電信電話株式会社 データ収集装置、センサ端末、メタデータ収集システム、メタデータ収集方法、及びプログラム
WO2023067733A1 (ja) * 2021-10-20 2023-04-27 日本電気株式会社 通信制御システム、通信制御装置、及び通信制御方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7010171B2 (ja) * 2018-08-10 2022-01-26 日本電信電話株式会社 保守管理システムおよびデータ処理方法
EP4199439A1 (en) * 2020-08-12 2023-06-21 Toyota Jidosha Kabushiki Kaisha Communication device and communication method
CN116743789A (zh) * 2022-03-03 2023-09-12 腾讯科技(深圳)有限公司 感知数据上报方法、装置及信息生成方法、装置
JP2023172122A (ja) * 2022-05-23 2023-12-06 株式会社メガチップス 通信システム、第1通信装置、第2通信装置、処理システム及び処理装置
CN118714479A (zh) * 2023-03-27 2024-09-27 华为技术有限公司 数据采集频率的确定方法及相关装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006309701A (ja) * 2005-03-28 2006-11-09 Nec Corp 負荷分散振り分けシステム、イベント処理分散制御装置並びにイベント処理分散制御プログラム
JP2008015722A (ja) * 2006-07-05 2008-01-24 Hitachi Electronics Service Co Ltd データ処理システム
JP2010108479A (ja) * 2008-10-03 2010-05-13 Fujitsu Ltd 一意性保証情報設定管理プログラム、アプリケーション・プログラム、負荷分散プログラム、一意性保証実現方法、セッション管理方法、一意性保証情報設定管理装置、及び負荷分散装置

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7418733B2 (en) * 2002-08-26 2008-08-26 International Business Machines Corporation Determining threat level associated with network activity
JP2010109574A (ja) * 2008-10-29 2010-05-13 Mitsubishi Electric Corp ゲートウェイ装置、サーバ装置、中継装置、およびマルチキャスト通信システム
CN102474459B (zh) * 2009-07-24 2016-03-02 雅马哈株式会社 中继装置
US9210622B2 (en) * 2009-08-12 2015-12-08 Qualcomm Incorporated Method and apparatus for relay backhaul design in a wireless communication system
JP5884964B2 (ja) * 2010-10-22 2016-03-15 株式会社リコー 伝送システム、及び伝送方法
WO2012098602A1 (ja) * 2011-01-19 2012-07-26 Necカシオモバイルコミュニケーションズ株式会社 移動通信装置及び通信方法
JP5873278B2 (ja) * 2011-09-26 2016-03-01 任天堂株式会社 情報処理装置、サーバ装置、データ通信システム、データ通信方法、及びデータ通信プログラム
US9507789B2 (en) * 2012-06-11 2016-11-29 Canon Information and Imagin Solutions, Inc. System, relay server apparatus, information processing method and computer-readable medium
JP5436701B1 (ja) * 2012-07-25 2014-03-05 三菱電機株式会社 通信装置及び中継装置
JPWO2014034037A1 (ja) * 2012-08-31 2016-08-08 日本電気株式会社 ルール分配装置、イベント処理システム、ルール分配方法およびルール分配プログラム
JP5865221B2 (ja) * 2012-09-27 2016-02-17 株式会社日立ソリューションズ センサデータ収集システム及びゲートウェイ制御方法
JP2014072703A (ja) * 2012-09-28 2014-04-21 Ricoh Co Ltd 伝送管理システム、伝送システム、伝送管理方法、及びプログラム
JP6047794B2 (ja) * 2013-03-27 2016-12-21 西日本電信電話株式会社 中継装置、中継システム及び中継方法
DE112013007247T5 (de) * 2013-07-16 2016-04-07 Mitsubishi Electric Corporation Vorrichtung zum Übertragen und Empfangen von Nachrichten, automatisches Zählerablesesystem und Verfahren zum Übertragen und Empfangen von Nachrichten
WO2015046539A1 (ja) * 2013-09-30 2015-04-02 日本電気株式会社 中継装置、制御装置、通信システム、監視パケットの処理方法及びトポロジ管理方法
US9551594B1 (en) * 2014-05-13 2017-01-24 Senseware, Inc. Sensor deployment mechanism at a monitored location
US9491051B2 (en) * 2014-05-29 2016-11-08 Cisco Technology, Inc. Centralized adjustment of data rates in mesh networks
CN107535046A (zh) * 2015-02-26 2018-01-02 射频数码公司 射频模块
WO2016203543A1 (ja) * 2015-06-16 2016-12-22 株式会社日立製作所 データ収集装置及び方法
WO2017031623A1 (en) * 2015-08-21 2017-03-02 Nokia Technologies Oy Apparatus, method and computer program product for medium access control in a wireless sensor network
US10187810B1 (en) * 2015-11-16 2019-01-22 Sprint Spectrum L.P. Dynamically prioritizing network traffic
JP6514100B2 (ja) 2015-12-28 2019-05-15 株式会社東芝 通信装置、通信システム及びネットワーク管理方法
JP6613900B2 (ja) * 2016-01-06 2019-12-04 日本電気株式会社 遠隔サーバ、通信システム、及び通信制御方法
US9760376B1 (en) * 2016-02-01 2017-09-12 Sas Institute Inc. Compilation for node device GPU-based parallel processing
EP3417582B1 (en) * 2016-02-18 2020-11-25 NEC Corporation Time-guarded flow rule installation
JP6699220B2 (ja) * 2016-02-22 2020-05-27 株式会社リコー 機器、情報処理システム、機器情報送信方法及びプログラム
US9986411B1 (en) * 2016-03-09 2018-05-29 Senseware, Inc. System, method and apparatus for node selection of a sensor network
WO2017186277A1 (en) * 2016-04-26 2017-11-02 Nec Europe Ltd. Method and system for supporting data upload from a mobile gateway device to a backend entity
US11507064B2 (en) * 2016-05-09 2022-11-22 Strong Force Iot Portfolio 2016, Llc Methods and systems for industrial internet of things data collection in downstream oil and gas environment
US10148346B1 (en) * 2016-08-04 2018-12-04 Sprint Spectrum L.P. Systems and methods for determining a frequency band for wireless backhaul
US20180062935A1 (en) * 2016-08-25 2018-03-01 Futurewei Technologies, Inc. Hybrid approach with classification for name resolution and producer selection in icn
JP2018036991A (ja) * 2016-09-02 2018-03-08 株式会社日立製作所 センサデータ検索システム、センサデータ検索方法及び管理計算機
US10484201B2 (en) * 2016-09-28 2019-11-19 Samsung Electronics Co., Ltd. Distributed platform for robust execution of smart home applications
US10122743B2 (en) * 2016-10-24 2018-11-06 Senrio Inc. Methods and systems for detecting anomalous behavior of network-connected embedded devices
JP2018093343A (ja) * 2016-12-01 2018-06-14 日本電気株式会社 中継装置、情報システム、中継方法及びサーバ
US20190166502A1 (en) * 2017-11-29 2019-05-30 Mojo Networks, LLC. Security monitoring for wireless sensor nodes
US20190036772A1 (en) * 2017-12-28 2019-01-31 Intel Corporation Intelligent wireless configuration for iot devices
JP7035599B2 (ja) * 2018-02-16 2022-03-15 富士フイルムビジネスイノベーション株式会社 情報処理装置及びプログラム
WO2019178158A1 (en) * 2018-03-12 2019-09-19 Zonit Structured Solutions, Llc Management module, z-strip, and mini-ats systems and related components
US10693813B1 (en) * 2019-02-17 2020-06-23 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Enabling and disabling links of a networking switch responsive to compute node fitness
JP7251259B2 (ja) * 2019-03-28 2023-04-04 富士通株式会社 運用管理装置、運用管理システム、および運用管理方法
US20210232472A1 (en) * 2020-01-27 2021-07-29 Hewlett Packard Enterprise Development Lp Low-latency systems to trigger remedial actions in data centers based on telemetry data

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006309701A (ja) * 2005-03-28 2006-11-09 Nec Corp 負荷分散振り分けシステム、イベント処理分散制御装置並びにイベント処理分散制御プログラム
JP2008015722A (ja) * 2006-07-05 2008-01-24 Hitachi Electronics Service Co Ltd データ処理システム
JP2010108479A (ja) * 2008-10-03 2010-05-13 Fujitsu Ltd 一意性保証情報設定管理プログラム、アプリケーション・プログラム、負荷分散プログラム、一意性保証実現方法、セッション管理方法、一意性保証情報設定管理装置、及び負荷分散装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"OneM2M The Interoperability Enabler for The Entire M2M and loT Ecosystem", ONEM2M WHITE PAPER, January 2015 (2015-01-01)
See also references of EP3809647A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021111795A (ja) * 2020-01-06 2021-08-02 富士通株式会社 ネットワークシステム、通信制御装置、および通信制御方法
JP7363486B2 (ja) 2020-01-06 2023-10-18 富士通株式会社 ネットワークシステム、通信制御装置、および通信制御方法
WO2021186926A1 (ja) * 2020-03-16 2021-09-23 住友電気工業株式会社 スイッチ装置、車載通信システムおよび通信方法
WO2021186925A1 (ja) * 2020-03-16 2021-09-23 住友電気工業株式会社 スイッチ装置、車載通信システムおよび通信方法
US11962433B2 (en) 2020-03-16 2024-04-16 Sumitomo Electric Industries, Ltd. Switch device, in-vehicle communication system, and communication method
US12021658B2 (en) 2020-03-16 2024-06-25 Sumitomo Electric Industries, Ltd. Switch device, in-vehicle communication system, and communication method
WO2022149250A1 (ja) * 2021-01-08 2022-07-14 日本電信電話株式会社 データ収集装置、センサ端末、メタデータ収集システム、メタデータ収集方法、及びプログラム
WO2023067733A1 (ja) * 2021-10-20 2023-04-27 日本電気株式会社 通信制御システム、通信制御装置、及び通信制御方法

Also Published As

Publication number Publication date
US20210258258A1 (en) 2021-08-19
US11477124B2 (en) 2022-10-18
EP4089979A1 (en) 2022-11-16
JP6962467B2 (ja) 2021-11-05
CN112292839B (zh) 2024-09-03
JP7205599B2 (ja) 2023-01-17
JPWO2019240034A1 (ja) 2020-12-17
EP3809647B1 (en) 2024-05-08
CN112292839A (zh) 2021-01-29
EP3809647A1 (en) 2021-04-21
EP3809647A4 (en) 2022-03-09
JP2022000999A (ja) 2022-01-04

Similar Documents

Publication Publication Date Title
WO2019240034A1 (ja) ネットワーク管理システム、管理装置、中継装置、方法およびプログラム
US9574887B2 (en) Method of calculating route, and method or device for obtaining route
EP3385852B1 (en) Data flow control apparatus and data flow control method
JPWO2020111133A1 (ja) 交通支援システム、サーバ及び方法、車載装置及びその動作方法、コンピュータプログラム、記録媒体、コンピュータ、並びに半導体集積回路
EP3226647A1 (en) Wireless communication apparatus and wireless communication method
CN103559274B (zh) 车况信息查询方法和装置
US9983017B2 (en) Route calculating method, route acquisition method or terminal for same
JP2009541773A (ja) リアルタイム交通情報に応ずる走行情報提供方法、装置及びその方法を記録した記録媒体
US9638541B2 (en) Method for calculating paths, method for obtaining paths as well as terminal for same
JP2019175089A (ja) センサ提供システム、車載装置、センサ共有サーバ、及びコンピュータプログラム
US10849075B2 (en) Method and device for allocation of transmission power and terminal
JP2012133726A (ja) 車載通信装置および通信方法
JP3553392B2 (ja) 運行管理システム
CN109922458B (zh) 一种基于雾计算的信息采集、计算、传输架构
JP2017228909A (ja) ネットワーク負荷低減システムおよびネットワーク負荷低減方法
JP7000884B2 (ja) データ取得システム、および、サーバ
CN117202100A (zh) 控制装置和方法、存储介质、可移动设备、信息处理装置
JP6456331B2 (ja) 通信端末、通信方法及び通信用プログラム
TWI516147B (zh) Investigation Method of Sensing Network Observation Network Based on Cluster Car
US20220103242A1 (en) Wireless communication system
JP2023034538A (ja) 情報処理装置、情報処理方法、情報処理プログラム及び記録媒体
KR102128609B1 (ko) 5g 기반 소프트웨어 정의 지능형 교통 시스템의 계층적 아키텍처
JP2018077587A (ja) 車載通信装置、情報収集システム、コンピュータプログラム及び通信方法
US10755490B2 (en) Data broker engine for managing data exchanges between on-board and off-board systems
JP6456895B2 (ja) 管理装置、管理方法及び通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19819432

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525524

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019819432

Country of ref document: EP

Effective date: 20210115