WO2019239880A1 - アミドの製造方法 - Google Patents
アミドの製造方法 Download PDFInfo
- Publication number
- WO2019239880A1 WO2019239880A1 PCT/JP2019/021107 JP2019021107W WO2019239880A1 WO 2019239880 A1 WO2019239880 A1 WO 2019239880A1 JP 2019021107 W JP2019021107 W JP 2019021107W WO 2019239880 A1 WO2019239880 A1 WO 2019239880A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- arginine
- amine
- amide
- reaction
- Prior art date
Links
- 0 CC*OC(OC(C(N)O*)=O)=O Chemical compound CC*OC(OC(C(N)O*)=O)=O 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/04—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
- C07K5/06—Dipeptides
- C07K5/06086—Dipeptides with the first amino acid being basic
- C07K5/06095—Arg-amino acid
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C279/00—Derivatives of guanidine, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups
- C07C279/20—Derivatives of guanidine, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups containing any of the groups, X being a hetero atom, Y being any atom, e.g. acylguanidines
- C07C279/24—Y being a hetero atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/06—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents
- C07K1/08—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using activating agents
- C07K1/084—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using activating agents containing nitrogen
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/55—Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups
Definitions
- the present invention relates to a method for producing an amide.
- This application claims the priority based on Japanese Patent Application No. 2018-114782 for which it applied to Japan on June 15, 2018, and uses the content here.
- the carboxyl group of an amino acid is activated and reacted with the amino group of the amino acid, causing a coupling reaction to form an amide bond, and repeating this process sequentially extends the amino acid. .
- Several methods are known as methods for activating the carboxyl group. There are a method of synthesizing a peptide using a condensing agent having a low degree of activation while suppressing isomerization and production of by-products, and a method of synthesizing a peptide in a short time using an activator.
- As a method of activating the carboxyl group using a highly active activator there are an acid chloride method and an acid anhydride method. These acid chloride methods and acid anhydride methods have a simpler structure for the activator compared to the activation method using a condensing agent with a low degree of activation. There are advantages such as less generation of by-products derived from it.
- the acid anhydride method is divided into a symmetric acid anhydride method and a mixed acid anhydride method.
- Non-Patent Documents 1 and 2 disclose a method for synthesizing an amide using a symmetric acid anhydride as an active species of carboxylic acid.
- the symmetric acid anhydride method disclosed in Non-Patent Documents 1 and 2 is A first step of producing a symmetric anhydride by a condensation reaction between carboxylic acids; A second step of performing a coupling reaction between the symmetric anhydride and an amine; It can be said that the method comprises
- Non-Patent Document 3 discloses a method for synthesizing amides using a mixed acid anhydride as an active species of carboxylic acid.
- carboxylic acid and isopropyl chloroformate are mixed with a first micromixer to synthesize a mixed acid anhydride in a short time, and then, immediately, the synthesized mixed acid anhydride is not racemized. It is described that a solution containing a mixed acid anhydride, an amine and a catalyst (base) are mixed with a second micromixer to perform amidation.
- the mixed acid anhydride method disclosed in Non-Patent Document 3 is: A first step of reacting a carboxylic acid with a chloroformate to obtain a mixed acid anhydride; A second step of adding a base to the mixed anhydride to obtain an acylpyridinium species; Performing a coupling reaction of the acylpyridinium species with an amine to obtain an amide; It can be said that the method comprises
- the symmetrical acid anhydride method has a problem that the reaction hardly proceeds when arginine or an arginine derivative is used as an amine. Further, even when the reaction proceeds, there is a problem that side reactions occur with high probability, such as isomerization of the amino acid and generation of ⁇ -lactam.
- the reaction can proceed even when arginine or an arginine derivative is used as the amine.
- problems such as isomerization of the amino acids and generation of ⁇ -lactams that cause side reactions with high probability still remain.
- the present invention has been made in order to solve the above-described problems.
- An object of the present invention is to provide a method for producing an amide which has good efficiency and hardly causes side reactions.
- this invention has the following aspects. (1) reacting an arginine, arginine derivative or arginine analog in which two amino groups or imino groups in the side chain are protected with a protecting group, and a halogenated formate, and then reacting with an amine; Method for producing amide. (2) After reacting arginine, arginine derivative or arginine analog in which two amino groups or imino groups of the side chain are protected with a protecting group, and a halogenated formate, it is reacted with a base and reacted with an amine.
- the method for producing an amide according to (1) comprising the step of: (3) a product obtained by reacting a mixture obtained by mixing arginine, an arginine derivative or arginine analog and a halogenated formate in which two amino groups or imino groups of the side chain are protected with a protecting group; A method for producing an amide, comprising mixing with an amine. (4) a product obtained by reacting a mixture obtained by mixing arginine, an arginine derivative or arginine analog and a halogenated formate in which two amino groups or imino groups of the side chain are protected with a protecting group;
- the method for producing an amide according to (3) which comprises mixing a base and an amine.
- the base is 4-morpholinopyridine, N, N-dimethyl-4-aminopyridine, 4-pyrrolidinopyridine, pyridine, 4-methoxypyridine, imidazole, N-methylimidazole and 1,4-diazabicyclo [2].
- FIG. 1 is a schematic diagram showing a schematic configuration of a flow system reaction apparatus 1.
- arginine an arginine derivative, or an arginine analog in which two amino groups or imino groups in the side chain are protected with a protecting group (hereinafter referred to as “arginine” in the present specification).
- arginine a protecting group
- a halogenated formate followed by reaction with a base and reaction with an amine.
- the method for producing an amide of the embodiment may be a method including mixing a product obtained by reacting a mixture obtained by mixing arginines and a halogenated formate, a base, and an amine.
- the product obtained by reacting the mixture obtained by mixing the arginines and the halogenated formate can contain a mixed acid anhydride.
- the said base may produce
- the term “mixing” as used herein refers to an operation of adding a material such as a raw material to the reaction system. When these materials are mixed in the reaction system, the raw material is changed to a material different from that before the addition. It may be.
- arginines in which two amino groups or imino groups in the side chain are protected with a protecting group are used as a carboxylic acid in amide bond formation.
- the manufacturing method may include the following steps 1 to 3.
- Step 1 A step of reacting an arginine in which two amino groups or imino groups in the side chain are protected with a protecting group and a halogenated formate to obtain a mixed acid anhydride.
- Step 2 A step of obtaining a cationic active species by reacting the mixed acid anhydride obtained in Step 1 with a base.
- Step 3 A step of producing an amide by reacting the cationic active species obtained in Step 2 with an amine.
- reaction of the manufacturing method of the amide which concerns on this invention is not limited to reaction illustrated by each following process.
- Step 1 is a step of obtaining a mixed acid anhydride by reacting an arginine in which two amino groups or imino groups in the side chain are protected with a protecting group and a halogenated formate.
- the arginines preferably have an ⁇ -amino acid skeleton. Moreover, since the amino acid which comprises a peptide or protein normally in a living body is a L type, it is preferable that the said arginines are a L type.
- the arginines may be compounds represented by the following general formula (1).
- R 0a represents a side chain of arginines.
- Arginines may be deprotonated to become carboxylate ions, and can be represented by the following general formula (1i).
- R 0a represents a side chain of arginines.
- the deprotonation of the arginine can be achieved, for example, by placing the arginine in the presence of a low nucleophilic base such as N, N-diisopropylethylamine (DIEA) in the reaction system.
- a low nucleophilic base such as N, N-diisopropylethylamine (DIEA)
- DIEA N, N-diisopropylethylamine
- the presence of a base means, for example, in a solvent to which a base has been added.
- the kind of the base is not particularly limited as long as it allows deprotonation of the arginines in the reaction system.
- R 0a in the formula (1-1) is a group represented by the following formula (R 0a- a) when the arginine is arginine.
- Arginines according to the embodiment are limited to those in which two amino groups or imino groups in the side chain are protected with a protecting group.
- that the functional group is protected means that an atom constituting the functional group is substituted with a protective group.
- Examples of the side chain of arginines in which two amino groups or imino groups are protected with a protecting group include groups represented by the following general formula (R 0a- b).
- Z 1 , Z 2 and Z 3 each independently represent a hydrogen atom or a protecting group, and two or more of Z 1 , Z 2 and Z 3 are protecting groups.
- the protecting group in the group represented by the general formula (R 0a- b) is not particularly limited as long as it has an action of inactivating a reactive functional group.
- Examples of the protecting group in the group represented by the general formula (R 0a- b) include those exemplified as the protecting group described later, and may be exemplified as a protecting group for the amino group described later. Or a sulfonamide-based protecting group. All of the two or more protecting groups for Z 1 , Z 2 and Z 3 may be the same or partially different from each other. From the viewpoint of suppression of side reactions, of the protective group Z 1, Z 2 and Z 3, 2 places of at least Z 1 and Z 2, and more preferably it is protected by a protecting group.
- the arginine derivative or arginine analog in the arginine may be a compound having substantially the same properties as arginine, may be a naturally occurring natural type, or a modification different from the natural type. , Addition, modification of functional group, etc.
- the arginine derivative or arginine analog preferably has, as a side chain, a group represented by the general formula (R 0a- b) which may have a substituent. Examples of the group that may have a substituent include those in which one or more hydrogen atoms of the group represented by the general formula (R 0a- b) are substituted with another group.
- an arginine derivative is a protected amino acid having a functional group protected with a protecting group.
- the protecting group has a function of inactivating a reactive functional group. It is also possible to deprotect the protecting group and return the protected functional group to its pre-protected state.
- that the functional group is protected means that an atom constituting the functional group is substituted with a protective group.
- Examples of the site protected by the protecting group include an amino group and / or a carboxyl group in addition to the side chain exemplified above.
- the functional group of an amino group and a side chain is protected so that reaction of reactive functional groups other than a carboxyl group may be prevented.
- the kind of the protecting group is not particularly limited and can be appropriately selected depending on the kind of the functional group to be protected.
- the protecting group for amino group includes, but is not limited to, carbamate-based, sulfonamide-based, acyl-based, and alkyl-based protecting groups.
- the carbamate-based protecting group includes a 2-benzyloxycarbonyl group (sometimes abbreviated as -Z or -Cbz), a tert-butoxycarbonyl group (sometimes abbreviated as -Boc), allyloxy.
- a carbonyl group (sometimes abbreviated as -Alloc), a 2,2,2-trichloroethoxycarbonyl group (sometimes abbreviated as -Troc), a 2- (trimethylsilyl) ethoxycarbonyl group (-Teoc and 9-fluorenylmethyloxycarbonyl group (may be abbreviated as -Fmoc), p-nitrobenzyloxycarbonyl group (-Z (NO 2 )) And p-biphenylisopropyloxycarbonyl group (sometimes abbreviated as -Bpoc).
- sulfonamide-based protecting group examples include a p-toluenesulfonyl group (sometimes abbreviated as -Ts or -Tos), a 2-nitrobenzenesulfonyl group (sometimes abbreviated as -Ns), 2 , 2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl (sometimes abbreviated as -Pbf), 2,2,5,7,8-pentamethylchroman-6-sulfonyl (-Pmc) And 1,2-dimethylindole-3-sulfonyl (sometimes abbreviated as -MIS).
- a p-toluenesulfonyl group sometimes abbreviated as -Ts or -Tos
- 2-nitrobenzenesulfonyl group sometimes abbreviated as -Ns
- 2 2,4,6,7-pentamethyldihydrobenzofuran-5-sulfony
- Step 1 of the method for producing an amide according to the embodiment is carried out by reacting an arginine represented by the following general formula (1) with a halogenated formate represented by the following general formula (1) ′.
- a mixed acid anhydride represented by the formula (2) is obtained.
- R 0a represents a side chain of arginines
- R 1 represents a hydrogen atom or a hydrocarbon group
- Y represents a halogen atom.
- the hydrocarbon group for R 1 may be an aliphatic hydrocarbon group or an aromatic hydrocarbon group (aryl group).
- the aliphatic hydrocarbon group may be a saturated aliphatic hydrocarbon group (alkyl group), may be an unsaturated aliphatic hydrocarbon group, and is preferably an alkyl group.
- the aliphatic hydrocarbon group may have 1 to 20 carbon atoms or 1 to 15 carbon atoms.
- the alkyl group may be linear, branched or cyclic. When it is cyclic, the alkyl group may be monocyclic or polycyclic.
- the alkyl group may have 1 to 20 carbon atoms, 1 to 10 carbon atoms, or 1 to 5 carbon atoms.
- linear or branched alkyl group examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, and an n-pentyl group.
- the halogen atom of Y is an element belonging to Group 17 in the periodic table such as F, Cl, Br, and I, and Cl or Br is preferable.
- the halogenated formate represented by the general formula (1) ′ is such that the halogen atom of Y is Cl or Br, and the hydrocarbon group of R 1 is It is preferably a branched alkyl group having 1 to 5 carbon atoms, more preferably one or more selected from the group consisting of isopropyl chloroformate, isobutyl chloroformate, isopropyl bromate and isobutyl bromate. .
- the reaction in Step 1 uses a halogenated formate and a reagent (base) such as N-methylmorpholine that activates the halogenated formate, reacts them to activate the halogenated formate, It is also possible to facilitate the reaction.
- the activated halogenated formate is also included in the concept of halogenated formate.
- the reagent for activating the halogenated formate include tertiary amine, 4-methylmorpholine, pyridine, pyridine derivatives, imidazole, imidazole derivatives and 1,4-diazabicyclo [2,2,2] octane.
- the pyridine derivative and the imidazole derivative include those exemplified in Step 2 described later.
- the tertiary amine it is preferable that at least one of the groups bonded to the N atom of the amine is a methyl group. It is more preferable that two of the groups bonded to the N atom of the amine are methyl groups.
- Step 2 is a step of obtaining a cationic active species by reacting the mixed acid anhydride obtained in Step 1 with a base.
- Step 2 of the method for producing an amide according to the embodiment is represented by the following general formula (4) by reacting a mixed acid anhydride represented by the following general formula (2) with a base represented by B.
- a cationic active species is obtained.
- a compound represented by the following general formula (5) is generated as the counter anion of the cationic active species.
- R 0a and R 1 represent the same meaning as R 0a and R 1 in Formula (2)).
- the base in Step 2 reacts with the acid anhydride to generate a cationic active species, and preferably has a high nucleophilicity, such as pyridine, pyridine derivative, imidazole, imidazole derivative and 1,4-diazabicyclo. More preferably, it is one or more selected from the group consisting of [2,2,2] octane.
- the pyridine derivative is not particularly limited as long as one or more hydrogen atoms of pyridine are substituted with other groups and has basic properties, but pyridine and pyridine derivatives are as follows.
- a compound represented by the general formula (3-1) is preferable.
- X 1 represents a hydrogen atom or any group selected from the group represented by the following formulas (a) to (c)).
- R 31 , R 32 , R 33 and R 34 each independently represents an alkyl group.
- R 33 and R 34 may be bonded to each other to form a ring, , One methylene group not directly bonded to R 33 or R 34 may be substituted with an oxygen atom.
- the alkyl group in R 31 , R 32 , R 33 and R 34 may be linear, branched or cyclic. When it is cyclic, the alkyl group may be monocyclic or polycyclic. The alkyl group may have 1 to 20 carbon atoms, 1 to 15 carbon atoms, or 1 to 10 carbon atoms.
- linear or branched alkyl group examples include those exemplified for R 1 above.
- the compound represented by the general formula (3-1) is preferably a compound represented by the following general formula (3-1-1).
- X 1 is any group selected from the group represented by formulas (a) to (c) other than a hydrogen atom
- X 1 is effective as an electron-donating group by bonding to such a position. Tending to tend to improve the nucleophilicity of the N atom of the pyridine ring.
- X 1 represents the same meaning as X 1 in formula (3-1)).
- X 1 is a group represented by the formula (c)
- R 33 and R 34 are bonded to each other to form a ring
- the alkyl group In the case where one methylene group which is not directly bonded to R 33 or R 34 is substituted with an oxygen atom, 4-morpholinopyridine represented by the following formula (3-1-2) is included.
- Preferred examples of the pyridine and pyridine derivative include pyridine, the above 4-morpholinopyridine, N, N-dimethyl-4-aminopyridine, 4-pyrrolidinopyridine and 4-methoxypyridine.
- 4-morpholinopyridine and N, N-dimethyl-4-aminopyridine can be used to increase the synthesis yield of amide per unit time and significantly reduce the formation of side reaction products. It is particularly preferable in that it can be made.
- acylpyridinium species are characterized by high electrophilicity. Therefore, even with a reaction with an amine having a low nucleophilicity, which will be described later, the reaction can proceed at a very high rate, and the generation of side reaction products can be significantly reduced.
- the imidazole derivative is not particularly limited as long as one or more hydrogen atoms of imidazole may be substituted with other groups and has a basic property.
- a compound represented by the general formula (3-2) is preferable.
- R 35 and R 36 are each independently a hydrogen atom or an alkyl group.
- Examples of the alkyl group for R 35 and R 36 include those exemplified for the alkyl group for R 31 , R 32 , R 33 and R 34 .
- Examples of preferred imidazole and imidazole derivatives include imidazole and N-methylimidazole.
- pyridine derivatives in addition to pyridine, pyridine derivatives, imidazole, and imidazole derivatives, 1,4-diazabicyclo [2,2,2] octane (DABCO) can be exemplified as a preferable example.
- DABCO 1,4-diazabicyclo [2,2,2] octane
- Step 3 is a step of producing an amide by reacting the cationic active species obtained in Step 2 with an amine.
- Step 3 of the method for producing an amide according to the embodiment comprises reacting a cationic active species represented by the following general formula (4) with an amine represented by the following general formula (6) to produce the following general formula ( The amide represented by 7) is obtained.
- R 0a in Formula (4) and Formula (7) represents the same meaning as R 0a in Formula (2) above.
- R 3 and R 4 in Formula (6) and Formula (7) are respectively Independently a hydrogen atom or a monovalent organic group, R 1 in formula (5) represents the same meaning as R 1 in formula (2).
- alkoxide (O ⁇ —R 1 ) and CO 2 may be generated instead of Formula (5).
- the amine is preferably an amino acid or an amino acid derivative.
- the amino acid is preferably an ⁇ -amino acid.
- the amino acid which comprises a peptide or protein in a living body is L type normally, it is preferable that the said amino acid is L type.
- the ⁇ -amino acid may be a compound represented by the following general formula (6-1).
- R 0 represents a side chain of an amino acid.
- the amino acids may be 20 types of amino acids that constitute peptides or proteins in vivo and are encoded as genetic information. These amino acids include alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, valine. Further, the amino acid may be a kind of amino acid that is not encoded as genetic information such as cystine.
- R 0 in the formula (1-1) is “—CH 3 ” when the amino acid is alanine, “—H” when the amino acid is glycine, and “ ⁇ ” when valine is used. CH (CH 3 ) 2 ”, and in the case of isoleucine,“ —CH (CH 3 ) CH 2 CH 3 ”.
- —R 3 and —R 4 may be, for example, —H and —CH (R 0 ) COOH.
- the amino acid may not be an ⁇ -amino acid.
- it may be a ⁇ -amino acid such as ⁇ -alanine.
- the amine may be an amino acid derivative.
- An amino acid derivative may be a compound having substantially the same properties as an amino acid, may be a naturally occurring natural type, and is different from the natural type, such as modifications, additions, functional group substitutions, etc. Etc. may be included.
- it can be incorporated into an enzyme using an amino acid as a substrate or can bind to a molecule that binds to an amino acid.
- the amine is arginine or an arginine derivative, it is preferably an arginine in which two amino groups or imino groups in the side chain shown above as carboxylic acid in amide bond formation are protected with a protecting group. .
- amino acid derivatives include amino acids in which one or more hydrogen atoms or groups are substituted with other groups (substituents).
- An example of an amino acid derivative is a protected amino acid having a functional group protected with a protecting group.
- the site protected by the protecting group include one or more sites selected from the group consisting of an amino group, a carboxyl group, and a side chain.
- the functional group contained in the side chain may be protected at one site or two or more sites with a protecting group.
- it is preferable that the carboxyl group and / or the side chain functional group is protected so as to prevent the reaction of a reactive functional group other than the amino group.
- the type of the protecting group is not particularly limited and can be appropriately selected according to the type of the functional group to be protected.
- the carboxyl group may be protected by neutralization to form a salt form, but is usually protected in the form of an ester.
- the esters include, but are not limited to, alkyl esters such as methyl and ethyl, benzyl esters (sometimes abbreviated as Bn or BZl), and the like.
- the method for producing an amide according to the embodiment in Step 3, the cationic active species is reacted with an amine.
- the method for producing an amide of the embodiment has an advantage that the reaction rate does not depend on the nucleophilicity of the amine because the cationic active species has high electrophilicity. Therefore, the method for producing an amide according to the embodiment is suitable for a reaction with an amine having low nucleophilicity.
- an amine having a low nucleophilicity is an amine having a lower nucleophilicity than 18 amino acids obtained by removing valine and isoleucine from 20 amino acids constituting a protein and encoded as genetic information.
- valine, isoleucine, N-alkylated amino acids, or derivatives thereof can be exemplified.
- An N-alkylated amino acid is an amino group in which one or two hydrogen atoms of an amino group bonded to the ⁇ -carbon are substituted with an alkyl group, and one hydrogen atom is substituted with a methyl group.
- -Methyl amino acids are preferred.
- the nucleophilicity of the amine here is, for example, by performing the mixed acid anhydride method under the conditions shown in Example 1, and reacting the mixed acid anhydride produced in Example 1 with the amine for which nucleophilicity is desired. And can be determined from the degree of the reaction efficiency.
- the amount of each compound used in the reactions of Steps 1 to 3 may be appropriately adjusted according to the target reaction in consideration of the types of these compounds.
- the molar equivalent ratio of carboxylic acid to amine in the reaction system (carboxylic acid: amine) may be 10: 1 to 1/10: 1, may be 5: 1 to 1/5: 1, It may be 3: 1 to 1/3: 1.
- an amide can be produced with high efficiency even when a relatively small amount of amine close to an equivalent is reacted with a carboxylic acid.
- the reaction time of each step may be appropriately adjusted according to other conditions such as reaction temperature.
- the reaction time in Step 1 may be 0.5 seconds to 30 minutes, 1 second to 5 minutes, or 3 seconds to 1 minute.
- the reaction time of step 2 and step 3 may be 1 second to 60 minutes, 5 seconds to 30 minutes, 1 minute to 10 minutes, Also good.
- the temperature (reaction temperature) at the time of the reaction in Steps 1 to 3 may be appropriately adjusted according to the type of compound used in Steps 1 to 3.
- the reaction temperature is preferably in the range of 0 to 100 ° C., more preferably in the range of 20 to 50 ° C.
- the reaction of Step 1 to Step 3 may be performed in the presence of a solvent.
- the solvent is not particularly limited, but a solvent that does not interfere with the reaction of the compound is preferable, and a solvent having high solubility of the raw material used in the reaction is preferable.
- N, N-dimethylformamide (DMF), tetrahydrofuran (THF), 1,4-dioxane and the like can be mentioned.
- reaction of Step 1 to Step 3 may further include other compounds not corresponding to the compounds exemplified above in the reaction system as long as the amide formation can be achieved.
- the reactions in Step 1 to Step 3 may be performed separately or simultaneously. From the viewpoint of more effectively suppressing the formation of side reaction products, it is preferable to perform Step 2 and Step 3 simultaneously.
- the presence and structure of the product can be confirmed by measurement of a spectrum obtained by analysis of NMR, IR, mass, etc., elemental analysis, or the like. Further, the product may be purified as necessary, and the purification method can be produced by distillation, extraction, recrystallization, column chromatography or the like.
- the amide can be produced with very high efficiency. Even the acid anhydride obtained in step 1 is in a state of accepting a nucleophilic species (amine) as an active species.
- a cationic active species is further formed in step 2, and an amine is reacted for the first time. Since the cationic active species produced here are significantly more active than the acid anhydride, the reaction can proceed at a very high rate.
- the activity of the cationic active species is high, when the side chain is protected with only one protecting group, the action of protecting the side chain is probably insufficient and the generation of side reactions can be suppressed. It is thought that there was not.
- the method for producing an amide according to an embodiment includes reacting an arginine in which two amino groups or imino groups in the side chain are protected with a protecting group and a halogenated formate, and then reacting with an amine. .
- the method for producing an amide according to the embodiment may be a method including mixing an amine with a product obtained by reacting a mixture obtained by mixing an arginine and a halogenated formate.
- the manufacturing method may include the following step 1 and step 3 ′.
- Step 1 A step of reacting an arginine in which two amino groups or imino groups in the side chain are protected with a protecting group and a halogenated formate to obtain a mixed acid anhydride.
- Step 3 ′ A step of producing an amide by reacting the mixed acid anhydride obtained in Step 1 with an amine.
- step 1 in the second embodiment is common to step 1 in the first embodiment, description thereof is omitted.
- Step 3 ′ is a step of producing an amide by reacting the mixed acid anhydride obtained in Step 1 with an amine.
- Step 3 ′ of the method for producing an amide according to the embodiment is performed by reacting a mixed acid anhydride represented by the following general formula (2) with an amine represented by the following general formula (6).
- the amide represented by (7) is obtained.
- R 0a represents a side chain of arginines
- R 1 represents a hydrocarbon group
- R 3 and R 4 each independently represent a hydrogen atom or a monovalent organic group.
- an amide is produced by reacting a cationic active species with an amine.
- an amide is produced by reacting a mixed acid anhydride with an amine.
- Step 1 and Step 3 ' the reactions of Step 1 to Step 3 described in the first embodiment can be read as Step 1 and Step 3 '.
- the reactions in step 1 and step 3 ' may be performed separately or simultaneously. From the viewpoint of more effectively suppressing the formation of side reaction products, it is preferable to perform Step 1 and Step 3 'simultaneously.
- the production of by-products can be dramatically suppressed, and the amide can be produced with high efficiency.
- the reaction rate of the amide production method of the first embodiment is considered to be faster than that of the amide production method of the second embodiment, side reactions are effectively suppressed in the amide production method of the second embodiment. Therefore, the amide can be produced with much higher efficiency than the conventional method (symmetrical anhydride method).
- a peptide or protein can be synthesized when the amine is an amino acid or an amino acid derivative.
- the method for producing a peptide or protein is included in the method for producing an amide.
- the carboxylic acid includes a polypeptide
- the arginine (carboxylic acid) according to the embodiment includes an arginine (carboxylic acid) located at the C-terminal as a structural unit of the polypeptide.
- the amide production method of the embodiment is suitable as a peptide or protein production method.
- the manufacturing method of the amide of embodiment can be implemented using a flow-type reaction apparatus.
- the flow system reaction apparatus include a flow path for transporting a fluid containing a raw material or an intermediate used in the reaction in the method for producing an amide according to the embodiment, and a mixer for mixing the fluid.
- the reaction in step 3 may be carried out with the amine in the flow reaction apparatus, and the flow reaction apparatus in the step 2 and step 3 may be used.
- the reaction with the base and the reaction with the amine may be carried out in a flow reactor, and the arginine in which two amino groups or imino groups in the side chain in the steps 1 to 3 are protected with a protecting group.
- the reaction may be carried out in a flow system reaction apparatus after reacting the acid with a halogenated formate, then reacting with a base and reacting with an amine.
- the reaction with the amine at least in the step 3 ′ may be carried out in a flow reactor, and the amino groups at the two positions in the side chain in the steps 1 and 3 ′.
- a reaction for reacting with an amine may be carried out in a flow reactor.
- the manufacturing method of the amide of embodiment is not limited to what is implemented using a flow-type reaction apparatus.
- a batch container having a small volume and a high stirring speed can be used.
- the volume of the mixing part of the batch container may be 1 to 100 mL, or 5 to 50 mL.
- FIG. 1 is a schematic diagram showing a schematic configuration of a flow system reaction apparatus 1.
- the flow system reaction apparatus 1 includes a tank 11 that stores a first liquid, a tank 12 that stores a second liquid, and a tank 13 that stores a third liquid.
- the first liquid may contain arginines
- the second liquid may contain a halogenated formate
- the third liquid may contain a base and an amine.
- the first liquid may include a reagent that activates arginines and halogenated formate
- the second liquid may include a halogenated formate
- the third liquid may include a base and an amine.
- the first liquid contains arginine (carboxylic acid) in which two amino groups or imino groups in the side chain are protected with protecting groups, N-methylmorpholine, and DIEA contains
- the second liquid contains isopropyl chloroformate
- the third liquid contains 4-morpholinopyridine and an amine.
- a 3rd liquid can contain an amine.
- the mixture of the first liquid and the second liquid and the third liquid are mixed in the flow reactor.
- the first liquid and the second liquid may be mixed in the flow system reaction apparatus.
- the flow system reaction apparatus 1 includes flow paths f1, f2, f3, f4, and f5 for transporting a fluid.
- the inner diameter of the flow path may be 0.1 to 10 mm, or may be 0.3 to 8 mm.
- the flow system reaction apparatus 1 includes mixers 31 and 32 for mixing fluids.
- the inner diameter of the flow channel inside the mixer may be 0.1 to 10 mm, or 0.3 to 8 mm.
- An example of the mixer is a static mixer that does not have a drive unit.
- a drive part refers to the part which moves with power.
- the inner diameter of the flow path can be a diameter of a flow path inner portion (a portion through which a fluid passes) in a cross section of the flow path in a direction perpendicular to the length direction of the flow path.
- the inner diameter of the flow channel can be the diameter when the shape of the portion in the flow channel is converted into a perfect circle on an area basis.
- the tanks 11, 12, 13, 14, the mixers 31 and 32, and the flow paths f1, f2, f3, f4, and f5 are, for example, formed of resin such as plastic or elastomer, glass material, metal, ceramic, or the like. Yes.
- the tank 11 is connected to the pump 21, and by the operation of the pump 21, the first liquid stored in the tank 11 moves in the flow path f ⁇ b> 1 and flows into the mixer 31.
- the tank 12 is connected to the pump 22, and by the operation of the pump 22, the second liquid stored in the tank 12 moves in the flow path f ⁇ b> 2 and flows into the mixer 31. Then, the first liquid and the second liquid are mixed by the mixer 31 to become the first mixed liquid, and are sent to the flow path f4.
- dehydration condensation occurs between the carboxylic acid contained in the first liquid and the isopropyl chloroformate contained in the second liquid, and a mixed acid anhydride is obtained (Step 1 of the amide production method). .
- the first mixed liquid containing the obtained acid anhydride flows into the mixer 32.
- the tank 13 is connected to the pump 23, and by the operation of the pump 23, the liquid stored in the tank 13 moves in the flow path f3 and flows into the mixer 32, and is mixed with the first mixed liquid.
- a second mixed liquid and sent to the flow path f5.
- the mixed acid anhydride obtained in Step 1 reacts with 4-morpholinopyridine contained in the third liquid to become a cationic active species (Step 2 of the amide production method), Subsequently, the cationic active species obtained and the amine contained in the third liquid react to obtain an amide (Step 3 of the method for producing an amide).
- the second mixed liquid containing the produced amide is stored in the tank 14.
- the area for heat exchange per volume of the reaction solution can be increased.
- the reaction time can be controlled by the flow rate and the length of the flow path. Therefore, it is possible to strictly control the reaction solution, and as a result, it is possible to minimize the progress of unwanted side reactions and improve the yield of the target product.
- the cationic active species obtained in Step 2 has an advantage that even a low-reactivity amine can be reacted because of its high activity, but control of the reaction is important.
- even the mixed acid anhydride obtained in step 1 is sufficiently high in activity, so that control of the reaction is important.
- the chance of collision of the compounds is improved by continuously flowing the liquid through the flow path, the reaction can be advanced with higher efficiency, and the side reaction is also suppressed. It becomes easy.
- the mixed acid anhydride generated in Step 1 can be immediately reacted with 4-morpholinopyridine (base), the time during which the mixed acid anhydride is in an activated state can be shortened, and isomerization and the like can be performed. The probability that a side reaction occurs can be reduced.
- the form in which the liquid is mixed by the mixer is illustrated.
- the flow system of the embodiment does not necessarily include a mixer.
- the amide production method of the embodiment can be carried out by a liquid phase method.
- the peptide (amide) production method that is currently mainstream is a solid phase method, and peptides are synthesized on the solid phase.
- the liquid phase method is suitable for large-scale synthesis and has high reactivity due to the increased degree of molecular freedom.
- the liquid phase method is also effective for a reaction with an amine having low reactivity.
- the five types of compounds to be reacted are stored in three tanks. For example, each of them is stored in five separate tanks and mixed sequentially. Also good.
- the third liquid in the above embodiment it is preferable that 4-morpholinopyridine (base) and the amine are present in the same liquid in advance. That is, step 2 and step 3 may be performed at the same time, which makes it easy to react the highly reactive cationic active species generated in step 2 with the target amine immediately, and the cationic active species are active. It is possible to shorten the time in the crystallization state, and to effectively suppress the formation of unwanted side reaction products.
- the manufacturing method of the amide of 2nd Embodiment can also be implemented similarly using a distribution system reaction apparatus.
- the halogenated formate and the amine are present in the same solution in advance. That is, step 1 and step 3 ′ may be performed at the same time, which makes it easy to immediately react the mixed acid anhydride generated in step 1 with the target amine, and the mixed acid anhydride is in an activated state. It is possible to shorten the time required for the reaction, and to effectively suppress the formation of unwanted side reaction products.
- a coupling reaction between the amino acid used as the carboxylic acid and the amino acid used as the amine was performed.
- a flow-type reaction apparatus composed of a PTFE tube (inner diameter 0.8 mm, outer diameter 1.59 mm) and a T-shaped mixer was used.
- the solution before the reaction was prepared by dividing it into three.
- the first solution was obtained by dissolving Fmoc-Arg (Cbz) 2 —OH, N-methylmorpholine (NMM), and DIEA used as carboxylic acid in 1,4-dioxane.
- the second solution was obtained by dissolving isopropyl chloroformate in 1,4-dioxane.
- the third solution was obtained by dissolving H-MePhe-Ome used as an amine and 4-morpholinopyridine in 1,4-dioxane.
- the respective molar equivalent ratios in the flow reaction system are 1.0 for H-MePhe-OMe, 0.010 for 4-morpholinopyridine, other Fmoc-Arg (Cbz) 2 -OH, N-methylmorpholine, DIEA and isopropyl chloroformate were set to 1.0.
- the first solution and the second solution were mixed with a T-shaped mixer and reacted for 5 seconds in the flow system to obtain a mixed acid anhydride. .
- the reaction solution containing the mixed acid anhydride and the third solution were mixed using a new T-shaped mixer, and the mixture was allowed to react for 30 seconds in a flow system and about 5 minutes after dispensing into a test tube. These reactions were all carried out at 40 ° C., and 20 seconds was set as the time for heat exchange before the solution before each reaction reached the mixer.
- Step 1 of the method for producing amide in Example 1 is shown below.
- R a represents an arginine side chain (in this example, two groups corresponding to Z 1 and Z 2 among the groups represented by the general formula (R 0a- b) are protected with a protecting group Cbz] Represents).
- Step 2 of the method for producing amide in Example 1 is shown below.
- R a is an arginine side chain (in this example, two groups corresponding to Z 1 and Z 2 among the groups represented by the general formula (R 0a- b) are protected with a protecting group Cbz] Represents).
- Step 3 of the method for producing amide in Example 1 is shown below.
- R a represents an arginine side chain (in this example, two groups corresponding to Z 1 and Z 2 among the groups represented by the general formula (R 0a- b) are protected with a protecting group Cbz] represents are), R p represents a phenylalanine side chain.
- the yield of the target product was calculated from the weight of the target product isolated and purified. That is, the amine equivalence ratio was 1.0, and the ratio of amine coupling was calculated from the weight of the isolated dipeptide.
- the target dipeptide had a coupling yield of 85%, of which the ratio of isomerization of the Arg site was 0.5%.
- Example 1 According to the method of Example 1, a high coupling yield of 80% or more was obtained in a short time of 5 minutes, even though the molar equivalent ratio of carboxylic acid to amine was 1: 1. The production rate of the epimer contained in the target product was 1% or less.
- the molar ratios in the flow reactor were 1.0 for H-MePhe-OMe, 0.40 for triphosgene, 3.0 for DIEA, and 2.5 for carboxylic acid.
- the first solution and the second solution are mixed in a T-shaped mixer and reacted for 1 second in the flow system reactor. Got.
- the reaction solution containing the acid anhydride and the third solution were mixed using a new T-shaped mixer, and the mixture was allowed to react for 10 seconds in a flow reactor and about 90 minutes after dispensing into a test tube. All these reactions were carried out at 20 ° C., and 20 seconds was set as the time for heat exchange before the solution before each reaction reached the mixer.
- the target product was isolated by treating the reaction solution with an acid and a base, then using a Biotage auto column, and identifying with 400 MHz H 1 -NMR. Two major compounds could be isolated and one was the target dipeptide (Boc-Arg (NO 2 ) -MePhe-OMe). The coupling yield was 39%, and when the ratio of the isomerization of the Arg site was separated by a chiral column (HPLC), 14.1% was isomerized. The second major compound was ⁇ -lactam, which was a by-product obtained from the acid anhydride state by a primary reaction.
- Example 1 the amide was synthesized by the mixed acid anhydride method, and in Comparative Example 1, the amide was synthesized by the symmetric acid anhydride method, but the acylpyridinium species produced by the mixed acid anhydride method were symmetrical.
- Boc-Arg (NO 2 ) —OH is used as the carboxylic acid even when the mixed acid anhydride method is adopted as in Example 1. When used, it is obvious that many by-products are formed.
- the first solution and the second solution are mixed with a T-shaped mixer, and reacted for 1 second in a flow system reactor to obtain an acid anhydride. It was. Immediately after that, the reaction solution containing the acid anhydride and the third solution were mixed using a new T-shaped mixer, and 10 seconds were conducted at 0 ° C. in a flow reactor, and after about 10 minutes were collected in a test tube. The reaction was performed at room temperature (about 24 ° C.) for 40 minutes. In all these reactions, 20 seconds was set as the time for heat exchange before the solution before each reaction reached the mixer.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Analytical Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
本願は、2018年6月15日に日本に出願された特願2018-114782に基づく優先権を主張し、その内容をここに援用する。
高活性な活性化剤を使って前記カルボキシル基を活性化させる方法として、酸塩化物法や酸無水物法がある。これら酸塩化物法や、酸無水物法は、活性化度の弱い縮合剤を使った活性法と比較して、活性化剤の構造が簡単であるため、単価が安く、更には活性化剤由来の副生成物の生成が少ない等の利点がある。
非特許文献1~2で開示される対称酸無水物法は、
カルボン酸同士の縮合反応による対称酸無水物の生成の第1のステップと、
前記対称酸無水物とアミンとのカップリング反応を行う第2のステップと、
を備える方法ということができる。
非特許文献3には、カルボン酸とクロロギ酸イソプロピルを第1のマイクロミキサーで混合し、混合酸無水物を短時間で合成し、続いて、合成した混合酸無水物がラセミ化しないよう、すぐさま混合酸無水物を含む溶液とアミンおよび触媒(塩基)を第二のマイクロミキサーで混合しアミド化を行うことが記載されている。
非特許文献3で開示される混合酸無水物法は、
カルボン酸とクロロギ酸エステルとを反応させて混合酸無水物を得る第1のステップと、
前記混合酸無水物に塩基を添加してアシルピリジニウム種を得る第2のステップと、
前記アシルピリジニウム種とアミンとのカップリング反応を行い、アミドを得る第3のステップと、
を備える方法ということができる。
(1)側鎖の2箇所のアミノ基又はイミノ基が保護基で保護されたアルギニン、アルギニン誘導体又はアルギニン類縁体と、ハロゲン化ギ酸エステルとを反応させた後に、アミンと反応させることを含む、アミドの製造方法。
(2)側鎖の2箇所のアミノ基又はイミノ基が保護基で保護されたアルギニン、アルギニン誘導体又はアルギニン類縁体と、ハロゲン化ギ酸エステルとを反応させた後に、塩基と反応させ、アミンと反応させることを含む、前記(1)に記載のアミドの製造方法。
(3)側鎖の2箇所のアミノ基又はイミノ基が保護基で保護されたアルギニン、アルギニン誘導体又はアルギニン類縁体及びハロゲン化ギ酸エステルを混合して得られた混合物を反応させた生成物と、アミンとを混合させることを含む、アミドの製造方法。
(4)側鎖の2箇所のアミノ基又はイミノ基が保護基で保護されたアルギニン、アルギニン誘導体又はアルギニン類縁体及びハロゲン化ギ酸エステルを混合して得られた混合物を反応させた生成物と、塩基と、アミンとを混合させることを含む、前記(3)に記載のアミドの製造方法。
(5)前記塩基が、ピリジン、ピリジン誘導体、イミダゾール、イミダゾール誘導体及び1,4-ジアザビシクロ[2,2,2]オクタンからなる群から選択されるいずれか一種以上である、前記(2)又は(4)に記載のアミドの製造方法。
(6)前記塩基が、4-モルホリノピリジン、N,N-ジメチル-4-アミノピリジン、4-ピロリジノピリジン、ピリジン、4-メトキシピリジン、イミダゾール、N-メチルイミダゾール及び1,4-ジアザビシクロ[2,2,2]オクタンからなる群より選択されるいずれか一種以上である前記(2)又は(4)に記載のアミドの製造方法。
(7)2箇所の前記保護基が、カルバメート系保護基又はスルホンアミド系保護基である、前記(1)~(6)のいずれか一つに記載のアミドの製造方法。
(8)前記ハロゲン化ギ酸エステルが、クロロギ酸イソプロピル、クロロギ酸イソブチル、ブロモギ酸イソプロピル及びブロモギ酸イソブチルからなる群から選択されるいずれか一種以上である、前記(1)~(7)のいずれか一つに記載のアミドの製造方法。
(9)前記アミンが、アミノ酸又はアミノ酸誘導体である、前記(1)~(8)のいずれか一つに記載のアミドの製造方法。
(10)前記アミンの求核性が、タンパク質を構成し遺伝情報としてコードされる20種のアミノ酸からバリン及びイソロイシンを除いた18種のアミノ酸の求核性よりも低い、前記(1)~(9)のいずれか一つに記載のアミドの製造方法。
(11)前記アミンが、バリン、イソロイシン若しくはN-アルキル化されたアミノ酸、又はそれらの誘導体である、前記(9)又は(10)に記載のアミドの製造方法。
(12)前記アミンと反応させることを、流通系反応装置で行う、前記(1)~(11)のいずれか一つに記載のアミドの製造方法。
(13)さらに、側鎖の2箇所のアミノ基又はイミノ基が保護基で保護されたアルギニン、アルギニン誘導体又はアルギニン類縁体と、ハロゲン化ギ酸エステルとを反応させることを、流通系反応装置で行う、前記(12)に記載のアミドの製造方法。
〔第1実施形態〕
実施形態のアミドの製造方法は、側鎖の2箇所のアミノ基又はイミノ基が保護基で保護されたアルギニン、アルギニン誘導体又はアルギニン類縁体(本明細書において、以下、「アルギニン類」ということがある。)と、ハロゲン化ギ酸エステルとを反応させた後に、塩基と反応させ、アミンと反応させることを含むものである。
実施形態のアミドの製造方法は、アルギニン類及びハロゲン化ギ酸エステルを混合して得られた混合物を反応させた生成物と、塩基と、アミンとを混合させることを含む方法であってもよい。ここで、アルギニン類及びハロゲン化ギ酸エステルを混合して得られた混合物を反応させた生成物は、混合酸無水物を含むことができる。
なお、当該塩基は、カチオン性活性種を生成させるものであってよく、塩基(ただし、当該アミンを除く)であってよい。
なお、ここでいう混合とは、反応系に原料等の物質を添加する動作を指すものであり、反応系内でこれらが混合されたときには、原料等が添加前とは別の物質に変化していてもよい。
実施形態のアミドの製造方法では、側鎖の2箇所のアミノ基又はイミノ基が保護基で保護されたアルギニン類をアミド結合形成におけるカルボン酸として用いる。当該製造方法は、以下の工程1~3を含んでいてもよい。
工程1:側鎖の2箇所のアミノ基又はイミノ基が保護基で保護されたアルギニン類と、ハロゲン化ギ酸エステルとを反応させて、混合酸無水物を得る工程。
工程2:前記工程1で得られた前記混合酸無水物と、塩基と、を反応させてカチオン性活性種を得る工程。
工程3:前記工程2で得られた前記カチオン性活性種と、アミンと、を反応させてアミドを製造する工程。
以下、上記の各工程について説明する。なお、本発明に係るアミドの製造方法の反応は、下記の各工程に例示される反応に限定されるものではない。
工程1は、側鎖の2箇所のアミノ基又はイミノ基が保護基で保護されたアルギニン類と、ハロゲン化ギ酸エステルとを反応させて、混合酸無水物を得る工程である。
アルギニンと実質的に同等の性質を有する場合の一例として、アルギニンを基質とする酵素に取り込まれ得る、又はアルギニンと結合する分子と結合し得る場合が挙げられる。
アルギニン誘導体の一例として、官能基が保護基で保護された、保護アミノ酸が挙げられる。保護基は、反応性の官能基を不活性化する作用を有する。保護基を脱保護して、保護された官能基を保護される前の状態に戻すことも可能である。ここで官能基が保護されたとは、前記官能基を構成する原子が、保護基で置換されていることをいう。保護基で保護される部位としては、上記で例示した側鎖の他に、アミノ基及び/又はカルボキシル基が挙げられる。当該工程1においては、カルボキシル基以外の反応性の官能基の反応を防止するよう、アミノ基及び側鎖の官能基が保護されていることが好ましい。
カルバメート系の保護基としては、2-ベンジルオキシカルボニル基(-Z又は-Cbzと略されることがある。)、tert-ブトキシカルボニル基(-Bocと略されることがある。)、アリルオキシカルボニル基(-Allocと略されることがある。)、2,2,2-トリクロロエトキシカルボニル基(-Trocと略されることがある。)、2-(トリメチルシリル)エトキシカルボニル基(-Teocと略されることがある。)、9-フルオレニルメチルオキシカルボニル基(-Fmocと略されることがある。)、p-ニトロベンジルオキシカルボニル基(-Z(NO2)と略されることがある。)、p-ビフェニルイソプロピルオキシカルボニル基(-Bpocと略されることがある。)等が挙げられる。
スルホンアミド系の保護基としては、p-トルエンスルホニル基(-Ts又は-Tosと略されることがある。)や、2-ニトロベンゼンスルホニル基(-Nsと略されることがある。)、2,2,4,6,7-ペンタメチルジヒドロベンゾフラン-5-スルホニル(-Pbfと略されることがある。)、2,2,5,7,8-ペンタメチルクロマン-6-スルホニル(-Pmcと略されることがある。)、1,2-ジメチルインドール-3-スルホニル(-MISと略されることがある。)等が挙げられる。
前記脂肪族炭化水素基は、炭素数が1~20であってもよく、1~15であってもよい。
前記アルキル基は、直鎖状、分岐鎖状及び環状のいずれでもよい。環状である場合、前記アルキル基は、単環状又は多環状のいずれでもよい。前記アルキル基は、炭素数が1~20であってもよく、1~10であってもよく、1~5であってもよい。
工程2は、前記工程1で得られた前記混合酸無水物と、塩基と、を反応させてカチオン性活性種を得る工程である。
実施形態に係るアミドの製造方法の工程2は、下記一般式(2)で表される混合酸無水物と、Bで表される塩基と、を反応させて下記一般式(4)で表されるカチオン性活性種を得るものである。なお、当該反応においては、カチオン性活性種のカウンターアニオンとして、下記一般式(5)で表される化合物が生成される。
工程3は、前記工程2で得られた前記カチオン性活性種と、アミンと、を反応させてアミドを製造する工程である。
実施形態に係るアミドの製造方法の工程3は、下記一般式(4)で表されるカチオン性活性種と、下記一般式(6)で表されるアミンと、を反応させて下記一般式(7)で表されるアミドを得るものである。
なお、上記工程2及び工程3において、式(5)に代えてアルコキシド(O-―R1)及びCO2が生成してもよい。
前記アミノ酸は、前記アミノ酸はα-アミノ酸が好ましい。また、通常、生体内でのペプチド又はタンパク質を構成するアミノ酸がL型であることから、前記アミノ酸はL型であることが好ましい。前記α-アミノ酸は、下記一般式(6-1)で表される化合物であってよい。
例えば、前記式(1-1)中のR0は、前記アミノ酸がアラニンの場合には「-CH3」であり、グリシンの場合には「-H」であり、バリンの場合には「-CH(CH3)2」であり、イソロイシンの場合には「-CH(CH3)CH2CH3」である。他のアミノ酸についても同様である。
前記式(6)がアミノ酸である場合、-R3と-R4は、例えば、-Hと-CH(R0)COOHであってよい。
アミノ酸と実質的に同等の性質を有する場合の一例として、アミノ酸を基質とする酵素に取り込まれ得る、又はアミノ酸と結合する分子と結合し得る場合が挙げられる。
したがって、実施形態のアミドの製造方法は、求核性の低いアミンとの反応に好適である。求核性の低いアミンとは、具体的には、タンパク質を構成し遺伝情報としてコードされる20種のアミノ酸からバリン及びイソロイシンを除いた18種のアミノ酸の求核性よりも低いアミンであってもよく、より具体的には、バリン、イソロイシン若しくはN-アルキル化されたアミノ酸、又はそれらの誘導体を例示できる。N-アルキル化されたアミノ酸とは、α炭素に結合したアミノ基の1又は2つの水素原子がアルキル基に置換されているものであってよく、1つの水素原子がメチル基に置換されたN-メチルアミノ酸が好ましい。これらの求核性の低いアミンは、従来、酸無水物法で合成に用いることが困難であった。しかし、実施形態のアミドの製造方法によれば、従来、酸無水物法で合成に用いることの困難であった求核性の低いアミンであっても使用することができ、係る点においても実施形態のアミドの製造方法は画期的である。
カルボン酸とアミンとの、反応系内のモル当量比(カルボン酸:アミン)は、10:1~1/10:1であってよく、5:1~1/5:1であってよく、3:1~1/3:1であってよい。実施形態のアミドの製造方法によれば、カルボン酸に対して、等当量に近い比較的少量のアミンを反応させた場合であっても、高効率でアミドを製造可能である。
実施形態のアミドの製造方法は、側鎖の2箇所のアミノ基又はイミノ基が保護基で保護されたアルギニン類と、ハロゲン化ギ酸エステルとを反応させた後に、アミンと反応させることを含むものである。実施形態のアミドの製造方法は、アルギニン類及びハロゲン化ギ酸エステルを混合して得られた混合物を反応させた生成物と、アミンとを混合させることを含む方法であってもよい。
当該製造方法は、以下の工程1及び工程3’を含んでいてもよい。
工程1:側鎖の2箇所のアミノ基又はイミノ基が保護基で保護されたアルギニン類と、ハロゲン化ギ酸エステルとを反応させて、混合酸無水物を得る工程。
工程3’:前記工程1で得られた前記混合酸無水物と、アミンと、を反応させてアミドを製造する工程。
以下、上記の各工程について説明する。
第1実施形態と共通する点については以下では説明を省略する。
第2実施形態における工程1は、前記第1実施形態における工程1と共通であるため、説明を省略する。
工程3’は、前記工程1で得られた前記混合酸無水物と、アミンと、を反応させてアミドを製造する工程である。
実施形態に係るアミドの製造方法の工程3’は、下記一般式(2)で表される混合酸無水物と、下記一般式(6)で表されるアミンと、を反応させて下記一般式(7)で表されるアミドを得るものである。
実施形態のアミドの製造方法は、前記アミンが、アミノ酸又はアミノ酸誘導体である場合、ペプチド又はタンパク質を合成できる。ペプチド又はタンパク質の製造方法は、アミドの製造方法に包含される。
上記工程3で得られたアミドを、工程1におけるカルボン酸として用い、工程1~3の後に、さらに工程1~3を繰り返すことで、ポリペプチド鎖を伸長させることができる。
即ち、前記カルボン酸としてはポリペプチドも含まれ、実施形態に係るアルギニン類(カルボン酸)として、ポリペプチドの構成単位としてC末端に位置するアルギニン類(カルボン酸)も含まれる。このように、実施形態のアミドの製造方法は、ペプチド又はタンパク質の製造方法として好適である。
実施形態のアミドの製造方法は、流通系反応装置を使用して実施することができる。流通系反応装置は、実施形態のアミドの製造方法における反応に用いられる原料又は中間体を含む流体を輸送する流路と、該流体を混合するための混合機と、を備えるものを例示できる。
前記第1実施形態を例とすると、流通系反応装置の使用について、例えば、少なくとも前記工程3における、アミンとの反応を流通系反応装置で行うのであってもよく、前記工程2及び工程3における、塩基と反応させ、アミンと反応させる反応を流通系反応装置で行うのであってもよく、前記工程1~3における、側鎖の2箇所のアミノ基又はイミノ基が保護基で保護されたアルギニン類と、ハロゲン化ギ酸エステルとを反応させた後に、塩基と反応させ、アミンと反応させる反応を流通系反応装置で行うのであってもよい。
前記第2実施形態を例とすると、少なくとも前記工程3’における、アミンとの反応を流通系反応装置で行うのであってもよく、前記工程1及び3’における、側鎖の2箇所のアミノ基又はイミノ基が保護基で保護されたアルギニン類と、ハロゲン化ギ酸エステルとを反応させた後に、アミンと反応させる反応を流通系反応装置で行うのであってもよい。
なお、実施形態のアミドの製造方法は、流通系反応装置を使用して実施するものに限定されない。例えば、容積が小さく高速な攪拌速度が得られるバッチ容器を用いてもよい。バッチ容器の混合部の体積は、1~100mLであってもよく、5~50mLであってもよい。
図1は、流通系反応装置1の概略的な構成を示す模式図である。流通系反応装置1は、第1の液を収容するタンク11と、第2の液を収容するタンク12と、第3の液を収容するタンク13とを備える。
一例として、第1の液はアルギニン類を含み、第2の液はハロゲン化ギ酸エステルを含み、第3の液は塩基及びアミンを含むことができる。一例として、第1の液はアルギニン類及びハロゲン化ギ酸エステルを活性化する試薬を含み、第2の液はハロゲン化ギ酸エステルを含み、第3の液は塩基及びアミンを含むことができる。より具体的な一例としては、図1に示すように、第1の液は、側鎖の2箇所のアミノ基又はイミノ基が保護基で保護されたアルギニン(カルボン酸)、N-メチルモルホリン及びDIEAを含み、第2の液はクロロギ酸イソプロピルを含み、第3の液は4-モルホリノピリジン及びアミンを含む。
なお、第2実施形態のアミドの製造方法の場合の例としては、第3の液はアミンを含むことができる。
前記第1実施形態を例とすると、流通系反応装置の使用について、例えば、少なくとも第1の液と第2の液との混合物と、第3の液との混合を流通系反応装置で行うのであってもよく、更には、第1の液と第2の液との混合を流通系反応装置で行うのであってもよい。
上記の流路の内径とは、流路の長さ方向と直角に交わる方向での流路断面における、流路内部分(流体が通る部分)の直径とすることができる。流路内部分の形状が真円形でない場合には、上記の流路の内径とは、上記流路内部分の形状を面積基準で真円換算したときの直径とすることができる。
タンク11,12,13,14、混合機31,32及び流路f1,f2,f3,f4,f5は、一例として、プラスチックやエラストマー等の樹脂や、ガラス材、金属、セラミックなどで形成されている。
実施形態に係る流通系反応装置1によれば、流路を通じて液を連続的に流通させることで化合物の衝突の機会が向上し、より高効率に反応を進めることができ、副反応の抑制も容易となる。例えば、工程1で生じた混合酸無水物を、すぐさま4-モルホリノピリジン(塩基)と反応させることが可能となるので、混合酸無水物が活性化状態でいる時間を短くでき、異性化等の副反応が生じる確率を低減できる。
しかし、上記実施形態の第3の液として示したように、4-モルホリノピリジン(塩基)とアミンとは、あらかじめ同じ液中に存在させることが好ましい。即ち、工程2及び工程3は同時に行ってもよく、これにより、工程2で生じた反応性の高いカチオン性活性種を、すぐさま目的のアミンと反応させることが容易となり、カチオン性活性種が活性化状態でいる時間を短くでき、望まない副反応物の生成を効果的に抑制できる。
カルボン酸として用いたアミノ酸には、アミノ基がFmoc基によって保護され、側鎖の2ヶ所がCbz基で保護されたアルギニンであるFmoc-Arg(Cbz)2-OH(市販品)を用いた。アミンとして用いたアミノ酸には、カルボキシル基がメチル基で保護され、かつアミノ基がメチル化されたフェニルアラニンであるH-MePhe-OMe(市販品)を用いた。
カルボン酸として用いたアミノ酸と、アミンとして用いたアミノ酸とのカップリング反応を行った。カップリング反応は、PTFE製チューブ(内径0.8mm, 外径1.59mm)とT字型ミキサーで構成された流通系反応装置を用いた。反応前の溶液は3つに分けて調整した。第1の溶液は、カルボン酸として用いたFmoc-Arg(Cbz)2-OHと、N-メチルモルホリン(NMM)と、DIEAとを1,4-dioxaneに溶解して得た。第2の溶液は、クロロギ酸イソプロピルを1,4-dioxaneに溶解して得た。第3の溶液は、アミンとして用いたH-MePhe-Omeと、4-モルホリノピリジンとを1,4-dioxaneに溶解して得た。フロー反応系中でのそれぞれのモル当量比はH-MePhe-OMeが1.0に対して、4-モルホリノピリジンが0.010、その他Fmoc-Arg(Cbz)2-OH、N-メチルモルホリン、DIEA、及びクロロギ酸イソプロピルは1.0とした。
目的物は、カラムクロマトグラフィーを用いて単離し、400MHzのH1-NMRにて同定した。
サンプルの調整は以下のように行った。得られたジペプチドの保護基を外した後、ペプチド/アミノ酸誘導体を重水素塩酸中で加水分解し、メチルアルコール中の重水素化物で試料をエステル化し、試薬を蒸発させた後、残留物をトリフルオロ酢酸無水物またはペンタフルオロプロピオン酸無水物を用いてアシル化した。
得られたジペプチドのNMRデータを以下に示す。
1H NMR (400 MHz, CDCl3, major rotamer): δ 9.45 (brs, 1H), 9.24 (brs, 1H), 7.36-7.07 (m, 15H), 5.21-5.11 (m, 6H), 4.45-4.41 (m, 1H), 3.98-3.96 (m, 2H), 3.63 (s, 3H), 3.37-3.32 (m, 1H), 2.99-2.93 (m, 1H), 2.79 (s, 3H), 1.69-1.60 (m, 2H), 1.45-1.39 (m, 10H), 1.12-1.07 (m, 1H).
カルボン酸として用いたアミノ酸には、アミノ基がBoc基によって保護され、アルギニン側鎖がNO2基で保護されたアルギニンであるBoc-Arg(NO2)-OHを用いた。アミンとして用いたアミノ酸には、カルボキシル基がメチル基で保護され、かつアミノ基がメチル化されたフェニルアラニンであるH-MePhe-OMeを用いた。
カルボン酸として用いたアミノ酸と、アミンとして用いたアミノ酸とのカップリング反応を行った。カップリング反応は、PTFE製チューブ(内径0.8mm,外径1.59mm)とT字型ミキサーで構成された流通系反応装置を用いた。反応前の溶液は3つに分けて調整した。第1の溶液は、カルボン酸として用いたBoc-Arg(NO2)-OHと、DIEAとをDMFに溶解して得た。第2の溶液は、トリホスゲンをMeCNに溶解して得た。第3の溶液は、H-MePhe-OMeをMeCNに溶解して得た。流通系反応装置中でのそれぞれのモル濃度の比はH-MePhe-OMeが1.0に対して、トリホスゲンが0.40、DIEAが3.0、カルボン酸は2.5とした。
流通系反応装置中でカップリングを行うために、初めに、第1の溶液と第2の溶液をT字型ミキサーにて混合し、流通系反応装置中で1秒間反応させることで酸無水物を得た。
その後すぐさま酸無水物を含む反応溶液と第3の溶液とを新たなT字型ミキサーを用いて混合し、流通系反応装置中で10秒、試験管に分取後約90分間反応させた。これらの反応は全て20℃で実施し、それぞれの反応前の溶液がミキサーへ到達する前に熱交換を行うための時間として20秒を設定した。各種溶液はシリンジポンプを用いて流出し、各ポンプの流量はそれぞれ、第1の溶液が2.0mL/min、第2の溶液が1.2mL/min、第3の溶液が2.0mL/minとした。
目的物の単離は、反応溶液を酸および塩基で処理を行った後、Biotage製のオートカラムを用いて単離し、400MHzのH1-NMRにて同定した。
2つのメジャーな化合物が単離でき、1つは目的物であるジペプチド(Boc-Arg(NO2)-MePhe-OMe)であった。カップリング収率は39%であり、そのうちArg部位が異性化した割合をキラルカラム(HPLC)で分離したところ、14.1%が異性化していた。2つ目のメジャーな化合物は、δ-ラクタムであり酸無水物の状態から、一次反応によって得られる副生成物であった。トリホスゲンがすべて消費されたと仮定し、酸無水物の生成量を基準とし、δ-ラクタムが生成した割合を求めると46%であった。
結果、カップリングを行うためにカルボン酸を活性化し酸無水物を得たが、カップリングと副反応が競争的に進行した。それにより、約50%の酸無水物が副反応に消費され、結果として、カップリング効率は50%以下となることが確認された。
なお、実施例1では混合酸無水物法によりアミドを合成し、比較例1では対称酸無水物法によりアミドを合成したという違いがあるが、混合酸無水物法で生成するアシルピリジニウム種は対称酸無水物法で生成する対称酸無水物よりも活性が高いため、実施例1と同じく混合酸無水物法を採用した場合であっても、カルボン酸としてBoc-Arg(NO2)-OHを用いた場合には、当然に、多くの副生成物が生じるものと考えられる。
カルボン酸として用いたアミノ酸には、アミノ基がBoc基によって保護され、アルギニン側鎖の2箇所がCbz基で保護されたアルギニンであるBoc-Arg(Cbz)2-OHを用いた。アミンとして用いるアミノ酸には、カルボキシル基がメチル基で保護され、かつアミノ基がメチル化されたフェニルアラニンであるH-MePhe-OMeを用いた。
カルボン酸として用いたアミノ酸と、アミンとして用いたアミノ酸とのカップリング反応を行った。カップリング反応は、PTFE製チューブ(内径0.8mm, 外径1.59mm)とT字型ミキサーで構成された流通系反応装置を用いた。反応前の溶液は3つに分けて調整した。第1の溶液は、カルボン酸として用いたBoc-Arg(Cbz)2-OHと、DIEAとをDMFに溶解して得た。第2の溶液には、トリホスゲンをMeCNに溶解して得た。第3の溶液は、アミンとして用いたH-MePhe-OMeをMeCNに溶解して得た。流通系反応装置中でのそれぞれのモル当量比は、H-MePhe-OMeが1.0に対してトリホスゲンが0.40、DIEAが3.0、カルボン酸として用いたBoc-Arg(Cbz)2-OHは2.5とした。
反応溶液をTLCで展開し分析した結果、原料とは異なるスポットが現れ、生成物を1点確認した。しかしながら反応溶液に対して水を添加すると生成物は分解し原料のスポットが濃くなることを確認した。
結果、生成物は対称酸無水物である可能性が高く、Argの側鎖の2ヶ所に保護基を導入しそれらが対称酸無水物を生成したことから、アミンとのカップリング反応およびδ-ラクタム生成反応における反応点周りが嵩高くなったことにより、通常は不安定な中間体である対称酸無水物の状態で反応が停止したと考えられる。
したがって、比較例2の方法では、アルギニン側鎖への2箇所の保護基の導入によって、副生成物であるδ-ラクタムの生成反応を抑制できたが、カップリング反応は進まず、アミドは製造されなかった。
Claims (13)
- 側鎖の2箇所のアミノ基又はイミノ基が保護基で保護されたアルギニン、アルギニン誘導体又はアルギニン類縁体と、ハロゲン化ギ酸エステルとを反応させた後に、アミンと反応させることを含む、アミドの製造方法。
- 側鎖の2箇所のアミノ基又はイミノ基が保護基で保護されたアルギニン、アルギニン誘導体又はアルギニン類縁体と、ハロゲン化ギ酸エステルとを反応させた後に、塩基と反応させ、アミンと反応させることを含む、請求項1に記載のアミドの製造方法。
- 側鎖の2箇所のアミノ基又はイミノ基が保護基で保護されたアルギニン、アルギニン誘導体又はアルギニン類縁体及びハロゲン化ギ酸エステルを混合して得られた混合物を反応させた生成物と、アミンとを混合させることを含む、アミドの製造方法。
- 側鎖の2箇所のアミノ基又はイミノ基が保護基で保護されたアルギニン、アルギニン誘導体又はアルギニン類縁体及びハロゲン化ギ酸エステルを混合して得られた混合物を反応させた生成物と、塩基と、アミンとを混合させることを含む、請求項3に記載のアミドの製造方法。
- 前記塩基が、ピリジン、ピリジン誘導体、イミダゾール、イミダゾール誘導体及び1,4-ジアザビシクロ[2,2,2]オクタンからなる群から選択されるいずれか一種以上である、請求項2又は4に記載のアミドの製造方法。
- 前記塩基が、4-モルホリノピリジン、N,N-ジメチル-4-アミノピリジン、4-ピロリジノピリジン、ピリジン、4-メトキシピリジン、イミダゾール、N-メチルイミダゾール及び1,4-ジアザビシクロ[2,2,2]オクタンからなる群より選択されるいずれか一種以上である請求項2又は4に記載のアミドの製造方法。
- 2箇所の前記保護基が、カルバメート系保護基又はスルホンアミド系保護基である、請求項1~6のいずれか一項に記載のアミドの製造方法。
- 前記ハロゲン化ギ酸エステルが、クロロギ酸イソプロピル、クロロギ酸イソブチル、ブロモギ酸イソプロピル及びブロモギ酸イソブチルからなる群から選択されるいずれか一種以上である、請求項1~7のいずれか一項に記載のアミドの製造方法。
- 前記アミンが、アミノ酸又はアミノ酸誘導体である、請求項1~8のいずれか一項に記載のアミドの製造方法。
- 前記アミンの求核性が、タンパク質を構成し遺伝情報としてコードされる20種のアミノ酸からバリン及びイソロイシンを除いた18種のアミノ酸の求核性よりも低い、請求項1~9のいずれか一項に記載のアミドの製造方法。
- 前記アミンが、バリン、イソロイシン若しくはN-アルキル化されたアミノ酸、又はそれらの誘導体である、請求項9又は10に記載のアミドの製造方法。
- 前記アミンと反応させることを、流通系反応装置で行う、請求項1~11のいずれか一項に記載のアミドの製造方法。
- さらに、側鎖の2箇所のアミノ基又はイミノ基が保護基で保護されたアルギニン、アルギニン誘導体又はアルギニン類縁体と、ハロゲン化ギ酸エステルとを反応させることを、流通系反応装置で行う、請求項12に記載のアミドの製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980038990.9A CN112262150A (zh) | 2018-06-15 | 2019-05-28 | 酰胺的制备方法 |
EP19820266.5A EP3808759A4 (en) | 2018-06-15 | 2019-05-28 | METHOD FOR PRODUCING AMIDE |
AU2019284746A AU2019284746B2 (en) | 2018-06-15 | 2019-05-28 | Method for producing amide |
JP2020525411A JPWO2019239880A1 (ja) | 2018-06-15 | 2019-05-28 | アミドの製造方法 |
US17/252,053 US20210261610A1 (en) | 2018-06-15 | 2019-05-28 | Method for producing amide |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018114782 | 2018-06-15 | ||
JP2018-114782 | 2018-06-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019239880A1 true WO2019239880A1 (ja) | 2019-12-19 |
Family
ID=68843280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/021107 WO2019239880A1 (ja) | 2018-06-15 | 2019-05-28 | アミドの製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20210261610A1 (ja) |
EP (1) | EP3808759A4 (ja) |
JP (1) | JPWO2019239880A1 (ja) |
CN (1) | CN112262150A (ja) |
AU (1) | AU2019284746B2 (ja) |
WO (1) | WO2019239880A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0262892A (ja) * | 1988-05-09 | 1990-03-02 | Smithkline Beckman Corp | 抗―凝集ペプチド |
JPH08504779A (ja) * | 1992-12-18 | 1996-05-21 | バイエル・アクチエンゲゼルシヤフト | 新規な非環式、硫黄含有ペプチド |
JP2006502128A (ja) * | 2002-07-29 | 2006-01-19 | バイエル・ヘルスケア・アクチェンゲゼルシャフト | 抗菌性エステル−マクロサイクル |
JP2018114782A (ja) | 2017-01-16 | 2018-07-26 | 近畿車輌株式会社 | 乗り物用シートユニット |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1523812A (en) * | 1976-04-08 | 1978-09-06 | Ici Ltd | Polypeptide |
JP2662998B2 (ja) * | 1988-10-21 | 1997-10-15 | 第一製薬株式会社 | プロリン含有ペプチド |
JPH08231586A (ja) * | 1994-12-28 | 1996-09-10 | Ajinomoto Co Inc | α−L−アスパルチルジペプチドアミド誘導体の製造法 |
JP2004345987A (ja) * | 2003-05-21 | 2004-12-09 | Mitsui Chemicals Inc | 保護化ペプチド誘導体の製造方法 |
CN1305895C (zh) * | 2004-01-13 | 2007-03-21 | 兰州凯博生物化学技术有限公司 | 混合酸酐法合成胸腺五肽的方法 |
CN100455593C (zh) * | 2005-04-08 | 2009-01-28 | 重庆华邦制药股份有限公司 | 胸腺五肽合成方法 |
CN102304167B (zh) * | 2011-07-20 | 2013-06-05 | 北京中科亚光生物科技有限公司 | 一种合成含有天冬氨酸-精氨酸及衍生物单元的多肽的新方法 |
HU230584B1 (hu) * | 2014-02-28 | 2017-01-30 | Szegedi Tudományegyetem | Eljárás peptidek előállítására |
-
2019
- 2019-05-28 WO PCT/JP2019/021107 patent/WO2019239880A1/ja active Application Filing
- 2019-05-28 CN CN201980038990.9A patent/CN112262150A/zh active Pending
- 2019-05-28 EP EP19820266.5A patent/EP3808759A4/en not_active Withdrawn
- 2019-05-28 JP JP2020525411A patent/JPWO2019239880A1/ja active Pending
- 2019-05-28 US US17/252,053 patent/US20210261610A1/en not_active Abandoned
- 2019-05-28 AU AU2019284746A patent/AU2019284746B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0262892A (ja) * | 1988-05-09 | 1990-03-02 | Smithkline Beckman Corp | 抗―凝集ペプチド |
JPH08504779A (ja) * | 1992-12-18 | 1996-05-21 | バイエル・アクチエンゲゼルシヤフト | 新規な非環式、硫黄含有ペプチド |
JP2006502128A (ja) * | 2002-07-29 | 2006-01-19 | バイエル・ヘルスケア・アクチェンゲゼルシャフト | 抗菌性エステル−マクロサイクル |
JP2018114782A (ja) | 2017-01-16 | 2018-07-26 | 近畿車輌株式会社 | 乗り物用シートユニット |
Non-Patent Citations (4)
Title |
---|
FUSE, S. ET AL.: "Total synthesis of feglymycin based on a linear/convergent hybrid approach using micro-flow amide bond formation", NATURE COMMUNICATIONS, vol. 10, no. 1038, 28 November 2016 (2016-11-28), pages 1 - 7, XP055662919, DOI: 10.1038/ncomms13491 * |
FUSE, S.MIFUNE, Y.NAKAMURA, H.TANAKA, H.: "Total synthesis of feglymycin based on a linear/convergent hybrid approach using micro-flow amide bond formation", NAT. COMMUN., vol. 7, 2016, pages 13491 |
FUSE, S.MIFUNE, Y.TAKAHASHI, T.: "Efficient Amide Bond Formation through a Rapid and StrongActivation of Carboxylic Acids in a Microflow Reactor", ANGEW CHEM. INT. ED., vol. 53, 2014, pages 851 - 855, XP055580806, DOI: 10.1002/anie.201307987 |
YUMA OTAKEHIROYUKI NAKAMURASHINICHIRO FUSE: "An efficient synthesis of N-methylated peptide using micro-flow methodology", THE 97TH ANNUAL MEETING OF THE CHEMICAL SOCIETY OF JAPAN, 16 March 2017 (2017-03-16), pages 3F4 - 14 |
Also Published As
Publication number | Publication date |
---|---|
AU2019284746B2 (en) | 2023-08-17 |
JPWO2019239880A1 (ja) | 2021-02-12 |
EP3808759A1 (en) | 2021-04-21 |
US20210261610A1 (en) | 2021-08-26 |
CN112262150A (zh) | 2021-01-22 |
AU2019284746A1 (en) | 2021-01-14 |
EP3808759A4 (en) | 2021-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6744669B2 (ja) | 水酸基を配向基とするエステルからアミドへの変換触媒 | |
EP3617185A1 (en) | Method for producing amide compound | |
Alfano et al. | Amide bonds meet flow chemistry: a journey into methodologies and sustainable evolution | |
JP7356707B2 (ja) | アミノ酸-n-カルボン酸無水物の製造方法 | |
Dalidovich et al. | Mechanochemical synthesis of amides with uronium-based coupling reagents: A method for hexa-amidation of biotin [6] uril | |
AU2019415174B2 (en) | Method for producing amide | |
WO2019239880A1 (ja) | アミドの製造方法 | |
Métro et al. | Amino Acids and Peptides in Ball Milling | |
Uspenskaya et al. | Influence of the dipeptide linker configuration on the activity of PSMA ligands | |
WO2019239879A1 (ja) | アミドの製造方法 | |
JPWO2020175023A1 (ja) | アミドの製造方法 | |
WO2024214716A1 (ja) | アミノ酸n-カルボキシ無水物(nca)の製造方法 | |
WO2021132336A1 (ja) | ペプチドの製造方法 | |
Zangana | Synthesis of Amino Acids from Chiral NiII Schiff Base Complexes for Novel Stapled Peptides | |
JP2000219683A (ja) | N―カルバモイル保護基を有する化合物の脱カルバモイル化法、新規無水カルボン酸およびそれらの使用 | |
EP3527580B1 (en) | Continuous, solvent-free and non-enzymatic peptide synthesis by reactive extrusion | |
Kaudela | MASTERARBEIT/MASTER’S THESIS | |
WO2023243720A1 (ja) | シラン含有縮合環ジペプチド化合物の製造方法 | |
WO2014005197A1 (en) | Amino acid analogues and methods for their synthesis | |
Hill | The synthesis of bicyclic guanidino amino acids |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19820266 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020525411 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019284746 Country of ref document: AU Date of ref document: 20190528 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2019820266 Country of ref document: EP |