WO2019239880A1 - アミドの製造方法 - Google Patents

アミドの製造方法 Download PDF

Info

Publication number
WO2019239880A1
WO2019239880A1 PCT/JP2019/021107 JP2019021107W WO2019239880A1 WO 2019239880 A1 WO2019239880 A1 WO 2019239880A1 JP 2019021107 W JP2019021107 W JP 2019021107W WO 2019239880 A1 WO2019239880 A1 WO 2019239880A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
arginine
amine
amide
reaction
Prior art date
Application number
PCT/JP2019/021107
Other languages
English (en)
French (fr)
Inventor
布施 新一郎
中村 浩之
佑磨 小竹
潤一 小川
宮崎 俊一
伊東 篤志
Original Assignee
国立大学法人東京工業大学
横河電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学, 横河電機株式会社 filed Critical 国立大学法人東京工業大学
Priority to CN201980038990.9A priority Critical patent/CN112262150A/zh
Priority to EP19820266.5A priority patent/EP3808759A4/en
Priority to AU2019284746A priority patent/AU2019284746B2/en
Priority to JP2020525411A priority patent/JPWO2019239880A1/ja
Priority to US17/252,053 priority patent/US20210261610A1/en
Publication of WO2019239880A1 publication Critical patent/WO2019239880A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06086Dipeptides with the first amino acid being basic
    • C07K5/06095Arg-amino acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C279/00Derivatives of guanidine, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups
    • C07C279/20Derivatives of guanidine, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups containing any of the groups, X being a hetero atom, Y being any atom, e.g. acylguanidines
    • C07C279/24Y being a hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/06General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents
    • C07K1/08General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using activating agents
    • C07K1/084General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using activating agents containing nitrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a method for producing an amide.
  • This application claims the priority based on Japanese Patent Application No. 2018-114782 for which it applied to Japan on June 15, 2018, and uses the content here.
  • the carboxyl group of an amino acid is activated and reacted with the amino group of the amino acid, causing a coupling reaction to form an amide bond, and repeating this process sequentially extends the amino acid. .
  • Several methods are known as methods for activating the carboxyl group. There are a method of synthesizing a peptide using a condensing agent having a low degree of activation while suppressing isomerization and production of by-products, and a method of synthesizing a peptide in a short time using an activator.
  • As a method of activating the carboxyl group using a highly active activator there are an acid chloride method and an acid anhydride method. These acid chloride methods and acid anhydride methods have a simpler structure for the activator compared to the activation method using a condensing agent with a low degree of activation. There are advantages such as less generation of by-products derived from it.
  • the acid anhydride method is divided into a symmetric acid anhydride method and a mixed acid anhydride method.
  • Non-Patent Documents 1 and 2 disclose a method for synthesizing an amide using a symmetric acid anhydride as an active species of carboxylic acid.
  • the symmetric acid anhydride method disclosed in Non-Patent Documents 1 and 2 is A first step of producing a symmetric anhydride by a condensation reaction between carboxylic acids; A second step of performing a coupling reaction between the symmetric anhydride and an amine; It can be said that the method comprises
  • Non-Patent Document 3 discloses a method for synthesizing amides using a mixed acid anhydride as an active species of carboxylic acid.
  • carboxylic acid and isopropyl chloroformate are mixed with a first micromixer to synthesize a mixed acid anhydride in a short time, and then, immediately, the synthesized mixed acid anhydride is not racemized. It is described that a solution containing a mixed acid anhydride, an amine and a catalyst (base) are mixed with a second micromixer to perform amidation.
  • the mixed acid anhydride method disclosed in Non-Patent Document 3 is: A first step of reacting a carboxylic acid with a chloroformate to obtain a mixed acid anhydride; A second step of adding a base to the mixed anhydride to obtain an acylpyridinium species; Performing a coupling reaction of the acylpyridinium species with an amine to obtain an amide; It can be said that the method comprises
  • the symmetrical acid anhydride method has a problem that the reaction hardly proceeds when arginine or an arginine derivative is used as an amine. Further, even when the reaction proceeds, there is a problem that side reactions occur with high probability, such as isomerization of the amino acid and generation of ⁇ -lactam.
  • the reaction can proceed even when arginine or an arginine derivative is used as the amine.
  • problems such as isomerization of the amino acids and generation of ⁇ -lactams that cause side reactions with high probability still remain.
  • the present invention has been made in order to solve the above-described problems.
  • An object of the present invention is to provide a method for producing an amide which has good efficiency and hardly causes side reactions.
  • this invention has the following aspects. (1) reacting an arginine, arginine derivative or arginine analog in which two amino groups or imino groups in the side chain are protected with a protecting group, and a halogenated formate, and then reacting with an amine; Method for producing amide. (2) After reacting arginine, arginine derivative or arginine analog in which two amino groups or imino groups of the side chain are protected with a protecting group, and a halogenated formate, it is reacted with a base and reacted with an amine.
  • the method for producing an amide according to (1) comprising the step of: (3) a product obtained by reacting a mixture obtained by mixing arginine, an arginine derivative or arginine analog and a halogenated formate in which two amino groups or imino groups of the side chain are protected with a protecting group; A method for producing an amide, comprising mixing with an amine. (4) a product obtained by reacting a mixture obtained by mixing arginine, an arginine derivative or arginine analog and a halogenated formate in which two amino groups or imino groups of the side chain are protected with a protecting group;
  • the method for producing an amide according to (3) which comprises mixing a base and an amine.
  • the base is 4-morpholinopyridine, N, N-dimethyl-4-aminopyridine, 4-pyrrolidinopyridine, pyridine, 4-methoxypyridine, imidazole, N-methylimidazole and 1,4-diazabicyclo [2].
  • FIG. 1 is a schematic diagram showing a schematic configuration of a flow system reaction apparatus 1.
  • arginine an arginine derivative, or an arginine analog in which two amino groups or imino groups in the side chain are protected with a protecting group (hereinafter referred to as “arginine” in the present specification).
  • arginine a protecting group
  • a halogenated formate followed by reaction with a base and reaction with an amine.
  • the method for producing an amide of the embodiment may be a method including mixing a product obtained by reacting a mixture obtained by mixing arginines and a halogenated formate, a base, and an amine.
  • the product obtained by reacting the mixture obtained by mixing the arginines and the halogenated formate can contain a mixed acid anhydride.
  • the said base may produce
  • the term “mixing” as used herein refers to an operation of adding a material such as a raw material to the reaction system. When these materials are mixed in the reaction system, the raw material is changed to a material different from that before the addition. It may be.
  • arginines in which two amino groups or imino groups in the side chain are protected with a protecting group are used as a carboxylic acid in amide bond formation.
  • the manufacturing method may include the following steps 1 to 3.
  • Step 1 A step of reacting an arginine in which two amino groups or imino groups in the side chain are protected with a protecting group and a halogenated formate to obtain a mixed acid anhydride.
  • Step 2 A step of obtaining a cationic active species by reacting the mixed acid anhydride obtained in Step 1 with a base.
  • Step 3 A step of producing an amide by reacting the cationic active species obtained in Step 2 with an amine.
  • reaction of the manufacturing method of the amide which concerns on this invention is not limited to reaction illustrated by each following process.
  • Step 1 is a step of obtaining a mixed acid anhydride by reacting an arginine in which two amino groups or imino groups in the side chain are protected with a protecting group and a halogenated formate.
  • the arginines preferably have an ⁇ -amino acid skeleton. Moreover, since the amino acid which comprises a peptide or protein normally in a living body is a L type, it is preferable that the said arginines are a L type.
  • the arginines may be compounds represented by the following general formula (1).
  • R 0a represents a side chain of arginines.
  • Arginines may be deprotonated to become carboxylate ions, and can be represented by the following general formula (1i).
  • R 0a represents a side chain of arginines.
  • the deprotonation of the arginine can be achieved, for example, by placing the arginine in the presence of a low nucleophilic base such as N, N-diisopropylethylamine (DIEA) in the reaction system.
  • a low nucleophilic base such as N, N-diisopropylethylamine (DIEA)
  • DIEA N, N-diisopropylethylamine
  • the presence of a base means, for example, in a solvent to which a base has been added.
  • the kind of the base is not particularly limited as long as it allows deprotonation of the arginines in the reaction system.
  • R 0a in the formula (1-1) is a group represented by the following formula (R 0a- a) when the arginine is arginine.
  • Arginines according to the embodiment are limited to those in which two amino groups or imino groups in the side chain are protected with a protecting group.
  • that the functional group is protected means that an atom constituting the functional group is substituted with a protective group.
  • Examples of the side chain of arginines in which two amino groups or imino groups are protected with a protecting group include groups represented by the following general formula (R 0a- b).
  • Z 1 , Z 2 and Z 3 each independently represent a hydrogen atom or a protecting group, and two or more of Z 1 , Z 2 and Z 3 are protecting groups.
  • the protecting group in the group represented by the general formula (R 0a- b) is not particularly limited as long as it has an action of inactivating a reactive functional group.
  • Examples of the protecting group in the group represented by the general formula (R 0a- b) include those exemplified as the protecting group described later, and may be exemplified as a protecting group for the amino group described later. Or a sulfonamide-based protecting group. All of the two or more protecting groups for Z 1 , Z 2 and Z 3 may be the same or partially different from each other. From the viewpoint of suppression of side reactions, of the protective group Z 1, Z 2 and Z 3, 2 places of at least Z 1 and Z 2, and more preferably it is protected by a protecting group.
  • the arginine derivative or arginine analog in the arginine may be a compound having substantially the same properties as arginine, may be a naturally occurring natural type, or a modification different from the natural type. , Addition, modification of functional group, etc.
  • the arginine derivative or arginine analog preferably has, as a side chain, a group represented by the general formula (R 0a- b) which may have a substituent. Examples of the group that may have a substituent include those in which one or more hydrogen atoms of the group represented by the general formula (R 0a- b) are substituted with another group.
  • an arginine derivative is a protected amino acid having a functional group protected with a protecting group.
  • the protecting group has a function of inactivating a reactive functional group. It is also possible to deprotect the protecting group and return the protected functional group to its pre-protected state.
  • that the functional group is protected means that an atom constituting the functional group is substituted with a protective group.
  • Examples of the site protected by the protecting group include an amino group and / or a carboxyl group in addition to the side chain exemplified above.
  • the functional group of an amino group and a side chain is protected so that reaction of reactive functional groups other than a carboxyl group may be prevented.
  • the kind of the protecting group is not particularly limited and can be appropriately selected depending on the kind of the functional group to be protected.
  • the protecting group for amino group includes, but is not limited to, carbamate-based, sulfonamide-based, acyl-based, and alkyl-based protecting groups.
  • the carbamate-based protecting group includes a 2-benzyloxycarbonyl group (sometimes abbreviated as -Z or -Cbz), a tert-butoxycarbonyl group (sometimes abbreviated as -Boc), allyloxy.
  • a carbonyl group (sometimes abbreviated as -Alloc), a 2,2,2-trichloroethoxycarbonyl group (sometimes abbreviated as -Troc), a 2- (trimethylsilyl) ethoxycarbonyl group (-Teoc and 9-fluorenylmethyloxycarbonyl group (may be abbreviated as -Fmoc), p-nitrobenzyloxycarbonyl group (-Z (NO 2 )) And p-biphenylisopropyloxycarbonyl group (sometimes abbreviated as -Bpoc).
  • sulfonamide-based protecting group examples include a p-toluenesulfonyl group (sometimes abbreviated as -Ts or -Tos), a 2-nitrobenzenesulfonyl group (sometimes abbreviated as -Ns), 2 , 2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl (sometimes abbreviated as -Pbf), 2,2,5,7,8-pentamethylchroman-6-sulfonyl (-Pmc) And 1,2-dimethylindole-3-sulfonyl (sometimes abbreviated as -MIS).
  • a p-toluenesulfonyl group sometimes abbreviated as -Ts or -Tos
  • 2-nitrobenzenesulfonyl group sometimes abbreviated as -Ns
  • 2 2,4,6,7-pentamethyldihydrobenzofuran-5-sulfony
  • Step 1 of the method for producing an amide according to the embodiment is carried out by reacting an arginine represented by the following general formula (1) with a halogenated formate represented by the following general formula (1) ′.
  • a mixed acid anhydride represented by the formula (2) is obtained.
  • R 0a represents a side chain of arginines
  • R 1 represents a hydrogen atom or a hydrocarbon group
  • Y represents a halogen atom.
  • the hydrocarbon group for R 1 may be an aliphatic hydrocarbon group or an aromatic hydrocarbon group (aryl group).
  • the aliphatic hydrocarbon group may be a saturated aliphatic hydrocarbon group (alkyl group), may be an unsaturated aliphatic hydrocarbon group, and is preferably an alkyl group.
  • the aliphatic hydrocarbon group may have 1 to 20 carbon atoms or 1 to 15 carbon atoms.
  • the alkyl group may be linear, branched or cyclic. When it is cyclic, the alkyl group may be monocyclic or polycyclic.
  • the alkyl group may have 1 to 20 carbon atoms, 1 to 10 carbon atoms, or 1 to 5 carbon atoms.
  • linear or branched alkyl group examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, and an n-pentyl group.
  • the halogen atom of Y is an element belonging to Group 17 in the periodic table such as F, Cl, Br, and I, and Cl or Br is preferable.
  • the halogenated formate represented by the general formula (1) ′ is such that the halogen atom of Y is Cl or Br, and the hydrocarbon group of R 1 is It is preferably a branched alkyl group having 1 to 5 carbon atoms, more preferably one or more selected from the group consisting of isopropyl chloroformate, isobutyl chloroformate, isopropyl bromate and isobutyl bromate. .
  • the reaction in Step 1 uses a halogenated formate and a reagent (base) such as N-methylmorpholine that activates the halogenated formate, reacts them to activate the halogenated formate, It is also possible to facilitate the reaction.
  • the activated halogenated formate is also included in the concept of halogenated formate.
  • the reagent for activating the halogenated formate include tertiary amine, 4-methylmorpholine, pyridine, pyridine derivatives, imidazole, imidazole derivatives and 1,4-diazabicyclo [2,2,2] octane.
  • the pyridine derivative and the imidazole derivative include those exemplified in Step 2 described later.
  • the tertiary amine it is preferable that at least one of the groups bonded to the N atom of the amine is a methyl group. It is more preferable that two of the groups bonded to the N atom of the amine are methyl groups.
  • Step 2 is a step of obtaining a cationic active species by reacting the mixed acid anhydride obtained in Step 1 with a base.
  • Step 2 of the method for producing an amide according to the embodiment is represented by the following general formula (4) by reacting a mixed acid anhydride represented by the following general formula (2) with a base represented by B.
  • a cationic active species is obtained.
  • a compound represented by the following general formula (5) is generated as the counter anion of the cationic active species.
  • R 0a and R 1 represent the same meaning as R 0a and R 1 in Formula (2)).
  • the base in Step 2 reacts with the acid anhydride to generate a cationic active species, and preferably has a high nucleophilicity, such as pyridine, pyridine derivative, imidazole, imidazole derivative and 1,4-diazabicyclo. More preferably, it is one or more selected from the group consisting of [2,2,2] octane.
  • the pyridine derivative is not particularly limited as long as one or more hydrogen atoms of pyridine are substituted with other groups and has basic properties, but pyridine and pyridine derivatives are as follows.
  • a compound represented by the general formula (3-1) is preferable.
  • X 1 represents a hydrogen atom or any group selected from the group represented by the following formulas (a) to (c)).
  • R 31 , R 32 , R 33 and R 34 each independently represents an alkyl group.
  • R 33 and R 34 may be bonded to each other to form a ring, , One methylene group not directly bonded to R 33 or R 34 may be substituted with an oxygen atom.
  • the alkyl group in R 31 , R 32 , R 33 and R 34 may be linear, branched or cyclic. When it is cyclic, the alkyl group may be monocyclic or polycyclic. The alkyl group may have 1 to 20 carbon atoms, 1 to 15 carbon atoms, or 1 to 10 carbon atoms.
  • linear or branched alkyl group examples include those exemplified for R 1 above.
  • the compound represented by the general formula (3-1) is preferably a compound represented by the following general formula (3-1-1).
  • X 1 is any group selected from the group represented by formulas (a) to (c) other than a hydrogen atom
  • X 1 is effective as an electron-donating group by bonding to such a position. Tending to tend to improve the nucleophilicity of the N atom of the pyridine ring.
  • X 1 represents the same meaning as X 1 in formula (3-1)).
  • X 1 is a group represented by the formula (c)
  • R 33 and R 34 are bonded to each other to form a ring
  • the alkyl group In the case where one methylene group which is not directly bonded to R 33 or R 34 is substituted with an oxygen atom, 4-morpholinopyridine represented by the following formula (3-1-2) is included.
  • Preferred examples of the pyridine and pyridine derivative include pyridine, the above 4-morpholinopyridine, N, N-dimethyl-4-aminopyridine, 4-pyrrolidinopyridine and 4-methoxypyridine.
  • 4-morpholinopyridine and N, N-dimethyl-4-aminopyridine can be used to increase the synthesis yield of amide per unit time and significantly reduce the formation of side reaction products. It is particularly preferable in that it can be made.
  • acylpyridinium species are characterized by high electrophilicity. Therefore, even with a reaction with an amine having a low nucleophilicity, which will be described later, the reaction can proceed at a very high rate, and the generation of side reaction products can be significantly reduced.
  • the imidazole derivative is not particularly limited as long as one or more hydrogen atoms of imidazole may be substituted with other groups and has a basic property.
  • a compound represented by the general formula (3-2) is preferable.
  • R 35 and R 36 are each independently a hydrogen atom or an alkyl group.
  • Examples of the alkyl group for R 35 and R 36 include those exemplified for the alkyl group for R 31 , R 32 , R 33 and R 34 .
  • Examples of preferred imidazole and imidazole derivatives include imidazole and N-methylimidazole.
  • pyridine derivatives in addition to pyridine, pyridine derivatives, imidazole, and imidazole derivatives, 1,4-diazabicyclo [2,2,2] octane (DABCO) can be exemplified as a preferable example.
  • DABCO 1,4-diazabicyclo [2,2,2] octane
  • Step 3 is a step of producing an amide by reacting the cationic active species obtained in Step 2 with an amine.
  • Step 3 of the method for producing an amide according to the embodiment comprises reacting a cationic active species represented by the following general formula (4) with an amine represented by the following general formula (6) to produce the following general formula ( The amide represented by 7) is obtained.
  • R 0a in Formula (4) and Formula (7) represents the same meaning as R 0a in Formula (2) above.
  • R 3 and R 4 in Formula (6) and Formula (7) are respectively Independently a hydrogen atom or a monovalent organic group, R 1 in formula (5) represents the same meaning as R 1 in formula (2).
  • alkoxide (O ⁇ —R 1 ) and CO 2 may be generated instead of Formula (5).
  • the amine is preferably an amino acid or an amino acid derivative.
  • the amino acid is preferably an ⁇ -amino acid.
  • the amino acid which comprises a peptide or protein in a living body is L type normally, it is preferable that the said amino acid is L type.
  • the ⁇ -amino acid may be a compound represented by the following general formula (6-1).
  • R 0 represents a side chain of an amino acid.
  • the amino acids may be 20 types of amino acids that constitute peptides or proteins in vivo and are encoded as genetic information. These amino acids include alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, valine. Further, the amino acid may be a kind of amino acid that is not encoded as genetic information such as cystine.
  • R 0 in the formula (1-1) is “—CH 3 ” when the amino acid is alanine, “—H” when the amino acid is glycine, and “ ⁇ ” when valine is used. CH (CH 3 ) 2 ”, and in the case of isoleucine,“ —CH (CH 3 ) CH 2 CH 3 ”.
  • —R 3 and —R 4 may be, for example, —H and —CH (R 0 ) COOH.
  • the amino acid may not be an ⁇ -amino acid.
  • it may be a ⁇ -amino acid such as ⁇ -alanine.
  • the amine may be an amino acid derivative.
  • An amino acid derivative may be a compound having substantially the same properties as an amino acid, may be a naturally occurring natural type, and is different from the natural type, such as modifications, additions, functional group substitutions, etc. Etc. may be included.
  • it can be incorporated into an enzyme using an amino acid as a substrate or can bind to a molecule that binds to an amino acid.
  • the amine is arginine or an arginine derivative, it is preferably an arginine in which two amino groups or imino groups in the side chain shown above as carboxylic acid in amide bond formation are protected with a protecting group. .
  • amino acid derivatives include amino acids in which one or more hydrogen atoms or groups are substituted with other groups (substituents).
  • An example of an amino acid derivative is a protected amino acid having a functional group protected with a protecting group.
  • the site protected by the protecting group include one or more sites selected from the group consisting of an amino group, a carboxyl group, and a side chain.
  • the functional group contained in the side chain may be protected at one site or two or more sites with a protecting group.
  • it is preferable that the carboxyl group and / or the side chain functional group is protected so as to prevent the reaction of a reactive functional group other than the amino group.
  • the type of the protecting group is not particularly limited and can be appropriately selected according to the type of the functional group to be protected.
  • the carboxyl group may be protected by neutralization to form a salt form, but is usually protected in the form of an ester.
  • the esters include, but are not limited to, alkyl esters such as methyl and ethyl, benzyl esters (sometimes abbreviated as Bn or BZl), and the like.
  • the method for producing an amide according to the embodiment in Step 3, the cationic active species is reacted with an amine.
  • the method for producing an amide of the embodiment has an advantage that the reaction rate does not depend on the nucleophilicity of the amine because the cationic active species has high electrophilicity. Therefore, the method for producing an amide according to the embodiment is suitable for a reaction with an amine having low nucleophilicity.
  • an amine having a low nucleophilicity is an amine having a lower nucleophilicity than 18 amino acids obtained by removing valine and isoleucine from 20 amino acids constituting a protein and encoded as genetic information.
  • valine, isoleucine, N-alkylated amino acids, or derivatives thereof can be exemplified.
  • An N-alkylated amino acid is an amino group in which one or two hydrogen atoms of an amino group bonded to the ⁇ -carbon are substituted with an alkyl group, and one hydrogen atom is substituted with a methyl group.
  • -Methyl amino acids are preferred.
  • the nucleophilicity of the amine here is, for example, by performing the mixed acid anhydride method under the conditions shown in Example 1, and reacting the mixed acid anhydride produced in Example 1 with the amine for which nucleophilicity is desired. And can be determined from the degree of the reaction efficiency.
  • the amount of each compound used in the reactions of Steps 1 to 3 may be appropriately adjusted according to the target reaction in consideration of the types of these compounds.
  • the molar equivalent ratio of carboxylic acid to amine in the reaction system (carboxylic acid: amine) may be 10: 1 to 1/10: 1, may be 5: 1 to 1/5: 1, It may be 3: 1 to 1/3: 1.
  • an amide can be produced with high efficiency even when a relatively small amount of amine close to an equivalent is reacted with a carboxylic acid.
  • the reaction time of each step may be appropriately adjusted according to other conditions such as reaction temperature.
  • the reaction time in Step 1 may be 0.5 seconds to 30 minutes, 1 second to 5 minutes, or 3 seconds to 1 minute.
  • the reaction time of step 2 and step 3 may be 1 second to 60 minutes, 5 seconds to 30 minutes, 1 minute to 10 minutes, Also good.
  • the temperature (reaction temperature) at the time of the reaction in Steps 1 to 3 may be appropriately adjusted according to the type of compound used in Steps 1 to 3.
  • the reaction temperature is preferably in the range of 0 to 100 ° C., more preferably in the range of 20 to 50 ° C.
  • the reaction of Step 1 to Step 3 may be performed in the presence of a solvent.
  • the solvent is not particularly limited, but a solvent that does not interfere with the reaction of the compound is preferable, and a solvent having high solubility of the raw material used in the reaction is preferable.
  • N, N-dimethylformamide (DMF), tetrahydrofuran (THF), 1,4-dioxane and the like can be mentioned.
  • reaction of Step 1 to Step 3 may further include other compounds not corresponding to the compounds exemplified above in the reaction system as long as the amide formation can be achieved.
  • the reactions in Step 1 to Step 3 may be performed separately or simultaneously. From the viewpoint of more effectively suppressing the formation of side reaction products, it is preferable to perform Step 2 and Step 3 simultaneously.
  • the presence and structure of the product can be confirmed by measurement of a spectrum obtained by analysis of NMR, IR, mass, etc., elemental analysis, or the like. Further, the product may be purified as necessary, and the purification method can be produced by distillation, extraction, recrystallization, column chromatography or the like.
  • the amide can be produced with very high efficiency. Even the acid anhydride obtained in step 1 is in a state of accepting a nucleophilic species (amine) as an active species.
  • a cationic active species is further formed in step 2, and an amine is reacted for the first time. Since the cationic active species produced here are significantly more active than the acid anhydride, the reaction can proceed at a very high rate.
  • the activity of the cationic active species is high, when the side chain is protected with only one protecting group, the action of protecting the side chain is probably insufficient and the generation of side reactions can be suppressed. It is thought that there was not.
  • the method for producing an amide according to an embodiment includes reacting an arginine in which two amino groups or imino groups in the side chain are protected with a protecting group and a halogenated formate, and then reacting with an amine. .
  • the method for producing an amide according to the embodiment may be a method including mixing an amine with a product obtained by reacting a mixture obtained by mixing an arginine and a halogenated formate.
  • the manufacturing method may include the following step 1 and step 3 ′.
  • Step 1 A step of reacting an arginine in which two amino groups or imino groups in the side chain are protected with a protecting group and a halogenated formate to obtain a mixed acid anhydride.
  • Step 3 ′ A step of producing an amide by reacting the mixed acid anhydride obtained in Step 1 with an amine.
  • step 1 in the second embodiment is common to step 1 in the first embodiment, description thereof is omitted.
  • Step 3 ′ is a step of producing an amide by reacting the mixed acid anhydride obtained in Step 1 with an amine.
  • Step 3 ′ of the method for producing an amide according to the embodiment is performed by reacting a mixed acid anhydride represented by the following general formula (2) with an amine represented by the following general formula (6).
  • the amide represented by (7) is obtained.
  • R 0a represents a side chain of arginines
  • R 1 represents a hydrocarbon group
  • R 3 and R 4 each independently represent a hydrogen atom or a monovalent organic group.
  • an amide is produced by reacting a cationic active species with an amine.
  • an amide is produced by reacting a mixed acid anhydride with an amine.
  • Step 1 and Step 3 ' the reactions of Step 1 to Step 3 described in the first embodiment can be read as Step 1 and Step 3 '.
  • the reactions in step 1 and step 3 ' may be performed separately or simultaneously. From the viewpoint of more effectively suppressing the formation of side reaction products, it is preferable to perform Step 1 and Step 3 'simultaneously.
  • the production of by-products can be dramatically suppressed, and the amide can be produced with high efficiency.
  • the reaction rate of the amide production method of the first embodiment is considered to be faster than that of the amide production method of the second embodiment, side reactions are effectively suppressed in the amide production method of the second embodiment. Therefore, the amide can be produced with much higher efficiency than the conventional method (symmetrical anhydride method).
  • a peptide or protein can be synthesized when the amine is an amino acid or an amino acid derivative.
  • the method for producing a peptide or protein is included in the method for producing an amide.
  • the carboxylic acid includes a polypeptide
  • the arginine (carboxylic acid) according to the embodiment includes an arginine (carboxylic acid) located at the C-terminal as a structural unit of the polypeptide.
  • the amide production method of the embodiment is suitable as a peptide or protein production method.
  • the manufacturing method of the amide of embodiment can be implemented using a flow-type reaction apparatus.
  • the flow system reaction apparatus include a flow path for transporting a fluid containing a raw material or an intermediate used in the reaction in the method for producing an amide according to the embodiment, and a mixer for mixing the fluid.
  • the reaction in step 3 may be carried out with the amine in the flow reaction apparatus, and the flow reaction apparatus in the step 2 and step 3 may be used.
  • the reaction with the base and the reaction with the amine may be carried out in a flow reactor, and the arginine in which two amino groups or imino groups in the side chain in the steps 1 to 3 are protected with a protecting group.
  • the reaction may be carried out in a flow system reaction apparatus after reacting the acid with a halogenated formate, then reacting with a base and reacting with an amine.
  • the reaction with the amine at least in the step 3 ′ may be carried out in a flow reactor, and the amino groups at the two positions in the side chain in the steps 1 and 3 ′.
  • a reaction for reacting with an amine may be carried out in a flow reactor.
  • the manufacturing method of the amide of embodiment is not limited to what is implemented using a flow-type reaction apparatus.
  • a batch container having a small volume and a high stirring speed can be used.
  • the volume of the mixing part of the batch container may be 1 to 100 mL, or 5 to 50 mL.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a flow system reaction apparatus 1.
  • the flow system reaction apparatus 1 includes a tank 11 that stores a first liquid, a tank 12 that stores a second liquid, and a tank 13 that stores a third liquid.
  • the first liquid may contain arginines
  • the second liquid may contain a halogenated formate
  • the third liquid may contain a base and an amine.
  • the first liquid may include a reagent that activates arginines and halogenated formate
  • the second liquid may include a halogenated formate
  • the third liquid may include a base and an amine.
  • the first liquid contains arginine (carboxylic acid) in which two amino groups or imino groups in the side chain are protected with protecting groups, N-methylmorpholine, and DIEA contains
  • the second liquid contains isopropyl chloroformate
  • the third liquid contains 4-morpholinopyridine and an amine.
  • a 3rd liquid can contain an amine.
  • the mixture of the first liquid and the second liquid and the third liquid are mixed in the flow reactor.
  • the first liquid and the second liquid may be mixed in the flow system reaction apparatus.
  • the flow system reaction apparatus 1 includes flow paths f1, f2, f3, f4, and f5 for transporting a fluid.
  • the inner diameter of the flow path may be 0.1 to 10 mm, or may be 0.3 to 8 mm.
  • the flow system reaction apparatus 1 includes mixers 31 and 32 for mixing fluids.
  • the inner diameter of the flow channel inside the mixer may be 0.1 to 10 mm, or 0.3 to 8 mm.
  • An example of the mixer is a static mixer that does not have a drive unit.
  • a drive part refers to the part which moves with power.
  • the inner diameter of the flow path can be a diameter of a flow path inner portion (a portion through which a fluid passes) in a cross section of the flow path in a direction perpendicular to the length direction of the flow path.
  • the inner diameter of the flow channel can be the diameter when the shape of the portion in the flow channel is converted into a perfect circle on an area basis.
  • the tanks 11, 12, 13, 14, the mixers 31 and 32, and the flow paths f1, f2, f3, f4, and f5 are, for example, formed of resin such as plastic or elastomer, glass material, metal, ceramic, or the like. Yes.
  • the tank 11 is connected to the pump 21, and by the operation of the pump 21, the first liquid stored in the tank 11 moves in the flow path f ⁇ b> 1 and flows into the mixer 31.
  • the tank 12 is connected to the pump 22, and by the operation of the pump 22, the second liquid stored in the tank 12 moves in the flow path f ⁇ b> 2 and flows into the mixer 31. Then, the first liquid and the second liquid are mixed by the mixer 31 to become the first mixed liquid, and are sent to the flow path f4.
  • dehydration condensation occurs between the carboxylic acid contained in the first liquid and the isopropyl chloroformate contained in the second liquid, and a mixed acid anhydride is obtained (Step 1 of the amide production method). .
  • the first mixed liquid containing the obtained acid anhydride flows into the mixer 32.
  • the tank 13 is connected to the pump 23, and by the operation of the pump 23, the liquid stored in the tank 13 moves in the flow path f3 and flows into the mixer 32, and is mixed with the first mixed liquid.
  • a second mixed liquid and sent to the flow path f5.
  • the mixed acid anhydride obtained in Step 1 reacts with 4-morpholinopyridine contained in the third liquid to become a cationic active species (Step 2 of the amide production method), Subsequently, the cationic active species obtained and the amine contained in the third liquid react to obtain an amide (Step 3 of the method for producing an amide).
  • the second mixed liquid containing the produced amide is stored in the tank 14.
  • the area for heat exchange per volume of the reaction solution can be increased.
  • the reaction time can be controlled by the flow rate and the length of the flow path. Therefore, it is possible to strictly control the reaction solution, and as a result, it is possible to minimize the progress of unwanted side reactions and improve the yield of the target product.
  • the cationic active species obtained in Step 2 has an advantage that even a low-reactivity amine can be reacted because of its high activity, but control of the reaction is important.
  • even the mixed acid anhydride obtained in step 1 is sufficiently high in activity, so that control of the reaction is important.
  • the chance of collision of the compounds is improved by continuously flowing the liquid through the flow path, the reaction can be advanced with higher efficiency, and the side reaction is also suppressed. It becomes easy.
  • the mixed acid anhydride generated in Step 1 can be immediately reacted with 4-morpholinopyridine (base), the time during which the mixed acid anhydride is in an activated state can be shortened, and isomerization and the like can be performed. The probability that a side reaction occurs can be reduced.
  • the form in which the liquid is mixed by the mixer is illustrated.
  • the flow system of the embodiment does not necessarily include a mixer.
  • the amide production method of the embodiment can be carried out by a liquid phase method.
  • the peptide (amide) production method that is currently mainstream is a solid phase method, and peptides are synthesized on the solid phase.
  • the liquid phase method is suitable for large-scale synthesis and has high reactivity due to the increased degree of molecular freedom.
  • the liquid phase method is also effective for a reaction with an amine having low reactivity.
  • the five types of compounds to be reacted are stored in three tanks. For example, each of them is stored in five separate tanks and mixed sequentially. Also good.
  • the third liquid in the above embodiment it is preferable that 4-morpholinopyridine (base) and the amine are present in the same liquid in advance. That is, step 2 and step 3 may be performed at the same time, which makes it easy to react the highly reactive cationic active species generated in step 2 with the target amine immediately, and the cationic active species are active. It is possible to shorten the time in the crystallization state, and to effectively suppress the formation of unwanted side reaction products.
  • the manufacturing method of the amide of 2nd Embodiment can also be implemented similarly using a distribution system reaction apparatus.
  • the halogenated formate and the amine are present in the same solution in advance. That is, step 1 and step 3 ′ may be performed at the same time, which makes it easy to immediately react the mixed acid anhydride generated in step 1 with the target amine, and the mixed acid anhydride is in an activated state. It is possible to shorten the time required for the reaction, and to effectively suppress the formation of unwanted side reaction products.
  • a coupling reaction between the amino acid used as the carboxylic acid and the amino acid used as the amine was performed.
  • a flow-type reaction apparatus composed of a PTFE tube (inner diameter 0.8 mm, outer diameter 1.59 mm) and a T-shaped mixer was used.
  • the solution before the reaction was prepared by dividing it into three.
  • the first solution was obtained by dissolving Fmoc-Arg (Cbz) 2 —OH, N-methylmorpholine (NMM), and DIEA used as carboxylic acid in 1,4-dioxane.
  • the second solution was obtained by dissolving isopropyl chloroformate in 1,4-dioxane.
  • the third solution was obtained by dissolving H-MePhe-Ome used as an amine and 4-morpholinopyridine in 1,4-dioxane.
  • the respective molar equivalent ratios in the flow reaction system are 1.0 for H-MePhe-OMe, 0.010 for 4-morpholinopyridine, other Fmoc-Arg (Cbz) 2 -OH, N-methylmorpholine, DIEA and isopropyl chloroformate were set to 1.0.
  • the first solution and the second solution were mixed with a T-shaped mixer and reacted for 5 seconds in the flow system to obtain a mixed acid anhydride. .
  • the reaction solution containing the mixed acid anhydride and the third solution were mixed using a new T-shaped mixer, and the mixture was allowed to react for 30 seconds in a flow system and about 5 minutes after dispensing into a test tube. These reactions were all carried out at 40 ° C., and 20 seconds was set as the time for heat exchange before the solution before each reaction reached the mixer.
  • Step 1 of the method for producing amide in Example 1 is shown below.
  • R a represents an arginine side chain (in this example, two groups corresponding to Z 1 and Z 2 among the groups represented by the general formula (R 0a- b) are protected with a protecting group Cbz] Represents).
  • Step 2 of the method for producing amide in Example 1 is shown below.
  • R a is an arginine side chain (in this example, two groups corresponding to Z 1 and Z 2 among the groups represented by the general formula (R 0a- b) are protected with a protecting group Cbz] Represents).
  • Step 3 of the method for producing amide in Example 1 is shown below.
  • R a represents an arginine side chain (in this example, two groups corresponding to Z 1 and Z 2 among the groups represented by the general formula (R 0a- b) are protected with a protecting group Cbz] represents are), R p represents a phenylalanine side chain.
  • the yield of the target product was calculated from the weight of the target product isolated and purified. That is, the amine equivalence ratio was 1.0, and the ratio of amine coupling was calculated from the weight of the isolated dipeptide.
  • the target dipeptide had a coupling yield of 85%, of which the ratio of isomerization of the Arg site was 0.5%.
  • Example 1 According to the method of Example 1, a high coupling yield of 80% or more was obtained in a short time of 5 minutes, even though the molar equivalent ratio of carboxylic acid to amine was 1: 1. The production rate of the epimer contained in the target product was 1% or less.
  • the molar ratios in the flow reactor were 1.0 for H-MePhe-OMe, 0.40 for triphosgene, 3.0 for DIEA, and 2.5 for carboxylic acid.
  • the first solution and the second solution are mixed in a T-shaped mixer and reacted for 1 second in the flow system reactor. Got.
  • the reaction solution containing the acid anhydride and the third solution were mixed using a new T-shaped mixer, and the mixture was allowed to react for 10 seconds in a flow reactor and about 90 minutes after dispensing into a test tube. All these reactions were carried out at 20 ° C., and 20 seconds was set as the time for heat exchange before the solution before each reaction reached the mixer.
  • the target product was isolated by treating the reaction solution with an acid and a base, then using a Biotage auto column, and identifying with 400 MHz H 1 -NMR. Two major compounds could be isolated and one was the target dipeptide (Boc-Arg (NO 2 ) -MePhe-OMe). The coupling yield was 39%, and when the ratio of the isomerization of the Arg site was separated by a chiral column (HPLC), 14.1% was isomerized. The second major compound was ⁇ -lactam, which was a by-product obtained from the acid anhydride state by a primary reaction.
  • Example 1 the amide was synthesized by the mixed acid anhydride method, and in Comparative Example 1, the amide was synthesized by the symmetric acid anhydride method, but the acylpyridinium species produced by the mixed acid anhydride method were symmetrical.
  • Boc-Arg (NO 2 ) —OH is used as the carboxylic acid even when the mixed acid anhydride method is adopted as in Example 1. When used, it is obvious that many by-products are formed.
  • the first solution and the second solution are mixed with a T-shaped mixer, and reacted for 1 second in a flow system reactor to obtain an acid anhydride. It was. Immediately after that, the reaction solution containing the acid anhydride and the third solution were mixed using a new T-shaped mixer, and 10 seconds were conducted at 0 ° C. in a flow reactor, and after about 10 minutes were collected in a test tube. The reaction was performed at room temperature (about 24 ° C.) for 40 minutes. In all these reactions, 20 seconds was set as the time for heat exchange before the solution before each reaction reached the mixer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Peptides Or Proteins (AREA)

Abstract

側鎖の2箇所のアミノ基又はイミノ基が保護基で保護されたアルギニン、アルギニン誘導体又はアルギニン類縁体と、ハロゲン化ギ酸エステルとを反応させた後に、アミンと反応させることを含む、アミドの製造方法。

Description

アミドの製造方法
 本発明は、アミドの製造方法に関する。
 本願は、2018年6月15日に日本に出願された特願2018-114782に基づく優先権を主張し、その内容をここに援用する。
 ペプチド合成では、アミノ酸のカルボキシル基を活性化させて、アミノ酸のアミノ基と反応させ、カップリング反応を起こしてアミド結合を形成させ、これを繰り返すことでアミノ酸を逐次伸張させることが行われている。カルボキシル基を活性化させる方法としてはいくつかの方法が知られている。活性化度の弱い縮合剤を使って、異性化や副生成物の生成を抑制しつつペプチドを合成する手法や、活性化剤を使い短時間でペプチドを合成する方法がある。
 高活性な活性化剤を使って前記カルボキシル基を活性化させる方法として、酸塩化物法や酸無水物法がある。これら酸塩化物法や、酸無水物法は、活性化度の弱い縮合剤を使った活性法と比較して、活性化剤の構造が簡単であるため、単価が安く、更には活性化剤由来の副生成物の生成が少ない等の利点がある。
 酸無水物法は、対称酸無水物法と混合酸無水物法に分けられる。
 例えば非特許文献1~2では、カルボン酸の活性種として対称酸無水物を用いたアミドの合成法が開示されている。
 非特許文献1~2で開示される対称酸無水物法は、
 カルボン酸同士の縮合反応による対称酸無水物の生成の第1のステップと、
 前記対称酸無水物とアミンとのカップリング反応を行う第2のステップと、
 を備える方法ということができる。
 また、例えば非特許文献3では、カルボン酸の活性種として混合酸無水物を用いたアミドの合成法が開示されている。
 非特許文献3には、カルボン酸とクロロギ酸イソプロピルを第1のマイクロミキサーで混合し、混合酸無水物を短時間で合成し、続いて、合成した混合酸無水物がラセミ化しないよう、すぐさま混合酸無水物を含む溶液とアミンおよび触媒(塩基)を第二のマイクロミキサーで混合しアミド化を行うことが記載されている。
 非特許文献3で開示される混合酸無水物法は、
 カルボン酸とクロロギ酸エステルとを反応させて混合酸無水物を得る第1のステップと、
 前記混合酸無水物に塩基を添加してアシルピリジニウム種を得る第2のステップと、
 前記アシルピリジニウム種とアミンとのカップリング反応を行い、アミドを得る第3のステップと、
 を備える方法ということができる。
"Efficient Amide Bond Formation through a Rapid and StrongActivation of Carboxylic Acids in a Microflow Reactor", Fuse, S. Mifune, Y. Takahashi, T., Angew Chem. Int. Ed. 53, 851-855 (2014). "Total synthesis of feglymycin based on a linear/convergent hybrid approach using micro-flow amide bond formation", Fuse, S. Mifune, Y. Nakamura, H. Tanaka, H. Nat.Commun. 7, 13491 (2016). 小竹佑磨、中村浩之、布施新一郎、「マイクロフロー法を駆使するN-メチル化ペプチドの効率的合成」、2017年3月16日、日本化学会第97春季年会、3F4-14
 対称酸無水物法では、アミンとしてアルギニン又はアルギニン誘導体を用いた場合、反応がほとんど進行しないという問題があった。更には、反応が進行した場合でも、当該アミノ酸の異性化やδ-ラクタムの生成など、高確率で副反応が生じてしまうという問題があった。
 混合酸無水物法では、アミンとしてアルギニン又はアルギニン誘導体を用いた場合であっても反応が進行し得る。しかし、当該アミノ酸の異性化やδ-ラクタムの生成など、高確率で副反応が生じてしまうという問題は依然として解消されない。
 本発明は、上記のような問題点を解消するためになされたものであり、カルボキシル基を活性化させて、アミノ基と反応させ、カップリング反応を起こしてアミド結合を形成させる反応において、反応効率が良好であり、副反応が生じ難い、アミドの製造方法の提供を目的とする。
 すなわち、本発明は以下の態様を有する。
(1)側鎖の2箇所のアミノ基又はイミノ基が保護基で保護されたアルギニン、アルギニン誘導体又はアルギニン類縁体と、ハロゲン化ギ酸エステルとを反応させた後に、アミンと反応させることを含む、アミドの製造方法。
(2)側鎖の2箇所のアミノ基又はイミノ基が保護基で保護されたアルギニン、アルギニン誘導体又はアルギニン類縁体と、ハロゲン化ギ酸エステルとを反応させた後に、塩基と反応させ、アミンと反応させることを含む、前記(1)に記載のアミドの製造方法。
(3)側鎖の2箇所のアミノ基又はイミノ基が保護基で保護されたアルギニン、アルギニン誘導体又はアルギニン類縁体及びハロゲン化ギ酸エステルを混合して得られた混合物を反応させた生成物と、アミンとを混合させることを含む、アミドの製造方法。
(4)側鎖の2箇所のアミノ基又はイミノ基が保護基で保護されたアルギニン、アルギニン誘導体又はアルギニン類縁体及びハロゲン化ギ酸エステルを混合して得られた混合物を反応させた生成物と、塩基と、アミンとを混合させることを含む、前記(3)に記載のアミドの製造方法。
(5)前記塩基が、ピリジン、ピリジン誘導体、イミダゾール、イミダゾール誘導体及び1,4-ジアザビシクロ[2,2,2]オクタンからなる群から選択されるいずれか一種以上である、前記(2)又は(4)に記載のアミドの製造方法。
(6)前記塩基が、4-モルホリノピリジン、N,N-ジメチル-4-アミノピリジン、4-ピロリジノピリジン、ピリジン、4-メトキシピリジン、イミダゾール、N-メチルイミダゾール及び1,4-ジアザビシクロ[2,2,2]オクタンからなる群より選択されるいずれか一種以上である前記(2)又は(4)に記載のアミドの製造方法。
(7)2箇所の前記保護基が、カルバメート系保護基又はスルホンアミド系保護基である、前記(1)~(6)のいずれか一つに記載のアミドの製造方法。
(8)前記ハロゲン化ギ酸エステルが、クロロギ酸イソプロピル、クロロギ酸イソブチル、ブロモギ酸イソプロピル及びブロモギ酸イソブチルからなる群から選択されるいずれか一種以上である、前記(1)~(7)のいずれか一つに記載のアミドの製造方法。
(9)前記アミンが、アミノ酸又はアミノ酸誘導体である、前記(1)~(8)のいずれか一つに記載のアミドの製造方法。
(10)前記アミンの求核性が、タンパク質を構成し遺伝情報としてコードされる20種のアミノ酸からバリン及びイソロイシンを除いた18種のアミノ酸の求核性よりも低い、前記(1)~(9)のいずれか一つに記載のアミドの製造方法。
(11)前記アミンが、バリン、イソロイシン若しくはN-アルキル化されたアミノ酸、又はそれらの誘導体である、前記(9)又は(10)に記載のアミドの製造方法。
(12)前記アミンと反応させることを、流通系反応装置で行う、前記(1)~(11)のいずれか一つに記載のアミドの製造方法。
(13)さらに、側鎖の2箇所のアミノ基又はイミノ基が保護基で保護されたアルギニン、アルギニン誘導体又はアルギニン類縁体と、ハロゲン化ギ酸エステルとを反応させることを、流通系反応装置で行う、前記(12)に記載のアミドの製造方法。
 本発明によれば、反応効率が良好であり、副反応が生じ難い、アミドの製造方法を提供できる。
流通系反応装置1の概略的な構成を示す模式図である。
 以下、本発明のアミドの製造方法の実施形態を説明する。
≪アミドの製造方法≫
〔第1実施形態〕
 実施形態のアミドの製造方法は、側鎖の2箇所のアミノ基又はイミノ基が保護基で保護されたアルギニン、アルギニン誘導体又はアルギニン類縁体(本明細書において、以下、「アルギニン類」ということがある。)と、ハロゲン化ギ酸エステルとを反応させた後に、塩基と反応させ、アミンと反応させることを含むものである。
 実施形態のアミドの製造方法は、アルギニン類及びハロゲン化ギ酸エステルを混合して得られた混合物を反応させた生成物と、塩基と、アミンとを混合させることを含む方法であってもよい。ここで、アルギニン類及びハロゲン化ギ酸エステルを混合して得られた混合物を反応させた生成物は、混合酸無水物を含むことができる。
 なお、当該塩基は、カチオン性活性種を生成させるものであってよく、塩基(ただし、当該アミンを除く)であってよい。
 なお、ここでいう混合とは、反応系に原料等の物質を添加する動作を指すものであり、反応系内でこれらが混合されたときには、原料等が添加前とは別の物質に変化していてもよい。
 実施形態のアミドの製造方法では、側鎖の2箇所のアミノ基又はイミノ基が保護基で保護されたアルギニン類をアミド結合形成におけるカルボン酸として用いる。当該製造方法は、以下の工程1~3を含んでいてもよい。
 工程1:側鎖の2箇所のアミノ基又はイミノ基が保護基で保護されたアルギニン類と、ハロゲン化ギ酸エステルとを反応させて、混合酸無水物を得る工程。
 工程2:前記工程1で得られた前記混合酸無水物と、塩基と、を反応させてカチオン性活性種を得る工程。
 工程3:前記工程2で得られた前記カチオン性活性種と、アミンと、を反応させてアミドを製造する工程。
 以下、上記の各工程について説明する。なお、本発明に係るアミドの製造方法の反応は、下記の各工程に例示される反応に限定されるものではない。
<工程1>
 工程1は、側鎖の2箇所のアミノ基又はイミノ基が保護基で保護されたアルギニン類と、ハロゲン化ギ酸エステルとを反応させて、混合酸無水物を得る工程である。
 前記アルギニン類は、α-アミノ酸の骨格を有することが好ましい。また、通常、生体内でのペプチド又はタンパク質を構成するアミノ酸がL型であることから、前記アルギニン類は、L型であることが好ましい。前記アルギニン類は、下記一般式(1)で表される化合物であってよい。
Figure JPOXMLDOC01-appb-C000001
(式中、R0aはアルギニン類の側鎖を表わす。)
 アルギニン類は、脱プロトン化されてカルボキシラートイオンとなってもよく、下記一般式(1i)で表すことができる。
Figure JPOXMLDOC01-appb-C000002
 (式中、R0aはアルギニン類の側鎖を表わす。)
 前記アルギニン類の脱プロトン化は、例えば、反応系内のN,N-ジイソプロピルエチルアミン(DIEA)等の求核性の低い塩基の存在下に、前記アルギニン類を置くことで達成できる。塩基の存在下とは、例えば、塩基を添加した溶媒中のことを意味する。当該塩基の種類は、反応系内で前記アルギニン類の脱プロトン化を可能とするものであれば、特に限定されない。
 前記式(1-1)中のR0aは、前記アルギニン類がアルギニンの場合には下記式(R0a―a)で表される基である。
Figure JPOXMLDOC01-appb-C000003
 実施形態に係るアルギニン類は、側鎖の2箇所のアミノ基又はイミノ基が保護基で保護されたものに限定される。ここで官能基が保護されたとは、前記官能基を構成する原子が、保護基で置換されていることをいう。2箇所のアミノ基又はイミノ基が保護基で保護されたアルギニン類の側鎖として、下記一般式(R0a―b)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000004
 (式中、Z、Z及びZは、それぞれ独立に水素原子又は保護基を表し、Z、Z及びZのうちの2つ以上が保護基であることとする。)
 上記アミノ基又はイミノ基の2箇所が保護されることで、異性化及びδ-ラクタムの生成を含む副反応が、酸無水物を経由する活性化条件において劇的に抑制される。
 一般式(R0a―b)で表される基における保護基は、反応性の官能基を不活性化する作用を有するものであれば、特に制限されない。一般式(R0a―b)で表される基における保護基としては、後述の保護基として例示するものが挙げられ、後述のアミノ基の保護基として例示するものであってよく、カルバメート系保護基又はスルホンアミド系保護基であることが好ましい。2つ以上あるZ、Z及びZの保護基は、全てが同一であってもよく、一部が互いに異なっていてもよい。副反応の抑制の観点から、Z、Z及びZの保護基のうち、少なくともZ及びZの2箇所が、保護基で保護されていることがより好ましい。
 前記アルギニン類における、アルギニン誘導体又はアルギニン類縁体とは、アルギニンと実質的に同等の性質を有する化合物であってよく、天然に存在する天然型のものであってもよく、天然型とは異なる修飾、付加、官能基の置換等の改変等を有するものであってもよい。アルギニン誘導体又はアルギニン類縁体は、置換基を有してもよい前記一般式(R0a―b)で表される基を側鎖として有することが好ましい。置換基を有してもよいとは、前記一般式(R0a―b)で表される基の1個以上の水素原子が他の基に置換されたものを例示できる。
 アルギニンと実質的に同等の性質を有する場合の一例として、アルギニンを基質とする酵素に取り込まれ得る、又はアルギニンと結合する分子と結合し得る場合が挙げられる。
 アルギニン誘導体の一例として、官能基が保護基で保護された、保護アミノ酸が挙げられる。保護基は、反応性の官能基を不活性化する作用を有する。保護基を脱保護して、保護された官能基を保護される前の状態に戻すことも可能である。ここで官能基が保護されたとは、前記官能基を構成する原子が、保護基で置換されていることをいう。保護基で保護される部位としては、上記で例示した側鎖の他に、アミノ基及び/又はカルボキシル基が挙げられる。当該工程1においては、カルボキシル基以外の反応性の官能基の反応を防止するよう、アミノ基及び側鎖の官能基が保護されていることが好ましい。
 保護基の種類としては、特に制限されず、保護される官能基の種類に応じて適宜選択することができる。例えば、アミノ基の保護基としては、カルバメート系やスルホンアミド系、アシル系、アルキル系等の保護基が挙げられ、これらに制限されない。
 カルバメート系の保護基としては、2-ベンジルオキシカルボニル基(-Z又は-Cbzと略されることがある。)、tert-ブトキシカルボニル基(-Bocと略されることがある。)、アリルオキシカルボニル基(-Allocと略されることがある。)、2,2,2-トリクロロエトキシカルボニル基(-Trocと略されることがある。)、2-(トリメチルシリル)エトキシカルボニル基(-Teocと略されることがある。)、9-フルオレニルメチルオキシカルボニル基(-Fmocと略されることがある。)、p-ニトロベンジルオキシカルボニル基(-Z(NO)と略されることがある。)、p-ビフェニルイソプロピルオキシカルボニル基(-Bpocと略されることがある。)等が挙げられる。
 スルホンアミド系の保護基としては、p-トルエンスルホニル基(-Ts又は-Tosと略されることがある。)や、2-ニトロベンゼンスルホニル基(-Nsと略されることがある。)、2,2,4,6,7-ペンタメチルジヒドロベンゾフラン-5-スルホニル(-Pbfと略されることがある。)、2,2,5,7,8-ペンタメチルクロマン-6-スルホニル(-Pmcと略されることがある。)、1,2-ジメチルインドール-3-スルホニル(-MISと略されることがある。)等が挙げられる。
 実施形態に係るアミドの製造方法の工程1は、下記一般式(1)で表されるアルギニン類と、下記一般式(1)’で表されるハロゲン化ギ酸エステルとを反応させて、下記一般式(2)で表される混合酸無水物を得るものである。
Figure JPOXMLDOC01-appb-C000005
(式中、R0aはアルギニン類の側鎖を表し、Rは水素原子又は炭化水素基を表し、Yはハロゲン原子を表す。)
 Rの炭化水素基としては、脂肪族炭化水素基であってもよく芳香族炭化水素基(アリール基)であってもよい。前記脂肪族炭化水素基は、飽和脂肪族炭化水素基(アルキル基)であってもよく、不飽和脂肪族炭化水素基であってもよく、アルキル基が好ましい。
 前記脂肪族炭化水素基は、炭素数が1~20であってもよく、1~15であってもよい。
 前記アルキル基は、直鎖状、分岐鎖状及び環状のいずれでもよい。環状である場合、前記アルキル基は、単環状又は多環状のいずれでもよい。前記アルキル基は、炭素数が1~20であってもよく、1~10であってもよく、1~5であってもよい。
 直鎖状又は分岐鎖状の前記アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1-メチルブチル基、n-ヘキシル基、2-メチルペンチル基、3-メチルペンチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、n-ヘプチル基、2-メチルヘキシル基、3-メチルヘキシル基、2,2-ジメチルペンチル基、2,3-ジメチルペンチル基、2,4-ジメチルペンチル基、3,3-ジメチルペンチル基、3-エチルペンチル基、2,2,3-トリメチルブチル基、n-オクチル基、イソオクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基等が例示できる。
 Yの前記ハロゲン原子は、F,Cl,Br,I等の周期表において第17族に属する元素であり、Cl又はBrが好ましい。
 副反応をより効果的に抑制するという観点からは、前記一般式(1)’で表されるハロゲン化ギ酸エステルは、Yの前記ハロゲン原子がCl又はBrであり、Rの炭化水素基が分岐鎖状の炭素数1~5のアルキル基であることが好ましく、クロロギ酸イソプロピル、クロロギ酸イソブチル、ブロモギ酸イソプロピル及びブロモギ酸イソブチルからなる群から選択されるいずれか一種以上であることがより好ましい。
 なお工程1の反応は、ハロゲン化ギ酸エステルと、ハロゲン化ギ酸エステルを活性化するN-メチルモルホリン等の試薬(塩基)とをともに用い、これらを反応させてハロゲン化ギ酸エステルを活性化させ、反応をより進めやすくすることもできる。ここでは、活性化されたハロゲン化ギ酸エステルも、ハロゲン化ギ酸エステルの概念に包含されるものとする。ハロゲン化ギ酸エステルを活性化する試薬としては、第三級アミン、4-メチルモルホリン、ピリジン、ピリジン誘導体、イミダゾール、イミダゾール誘導体及び1,4-ジアザビシクロ[2,2,2]オクタン等を例示できる。ピリジン誘導体及びイミダゾール誘導体としては、後述の工程2で例示するものが挙げられる。第三級アミンについてはアミンのN原子に結合する基の少なくとも一つがメチル基であることが好ましい。アミンのN原子に結合する基の二つがメチル基であるものはより好ましい。第三級アミンのN原子に結合する基の少なくとも一つをメチル基とすることで、N原子周囲の立体障害が小さくなり、前記ハロゲン化ギ酸エステルとの反応効率を向上させることができる。
<工程2>
 工程2は、前記工程1で得られた前記混合酸無水物と、塩基と、を反応させてカチオン性活性種を得る工程である。
 実施形態に係るアミドの製造方法の工程2は、下記一般式(2)で表される混合酸無水物と、Bで表される塩基と、を反応させて下記一般式(4)で表されるカチオン性活性種を得るものである。なお、当該反応においては、カチオン性活性種のカウンターアニオンとして、下記一般式(5)で表される化合物が生成される。
Figure JPOXMLDOC01-appb-C000006
 (式(4)及び式(5)中、R0a及びRは、上記式(2)におけるR0a及びRと同一の意味を表す。)
 工程2における当該塩基は、前記酸無水物と反応してカチオン性活性種を生成させるものであり、求核性の高いものが好ましく、ピリジン、ピリジン誘導体、イミダゾール、イミダゾール誘導体及び1,4-ジアザビシクロ[2,2,2]オクタンからなる群より選択されるいずれか一種以上であることがより好ましい。
 ピリジン誘導体は、ピリジンの一個以上の水素原子が、他の基で置換されたものであってよく、塩基の性質を有しているものであれば特に限定されないが、ピリジン及びピリジン誘導体は、下記一般式(3-1)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000007
 (式中、Xは水素原子、又は下記式(a)~(c)で示される群から選択されるいずれかの基を表す。)
Figure JPOXMLDOC01-appb-C000008
 (式中、R31、R32、R33及びR34は、それぞれ独立にアルキル基を表す。R33及びR34は相互に結合して環を形成していてもよく、前記アルキル基中の、R33又はR34に直接結合していない1個のメチレン基は、酸素原子で置換されていてもよい。)
 R31、R32、R33及びR34における前記アルキル基は、直鎖状、分岐鎖状及び環状のいずれでもよい。環状である場合、前記アルキル基は、単環状又は多環状のいずれでもよい。前記アルキル基は、炭素数が1~20であってもよく、1~15であってもよく、1~10であってもよい。
 直鎖状又は分岐鎖状の前記アルキル基としては、上記Rで例示したものが挙げられる。
 一般式(3-1)で表される化合物は、下記一般式(3-1-1)で表される化合物であることが好ましい。Xが水素原子以外の前記式(a)~(c)で示される群から選択されるいずれかの基である場合、係る位置に結合していることでXは電子供与性基として効果的に作用し、ピリジン環のN原子の求核性がより良好なものとなる傾向がある。
Figure JPOXMLDOC01-appb-C000009
(式(3-1-1)中、Xは、上記式(3-1)におけるXと同一の意味を表す。)
 一般式(3-1)で表される化合物は、Xが前記式(c)で示される基であり、R33及びR34は相互に結合して環を形成しており、前記アルキル基中の、R33又はR34に直接結合していない1個のメチレン基が酸素原子で置換されている場合として、下記式(3-1-2)で表される4-モルホリノピリジンを含む。
Figure JPOXMLDOC01-appb-C000010
 前記ピリジン及びピリジン誘導体としては、ピリジン、上記の4-モルホリノピリジン、N,N-ジメチル-4-アミノピリジン、4-ピロリジノピリジン及び4-メトキシピリジンを好ましいものとして例示できる。なかでも、4-モルホリノピリジン及びN,N-ジメチル-4-アミノピリジンは、これらを用いることで、単位時間当たりでのアミドの合成収率が高く、かつ、且つ副反応物の生成を著しく低減させることが可能であるという点で、特に好ましい。
 上記で例示したピリジン及びピリジン誘導体を用いた場合のカチオン性活性種とは、アシルピリジニウムカチオン(アシルピリジニウム種)である。アシルピリジニウム種は、求電子性が高いという特徴を持つ。そのため、後述する求核性の低いアミンとの反応であっても、非常に早い速度で反応を進めることができ、且つ副反応物の生成を著しく低減させることが可能である。
 イミダゾール誘導体は、イミダゾールの一個以上の水素原子が、他の基で置換されたものであってよく、塩基の性質を有しているものであれば特に限定されないが、イミダゾール及びイミダゾール誘導体は、下記一般式(3-2)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000011
 (式中、R35及びR36は、それぞれ独立に水素原子又はアルキル基である。)
 R35及びR36におけるアルキル基としては、R31、R32、R33及びR34における前記アルキル基で例示したものが挙げられる。
 前記イミダゾール及びイミダゾール誘導体としては、イミダゾール及びN-メチルイミダゾールを好ましいものとして例示できる。
 また、ピリジン、ピリジン誘導体、イミダゾール、イミダゾール誘導体の他に、1,4-ジアザビシクロ[2,2,2]オクタン(DABCO)を好ましいものとして例示できる。
<工程3>
 工程3は、前記工程2で得られた前記カチオン性活性種と、アミンと、を反応させてアミドを製造する工程である。
 実施形態に係るアミドの製造方法の工程3は、下記一般式(4)で表されるカチオン性活性種と、下記一般式(6)で表されるアミンと、を反応させて下記一般式(7)で表されるアミドを得るものである。
Figure JPOXMLDOC01-appb-C000012
 (式(4)及び式(7)中のR0aは、上記式(2)におけるR0aと同一の意味を表す。式(6)及び式(7)中のR及びRは、それぞれ独立に水素原子または一価の有機基である。式(5)中のRは、上記式(2)におけるRと同一の意味を表す。)
 なお、上記工程2及び工程3において、式(5)に代えてアルコキシド(O―R)及びCOが生成してもよい。
 前記アミンは、アミノ酸又はアミノ酸誘導体であることが好ましい。
前記アミノ酸は、前記アミノ酸はα-アミノ酸が好ましい。また、通常、生体内でのペプチド又はタンパク質を構成するアミノ酸がL型であることから、前記アミノ酸はL型であることが好ましい。前記α-アミノ酸は、下記一般式(6-1)で表される化合物であってよい。
Figure JPOXMLDOC01-appb-C000013
 (式中、Rはアミノ酸の側鎖を表わす。)
 前記アミノ酸は、生体内でペプチド又はタンパク質を構成し遺伝情報としてコードされている20種類のアミノ酸であってよい。これらのアミノ酸としては、アラニン、アルギニン、アスパラギン、アスパラギン酸、システイン、グルタミン、グルタミン酸、グリシン、ヒスチジン、イソロイシン、ロイシン、リシン、メチオニン、フェニルアラニン、プロリン、セリン、トレオニン、トリプトファン、チロシン、バリンが挙げられる。また、前記アミノ酸は、シスチン等の遺伝情報としてコードされていない種類のアミノ酸であってもよい。
 例えば、前記式(1-1)中のRは、前記アミノ酸がアラニンの場合には「-CH」であり、グリシンの場合には「-H」であり、バリンの場合には「-CH(CH」であり、イソロイシンの場合には「-CH(CH)CHCH」である。他のアミノ酸についても同様である。
 前記式(6)がアミノ酸である場合、-Rと-Rは、例えば、-Hと-CH(R)COOHであってよい。
 前記アミノ酸はα-アミノ酸でなくともよい。例えば、β-アラニン等のβ-アミノ酸であってもよい。
 前記アミンは、アミノ酸誘導体であってもよい。アミノ酸誘導体とはアミノ酸と実質的に同等の性質を有する化合物であってよく、天然に存在する天然型のものであってもよく、天然型とは異なる修飾、付加、官能基の置換等の改変等を有するものであってもよい。
 アミノ酸と実質的に同等の性質を有する場合の一例として、アミノ酸を基質とする酵素に取り込まれ得る、又はアミノ酸と結合する分子と結合し得る場合が挙げられる。
 前記アミンがアルギニン又はアルギニン誘導体である場合には、上記でアミド結合形成におけるカルボン酸として示した、側鎖の2箇所のアミノ基又はイミノ基が保護基で保護されたアルギニン類であることが好ましい。
 アミノ酸誘導体としては、アミノ酸において、1個以上の水素原子又は基が、それ以外の基(置換基)で置換されたものが挙げられる。アミノ酸誘導体の一例として、官能基が保護基で保護された、保護アミノ酸が挙げられる。保護基で保護される部位としては、アミノ基、カルボキシル基、及び側鎖からなる群から選択されるいずれか一種以上の部位が挙げられる。側鎖に含まれる官能基は1箇所又は2箇所以上が保護基で保護されていてもよい。当該工程3においては、アミノ基以外の反応性の官能基の反応を防止するよう、カルボキシル基及び/又は側鎖の官能基が保護されていることが好ましい。
 保護基の種類としては、特に制限されず、保護される官能基の種類に応じて適宜選択することができる。カルボキシル基の保護は、中和して塩の形にするだけでよい場合もあるが、通常はエステルの形にして保護する。エステルとしては、メチル、エチル等のアルキルエステルのほか、ベンジルエステル(Bn又はBZlと略されることがある。)等が挙げられ、これらに制限されない。
 実施形態のアミドの製造方法は、工程3で前記カチオン性活性種とアミンとを反応させる。ここで実施形態のアミドの製造方法は、前記カチオン性活性種の求電子性が高いため、反応速度がアミンの求核性に左右されないという利点を有する。
 したがって、実施形態のアミドの製造方法は、求核性の低いアミンとの反応に好適である。求核性の低いアミンとは、具体的には、タンパク質を構成し遺伝情報としてコードされる20種のアミノ酸からバリン及びイソロイシンを除いた18種のアミノ酸の求核性よりも低いアミンであってもよく、より具体的には、バリン、イソロイシン若しくはN-アルキル化されたアミノ酸、又はそれらの誘導体を例示できる。N-アルキル化されたアミノ酸とは、α炭素に結合したアミノ基の1又は2つの水素原子がアルキル基に置換されているものであってよく、1つの水素原子がメチル基に置換されたN-メチルアミノ酸が好ましい。これらの求核性の低いアミンは、従来、酸無水物法で合成に用いることが困難であった。しかし、実施形態のアミドの製造方法によれば、従来、酸無水物法で合成に用いることの困難であった求核性の低いアミンであっても使用することができ、係る点においても実施形態のアミドの製造方法は画期的である。
 ここでのアミンの求核性は、例えば、実施例1に示す条件下で混合酸無水物法を行い、実施例1で生成した混合酸無水物と、求核性を求めたいアミンとを反応させて、その反応効率の程度から求めることができる。
 本実施形態において、工程1~3の反応時の各化合物の使用量は、これらの化合物の種類を考慮し、目的とする反応に応じて適宜調節すればよい。
 カルボン酸とアミンとの、反応系内のモル当量比(カルボン酸:アミン)は、10:1~1/10:1であってよく、5:1~1/5:1であってよく、3:1~1/3:1であってよい。実施形態のアミドの製造方法によれば、カルボン酸に対して、等当量に近い比較的少量のアミンを反応させた場合であっても、高効率でアミドを製造可能である。
 本実施形態において、各工程の反応時間は、反応温度等、その他の条件に応じて適宜調節すればよい。一例として、工程1の反応時間は0.5秒~30分であってもよく、1秒~5分であってもよく、3秒~1分であってもよい。工程2及び工程3を同時に行う場合、工程2及び工程3の反応時間は、1秒~60分であってもよく、5秒~30分であってもよく、1分~10分であってもよい。
 本実施形態において、工程1~3の反応時の温度(反応温度)は、工程1~3で使用する化合物の種類に応じて適宜調節すればよい。一例として、反応温度は0~100℃の範囲であることが好ましく、20~50℃の範囲であることがより好ましい。
 本実施形態において、工程1~工程3の反応は、溶媒の共存下で行ってもよい。前記溶媒は特に限定されないが、化合物の反応を妨げないものが好ましく、反応で用いる原料の溶解性が高いものが好ましい。例えば、N,N-ジメチルホルムアミド(DMF)、テトラヒドロフラン(THF)、1,4-ジオキサン等が挙げられる。
 本実施形態において、工程1~工程3の反応は、アミドの生成を達成可能な範囲において、上記に例示した化合物に該当しないその他の化合物を、反応系内にさらに含んでもよい。
 本実施形態において、工程1~工程3の反応は、それぞれを別々に行ってもよく、同時に行ってもよい。副反応物の生成をより効果的に抑制するという観点から、工程2及び工程3を同時に行うことが好ましい。
 以上で説明した実施形態のアミドの製造方法において、生成物の存在及び構造は、NMR、IR、マス等の解析により得られたスペクトルの測定や、元素分析等によって確認可能である。また、必要に応じて、生成物を精製してもよく、精製方法としては、蒸留、抽出、再結晶、カラムクロマトグラフィー等によって生成可能である。
 実施形態のアミドの製造方法によれば、非常に高効率にアミドを製造可能である。工程1で得られる酸無水物であっても活性種として求核種(アミン)を受け入れる状態ではある。本方法では、さらに工程2でカチオン性活性種を形成させ、これに対して初めてアミンを反応させる。ここで生成されるカチオン性活性種は、酸無水物と比較して著しく活性が高いため、非常に速い速度で反応を進行させることができる。従来法では、カチオン性活性種の活性が高いために、側鎖を保護基1つのみで保護した場合には、おそらく側鎖を保護する作用が不十分であり、副反応の生成を抑制できなかったものと考えられる。対して、実施形態のアミドの製造方法によれば、カルボン酸として用いるアルギニンの側鎖の2箇所のアミノ基又はイミノ基が保護基で保護されたことで、従来法と比較して副生成物の生成をも劇的に抑制可能である。さらには、従来法では反応の困難であった反応性の低いアミンとであっても、容易に反応を進行させることが可能である。
〔第2実施形態〕
 実施形態のアミドの製造方法は、側鎖の2箇所のアミノ基又はイミノ基が保護基で保護されたアルギニン類と、ハロゲン化ギ酸エステルとを反応させた後に、アミンと反応させることを含むものである。実施形態のアミドの製造方法は、アルギニン類及びハロゲン化ギ酸エステルを混合して得られた混合物を反応させた生成物と、アミンとを混合させることを含む方法であってもよい。
 当該製造方法は、以下の工程1及び工程3’を含んでいてもよい。
 工程1:側鎖の2箇所のアミノ基又はイミノ基が保護基で保護されたアルギニン類と、ハロゲン化ギ酸エステルとを反応させて、混合酸無水物を得る工程。
 工程3’:前記工程1で得られた前記混合酸無水物と、アミンと、を反応させてアミドを製造する工程。
 以下、上記の各工程について説明する。
 第1実施形態と共通する点については以下では説明を省略する。
<工程1>
 第2実施形態における工程1は、前記第1実施形態における工程1と共通であるため、説明を省略する。
<工程3’>
 工程3’は、前記工程1で得られた前記混合酸無水物と、アミンと、を反応させてアミドを製造する工程である。
 実施形態に係るアミドの製造方法の工程3’は、下記一般式(2)で表される混合酸無水物と、下記一般式(6)で表されるアミンと、を反応させて下記一般式(7)で表されるアミドを得るものである。
Figure JPOXMLDOC01-appb-C000014
(式中、R0aはアルギニン類の側鎖を表し、Rは炭化水素基を表し、R及びRは、それぞれ独立に水素原子または一価の有機基を表す。)
 第1実施形態のアミドの製造方法では、カチオン性活性種とアミンとを反応させてアミドを製造する。対して第2実施形態のアミドの製造方法では、混合酸無水物とアミンとを反応させてアミドを製造する。
 第2実施形態のアミドの製造方法における反応条件等については、前記第1実施形態で説明した工程1~工程3の反応を、工程1及び工程3’と読みかえることができる。
 本実施形態において、工程1及び工程3’の反応は、それぞれを別々に行ってもよく、同時に行ってもよい。副反応物の生成をより効果的に抑制するという観点からは、工程1及び工程3’を同時に行うことが好ましい。
 上記アミノ基又はイミノ基の2箇所が保護されることで、異性化及びδ-ラクタムの生成を含む副反応が、酸無水物を経由する活性化条件において劇的に抑制される。
 本実施形態のアミドの製造方法によれば、副生成物の生成を劇的に抑制可能であり、高効率にアミドを製造可能である。前記第1実施形態のアミドの製造方法のほうが第2実施形態のアミドの製造方法よりも反応速度は速いと考えられるが、第2実施形態のアミドの製造方法では、副反応が効果的に抑制されているため、従来法(対称酸無水物法)と比較して格段に高効率にアミドを製造可能である。
≪ペプチドの製造方法≫
 実施形態のアミドの製造方法は、前記アミンが、アミノ酸又はアミノ酸誘導体である場合、ペプチド又はタンパク質を合成できる。ペプチド又はタンパク質の製造方法は、アミドの製造方法に包含される。
 上記工程3で得られたアミドを、工程1におけるカルボン酸として用い、工程1~3の後に、さらに工程1~3を繰り返すことで、ポリペプチド鎖を伸長させることができる。
 即ち、前記カルボン酸としてはポリペプチドも含まれ、実施形態に係るアルギニン類(カルボン酸)として、ポリペプチドの構成単位としてC末端に位置するアルギニン類(カルボン酸)も含まれる。このように、実施形態のアミドの製造方法は、ペプチド又はタンパク質の製造方法として好適である。
≪流通系反応装置≫
 実施形態のアミドの製造方法は、流通系反応装置を使用して実施することができる。流通系反応装置は、実施形態のアミドの製造方法における反応に用いられる原料又は中間体を含む流体を輸送する流路と、該流体を混合するための混合機と、を備えるものを例示できる。
 前記第1実施形態を例とすると、流通系反応装置の使用について、例えば、少なくとも前記工程3における、アミンとの反応を流通系反応装置で行うのであってもよく、前記工程2及び工程3における、塩基と反応させ、アミンと反応させる反応を流通系反応装置で行うのであってもよく、前記工程1~3における、側鎖の2箇所のアミノ基又はイミノ基が保護基で保護されたアルギニン類と、ハロゲン化ギ酸エステルとを反応させた後に、塩基と反応させ、アミンと反応させる反応を流通系反応装置で行うのであってもよい。
 前記第2実施形態を例とすると、少なくとも前記工程3’における、アミンとの反応を流通系反応装置で行うのであってもよく、前記工程1及び3’における、側鎖の2箇所のアミノ基又はイミノ基が保護基で保護されたアルギニン類と、ハロゲン化ギ酸エステルとを反応させた後に、アミンと反応させる反応を流通系反応装置で行うのであってもよい。
 なお、実施形態のアミドの製造方法は、流通系反応装置を使用して実施するものに限定されない。例えば、容積が小さく高速な攪拌速度が得られるバッチ容器を用いてもよい。バッチ容器の混合部の体積は、1~100mLであってもよく、5~50mLであってもよい。
 以下、実施形態に係る流通系反応装置の形態と、それを用いた第1実施形態のアミドの製造方法を、図1を参照して説明する。
 図1は、流通系反応装置1の概略的な構成を示す模式図である。流通系反応装置1は、第1の液を収容するタンク11と、第2の液を収容するタンク12と、第3の液を収容するタンク13とを備える。
 一例として、第1の液はアルギニン類を含み、第2の液はハロゲン化ギ酸エステルを含み、第3の液は塩基及びアミンを含むことができる。一例として、第1の液はアルギニン類及びハロゲン化ギ酸エステルを活性化する試薬を含み、第2の液はハロゲン化ギ酸エステルを含み、第3の液は塩基及びアミンを含むことができる。より具体的な一例としては、図1に示すように、第1の液は、側鎖の2箇所のアミノ基又はイミノ基が保護基で保護されたアルギニン(カルボン酸)、N-メチルモルホリン及びDIEAを含み、第2の液はクロロギ酸イソプロピルを含み、第3の液は4-モルホリノピリジン及びアミンを含む。
 なお、第2実施形態のアミドの製造方法の場合の例としては、第3の液はアミンを含むことができる。
 前記第1実施形態を例とすると、流通系反応装置の使用について、例えば、少なくとも第1の液と第2の液との混合物と、第3の液との混合を流通系反応装置で行うのであってもよく、更には、第1の液と第2の液との混合を流通系反応装置で行うのであってもよい。
 流通系反応装置1は流体を輸送するための流路f1,f2,f3,f4,f5を備える。流路の内径は、一例として0.1~10mmであってもよく、0.3~8mmであってもよい。流通系反応装置1は流体を混合するための混合機31,32を備える。混合機内部の流路の内径は、一例として0.1~10mmであってもよく、0.3~8mmであってもよい。混合機としては、駆動部を有さないスタティックミキサーが挙げられる。駆動部とは、動力が与えられて動く部分のことを指す。
 上記の流路の内径とは、流路の長さ方向と直角に交わる方向での流路断面における、流路内部分(流体が通る部分)の直径とすることができる。流路内部分の形状が真円形でない場合には、上記の流路の内径とは、上記流路内部分の形状を面積基準で真円換算したときの直径とすることができる。
 タンク11,12,13,14、混合機31,32及び流路f1,f2,f3,f4,f5は、一例として、プラスチックやエラストマー等の樹脂や、ガラス材、金属、セラミックなどで形成されている。
 タンク11はポンプ21に接続し、ポンプ21の作動により、タンク11に収容された第1の液は、流路f1内を移動して混合機31に流入する。タンク12はポンプ22に接続し、ポンプ22の作動により、タンク12に収容された第2の液は、流路f2内を移動して混合機31に流入する。そして、第1の液及び第2の液は、混合機31により混合されて第1の混合液となり、流路f4へと送られる。この混合後の過程で、第1の液に含まれるカルボン酸と第2の液に含まれるクロロギ酸イソプロピルとで脱水縮合が生じ、混合酸無水物が得られる(アミドの製造方法の工程1)。得られた酸無水物を含む第1の混合液は、混合機32へと流入する。
 一方、タンク13はポンプ23に接続し、ポンプ23の作動により、タンク13に収容された液は、流路f3内を移動して混合機32へと流入し、第1の混合液と混合されて第2の混合液となり、流路f5へと送られる。この混合後の過程で、工程1で得られた混合酸無水物と、第3の液に含まれる4-モルホリノピリジンとが反応してカチオン性活性種となり(アミドの製造方法の工程2)、続いて得られたカチオン性活性種と第3の液に含まれるアミンとが反応してアミドが得られる(アミドの製造方法の工程3)。製造されたアミドを含む第2の混合液は、タンク14に貯留される。
 実施形態に係る流通系反応装置1によれば、反応溶液の体積あたりの熱交換を行う面積を大きくすることができる。加えて、流量や流路の長さによって反応時間を制御することができる。このため、反応溶液の厳密な制御を可能とし、結果、望まない副反応の進行を最小化でき、目的物の収率を向上させることができる。
 前記工程2で得られるカチオン性活性種は、活性度が高いため反応性の低いアミンであっても反応させることができるという利点がある一方、反応のコントロールが重要となる。また、工程1で得られる混合酸無水物であっても十分に活性度が高いため、反応のコントロールが重要となる。
 実施形態に係る流通系反応装置1によれば、流路を通じて液を連続的に流通させることで化合物の衝突の機会が向上し、より高効率に反応を進めることができ、副反応の抑制も容易となる。例えば、工程1で生じた混合酸無水物を、すぐさま4-モルホリノピリジン(塩基)と反応させることが可能となるので、混合酸無水物が活性化状態でいる時間を短くでき、異性化等の副反応が生じる確率を低減できる。
 なお、本実施形態に係る流通系反応装置では、混合機により液が混合される形態を例示したが、液の混合は流路同士が連通することのみで達成され得るため、実施形態の流通系反応装置は、必ずしも混合機を備えていなくともよい。
 ここで示したように、実施形態のアミドの製造方法は、液相法により実施できる。例えば、現在主流となっているペプチド(アミド)の製造方法は固相法であり、固相上でペプチドを合成していく。一方、液相法は、ラージスケールの合成に適しており、分子の自由度が高まるために反応性も良好である。液相法は、反応性の低いアミンとの反応にも効果を発揮する。
 なお、本実施形態に係る流通系反応装置では、反応させる5種類の化合物を3つのタンクに分けて収容したが、例えば、それぞれを計5つの別々のタンクに収容しておき、順次混合させてもよい。
 しかし、上記実施形態の第3の液として示したように、4-モルホリノピリジン(塩基)とアミンとは、あらかじめ同じ液中に存在させることが好ましい。即ち、工程2及び工程3は同時に行ってもよく、これにより、工程2で生じた反応性の高いカチオン性活性種を、すぐさま目的のアミンと反応させることが容易となり、カチオン性活性種が活性化状態でいる時間を短くでき、望まない副反応物の生成を効果的に抑制できる。
 なお、流通系反応装置を用いて第2実施形態のアミドの製造方法を同様に実施することもできる。その場合には、ハロゲン化ギ酸エステルとアミンとは、あらかじめ同じ液中に存在させることが好ましい。即ち、工程1及び工程3’は同時に行ってもよく、これにより、工程1で生じた混合酸無水物を、すぐさま目的のアミンと反応させることが容易となり、混合酸無水物が活性化状態でいる時間を短くでき、望まない副反応物の生成を効果的に抑制できる。
 以上、この発明の実施形態について化学式及び図面を参照して詳述してきたが、実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は各実施形態によって限定されることはなく、請求項(クレーム)の範囲によってのみ限定される。
 次に実施例を示して本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。
<実施例1> 混合酸無水物法・Fmoc-Arg(Cbz)-OHの使用〔原料〕
 カルボン酸として用いたアミノ酸には、アミノ基がFmoc基によって保護され、側鎖の2ヶ所がCbz基で保護されたアルギニンであるFmoc-Arg(Cbz)-OH(市販品)を用いた。アミンとして用いたアミノ酸には、カルボキシル基がメチル基で保護され、かつアミノ基がメチル化されたフェニルアラニンであるH-MePhe-OMe(市販品)を用いた。
〔酸アミドのフロー合成〕
 カルボン酸として用いたアミノ酸と、アミンとして用いたアミノ酸とのカップリング反応を行った。カップリング反応は、PTFE製チューブ(内径0.8mm, 外径1.59mm)とT字型ミキサーで構成された流通系反応装置を用いた。反応前の溶液は3つに分けて調整した。第1の溶液は、カルボン酸として用いたFmoc-Arg(Cbz)-OHと、N-メチルモルホリン(NMM)と、DIEAとを1,4-dioxaneに溶解して得た。第2の溶液は、クロロギ酸イソプロピルを1,4-dioxaneに溶解して得た。第3の溶液は、アミンとして用いたH-MePhe-Omeと、4-モルホリノピリジンとを1,4-dioxaneに溶解して得た。フロー反応系中でのそれぞれのモル当量比はH-MePhe-OMeが1.0に対して、4-モルホリノピリジンが0.010、その他Fmoc-Arg(Cbz)-OH、N-メチルモルホリン、DIEA、及びクロロギ酸イソプロピルは1.0とした。
 フロー系中でカップリングを行うために、初めに、第1の溶液と第2の溶液をT字型ミキサーにて混合し、フロー系中で5秒間反応させることで混合酸無水物を得た。その後すぐさま混合酸無水物を含む反応溶液と第3の溶液とを新たなT字型ミキサーを用いて混合し、フロー系中で30秒、試験管に分取後約5分間反応させた。これらの反応は全て40℃で実施し、それぞれの反応前の溶液がミキサーへ到達する前に熱交換を行うための時間として20秒を設定した。各種溶液はシリンジポンプを用いて流出し、各ポンプの流量はそれぞれ、第1の溶液が1.2mL/min、第2の溶液が2.0mL/min、第3の溶液が2.0mL/minとした。
 実施例1における、アミドの製造方法の工程1の反応を以下に示す。
Figure JPOXMLDOC01-appb-C000015
 〔式中、Rはアルギニン側鎖(本実施例においては前記一般式(R0a―b)で表される基のうちZ及びZに対応する2箇所が保護基Cbzで保護されている)を表す。
 実施例1における、アミドの製造方法の工程2の反応を以下に示す。
Figure JPOXMLDOC01-appb-C000016
 〔式中、Rはアルギニン側鎖(本実施例においては前記一般式(R0a―b)で表される基のうちZ及びZに対応する2箇所が保護基Cbzで保護されている)を表す。
 実施例1における、アミドの製造方法の工程3の反応を以下に示す。
Figure JPOXMLDOC01-appb-C000017
 〔式中、Rはアルギニン側鎖(本実施例においては前記一般式(R0a―b)で表される基のうちZ及びZに対応する2箇所が保護基Cbzで保護されている)を表し、Rはフェニルアラニン側鎖を表す。〕
〔分析法〕
 目的物は、カラムクロマトグラフィーを用いて単離し、400MHzのH-NMRにて同定した。
 異性化率の分析はGC-MSを用いて行った。
 サンプルの調整は以下のように行った。得られたジペプチドの保護基を外した後、ペプチド/アミノ酸誘導体を重水素塩酸中で加水分解し、メチルアルコール中の重水素化物で試料をエステル化し、試薬を蒸発させた後、残留物をトリフルオロ酢酸無水物またはペンタフルオロプロピオン酸無水物を用いてアシル化した。
 目的物の収率は、単離精製した目的物の重量から算出した。即ち、アミンのモル当量比を1.0とし、単離されたジペプチドの重量から、アミンがカップリングした割合を算出した。
〔結果〕
 得られたジペプチドのNMRデータを以下に示す。
1H NMR (400 MHz, CDCl3, major rotamer): δ 9.45 (brs, 1H), 9.24 (brs, 1H), 7.36-7.07 (m, 15H), 5.21-5.11 (m, 6H), 4.45-4.41 (m, 1H), 3.98-3.96 (m, 2H), 3.63 (s, 3H), 3.37-3.32 (m, 1H), 2.99-2.93 (m, 1H), 2.79 (s, 3H), 1.69-1.60 (m, 2H), 1.45-1.39 (m, 10H), 1.12-1.07 (m, 1H).
 反応後の生成物を分析した結果、目的物であるジペプチドは、カップリング収率が85%であり、そのうちArg部位が異性化した割合は0.5%であった。
 実施例1の方法によれば、アミンに対するカルボン酸のモル当量比が1:1であるにもかかわらず、5分という短い時間で、80%以上と高いカップリング収率が得られた。また目的物に含まれるエピマーの生成率は1%以下であった。
<比較例1> 対称酸無水物法・Boc-Arg(NO)-OHの使用〔原料〕
 カルボン酸として用いたアミノ酸には、アミノ基がBoc基によって保護され、アルギニン側鎖がNO基で保護されたアルギニンであるBoc-Arg(NO)-OHを用いた。アミンとして用いたアミノ酸には、カルボキシル基がメチル基で保護され、かつアミノ基がメチル化されたフェニルアラニンであるH-MePhe-OMeを用いた。
〔酸アミドのフロー合成〕
 カルボン酸として用いたアミノ酸と、アミンとして用いたアミノ酸とのカップリング反応を行った。カップリング反応は、PTFE製チューブ(内径0.8mm,外径1.59mm)とT字型ミキサーで構成された流通系反応装置を用いた。反応前の溶液は3つに分けて調整した。第1の溶液は、カルボン酸として用いたBoc-Arg(NO)-OHと、DIEAとをDMFに溶解して得た。第2の溶液は、トリホスゲンをMeCNに溶解して得た。第3の溶液は、H-MePhe-OMeをMeCNに溶解して得た。流通系反応装置中でのそれぞれのモル濃度の比はH-MePhe-OMeが1.0に対して、トリホスゲンが0.40、DIEAが3.0、カルボン酸は2.5とした。
 流通系反応装置中でカップリングを行うために、初めに、第1の溶液と第2の溶液をT字型ミキサーにて混合し、流通系反応装置中で1秒間反応させることで酸無水物を得た。
その後すぐさま酸無水物を含む反応溶液と第3の溶液とを新たなT字型ミキサーを用いて混合し、流通系反応装置中で10秒、試験管に分取後約90分間反応させた。これらの反応は全て20℃で実施し、それぞれの反応前の溶液がミキサーへ到達する前に熱交換を行うための時間として20秒を設定した。各種溶液はシリンジポンプを用いて流出し、各ポンプの流量はそれぞれ、第1の溶液が2.0mL/min、第2の溶液が1.2mL/min、第3の溶液が2.0mL/minとした。
〔分析法・結果〕
 目的物の単離は、反応溶液を酸および塩基で処理を行った後、Biotage製のオートカラムを用いて単離し、400MHzのH-NMRにて同定した。
 2つのメジャーな化合物が単離でき、1つは目的物であるジペプチド(Boc-Arg(NO)-MePhe-OMe)であった。カップリング収率は39%であり、そのうちArg部位が異性化した割合をキラルカラム(HPLC)で分離したところ、14.1%が異性化していた。2つ目のメジャーな化合物は、δ-ラクタムであり酸無水物の状態から、一次反応によって得られる副生成物であった。トリホスゲンがすべて消費されたと仮定し、酸無水物の生成量を基準とし、δ-ラクタムが生成した割合を求めると46%であった。
 結果、カップリングを行うためにカルボン酸を活性化し酸無水物を得たが、カップリングと副反応が競争的に進行した。それにより、約50%の酸無水物が副反応に消費され、結果として、カップリング効率は50%以下となることが確認された。
 なお、実施例1では混合酸無水物法によりアミドを合成し、比較例1では対称酸無水物法によりアミドを合成したという違いがあるが、混合酸無水物法で生成するアシルピリジニウム種は対称酸無水物法で生成する対称酸無水物よりも活性が高いため、実施例1と同じく混合酸無水物法を採用した場合であっても、カルボン酸としてBoc-Arg(NO)-OHを用いた場合には、当然に、多くの副生成物が生じるものと考えられる。
<比較例2> 対称酸無水物法・Boc-Arg(Cbz)-OHの使用〔原料〕
 カルボン酸として用いたアミノ酸には、アミノ基がBoc基によって保護され、アルギニン側鎖の2箇所がCbz基で保護されたアルギニンであるBoc-Arg(Cbz)-OHを用いた。アミンとして用いるアミノ酸には、カルボキシル基がメチル基で保護され、かつアミノ基がメチル化されたフェニルアラニンであるH-MePhe-OMeを用いた。
〔酸アミドのフロー合成〕
 カルボン酸として用いたアミノ酸と、アミンとして用いたアミノ酸とのカップリング反応を行った。カップリング反応は、PTFE製チューブ(内径0.8mm, 外径1.59mm)とT字型ミキサーで構成された流通系反応装置を用いた。反応前の溶液は3つに分けて調整した。第1の溶液は、カルボン酸として用いたBoc-Arg(Cbz)-OHと、DIEAとをDMFに溶解して得た。第2の溶液には、トリホスゲンをMeCNに溶解して得た。第3の溶液は、アミンとして用いたH-MePhe-OMeをMeCNに溶解して得た。流通系反応装置中でのそれぞれのモル当量比は、H-MePhe-OMeが1.0に対してトリホスゲンが0.40、DIEAが3.0、カルボン酸として用いたBoc-Arg(Cbz)-OHは2.5とした。
 フロー系中でカップリングを行うために、初めに、第1の溶液と第2の溶液をT字型ミキサーにて混合し、流通系反応装置中で1秒間反応させることで酸無水物を得た。その後すぐさま酸無水物を含む反応溶液と第3の溶液とを新たなT字型ミキサーを用いて混合し、流通系反応装置中で10秒を0℃で実施し、試験管に分取後約40分間は室温(約24℃)にて反応させた。これらの反応は全てそれぞれの反応前の溶液がミキサーへ到達する前に熱交換を行うための時間として20秒を設定した。各種溶液はシリンジポンプを用いて流出し、各ポンプの流量はそれぞれ、第1の溶液2.0mL/min、第2の溶液1.2mL/min、第3の溶液2.0mL/minとした。
〔分析法・結果〕
 反応溶液をTLCで展開し分析した結果、原料とは異なるスポットが現れ、生成物を1点確認した。しかしながら反応溶液に対して水を添加すると生成物は分解し原料のスポットが濃くなることを確認した。
 結果、生成物は対称酸無水物である可能性が高く、Argの側鎖の2ヶ所に保護基を導入しそれらが対称酸無水物を生成したことから、アミンとのカップリング反応およびδ-ラクタム生成反応における反応点周りが嵩高くなったことにより、通常は不安定な中間体である対称酸無水物の状態で反応が停止したと考えられる。
 したがって、比較例2の方法では、アルギニン側鎖への2箇所の保護基の導入によって、副生成物であるδ-ラクタムの生成反応を抑制できたが、カップリング反応は進まず、アミドは製造されなかった。
1…流通系反応装置、11,12,13,14…タンク、21,22,23…ポンプ、31,32…混合機、f1,f2,f3,f4,f5…流路

Claims (13)

  1.  側鎖の2箇所のアミノ基又はイミノ基が保護基で保護されたアルギニン、アルギニン誘導体又はアルギニン類縁体と、ハロゲン化ギ酸エステルとを反応させた後に、アミンと反応させることを含む、アミドの製造方法。
  2.  側鎖の2箇所のアミノ基又はイミノ基が保護基で保護されたアルギニン、アルギニン誘導体又はアルギニン類縁体と、ハロゲン化ギ酸エステルとを反応させた後に、塩基と反応させ、アミンと反応させることを含む、請求項1に記載のアミドの製造方法。
  3.  側鎖の2箇所のアミノ基又はイミノ基が保護基で保護されたアルギニン、アルギニン誘導体又はアルギニン類縁体及びハロゲン化ギ酸エステルを混合して得られた混合物を反応させた生成物と、アミンとを混合させることを含む、アミドの製造方法。
  4.  側鎖の2箇所のアミノ基又はイミノ基が保護基で保護されたアルギニン、アルギニン誘導体又はアルギニン類縁体及びハロゲン化ギ酸エステルを混合して得られた混合物を反応させた生成物と、塩基と、アミンとを混合させることを含む、請求項3に記載のアミドの製造方法。
  5.  前記塩基が、ピリジン、ピリジン誘導体、イミダゾール、イミダゾール誘導体及び1,4-ジアザビシクロ[2,2,2]オクタンからなる群から選択されるいずれか一種以上である、請求項2又は4に記載のアミドの製造方法。
  6.  前記塩基が、4-モルホリノピリジン、N,N-ジメチル-4-アミノピリジン、4-ピロリジノピリジン、ピリジン、4-メトキシピリジン、イミダゾール、N-メチルイミダゾール及び1,4-ジアザビシクロ[2,2,2]オクタンからなる群より選択されるいずれか一種以上である請求項2又は4に記載のアミドの製造方法。
  7.  2箇所の前記保護基が、カルバメート系保護基又はスルホンアミド系保護基である、請求項1~6のいずれか一項に記載のアミドの製造方法。
  8.  前記ハロゲン化ギ酸エステルが、クロロギ酸イソプロピル、クロロギ酸イソブチル、ブロモギ酸イソプロピル及びブロモギ酸イソブチルからなる群から選択されるいずれか一種以上である、請求項1~7のいずれか一項に記載のアミドの製造方法。
  9.  前記アミンが、アミノ酸又はアミノ酸誘導体である、請求項1~8のいずれか一項に記載のアミドの製造方法。
  10.  前記アミンの求核性が、タンパク質を構成し遺伝情報としてコードされる20種のアミノ酸からバリン及びイソロイシンを除いた18種のアミノ酸の求核性よりも低い、請求項1~9のいずれか一項に記載のアミドの製造方法。
  11.  前記アミンが、バリン、イソロイシン若しくはN-アルキル化されたアミノ酸、又はそれらの誘導体である、請求項9又は10に記載のアミドの製造方法。
  12.  前記アミンと反応させることを、流通系反応装置で行う、請求項1~11のいずれか一項に記載のアミドの製造方法。
  13.  さらに、側鎖の2箇所のアミノ基又はイミノ基が保護基で保護されたアルギニン、アルギニン誘導体又はアルギニン類縁体と、ハロゲン化ギ酸エステルとを反応させることを、流通系反応装置で行う、請求項12に記載のアミドの製造方法。
PCT/JP2019/021107 2018-06-15 2019-05-28 アミドの製造方法 WO2019239880A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980038990.9A CN112262150A (zh) 2018-06-15 2019-05-28 酰胺的制备方法
EP19820266.5A EP3808759A4 (en) 2018-06-15 2019-05-28 METHOD FOR PRODUCING AMIDE
AU2019284746A AU2019284746B2 (en) 2018-06-15 2019-05-28 Method for producing amide
JP2020525411A JPWO2019239880A1 (ja) 2018-06-15 2019-05-28 アミドの製造方法
US17/252,053 US20210261610A1 (en) 2018-06-15 2019-05-28 Method for producing amide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018114782 2018-06-15
JP2018-114782 2018-06-15

Publications (1)

Publication Number Publication Date
WO2019239880A1 true WO2019239880A1 (ja) 2019-12-19

Family

ID=68843280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021107 WO2019239880A1 (ja) 2018-06-15 2019-05-28 アミドの製造方法

Country Status (6)

Country Link
US (1) US20210261610A1 (ja)
EP (1) EP3808759A4 (ja)
JP (1) JPWO2019239880A1 (ja)
CN (1) CN112262150A (ja)
AU (1) AU2019284746B2 (ja)
WO (1) WO2019239880A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0262892A (ja) * 1988-05-09 1990-03-02 Smithkline Beckman Corp 抗―凝集ペプチド
JPH08504779A (ja) * 1992-12-18 1996-05-21 バイエル・アクチエンゲゼルシヤフト 新規な非環式、硫黄含有ペプチド
JP2006502128A (ja) * 2002-07-29 2006-01-19 バイエル・ヘルスケア・アクチェンゲゼルシャフト 抗菌性エステル−マクロサイクル
JP2018114782A (ja) 2017-01-16 2018-07-26 近畿車輌株式会社 乗り物用シートユニット

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1523812A (en) * 1976-04-08 1978-09-06 Ici Ltd Polypeptide
JP2662998B2 (ja) * 1988-10-21 1997-10-15 第一製薬株式会社 プロリン含有ペプチド
JPH08231586A (ja) * 1994-12-28 1996-09-10 Ajinomoto Co Inc α−L−アスパルチルジペプチドアミド誘導体の製造法
JP2004345987A (ja) * 2003-05-21 2004-12-09 Mitsui Chemicals Inc 保護化ペプチド誘導体の製造方法
CN1305895C (zh) * 2004-01-13 2007-03-21 兰州凯博生物化学技术有限公司 混合酸酐法合成胸腺五肽的方法
CN100455593C (zh) * 2005-04-08 2009-01-28 重庆华邦制药股份有限公司 胸腺五肽合成方法
CN102304167B (zh) * 2011-07-20 2013-06-05 北京中科亚光生物科技有限公司 一种合成含有天冬氨酸-精氨酸及衍生物单元的多肽的新方法
HU230584B1 (hu) * 2014-02-28 2017-01-30 Szegedi Tudományegyetem Eljárás peptidek előállítására

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0262892A (ja) * 1988-05-09 1990-03-02 Smithkline Beckman Corp 抗―凝集ペプチド
JPH08504779A (ja) * 1992-12-18 1996-05-21 バイエル・アクチエンゲゼルシヤフト 新規な非環式、硫黄含有ペプチド
JP2006502128A (ja) * 2002-07-29 2006-01-19 バイエル・ヘルスケア・アクチェンゲゼルシャフト 抗菌性エステル−マクロサイクル
JP2018114782A (ja) 2017-01-16 2018-07-26 近畿車輌株式会社 乗り物用シートユニット

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FUSE, S. ET AL.: "Total synthesis of feglymycin based on a linear/convergent hybrid approach using micro-flow amide bond formation", NATURE COMMUNICATIONS, vol. 10, no. 1038, 28 November 2016 (2016-11-28), pages 1 - 7, XP055662919, DOI: 10.1038/ncomms13491 *
FUSE, S.MIFUNE, Y.NAKAMURA, H.TANAKA, H.: "Total synthesis of feglymycin based on a linear/convergent hybrid approach using micro-flow amide bond formation", NAT. COMMUN., vol. 7, 2016, pages 13491
FUSE, S.MIFUNE, Y.TAKAHASHI, T.: "Efficient Amide Bond Formation through a Rapid and StrongActivation of Carboxylic Acids in a Microflow Reactor", ANGEW CHEM. INT. ED., vol. 53, 2014, pages 851 - 855, XP055580806, DOI: 10.1002/anie.201307987
YUMA OTAKEHIROYUKI NAKAMURASHINICHIRO FUSE: "An efficient synthesis of N-methylated peptide using micro-flow methodology", THE 97TH ANNUAL MEETING OF THE CHEMICAL SOCIETY OF JAPAN, 16 March 2017 (2017-03-16), pages 3F4 - 14

Also Published As

Publication number Publication date
AU2019284746B2 (en) 2023-08-17
JPWO2019239880A1 (ja) 2021-02-12
EP3808759A1 (en) 2021-04-21
US20210261610A1 (en) 2021-08-26
CN112262150A (zh) 2021-01-22
AU2019284746A1 (en) 2021-01-14
EP3808759A4 (en) 2021-08-11

Similar Documents

Publication Publication Date Title
JP6744669B2 (ja) 水酸基を配向基とするエステルからアミドへの変換触媒
EP3617185A1 (en) Method for producing amide compound
Alfano et al. Amide bonds meet flow chemistry: a journey into methodologies and sustainable evolution
JP7356707B2 (ja) アミノ酸-n-カルボン酸無水物の製造方法
Dalidovich et al. Mechanochemical synthesis of amides with uronium-based coupling reagents: A method for hexa-amidation of biotin [6] uril
AU2019415174B2 (en) Method for producing amide
WO2019239880A1 (ja) アミドの製造方法
Métro et al. Amino Acids and Peptides in Ball Milling
Uspenskaya et al. Influence of the dipeptide linker configuration on the activity of PSMA ligands
WO2019239879A1 (ja) アミドの製造方法
JPWO2020175023A1 (ja) アミドの製造方法
WO2024214716A1 (ja) アミノ酸n-カルボキシ無水物(nca)の製造方法
WO2021132336A1 (ja) ペプチドの製造方法
Zangana Synthesis of Amino Acids from Chiral NiII Schiff Base Complexes for Novel Stapled Peptides
JP2000219683A (ja) N―カルバモイル保護基を有する化合物の脱カルバモイル化法、新規無水カルボン酸およびそれらの使用
EP3527580B1 (en) Continuous, solvent-free and non-enzymatic peptide synthesis by reactive extrusion
Kaudela MASTERARBEIT/MASTER’S THESIS
WO2023243720A1 (ja) シラン含有縮合環ジペプチド化合物の製造方法
WO2014005197A1 (en) Amino acid analogues and methods for their synthesis
Hill The synthesis of bicyclic guanidino amino acids

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19820266

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525411

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019284746

Country of ref document: AU

Date of ref document: 20190528

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2019820266

Country of ref document: EP