WO2023243720A1 - シラン含有縮合環ジペプチド化合物の製造方法 - Google Patents

シラン含有縮合環ジペプチド化合物の製造方法 Download PDF

Info

Publication number
WO2023243720A1
WO2023243720A1 PCT/JP2023/022441 JP2023022441W WO2023243720A1 WO 2023243720 A1 WO2023243720 A1 WO 2023243720A1 JP 2023022441 W JP2023022441 W JP 2023022441W WO 2023243720 A1 WO2023243720 A1 WO 2023243720A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
compound
groups
amino acid
Prior art date
Application number
PCT/JP2023/022441
Other languages
English (en)
French (fr)
Inventor
尚 山本
倫弘 服部
Original Assignee
学校法人中部大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人中部大学 filed Critical 学校法人中部大学
Priority to JP2023561912A priority Critical patent/JP7500119B2/ja
Publication of WO2023243720A1 publication Critical patent/WO2023243720A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/02General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length in solution
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides

Definitions

  • the present invention relates to a method for producing a novel silane-containing fused ring dipeptide compound.
  • Non-patent Documents 1 to 3 Non-patent Documents 1 to 3
  • amidation which is the most important step in peptide synthesis
  • the cost of disposal and purification of by-products accounts for most of the costs of peptide synthesis and is one of the biggest barriers to the development of this field.
  • Patent Document 4 technology to synthesize peptides consisting of various amino acid residues with high efficiency and high selectivity by deprotection
  • Patent Document 7 technology to synthesize peptides consisting of various amino acid residues with high efficiency and high selectivity by deprotection
  • Patent Document 7 technology to synthesize peptides consisting of various amino acid residues with high efficiency and high selectivity by deprotection
  • Patent Document 7 technology to synthesize peptides consisting of various amino acid residues with high efficiency and high selectivity by deprotection.
  • the method for producing the silane-containing fused ring dipeptide compound disclosed by the present inventors in Patent Document 8 includes a condensation reaction between an unprotected amino acid as an electrophilic species and an amino acid ester as a nucleophilic species, ester deprotection, and This method consists of a cyclization reaction.
  • This method does not require protection of the N-terminus of the electrophilic amino acid, and also allows automatic deprotection of the nucleophilic amino acid ester in the system, allowing additional peptides to be added to both ends of the generated peptide. It has the advantage of being able to carry out an elongation reaction.
  • an amino acid ester C-terminally protected amino acid
  • R 11 , R 12 , R 13 , R 21 , and R 22 are each independently a hydrogen atom, a halogen atom, a hydroxyl group, a carboxyl group, a nitro group, a cyano group, or a thiol group, or one or more substituents
  • R a1 and R a2 each independently represent a monovalent aliphatic hydrocarbon group or an aromatic hydrocarbon group which may have one or more substituents.
  • R b1 , R b2 , and R b3 are each independently a hydrogen atom, a halogen atom, or a monovalent aliphatic hydrocarbon group or an aromatic carbonization group which may have one or more substituents.
  • n b represents an integer of 1 or 2
  • Z b is an amino group, carbonylamino group, acetamido group, which may have one or more substituents, or 5 containing one or more nitrogen atoms as ring constituent atoms.
  • represents a 10-membered monovalent heterocyclic group
  • Z b represents a nitrogen-containing divalent linking group.
  • R a3 represents a hydrogen atom, a carboxyl group, a hydroxyl group, a monovalent aliphatic hydrocarbon group that may have one or more substituents, an aromatic hydrocarbon group, or a heterocyclic group; , where, in the case of a monovalent aliphatic hydrocarbon group, aromatic hydrocarbon group, or heterocyclic group, it may be bonded to the nitrogen atom via a linking group, Alternatively, R a1 and R a3 are bonded to each other to form a heterocycle which may have one or more substituents together with the carbon atom to which R a1 is bonded and the nitrogen atom to which R a3 is bonded.
  • a a1 and A a2 each independently represent a divalent aliphatic hydrocarbon group having 1 to 3 carbon atoms which may have one or more substituents, p a1 and p a2 each independently represent 0 or 1, m a is an integer of 1 or more and represents the number of structural units represented by the structure in [ ]. However, when m is 2 or more, the plurality of structural units represented by the structures in [ ] may be the same or different.
  • PG a , R a1 , R a2 , R a3 , A a1 , A a2 , p a1 , p a2 , and m a represent groups having the same definition as the groups with the same symbols in the formula (Ra), R 111 , R 112 , R 113 , R 211 , R 212 , R x11 , R x12 , PG x1 , R 121 , R 122 , R 123 , R 221 , R 222 , R x21 , and R x22 are represented by the formula ( Represents a group with the same definition as the group with the same symbol in P4).
  • Non-Patent Document 9 Non-Patent Document 9
  • Patent Document 8 This condensed ring dipeptide compound has both the N-terminus and C-terminus of the dipeptide protected by silicon, which is easily deprotected, so it can be easily deprotected and can be used as both a nucleophilic species and an electrophilic species. It is an extremely useful compound.
  • the fused ring tripeptide compound of the present invention is also possible to produce a novel silane-containing fused ring tripeptide compound (hereinafter may be abbreviated as "the fused ring tripeptide compound of the present invention", etc.) using the fused ring dipeptide compound of the present invention. It is.
  • a novel silane-containing fused ring tripeptide compound and its manufacturing method which is one of the gist of the present invention, will also be explained ([VI. The fused ring tripeptide compound of the present invention and its manufacturing method]).
  • a novel method for producing a polypeptide using the fused ring tripeptide compound of the present invention will also be explained ([VII. Method for producing a polypeptide using the fused ring tripeptide compound of the present invention]).
  • amino acid means a compound having a carboxyl group and an amino group.
  • the type of amino acid is not particularly limited.
  • it may be a D form, an L form, or a racemic form.
  • it may be any of ⁇ -amino acids, ⁇ -amino acids, ⁇ -amino acids, ⁇ -amino acids, ⁇ -amino acids, etc.
  • amino acids include, but are not limited to, natural amino acids that constitute proteins, and specific examples include valine, leucine, isoleucine, alanine, arginine, glutamine, lysine, aspartic acid, and glutamic acid. , proline, cysteine, threonine, methionine, histidine, phenylalanine, tyrosine, tryptophan, asparagine, glycine, serine and the like.
  • peptide refers to a compound in which multiple amino acids are linked via peptide bonds.
  • the plurality of amino acid units constituting the peptide may be of the same type, or may be two or more different types of amino acid units.
  • the number of amino acids constituting the peptide is not particularly limited as long as it is 2 or more. Examples include 2 (also referred to as a "dipeptide"), 3 (also referred to as a "tripeptide"), 4 (also referred to as a "tetrapeptide”), 5 (also referred to as a "pentapeptide"), 6, 7, 8, 9 , 10, 15, 20, 30, 40, 50, 100, or more.
  • a peptide larger than a tripeptide is sometimes referred to as a "polypeptide.”
  • an "amino group” refers to a group obtained by removing hydrogen from ammonia, a primary amine, or a secondary amine, each having the formula -NH 2 , -NRH, or -NRR' (where R and R' each means a substituent.) means a functional group represented by.
  • hydrocarbon groups may be aliphatic or aromatic.
  • the aliphatic hydrocarbon group may be chain or cyclic.
  • the chain hydrocarbon group may be linear or branched.
  • the cyclic hydrocarbon group may be monocyclic, bridged cyclic, or spirocyclic.
  • the hydrocarbon group may be saturated or unsaturated, in other words may contain one or more carbon-carbon double bonds and/or triple bonds. That is, the term "hydrocarbon group” includes alkyl groups, alkenyl groups, alkynyl groups, cycloalkyl groups, cycloalkenyl groups, cycloalkynyl groups, aryl groups, and the like.
  • one or more hydrogen atoms in the hydrocarbon group may be substituted with any substituent, and one or more carbon atoms in the hydrocarbon group may be substituted with any substituent depending on the valence. It may be replaced with any heteroatom.
  • hydrocarbon oxy group means a group in which the above-defined hydrocarbon group is connected to one bond of an oxy group (-O-).
  • the heterocyclic group may be saturated or unsaturated, in other words, it may contain one or more carbon-carbon double bonds and/or triple bonds. Further, the heterocyclic group may be monocyclic, bridged cyclic, or spirocyclic. Furthermore, the heteroatoms contained in the heterocyclic atoms of the heterocyclic group are not limited, but examples include nitrogen, oxygen, sulfur, phosphorus, silicon, and the like.
  • amino acids and their residues may be represented by three-letter abbreviations that are well known to those skilled in the art.
  • the three letter abbreviations of the main amino acids used in this disclosure are shown in the table below.
  • ⁇ -homoamino acids and their residues may be represented by adding “Ho” in front of the three-letter abbreviation of the corresponding ⁇ -amino acid.
  • fused ring dipeptide compound of the present invention One aspect of the present invention relates to a novel silane-containing fused ring dipeptide compound represented by the following formula (A) (hereinafter may be abbreviated as "the fused ring dipeptide compound of the present invention", etc.) as appropriate.
  • R 11 , R 12 , R 13 , R 21 , and/or R 22 is a monovalent aliphatic hydrocarbon group, aromatic, which may have one or more substituents.
  • a linking group is interposed between the aliphatic hydrocarbon group, aromatic hydrocarbon group, or heterocyclic group and the carbon atom to which it is bonded. You may do so.
  • Such linking groups are not limited to, but are each independently selected from, for example, the structures shown below (in the following chemical formula, each A independently has one or more substituents). represents a monovalent aliphatic hydrocarbon group, aromatic hydrocarbon group, or heterocyclic group, which may be ).
  • R 11 , R 12 , R 13 , R 21 , and/or R 22 is an aromatic hydrocarbon group (which may have one or more substituents), such
  • the number of carbon atoms of the aromatic hydrocarbon group is not particularly limited, but the upper limit is, for example, 20 or less, 15 or less, 10 or less, 8 or less, or 6 or less. etc.
  • the lower limit varies depending on the type of aromatic hydrocarbon group, but is usually 4 or more, for example 5 or more, or 6 or more. Specific examples of the number of atoms are, for example, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20.
  • R a1 and R a2 each independently represent a monovalent aliphatic hydrocarbon group or an aromatic hydrocarbon group which may have one or more substituents. When these groups have a substituent, the type thereof is arbitrarily selected from those detailed above. The number of substituents is also not limited, and is, for example, 5, 4, 3, 2, 1, or 0.
  • R a1 and/or R a2 is an aliphatic hydrocarbon group (which may have one or more substituents), the substituent of the aliphatic hydrocarbon group (if it has a substituent)
  • the number of carbon atoms is not particularly limited, but the upper limit is, for example, 20 or less, 15 or less, 10 or less, 8 or less, or 6 or less.
  • the lower limit varies depending on the type of aliphatic hydrocarbon group, but is 1 or more for alkyl groups, 2 or more for alkenyl or alkynyl groups, and 3 or more for cycloalkyl groups, such as 4 or more, or 5 or more. It is.
  • Specific examples of the number of atoms include 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20. It is.
  • the side chains of these ⁇ -amino acids may contain one or more of the above-mentioned substituents (for example, halogen, etc.) and/or one or more of the below-mentioned protecting groups (carboxyl group protecting group and/or amino (protecting group), such as t-butyl substituted asparagine, t-butyl substituted glutamine, t-butyl substituted serine, t-butyl substituted threonine, t-butyl substituted tryptophan, t-butyl substituted lysine, Boc Substituted asparagine, Boc substituted glutamine, Boc substituted serine, Boc substituted threonine, Boc substituted tryptophan, Boc substituted lysine, t-butyl substituted aspartic acid, t-butyl substituted glutamic acid, trityl substituted asparagine, trityl substituted glutamine, trityl substituted substituted
  • the N-terminal amino group (HNR 13 -) of the first amino acid of formula (R1) and the C-terminal carboxyl group (-COOH) of the second amino acid of formula (R2) are both unprotected.
  • the method for producing a fused ring dipeptide compound of the present invention can produce a silane-containing fused ring dipeptide having a desired structure even when unprotected amino acids are used as both the first amino acid which is an electrophilic species and the second amino acid which is a nucleophilic species.
  • a major advantage is that compounds can be specifically synthesized.
  • n b represents an integer of 1 or 2.
  • each of the aforementioned groups of Z b has a substituent
  • the type thereof is as described above, but among them, an alkyl group (for example, a straight or branched chain having 1 to 10 carbon atoms) ), alkoxy group (-OR), amino group (-NH 2 ), alkylamino group (-NHR), dialkylamino group (-NR 2 : two
  • the alkyl groups R may be the same or different.
  • thioalkyl groups (-SR) and groups in which these groups are substituted with one or more halogen atoms (for example, bromine or chlorine atoms) are preferred.
  • Specific examples of the number of substituents are, for example, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, or 0. When the number of substituents is two or more, these may be the same or different.
  • step (ii) the second silane compound of formula (S2) forms a silyl ester with the second unprotected amino acid, which is a nucleophile, and protects the terminal carboxyl group of the second amino acid. do.
  • step (iii) by mixing both reactants, the terminal carboxyl group of the first amino acid is differentiated from the first amino acid, which is an electrophilic species, and the second amino acid, which is an electrophilic species. It is presumed that this makes it possible to specifically react with the terminal amino group of the second amino acid.
  • TMS-OTf trimethylsilyl trifluoromethanesulfonate
  • dimethylsilylimidazole dimethylsilyl(2-methyl)imidazole, 1-(trimethylsilyl)imidazole (TMSIM), dimethylethylsilylimidazole (DMESI), dimethylisopropylsilylimidazole (DMIPSI) ), 1-(tert-butyldimethylsilyl)imidazole (TBSIM), 1-(trimethylsilyl)triazole, 1-(tert-butyldimethylsilyl)triazole, N-methyl-Ntrimethylsilyltrifluoroacetamide (MSTFA), N, O-bis(trimethylsilyl)trifluoroacetamide (BSTFA), N,O-bis(trimethylsilyl)acetamide (BSA), N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide (MTB
  • step (iii) may include a step of mixing the reaction system with a fourth silane compound.
  • the fourth silane compound is not essential, carrying out step (iii) in the presence of the fourth silane compound in the reaction system provides various advantages such as improved reaction efficiency and reaction specificity. There may be cases where Without being bound by theory, even if Si-OH is generated from the first silane compound and/or the second silane compound after the peptide bond is formed in step (iii), the fourth silane It is presumed that Si-OH can be blocked as Si-O-Si due to the coexistence of the compound.
  • TMS-OTf trimethylsilyl trifluoromethanesulfonate
  • dimethylsilylimidazole dimethylsilyl(2-methyl)imidazole, 1-(trimethylsilyl)imidazole (TMSIM), dimethylethylsilylimidazole (DMESI), dimethylisopropylsilylimidazole (DMIPSI) ), 1-(tert-butyldimethylsilyl)imidazole (TBSIM), 1-(trimethylsilyl)triazole, 1-(tert-butyldimethylsilyl)triazole, N-methyl-Ntrimethylsilyltrifluoroacetamide (MSTFA), N, O-bis(trimethylsilyl)trifluoroacetamide (BSTFA), N,O-bis(trimethylsilyl)acetamide (BSA), N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide (MTB
  • a Lewis acid catalyst may be present in the reaction system.
  • a Lewis acid catalyst By carrying out the reaction in the presence of a Lewis acid catalyst in the reaction system, various advantages such as improved reaction yield and stereoselectivity may be obtained.
  • a Lewis acid catalyst it may be necessary to separate and remove the Lewis acid catalyst from the reaction product. Therefore, it is preferable to appropriately decide whether or not to use a Lewis acid catalyst, taking into consideration the purpose of using the production method of the present invention.
  • the type thereof is not limited, but it is preferably a metal compound that functions as a Lewis acid.
  • the metal elements constituting the metal compound include various metals belonging to Groups 2 to 15 of the Periodic Table of Elements. Specific examples of the metal elements include boron, magnesium, aluminum, gallium, indium, silicon, calcium, lead, bismuth, mercury, transition metals, lanthanoid elements, and the like.
  • transition metals include scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, yttrium, zirconium, niobium, molybdenum, technetium, ruthenium, rhodium, palladium, tin, silver, cadmium, Examples include hafnium, tantalum, tungsten, rhenium, osmium, iridium, platinum, gold, and thallium.
  • lanthanoid elements include lanthanum, cerium, neodymium, samarium, europium, gadolinium, holmium, erbium, thulium, ytterbium, and the like.
  • titanium, zirconium, hafnium, tantalum, niobium, boron, vanadium, tungsten, neodymium, iron, lead, and cobalt are preferred from the viewpoint of producing amide compounds with high stereoselectivity and exhibiting an excellent reaction promotion effect.
  • metal elements contained in the metal compound may be one or two or more. When the metal compound contains two or more metal elements, these may be of the same type, or may be two or more different metal elements.
  • the ligands constituting the metal compound are appropriately selected depending on the type of metal.
  • Specific examples of the ligand include substituted or unsubstituted linear or branched chains having 1 to 10 carbon atoms, such as methoxy, ethoxy, propoxy, butoxy, trifluoroethoxy, and trichloroethoxy groups.
  • alkoxy groups halogen atoms such as fluorine, chlorine, bromine, and iodine; allyloxy groups having 1 to 10 carbon atoms; acetylacetonate groups (acac), acetoxy groups (AcO), trifluoromethanesulfonate groups ( TfO); substituted or unsubstituted linear or branched alkyl group having 1 to 10 carbon atoms; phenyl group, oxygen atom, sulfur atom, group -SR (where R is a substituent, Examples include substituted or unsubstituted hydrocarbon groups having about 1 to 20 carbon atoms.), group -NRR' (where R and R' are each independently a hydrogen atom or a substituent). Examples of substituents include substituted or unsubstituted hydrocarbon groups having about 1 to 20 carbon atoms), cyclopentadienyl (Cp) groups, and the like.
  • substituents include substituted or unsubstituted hydrocarbon groups having
  • a titanium compound a zirconium compound, a hafnium compound, a tantalum compound, or a niobium compound is preferable. Specific examples of each are listed below. Incidentally, any one of these may be used alone, but two or more may be used in combination in any combination and ratio.
  • a specific example of a titanium compound is TiX 1 4 (However, each of the four X 1s is independently a ligand as exemplified above. The four X 1s may be the same ligand or may be different from each other. ) may be mentioned.
  • X 1 is an alkoxy group, preferably a straight chain or branched alkoxy group having 1 to 10 carbon atoms, especially a straight chain or branched alkoxy group having 1 to 5 carbon atoms, and more preferably a straight chain or branched alkoxy group having 1 to 5 carbon atoms. -4 linear or branched alkoxy groups, etc.
  • X 1 is an allyloxy group, preferably an allyloxy group having 1 to 20 carbon atoms, particularly an allyloxy group having 1 to 15 carbon atoms, and more preferably an allyloxy group having 1 to 10 carbon atoms.
  • These ligands may further have a substituent.
  • X 1 is a halogen atom, preferred examples include a chlorine atom and a bromine atom.
  • X 2 is an allyloxy group, preferably an allyloxy group having 1 to 20 carbon atoms, particularly an allyloxy group having 1 to 15 carbon atoms, and more preferably an allyloxy group having 1 to 10 carbon atoms.
  • These ligands may further have a substituent.
  • X 2 is a halogen atom, preferred examples include a chlorine atom and a bromine atom.
  • X 3 is an allyloxy group, preferably an allyloxy group having 1 to 20 carbon atoms, particularly an allyloxy group having 1 to 15 carbon atoms, and more preferably an allyloxy group having 1 to 10 carbon atoms.
  • These ligands may further have a substituent.
  • X 3 is a halogen atom, preferred examples include a chlorine atom and a bromine atom. Among these, for example, HfCp 2 Cl 2 , HfCpCl 3 , HfCl 4 and the like are preferred.
  • a specific example of a tantalum compound is TaX 4 5 (However, each of the five X 4s is independently a ligand as exemplified above. The five X 4s may be the same ligand or may be different from each other. ) is exemplified.
  • X 4 is an alkoxy group, it is preferably a straight or branched alkoxy group having 1 to 10 carbon atoms, especially a straight or branched alkoxy group having 1 to 5 carbon atoms, and more preferably a straight or branched alkoxy group having 1 to 5 carbon atoms. -3 linear or branched alkoxy groups, etc.
  • tantalum alkoxide compounds for example, compounds in which X 4 is an alkoxy group
  • tantalum alkoxide compounds such as Ta(OMe) 5 , Ta(OEt) 5 , Ta(OBu) 5 , Ta(NMe 2 ) 5 , Ta(acac)(OEt) 4 , TaCl 5 , TaCl 4 (THF), TaBr 5 and the like are preferred.
  • Compounds in which X 4 is oxygen, ie Ta 2 O 5 can also be used.
  • niobium compound is NbX 5 5 (however, each of the five X 5s is independently a ligand as exemplified above. The five X 5s may be the same ligand or may be different from each other).
  • examples include niobium compounds represented by: When X 5 is an alkoxy group, preferably a straight chain or branched alkoxy group having 1 to 10 carbon atoms, especially a straight chain or branched alkoxy group having 1 to 5 carbon atoms, and more preferably a straight chain or branched alkoxy group having 1 to 5 carbon atoms. -3 linear or branched alkoxy groups, etc.
  • X 5 is an allyloxy group, preferably an allyloxy group having 1 to 20 carbon atoms, particularly an allyloxy group having 1 to 15 carbon atoms, and more preferably an allyloxy group having 1 to 10 carbon atoms.
  • These ligands may further have a substituent.
  • X 5 is a halogen atom, preferred examples include a chlorine atom and a bromine atom.
  • niobium alkoxide compounds for example, compounds in which X 5 is an alkoxy group
  • NbCl 4 (THF) NbCl 5 , Nb(OMe) 5 , Nb(OEt) 5 and the like are preferable.
  • Compounds in which X 5 is oxygen, ie Nb 2 O 5 can also be used.
  • the Lewis acid catalyst may be supported on a carrier.
  • the carrier supporting the Lewis acid catalyst is not particularly limited, and any known carrier can be used. Furthermore, known methods can be employed as a method for supporting the Lewis acid catalyst on a carrier.
  • a base may be present in the reaction system from the viewpoint of increasing reaction efficiency.
  • the type of base is not limited, and any known base known to improve reaction efficiency can be used.
  • examples of such bases include those having 1 to 1 carbon atoms, such as tetrabutylammonium fluoride (TBAF), triethylamine (Et 3 N), diisopropylamine (i-Pr 2 NH), diisopropylethylamine (i-Pr 2 EtN), etc.
  • examples include amines having 1 to 4 linear or branched alkyl groups of 10. Any one of these may be used alone, or two or more may be used in combination in any combination and ratio.
  • ⁇ Other ingredients In the method for producing a fused ring dipeptide compound of the present invention, other components may be present in the reaction system. Examples of such other components include, but are not limited to, iodine, trimethylsilyl chloride, trimethylsilyl bromide, trimethylsilyl iodide, and the like. Any one of these may be used alone, or two or more may be used in combination in any combination and ratio.
  • the reaction may be carried out in a solvent.
  • the solvent is not particularly limited, and examples thereof include aqueous solvents and organic solvents.
  • Organic solvents include, but are not limited to, aromatic hydrocarbons such as toluene and xylene, pentane, petroleum ether, tetrahydrofuran (THF), 1-methyltetrahydrofuran (1-MeTHF), diisopropyl ether (i-Pr 2 O), diethyl ether (Et 2 O), ethers such as cyclopentyl methyl ether (CPME), nitrogen-based organic solvents such as acetonitrile (MeCN), chlorine-based organic solvents such as dichloromethane (DCM), ethyl acetate (AcOEt) and organic acids such as acetic acid. These solvents may be used alone or in combination of two or more.
  • step (i) the first amino acid of formula (R1) among the substrate compounds is brought into contact with the first silane compound of formula (S1) to react;
  • step (ii) the other substrate compound, the amino acid of formula (R2), is brought into contact with the second silane compound of formula (S2) to react.
  • step (iii) the reactant of step (i) and the reactant of step (ii) are mixed and further reacted to obtain the fused ring dipeptide compound of formula (A).
  • the fused ring dipeptide compound of the present invention is formed by the first amino acid of formula (R1) which is an electrophilic species and the second amino acid of formula (R2) which is a nucleophilic species.
  • the reaction mechanism is not bound by theory, the present inventors speculate as follows. That is, in step (i), the first silane compound of formula (S1) forms a five-membered ring with the first unprotected amino acid, which is an electrophilic species, and protects the terminal amino group of the first amino acid.
  • step (ii) the second silane compound of formula (S2) forms a silyl ester with the second unprotected amino acid, which is a nucleophile, and protects the terminal carboxyl group of the second amino acid. do.
  • step (iii) by mixing both reactants, the terminal carboxyl group of the first amino acid is differentiated from the first amino acid, which is an electrophilic species, and the second amino acid, which is an electrophilic species. It is presumed that this makes it possible to specifically react with the terminal amino group of the second amino acid.
  • the timing of adding other components such as the optionally used third and/or fourth silane compound, Lewis acid catalyst, and base to the reaction system is not particularly limited, and they may be added at any timing.
  • the third silane compound it is preferably added to the system at the start of step (i).
  • the fourth silane compound it is preferably added to the system at the start of step (iii).
  • a Lewis acid catalyst it is preferably added to the system at the start of step (ii).
  • a base it is preferably added to the system at the start of step (i).
  • the components may be mixed in the solvent and brought into contact with each other.
  • the amounts of each component used are not limited, but are preferably as follows.
  • the amount of the first silane compound of formula (S1) to be used is not particularly limited as long as it does not interfere with the reaction, but for example, the amount of the first silane compound of formula (S1) per mole of the amino acid of formula (R1) For example, 0.1 mol or more, or 0.2 mol or more, or 0.3 mol or more, or 0.4 mol or more, or 0.5 mol or more, and also, for example, 20 mol or less, or 15 mol or less, or 10 It can be used in a range of mol or less, 8 mol or less, 6 mol or less, 4 mol or less, or 2 mol or less.
  • the total amount of the two or more types of first silane compounds of formula (S1) may satisfy the above range. .
  • the amount of the second silane compound of formula (S2) to be used is not particularly limited as long as it does not interfere with the reaction, but for example, the amount of the second silane compound of formula (S2) per mole of the amino acid of formula (R2) For example, 0.2 mol or more, or 0.4 mol or more, or 0.6 mol or more, or 0.8 mol or more, or 1.0 mol or more, and, for example, 40 mol or less, or 30 mol or less, or 20 It can be used in a range of mol or less, 15 mol or less, 10 mol or less, 6 mol or less, or 4 mol or less.
  • the total amount of the two or more types of second silane compounds of formula (S2) may satisfy the above range. .
  • the amount used is not particularly limited as long as it does not interfere with the reaction. mol or more, or 0.2 mol or more, or 0.3 mol or more, or 0.4 mol or more, or 0.5 mol or more, and also, for example, 20 mol or less, or 15 mol or less, or 10 mol or less, or 8 It can be used in a range of mol or less, 6 mol or less, 4 mol or less, or 2 mol or less. Note that when two or more types of third silane compounds are used together, the total amount of the two or more types of third silane compounds may satisfy the above range.
  • the amount used is not particularly limited as long as it does not interfere with the reaction, but for example, 0.2 mol or more, or 0.4 mol or more, or 0.6 mol or more, or 0.8 mol or more, or 1.0 mol or more, and also, for example, 40 mol or less, or 30 mol or less, or 20 mol or less, or 15 It can be used in a range of mol or less, 10 mol or less, 6 mol or less, or 4 mol or less.
  • the total amount of the two or more types of fourth silane compounds may satisfy the above range.
  • the amount used is not particularly limited, but for example, 0.2 mol or more, or 0.4 mol or more, or 0.6 mol or more, per 1 mol of the amino acid of formula (R1), or 0.8 mole or more, or 1.0 mole or more, and also, for example, 40 mole or less, or 30 mole or less, or 20 mole or less, or 15 mole or less, or 10 mole or less, or 6 mole or less, or 4 mole or less It can be used within the range of.
  • the amount used is not particularly limited, but when the amount of the amino acid of formula (R1) is 100 mol%, it is usually 0.1 mol% or more, for example 0.2 mol% or more, or 0. 3 mol% or more, and usually 30 mol% or less, for example 20 mol% or less, or 15 mol% or less of Lewis acid catalyst can be used.
  • reaction conditions in the method for producing a fused ring dipeptide compound of the present invention are not limited as long as the reaction proceeds, but examples for each reaction procedure are as follows.
  • reaction conditions for bringing the amino acid of formula (R1) into contact with the first silane compound of formula (S1) to react are not limited as long as the reaction proceeds, but for example, as follows. It is.
  • reaction temperature in step (i) is not limited as long as the reaction proceeds, but is, for example, 0°C or higher, or 10°C or higher, or 20°C or higher, or, for example, 100°C or lower, or 80°C or lower, or 60°C or lower. It can be done.
  • the reaction pressure in step (i) is also not limited as long as the reaction proceeds, and may be carried out under reduced pressure, normal pressure, or increased pressure, but usually it can be carried out at normal pressure.
  • reaction atmosphere in step (i) is also not limited as long as the reaction proceeds, but the reaction can be carried out in an atmosphere of an inert gas such as argon or nitrogen.
  • reaction time of step (i) is also not limited as long as the reaction proceeds, but from the viewpoint of allowing the reaction to proceed sufficiently and efficiently, for example, 10 minutes or more, or 20 minutes or more, or 30 minutes or more, for example. It can be within 80 hours, or within 60 hours, or within 50 hours.
  • reaction conditions for bringing the amino acid of formula (R2) into contact with the second silane compound of formula (S2) to react are not limited as long as the reaction proceeds, but for example, as follows. It is.
  • reaction temperature in step (ii) is not limited as long as the reaction proceeds, but is, for example, 0°C or higher, or 10°C or higher, or 20°C or higher, or, for example, 100°C or lower, or 80°C or lower, or 60°C or lower. It can be done.
  • reaction pressure in step (ii) is also not limited as long as the reaction proceeds, and may be carried out under reduced pressure, normal pressure, or increased pressure, but usually it can be carried out at normal pressure.
  • reaction atmosphere in step (ii) is also not limited as long as the reaction proceeds, but the reaction can be carried out in an atmosphere of an inert gas such as argon or nitrogen.
  • reaction time of step (ii) is also not limited as long as the reaction proceeds, but from the viewpoint of allowing the reaction to proceed sufficiently and efficiently, for example, 10 minutes or more, or 20 minutes or more, or 30 minutes or more, for example. It can be within 80 hours, or within 60 hours, or within 50 hours.
  • reaction conditions for bringing the reactant of step (i) and the reactant of step (ii) into contact and reacting are not limited as long as the reaction proceeds, but for example, the following conditions may be used. be.
  • reaction pressure in step (iii) is also not limited as long as the reaction proceeds, and may be carried out under reduced pressure, normal pressure, or increased pressure, but usually it can be carried out at normal pressure.
  • reaction atmosphere in step (iii) is also not limited as long as the reaction proceeds, but the reaction can be carried out in an atmosphere of an inert gas such as argon or nitrogen.
  • steps (i), (ii), and (iii) may each be carried out in a sequential method (batch method) or in a continuous method (flow method). Details of specific sequential (batch) and continuous (flow) method implementation procedures are known in the art. Alternatively, step (i) and step (iii) may be performed continuously in one pod by adding the reactant of step (ii) to the reaction system of step (i).
  • the fused ring dipeptide compound of the present invention obtained by the above production method may be further subjected to various post-treatments.
  • the produced fused ring dipeptide compound of the present invention can be isolated and purified according to conventional methods such as column chromatography and recrystallization.
  • the produced fused ring dipeptide compound of the present invention may be used for producing a polypeptide, either directly or after isolation and purification, by subjecting it to the method for producing a polypeptide of the present invention described below.
  • the fused ring dipeptide compound of the present invention can be used in various reactions, it is particularly suitable for use in the production of polypeptides.
  • the method for producing a polypeptide using the fused ring dipeptide compound of the present invention includes two types of embodiments (hereinafter, these embodiments will be referred to as "the first method for producing a polypeptide of the present invention” and “the method of producing the first polypeptide of the present invention”). ).
  • the method for producing a polypeptide using the fused ring dipeptide compound of the present invention is not limited to these two embodiments.
  • the first method for producing a polypeptide of the present invention is a method in which one molecule of the fused ring dipeptide compound of the present invention is used for producing one molecule of a polypeptide compound, the method comprising: a fused ring dipeptide compound of the formula (A); By reacting a protected amino acid or a protected peptide compound represented by the following formula (R3) with an amino acid ester or a peptide ester compound represented by the following formula (R4), a polypeptide represented by the following formula (P1) is produced.
  • a method comprising obtaining a compound.
  • ⁇ Silane-containing fused ring dipeptide compound (substrate compound) The amino acid used as a substrate compound in the first method for producing a polypeptide of the present invention is a silane-containing condensed ring dipeptide compound represented by the above formula (A) (the condensed ring dipeptide compound of the present invention). The details are as described above.
  • ⁇ Protected amino acids ⁇ Peptides and amino acids ⁇ Peptide esters are compounds represented by the following formulas (R3) and (R4), respectively. be.
  • R 31 , R 32 , R 41 , and R 42 each independently represent a hydrogen atom, a halogen atom, a hydroxyl group, a carboxyl group, a nitro group, a cyano group, or a thiol group, Alternatively, it represents an amino group, a monovalent aliphatic hydrocarbon group, a monovalent aromatic hydrocarbon group, or a monovalent heterocyclic group, which may have one or more substituents. In addition, when these groups have a substituent, the type is as described above. Specific examples of the number of substituents are, for example, 5, 4, 3, 2, 1, or 0.
  • R 31 , R 32 , R 41 , and/or R 42 is a monovalent aliphatic hydrocarbon group which may have one or more substituents. , an aromatic hydrocarbon group, or a heterocyclic group, there is a linking group between the aliphatic hydrocarbon group, aromatic hydrocarbon group, or heterocyclic group and the carbon atom to which it is bonded. may be present.
  • Such linking groups are not limited to, but are each independently selected from, for example, the structures shown below (in the following chemical formula, each A independently has one or more substituents). represents a monovalent aliphatic hydrocarbon group, aromatic hydrocarbon group, or heterocyclic group, which may be ).
  • R 31 , R 32 , R 41 , and/or R 42 is an aliphatic hydrocarbon group
  • the aliphatic hydrocarbon group (if it has a substituent)
  • the number of carbon atoms (including the substituents) is not particularly limited, but the upper limit is, for example, 20 or less, 15 or less, 10 or less, 8 or less, or 6 or less.
  • the lower limit varies depending on the type of aliphatic hydrocarbon group, but is 1 or more for alkyl groups, 2 or more for alkenyl or alkynyl groups, and 3 or more for cycloalkyl groups, such as 4 or more, or 5 or more. It is.
  • Specific examples of the number of atoms include 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20. It is.
  • R 31 , R 32 , R 41 , and/or R 42 is an aromatic hydrocarbon group
  • the aromatic hydrocarbon group if it has a substituent
  • the number of carbon atoms (including substituents) is not particularly limited, but the upper limit is, for example, 20 or less, 15 or less, 10 or less, 8 or less, or 6 or less.
  • the lower limit varies depending on the type of aromatic hydrocarbon group, but is usually 4 or more, for example 5 or more, or 6 or more. Specific examples of the number of atoms are, for example, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20.
  • R 31 , R 32 , R 41 , and/or R 42 when R 31 , R 32 , R 41 , and/or R 42 is a heterocyclic group, the heterocyclic group (if any, the substituent)
  • the total number of carbon atoms (including groups) and heteroatoms is not particularly limited, but the upper limit is, for example, 20 or less, 15 or less, 10 or less, 8 or less, or 6 or less.
  • the lower limit varies depending on the type of heterocyclic structure, but is usually 3 or more, for example 4 or more, or 5 or more. Specific examples of the number of atoms are, for example, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20.
  • R 31 , R 32 , R 41 , and R 42 in formula (R3) and formula (R4) each independently represent a hydrogen atom, a hydroxyl group, a thiol group, a carboxyl group, a nitro group, a cyano group, or a halogen atom, Or, an amino group, an alkyl group, an alkenyl group, a cycloalkyl group, an alkoxy group, an aryl group, an aryloxy group, an acyl group, a heterocyclic group, or a heterocyclic group, which may have one or more substituents.
  • it is an oxy group or the like.
  • R 31 , R 32 , R 41 , and R 42 in formula (R3) and formula (R4) include, but are not limited to, the following.
  • ⁇ Hydrogen atom hydroxyl group, thiol group, carboxyl group, nitro group, cyano group
  • ⁇ Halogen atoms such as fluorine atoms, chlorine atoms, bromine atoms, and iodine atoms
  • R 33 and R 43 are each independently a hydrogen atom, a carboxyl group, a hydroxyl group, or a monovalent group which may have one or more substituents. represents a hydrocarbon group or a heterocyclic group.
  • substituents when a substituent is present, the type thereof is as described above. Specific examples of the number of substituents are, for example, 5, 4, 3, 2, 1, or 0.
  • R 33 and/or R 43 may have one or more substituents, a monovalent aliphatic hydrocarbon group, an aromatic hydrocarbon group, Or, in the case of a heterocyclic group, a linking group may be interposed between the aliphatic hydrocarbon group, aromatic hydrocarbon group, or heterocyclic group and the nitrogen atom to which it is bonded.
  • Such linking groups are not limited to, but are each independently selected from, for example, the structures shown below (in the following chemical formula, each A independently has one or more substituents). represents a monovalent aliphatic hydrocarbon group, aromatic hydrocarbon group, or heterocyclic group, which may be ).
  • R 33 and/or R 43 when R 33 and/or R 43 is an aliphatic hydrocarbon group, the aliphatic hydrocarbon group (including the substituent if it has a substituent)
  • the number of carbon atoms is not particularly limited, but the upper limit is, for example, 20 or less, 15 or less, 10 or less, 8 or less, or 6 or less.
  • the lower limit varies depending on the type of aliphatic hydrocarbon group, but is 1 or more for alkyl groups, 2 or more for alkenyl or alkynyl groups, and 3 or more for cycloalkyl groups, such as 4 or more, or 5 or more. It is.
  • Specific examples of the number of atoms include, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20. It is.
  • R 33 and/or R 43 is an aromatic hydrocarbon group
  • the aromatic hydrocarbon group (including the substituent if it has a substituent)
  • the number of carbon atoms is not particularly limited, but the upper limit is, for example, 20 or less, 15 or less, 10 or less, 8 or less, or 6 or less.
  • the lower limit varies depending on the type of aromatic hydrocarbon group, but is usually 4 or more, for example 5 or more, or 6 or more. Specific examples of the number of atoms are, for example, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20.
  • R 33 and/or R 43 when R 33 and/or R 43 is a heterocyclic group, the carbon atom of such heterocyclic group (including the substituent if it has a substituent)
  • the total number of heteroatoms is not particularly limited, but the upper limit is, for example, 20 or less, 15 or less, 10 or less, 8 or less, or 6 or less.
  • the lower limit varies depending on the type of heterocyclic structure, but is usually 3 or more, for example 4 or more, or 5 or more. Specific examples of the number of atoms are 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20, for example.
  • R 33 and/or R 43 in formula (R3) and formula (R4) may each independently have a hydrogen atom, a hydroxyl group, or a carboxyl group, or one or more substituents, Preferably, it is an alkyl group, an alkenyl group, a cycloalkyl group, an alkoxy group, an aryl group, an aryloxy group, an acyl group, a heterocyclic group, a heterocyclic oxy group, or the like.
  • R 33 and/or R 43 in formula (R3) and formula (R4) include, but are not limited to, the following.
  • ⁇ Hydrogen atom hydroxyl group, carboxyl group
  • R 31 and R 33 are bonded to each other and have one or more substituents together with the carbon atom to which R 31 is bonded and the nitrogen atom to which R 33 is bonded. It may also form a good heterocycle.
  • R 41 and R 43 are bonded to each other and have one or more substituents together with the carbon atom to which R 41 is bonded and the nitrogen atom to which R 43 is bonded. may form a heterocyclic ring.
  • the type thereof is as described above. Specific examples of the number of substituents are, for example, 5, 4, 3, 2, 1, or 0.
  • the total number of carbon atoms and heteroatoms in such a heterocyclic group has an upper limit of, for example, 20 or less, 15 or less, 10 or less, 8 or less, or 6 or less. It is.
  • the lower limit varies depending on the type of heterocyclic structure, but is usually 3 or more, for example 4 or more, or 5 or more. Specific examples of the number of atoms are, for example, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20.
  • heterocycles include, but are not limited to, pyrrolinyl, pyrrolyl, 2,3-dihydro-1H-pyrrolyl, piperidinyl, piperazinyl, homopiperazinyl, and morpholino groups.
  • thiomorpholino group 1,2,4,6-tetrahydropyridyl group, hexahydropyrimidyl group, hexahydropyridazyl group, 1,2,4,6-tetrahydropyridyl group, 1,2,4,6 -tetrahydropyridazyl group, 3,4-dihydropyridyl group, imidazolyl group, 4,5-dihydro-1H-imidazolyl group, 2,3-dihydro-1H-imidazolyl group, pyrazolyl group, 4,5-dihydro-1H -pyrazolyl group, 2,3-dihydro-1H-pyrazolyl group, oxazolyl group, 4,5-dihydro-1,3-oxazolyl group, 2,3-dihydro-1,3-oxazolyl group, 2,5-dihydro- 1,3-oxazolyl group, thiazolyl group,
  • a 31 , A 32 , A 41 , and A 42 are each independently a carbon number 1 to 3 carbon atom that may have one or more substituents. represents a valent aliphatic hydrocarbon group. Specific examples include, but are not limited to, methylene groups, ethylene groups, propylene groups, isopropylene groups, and groups in which these groups are substituted with one or more of the above substituents. Can be mentioned. Specific examples of the number of substituents are, for example, 3, 2, 1, or 0.
  • p31, p32, p41, and p42 each independently represent 0 or 1.
  • m and n are each independently an integer of 1 or more representing the number of structural units represented by the structure in [ ]. That is, m represents the number of amino acid units in [ ] in formula (R3). When m is 1, the compound of formula (R3) becomes a protected amino acid, and when m is 2 or more, the compound of formula (R3) becomes a protected peptide. Similarly, n represents the number of amino acid units in [ ] in formula (R4). When n is 1, the compound of formula (R4) becomes an amino acid ester, and when n is 2 or more, the compound of formula (R4) becomes a peptide ester.
  • m and n are not particularly limited as long as the reaction proceeds, but for example, 100 or less, 80 or less, 60 or less, 50 or less, 40 or less, 30 or less, 20 or less, 15 or less, 12 or less, or 10 or less. It is. Specific examples of m and n are each independently 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, etc.
  • PG a represents a protecting group for an amino group.
  • the protecting group PG a for an amino group is not particularly limited as long as it can protect the amino group from reacting during a given reaction and can be deprotected and converted to an amino group after the reaction. Not done. Details of such a protecting group for an amino group will be described later.
  • PG b represents a carboxyl group protecting group.
  • the carboxyl group protecting group PGb is particularly limited as long as it can protect the carboxyl group from reacting during a given reaction and can be deprotected and converted into a carboxyl group after the reaction. Not done.
  • the details of the carboxyl group protecting group are as described above.
  • the amino group protecting group PG a used in each production method of the present invention (the method for producing a fused ring dipeptide compound of the present invention, and the method for producing the first and second polypeptides of the present invention) is a known
  • a wide variety of types are known. Examples include monovalent aliphatic hydrocarbon groups or aromatic hydrocarbon groups which may have one or more substituents, or monovalent aliphatic hydrocarbon groups or aromatic hydrocarbon groups which may have one or more substituents. valent heterocyclic groups and the like. Among these, monovalent aliphatic hydrocarbon groups or aromatic hydrocarbon groups which may have one or more substituents are preferred.
  • linking group may be present between such aliphatic hydrocarbon group, aromatic hydrocarbon group, or heterocyclic group and the nitrogen atom of the amino group it protects (the nitrogen atom to which PG a is bonded in formula (R3)).
  • Such linking groups are not limited to, but are each independently selected from, for example, the linking groups shown below (in the following chemical formula, each A independently has one or more substituents). Represents a monovalent aliphatic hydrocarbon group, aromatic hydrocarbon group, or heterocyclic group that may be ).
  • the number of carbon atoms in the amino group protecting group PG a is usually 1 or more, or 3 or more, and usually 20 or less, or 15 or less.
  • the amino group protecting group PG a is a monovalent aliphatic hydrocarbon group or an aromatic hydrocarbon group, an acyl group, a hydrocarbon oxycarbonyl group, which may have one or more substituents, It is preferably one or more groups selected from the group consisting of a hydrocarbon sulfonyl group, and an amide group.
  • amino group protecting group PG a Specific examples of the amino group protecting group PG a are listed below.
  • names for the protecting group of an amino group in addition to the name of the functional group bonded to the nitrogen atom of the amino group, there are also names that include the nitrogen atom, and the following names also include both. It is.
  • unsubstituted or substituted hydrocarbon groups include alkyl groups such as methyl, ethyl, and propyl; alkenyl groups such as ethenyl, propenyl, and allyl; alkynyl groups such as propargyl; cyclopropyl; cycloalkyl groups such as cyclobutyl, cyclopentyl, and cyclohexyl groups; aryl groups such as phenyl, benzyl, paramethoxybenzyl, tolyl, and triphenylmethyl (troc groups); substituted hydrocarbons such as cyanomethyl Examples include groups. The number of carbon atoms is usually 1 or more, or 3 or more, and usually 20 or less, or 15 or less.
  • unsubstituted or substituted acyl groups include benzoyl group (Bz), orthomethoxybenzoyl group, 2,6-dimethoxybenzoyl group, paramethoxybenzoyl group (PMPCO), cinnamoyl group, phthaloyl group (Phth), etc. Can be mentioned.
  • unsubstituted or substituted hydrocarbon oxycarbonyl groups include tert-butoxycarbonyl group (Boc), benzyloxycarbonyl group (Cbz or Z), methoxycarbonyl group, ethoxycarbonyl group, 2-trimethylsilylethoxycarbonyl group, 2-phenylethoxycarbonyl group, 1-(1-adamantyl)-1-methylethoxycarbonyl group, 1-(3,5-di-t-butylphenyl)-1-methylethoxycarbonyl group, vinyloxycarbonyl group, allyl Oxycarbonyl group (Alloc), N-hydroxypiperidinyloxycarbonyl group, p-methoxybenzyloxycarbonyl group, p-nitrobenzyloxycarbonyl group, 2-(1,3-dithianyl)methoxycarbonyl, m-nitrophenoxycarbonyl group, 3,5-dimethoxybenzyloxycarbonyl group, o-nitrobenzy
  • unsubstituted or substituted hydrocarbon sulfonyl group examples include a methanesulfonyl group (Ms), a toluenesulfonyl group (Ts), a 2- or 4-nitrobenzenesulfonyl group (Ns), and the like.
  • Ms methanesulfonyl group
  • Ts toluenesulfonyl group
  • Ns 2- or 4-nitrobenzenesulfonyl group
  • unsubstituted or substituted amide groups include acetamide, o-(benzoyloxymethyl)benzamide, 2-[(t-butyldiphenylsiloxy)methyl]benzamide, 2-toluenesulfonamide, 4-toluenesulfonamide. , 2-nitrobenzenesulfonamide, 4-nitrobenzenesulfonamide, tert-butylsulfinylamide, 4-toluenesulfonamide, 2-(trimethylsilyl)ethanesulfonamide, benzylsulfonamide, and the like.
  • a protecting group that can be deprotected by one type of method is also mentioned as an example of the protecting group PG a for an amino group.
  • Preferred specific examples of the amino group protecting group PG a include a mesyl group (Ms), a tert-butoxycarbonyl group (Boc), a benzyl group (Bn or Bzl), a benzyloxycarbonyl group (Cbz), and a benzoyl group (Bz).
  • Ms mesyl group
  • Boc tert-butoxycarbonyl group
  • Bn or Bzl a benzyl group
  • Cbz benzyloxycarbonyl group
  • Bz benzoyl group
  • amino group protecting group PG a include mesyl group (Ms), tert-butoxycarbonyl group (Boc), benzyloxycarbonyl group (Cbz), benzyl group (Bn), paramethoxybenzyl group (PMB).
  • amino group protecting group PG a examples include mesyl group (Ms), tert-butoxycarbonyl group (Boc), benzyloxycarbonyl group (Cbz), benzyl group (Bn), paramethoxybenzyl group (PMB). ), 2,2,2-trichloroethoxycarbonyl group (Troc), allyloxycarbonyl group (Alloc), paramethoxybenzoyl group (PMPCO), benzoyl group (Bz), cyanomethyl group, cinnamoyl group, and the like.
  • Ms mesyl group
  • Boc tert-butoxycarbonyl group
  • Cbz benzyloxycarbonyl group
  • Bn benzyl group
  • PMB paramethoxybenzyl group
  • Troc 2,2,2-trichloroethoxycarbonyl group
  • allyloxycarbonyl group Alloc
  • paramethoxybenzoyl group PMPCO
  • a condensing agent and/or a racemization inhibitor may be present in the reaction system.
  • the method may further include a step of deprotecting the amino group protecting group PG a and/or the carboxyl group protecting group PG b of the polypeptide compound of formula (P1).
  • Carboxyl group protecting group examples include monovalent aliphatic hydrocarbon groups, aromatic hydrocarbon groups, and heterocyclic groups that may have one or more substituents.
  • a substituent when a substituent is present, the type thereof is as described above. Specific examples of the number of substituents are, for example, 5, 4, 3, 2, 1, or 0.
  • the number of carbon atoms in the aliphatic hydrocarbon group is not particularly limited, but the upper limit is, for example, 20 or less, 15 or less, 10 or less, 8 or less, or 6 or less.
  • the lower limit varies depending on the type of aliphatic hydrocarbon group, but is 1 or more for alkyl groups, 2 or more for alkenyl or alkynyl groups, and 3 or more for cycloalkyl groups, such as 4 or more, or 5 or more. It is.
  • Specific examples of the number of atoms include 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20. It is.
  • the number of carbon atoms in the aromatic hydrocarbon group is not particularly limited, but the upper limit is, for example, 20 or less, 15 or less, 10 or less, 8 or less, or 6 or less.
  • the lower limit varies depending on the type of aromatic hydrocarbon group, but is usually 4 or more, for example 5 or more, or 6 or more.
  • Specific examples of the number of atoms are, for example, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20.
  • carboxyl group protecting group PG b examples include, but are not limited to, the following.
  • a condensing agent may be present in the system from the viewpoint of increasing the efficiency of the peptide formation reaction.
  • the type of condensing agent is not limited, and any known condensing agent known to improve condensation reaction efficiency can be used. Examples of such condensing agents include: Any one of these may be used alone, or two or more may be used in combination in any combination and ratio.
  • Carbodiimide condensing agent 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide (wsc, edc), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (wscHCl, edcHCl), N , N'-dicyclohexylcarbodiimide (DCC), N,N'-diisopropylcarbodiimide (DIC), and the like.
  • ⁇ Phosphonium condensing agent 1H-benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate (BOP), 1H-benzotriazol-1-yloxytripyrrolidinophosphonium hexafluorophosphate (PyBOP), (7-azabenzotriazol-1-yloxy)tripyrrolidinophosphonium hexafluorophosphate (PyAOP), chlorotripyrrolidinophosphonium hexafluorophosphate (PyCloP), bromotris(dimethylamino)phosphonium Hexafluorophosphate (Brop), 3-(diethoxyphosphoryloxy)-1,2,3-benzotriazin-4(3H)-one (DEPBT), etc.
  • BOP 1H-benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate
  • - Imidazole condensing agent N,N'-carbonyldiimidazole (CDI), 1,1'-carbonyldi(1,2,4-triazole) (CDT), etc.
  • ⁇ Uronium-based condensing agent O-(benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HBTU), O-(7-azabenzotriazole-1 -yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HATU), O-(N-succinimidyl)-N,N,N',N'-tetramethyluronium tetra Fluoroborate (TSTU) etc.
  • HBTU O-(benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate
  • HATU O-(7-azabenzotriazole-1 -yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate
  • TSTU O-(N-s
  • Triazine condensing agent 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride n-hydrate (DMT-MM), etc.
  • a racemization inhibitor may be used in combination from the viewpoint of preventing racemization during the peptide formation reaction.
  • the type of racemization inhibitor is not limited either, and any known racemization inhibitor known to prevent racemization during the condensation reaction can be used.
  • racemization inhibitors include 1-hydroxybenzotriazole (HOBt), 1-hydroxy-7-azabenzotriazole (HOAtN-hydroxysuccinimide (HOSu), N,N'-disuccinimidyl carbonate). (DSC), etc. Any one of these may be used alone, or two or more may be used in combination in any combination and ratio.
  • a base may coexist in the system from the viewpoint of increasing reaction efficiency.
  • the type of base is not limited, and any known base known to improve reaction efficiency can be used.
  • examples of such bases include those having 1 to 1 carbon atoms, such as tetrabutylammonium fluoride (TBAF), triethylamine (Et 3 N), diisopropylamine (i-Pr 2 NH), diisopropylethylamine (i-Pr 2 EtN), etc.
  • examples include amines having 1 to 4 linear or branched alkyl groups of 10, and inorganic bases such as cesium fluoride. Any one of these may be used alone, or two or more may be used in combination in any combination and ratio.
  • the substrate compound is the above-mentioned fused ring dipeptide compound of formula (A), the protected amino acid or protected peptide of formula (R3), the amino acid ester or peptide ester of formula (R4), and
  • other components include, but are not limited to, conventional catalysts that can be used in amidation reactions, silane compounds, phosphorus compounds, and the like. Any one of these may be used alone, or two or more may be used in combination in any combination and ratio.
  • catalysts include various Lewis acid catalysts detailed in the section of the method for producing the fused ring dipeptide compound of the present invention, such as titanium compounds, zirconium compounds, hafnium compounds, tantalum compounds, niobium compounds, etc., and methylaluminum compounds.
  • Lewis acid catalysts such as titanium compounds, zirconium compounds, hafnium compounds, tantalum compounds, niobium compounds, etc.
  • methylaluminum compounds such as titanium compounds, zirconium compounds, hafnium compounds, tantalum compounds, niobium compounds, etc.
  • methylaluminum compounds such as titanium compounds, zirconium compounds, hafnium compounds, tantalum compounds, niobium compounds, etc.
  • methylaluminum compounds such as titanium compounds, zirconium compounds, hafnium compounds, tantalum compounds, niobium compounds, etc.
  • methylaluminum compounds such as titanium compounds, zirconium compounds, hafnium compounds
  • silane compounds include HSi(OCH ( CF3 ) 2 ) 3 , HSi( OCH2CF3 ) 3 , HSi( OCH2CF2CF2H ) 3 , HSi( OCH2CF2CF2CF2CF ) .
  • trimethylsilyl trifluoromethanesulfonate TMS-OTf
  • TMSIM 1-(trimethylsilyl)imidazole
  • DMESI dimethylethylsilylimidazole
  • DMIPSI dimethylisopropylsilylimidazole
  • TBSIM 1-(tert-butyldimethylsilyl)imidazole
  • TBSIM 1-(trimethylsilyl)triazole, 1-(tert-butyldimethylsilyl)triazole, dimethylsilylimidazole, dimethylsilyl (2 -Methyl)imidazole
  • TMBS trimethylbromosilane
  • TMCS trimethylchlorosilane
  • MSTFA N,O-bis(trimethylsilyl)trifluoroacetamide
  • phosphorus compounds include phosphine compounds (e.g., trimethylphosphine, triethylphosphine, tripropylphosphine, trimethyloxyphosphine, triethyloxyphosphine, triproxyphosphine, triphenylphosphine, trinaphthylphosphine, triphenyloxyphosphine, Tris(4-methylphenyl)phosphine, tris(4-methoxyphenyl)phosphine, tris(4-fluorophenyl)phosphine, tris(4-methylphenyloxy)phosphine, tris(4-methoxyphenyloxy)phosphine, tris(4-fluorophenyl)phosphine -fluorophenyloxy)phosphine etc.), phosphate compounds (e.g., trimethylphosphine, triethylphosphine, tripropylphosphine,
  • a solvent may be used during the reaction.
  • the solvent is not particularly limited, and examples thereof include aqueous solvents and organic solvents.
  • Organic solvents include, but are not limited to, aromatic hydrocarbons such as toluene and xylene, pentane, petroleum ether, tetrahydrofuran (THF), 1-methyltetrahydrofuran (1-MeTHF), diisopropyl ether (i-Pr 2 O), ethers such as diethyl ether (Et 2 O) and cyclopentyl methyl ether (CPME), nitrogen-based organic solvents such as acetonitrile (MeCN), chlorine-based organic solvents such as dichloromethane (DCM), and ethyl acetate (AcOEt). and organic acids such as acetic acid. These solvents may be used alone or in combination of two or more.
  • the ring of the amino acid residue on the left side in the formula of the fused ring dipeptide compound of formula (A) opens, and the protected amino acid or protected peptide of formula (R3) is linked to the N-terminus, and )
  • the ring of the amino acid residue on the right side in the formula of the fused ring dipeptide compound is opened, and the protected amino acid or protected peptide of formula (R4) is linked to the C-terminus, and as a result, the polypeptide compound of formula (P1) is formed.
  • the order of mixing each substrate compound is not limited as long as the above reaction occurs. Examples include the following two embodiments, but the mixing order of each substrate compound is not limited to these.
  • step (i) a protected amino acid or a protected peptide of formula (R3) is added to a fused ring dipeptide compound of formula (A) and reacted, and then, as step (ii), a compound of formula Examples include an embodiment in which the amino acid ester or peptide ester of (R4) is added to the reaction system and reacted.
  • step (i) the ring of the amino acid residue on the left side in the formula of the fused ring dipeptide compound of formula (A) is opened, and the protected amino acid or protected peptide of formula (R3) is linked to the N-terminus.
  • step (ii) the ring of the amino acid residue on the right side in the formula of the fused ring dipeptide compound of formula (A) is opened, and the protected amino acid or protected peptide of formula (R4) is linked to the C-terminus, As a result, a polypeptide compound of formula (P1) is formed.
  • step (i) an amino acid ester or peptide ester of formula (R4) is added to the fused ring dipeptide compound of formula (A) and reacted, and then as step (ii), Examples include an embodiment in which the protected amino acid or protected peptide (R3) is added to the reaction system and reacted.
  • step (i) the ring of the amino acid residue on the right side in the formula of the fused ring dipeptide compound of formula (A) is opened, and the protected amino acid or protected peptide of formula (R4) is connected to the C-terminus.
  • step (ii) the ring of the amino acid residue on the left side in the formula of the fused ring dipeptide compound of formula (A) is opened, and the protected amino acid or protected peptide of formula (R3) is linked to the N-terminus, As a result, a polypeptide compound of formula (P1) is formed.
  • timing of adding other components such as an optional condensing agent and a base to the reaction system is not particularly limited, and they may be added at any timing.
  • a condensing agent and/or a base it is preferable to add it to the system at the beginning of step (i) and/or step (ii) in both the first and second embodiments.
  • a racemization inhibitor is used in addition to the condensing agent, it is preferably added to the system together with the condensing agent.
  • the components may be mixed in the solvent and brought into contact with each other.
  • the ratio of the fused ring dipeptide compound of formula (A) to the protected amino acid or protected peptide of formula (R3) is not particularly limited, but the ratio of the fused ring dipeptide compound of formula (A) to the fused ring dipeptide compound of formula (R3) is not particularly limited.
  • Protected amino acid or protected peptide for example, 0.1 mol or more, or 0.2 mol or more, or 0.3 mol or more, or 0.4 mol or more, or 0.5 mol or more, and, for example, 20 mol or less, Alternatively, it can be used in a range of 15 mol or less, 10 mol or less, 8 mol or less, 6 mol or less, 4 mol or less, or 2 mol or less.
  • the quantitative ratio of the fused ring dipeptide compound of formula (A) to the amino acid ester or peptide ester of formula (R4) is not particularly limited, of amino acid ester or peptide ester, for example, 0.1 mol or more, or 0.2 mol or more, or 0.3 mol or more, or 0.4 mol or more, or 0.5 mol or more, and, for example, 20 mol or less, Alternatively, it can be used in a range of 15 mol or less, 10 mol or less, 8 mol or less, 6 mol or less, 4 mol or less, or 2 mol or less.
  • the target production amount of the polypeptide compound of formula (P1) of the present invention to be produced is the amount of the fused ring dipeptide compound of formula (A) as a substrate, the protected amino acid or protected peptide of formula (R3). , and the amino acid ester or peptide ester of formula (R4) must be used in an amount of 1 mole or more, respectively.
  • the amount used is not particularly limited, but the amount of the base is, for example, 0.2 mol or more, or 0.4 mol or more, or 0.6 mol or more, per 1 mol of the fused ring dipeptide compound of formula (A). mol or more, or 0.8 mol or more, or 1.0 mol or more, and also, for example, 40 mol or less, or 30 mol or less, or 20 mol or less, or 15 mol or less, or 10 mol or less, or 6 mol or less, or It can be used in a range of 4 moles or less.
  • the amount used is not particularly limited, but the amount of the condensing agent is, for example, 0.2 mol or more, 0.4 mol or more, or 0. .6 moles or more, or 0.8 moles or more, or 1.0 moles or more, and also, for example, 40 moles or less, or 30 moles or less, or 20 moles or less, or 15 moles or less, or 10 moles or less, or 6 moles or less , or 4 moles or less.
  • the amount used is not particularly limited, but for example, 0.2 mol or more of the racemization inhibitor per 1 mol of the fused ring dipeptide compound of formula (A), or 0.4 mol or more, or 0.6 mol or more, or 0.8 mol or more, or 1.0 mol or more, and also, for example, 40 mol or less, or 30 mol or less, or 20 mol or less, or 15 mol or less, Alternatively, it can be used in a range of 10 mol or less, 6 mol or less, or 4 mol or less.
  • reaction conditions in the first peptide production method of the present invention are not limited as long as the reaction proceeds, but examples are as follows for each reaction procedure for each of the first and second aspects. .
  • reaction conditions for adding and reacting the fused ring dipeptide compound of formula (A) with the protected amino acid or protected peptide of formula (R3) in step (i) are such that the reaction proceeds.
  • examples include the following.
  • reaction temperature in step (i) is not limited as long as the reaction proceeds, but is, for example, 0°C or higher, or 10°C or higher, or 20°C or higher, or, for example, 100°C or lower, or 80°C or lower, or 60°C or lower. It can be done.
  • the reaction pressure in step (i) is also not limited as long as the reaction proceeds, and may be carried out under reduced pressure, normal pressure, or increased pressure, but usually it can be carried out at normal pressure.
  • reaction atmosphere in step (i) is also not limited as long as the reaction proceeds, but the reaction can be carried out in an atmosphere of an inert gas such as argon or nitrogen.
  • reaction time of step (i) is also not limited as long as the reaction proceeds, but from the viewpoint of allowing the reaction to proceed sufficiently and efficiently, for example, 10 minutes or more, or 20 minutes or more, or 30 minutes or more, for example. It can be within 80 hours, or within 60 hours, or within 50 hours.
  • step (ii) the reaction conditions when adding the amino acid ester or peptide ester of formula (R4) to the reaction system and reacting are not limited as long as the reaction proceeds, and are, for example, as follows.
  • reaction temperature in step (ii) is not limited as long as the reaction proceeds, but is, for example, 0°C or higher, or 10°C or higher, or 20°C or higher, or, for example, 100°C or lower, or 80°C or lower, or 60°C or lower. It can be done.
  • reaction pressure in step (ii) is also not limited as long as the reaction proceeds, and may be carried out under reduced pressure, normal pressure, or increased pressure, but usually it can be carried out at normal pressure.
  • reaction atmosphere in step (ii) is also not limited as long as the reaction proceeds, but the reaction can be carried out in an atmosphere of an inert gas such as argon or nitrogen.
  • reaction time of step (ii) is also not limited as long as the reaction proceeds, but from the viewpoint of allowing the reaction to proceed sufficiently and efficiently, for example, 10 minutes or more, or 20 minutes or more, or 30 minutes or more, for example. It can be within 80 hours, or within 60 hours, or within 50 hours.
  • reaction conditions for adding and reacting the fused ring dipeptide compound of formula (A) with the amino acid ester or peptide ester of formula (R4) in step (i) are as follows: Although there are no limitations as far as the process progresses, examples include the following.
  • reaction temperature in step (i) is not limited as long as the reaction proceeds, but is, for example, 0°C or higher, or 10°C or higher, or 20°C or higher, or, for example, 100°C or lower, or 80°C or lower, or 60°C or lower. It can be done.
  • the reaction pressure in step (i) is also not limited as long as the reaction proceeds, and may be carried out under reduced pressure, normal pressure, or increased pressure, but usually it can be carried out at normal pressure.
  • reaction atmosphere in step (i) is also not limited as long as the reaction proceeds, but the reaction can be carried out in an atmosphere of an inert gas such as argon or nitrogen.
  • reaction time of step (i) is also not limited as long as the reaction proceeds, but from the viewpoint of allowing the reaction to proceed sufficiently and efficiently, for example, 10 minutes or more, or 20 minutes or more, or 30 minutes or more, for example. It can be within 80 hours, or within 60 hours, or within 50 hours.
  • step (ii) the reaction conditions when adding the protected amino acid or protected peptide of formula (R3) to the reaction system and reacting are not limited as long as the reaction proceeds, and are, for example, as follows.
  • reaction temperature in step (ii) is not limited as long as the reaction proceeds, but is, for example, 0°C or higher, or 10°C or higher, or 20°C or higher, or, for example, 100°C or lower, or 80°C or lower, or 60°C or lower. It can be done.
  • reaction pressure in step (ii) is also not limited as long as the reaction proceeds, and may be carried out under reduced pressure, normal pressure, or increased pressure, but usually it can be carried out at normal pressure.
  • reaction atmosphere in step (ii) is also not limited as long as the reaction proceeds, but the reaction can be carried out in an atmosphere of an inert gas such as argon or nitrogen.
  • reaction time of step (ii) is also not limited as long as the reaction proceeds, but from the viewpoint of allowing the reaction to proceed sufficiently and efficiently, for example, 10 minutes or more, or 20 minutes or more, or 30 minutes or more, for example. It can be within 80 hours, or within 60 hours, or within 50 hours.
  • step (i) and step (ii) may be performed in a sequential method (batch method) or in a continuous method (flow method). It's okay. Details of specific sequential (batch) and continuous (flow) method implementation procedures are known in the art. Alternatively, step (i) and step (ii) may be performed continuously in one pod.
  • ⁇ Polypeptide (target compound) The polypeptide compound that is the target compound finally produced in the first polypeptide production method of the present invention is a compound represented by the following formula (P1).
  • R 11 , R 12 , R 13 , R 21 , and R 22 represent the same groups as defined in formula (A) above
  • PG a , R 31 , R 32 , R 33 , A 31 , A 32 , p31, p32, and m represent the same groups as defined in the formula (R3)
  • PG b , R 41 , R 42 , R 43 , A 41 , A 42 , p41, p42, and n are , represents the same group as defined in formula (R4) above.
  • the compound of formula (R3) is a protected dipeptide and the compound of formula (R4) is an amino acid ester (that is, when m is 2 and n is 1)
  • the compound of formula (R3) is
  • the compound of formula (R4) is a protected amino acid and is a dipeptide ester (that is, when m is 1 and n is 2)
  • the compound of formula (R3) is a protected dipeptide and the compound of formula (R4) is a dipeptide ester (that is, when m is 2 and n is 2)
  • polypeptide compound of formula (P1) obtained by the above-mentioned production method may be further subjected to various post-treatments.
  • post-treatments include isolation and purification of the obtained polypeptide compound of formula (P1), deprotection of the amino group-protecting group PG a and/or the carboxyl group-protecting group PG b , and the like. Such post-processing will be described in detail later.
  • the second method for producing a polypeptide of the present invention is a method using two molecules of the fused ring dipeptide compound of the present invention for producing one molecule of polypeptide, and includes at least the following steps (i) to (iii). It's a method.
  • (i) A step of adding and reacting a protected amino acid or a protected peptide represented by the following formula (R3) to a silane-containing condensed ring dipeptide compound represented by the following formula (A1).
  • R3 silane-containing condensed ring dipeptide compound represented by the following formula (A1).
  • a step of adding a silane-containing condensed ring dipeptide compound represented by the following formula (A2) to the reaction product of step (i) and further reacting it.
  • a polypeptide compound represented by the following formula (P1) is obtained by adding an amino acid ester or a peptide ester represented by the following formula (R4) to the reaction product of step (ii) and further reacting it.
  • the silane-containing condensed ring dipeptide compound used as a substrate compound in the method for producing the second polypeptide of the present invention is a silane-containing condensed ring dipeptide compound represented by the above formula (A) (the condensed ring dipeptide compound of the present invention). ), but differs from the method for producing the first polypeptide of the present invention described above in that two molecules of a silane-containing condensed ring dipeptide compound are used to synthesize one molecule of polypeptide.
  • they shall be represented by the following formulas (A1) and (A2), respectively.
  • R 111 , R 112 , R 113 , R 121 , and R 122 in formula (A1) and R 211 , R 212 , R 213 , R 221 , and R 222 in formula (A2) each independently represent the formula It represents the same definition as R 11 , R 12 , R 21 , and R 22 in (A).
  • R a11 and R a12 in formula (A1) and R a21 and R a22 in formula (A2) each independently represent the same definitions as R a1 and R a2 in formula (A). The details are as described above.
  • ⁇ Protected amino acids ⁇ Peptides and amino acids ⁇ Peptide esters (substrate compounds):
  • the protected amino acid or protected peptide and the amino acid ester or peptide ester used as the substrate compound in the method for producing the second polypeptide of the present invention are expressed by the formulas described above. (R3) and a compound represented by formula (R4). The details are as described above.
  • a condensing agent may be present in the system from the viewpoint of increasing the efficiency of the peptide formation reaction.
  • a racemization inhibitor may be used in combination. The details of the condensing agent and the racemization inhibitor are as described above in the description of the first peptide production method of the present invention.
  • a base may also be allowed to coexist in the system from the viewpoint of increasing reaction efficiency.
  • the details of the base are also as described in detail in the explanation of the first peptide production method of the present invention.
  • the substrate compounds are the fused ring dipeptide compounds of formula (A1) and formula (A2), the protected amino acid or protected peptide of formula (R3), and the amino acid ester of formula (R4).
  • other components may be present in addition to the peptide ester and optionally used base, condensing agent, and racemization inhibitor. Examples include catalysts, silane compounds, phosphorus compounds, and the like. The details of these other components are also as described in detail in the explanation of the first peptide production method of the present invention.
  • reaction may be carried out in a solvent.
  • a solvent The details of such a solvent are also as described in detail in the explanation of the first peptide production method of the present invention.
  • the N-terminus of the latter amino acid residue is connected to the C-terminus of the latter amino acid residue, and the ring of the amino acid residue on the left side of the fused ring dipeptide compound of formula (A1) opens, and the N-terminus of the latter amino acid residue opens.
  • the protected amino acid or protected peptide of formula (R3) is linked, and furthermore, the ring of the amino acid residue on the right side in the formula of the fused ring dipeptide compound of formula (A2) is opened to form the protected amino acid or protected peptide of formula (R4). are linked, resulting in the formation of a polypeptide compound of formula (P2).
  • the order of mixing each substrate compound is not limited as long as the above reaction occurs. Examples include the following two embodiments, but the mixing order of each substrate compound is not limited to these.
  • step (i) a protected amino acid or a protected peptide of formula (R3) is added to the fused ring dipeptide compound of formula (A1) and reacted, and then as step (ii), a fused ring dipeptide compound of formula (A1) is reacted with ) is added to the reaction system and reacted, and as step (iii), the amino acid ester or peptide ester of formula (R4) is added to the reaction system and reacted.
  • step (i) the ring of the amino acid residue on the left side in the formula of the fused ring dipeptide compound of formula (A1) is opened, and the protected amino acid or protected peptide of formula (R3) is connected to the N-terminus.
  • step (ii) the ring of the amino acid residue on the right side in the formula of the fused ring dipeptide compound of formula (A1) and the ring of the amino acid residue on the left side of the formula of the fused ring dipeptide compound of formula (A2) are both opened. Then, the N-terminus of the latter amino acid residue is linked to the C-terminus of the former amino acid residue, and in step (iii), the ring of the amino acid residue on the right side of the formula (A2) is Upon opening, a protected amino acid or protected peptide of formula (R4) is linked, resulting in the formation of a polypeptide compound of formula (P2).
  • step (i) an amino acid ester or peptide ester of formula (R4) is added to the fused ring dipeptide compound of formula (A2) and reacted, and then as step (ii), the fused ring dipeptide compound of formula (A2) is reacted. ) is added to the reaction system and reacted, and as step (iii), the protected amino acid or protected peptide of formula (R3) is added to the reaction system and reacted.
  • step (i) the ring of the amino acid residue on the right side in the formula of the fused ring dipeptide compound of formula (A2) is opened, and the protected amino acid or protected peptide of formula (R4) is linked
  • step (ii) the ring of the amino acid residue on the right side in the formula of the fused ring dipeptide compound of formula (A1) and the ring of the amino acid residue on the left side of the formula of the fused ring dipeptide compound of formula (A2) are both opened, and the former
  • the N-terminus of the latter amino acid residue is connected to the C-terminus of the amino acid residue
  • step (iii) the ring of the left amino acid residue in the fused ring dipeptide compound of formula (A1) is opened, and the ring of the amino acid residue on the left in the formula (A1) is opened.
  • a protected amino acid or a protected peptide of formula (R3) is linked to the N-terminus, resulting in the formation of a polypeptide compound of
  • timing of adding other components such as an optional condensing agent and a base to the reaction system is not particularly limited, and they may be added at any timing.
  • a condensing agent and/or a base in both the first and second embodiments, it is necessary to It is preferable to add.
  • a racemization inhibitor is used in addition to the condensing agent, it is preferably added to the system together with the condensing agent.
  • the components may be mixed in the solvent and brought into contact with each other.
  • the ratio of the fused ring dipeptide compound of formula (A1) to the fused ring dipeptide compound of formula (A2) is not particularly limited, but the ratio of the fused ring dipeptide compound of formula (A2) to 1 mol of the fused ring dipeptide compound of formula (A1) is
  • the fused ring dipeptide compound may be, for example, 0.1 mol or more, or 0.2 mol or more, or 0.3 mol or more, or 0.4 mol or more, or 0.5 mol or more, and, for example, 20 mol or less, or 15 mol or more. It can be used in a range of mol or less, or 10 mol or less, or 8 mol or less, or 6 mol or less, or 4 mol or less, or 2 mol or less.
  • the quantitative ratio of the fused ring dipeptide compound of formula (A1) to the protected amino acid or protected peptide of formula (R3) is not particularly limited, Protected amino acid or protected peptide, for example, 0.1 mol or more, or 0.2 mol or more, or 0.3 mol or more, or 0.4 mol or more, or 0.5 mol or more, and, for example, 20 mol or less, Alternatively, it can be used in a range of 15 mol or less, 10 mol or less, 8 mol or less, 6 mol or less, 4 mol or less, or 2 mol or less.
  • the quantitative ratio of the fused ring dipeptide compound of formula (A1) to the amino acid ester or peptide ester of formula (R4) is not particularly limited, of amino acid ester or peptide ester, for example, 0.1 mol or more, or 0.2 mol or more, or 0.3 mol or more, or 0.4 mol or more, or 0.5 mol or more, and, for example, 20 mol or less, Alternatively, it can be used in a range of 15 mol or less, 10 mol or less, 8 mol or less, 6 mol or less, 4 mol or less, or 2 mol or less.
  • the fused ring dipeptide compound of formula (A) as a substrate, the protected amino acid or protected peptide of formula (R3) , and the amino acid ester or peptide ester of formula (R4) must be used in an amount of 1 mole or more, respectively.
  • the amount used is not particularly limited, but the base may be, for example, 0.2 mol or more, 0.4 mol or more, or 0.6 mol or more, per 1 mol of the fused ring dipeptide compound of formula (A1). mol or more, or 0.8 mol or more, or 1.0 mol or more, and also, for example, 40 mol or less, or 30 mol or less, or 20 mol or less, or 15 mol or less, or 10 mol or less, or 6 mol or less, or It can be used in a range of 4 moles or less.
  • the amount used is not particularly limited, but the amount of the condensing agent is, for example, 0.2 mol or more, 0.4 mol or more, or 0. .6 moles or more, or 0.8 moles or more, or 1.0 moles or more, and also, for example, 40 moles or less, or 30 moles or less, or 20 moles or less, or 15 moles or less, or 10 moles or less, or 6 moles or less , or 4 moles or less.
  • the amount used is not particularly limited, but for example, 0.2 mol or more of the racemization inhibitor per 1 mol of the fused ring dipeptide compound of formula (A1), or 0.4 mol or more, or 0.6 mol or more, or 0.8 mol or more, or 1.0 mol or more, and also, for example, 40 mol or less, or 30 mol or less, or 20 mol or less, or 15 mol or less, Alternatively, it can be used in a range of 10 mol or less, 6 mol or less, or 4 mol or less.
  • reaction conditions in the second peptide production method of the present invention are not limited as long as the reaction proceeds, but examples are as follows for each reaction procedure for each of the first and second aspects. .
  • the reaction conditions when adding and reacting the fused ring dipeptide compound of formula (A1) with the protected amino acid or protected peptide of formula (R3) in step (i) are such that the reaction proceeds.
  • examples include the following.
  • reaction temperature in step (i) is not limited as long as the reaction proceeds, but is, for example, 0°C or higher, or 10°C or higher, or 20°C or higher, or, for example, 100°C or lower, or 80°C or lower, or 60°C or lower. It can be done.
  • the reaction pressure in step (i) is also not limited as long as the reaction proceeds, and may be carried out under reduced pressure, normal pressure, or increased pressure, but usually it can be carried out at normal pressure.
  • reaction atmosphere in step (i) is also not limited as long as the reaction proceeds, but the reaction can be carried out in an atmosphere of an inert gas such as argon or nitrogen.
  • reaction time of step (i) is also not limited as long as the reaction proceeds, but from the viewpoint of allowing the reaction to proceed sufficiently and efficiently, for example, 10 minutes or more, or 20 minutes or more, or 30 minutes or more, for example. It can be within 80 hours, or within 60 hours, or within 50 hours.
  • reaction conditions for adding the fused ring dipeptide compound of formula (A2) to the reaction system and reacting are not limited as long as the reaction proceeds, and are, for example, as follows.
  • reaction temperature in step (ii) is not limited as long as the reaction proceeds, but is, for example, 0°C or higher, or 10°C or higher, or 20°C or higher, or, for example, 100°C or lower, or 80°C or lower, or 60°C or lower. It can be done.
  • reaction pressure in step (ii) is also not limited as long as the reaction proceeds, and may be carried out under reduced pressure, normal pressure, or increased pressure, but usually it can be carried out at normal pressure.
  • reaction atmosphere in step (ii) is also not limited as long as the reaction proceeds, but the reaction can be carried out in an atmosphere of an inert gas such as argon or nitrogen.
  • reaction time of step (ii) is also not limited as long as the reaction proceeds, but from the viewpoint of allowing the reaction to proceed sufficiently and efficiently, for example, 10 minutes or more, or 20 minutes or more, or 30 minutes or more, for example. It can be within 80 hours, or within 60 hours, or within 50 hours.
  • reaction conditions when adding the amino acid ester or peptide ester of formula (R4) to the reaction system and reacting are not limited as long as the reaction proceeds, and are, for example, as follows.
  • reaction temperature in step (iii) is not limited as long as the reaction proceeds, but is, for example, 0°C or higher, or 10°C or higher, or 20°C or higher, or, for example, 100°C or lower, or 80°C or lower, or 60°C or lower. It can be done.
  • reaction pressure in step (iii) is also not limited as long as the reaction proceeds, and may be carried out under reduced pressure, normal pressure, or increased pressure, but usually it can be carried out at normal pressure.
  • reaction atmosphere in step (iii) is also not limited as long as the reaction proceeds, but the reaction can be carried out in an atmosphere of an inert gas such as argon or nitrogen.
  • reaction time of step (iii) is also not limited as long as the reaction proceeds, but from the viewpoint of allowing the reaction to proceed sufficiently and efficiently, for example, 10 minutes or more, or 20 minutes or more, or 30 minutes or more, for example. It can be within 80 hours, or within 60 hours, or within 50 hours.
  • reaction conditions for adding and reacting the fused ring dipeptide compound of formula (A2) with the amino acid ester or peptide ester of formula (R4) in step (i) are as follows: Although there are no limitations as far as the process progresses, examples include the following.
  • reaction temperature in step (i) is not limited as long as the reaction proceeds, but is, for example, 0°C or higher, or 10°C or higher, or 20°C or higher, or, for example, 100°C or lower, or 80°C or lower, or 60°C or lower. It can be done.
  • the reaction pressure in step (i) is also not limited as long as the reaction proceeds, and may be carried out under reduced pressure, normal pressure, or increased pressure, but usually it can be carried out at normal pressure.
  • reaction atmosphere in step (i) is also not limited as long as the reaction proceeds, but the reaction can be carried out in an atmosphere of an inert gas such as argon or nitrogen.
  • reaction time of step (i) is also not limited as long as the reaction proceeds, but from the viewpoint of allowing the reaction to proceed sufficiently and efficiently, for example, 10 minutes or more, or 20 minutes or more, or 30 minutes or more, for example. It can be within 80 hours, or within 60 hours, or within 50 hours.
  • reaction conditions for adding the fused ring dipeptide compound of formula (A1) to the reaction system and reacting are not limited as long as the reaction proceeds, and are, for example, as follows.
  • reaction temperature in step (ii) is not limited as long as the reaction proceeds, but is, for example, 0°C or higher, or 10°C or higher, or 20°C or higher, or, for example, 100°C or lower, or 80°C or lower, or 60°C or lower. It can be done.
  • reaction pressure in step (ii) is also not limited as long as the reaction proceeds, and may be carried out under reduced pressure, normal pressure, or increased pressure, but usually it can be carried out at normal pressure.
  • reaction atmosphere in step (ii) is also not limited as long as the reaction proceeds, but the reaction can be carried out in an atmosphere of an inert gas such as argon or nitrogen.
  • reaction time of step (ii) is also not limited as long as the reaction proceeds, but from the viewpoint of allowing the reaction to proceed sufficiently and efficiently, for example, 10 minutes or more, or 20 minutes or more, or 30 minutes or more, for example. It can be within 80 hours, or within 60 hours, or within 50 hours.
  • reaction conditions for adding the protected amino acid or protected peptide of formula (R3) to the reaction system and reacting are not limited as long as the reaction proceeds, and are, for example, as follows.
  • reaction temperature in step (iii) is not limited as long as the reaction proceeds, but is, for example, 0°C or higher, or 10°C or higher, or 20°C or higher, or, for example, 100°C or lower, or 80°C or lower, or 60°C or lower. It can be done.
  • reaction pressure in step (iii) is also not limited as long as the reaction proceeds, and may be carried out under reduced pressure, normal pressure, or increased pressure, but usually it can be carried out at normal pressure.
  • reaction atmosphere in step (iii) is also not limited as long as the reaction proceeds, but the reaction can be carried out in an atmosphere of an inert gas such as argon or nitrogen.
  • reaction time of step (iii) is also not limited as long as the reaction proceeds, but from the viewpoint of allowing the reaction to proceed sufficiently and efficiently, for example, 10 minutes or more, or 20 minutes or more, or 30 minutes or more, for example. It can be within 80 hours, or within 60 hours, or within 50 hours.
  • step (i), step (ii), and step (ii) may each be performed in a sequential method (batch method), or in a continuous method (flow method). (Act) may be implemented. Details of specific sequential (batch) and continuous (flow) method implementation procedures are known in the art. Further, step (i) and step (ii) and/or step (ii) and step (ii) may be performed continuously in one pod.
  • ⁇ Polypeptide (target compound) The polypeptide that is the target compound finally produced in the second polypeptide production method of the present invention is a compound represented by the following formula (P2).
  • R 111 , R 112 , R 113 , R 121 , and R 122 represent the same groups as defined in formula (A1) above, and R 211 , R 212 , R 213 , R 221 , and R 222 represents the same group as defined in the above formula (A2), and PG a , R 31 , R 32 , R 33 , A 31 , A 32 , p31, p32, and m are as defined in the above formula (R3).
  • PG b , R 41 , R 42 , R 43 , A 41 , A 42 , p41, p42, and n represent the same group as defined in formula (R4) above.
  • the compound of formula (R3) is a protected dipeptide and the compound of formula (R4) is an amino acid ester (that is, when m is 2 and n is 1)
  • the compound of formula (R3) is
  • the compound of formula (R4) is a protected amino acid and is a dipeptide ester (that is, m is 1 and n is 2)
  • polypeptide compound of formula (P2) obtained by the above-mentioned production method may be further subjected to various post-treatments.
  • post-treatments include isolation and purification of the obtained polypeptide compound of formula (P2), deprotection of the amino group-protecting group PG a and/or the carboxyl group-protecting group PG b , and the like. Such post-processing will be described in detail later.
  • the fused ring tripeptide compound of the present invention is a silane-containing fused ring tripeptide compound having a structure represented by the following formula (B).
  • R 11 , R 12 , R 13 , R 21 , R 22 , R a1 , and R a2 each independently represent a group having the same definition as the group with the same symbol in formula (A). .
  • the details are as described above.
  • R x1 and R x2 each independently have a hydrogen atom, a halogen atom, a hydroxyl group, a carboxyl group, a nitro group, a cyano group, or a thiol group, or one or more substituents.
  • PG x represents a monovalent protecting group. Examples include, but are not limited to, monovalent aliphatic hydrocarbon groups, aromatic hydrocarbon groups, and heterocyclic groups that may have one or more substituents. Can be mentioned. In addition, when a substituent is present, the type thereof is as described above. Specific examples of the number of substituents are, for example, 5, 4, 3, 2, 1, or 0.
  • the number of carbon atoms in the aliphatic hydrocarbon group is not particularly limited, but is within the upper limit. is, for example, 20 or less, 15 or less, 10 or less, 8 or less, or 6 or less.
  • the lower limit varies depending on the type of aliphatic hydrocarbon group, but is 1 or more for alkyl groups, 2 or more for alkenyl or alkynyl groups, and 3 or more for cycloalkyl groups, such as 4 or more, or 5 or more. It is.
  • Specific examples of the number of atoms include, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20. It is.
  • the number of carbon atoms in the aromatic hydrocarbon group is not particularly limited, but is within the upper limit. is, for example, 20 or less, 15 or less, 10 or less, 8 or less, or 6 or less.
  • the lower limit varies depending on the type of aromatic hydrocarbon group, but is usually 4 or more, for example 5 or more, or 6 or more.
  • Specific examples of the number of atoms are, for example, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20.
  • the fused ring tripeptide compound of the present invention can be produced by a method including the following steps (hereinafter appropriately referred to as "the fused ring tripeptide compound of the present invention").
  • the fused ring tripeptide compound of the present invention (iv) A step of preparing a fused ring dipeptide compound of formula (A).
  • a fused ring dipeptide compound of formula (A) (substrate compound):
  • step (iv) a fused ring dipeptide compound of formula (A) is prepared.
  • the method is not particularly limited, it is preferably produced by the method for producing the fused ring dipeptide compound of the present invention described above.
  • step (v) the fused ring dipeptide compound of formula (A) prepared in step (iv) is reacted with an amino acid ester represented by formula (Rx) below.
  • R x1 , R x2 , and PG x each independently represent a group having the same definition as the group with the same symbol in formula (B). The details are as described above.
  • step (v) when reacting the fused ring dipeptide compound of formula (A) and the amino acid ester of formula (Rx), it is preferable to optionally coexist a fifth silane compound in the reaction system.
  • the fifth silane compound When using the fifth silane compound, its type is not particularly limited, but examples include 1-(trimethylsilyl)imidazole (TMSIM), trimethylbromosilane (TMBS), trimethylchlorosilane (TMCS), tris(haloalkyl)silane , N-(trimethylsilyl)dimethylamine (TMSDMA), trimethylsilyl trifluoromethanesulfonate (TMS-OTf), dimethylsilylimidazole, dimethylsilyl(2-methyl)imidazole, dimethylethylsilylimidazole (DMESI), dimethylisopropylsilylimidazole (DMIPSI) ), 1-(tert-butyldimethylsilyl)imidazole (TBSIM), 1-(trimethylsilyl)triazole, 1-(tert-butyldimethylsilyl)triazole, N-methyl-Ntrimethylsilyltrifluoroacetamide (M
  • step (v) other components may be present in the reaction system.
  • other components include, but are not limited to, Lewis acid catalysts, bases, phosphoric acid, and the like. These details are as described above. Any one of these may be used alone, or two or more may be used in combination in any combination and ratio.
  • the reaction may be carried out in a solvent.
  • the solvent is not particularly limited, and examples thereof include aqueous solvents and organic solvents.
  • Organic solvents include, but are not limited to, aromatic hydrocarbons such as toluene and xylene, pentane, petroleum ether, tetrahydrofuran (THF), 1-methyltetrahydrofuran (1-MeTHF), diisopropyl ether (i-Pr 2 O), ethers such as diethyl ether (Et 2 O) and cyclopentyl methyl ether (CPME), nitrogen-based organic solvents such as acetonitrile (MeCN), chlorine-based organic solvents such as dichloromethane (DCM), and ethyl acetate (AcOEt). and organic acids such as acetic acid. These solvents may be used alone or in combination of two or more.
  • ⁇ Amount ratio of each ingredient is not particularly limited as long as the reaction is not inhibited.
  • the amino acid ester of formula (Rx) may be added, for example, at least 0.1 mole, or at least 0.2 mole, or at least 0.3 mole, or at least 0.2 mole.
  • the amount used is not particularly limited as long as it does not interfere with the reaction, but for example, the amount of the fifth silane compound is For example, 0.2 mole or more, or 0.4 mole or more, or 0.6 mole or more, or 0.8 mole or more, or 1.0 mole or more, and for example, 40 mole or less, or 30 mole or less. , or 20 mol or less, or 15 mol or less, or 10 mol or less, or 6 mol or less, or 4 mol or less.
  • the total amount of the two or more types of fourth silane compounds may satisfy the above range.
  • reaction conditions in step (v) are not limited as long as the reaction proceeds, but are exemplified as follows.
  • the reaction temperature in step (v) is not limited as long as the reaction proceeds, but it is preferably carried out under heating conditions.
  • the temperature can be, for example, 10°C or higher, 20°C or higher, 30°C or higher, 40°C or higher, or 50°C or higher.
  • the upper limit is not particularly limited, but may be, for example, 120°C or lower, 110°C or lower, or 100°C or lower.
  • reaction pressure in step (v) is also not limited as long as the reaction proceeds, and may be carried out under reduced pressure, normal pressure, or increased pressure, but usually it can be carried out at normal pressure.
  • reaction atmosphere in step (v) is also not limited as long as the reaction proceeds, but the reaction can be carried out in an atmosphere of an inert gas such as argon or nitrogen.
  • reaction time of step (v) is also not limited as long as the reaction proceeds, but from the viewpoint of allowing the reaction to proceed sufficiently and efficiently, for example, 10 minutes or more, or 20 minutes or more, or 30 minutes or more, for example. It can be within 80 hours, or within 60 hours, or within 50 hours.
  • the fused ring tripeptide compound of the present invention obtained by the reaction in step (v) may be further subjected to various post-treatments.
  • the produced fused ring tripeptide compound of the present invention can be isolated and purified according to conventional methods such as column chromatography and recrystallization.
  • the produced fused ring dipeptide compound of the present invention may be used for producing a polypeptide, either directly or after isolation and purification, by subjecting it to the method for producing a polypeptide of the present invention described below.
  • the fused ring tripeptide compound of the present invention can be used in various reactions, it is particularly suitable for use in the production of polypeptides.
  • the method for producing a polypeptide using the fused ring tripeptide compound of the present invention includes two types of embodiments (these embodiments are hereinafter referred to as "the third method for producing the polypeptide of the present invention” and “the present method”). ). However, the method for producing a polypeptide using the fused ring tripeptide compound of the present invention is not limited to these two embodiments.
  • the third method for producing a polypeptide of the present invention is a method for producing one molecule of a polypeptide compound of tetrapeptide or larger using one molecule of the fused ring tripeptide compound of the present invention, comprising the following step (vi).
  • This is a method that includes (vi) By reacting the silane-containing condensed ring tripeptide compound represented by the above formula (B) with the protected amino acid or protected peptide compound represented by the following formula (Ra), a compound represented by the following formula (P3) is obtained.
  • ⁇ Silane-containing fused ring tripeptide compound (substrate compound) In the third method for producing a polypeptide of the present invention, the silane-containing condensed ring tripeptide compound represented by the above formula (B) (the condensed ring tripeptide compound of the present invention) is used as a substrate compound. The details are as described above.
  • the protected amino acid or protected peptide compound used as a substrate compound in the third method for producing a polypeptide of the present invention is a compound represented by the following formula (Ra).
  • PG a represents a protecting group for an amino group. Details of PG a of formula (Ra) are as described above for PG a of formulas (R3) and (R4) in the first and second peptide production methods of the present invention.
  • R a1 and R a2 each independently have a hydrogen atom, a halogen atom, a hydroxyl group, a carboxyl group, a nitro group, a cyano group, or a thiol group, or one or more substituents. represents an amino group, a monovalent aliphatic hydrocarbon group, a monovalent aromatic hydrocarbon group, or a monovalent heterocyclic group, which may be
  • R a1 and R a2 in formula (Ra) are as described above for R 31 , R 32 , R 41 , and R 42 in formula (R3) and formula (R4).
  • R a3 is a hydrogen atom, a carboxyl group, a hydroxyl group, a monovalent aliphatic hydrocarbon group that may have one or more substituents, an aromatic hydrocarbon group, or Represents a heterocyclic group.
  • a monovalent aliphatic hydrocarbon group, aromatic hydrocarbon group, or heterocyclic group it may be bonded to the nitrogen atom via a linking group.
  • R a1 and R a3 are bonded to each other to form a heterocycle which may have one or more substituents together with the carbon atom to which R a1 is bonded and the nitrogen atom to which R a3 is bonded. You can leave it there.
  • the details of R a3 in formula (Ra) are as described above for R 33 and R 43 in formula (R3) and formula (R4).
  • a a1 and A a2 each independently represent a divalent aliphatic hydrocarbon group having 1 to 3 carbon atoms which may have one or more substituents.
  • the details of A a1 and A a2 in formula (Ra) are as described above for A 31 , A 32 , A 41 , and A 42 in formula (R3) and formula (R4).
  • p a1 and p a2 each independently represent 0 or 1.
  • m a is an integer of 1 or more and represents the number of structural units represented by the structure in [ ]. However, when m is 2 or more, the plurality of structural units represented by the structures in [ ] may be the same or different.
  • the details of m a in formula (Ra) and the structural units in [ ] are as described above for m and n and the structural units in [ ] in formula (R3) and formula (R4).
  • a base may also be allowed to coexist in the system from the viewpoint of increasing reaction efficiency.
  • the type of base is not limited, and any known base known to improve reaction efficiency can be used.
  • examples of such bases include those having 1 to 1 carbon atoms, such as tetrabutylammonium fluoride (TBAF), triethylamine (Et 3 N), diisopropylamine (i-Pr 2 NH), diisopropylethylamine (i-Pr 2 EtN), etc.
  • examples include amines having 1 to 4 linear or branched alkyl groups of 10, and inorganic bases such as cesium fluoride. Any one of these may be used alone, or two or more may be used in combination in any combination and ratio.
  • a condensing agent may be present in the system from the viewpoint of increasing the efficiency of the peptide formation reaction.
  • a racemization inhibitor may be used in combination. The details of the condensing agent and the racemization inhibitor are as described above in the description of the first and second peptide production methods of the present invention.
  • the substrate compound is the fused ring tripeptide compound of formula (B), the protected amino acid or protected peptide of formula (Ra), an optional base, a condensing agent, and
  • other components may also be present. Examples include catalysts, silane compounds, phosphorus compounds, and the like. The details of these other components are also as explained in detail in the explanation of the first and second peptide production methods of the present invention.
  • reaction may be carried out in a solvent.
  • a solvent The details of such a solvent are also as described in detail in the explanation of the first and second peptide production methods of the present invention.
  • the amounts of each component used are not limited, but are preferably as follows.
  • the quantitative ratio of the fused ring tripeptide compound of formula (B) to the protected amino acid or protected peptide of formula (Ra) is not particularly limited, the ratio of the fused ring tripeptide compound of formula (B) to 1 mole of the fused ring tripeptide compound of formula ( Ra) protected amino acid or protected peptide, for example 0.1 mol or more, or 0.2 mol or more, or 0.3 mol or more, or 0.4 mol or more, or 0.5 mol or more, and for example 20 mol It can be used in a range of 15 moles or less, 10 moles or less, 8 moles or less, 6 moles or less, 4 moles or less, or 2 moles or less.
  • the target production amount of the polypeptide compound of formula (P3) of the present invention to be manufactured is the fused ring tripeptide compound of formula (B) as a substrate and the protected amino acid or protected of formula (Ra). It is necessary to use 1 mole or more of each peptide.
  • the amount used is not particularly limited, but the amount of the base is, for example, 0.2 mole or more, or 0.4 mole or more, or 0.2 mole or more, or 0.4 mole or more, or 0.2 mole or more, or 0.4 mole or more, per 1 mole of the fused ring tripeptide compound of formula (B). 6 moles or more, or 0.8 moles or more, or 1.0 moles or more, and also, for example, 40 moles or less, or 30 moles or less, or 20 moles or less, or 15 moles or less, or 10 moles or less, or 6 moles or less, Alternatively, it can be used in a range of 4 moles or less. In addition, when adding a base in a plurality of steps, it is preferable to add the base in an amount within the above range in each step.
  • the amount used is not particularly limited, but the condensing agent may be, for example, 0.2 mol or more, or 0.4 mol or more, or 0.6 mole or more, or 0.8 mole or more, or 1.0 mole or more, and also, for example, 40 mole or less, or 30 mole or less, or 20 mole or less, or 15 mole or less, or 10 mole or less, or 6 mole It can be used in a range of 4 moles or less.
  • the amount used is not particularly limited, but the amount of the racemization inhibitor is, for example, 0.2 mol or more per 1 mol of the fused ring tripeptide compound of formula (B). , or 0.4 mol or more, or 0.6 mol or more, or 0.8 mol or more, or 1.0 mol or more, and also, for example, 40 mol or less, or 30 mol or less, or 20 mol or less, or 15 mol or less , or 10 mol or less, 6 mol or less, or 4 mol or less.
  • step (vi) the fused ring tripeptide compound of formula (B) is reacted with the protected amino acid or protected peptide compound of formula (Ra).
  • the reaction conditions are not limited as long as the reaction proceeds, but are exemplified as follows.
  • reaction temperature in step (vi) is not limited as long as the reaction proceeds, but is, for example, 0°C or higher, or 10°C or higher, or 20°C or higher, or, for example, 100°C or lower, or 80°C or lower, or 60°C or lower. It can be done.
  • reaction pressure in step (vi) is also not limited as long as the reaction proceeds, and may be carried out under reduced pressure, normal pressure, or increased pressure, but usually it can be carried out at normal pressure.
  • reaction atmosphere in step (vi) is also not limited as long as the reaction proceeds, but it can be carried out in an atmosphere of an inert gas such as argon or nitrogen.
  • reaction time of step (vi) is also not limited as long as the reaction proceeds, but from the viewpoint of allowing the reaction to proceed sufficiently and efficiently, for example, 10 minutes or more, or 20 minutes or more, or 30 minutes or more, for example. It can be within 80 hours, or within 60 hours, or within 50 hours.
  • the polypeptide compound that is the target compound finally produced in the third polypeptide production method of the present invention is a compound represented by the following formula (P3). (P3)
  • PG a , R a1 , R a2 , R a3 , A a1 , A a2 , p a1 , p a2 , and m a are groups with the same definition as the groups with the same symbols in the formula (Ra) above. and R 11 , R 12 , R 13 , R 21 , R 22 , R x1 , R x2 , and PG x represent groups having the same definition as the groups with the same symbols in the formula (B).
  • polypeptide compound of formula (P3) obtained by the above-mentioned production method may be further subjected to various post-treatments.
  • post-treatments include isolation and purification of the obtained polypeptide compound of formula (P3), deprotection of the amino group-protecting group PG a and/or the carboxyl group-protecting group PG x , and the like. Such post-processing will be described in detail later.
  • the fourth method for producing a polypeptide of the present invention is a method for producing one molecule of a hexapeptide compound using two molecules of the fused ring tripeptide compound of the present invention. Further, optionally, by further reacting the obtained hexapeptide compound with a protected amino acid or a protected peptide compound, it is also possible to produce a polypeptide compound of heptapeptide or higher.
  • the fourth method for producing a polypeptide of the present invention is a method that includes at least the following steps (vii) and (viii). Furthermore, the following step (ix) may be optionally included.
  • (vii) A step of mixing a silane-containing condensed ring tripeptide compound represented by the following formula (B1) with a base.
  • (viii) A step of obtaining a hexapeptide compound represented by the following formula (P4) by reacting the mixture of step (vii) with a silane-containing condensed ring tripeptide compound represented by the following formula (B2).
  • the silane-containing condensed ring tripeptide compound used as a substrate compound in the method for producing the fourth polypeptide of the present invention is the silane-containing condensed ring tripeptide compound represented by the above formula (B) (the condensed ring tripeptide compound of the present invention).
  • B the condensed ring tripeptide compound of the present invention.
  • the compound is similar to the above-mentioned third polypeptide production method of the present invention, in that two molecules of a silane-containing condensed ring tripeptide compound are used when synthesizing one molecule of polypeptide. is different.
  • the compound on the nucleophile side is represented by the following formula (B1)
  • the compound on the electrophile side is represented by the following formula (B2).
  • R 111 , R 112 , R 113 , R 211 , R 212 , R a11 , R a12 , R x11 , and R x12 are R 11 , R 12 , and R 13 in formula (B), respectively.
  • R 21 , R 22 , R a1 , R a2 , R x1 , and R x2 are R 11 , R 12 , and R 13 in formula (B), respectively.
  • PG x1 represents a carboxyl group protecting group, like PG x in formula (B).
  • the carboxyl protecting group PG x of formula (B1) which is a compound on the nucleophile side, is not limited to, but includes, but is not limited to, a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, Alkyl groups such as tert-butyl group, sec-butyl group, pentyl group, isopentyl group, neopentyl group, hexyl group, heptyl group, octyl group, decyl group, nonyl group; Included are substituted haloaryl groups and haloarylalkyl groups.
  • R 121 , R 122 , R 123 , R 221 , R 222 , R a21 , R a22 , R x21 , and R x22 are R 11 , R 12 , and R 13 in formula (B), respectively.
  • R 21 , R 22 , R a1 , R a2 , R x1 , and R x2 are R 11 , R 12 , and R 13 in formula (B), respectively.
  • R x23 represents -O-PG x , -NH-PG x or -S-PG x .
  • PG x represents a monovalent protecting group having the same definition as PG x in the above formula (B).
  • PG x is as described above.
  • the protecting group PG x of formula (B2) which is an electrophilic species, includes alkynyl groups such as propargyl group; phenyl group, benzyl group, tolyl group, cumyl group, 1,1-diphenylethyl group, triphenylmethyl group.
  • aryl groups and arylalkyl groups such as fluorenyl groups, naphthyl groups, and anthracenyl groups; haloaryl groups and haloarylalkyl groups such as pentafluorophenyl groups in which the aryl groups and arylalkyl groups are substituted with one or more halogen groups; Group; trimethylsilyl (TMS) group, triethylsilyl (TES) group, triisopropylsilyl (TIPS) group, tri-tert-butylsilyl (TBS) group, tert-butyldiphenylsilyl (TBDPS) group, tris(trialkylsilyl)silyl group Silicon-based protecting groups such as; and the like are preferred.
  • TMS trimethylsilyl
  • TES triethylsilyl
  • TIPS triisopropylsilyl
  • TBS tri-tert-butylsilyl
  • TDPS
  • a base is used in step (vii).
  • the type of base is not limited, and any known base known to improve reaction efficiency can be used.
  • examples of such bases include those having 1 to 1 carbon atoms, such as tetrabutylammonium fluoride (TBAF), triethylamine (Et 3 N), diisopropylamine (i-Pr 2 NH), diisopropylethylamine (i-Pr 2 EtN), etc.
  • examples include amines having 1 to 4 linear or branched alkyl groups of 10, and inorganic bases such as cesium fluoride. Any one of these may be used alone, or two or more may be used in combination in any combination and ratio.
  • a condensing agent may be present in the system from the viewpoint of increasing the efficiency of the peptide formation reaction.
  • a racemization inhibitor may be used in combination. The details of the condensing agent and the racemization inhibitor are as detailed above in the description of the first to third peptide production methods of the present invention.
  • the fused ring tripeptide compounds of the aforementioned formulas (B1) and (B2) which are substrate compounds, and a base, as well as an optional condensing agent and a racemization inhibitor, are used.
  • other components may also be present. Examples include catalysts, silane compounds, phosphorus compounds, and the like. The details of these other components are also as detailed above in the description of the first to third peptide production methods of the present invention.
  • reaction may be carried out in a solvent.
  • a solvent The details of such a solvent are also as detailed above in the explanation of the first to third peptide production methods of the present invention.
  • step (vii) a fused ring tripeptide compound of formula (B1), which is a substrate compound on the nucleophile side, is mixed with a base.
  • step (viii) the mixture of step (vii) is mixed with the fused ring tripeptide compound of formula (B2), which is the substrate compound on the electrophilic species side.
  • the fused ring tripeptide compound of formula (B1) opens the ring and functions as a nucleophilic species
  • the fused ring tripeptide compound of formula (B2) opens the ring and functions as an electrophilic species, forming an amide bond.
  • a hexapeptide compound of formula (P4) will be obtained.
  • timing of adding optionally used other components such as a condensing agent to the reaction system is not particularly limited, and they may be added at any timing. However, when using a condensing agent and/or a base, it is preferable to add it to the system at the beginning of step (vii) and/or step (viii). Furthermore, when a racemization inhibitor is used in addition to the condensing agent, it is preferably added to the system together with the condensing agent. Furthermore, when the reaction is carried out using a solvent, the components may be mixed in the solvent and brought into contact with each other.
  • the amounts of each component used are not limited, but are preferably as follows.
  • the ratio of the fused ring tripeptide compound of formula (B1) to the fused ring tripeptide compound of formula (B2) is not particularly limited, but the ratio of the fused ring tripeptide compound of formula (B1) to 1 mole of the fused ring tripeptide compound of formula (B1) is B2) fused ring tripeptide compound, for example 0.05 mol or more, or 0.1 mol or more, or 0.2 mol or more, or 0.3 mol or more, or 0.4 mol or more, or 0.5 mol In addition, it can be used in a range of, for example, 20 mol or less, 15 mol or less, 10 mol or less, 8 mol or less, 6 mol or less, 4 mol or less, or 2 mol or less.
  • the amount of the base to be used is not particularly limited, but the base may be, for example, 0.2 mol or more, or 0.4 mol or more, or 0.6 mol or more, or 0.8 mol or more, or 1.0 mol or more, and also, for example, 40 mol or less, or 30 mol or less, or 20 mol or less, or 15 mol or less, or 10 mol or less, or 6 mol or less, or 4 mol or less Can be used within a range.
  • the amount used is not particularly limited, but the condensing agent may be, for example, 0.2 mol or more, or 0.4 mol or more, or 0.6 mole or more, or 0.8 mole or more, or 1.0 mole or more, and also, for example, 40 mole or less, or 30 mole or less, or 20 mole or less, or 15 mole or less, or 10 mole or less, or 6 mole It can be used in a range of 4 moles or less.
  • the amount used is not particularly limited, but the amount of the racemization inhibitor is, for example, 0.2 mol or more per 1 mol of the fused ring tripeptide compound of formula (B1). , or 0.4 mol or more, or 0.6 mol or more, or 0.8 mol or more, or 1.0 mol or more, and also, for example, 40 mol or less, or 30 mol or less, or 20 mol or less, or 15 mol or less , or 10 mol or less, 6 mol or less, or 4 mol or less.
  • reaction conditions in the fourth peptide production method of the present invention are not limited as long as the reaction proceeds, but examples for each reaction procedure are as follows.
  • reaction conditions when mixing the fused ring tripeptide compound of formula (B1) and a base are not limited as long as the reaction proceeds, but are, for example, as follows.
  • reaction temperature in step (vii) is not limited as long as the reaction proceeds, but is, for example, 0°C or higher, or 10°C or higher, or 20°C or higher, or, for example, 100°C or lower, or 80°C or lower, or 60°C or lower. It can be done.
  • reaction pressure in step (vii) is also not limited as long as the reaction proceeds, and may be carried out under reduced pressure, normal pressure, or increased pressure, but usually it can be carried out at normal pressure.
  • reaction atmosphere in step (vii) is also not limited as long as the reaction proceeds, but the reaction can be carried out in an atmosphere of an inert gas such as argon or nitrogen.
  • reaction time of step (vii) is also not limited as long as the reaction proceeds, but from the viewpoint of allowing the reaction to proceed sufficiently and efficiently, for example, 10 minutes or more, or 20 minutes or more, or 30 minutes or more, for example. It can be within 80 hours, or within 60 hours, or within 50 hours.
  • step (viii) the reaction conditions for adding the fused ring tripeptide compound of formula (B2) to the mixture of step (vii) and reacting are not limited as long as the reaction proceeds, but for example, the following. That's right.
  • reaction temperature in step (viii) is not limited as long as the reaction proceeds, but is, for example, 0°C or higher, or 10°C or higher, or 20°C or higher, or, for example, 100°C or lower, or 80°C or lower, or 60°C or lower. It can be done.
  • reaction pressure in step (viii) is also not limited as long as the reaction proceeds, and may be carried out under reduced pressure, normal pressure, or increased pressure, but usually it can be carried out at normal pressure.
  • reaction atmosphere in step (viii) is also not limited as long as the reaction proceeds, but it can be carried out in an atmosphere of an inert gas such as argon or nitrogen.
  • reaction time of step (viii) is also not limited as long as the reaction proceeds, but from the viewpoint of allowing the reaction to proceed sufficiently and efficiently, for example, 10 minutes or more, or 20 minutes or more, or 30 minutes or more, for example. It can be within 80 hours, or within 60 hours, or within 50 hours.
  • step (vii) and step (viii) may each be carried out in a sequential method (batch method) or in a continuous method (flow method). Details of specific sequential (batch) and continuous (flow) method implementation procedures are known in the art. Further, step (vii) and step (viii) may each be performed continuously in one pod.
  • ⁇ Hexapeptide (target compound) In the fourth method for producing a polypeptide of the present invention, the hexapeptide compound that is the target compound produced after step (viii) is a compound represented by the following formula (P4).
  • R 111 , R 112 , R 113 , R 211 , R 212 , R x11 , R x12 , and PG x1 represent groups having the same definition as the groups with the same symbols in formula (B1)
  • R 121 , R 122 , R 123 , R 221 , R 222 , R x21 , and R x22 represent groups having the same definition as the groups with the same symbols in the formula (B2).
  • the hexapeptide compound of formula (P4) obtained by the above-mentioned production method may be further subjected to various post-treatments.
  • Such post-treatments include isolation and purification of the obtained hexapeptide compound of formula (P4), deprotection of the carboxyl group protecting group PG x1 , and the like. Such post-processing will be described in detail later.
  • step (ix) the hexapeptide compound of formula (P4) obtained in step (viii) is Mix the protected amino acid or protected peptide compound.
  • the amount of the protected amino acid or protected peptide compound of formula (Ra) to be used is not particularly limited, but the base may be, for example, 0.2 mol or more, or 0.4 mol, per 1 mol of the fused ring tripeptide compound of formula (B1). or more, or 0.6 mol or more, or 0.8 mol or more, or 1.0 mol or more, and also, for example, 40 mol or less, or 30 mol or less, or 20 mol or less, or 15 mol or less, or 10 mol or less, Alternatively, it can be used in a range of 6 mol or less, or 4 mol or less.
  • reaction conditions in step (ix) are limited as long as the reaction proceeds.
  • examples are as follows.
  • reaction temperature in step (ix) is not limited as long as the reaction proceeds, but is, for example, 0°C or higher, or 10°C or higher, or 20°C or higher, or, for example, 100°C or lower, or 80°C or lower, or 60°C or lower. It can be done.
  • reaction pressure in step (ix) is also not limited as long as the reaction proceeds, and may be carried out under reduced pressure, normal pressure, or increased pressure, but usually it can be carried out at normal pressure.
  • reaction atmosphere in step (ix) is also not limited as long as the reaction proceeds, but it can be carried out in an atmosphere of an inert gas such as argon or nitrogen.
  • reaction time of step (ix) is also not limited as long as the reaction proceeds, but from the viewpoint of allowing the reaction to proceed sufficiently and efficiently, for example, 10 minutes or more, or 20 minutes or more, or 30 minutes or more, for example. It can be within 80 hours, or within 60 hours, or within 50 hours.
  • steps (vii) and (viii) and step (ix) may be performed in a sequential method (batch method). It may also be carried out using a continuous method (flow method). Details of specific sequential (batch) and continuous (flow) method implementation procedures are known in the art. Further, steps (vii) and (viii) and step (ix) may be performed consecutively in one pod.
  • the polypeptide compound of heptapeptide or higher which is the target compound produced after step (ix), is a compound represented by the following formula (P5). be.
  • PG a , R a1 , R a2 , R a3 , A a1 , A a2 , p a1 , p a2 , and m a represent groups having the same definition as the groups with the same symbols in the formula (Ra), and R 111 , R 112 , R 113 , R 211 , R 212 , R x11 , R x12 , PG x1 , R 121 , R 122 , R 123 , R 221 , R 222 , R x21 , and R x22 in the formula (P4) Represents a group with the same sign and a group with the same definition. Further, the encircled symbol A at the right end of the upper structure and the left end of the lower structure in formula (P5) means that the upper structure and the lower structure are continuous at this position.
  • polypeptide compound of formula (P5) obtained by the above-mentioned production method may be further subjected to various post-treatments.
  • post-treatments include isolation and purification of the obtained polypeptide compound of formula (P5), deprotection of the amino group-protecting group PG a and/or the carboxyl group-protecting group PG b , and the like. Such post-processing will be described in detail later.
  • polypeptide compounds of formulas (P1) to (P5) obtained by the above production method may be further subjected to various post-treatments.
  • polypeptide compounds of formulas (P1) to (P5) obtained by the above-mentioned production method can be isolated and purified according to conventional methods such as column chromatography and recrystallization.
  • the amino group protected by the protecting group PG a can also be deprotected.
  • the method for deprotecting the protected amino group is not particularly limited, and various methods can be used depending on the type of protecting group PG a . Examples include deprotection by hydrogenation, deprotection by weak acids, deprotection by fluorine ions, deprotection by one-electron oxidizing agents, deprotection by hydrazine, deprotection by oxygen, and the like.
  • deprotection by hydrogenation In the case of deprotection by hydrogenation, (a) deprotection by reduction in the presence of hydrogen gas using a metal catalyst such as palladium, palladium-carbon, palladium hydroxide, palladium hydroxide-carbon, etc. as a reduction catalyst; (b) In the presence of a metal catalyst such as palladium, palladium-carbon, palladium hydroxide, palladium hydroxide-carbon, etc., sodium borohydride, lithium aluminum hydride, lithium borohydride, diborane, etc. Examples include a method of reducing and deprotecting using a hydrogenation reducing agent.
  • a metal catalyst such as palladium, palladium-carbon, palladium hydroxide, palladium hydroxide-carbon, etc.
  • sodium borohydride lithium aluminum hydride, lithium borohydride, diborane, etc. Examples include a method of reducing and deprotecting using a hydrogenation reducing agent.
  • the carboxyl group protected by the protecting group PG b can also be deprotected.
  • the method for deprotecting the protected carboxyl group is not particularly limited, and various methods can be used depending on the type of the protecting group PG b . Examples include deprotection by hydrogenation, deprotection by base, deprotection by weak acid, and the like. In the case of deprotection using a base, examples include a method of deprotecting using a strong base such as lithium hydroxide, sodium hydroxide, potassium hydroxide, etc. as the base.
  • polypeptide compounds of formulas (P1) to (P5) obtained by the above-mentioned production method can be used to obtain the protected peptide of formula (R3) or formula (Ra) and / Or it may be used as a peptide ester of formula (R4) and subjected again to the first to fourth peptide production methods of the present invention.
  • the polypeptide compounds of formulas (P1) to (P5) obtained by the above-mentioned production method can be subjected to other conventionally known amidation methods or peptide production methods. Good too.
  • polypeptides can be synthesized by linking other amino acids or peptides to the polypeptide compounds of formulas (P1) to (P5) through amide bonds and elongating the amino acid residues. By successively repeating these steps, it is theoretically possible to synthesize polypeptides with any number of amino acid residues and any amino acid sequence.
  • Patent Document 4 mentioned above
  • Patent Document 5 International Publication No. 2021/085635
  • Patent Document 6 International Publication No. 2021/085636
  • Patent Document 7 International Publication No. 2021/149814
  • Patent Document 8 International Publication No. 2022/190486
  • a silane-containing condensed ring dipeptide compound of formula (A) shown in the table below (1 equivalent; 0.25 mmol) synthesized by the method described in Example 1 and an amino acid ester of formula (Rx) (3 equivalents) were placed in a 20 mL test tube.
  • TMS-IM trimethylsilylimidazole
  • a silane-containing condensed ring dipeptide compound shown in the above reaction formula (a compound in which PG x1 is Me in formula (B1): 1 equivalent) synthesized by the method described in Example 2, and 1 M tetrabutylammonium fluoride were placed in a 20 mL test tube.
  • a solution of TBAF (base; 1 equivalent) in tetrahydrofuran (THF) and dichloromethane (DCM; 1.5 mL) were added, and the mixture was stirred at 50° C. for 24 hours.
  • a silane-containing condensed ring dipeptide compound shown in the above reaction formula (a compound in which PG x1 is Me in formula (B1): 1 equivalent) synthesized by the method described in Example 2, and 1 M tetrabutylammonium fluoride were placed in a 20 mL test tube.
  • a solution of TBAF (base; 1 equivalent) in tetrahydrofuran (THF) and dichloromethane (DCM; 1.5 mL) were added, and the mixture was stirred at 50° C. for 24 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Peptides Or Proteins (AREA)

Abstract

式(A)で表されるシラン含有縮合環ジペプチド化合物を製造する方法を提供する。 工程(i)~(iii)を含む方法。 (i)下記式(R1)で表される第1のアミノ酸と、下記式(S1)で表される第1のシラン化合物を反応させる工程。 (ii)下記式(R2)で表される第2のアミノ酸と、下記式(S2)で表される第2のシラン化合物を反応させる工程。 (iii)前記工程(i)の反応物と、前記工程(ii)の反応物を混合して更に反応させることにより、前記式(A)の縮合環ジペプチド化合物を得る工程。 (但し上記式中、各置換基の定義は請求項に記載のとおりである。)

Description

シラン含有縮合環ジペプチド化合物の製造方法
 本発明は、新規なシラン含有縮合環ジペプチド化合物の製造方法に関する。
 従来、ペプチドに代表されるアミド化合物は、医薬品、化粧品、機能性食品をはじめ、幅広い分野で利用されており、その合成法の開発は、合成化学における重要な研究課題として精力的に実施されてきた(非特許文献1~3)。しかし、そのペプチド合成に最も重要であるアミド化にはカルボン酸活性化剤の他には、真に有効な触媒や反応剤が殆ど存在していない。そのため、大量の副生成物を生ずる反応様式を用いざるを得ず、しかも多段階の反応を繰り返すペプチド合成はアトム・エコノミー(原子収率)の観点から極めて非効率な合成であり、副生成物は膨大な量となり、また、有効な精製手段も少ない。その結果、副生成物の廃棄と精製にかかるコストがペプチド合成の殆どの必要経費を占め、この分野の発展における最大障壁の一つとなっている。
 アミノ酸又はその誘導体を原料とするペプチド合成では、高立体選択的にアミド化を行うことが求められる。高立体選択的なアミド化としては、生体内での酵素反応が挙げられる。例えば、生体内では、酵素と水素結合を巧みに利用して、極めて高立体選択的にペプチドを合成している。しかしながら、酵素反応は、大量生産には不向きであり、合成化学に適用すると、膨大な金銭的・時間的なコストが必要となる。
 合成化学においても、触媒を用いたアミド化が検討されているが、従来の手法では、主にカルボン酸を活性化する手法によりアミド結合を形成しているため、ラセミ化の進行が早く、高立体選択的且つ効率的にアミド化合物を合成することは困難である。
 また、従来の方法では、複数のアミノ酸又はその誘導体が連結されてなるペプチドに、更にアミノ酸又はその誘導体をアミド結合によりライゲーション(Chemical Ligation)することや、二以上のペプチドをアミド結合によりライゲーションすることは、極めて困難である。斯かるペプチドに対するライゲーションのためのアミド化法としては、硫黄原子を有するアミノ酸を用い、硫黄原子の高い反応性を利用してライゲーションを行う方法(非特許文献4)や、アミノ酸のヒドロキシアミンを合成し、ヒドロキシアミンの高い反応性を利用してライゲーションを行う方法(非特許文献5)が知られているが、前者は硫黄原子を有するアミノ酸の合成が難しく、後者は数工程に亘るヒドロキシアミン合成が別途必要となるため、何れも時間・費用がかかり、効率性の面で難がある。
 本発明者等は、β位にヒドロキシ基を有するカルボン酸/エステル化合物を特定の金属触媒の存在下でアミド化する方法(特許文献1)、アミノ酸前駆体としてヒドロキシアミノ/イミノ化合物を用い、これを特定の金属触媒の存在下でアミド化した後、特定の金属触媒の存在下で還元する方法(特許文献2)、カルボン酸/エステル化合物を特定の金属触媒の存在下でアミド化する方法(特許文献3)等により、高化学選択的にアミド化合物を合成する技術を開発している。更には、N末端保護アミノ酸・ペプチドのカルボキシル基と、C末端保護アミノ酸・ペプチドのアミノ基を、特定のシリル化剤(及び任意により併用されるルイス酸触媒)の存在下でアミド反応させた後、脱保護することにより、種々のアミノ酸残基からなるペプチドを高効率・高選択的に合成する技術(特許文献4)や、N末端保護若しくは無保護アミノ酸・ペプチドのカルボキシル基と、C末端保護若しくは無保護アミノ酸・ペプチドのアミノ基を、特定のシリル化剤の存在下でアミド反応させた後、脱保護することにより、種々のアミノ酸残基からなるペプチドを高効率・高選択的に合成する技術(特許文献5、6)、更にはブレンステッド酸を触媒として用いてアミド化反応を行う技術(特許文献7)も開発している。
 なお、近年では無保護アミノ酸を用いたペプチド合成の試みもなされているが(非特許文献6~8)、何れも使用可能なアミノ酸の種類や反応効率の点で満足できるものではなかった。
 本発明者等は、特定のシリルジハライド化合物と特定の含窒素複素環式基置換シラン化合物との存在下、無保護アミノ酸、次いでアミノ酸エステルを反応させることにより、新規な構造のシラン含有縮合環ジペプチド化合物が得られることを見出した。また、この縮合環ジペプチド化合物を、N保護アミノ酸又はペプチドと反応させ、次いでC保護アミノ酸又はペプチドと反応させることにより、環化ジペプチドのN末端伸長及びC末端伸長が連続して進行し、テトラペプチド等のポリペプチドを効率的に合成することが可能となることを見出した。これらの知見について、本発明者等は既に発表を行うと共に(非特許文献9)、特許出願を行っている(特許文献8)。
国際公開第2017/204144号 国際公開第2018/199146号 国際公開第2018/199147号 国際公開第2019/208731号 国際公開第2021/085635号 国際公開第2021/085636号 国際公開第2021/149814号 国際公開第2022/190486号
Chem. Rev., 2011, 111, 6557- 6602 Org. Process Res. Dev., 2016, 20(2), 140-177 Chem. Rev., 2016, 116, 12029-12122 Science, 1992, 256, 221-225 Angew. Chem. Int. Ed., 2006, 45, 1248-1252 Chem. Eur. J. 2019, 25, 15091 Org. Lett. 2020, 22,8039 Chem. Eur. J. 2018, 24, 7033 J. Am. Chem. Soc. 2022, 144, 1758-1765
 従来のペプチド合成技術の多くは、N末端が保護された求電子種アミノ酸のC末端と、C末端が保護(エステル化)された求核種アミノ酸のN末端とを、縮合剤によりアミド結合するというものであっった。求核性官能基及び求電子性官能基の双方を有するアミノ酸同士を所望の位置で選択的に結合させる上で、保護基の使用は必須と考えられており、ペプチド合成の長い歴史からは切り離せない概念となっている。しかし、保護基を使用するペプチド合成技術では、反応前の保護基の導入及び反応後の脱保護の工程が必要となるため、特にペプチドの長鎖伸長反応を視野に入れると、総収率や精製費等の面で大きな不利益が生じる。加えて、天然に大量に存在する原料アミノ酸に保護基を選択的に付与することは容易ではなく、斯かる保護アミノ酸の原料費は高額となる。そのため、無保護アミノ酸を使用したペプチド合成技術の開発が強く求められている。
 本発明者等が上記特許文献8において開示した当該シラン含有縮合環ジペプチド化合物の製造方法は、求電子種である無保護アミノ酸と、求核種であるアミノ酸エステルとの縮合反応、エステル脱保護、及び環化反応からなる方法である。本方法は、求電子種アミノ酸のN末端を保護する必要がない上に、求核種アミノ酸エステルについても系内で自動的に脱保護することができ、生成されたペプチドの両末端に更なるペプチド伸長反応を実施できるという利点を有している。しかし、求核種としてアミノ酸エステル(C末端保護アミノ酸)を使用する必要があるところ、原料費の観点からは改良の余地が残されていた。
 一方、上記の製造方法において、求電子種のみならず求核種についても無保護アミノ酸を使用した場合、求電子種アミノ酸と求核種アミノ酸とが所望の位置に組み込まれたシラン含有縮合環ジペプチド化合物に加えて、同種アミノ酸同士のホモカップリング体や、求電子種アミノ酸と求核種アミノ酸が所望とは逆の位置に入れ替わったジペプチド体が区別なく副生されてしまうという課題があった。
 本発明者等は鋭意検討の結果、含窒素複素環式基を二つ有する特定の第1のシラン化合物(式(S1)のシラン化合物)と求電子種アミノ酸(第1のアミノ酸)を反応させると共に、別途、含窒素置換基又は含窒素連結基を有する特定の第2のシラン化合物(式(S2)のシラン化合物)と求核種アミノ酸(第2のアミノ酸)を反応させ、続いてこれらの反応物を混合して反応させることにより、求電子種及び求核種として共に無保護アミノ酸を用いた場合でも、所望の構造のシラン含有縮合環ジペプチド化合物を特異的に合成することが可能となることを見出した。また、斯かるシラン含有縮合環ジペプチド化合物を用いて、新規なシラン含有縮合環トリペプチド化合物を合成することが可能となることも見出した。更には、これらのシラン含有縮合環ジペプチド化合物及びシラン含有縮合環トリペプチド化合物を利用して、テトラペプチド、ヘキサペプチド、ヘプタペプチド等のポリペプチド化合物を合成する新たな手法も提供されることを見出し、本発明を完成させた。
 即ち、本発明の趣旨は、例えば以下に関する。
[項1]下記式(A)で表されるシラン含有縮合環ジペプチド化合物を製造する方法であって、下記工程(i)~(iii)を含む方法。
(i)下記式(R1)で表される第1のアミノ酸と、下記式(S1)で表される第1のシラン化合物を反応させる工程。
(ii)下記式(R2)で表される第2のアミノ酸と、下記式(S2)で表される第2のシラン化合物を反応させる工程。
(iii)前記工程(i)の反応物と、前記工程(ii)の反応物を混合して更に反応させることにより、前記式(A)のシラン含有縮合環ジペプチド化合物を得る工程。
但し、式(A)中、
11、R12、R13、R21、及びR22は、各々独立に、水素原子、ハロゲン原子、水酸基、カルボキシル基、ニトロ基、シアノ基、若しくはチオール基、又は、1若しくは2以上の置換基を有していてもよい、一価の脂肪族炭化水素基、芳香族炭化水素基、若しくは複素環式基を表し、
a1及びRa2は、各々独立に、1又は2以上の置換基を有していてもよい、一価の脂肪族炭化水素基又は芳香族炭化水素基を表す。
但し、式(R1)中、
11、R12、及びR13は、各々独立に、前記式(A)における同じ符号の基と同じ定義の基を表す。
但し、式(S1)中、
a1及びRa2は、前記式(A)における同じ符号の基と同じ定義の基を表し、
a1及びZa2は、各々独立に、1又は2以上の置換基を有していてもよい、環構成原子として1以上の窒素原子を含む5~10員の複素環式基を表す。
但し、式(R2)中、
21及びR22は、各々独立に、前記式(A)における同じ符号の基と同じ定義の基を表す。
但し、式(S2)中、
b1、Rb2、及びRb3は、各々独立に、水素原子、ハロゲン原子、又は、1又は2以上の置換基を有していてもよい、一価の脂肪族炭化水素基又は芳香族炭化水素基を表し、
は1又は2の整数を表し、
が1の場合、Zは、1又は2以上の置換基を有していてもよい、アミノ基、カルボニルアミノ基、アセトアミド基、又は、環構成原子として1以上の窒素原子を含む5~10員の一価の複素環式基を表し、
が2の場合、Zは、窒素を含有する二価の連結基を表す。なお、nが2の場合、各々2つずつ存在するRb1、Rb2、及びRb3は、それぞれ同一であってもよく、異なっていてもよい。
[項2]前記工程(i)において、反応系に第3のシラン化合物を共存させる、項1に記載の方法。
[項3]前記工程(iii)において、反応系に第4のシラン化合物を共存させる、項1に記載の方法。
[項4]下記式(B)で表されるシラン含有縮合環トリペプチド化合物を製造する方法であって、下記工程(iv)及び(v)を含む方法。
(iv)項1~3の何れか一項に記載の方法により、前記式(A)で表されるシラン含有縮合環ジペプチド化合物を製造する工程。
(v)前記式(A)で表されるシラン含有縮合環ジペプチド化合物と、下記式(Rx)で表されるアミノ酸エステルとを反応させる工程。
但し、式(B)中、
11、R12、R13、R21、R22、Ra1、及びRa2は、各々独立に、前記式(A)における同じ符号の基と同じ定義の基を表し、
x1及びRx2は、各々独立に、水素原子、ハロゲン原子、水酸基、カルボキシル基、ニトロ基、シアノ基、若しくはチオール基、又は、1若しくは2以上の置換基を有していてもよい、一価の脂肪族炭化水素基、芳香族炭化水素基、若しくは複素環式基を表し、
PGは、1価の保護基を表す。
但し、式(R1)中、
x1、Rx2、及びPGは、各々独立に、前記式(B)における同じ符号の基と同じ定義の基を表す。
[項5]前記工程(v)において、反応系に第5のシラン化合物を共存させる、項4に記載の方法。
[項6]下記式(B)で表されるシラン含有縮合環トリペプチド化合物。
但し、式(B)中、
11、R12、R13、R21、R22、Ra1、及びRa2は、各々独立に、前記式(A)における同じ符号の基と同じ定義の基を表し、
x1及びRx2は、各々独立に、水素原子、ハロゲン原子、水酸基、カルボキシル基、ニトロ基、シアノ基、若しくはチオール基、又は、1若しくは2以上の置換基を有していてもよい、一価の脂肪族炭化水素基、芳香族炭化水素基、若しくは複素環式基を表し、
PGは、カルボキシル基の1価の保護基を表す。
[項7]項6に記載のシラン含有縮合環トリペプチド化合物を用いて、テトラペプチド以上のポリペプチド化合物を製造する方法であって、下記工程(vi)を含む方法。
(vi)前記式(B)で表されるシラン含有縮合環トリペプチド化合物を、下記式(Ra)で表される保護アミノ酸又は保護ペプチド化合物と反応させることにより、下記式(P3)で表されるポリペプチド化合物を得る工程。
但し、式(Ra)中、
PGは、アミノ基の保護基を表し、
a1及びRa2は、各々独立に、水素原子、ハロゲン原子、水酸基、カルボキシル基、ニトロ基、シアノ基、若しくはチオール基、又は、1若しくは2以上の置換基を有していてもよい、アミノ基、一価の脂肪族炭化水素基、一価の芳香族炭化水素基、若しくは一価の複素環式基を表し、
a3は、水素原子、カルボキシル基、水酸基、又は、1若しくは2以上の置換基を有していてもよい一価の脂肪族炭化水素基、芳香族炭化水素基、若しくは複素環式基を表し、ここで、一価の脂肪族炭化水素基、芳香族炭化水素基、又は複素環式基の場合は、連結基を介して窒素原子に結合していてもよく、
或いは、Ra1とRa3とが互いに結合して、Ra1が結合する炭素原子及びRa3が結合する窒素原子と共に、1又は2以上の置換基を有していてもよい複素環を形成していてもよく、
a1及びAa2は、各々独立に、1又は2以上の置換基を有していてもよい炭素数1~3の二価の脂肪族炭化水素基を表し、
a1及びpa2は、各々独立に、0又は1を表し、
は、1以上の整数であり、かつ、[ ]内の構造で表される構成単位の数を表す。但し、mが2以上である場合は、[ ]内の構造で表される複数の構成単位は各々同一でもよく、異なっていてもよい。
(P3)
但し、式(P3)中、
PG、Ra1、Ra2、Ra3、Aa1、Aa2、pa1、pa2、及びmは、前記式(Ra)における同じ符号の基と同じ定義の基を表し、
11、R12、R13、R21、R22、Rx1、Rx2、及びPGは、前記式(B)における同じ符号の基と同じ定義の基を表す。
[項8]前記工程(iv)において、反応系に塩基を共存させる、項7に記載の方法。
[項9]項6に記載のシラン含有縮合環トリペプチド化合物を2分子用いて、ヘキサペプチド化合物を製造する方法であって、下記工程(vii)を含む方法。
(vii)下記式(B1)で表されるシラン含有縮合環トリペプチド化合物を塩基と混合する工程。
(viii)工程(vii)の混合物を、下記式(B2)で表されるシラン含有縮合環トリペプチド化合物と反応させることにより、下記式(P4)で表されるポリペプチド化合物を得る工程。
但し、式(B1)中、R111、R112、R113、R211、R212、Ra11、Ra12、Rx11、Rx12、及びPGx1はそれぞれ、前記式(B)におけるR11、R12、R13、R21、R22、Ra1、Ra2、Rx1、Rx2、及びPGと同じ定義の基を表す。
但し、式(B2)中、R121、R122、R123、R221、R222、Ra21、Ra22、Rx21、及びRx22はそれぞれ、前記式(B)におけるR11、R12、R13、R21、R22、Ra1、Ra2、Rx1、及びRx2同じ定義の基を表し、
x23は、-O-PG、-NH-PG、又は-S-PGを表す。ここでPGは、前記式(B)におけるPGと同じ定義の一価の保護基を表す。
(P4)
但し、式(P4)中、
111、R112、R113、R211、R212、Rx11、Rx12、及びPGx1は、前記式(B1)における同じ符号の基と同じ定義の基を表し、
121、R122、R123、R221、R222、Rx21、及びRx22は、前記式(B2)における同じ符号の基と同じ定義の基を表す。
[項10]ヘプタペプチド以上のポリペプチド化合物を製造する方法であって、下記工程(viii)及び(ix)を含む方法。
(viii)項9に記載の方法により、前記式(P4)で表されるヘキサペプチド化合物を製造する工程。
(ix)前記ヘキサペプチド化合物を、下記式(Ra)で表される保護アミノ酸又は保護ペプチド化合物と反応させることにより、下記式(P5)で表されるポリペプチド化合物を製造する工程。
但し、式(Ra)中、
PGは、アミノ基の保護基を表し、
a1及びRa2は、各々独立に、水素原子、ハロゲン原子、水酸基、カルボキシル基、ニトロ基、シアノ基、若しくはチオール基、又は、1若しくは2以上の置換基を有していてもよい、アミノ基、一価の脂肪族炭化水素基、一価の芳香族炭化水素基、若しくは一価の複素環式基を表し、
a3は、水素原子、カルボキシル基、水酸基、又は、1若しくは2以上の置換基を有していてもよい一価の脂肪族炭化水素基、芳香族炭化水素基、若しくは複素環式基を表し、ここで、一価の脂肪族炭化水素基、芳香族炭化水素基、又は複素環式基の場合は、連結基を介して窒素原子に結合していてもよく、
或いは、Ra1とRa3とが互いに結合して、Ra1が結合する炭素原子及びRa3が結合する窒素原子と共に、1又は2以上の置換基を有していてもよい複素環を形成していてもよく、
a1及びAa2は、各々独立に、1又は2以上の置換基を有していてもよい炭素数1~3の二価の脂肪族炭化水素基を表し、
a1及びpa2は、各々独立に、0又は1を表し、
は、1以上の整数であり、かつ、[ ]内の構造で表される構成単位の数を表す。但し、mが2以上である場合は、[ ]内の構造で表される複数の構成単位は各々同一でもよく、異なっていてもよい。
(P5)
但し、式(P5)中、
PG、Ra1、Ra2、Ra3、Aa1、Aa2、pa1、pa2、及びmは、前記式(Ra)における同じ符号の基と同じ定義の基を表し、
111、R112、R113、R211、R212、Rx11、Rx12、PGx1、R121、R122、R123、R221、R222、Rx21、及びRx22は、前記式(P4)における同じ符号の基と同じ定義の基を表す。
また、式(P5)中上段の構造の右端及び下段の構造の左端における丸囲み記号Aは、上段の構造と下段の構造がこの位置で連続していることを意味する。
[項11]前記工程(viii)及び(ix)がワンポットで実施される、項10に記載の方法。
 本発明によれば、求電子種及び求核種として共に無保護アミノ酸を用いて、所望の構造のシラン含有縮合環ジペプチド化合物を特異的に合成することが可能となる。
 以下、本発明を具体的な実施の形態に即して詳細に説明する。但し、本発明は以下の実施の形態に束縛されるものではなく、本発明の趣旨を逸脱しない範囲において、任意の形態で実施することが可能である。
[I.概要]
 前述のように、本発明者等は、新規な構造のシラン含有縮合環ジペプチド化合物を開発し、既に発表を行うと共に(非特許文献9)、特許出願を行っている(特許文献8)。この縮合環ジペプチド化合物はジペプチドのN末端及びC末端が共に脱保護容易なケイ素により保護されているため、容易に脱保護することができる上に、求核種としても求電子種としても使用でき、極めて有用な化合物である。また、斯かる縮合環ジペプチド化合物を、N保護アミノ酸と反応させ、次いでC保護アミノ酸と反応させることにより、環化ジペプチドのN末端伸長及びC末端伸長が連続して進行し、テトラペプチド、ペンタペプチド等のポリペプチドをワンポットで効率的に合成することが可能となる。更には、斯かる合成反応において縮合環ジペプチド化合物を複数使用することもでき、これによりヘキサペプチド等の更に大型のポリペプチドを高い効率で合成することが可能である。
 しかし、本発明者等が前記特許文献8において開示した当該シラン含有縮合環ジペプチド化合物の製造方法は、求電子種としては無保護アミノ酸を使用できるが、求核種としてはアミノ酸エステルを使用する必要があった。仮に求核種についても無保護アミノ酸を使用した場合、求電子種アミノ酸と求核種アミノ酸とが所望の位置に組み込まれたシラン含有縮合環ジペプチド化合物に加えて、同種アミノ酸同士のホモカップリング体や、求電子種アミノ酸と求核種アミノ酸が所望とは逆の位置に入れ替わったジペプチド体が区別なく副生されてしまうという課題があった。
 一方、本発明の製造方法によれば、求電子種アミノ酸(式(R1)のアミノ酸)を、含窒素複素環式基を二つ有する特定の第1のシラン化合物(式(S1)のシラン化合物)と反応させた後、求核種アミノ酸(式(R2)のアミノ酸)及び含窒素複素環式基を一つ有する特定の第2のシラン化合物(式(S2)のシラン化合物)を加えて更に反応させることにより、求電子種及び求核種として共に無保護アミノ酸を用いた場合でも、所望の構造のシラン含有縮合環ジペプチド化合物を特異的に合成することが可能となる。理論に束縛されるものではないが、本発明では求電子種アミノ酸(式(R1)のアミノ酸)と式(S1)の第1のシラン化合物による五員環化合物の形成、及び、求核種アミノ酸(式(R2)のアミノ酸)と式(S2)の第2のシラン化合物によるシリルエステルの形成により、求電子種アミノ酸(式(R1)のアミノ酸)と求核種アミノ酸(式(R2)のアミノ酸)とを区別しながら反応が進行するため、所望の構造のシラン含有縮合環ジペプチド化合物が特異的に合成されるものと推測される。
 以下の記載ではまず、本開示で使用される主な用語を定義した後([II.用語の定義])、前記特許文献8の開示とも一部重複するが、本発明の製造対象となるシラン含有縮合環ジペプチド化合物(以下、適宜「本発明の縮合環ジペプチド化合物」等略称する場合がある。)について説明する([III.本発明の縮合環ジペプチド化合物])。次に、本発明の要旨の一つである、特定のシラン化合物(式(S1)の第1のシラン化合物及び式(S2)の第2のシラン化合物)を用いた当該縮合環ジペプチド化合物の製造方法(以下、適宜「本発明の縮合環ジペプチド化合物の製造方法」等略称する場合がある。)について説明する([IV.本発明の縮合環ジペプチド化合物の製造方法])。続いて、前記特許文献8の開示とも一部重複するが、斯かる本発明の縮合環ジペプチド化合物を用いたポリペプチドの新規な製造方法について説明する([V.本発明の縮合環ジペプチド化合物を用いたポリペプチドの製造方法])。
 また、本発明の縮合環ジペプチド化合物を用いて、新規なシラン含有縮合環トリペプチド化合物(以下、適宜「本発明の縮合環トリペプチド化合物」等略称する場合がある。)を製造することも可能である。以下、本発明の要旨の一つである、斯かる新規なシラン含有縮合環トリペプチド化合物及びその製造方法についても説明する([VI.本発明の縮合環トリペプチド化合物及びその製造方法])。最後に、斯かる本発明の縮合環トリペプチド化合物を用いたポリペプチドの新規な製造方法についても説明する([VII.本発明の縮合環トリペプチド化合物を用いたポリペプチドの製造方法])。
[II.用語の定義]
 本開示において「アミノ酸」とは、カルボキシル基及びアミノ基を有する化合物を意味する。別途明示しない限り、アミノ酸の種類は特に限定されない。例えば、光学異性の観点からは、D体でもL体でもラセミ体でもよい。また、カルボキシル基とアミノ基との相対位置の観点からは、α-アミノ酸、β-アミノ酸、γ-アミノ酸、δ-アミノ酸、ω-アミノ酸等の何れであってもよい。アミノ酸の例としては、これらに限定されるものではないが、タンパク質を構成する天然アミノ酸等が挙げられ、具体例としては、バリン、ロイシン、イソロイシン、アラニン、アルギニン、グルタミン、リシン、アスパラギン酸、グルタミン酸、プロリン、システイン、トレオニン、メチオニン、ヒスチジン、フェニルアラニン、チロシン、トリプトファン、アスパラギン、グリシン、セリン等が挙げられる。
 本開示において「ペプチド」とは、複数のアミノ酸がペプチド結合を介して連結された化合物を意味する。別途明示しない限り、ペプチドを構成する複数のアミノ酸単位は、互いに同じ種類のアミノ酸単位であってもよく、二種類以上の異なるアミノ酸単位であってもよい。ペプチドを構成するアミノ酸の数は、2以上であれば特に制限されない。例としては、2(「ジペプチド」ともいう)、3(「トリペプチド」ともいう)、4(「テトラペプチド」ともいう)、5(「ペンタペプチド」ともいう)、6、7、8、9、10、15、20、30、40、50、100、又はそれ以上が挙げられる。また、トリペプチド以上のペプチドを指して「ポリペプチド」という場合もある。
 本開示において「アミノ基」とは、アンモニア、第一級アミン、又は第二級アミンから水素を除去して得られる、それぞれ式-NH、-NRH、又は-NRR’(但しR及びR’はそれぞれ置換基を意味する。)で表される官能基を意味する。
 本開示において、別途明示しない限り、炭化水素基は、脂肪族でも芳香族でもよい。脂肪族炭化水素基は鎖状でも環状でもよい。鎖状炭化水素基は直鎖状でも分岐鎖状でもよい。環状炭化水素基は、単環式でも橋かけ環式でもスピロ環式でもよい。炭化水素基は、飽和でもよいが、不飽和でもよく、言い換えれば、一又は二以上の炭素-炭素二重結合及び/又は三重結合を含んでいてもよい。即ち、炭化水素基は、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、シクロアルケニル基、シクロアルキニル基、アリール基等を含む概念である。なお、別途明示しない限り、炭化水素基の一又は二以上の水素原子が、任意の置換基で置換されていてもよく、炭化水素基の一又は二以上の炭素原子が、価数に応じた任意のヘテロ原子に置き換えられていてもよい。
 本開示において「炭化水素オキシ基」とは、前記定義の炭化水素基がオキシ基(-O-)の一方の結合手に連結された基を意味する。
 本開示において「炭化水素カルボニル基」とは、前記定義の炭化水素基がカルボニル基(-C(=O)-)の一方の結合手に連結された基を意味する。
 本開示において「炭化水素スルホニル基」とは、前記定義の炭化水素基がスルホニル基(-S(=O)-)の一方の結合手に連結された基を意味する。
 本開示において、複素環式基は、飽和でもよいが、不飽和でもよく、言い換えれば、一又は二以上の炭素-炭素二重結合及び/又は三重結合を含んでいてもよい。また、複素環式基は単環式でも橋かけ環式でもスピロ環式でもよい。また、複素環式基の複素環構成原子に含まれるヘテロ原子は制限されないが、例としては窒素、酸素、硫黄、リン、ケイ素等が挙げられる。
 本開示において「複素環オキシ基」とは、前記定義の複素環式基がオキシ基(-O-)の一方の結合手に連結された基を意味する。
 本開示において「複素環カルボニル基」とは、前記定義の複素環式基がカルボニル基(-C(=O)-)の一方の結合手に連結された基を意味する。
 本開示において「複素環スルホニル基」とは、前記定義の複素環式基がスルホニル基(-S(=O)-)の一方の結合手に連結された基を意味する。
 本開示において「置換基」とは、各々独立に、別途明示しない限り、本発明の製造方法におけるアミド化工程が進行すれば特に制限されず、任意の置換基を意味する。例としては、これらに限定されるものではないが、ハロゲン原子、水酸基、カルボキシル基、ニトロ基、シアノ基、チオール基、スルホン酸基、アミノ基、アミド基、イミノ基、イミド基、炭化水素基、複素環式基、炭化水素オキシ基、炭化水素カルボニル基(アシル基)、炭化水素オキシカルボニル基、炭化水素カルボニルオキシ基、炭化水素置換アミノ基、炭化水素置換アミノカルボニル基、炭化水素カルボニル置換アミノ基、炭化水素置換チオール基、炭化水素スルホニル基、炭化水素オキシスルホニル基、炭化水素スルホニルオキシ基、複素環オキシ基、複素環カルボニル基、複素環オキシカルボニル基、複素環カルボニルオキシ基、複素環アミノ基、複素環アミノカルボニル基、複素環カルボニル置換アミノ基、複素環置換チオール基、複素環スルホニル基、複素環オキシスルホニル基、複素環スルホニルオキシ基等が挙げられる。また、これらの官能基が、その価数及び物理化学的性質が許容する限りにおいて、更にこれらの官能基により置換された官能基も、本開示における「置換基」に含まれるものとする。なお、ある官能基が置換基を有する場合、その個数は、その価数及び物理化学的性質が許容する限りにおいて、特に限定されない。また、複数の置換基が存在する場合、これらの置換基は互いに同一であってもよく、異なっていてもよい。
 本開示において使用する主な略語を以下の表1-1及び表1-2に示す。
 本開示において、アミノ酸及びその残基は、当業者に周知の三文字略称で表す場合がある。本開示において使用する主なアミノ酸の三文字略称を以下の表に示す。
 本開示において、β-ホモアミノ酸及びその残基は、対応するα-アミノ酸の三文字略称の前に「Ho」を付して表す場合がある。
[III.本発明の縮合環ジペプチド化合物]
 本発明の一態様は、下記の式(A)で表される新規なシラン含有縮合環ジペプチド化合物(以下適宜「本発明の縮合環ジペプチド化合物」等略称する場合がある。)に関する。
 式(A)中、R11、R12、R13、R21、及びR22は、各々独立に、水素原子、ハロゲン原子、水酸基、カルボキシル基、ニトロ基、シアノ基、若しくはチオール基、又は、1若しくは2以上の置換基を有していてもよい、一価の脂肪族炭化水素基、芳香族炭化水素基、若しくは複素環式基を表す。これらの基が置換基を有する場合、その種類は先に詳述した中から任意に選択される。置換基の数も制限されないが、例えば5、4、3、2、1、又は0である。
 式(A)において、R11、R12、R13、R21、及び/又はR22が、1又は2以上の置換基を有していてもよい、一価の脂肪族炭化水素基、芳香族炭化水素基、又は複素環式基である場合は、斯かる脂肪族炭化水素基、芳香族炭化水素基、又は複素環式基とそれが結合する炭素原子との間に、連結基が介在していてもよい。斯かる連結基は、限定されるものではないが、各々独立に、例えば以下に示す構造から選択される(なお、下記化学式中、Aは各々独立に、1又は2以上の置換基を有していてもよい、一価の脂肪族炭化水素基、芳香族炭化水素基、又は複素環式基を表す。同一の基の中にAが二つ存在する場合、それらは互いに同一でもよく、異なっていてもよい。)。
 式(A)において、R11、R12、R13、R21、及び/又はR22が(1又は2以上の置換基を有していてもよい)脂肪族炭化水素基である場合、斯かる脂肪族炭化水素基の(置換基を有する場合はその置換基も含めた)炭素原子数は、特に限定はされないが、上限が例えば20以下、15以下、10以下、8以下、又は6以下等である。下限は脂肪族炭化水素基の種類によっても異なるが、アルキル基の場合は1以上、アルケニル基やアルキニル基の場合は2以上、シクロアルキル基の場合には3以上、例えば4以上、又は5以上である。当該原子数の具体例は、例えば1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、又は20等である。
 式(A)において、R11、R12、R13、R21、及び/又はR22が(1又は2以上の置換基を有していてもよい)芳香族炭化水素基である場合、斯かる芳香族炭化水素基の(置換基を有する場合はその置換基も含めた)炭素原子数は、特に限定はされないが、上限が例えば20以下、15以下、10以下、8以下、又は6以下等である。下限は芳香族炭化水素基の種類によっても異なるが、通常4以上、例えば5以上、又は6以上である。当該原子数の具体例は、例えば4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、又は20等である。
 式(A)において、R11、R12、R13、R21、及び/又はR22が(1又は2以上の置換基を有していてもよい)複素環式基である場合、斯かる複素環式基の(置換基を有する場合はその置換基も含めた)炭素原子及びヘテロ原子の合計数は、特に限定はされないが、上限が例えば20以下、15以下、10以下、8以下、又は6以下等である。下限は複素環式構造の種類によっても異なるが、通常3以上、例えば4以上、又は5以上である。当該原子数の具体例は、例えば3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、又は20等である。
 中でも、式(A)におけるR11、R12、R21、及びR22としては、各々独立に、水素原子、水酸基、チオール基、カルボキシル基、ニトロ基、シアノ基、若しくはハロゲン原子、又は、1又は2以上の置換基を有していてもよい、アミノ基、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、アルコキシ基、アリール基、アリーロキシ基、アシル基、複素環式基、若しくは複素環オキシ基等であることが好ましい。
 式(A)におけるR11、R12、R13、R21、及びR22の具体例としては、これらに限定されるものではないが、例えば以下が挙げられる。
・水素原子、水酸基、チオール基、カルボキシル基、ニトロ基、シアノ基;
・フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;
・メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、sec-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、ヘキシル基、へプチル基、オクチル基、デシル基、ノニル基等のアルキル基;
・エテニル基、プロペニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、へプテニル基、オクテニル基等のアルケニル基;
・プロパルギル基等のアルキニル基;
・シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロへプチル基、ビシクロオクチル基、スピロオクチル基等のシクロアルキル基;
・メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、sec-ブトキシ基、tert-ブトキシ基等のアルコキシ基;
・フェニル基、ベンジル基、トリル基、ナフチル基、アントラセニル基等のアリール基;
・フェニロキシ基、ベンジロキシ基、ナフチロキシ基等のアリーロキシ基;
・アセチル基、プロピオニル基、ベンゾイル基、パラメトキシベンゾイル基、シンナモイル基等のアシル基;
・無置換のアミノ基、及び、ジメチルアミノ基、ベンジルアミノ基、トリフェニルメチルアミノ基等の置換アミノ基;
・フラニル基、チオフェニル基、ピラニル基、ピロリニル基、ピロリル基、2,3-ジヒドロ-1H-ピロリル基、ピぺリジニル基、ピペラジニル基、ホモピペラジニル基、モルホリノ基、チオモルホリノ基、1,2,4,6-テトラヒドロピリジル基、ヘキサヒドロピリミジル基、ヘキサヒドロピリダジル基、1,2,4,6-テトラヒドロピリジル基、1,2,4,6-テトラヒドロピリダジル基、3,4-ジヒドロピリジル基、イミダゾリル基、4,5-ジヒドロ-1H-イミダゾリル基、2,3-ジヒドロ-1H-イミダゾリル基、ピラゾリル基、4,5-ジヒドロ-1H-ピラゾリル基、2,3-ジヒドロ-1H-ピラゾリル基、オキサゾリル基、4,5-ジヒドロ-1,3-オキサゾリル基、2,3-ジヒドロ-1,3-オキサゾリル基、2,5-ジヒドロ-1,3-オキサゾリル基、チアゾリル基、4,5-ジヒドロ-1,3-チアゾリル基、2,3-ジヒドロ-1,3-チアゾリル基、2,5-ジヒドロ-1,3-チアゾリル基、カルバゾリル基等の複素環式基;
・フラニルオキシ基、ピロリルオキシ基、インドリルオキシ基、キノリルオキシ基等の複素環オキシ基;
・以上の基が1又は2以上の置換基(例えばハロゲン基)で置換された基;等。
 なお、上記の基のうち、カルボキシル基を有する基は、保護基を有していてもよいが、いなくてもよい。カルボキシル基の保護基については後述する。
 式(A)中、Ra1及びRa2は、各々独立に、1又は2以上の置換基を有していてもよい、一価の脂肪族炭化水素基又は芳香族炭化水素基を表す。これらの基が置換基を有する場合、その種類は先に詳述した中から任意に選択される。置換基の数も制限されないが、例えば5、4、3、2、1、又は0である。
 Ra1及び/又はRa2が(1又は2以上の置換基を有していてもよい)脂肪族炭化水素基である場合、脂肪族炭化水素基の(置換基を有する場合はその置換基も含めた)炭素原子数は、特に限定はされないが、上限が例えば20以下、15以下、10以下、8以下、又は6以下等である。下限は脂肪族炭化水素基の種類によっても異なるが、アルキル基の場合は1以上、アルケニル基やアルキニル基の場合は2以上、シクロアルキル基の場合には3以上、例えば4以上、又は5以上である。当該原子数の具体例は、例えば1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、又は20等である。
 Ra1及び/又はRa2が(1又は2以上の置換基を有していてもよい)芳香族炭化水素基である場合、芳香族炭化水素基の(置換基を有する場合はその置換基も含めた)炭素原子数は、特に限定はされないが、上限が例えば20以下、15以下、10以下、8以下、又は6以下等である。下限は芳香族炭化水素基の種類によっても異なるが、通常4以上、例えば5以上、又は6以上である。当該原子数の具体例は、例えば4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、又は20等である。
 中でも、Ra1及びRa2としては、各々独立に、1又は2以上の置換基を有していてもよい、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、アリール基等であることが好ましい。
 Ra1及びRa2の具体例としては、これらに限定されるものではないが、例えば以下が挙げられる。
・メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、sec-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、ヘキシル基、へプチル基、オクチル基、デシル基、ノニル基等のアルキル基;
・エテニル基、プロペニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、へプテニル基、オクテニル基等のアルケニル基;
・プロパルギル基等のアルキニル基;
・シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロへプチル基、ビシクロオクチル基、スピロオクチル基等のシクロアルキル基;
・フェニル基、ベンジル基、トリル基、ナフチル基、アントラセニル基等のアリール基;
・以上の基が1又は2以上の置換基(例えばハロゲン基)で置換された基;等。
 本発明の縮合環ジペプチド化合物は、2つのα-アミノ酸残基からなるジペプチドが環化することで、2つの五員環がケイ素原子及び窒素原子を共有して縮合環を形成した、極めて特徴的な構造を有する。また、本化合物のジペプチドのN末端及びC末端は、ともに脱保護容易なケイ素原子により保護されているため、後述の参考例1及び2に示すように、酸又は塩基の存在下で容易に脱保護され、求核種としても求電子種としても使用することができる。また、本発明の縮合環ジペプチド化合物は、空気中安定で、取り扱い容易である。従って、後述するペプチドの製造反応の基質として利用できるほか、種々の用途が期待される。
[IV.本発明の縮合環ジペプチド化合物の製造方法]
 本発明の一態様は、特定のシリルジハライド化合物及び特定の含窒素複素環式基置換シラン化合物を用いて、前述の本発明の縮合環ジペプチド化合物を製造する方法(本発明の縮合環ジペプチド化合物の製造方法)に関する。
 本発明の縮合環ジペプチド化合物の製造方法は、少なくとも下記工程(i)及び(ii)を含む。
(i)下記式(R1)で表される第1のアミノ酸と、下記式(S1)で表される第1のシラン化合物を反応させる工程。
(ii)下記式(R2)で表される第2のアミノ酸と、下記式(S2)で表される第2のシラン化合物を反応させる工程。
(iii)前記工程(i)の反応物と、前記工程(ii)の反応物を混合して更に反応させることにより、前記式(A)の縮合環ジペプチド化合物を得る工程。
・アミノ酸(基質化合物):
 本発明の縮合環ジペプチド化合物の製造方法において求電子種及び求核種として使用されるアミノ酸は、それぞれ下記の式(R1)及び(R2)で表される。
 式(R1)におけるR11、R12、及びR13、並びに、式(R2)におけるR21及びR22は、各々独立に、前記式(A)における定義と同じ基、即ち、水素原子、ハロゲン原子、水酸基、カルボキシル基、ニトロ基、シアノ基、若しくはチオール基、又は、1若しくは2以上の置換基を有していてもよい、一価の脂肪族炭化水素基、芳香族炭化水素基、若しくは複素環式基を表す。その詳細については先に説明した通りである。
 式(R1)の第1のアミノ酸、及び、式(R2)の第2のアミノ酸の例としては、任意のα-アミノ酸が挙げられる。その具体例としては、限定されるものではないが、生体タンパク質を構成する20種のα-アミノ酸、即ちアラニン、アルギニン、アスパラギン、アスパラギン酸、システイン、グルタミン、グルタミン酸、グリシン、ヒスチジン、イソロイシン、ロイシン、リシン、メチオニン、フェニルアラニン、プロリン、セリン、トレオニン、トリプトファン、チロシン、及びバリンの他、オルニチン、2-アミノイソ酪酸、メチルアラニン、フェニルグリシン、シクロヘキシルアラニン等が挙げられる。また、これらのα-アミノ酸の側鎖が、1又は2以上の前述の置換基(例えばハロゲン等)、及び/又は、1又は2以上の後述の保護基(カルボシキル基の保護基及び/又はアミノ基の保護基)で置換されてなるアミノ酸、例えばt-ブチル置換アスパラギン、t-ブチル置換グルタミン、t-ブチル置換セリン、t-ブチル置換トレオニン、t-ブチル置換トリプトファン、t-ブチル置換リシン、Boc置換アスパラギン、Boc置換グルタミン、Boc置換セリン、Boc置換トレオニン、Boc置換トリプトファン、Boc置換リシン、t-ブチル置換アスパラギン酸、t-ブチル置換グルタミン酸、トリチル置換アスパラギン、トリチル置換グルタミン、トリチル置換ヒスチジン、t-ブチル置換チロシン、メチル置換チロシン、メチル置換スレオニン、メチル置換セリン、Cbz置換リシン、Fmoc置換リシン等も挙げられる。なお、これらのα-アミノ酸の光学異性は特に制限されず、L体であってもD体であっても、或いはラセミ体であっても構わない。
 式(R1)の第1のアミノ酸のN末端アミノ基(HNR13-)、及び、式(R2)の第2のアミノ酸のC末端カルボキシル基(-COOH)は、何れも無保護である。本発明の縮合環ジペプチド化合物の製造方法は、求電子種である第1のアミノ酸及び求核種である第2のアミノ酸として共に無保護アミノ酸を用いた場合でも、所望の構造のシラン含有縮合環ジペプチド化合物を特異的に合成可能である点に、大きな利点がある。但し、第1のアミノ酸のN末端アミノ基、及び/又は、第2のアミノ酸のC末端カルボキシル基が、それぞれ保護されている態様を排除するものではなく、反応を妨げない限りにおいて、後述するアミノ基の保護基及び/又はカルボキシル基の保護基によって、保護されていてもよい。
・第1及び第2のシラン化合物:
 本発明の縮合環ジペプチド化合物の製造方法では、下記式(S1)で表される第1のシラン化合物と、下記式(S2)で表される第2のシラン化合物という、2種類のシラン化合物を組み合わせて使用することを、特徴の一つとする。
 第1のシラン化合物は、下記式(S1)で表される。
 式(S1)中、Ra1及びRa2は、前記式(A)における定義と同じ基を表す。
 式(S1)中、Za1及びZa2は、各々独立に、1又は2以上の置換基を有していてもよい、環構成原子として1個以上(好ましくは2~4個、更に好ましくは2個又は3個)の窒素原子を含む5~10員(好ましくは5員、6員、又は10員)の複素環式基を表す。なお、置換基を有する場合、その種類については先に記載したとおりであるが、中でもアルキル基(例えば炭素数1~10個の直鎖又は分岐鎖のアルキル基。以下-Rと示す場合がある。)、アルコキシ基(-O-R)、アミノ基(-NH)、アルキルアミノ基(-NHR)、ジアルキルアミノ基(-NR:二つのアルキル基Rは同一でも、異なっていてもよい。)、チオアルキル基(-SR)、並びにこれらの基が1又は2以上のハロゲン原子(例えば臭素又は塩素原子)で置換された基等が好ましい。置換基の数の具体例は、例えば10、9、8、7、6、5、4、3、2、1、又は0である。置換基の数が2以上の場合、これらは互いに同一であってもよく、異なっていてもよい。
 Za1及びZa2の含窒素複素環式基の具体例としては、これらに制限されるものではないが、ピロール基、イミダゾール基、ピラゾール基、トリアゾール基(1,2,3-トリアゾール基、1,2,4-トリアゾール基)、ピペリジル基、ピリジニル基、ピペラジニル基、、テトラゾール基、インドール基、ベンズイミダゾール基等、更にはこれらの基が前述の置換基で置換されて得られる基、例えば(2-/3-/4-/5-)メチルイミダゾール基、(2,3-/2,4-/2,5-)ジメチルイミダゾール基等が挙げられる。中でもイミダゾール基、ピラゾール基、トリアゾール基、2-メチルイミダゾール基等が好ましい。
 式(S1)の第1のシラン化合物の具体例としては、これらに制限されるものではないが、ジメチルジイミダゾールシラン、ジエチルジイミダゾールシラン、メチルエチルジイミダゾールシラン、ジプロピルジイミダゾールシラン、メチルプロピルジイミダゾールシラン、ジブチルジイミダゾールシラン、メチルブチルジイミダゾールシラン、ジメトキシジイミダゾールシラン、ジエトキシジイミダゾールシラン、ジメチルジピラゾールシラン、ジエチルジピラゾールシラン、ジメトキシジピラゾールシラン、ジメチルジトリアゾールシラン、ジエチルジトリアゾールシラン、ジメトキシジトリアゾールシラン等が挙げられる。中でも、ジメチルジイミダゾールシラン、ジメトキシジイミダゾールシラン等が好ましい。
 第2のシラン化合物は、下記式(S2)で表される。
 式(S2)中、Rb1、Rb2、及びRb3は、各々独立に、水素原子、ハロゲン原子、又は、1又は2以上の置換基を有していてもよい、脂肪族炭化水素基又は芳香族炭化水素基を表す。これらの基が置換基を有する場合、その種類は先に詳述した中から任意に選択される。置換基の数も制限されないが、例えば5、4、3、2、1、又は0である。
 脂肪族炭化水素基の(置換基を有する場合はその置換基も含めた)炭素原子数は、特に限定はされないが、上限が例えば20以下、15以下、10以下、8以下、又は6以下等である。下限は脂肪族炭化水素基の種類によっても異なるが、アルキル基の場合は1以上、アルケニル基やアルキニル基の場合は2以上、シクロアルキル基の場合には3以上、例えば4以上、又は5以上である。当該原子数の具体例は、例えば1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、又は20等である。
 芳香族炭化水素基の(置換基を有する場合はその置換基も含めた)炭素原子数は、特に限定はされないが、上限が例えば20以下、15以下、10以下、8以下、又は6以下等である。下限は芳香族炭化水素基の種類によっても異なるが、通常4以上、例えば5以上、又は6以上である。当該原子数の具体例は、例えば4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、又は20等である。
 中でも、Rb1、Rb2、及びRb3としては、各々独立に、1又は2以上の置換基を有していてもよい、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、アリール基等であることが好ましい。
 Rb1、Rb2、及びRb3の具体例としては、これらに限定されるものではないが、例えば以下が挙げられる。
・メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、sec-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、ヘキシル基、へプチル基、オクチル基、デシル基、ノニル基等のアルキル基;
・エテニル基、プロペニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、へプテニル基、オクテニル基等のアルケニル基;
・プロパルギル基等のアルキニル基;
・シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロへプチル基、ビシクロオクチル基、スピロオクチル基等のシクロアルキル基;
・フェニル基、ベンジル基、トリル基、ナフチル基、アントラセニル基等のアリール基;
・以上の基が1又は2以上の置換基(例えばハロゲン基)で置換された基;等。
 式(S2)中、nは1又は2の整数を表す。
 式(S2)においてnが1の場合、Zは、1又は2以上の置換基を有していてもよい、アミノ基(NR-)、カルボニルアミノ基(R-C(=O)-NR-)、アセトアミド基(R-NR-C(=O)-)(但し以上の化学式において、Rは各々独立に、水素原子又は置換基を表す。)、又は、環構成原子として1個以上(好ましくは2~4個、更に好ましくは2個又は3個)の窒素原子を含む5~10員(好ましくは5員、6員、又は10員)の一価の複素環式基を表す。含窒素複素環式基の具体例としては、これらに制限されるものではないが、ピロール基、イミダゾール基、ピラゾール基、トリアゾール基(1,2,3-トリアゾール基、1,2,4-トリアゾール基)、ピペリジル基、ピリジニル基、ピペラジニル基、、テトラゾール基、インドール基、ベンズイミダゾール基等、更にはこれらの基が前述の置換基で置換されて得られる基、例えば(2-/3-/4-/5-)メチルイミダゾール基、(2,3-/2,4-/2,5-)ジメチルイミダゾール基等が挙げられる。中でもイミダゾール基、ピラゾール基、トリアゾール基、2-メチルイミダゾール基等が好ましい。
 式(S2)において、nが2の場合、Zは、窒素を含有する二価の連結基を表す。窒素を含有する二価の連結基の例としては、制限されるものではないが、nが1の場合のZの選択肢から水素原子又は置換基を取り除いて得られる二価の基、即ち、-NR-基、-C(=O)-NR-基、-NR-C(=O)-基、(但し以上の化学式において、Rはそれぞれ水素原子又は置換基を表す。)、又は、環構成原子として1個以上(好ましくは2~4個、更に好ましくは2個又は3個)の窒素原子を含む5~10員(好ましくは5員、6員、又は10員)の二価の複素環式基を表す。
 式(S2)において、Zの前述の各基が置換基を有する場合、その種類については先に記載したとおりであるが、中でもアルキル基(例えば炭素数1~10個の直鎖又は分岐鎖のアルキル基。以下-Rと示す場合がある。)、アルコキシ基(-O-R)、アミノ基(-NH)、アルキルアミノ基(-NHR)、ジアルキルアミノ基(-NR:二つのアルキル基Rは同一でも、異なっていてもよい。)、チオアルキル基(-SR)、並びにこれらの基が1又は2以上のハロゲン原子(例えば臭素又は塩素原子)で置換された基等が好ましい。置換基の数の具体例は、例えば10、9、8、7、6、5、4、3、2、1、又は0である。置換基の数が2以上の場合、これらは互いに同一であってもよく、異なっていてもよい。
 なお、言うまでもないが、式(S2)において、nが2の場合、各々2つずつ存在するRb1、Rb2、及びRb3は、それぞれ同一であってもよく、異なっていてもよい。
 式(S2)の第2のシラン化合物の具体例としては、これらに制限されるものではないが、以下の化合物が挙げられる。
・nが1の場合の具体例:トリメチルシリルイミダゾール、メチルシリルイミダゾール、トリエチルシリルイミダゾール、トリイソプロピルシリルイミダゾール、トリtert-ブチルジメチルシリルイミダゾール、N-メチル-Nトリメチルシリルトリフルオロアセタミド(MSTFA)、N-(tert-ブチルジメチルシリル)-N-メチルトリフルオロアセトアミド(MTBSTFA)等。
・nが2の場合の具体例:N,O-ビス(トリメチルシリル)トリフルオロアセタミド(BSTFA)、N,O-ビス(トリメチルシリル)アセタミド(BSA)、ヘキサメチルジシラザン(HMDS)等。
 本発明の縮合環ジペプチド化合物の製造方法において、式(S1)の第1のシラン化合物及び式(S2)の第2のシラン化合物を用いることで、無保護の求電子種アミノ酸及び無保護の求核種アミノ酸を用いた所望のシラン含有縮合環ジペプチド化合物の特異的な合成が可能となる理由は、理論に拘束されるものではないが、以下のように推測される。すなわち、工程(i)において、式(S1)の第1のシラン化合物が、求電子種である第1の無保護のアミノ酸と五員環を形成し、第1のアミノ酸の末端アミノ基を保護する一方で、工程(ii)において、式(S2)の第2のシラン化合物が、求核種である第2の無保護のアミノ酸とシリルエステルを形成し、第2のアミノ酸の末端カルボキシル基を保護する。その後、工程(iii)において両反応物を混合することにより、求電子種である第1のアミノ酸と求電子種である第2のアミノ酸とを区別しながら、第1のアミノ酸の末端カルボキシル基と、第2のアミノ酸の末端アミノ基とを、特異的に反応させることが可能になるものと推測される。
・第3及び第4のシラン化合物:
 本発明の縮合環ジペプチド化合物の製造方法では、工程(i)において、反応系に第3のシラン化合物を共存させてもよい。第3のシラン化合物は必須ではないが、反応系に第3のシラン化合物を共存させて工程(i)を実施することにより、反応効率の改善や反応特異性の向上等、種々の利点が得られる場合がある。理論に拘束されるものではないが、第1のシラン化合物と第1のアミノ酸との五員環形成が不十分或いは寿命が短く分解してしまった場合でも、第3のシラン化合物が共存することで、第1のアミノ酸の末端アミノ基が十分に保護され得るものと推測される。
 第3のシラン化合物を使用する場合、その種類は特に限定されるものではないが、トリメチルブロモシラン(TMBS)、トリメチルクロロシラン(TMCS)、トリス(ハロアルキル)シラン、N-(トリメチルシリル)ジメチルアミン(TMSDMA)、トリフルオロメタンスルホン酸トリメチルシリル(TMS-OTf)、ジメチルシリルイミダゾール、ジメチルシリル(2-メチル)イミダゾール、1-(トリメチルシリル)イミダゾール(TMSIM)、ジメチルエチルシリルイミダゾール(DMESI)、ジメチルイソプロピルシリルイミダゾール(DMIPSI)、1-(tert-ブチルジメチルシリル)イミダゾール(TBSIM)、1-(トリメチルシリル)トリアゾール、1-(tert-ブチルジメチルシリル)トリアゾール、N-メチル-Nトリメチルシリルトリフルオロアセタミド(MSTFA)、N,O-ビス(トリメチルシリル)トリフルオロアセタミド(BSTFA)、N,O-ビス(トリメチルシリル)アセタミド(BSA)、N-(tert-ブチルジメチルシリル)-N-メチルトリフルオロアセトアミド(MTBSTFA)、及びヘキサメチルジシラザン(HMDS)から選択される化合物であることが好ましい。なお、第3のシラン化合物として、2種以上のシラン化合物を任意の組み合わせ及び比率で使用してもよい。
 また、本発明の縮合環ジペプチド化合物の製造方法では、工程(iii)において、反応系に第4のシラン化合物と混合する工程を含んでいてもよい。第4のシラン化合物は必須ではないが、反応系に第4のシラン化合物を共存させて工程(iii)を実施することにより、反応効率の改善や反応特異性の向上等、種々の利点が得られる場合がある。理論に拘束されるものではないが、工程(iii)においてペプチド結合が形成された後に、第1のシラン化合物及び/又は第2のシラン化合物からSi-OHが発生した場合でも、第4のシラン化合物が共存することで、Si-OHがSi-O-Siとしてブロックされ得るものと推測される。
 第4のシラン化合物を使用する場合、その種類は特に限定されるものではないが、トリメチルブロモシラン(TMBS)、トリメチルクロロシラン(TMCS)、トリス(ハロアルキル)シラン、N-(トリメチルシリル)ジメチルアミン(TMSDMA)、トリフルオロメタンスルホン酸トリメチルシリル(TMS-OTf)、ジメチルシリルイミダゾール、ジメチルシリル(2-メチル)イミダゾール、1-(トリメチルシリル)イミダゾール(TMSIM)、ジメチルエチルシリルイミダゾール(DMESI)、ジメチルイソプロピルシリルイミダゾール(DMIPSI)、1-(tert-ブチルジメチルシリル)イミダゾール(TBSIM)、1-(トリメチルシリル)トリアゾール、1-(tert-ブチルジメチルシリル)トリアゾール、N-メチル-Nトリメチルシリルトリフルオロアセタミド(MSTFA)、N,O-ビス(トリメチルシリル)トリフルオロアセタミド(BSTFA)、N,O-ビス(トリメチルシリル)アセタミド(BSA)、N-(tert-ブチルジメチルシリル)-N-メチルトリフルオロアセトアミド(MTBSTFA)、及びヘキサメチルジシラザン(HMDS)から選択される化合物であることが好ましい。なお、第4のシラン化合物として、2種以上のシラン化合物を任意の組み合わせ及び比率で使用してもよい。
・ルイス酸触媒:
 本発明の縮合環ジペプチド化合物の製造方法では、反応系内にルイス酸触媒を共存させてもよい。反応系にルイス酸触媒を共存させて反応を実施することにより、反応収率の向上や立体選択性の向上等、種々の利点が得られる場合がある。但し一方で、ルイス酸触媒を使用した場合、反応生成物からルイス酸触媒を分離除去する作業が必要となる場合もある。よって、ルイス酸触媒の使用如何は、本発明の製造方法を使用する目的等を考慮して適宜決定することが好ましい。
 本発明の縮合環ジペプチド化合物の製造方法にルイス酸触媒を使用する場合、その種類は制限されないが、ルイス酸として機能する金属化合物であることが好ましい。金属化合物を構成する金属元素としては、元素周期律表の第2族から第15族に属する種々の金属が挙げられる。金属元素の具体例としては、ホウ素、マグネシウム、アルミニウム、ガリウム、インジウム、珪素、カルシウム、鉛、ビスマス、水銀、遷移金属、ランタノイ系元素等が挙げられる。遷移金属の具体例としては、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、イットリウム、ジルコニウム、ニオブ、モリブデン、テクネチウム、ルテニウム、ロジウム、パラジウム、スズ、銀、カドミウム、ハフニウム、タンタル、タングステン、レニウム、オスミウム、イリジウム、プラチナ、金、タリウム等が挙げられる。ランタノイ系元素の具体例としては、ランタン、セリウム、ネオジム、サマリウム、ユウロピウム、ガドリニウム、ホルミウム、エルビウム、ツリウム、イッテルビウム等が挙げられる。これらの中でも、優れた反応促進効果を発揮し、高立体選択的にアミド化合物を製造する観点からは、チタン、ジルコニウム、ハフニウム、タンタル、ニオブ、ホウ素、バナジウム、タングステン、ネオジム、鉄、鉛、コバルト、銅、銀、パラジウム、スズ、タリウム等から選択される1種又は2種以上が好ましく、チタン、ジルコニウム、ハフニウム、タンタル、ニオブ等から選択される1種又は2種以上が好ましい。なお、金属化合物に含まれる金属元素は1つでも2つ以上でもよい。金属化合物が2つ以上の金属元素を含む場合、これらはそれぞれ同じ種類の元素でもよく、2種類以上の異なる金属元素であってもよい。
 金属化合物を構成する配位子は、金属の種類に応じて適宜選択される。配位子の具体例としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、トリフルオロエトキシ基、トリクロロエトキシ基等の、置換又は非置換の炭素数が1~10の直鎖又は分枝鎖状のアルコキシ基;フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;炭素数1~10のアリロキシ基;アセチルアセトナート基(acac)、アセトキシ基(AcO)、トリフルオロメタンスルホナート基(TfO);置換又は非置換の炭素数が1~10の直鎖又は分枝鎖状のアルキル基;フェニル基、酸素原子、硫黄原子、基-SR(ここでRは置換基であり、置換基の例としては、置換又は非置換の炭素数が1~20程度の炭化水素基が挙げられる。)、基-NRR’(ここでR及びR’は、各々独立に、水素原子又は置換基であり、置換基の例としては、置換又は非置換の炭素数が1~20程度の炭化水素基が挙げられる。)、シクロペンタジエニル(Cp)基等が挙げられる。
 中でも、金属化合物としては、チタン化合物、ジルコニウム化合物、ハフニウム化合物、タンタル化合物、又はニオブ化合物が好ましい。以下、それぞれの具体例を挙げる。なお、これらは何れか一種を単独で使用してもよいが、二種以上を任意の組み合わせ及び比率で併用してもよい。
 チタン化合物の具体例としては、TiX (但し、4つのXは、各々独立に、前記で例示した配位子である。4つのXは同一の配位子でもよく、互いに異なっていてもよい。)で表されるチタン化合物が挙げられる。Xがアルコキシ基の場合、好ましくは炭素数1~10の直鎖又は分枝鎖状のアルコキシ基、中でも炭素数1~5の直鎖又は分枝鎖状のアルコキシ基、更には炭素数1~4の直鎖又は分枝鎖状のアルコキシ基等が挙げられる。Xがアリロキシ基の場合、好ましくは炭素数1~20のアリロキシ基、中でも炭素数1~15のアリロキシ基、更には炭素数1~10のアリロキシ基等が挙げられる。これらの配位子は更に置換基を有していてもよい。Xがハロゲン原子の場合、好ましくは塩素原子、臭素原子等が挙げられる。これらの中でも、例えばTi(OMe)、Ti(OEt)、Ti(OPr)、Ti(Oi-Pr)、Ti(OBu)、Ti(Ot-Bu)、Ti(OCHCH(Et)Bu)、CpTiCl、CpTiCl、CpTi(OTf)、(i-PrO)TiCl、(i-PrO)TiCl等が好ましい。
 ジルコニウム化合物の具体例としては、ZrX (但し、4つのXは、各々独立に、前記で例示した配位子である。4つのXは同一の配位子でもよく、互いに異なっていてもよい。)で表されるジルコニウム化合物が挙げられる。Xがアルコキシ基の場合、好ましくは炭素数1~10の直鎖又は分枝鎖状のアルコキシ基、中でも炭素数1~5の直鎖又は分枝鎖状のアルコキシ基、更には炭素数1~4の直鎖又は分枝鎖状のアルコキシ基等が挙げられる。Xがアリロキシ基の場合、好ましくは炭素数1~20のアリロキシ基、中でも炭素数1~15のアリロキシ基、更には炭素数1~10のアリロキシ基等が挙げられる。これらの配位子は更に置換基を有していてもよい。Xがハロゲン原子の場合、好ましくは塩素原子、臭素原子等が挙げられる。これらの中でも、例えばZr(OMe)、Zr(OEt)、Zr(OPr)、Zr(Oi-Pr)、Zr(OBu)、Zr(Ot-Bu)、Zr(OCHCH(Et)Bu)、CpZrCl、CpZrCl、CpZr(OTf)、(i-PrO)ZrCl、(i-PrO)ZrCl等が好ましい。
 ハフニウム化合物の具体例としては、HfX (但し、4つのXは、各々独立に、前記で例示した配位子である。4つのXは同一の配位子でもよく、互いに異なっていてもよい。)で表されるハフニウム化合物が挙げられる。Xがアルコキシ基の場合、好ましくは炭素数1~10の直鎖又は分枝鎖状のアルコキシ基、中でも炭素数1~5の直鎖又は分枝鎖状のアルコキシ基、更には炭素数1~4の直鎖又は分枝鎖状のアルコキシ基等が挙げられる。Xがアリロキシ基の場合、好ましくは炭素数1~20のアリロキシ基、中でも炭素数1~15のアリロキシ基、更には炭素数1~10のアリロキシ基等が挙げられる。これらの配位子は更に置換基を有していてもよい。Xがハロゲン原子の場合、好ましくは塩素原子、臭素原子等が挙げられる。これらの中でも、例えばHfCpCl、HfCpCl、HfCl等が好ましい。
 タンタル化合物の具体例としては、TaX (但し、5つのXは、各々独立に、前記で例示した配位子である。5つのXは同一の配位子でもよく、互いに異なっていてもよい。)で表されるタンタル化合物が挙げられる。Xがアルコキシ基の場合、好ましくは炭素数1~10の直鎖又は分枝鎖状のアルコキシ基、中でも炭素数1~5の直鎖又は分枝鎖状のアルコキシ基、更には炭素数1~3の直鎖又は分枝鎖状のアルコキシ基等が挙げられる。Xがアリロキシ基の場合、好ましくは炭素数1~20のアリロキシ基、中でも炭素数1~15のアリロキシ基、更には炭素数1~10のアリロキシ基等が挙げられる。これらの配位子は更に置換基を有していてもよい。Xがハロゲン原子の場合、好ましくは塩素原子、臭素原子等が挙げられる。これらの中でも、タンタルアルコキシド化合物(例えばXがアルコキシ基の化合物)等であることが好ましく、例えばTa(OMe)、Ta(OEt)、Ta(OBu)、Ta(NMe、Ta(acac)(OEt)、TaCl、TaCl(THF)、TaBr等が好ましい。また、Xが酸素である化合物、即ちTaも使用することができる。
 ニオブ化合物の具体例としては、NbX (但し、5つのXは、各々独立に、前記で例示した配位子である。5つのXは同一の配位子でもよく、互いに異なっていてもよい。)で表されるニオブ化合物が挙げられる。Xがアルコキシ基の場合、好ましくは炭素数1~10の直鎖又は分枝鎖状のアルコキシ基、中でも炭素数1~5の直鎖又は分枝鎖状のアルコキシ基、更には炭素数1~3の直鎖又は分枝鎖状のアルコキシ基等が挙げられる。Xがアリロキシ基の場合、好ましくは炭素数1~20のアリロキシ基、中でも炭素数1~15のアリロキシ基、更には炭素数1~10のアリロキシ基等が挙げられる。これらの配位子は更に置換基を有していてもよい。Xがハロゲン原子の場合、好ましくは塩素原子、臭素原子等が挙げられる。これらの中でも、ニオブアルコキシド化合物(例えばXがアルコキシ基の化合物)であることが好ましく、例えばNbCl(THF)、NbCl、Nb(OMe)、Nb(OEt)等が好ましい。また、Xが酸素である化合物、即ちNbも使用することができる。
 なお、ルイス酸触媒は、担体に担持されていてもよい。ルイス酸触媒を担持する担体としては、特に制限されず、公知のものが使用できる。また、ルイス酸触媒を担体に担持させる方法としても、公知の方法が採用できる。
・塩基:
 本発明の縮合環ジペプチド化合物の製造方法では、反応効率を高める観点から、反応系内に塩基を共存させてもよい。塩基の種類は制限されず、反応効率を向上させることが知られている公知の塩基を使用することができる。斯かる塩基の例としては、フッ化テトラブチルアンモニウム(TBAF)、トリエチルアミン(EtN)、ジイソプロピルアミン(i-PrNH)、ジイソプロピルエチルアミン(i-PrEtN)等の、炭素数1~10の直鎖又は分枝鎖状のアルキル基を1~4個有するアミンなどが挙げられる。これらは何れか一種を単独で使用してもよいが、二種以上を任意の組み合わせ及び比率で併用してもよい。
・その他の成分:
 本発明の縮合環ジペプチド化合物の製造方法では、反応系内に他の成分を共存させてもよい。斯かる他の成分の例としては、制限されるものではないが、ヨウ素、トリメチルシリルクロライド、トリメチルシリルブロマイド、トリメチルシリルヨージド等が挙げられる。これらは何れか一種を単独で使用してもよいが、二種以上を任意の組み合わせ及び比率で併用してもよい。
 なお、反応効率を高める観点からは、溶媒中で反応を行ってもよい。溶媒としては、特に制限されないが、例えば水性溶媒や有機溶媒が挙げられる。有機溶媒としては、制限されるものではないが、トルエン、キシレン等の芳香族炭化水素類、ペンタン、石油エーテル、テトラヒドロフラン(THF)、1-メチルテトラヒドロフラン(1-MeTHF)、ジイソプロピルエーテル(i-PrO)、ジエチルエーテル(EtO)、シクロペンチルメチルエーテル(CPME)等のエーテル類、アセトニトリル(MeCN)等の窒素系有機溶媒、ジクロロメタン(DCM)等の塩素系有機溶媒、酢酸エチル(AcOEt)等のエステル類、酢酸等の有機酸などが挙げられる。これらの溶媒は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。
・反応手順:
 本発明の縮合環ジペプチド化合物の製造方法では、工程(i)として、基質化合物のうち式(R1)の第1のアミノ酸を、式(S1)の第1のシラン化合物と接触させて反応させる一方、工程(ii)として、もう一方の基質化合物である式(R2)のアミノ酸を、式(S2)の第2のシラン化合物と接触させて反応させる。その後、工程(iii)として、工程(i)の反応物と、前記工程(ii)の反応物を混合して更に反応させることにより、前記式(A)の縮合環ジペプチド化合物を得る。このような反応手順により、求電子種である式(R1)の第1のアミノ酸と、求核種である式(R2)の第2のアミノ酸とによって、本発明の縮合環ジペプチド化合物が形成される。その反応機序については、理論に拘束されるものではないものの、本発明者等は以下の様に推測している。すなわち、工程(i)において、式(S1)の第1のシラン化合物が、求電子種である第1の無保護のアミノ酸と五員環を形成し、第1のアミノ酸の末端アミノ基を保護する一方で、工程(ii)において、式(S2)の第2のシラン化合物が、求核種である第2の無保護のアミノ酸とシリルエステルを形成し、第2のアミノ酸の末端カルボキシル基を保護する。その後、工程(iii)において両反応物を混合することにより、求電子種である第1のアミノ酸と求電子種である第2のアミノ酸とを区別しながら、第1のアミノ酸の末端カルボキシル基と、第2のアミノ酸の末端アミノ基とを、特異的に反応させることが可能になるものと推測される。
 なお、任意により用いられる第3及び/又は第4のシラン化合物、ルイス酸触媒及び塩基等、その他の成分を反応系に添加するタイミングは特に制限されず、何れも任意のタイミングで加えればよい。但し、第3のシラン化合物を使用する場合は、工程(i)の開始時に系内に添加することが好ましい。また、第4のシラン化合物を使用する場合は、工程(iii)の開始時に系内に添加することが好ましい。また、ルイス酸触媒を使用する場合は、工程(ii)の開始時に系内に添加することが好ましい。また、塩基を使用する場合には、工程(i)の開始時に系内に添加することが好ましい。また、溶媒を用いて反応を行う場合には、溶媒中で各成分を混合し、相互に接触させればよい。
・各成分の使用量比:
 本発明の縮合環ジペプチド化合物の製造方法において、各成分の使用量は限定されるものではないが、好ましくは以下の通りである。
 式(R1)のアミノ酸と式(R2)のアミノ酸との量比は、特に制限されないが、式(R1)のアミノ酸1モルに対して、式(R2)のアミノ酸を例えば0.05モル以上、又は0.1モル以上、又は0.2モル以上、又は0.3モル以上、又は0.4モル以上、また、例えば10モル以下、又は5モル以下、又は4モル以下、又は3モル以下、又は2モル以下の範囲で用いることができる。なお、式(R1)のアミノ酸を式(R2)のアミノ酸よりも多く用いることが、反応の効率が高くなる点で好ましい。具体的には、式(R1)のアミノ酸1モルに対して、式(R2)のアミノ酸が概ね0.5モル程度となるように用いることができる。なお、当然ながら、製造対象となる本発明の式(A)の縮合環ジペプチド化合物の目標製造量に対し、基質となる式(R1)のアミノ酸及び式(R2)のアミノ酸をそれぞれ1モル以上用いる必要がある。
 式(S1)の第1のシラン化合物の使用量は、反応の妨げとならない限り特に制限されないが、例えば、式(R1)のアミノ酸1モルに対して、式(S1)の第1のシラン化合物を例えば0.1モル以上、又は0.2モル以上、又は0.3モル以上、又は0.4モル以上、又は0.5モル以上、また、例えば20モル以下、又は15モル以下、又は10モル以下、又は8モル以下、又は6モル以下、又は4モル以下、又は2モル以下の範囲で用いることができる。なお、2種類以上の式(S1)の第1のシラン化合物を併用する場合には、2種類以上の式(S1)の第1のシラン化合物の合計量が前記範囲を満たすようにすればよい。
 式(S2)の第2のシラン化合物の使用量は、反応の妨げとならない限り特に制限されないが、例えば、式(R2)のアミノ酸1モルに対して、式(S2)の第2のシラン化合物を例えば0.2モル以上、又は0.4モル以上、又は0.6モル以上、又は0.8モル以上、又は1.0モル以上、また、例えば40モル以下、又は30モル以下、又は20モル以下、又は15モル以下、又は10モル以下、又は6モル以下、又は4モル以下の範囲で用いることができる。なお、2種類以上の式(S2)の第2のシラン化合物を併用する場合には、2種類以上の式(S2)の第2のシラン化合物の合計量が前記範囲を満たすようにすればよい。
 第3のシラン化合物を使用する場合、その使用量は、反応の妨げとならない限り特に制限されないが、例えば、式(R1)のアミノ酸1モルに対して、第3のシラン化合物を例えば0.1モル以上、又は0.2モル以上、又は0.3モル以上、又は0.4モル以上、又は0.5モル以上、また、例えば20モル以下、又は15モル以下、又は10モル以下、又は8モル以下、又は6モル以下、又は4モル以下、又は2モル以下の範囲で用いることができる。なお、2種類以上の第3のシラン化合物を併用する場合には、2種類以上の第3のシラン化合物の合計量が前記範囲を満たすようにすればよい。
 第4のシラン化合物を使用する場合、その使用量は、反応の妨げとならない限り特に制限されないが、例えば、式(R2)のアミノ酸1モルに対して、第4のシラン化合物を例えば0.2モル以上、又は0.4モル以上、又は0.6モル以上、又は0.8モル以上、又は1.0モル以上、また、例えば40モル以下、又は30モル以下、又は20モル以下、又は15モル以下、又は10モル以下、又は6モル以下、又は4モル以下の範囲で用いることができる。なお、2種類以上の第4のシラン化合物を併用する場合には、2種類以上の第4のシラン化合物物の合計量が前記範囲を満たすようにすればよい。
 塩基を使用する場合、その使用量は特に制限されないが、式(R1)のアミノ酸1モルに対して、塩基を例えば0.2モル以上、又は0.4モル以上、又は0.6モル以上、又は0.8モル以上、又は1.0モル以上、また、例えば40モル以下、又は30モル以下、又は20モル以下、又は15モル以下、又は10モル以下、又は6モル以下、又は4モル以下の範囲で用いることができる。
 ルイス酸触媒を使用する場合、その使用量は特に制限されないが、式(R1)のアミノ酸の使用量を100mol%とした場合に、通常0.1mol%以上、例えば0.2mol%以上、又は0.3mol%以上、また、通常30mol%以下、例えば20mol%以下、又は15mol%以下のルイス酸触媒を用いることができる。
・反応条件:
 本発明の縮合環ジペプチド化合物の製造方法における反応条件は、反応が進行する限りにおいて制限されないが、反応手順毎に例示すると以下のとおりである。
 工程(i)として、式(R1)のアミノ酸を、式(S1)の第1のシラン化合物と接触させて反応させる際の反応条件は、反応が進行する限りにおいて制限されないが、例えば以下の通りである。
 工程(i)の反応温度は、反応が進行する限りにおいて制限されないが、例えば0℃以上、又は10℃以上、又は20℃以上、また、例えば100℃以下、又は80℃以下、又は60℃以下とすることができる。
 工程(i)の反応圧力も、反応が進行する限りにおいて制限されず、減圧下、常圧下、加圧下の何れで行ってもよいが、通常は常圧で実施することができる。
 工程(i)の反応雰囲気も、反応が進行する限りにおいて制限されないが、アルゴン、窒素等の不活性ガスの雰囲気下に行うことができる。
 工程(i)の反応時間も、反応が進行する限りにおいて制限されないが、反応を十分且つ効率的に進行させる観点からは、例えば10分間以上、又は20分間以上、又は30分間以上、また、例えば80時間以内、又は60時間以内、又は50時間以内とすることができる。
 工程(ii)として、式(R2)のアミノ酸を、式(S2)の第2のシラン化合物と接触させて反応させる際の反応条件も、反応が進行する限りにおいて制限されないが、例えば以下の通りである。
 工程(ii)の反応温度は、反応が進行する限りにおいて制限されないが、例えば0℃以上、又は10℃以上、又は20℃以上、また、例えば100℃以下、又は80℃以下、又は60℃以下とすることができる。
 工程(ii)の反応圧力も、反応が進行する限りにおいて制限されず、減圧下、常圧下、加圧下の何れで行ってもよいが、通常は常圧で実施することができる。
 工程(ii)の反応雰囲気も、反応が進行する限りにおいて制限されないが、アルゴン、窒素等の不活性ガスの雰囲気下に行うことができる。
 工程(ii)の反応時間も、反応が進行する限りにおいて制限されないが、反応を十分且つ効率的に進行させる観点からは、例えば10分間以上、又は20分間以上、又は30分間以上、また、例えば80時間以内、又は60時間以内、又は50時間以内とすることができる。
 工程(iii)として、工程(i)の反応物と、工程(ii)の反応物とを接触させて反応させる際の反応条件も、反応が進行する限りにおいて制限されないが、例えば以下の通りである。
 工程(iii)の反応温度は、反応が進行する限りにおいて制限されないが、例えば0℃以上、又は10℃以上、又は20℃以上、また、例えば100℃以下、又は80℃以下、又は60℃以下とすることができる。
 工程(iii)の反応圧力も、反応が進行する限りにおいて制限されず、減圧下、常圧下、加圧下の何れで行ってもよいが、通常は常圧で実施することができる。
 工程(iii)の反応雰囲気も、反応が進行する限りにおいて制限されないが、アルゴン、窒素等の不活性ガスの雰囲気下に行うことができる。
 工程(iii)の反応時間も、反応が進行する限りにおいて制限されないが、反応を十分且つ効率的に進行させる観点からは、例えば10分間以上、又は20分間以上、又は30分間以上、また、例えば80時間以内、又は60時間以内、又は50時間以内とすることができる。
 なお、工程(i)、(ii)、及び(iii)は各々、逐次法(バッチ法)にて実施してもよく、連続法(フロー法)にて実施してもよい。具体的な逐次法(バッチ法)及び連続法(フロー法)の実施手順の詳細は、本技術分野では公知である。また、工程(i)の反応系に工程(ii)の反応物を添加することにより、工程(i)及び工程(iii)を連続してワンポッドで行ってもよい。
 なお、前述のとおり、第4のシラン化合物を使用する場合は、工程(ii)の開始前に、求核種である式(R2)の第2のアミノ酸と混合してから、工程(i)の反応物と混合することが好ましい。斯かる混合時の温度、圧力、雰囲気、及び時間等の条件は、反応が進行する限りにおいて制限されないが、工程(i)及び工程(ii)の温度、圧力、雰囲気、及び時間等の条件に準じて、適宜設定すればよい。
・後処理等(精製・回収等):
 上述の製造方法により得られた本発明の縮合環ジペプチド化合物に対して、更に種々の後処理を施してもよい。例えば、生成された本発明の縮合環ジペプチド化合物を、カラムクロマトグラフィー、再結晶等の常法に従って単離・精製することができる。また、生成された本発明の縮合環ジペプチド化合物を直接、又は単離・精製後、後述する本発明のポリペプチドの製造方法に供し、ポリペプチドの製造に利用してもよい。
[V.本発明の縮合環ジペプチド化合物を用いたポリペプチドの製造方法]
 本発明の縮合環ジペプチド化合物は、種々の反応に利用することが可能であるが、中でも、ポリペプチドの製造における利用が好適である。本発明の縮合環ジペプチド化合物を用いたポリペプチドの製造方法としては、二種類の態様が挙げられる(これらの態様を以下、適宜「本発明の第1のポリペプチドの製造方法」及び「本発明の第2のポリペプチドの製造方法」と略称する。)。但し、本発明の縮合環ジペプチド化合物を用いたポリペプチドの製造方法は、これら2つの態様に限定されるものではない。
(1)第1のポリペプチドの製造方法:
 本発明の第1のポリペプチドの製造方法は、一分子のポリペプチド化合物の製造に、本発明の縮合環ジペプチド化合物を一分子用いる方法であって、前記式(A)の縮合環ジペプチド化合物、下記式(R3)で表される保護アミノ酸又は保護ペプチド化合物、及び、下記式(R4)で表されるアミノ酸エステル又はペプチドエステル化合物を反応させることにより、下記式(P1)で表されるポリペプチド化合物を得ることを含む方法である。
・シラン含有縮合環ジペプチド化合物(基質化合物):
 本発明の第1のポリペプチドの製造方法において基質化合物として使用されるアミノ酸は、前記の式(A)で表されるシラン含有縮合環ジペプチド化合物(本発明の縮合環ジペプチド化合物)である。その詳細は詳述したとおりである。
・保護アミノ酸・ペプチド及びアミノ酸・ペプチドエステル(基質化合物):
 本発明の第1のポリペプチドの製造方法において基質化合物として使用される保護アミノ酸又は保護ペプチド、及びアミノ酸エステル又はペプチドエステルは、それぞれ下記の式(R3)及び式(R4)で表される化合物である。
 式(R3)及び式(R4)において、R31、R32、R41、及びR42は、各々独立に、水素原子、ハロゲン原子、水酸基、カルボキシル基、ニトロ基、シアノ基、若しくはチオール基、又は、1若しくは2以上の置換基を有していてもよい、アミノ基、一価の脂肪族炭化水素基、一価の芳香族炭化水素基、若しくは一価の複素環式基を表す。なお、これらの基が置換基を有する場合、その種類については先に記載したとおりである。置換基の数の具体例は、例えば5、4、3、2、1、又は0である。
 式(R3)及び式(R4)において、R31、R32、R41、及び/又はR42が、1又は2以上の置換基を有していてもよい、一価の脂肪族炭化水素基、芳香族炭化水素基、又は複素環式基である場合は、斯かる脂肪族炭化水素基、芳香族炭化水素基、又は複素環式基とそれが結合する炭素原子との間に、連結基が介在していてもよい。斯かる連結基は、限定されるものではないが、各々独立に、例えば以下に示す構造から選択される(なお、下記化学式中、Aは各々独立に、1又は2以上の置換基を有していてもよい、一価の脂肪族炭化水素基、芳香族炭化水素基、又は複素環式基を表す。同一の基の中にAが二つ存在する場合、それらは互いに同一でもよく、異なっていてもよい。)。
 式(R3)及び式(R4)において、R31、R32、R41、及び/又はR42が脂肪族炭化水素基である場合、斯かる脂肪族炭化水素基の(置換基を有する場合はその置換基も含めた)炭素原子数は、特に限定はされないが、上限が例えば20以下、15以下、10以下、8以下、又は6以下等である。下限は脂肪族炭化水素基の種類によっても異なるが、アルキル基の場合は1以上、アルケニル基やアルキニル基の場合は2以上、シクロアルキル基の場合には3以上、例えば4以上、又は5以上である。当該原子数の具体例は、例えば1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、又は20等である。
 式(R3)及び式(R4)において、R31、R32、R41、及び/又はR42が芳香族炭化水素基である場合、斯かる芳香族炭化水素基の(置換基を有する場合はその置換基も含めた)炭素原子数は、特に限定はされないが、上限が例えば20以下、15以下、10以下、8以下、又は6以下等である。下限は芳香族炭化水素基の種類によっても異なるが、通常4以上、例えば5以上、又は6以上である。当該原子数の具体例は、例えば4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、又は20等である。
 式(R3)及び式(R4)において、R31、R32、R41、及び/又はR42が複素環式基である場合、斯かる複素環式基の(置換基を有する場合はその置換基も含めた)炭素原子及びヘテロ原子の合計数は、特に限定はされないが、上限が例えば20以下、15以下、10以下、8以下、又は6以下等である。下限は複素環式構造の種類によっても異なるが、通常3以上、例えば4以上、又は5以上である。当該原子数の具体例は、例えば3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、又は20等である。
 式(R3)及び式(R4)におけるR31、R32、R41、及びR42としては、各々独立に、水素原子、水酸基、チオール基、カルボキシル基、ニトロ基、シアノ基、若しくはハロゲン原子、又は、1又は2以上の置換基を有していてもよい、アミノ基、アルキル基、アルケニル基、シクロアルキル基、アルコキシ基、アリール基、アリーロキシ基、アシル基、複素環式基、若しくは複素環オキシ基等であることが好ましい。
 式(R3)及び式(R4)におけるR31、R32、R41、及びR42の具体例としては、これらに限定されるものではないが、例えば以下が挙げられる。
・水素原子、水酸基、チオール基、カルボキシル基、ニトロ基、シアノ基;
・フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;
・メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、sec-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、ヘキシル基、へプチル基、オクチル基、デシル基、ノニル基等のアルキル基;
・エテニル基、プロペニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、へプテニル基、オクテニル基等のアルケニル基;
・プロパルギル基等のアルキニル基;
・シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロへプチル基、ビシクロオクチル基、スピロオクチル基等のシクロアルキル基;
・メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、sec-ブトキシ基、tert-ブトキシ基等のアルコキシ基;
・フェニル基、ベンジル基、トリル基、ナフチル基、アントラセニル基等のアリール基;
・フェニロキシ基、ベンジロキシ基、ナフチロキシ基等のアリーロキシ基;
・アセチル基、プロピオニル基、ベンゾイル基、パラメトキシベンゾイル基、シンナモイル基等のアシル基;
・無置換のアミノ基、及び、ジメチルアミノ基、ベンジルアミノ基、トリフェニルメチルアミノ基等の置換アミノ基;
・フラニル基、チオフェニル基、ピラニル基、ピロリニル基、ピロリル基、2,3-ジヒドロ-1H-ピロリル基、ピぺリジニル基、ピペラジニル基、ホモピペラジニル基、モルホリノ基、チオモルホリノ基、1,2,4,6-テトラヒドロピリジル基、ヘキサヒドロピリミジル基、ヘキサヒドロピリダジル基、1,2,4,6-テトラヒドロピリジル基、1,2,4,6-テトラヒドロピリダジル基、3,4-ジヒドロピリジル基、イミダゾリル基、4,5-ジヒドロ-1H-イミダゾリル基、2,3-ジヒドロ-1H-イミダゾリル基、ピラゾリル基、4,5-ジヒドロ-1H-ピラゾリル基、2,3-ジヒドロ-1H-ピラゾリル基、オキサゾリル基、4,5-ジヒドロ-1,3-オキサゾリル基、2,3-ジヒドロ-1,3-オキサゾリル基、2,5-ジヒドロ-1,3-オキサゾリル基、チアゾリル基、4,5-ジヒドロ-1,3-チアゾリル基、2,3-ジヒドロ-1,3-チアゾリル基、2,5-ジヒドロ-1,3-チアゾリル基、カルバゾリル基等の複素環式基;
・フラニルオキシ基、ピロリルオキシ基、インドリルオキシ基、キノリルオキシ基等の複素環オキシ基;等。
 式(R3)及び式(R4)において、R33及びR43は、各々独立に、水素原子、カルボキシル基、若しくは水酸基、又は、1若しくは2以上の置換基を有していてもよい、一価の炭化水素基若しくは複素環式基を表す。なお、置換基を有する場合、その種類については先に記載したとおりである。置換基の数の具体例は、例えば5、4、3、2、1、又は0である。
 式(R3)及び式(R4)において、R33及び/又はR43が、1又は2以上の置換基を有していてもよい、一価の脂肪族炭化水素基、芳香族炭化水素基、又は複素環式基である場合は、斯かる脂肪族炭化水素基、芳香族炭化水素基、又は複素環式基とそれが結合する窒素原子との間に、連結基が介在していてもよい。斯かる連結基は、限定されるものではないが、各々独立に、例えば以下に示す構造から選択される(なお、下記化学式中、Aは各々独立に、1又は2以上の置換基を有していてもよい、一価の脂肪族炭化水素基、芳香族炭化水素基、又は複素環式基を表す。同一の基の中にAが二つ存在する場合、それらは互いに同一でもよく、異なっていてもよい。)。
 式(R3)及び式(R4)において、R33及び/又はR43が脂肪族炭化水素基である場合、斯かる脂肪族炭化水素基の(置換基を有する場合はその置換基も含めた)炭素原子数は、特に限定はされないが、上限が例えば20以下、15以下、10以下、8以下、又は6以下等である。下限は脂肪族炭化水素基の種類によっても異なるが、アルキル基の場合は1以上、アルケニル基やアルキニル基の場合は2以上、シクロアルキル基の場合には3以上、例えば4以上、又は5以上である。当該原子数の具体例は、例えば1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、又は20等である。
 式(R3)及び式(R4)において、R33及び/又はR43が芳香族炭化水素基である場合、斯かる芳香族炭化水素基の(置換基を有する場合はその置換基も含めた)炭素原子数は、特に限定はされないが、上限が例えば20以下、15以下、10以下、8以下、又は6以下等である。下限は芳香族炭化水素基の種類によっても異なるが、通常4以上、例えば5以上、又は6以上である。当該原子数の具体例は、例えば4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、又は20等である。
 式(R3)及び式(R4)において、R33及び/又はR43が複素環式基である場合、斯かる複素環式基の(置換基を有する場合はその置換基も含めた)炭素原子及びヘテロ原子の合計数は、特に限定はされないが、上限が例えば20以下、15以下、10以下、8以下、又は6以下等である。下限は複素環式構造の種類によっても異なるが、通常3以上、例えば4以上、又は5以上である。当該原子数の具体例は、例えば3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、又は20等である。
 式(R3)及び式(R4)におけるR33及び/又はR43としては、各々独立に、水素原子、水酸基、若しくはカルボキシル基、又は、1又は2以上の置換基を有していてもよい、アルキル基、アルケニル基、シクロアルキル基、アルコキシ基、アリール基、アリーロキシ基、アシル基、複素環式基、若しくは複素環オキシ基等であることが好ましい。
 式(R3)及び式(R4)におけるR33及び/又はR43の具体例としては、これらに限定されるものではないが、例えば以下が挙げられる。
・水素原子、水酸基、カルボキシル基;
・メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、sec-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、ヘキシル基、へプチル基、オクチル基、デシル基、ノニル基等のアルキル基;
・エテニル基、プロペニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、へプテニル基、オクテニル基等のアルケニル基;
・プロパルギル基等のアルキニル基;
・シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロへプチル基、ビシクロオクチル基、スピロオクチル基等のシクロアルキル基;
・フェニル基、ベンジル基、トリル基、ナフチル基、アントラセニル基等のアリール基;
・フラニル基、チオフェニル基、ピラニル基、ピロリニル基、ピロリル基、2,3-ジヒドロ-1H-ピロリル基、ピぺリジニル基、ピペラジニル基、ホモピペラジニル基、モルホリノ基、チオモルホリノ基、1,2,4,6-テトラヒドロピリジル基、ヘキサヒドロピリミジル基、ヘキサヒドロピリダジル基、1,2,4,6-テトラヒドロピリジル基、1,2,4,6-テトラヒドロピリダジル基、3,4-ジヒドロピリジル基、イミダゾリル基、4,5-ジヒドロ-1H-イミダゾリル基、2,3-ジヒドロ-1H-イミダゾリル基、ピラゾリル基、4,5-ジヒドロ-1H-ピラゾリル基、2,3-ジヒドロ-1H-ピラゾリル基、オキサゾリル基、4,5-ジヒドロ-1,3-オキサゾリル基、2,3-ジヒドロ-1,3-オキサゾリル基、2,5-ジヒドロ-1,3-オキサゾリル基、チアゾリル基、4,5-ジヒドロ-1,3-チアゾリル基、2,3-ジヒドロ-1,3-チアゾリル基、2,5-ジヒドロ-1,3-チアゾリル基、カルバゾリル基等の複素環式基;等。
 或いは、式(R3)において、R31とR33とが互いに結合して、R31が結合する炭素原子及びR33が結合する窒素原子と共に、1又は2以上の置換基を有していてもよい複素環を形成していてもよい。同様に、式(R4)において、R41とR43とが互いに結合して、R41が結合する炭素原子及びR43が結合する窒素原子と共に、1又は2以上の置換基を有していてもよい複素環を形成していてもよい。なお、置換基を有する場合、その種類については先に記載したとおりである。置換基の数の具体例は、例えば5、4、3、2、1、又は0である。
 斯かる複素環式基の(置換基を有する場合はその置換基も含めた)炭素原子及びヘテロ原子の合計数は、上限が例えば20以下、15以下、10以下、8以下、又は6以下等である。下限は複素環式構造の種類によっても異なるが、通常3以上、例えば4以上、又は5以上である。当該原子数の具体例は、例えば3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、又は20等である。
 斯かる複素環の具体例としては、これらに限定されるものではないが、ピロリニル基、ピロリル基、2,3-ジヒドロ-1H-ピロリル基、ピぺリジニル基、ピペラジニル基、ホモピペラジニル基、モルホリノ基、チオモルホリノ基、1,2,4,6-テトラヒドロピリジル基、ヘキサヒドロピリミジル基、ヘキサヒドロピリダジル基、1,2,4,6-テトラヒドロピリジル基、1,2,4,6-テトラヒドロピリダジル基、3,4-ジヒドロピリジル基、イミダゾリル基、4,5-ジヒドロ-1H-イミダゾリル基、2,3-ジヒドロ-1H-イミダゾリル基、ピラゾリル基、4,5-ジヒドロ-1H-ピラゾリル基、2,3-ジヒドロ-1H-ピラゾリル基、オキサゾリル基、4,5-ジヒドロ-1,3-オキサゾリル基、2,3-ジヒドロ-1,3-オキサゾリル基、2,5-ジヒドロ-1,3-オキサゾリル基、チアゾリル基、4,5-ジヒドロ-1,3-チアゾリル基、2,3-ジヒドロ-1,3-チアゾリル基、2,5-ジヒドロ-1,3-チアゾリル基等が挙げられる。
 式(R3)及び式(R4)において、A31、A32、A41、及びA42は、各々独立に、1若しくは2以上の置換基を有していてもよい炭素数1~3の二価の脂肪族炭化水素基を表す。具体例としては、これらに限定されるものではないが、メチレン基、エチレン基、プロピレン基、及びイソプロピレン基等、並びにこれらの基が1又は2以上の前記の置換基で置換された基が挙げられる。置換基の数の具体例は、例えば3、2、1、又は0である。
 式(R3)及び式(R4)において、p31、p32、p41、及びp42は、各々独立に、0又は1を表す。
 式(R3)及び式(R4)において、m及びnは、各々独立に、[ ]内の構造で表される構成単位の数を表す、1以上の整数である。即ち、mは、式(R3)の[ ]内のアミノ酸単位の数を表す。mが1の場合、式(R3)の化合物は保護アミノ酸となり、mが2以上の場合、式(R3)の化合物は保護ペプチドとなる。同様に、nは、式(R4)の[ ]内のアミノ酸単位の数を表す。nが1の場合、式(R4)の化合物はアミノ酸エステルとなり、nが2以上の場合、式(R4)の化合物はペプチドエステルとなる。m及びnの上限は、反応が進行する限りにおいて特に制限されないが、例えば100以下、80以下、60以下、50以下、40以下、30以下、20以下、15以下、12以下、又は10以下等である。m及びnの具体例は、各々独立に、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、25、30、35、40、45、50、60、70、80、90、100等である。
 式(R3)中、PGは、アミノ基の保護基を表す。アミノ基の保護基PGとしては、所与の反応時に当該アミノ基が反応しないように保護することができ、反応後にこれを脱保護してアミノ基に変換可能なものであれば、特に制限されない。斯かるアミノ基の保護基の詳細については、後述する。
 式(R4)中、PGは、カルボキシル基の保護基を表す。カルボキシル基の保護基PGとしては、所与の反応時に当該カルボキシル基が反応しないように保護することができ、反応後にこれを脱保護してカルボキシル基に変換可能なものであれば、特に制限されない。斯かるカルボキシル基の保護基の詳細については、先に詳述したとおりである。
・アミノ基の保護基:
 本発明の各製造方法(本発明の縮合環ジペプチド化合物の製造方法、及び、本発明の第1及び第2のポリペプチドの製造方法)において使用されるアミノ基の保護基PGとしては、公知の多種多様のものが知られている。例としては、1若しくは2以上の置換基を有していてもよい一価の脂肪族炭化水素基又は芳香族炭化水素基、又は、1若しくは2以上の置換基を有していてもよい一価の複素環式基等が挙げられる。中でも、1又は2以上の置換基を有していてもよい一価の脂肪族炭化水素基又は芳香族炭化水素基が好ましい。但し、斯かる脂肪族炭化水素基、芳香族炭化水素基、又は複素環式基と、それが保護するアミノ基の窒素原子(式(R3)中PGが結合する窒素原子)との間に、連結基が介在していてもよい。斯かる連結基は、限定されるものではないが、各々独立に、例えば以下に示す連結基から選択される(なお、下記化学式中、Aは各々独立に、1又は2以上の置換基を有していてもよい一価の脂肪族炭化水素基、芳香族炭化水素基、又は複素環式基を表す。同一の基の中にAが二つ存在する場合、それらは互いに同一でもよく、異なっていてもよい。)。
 アミノ基の保護基PGの炭素数は、通常1以上、又は3以上、また、通常20以下、又は15以下が挙げられる。
 中でも、アミノ基の保護基PGは、1又は2以上の置換基を有していてもよい、一価の脂肪族炭化水素基又は芳香族炭化水素基、アシル基、炭化水素オキシカルボニル基、及び炭化水素スルホニル基、及びアミド基からなる群より選択される1種以上の基であることが好ましい。
 以下、アミノ基の保護基PGの具体例を列記する。なお、アミノ基の保護基の名称としては、アミノ基の窒素原子に結合している官能基の名称の他、窒素原子をも含めた名称も存在しており、以下の名称においても両者が含まれている。
 非置換又は置換の炭化水素基の具体例としては、メチル基、エチル基、プロピル基等のアルキル基;エテニル基、プロペニル基、アリル基、等のアルケニル基;プロパルギル基等のアルキニル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基;フェニル基、ベンジル基、パラメトキシベンジル基、トリル基、トリフェニルメチル基(トロック基)等のアリール基;シアノメチル基等の置換炭化水素基等が挙げられる。炭素数は、通常1以上、又は3以上、また、通常20以下、又は15以下が挙げられる。
 非置換又は置換のアシル基の具体例としては、ベンゾイル基(Bz)、オルトメトキシベンゾイル基、2,6-ジメトキシベンゾイル基、パラメトキシベンゾイル基(PMPCO)、シンナモイル基、フタロイル基(Phth)等が挙げられる。
 非置換又は置換の炭化水素オキシカルボニル基の具体例としては、tert-ブトキシカルボニル基(Boc)、ベンジルオキシカルボニル基(Cbz又はZ)、メトキシカルボニル基、エトキシカルボニル基、2-トリメチルシリルエトキシカルボニル基、2-フェニルエトキシカルボニル基、1-(1-アダマンチル)-1-メチルエトキシカルボニル基、1-(3,5-ジ-t- ブチルフェニル)-1-メチルエトキシカルボニル基、ビニロキシカルボニル基、アリルオキシカルボニル基(Alloc)、N-ヒドロキシピペリジニルオキシカルボニル基、p-メトキシベンジルオキシカルボニル基、p-ニトロベンジルオキシカルボニル基、2-(1,3-ジチアニル)メトキシカルボニル、m-ニトロフェノキシカルボニル基、3,5-ジメトキシベンジルオキシカルボニル基、o-ニトロベンジルオキシカルボニル基、2,2,2-トリクロロエトキシカルボニル基(Troc)、9-フルオレニルメチルオキシカルボニル基(Fmoc)等が挙げられる。
 非置換又は置換の炭化水素スルホニル基の具体例としては、メタンスルホニル基(Ms)、トルエンスルホニル基(Ts)、2-又は4-ニトロベンゼンスルホニル基(Ns)基等が挙げられる。
 非置換又は置換のアミド基の具体例としては、アセトアミド、o-(ベンゾイロキシメチル)ベンズアミド、2-[(t-ブチルジフェニルシロキシ)メチル]ベンズアミド、2-トルエンスルホンアミド、4-トルエンスルホンアミド、2-ニトロベンゼンスルホンアミド、4-ニトロベンゼンスルホンアミド、tert-ブチルスルフィニルアミド、4-トルエンスルホンアミド、2-(トリメチルシリル)エタンスルホンアミド、ベンジルスルホンアミド等が挙げられる。
 また、脱保護の手法の観点からは、水素化による脱保護、弱酸による脱保護、フッ素イオンによる脱保護、一電子酸化剤による脱保護、ヒドラジンによる脱保護、酸素による脱保護等のうち、少なくとも1種の手法により脱保護可能な保護基も、アミノ基の保護基PGの例として挙げられる。
 アミノ基の保護基PGの好ましい具体例としては、メシル基(Ms)、tert-ブトキシカルボニル基(Boc)、ベンジル基(Bn又はBzl)、ベンジルオキシカルボニル基(Cbz)、ベンゾイル基(Bz)、パラメトキシベンジル基(PMB)、2,2,2-トリクロロエトキシカルボニル基(Troc)、アリルオキシカルボニル基(Alloc)、2,4-ジニトロフェニル基(2,4-DNP)、フタロイル基(Phth)、パラメトキシベンゾイル基(PMPCO)、シンナモイル基、トルエンスルホニル基(Ts)、2又は4-ニトロベンゼンスルホニル基(Ns)、シアノメチル基、9-フルオレニルメチルオキシカルボニル基(Fmoc)等が挙げられる。これらの保護基は、前記の通り、容易にアミノ基を保護でき、かつ比較的温和な条件で除去することができるためである。
 アミノ基の保護基PGのより好ましい具体例としては、メシル基(Ms)、tert-ブトキシカルボニル基(Boc)、ベンジルオキシカルボニル基(Cbz)、ベンジル基(Bn)、パラメトキシベンジル基(PMB)、2,2,2-トリクロロエトキシカルボニル基(Troc)、アリルオキシカルボニル基(Alloc)、パラメトキシベンゾイル基(PMPCO)、ベンゾイル基(Bz)、シアノメチル基、シンナモイル基、2又は4-ニトロベンゼンスルホニル基(Ns)、トルエンスルホニル基(Ts)、フタロイル基(Phth)、2,4-ジニトロフェニル基(2,4-DNP)、9-フルオレニルメチルオキシカルボニル基(Fmoc)等が挙げられる。
 アミノ基の保護基PGの更に好ましい具体例としては、メシル基(Ms)、tert-ブトキシカルボニル基(Boc)、ベンジルオキシカルボニル基(Cbz)、ベンジル基(Bn)、パラメトキシベンジル基(PMB)、2,2,2-トリクロロエトキシカルボニル基(Troc)、アリルオキシカルボニル基(Alloc)、パラメトキシベンゾイル基(PMPCO)、ベンゾイル基(Bz)、シアノメチル基、シンナモイル基等が挙げられる。
 前記工程(i)及び/又は(ii)において、反応系に、縮合剤及び/又はラセミ化防止剤を共存させてもよい。
 前記式(P1)のポリペプチド化合物のアミノ基の保護基PG及び/又はカルボキシル基の保護基PGを脱保護する工程を更に含んでいてもよい。
・カルボキシル基の保護基:
 本発明の各製造方法(本発明の縮合環ジペプチド化合物の製造方法、及び、後述する本発明の第1及び第2のポリペプチドの製造方法)において使用されるカルボキシル基の保護基PGの例としては、1又は2以上の置換基を有していてもよい、一価の脂肪族炭化水素基、芳香族炭化水素基、又は複素環式基等が挙げられる。なお、置換基を有する場合、その種類については先に記載したとおりである。置換基の数の具体例は、例えば5、4、3、2、1、又は0である。
 カルボキシル基の保護基PGが脂肪族炭化水素基の場合、脂肪族炭化水素基の(置換基を有する場合はその置換基も含めた)炭素原子数は、特に限定はされないが、上限が例えば20以下、15以下、10以下、8以下、又は6以下等である。下限は脂肪族炭化水素基の種類によっても異なるが、アルキル基の場合は1以上、アルケニル基やアルキニル基の場合は2以上、シクロアルキル基の場合には3以上、例えば4以上、又は5以上である。当該原子数の具体例は、例えば1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、又は20等である。
 カルボキシル基の保護基PGが芳香族炭化水素基の場合、芳香族炭化水素基の(置換基を有する場合はその置換基も含めた)炭素原子数は、特に限定はされないが、上限が例えば20以下、15以下、10以下、8以下、又は6以下等である。下限は芳香族炭化水素基の種類によっても異なるが、通常4以上、例えば5以上、又は6以上である。当該原子数の具体例は、例えば4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、又は20等である。
 カルボキシル基の保護基PGの具体例としては、これらに限定されるものではないが、例えば以下が挙げられる。
・メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、sec-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、ヘキシル基、へプチル基、オクチル基、デシル基、ノニル基等のアルキル基;
・エテニル基、プロペニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、へプテニル基、オクテニル基等のアルケニル基;
・プロパルギル基等のアルキニル基;
・シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロへプチル基、ビシクロオクチル基、スピロオクチル基等のシクロアルキル基;
・フェニル基、ベンジル基、トリル基、クミル基、1,1-ジフェニルエチル基、トリフェニルメチル基、フルオレニル基、ナフチル基、アントラセニル基等のアリール基及びアリールアルキル基;
・フラニル基、チオフェニル基、ピラニル基、ピロリニル基、ピロリル基、2,3-ジヒドロ-1H-ピロリル基、ピぺリジニル基、ピペラジニル基、ホモピペラジニル基、モルホリノ基、チオモルホリノ基、1,2,4,6-テトラヒドロピリジル基、ヘキサヒドロピリミジル基、ヘキサヒドロピリダジル基、1,2,4,6-テトラヒドロピリジル基、1,2,4,6-テトラヒドロピリダジル基、3,4-ジヒドロピリジル基、イミダゾリル基、4,5-ジヒドロ-1H-イミダゾリル基、2,3-ジヒドロ-1H-イミダゾリル基、ピラゾリル基、4,5-ジヒドロ-1H-ピラゾリル基、2,3-ジヒドロ-1H-ピラゾリル基、オキサゾリル基、4,5-ジヒドロ-1,3-オキサゾリル基、2,3-ジヒドロ-1,3-オキサゾリル基、2,5-ジヒドロ-1,3-オキサゾリル基、チアゾリル基、4,5-ジヒドロ-1,3-チアゾリル基、2,3-ジヒドロ-1,3-チアゾリル基、2,5-ジヒドロ-1,3-チアゾリル基、カルバゾリル基等の複素環式基;
トリメチルシリル(TMS)基、トリエチルシリル(TES)基、トリイソプロピルシリル(TIPS)基、トリtert-ブチルシリル(TBS)基、tert-ブチルジフェニルシリル(TBDPS)基、トリス(トリアルキルシリル)シリル基等のケイ素系保護基;等。
・縮合剤及びラセミ化防止剤:
 本発明の第1のペプチド製造方法では、ペプチド形成反応の効率を高める観点から、縮合剤を系内に共存させてもよい。縮合剤の種類は制限されず、縮合反応効率を向上させることが知られている公知の縮合剤を使用することができる。斯かる縮合剤の例としては以下が挙げられる。これらは何れか一種を単独で使用してもよいが、二種以上を任意の組み合わせ及び比率で併用してもよい。
・カルボジイミド系縮合剤:1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジイミド(wsc、edc)、塩酸1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド(wscHCl、edcHCl)、N,N’-ジシクロヘキシルカルボジイミド(DCC)、N,N’-ジイソプロピルカルボジイミド(DIC)等。
・ホスホニウム系縮合剤:1H-ベンゾトリアゾール-1-イルオキシトリス(ジメチルアミノ)ホスホニウムヘキサフルオロりん酸塩(BOP)、1H-ベンゾトリアゾール-1-イルオキシトリピロリジノホスホ二ウムヘキサフルオロりん酸塩(PyBOP)、(7-アザベンゾトリアゾール-1-イルオキシ)トリピロリジノホスホニウムヘキサフルオロりん酸塩(PyAOP)、クロロトリピロリジノホスホ二ウムヘキサフルオロりん酸塩(PyCloP)、ブロモトリス(ジメチルアミノ)ホスホニウムヘキサフルオロりん酸塩(Brop)、3-(ジエトキシホスホリルオキシ)-1,2,3-ベンゾトリアジン-4(3H)-オン(DEPBT)等。
・イミダゾール系縮合剤:N,N’-カルボニルジイミダゾール(CDI)、1,1’-カルボニルジ(1,2,4-トリアゾール)(CDT)等。
・ウロニウム系縮合剤:O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロりん酸塩(HBTU)、O-(7-アザベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロりん酸塩(HATU)、O-(N-スクシンイミジル)-N,N,N’,N’-テトラメチルウロニウムテトラフルオロほう酸塩(TSTU)等。
・トリアジン系縮合剤:4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウム=クロリドn水和物(DMT-MM)等。
 なお、縮合剤を使用する場合、ペプチド形成反応時のラセミ化を防止する観点から、ラセミ化防止剤を併用してもよい。ラセミ化防止剤の種類も制限されず、縮合反応時のラセミ化を防止することが知られている公知のラセミ化防止剤を使用することができる。斯かるラセミ化防止剤の例としては、1-ヒドロキシベンゾトリアゾール(HOBt)、1-ヒドロキシ-7-アザベンゾトリアゾール(HOAtN-ヒドロキシこはく酸イミド(HOSu)、炭酸N,N’-ジスクシンイミジル(DSC)等が挙げられる。これらは何れか一種を単独で使用してもよいが、二種以上を任意の組み合わせ及び比率で併用してもよい。
・塩基:
 本発明の第1のペプチド製造方法では、反応効率を高める観点から、塩基を系内に共存させてもよい。塩基の種類は制限されず、反応効率を向上させることが知られている公知の塩基を使用することができる。斯かる塩基の例としては、フッ化テトラブチルアンモニウム(TBAF)、トリエチルアミン(EtN)、ジイソプロピルアミン(i-PrNH)、ジイソプロピルエチルアミン(i-PrEtN)等の、炭素数1~10の直鎖又は分枝鎖状のアルキル基を1~4個有するアミンや、フッ化セシウム等の無機塩基などが挙げられる。これらは何れか一種を単独で使用してもよいが、二種以上を任意の組み合わせ及び比率で併用してもよい。
・その他の成分:
 本発明の第1のペプチド製造方法では、基質化合物である前述の式(A)の縮合環ジペプチド化合物、式(R3)の保護アミノ酸又は保護ペプチド、式(R4)のアミノ酸エステル又はペプチドエステル、並びに任意により用いられる塩基、縮合剤、及びラセミ化防止剤に加えて、他の成分を共存させてもよい。斯かる他の成分の例としては、制限されるものではないが、アミド化反応に使用可能な従来の触媒や、シラン化合物、リン化合物等が挙げられる。これらは何れか一種を単独で使用してもよいが、二種以上を任意の組み合わせ及び比率で併用してもよい。
 触媒の例としては、前述の本発明の縮合環ジペプチド化合物の製造方法の欄で詳述した種々のルイス酸触媒、例えばチタン化合物、ジルコニウム化合物、ハフニウム化合物、タンタル化合物、ニオブ化合物等や、メチルアルミニウムビス(4-ブロモ-2,6-ジ-tert-ブチルフェノキシド)(MABR)、トリフルオロメタンスルホン酸トリメチルシリル(TMS-OTf)、メチルアルミニウムビス(2,6-ジ-tert-ブチルフェノキシド)(MAD)等が挙げられる。これらは何れか一種を単独で使用してもよいが、二種以上を任意の組み合わせ及び比率で併用してもよい。
 シラン化合物の例としては、HSi(OCH(CF、HSi(OCHCF、HSi(OCHCFCFH)、HSi(OCHCFCFCFCFH)等の各種のトリス{ハロ(好ましくはフッ素)置換アルキル}シランの他、トリフルオロメタンスルホン酸トリメチルシリル(TMS-OTf)、1-(トリメチルシリル)イミダゾール(TMSIM)、ジメチルエチルシリルイミダゾール(DMESI)、ジメチルイソプロピルシリルイミダゾール(DMIPSI)、1-(tert-ブチルジメチルシリル)イミダゾール(TBSIM)、1-(トリメチルシリル)トリアゾール、1-(tert-ブチルジメチルシリル)トリアゾール、ジメチルシリルイミダゾール、ジメチルシリル(2-メチル)イミダゾール、トリメチルブロモシラン(TMBS)、トリメチルクロロシラン(TMCS)、N-メチル-Nトリメチルシリルトリフルオロアセタミド(MSTFA)、N,O-ビス(トリメチルシリル)トリフルオロアセタミド(BSTFA)、N,O-ビス(トリメチルシリル)アセタミド(BSA)、N-(トリメチルシリル)ジメチルアミン(TMSDMA)、N-(tert-ブチルジメチルシリル)-N-メチルトリフルオロアセトアミド(MTBSTFA)、ヘキサメチルジシラザン(HMDS)等が挙げられる。これらは何れか一種を単独で使用してもよいが、二種以上を任意の組み合わせ及び比率で併用してもよい。
 リン化合物の例としては、ホスフィン化合物(例えば、トリメチルホスフィン、トリエチルホスフィン、トリプロピルホスフィン、トリメチロキシホスフィン、トリエチロキシホスフィン、トリプロピロキシホスフィン、トリフェニルホスフィン、トリナフチルホスフィン、トリフェニロキシホスフィン、トリス(4-メチルフェニル)ホスフィン、トリス(4-メトキシフェニル)ホスフィン、トリス(4-フルオロフェニル)ホスフィン、トリス(4-メチルフェニロキシ)ホスフィン、トリス(4-メトキシフェニロキシ)ホスフィン、トリス(4-フルオロフェニロキシ)ホスフィン等)、ホスフェート化合物(例えば、トリメチルホスフェート、トリエチルホスフェート、トリプロピルホスフェート、トリメチロキシホスフェート、トリエチロキシホスフェート、トリプロピロキシホスフェート、トリフェニルホスフェート、トリナフチルホスフェート、トリフェニロキシホスフェート、トリス(4-メチルフェニル)ホスフェート、トリス(4-メトキシフェニル)ホスフェート、トリス(4-フルオロフェニル)ホスフェート、トリス(4-メチルフェニロキシ)ホスフェート、トリス(4-メトキシフェニロキシ)ホスフェート、トリス(4-フルオロフェニロキシ)ホスフェート等)、多価ホスフィン化合物又は多価ホスフェート化合物(例えば、2,2’-ビス(ジフェニルホスフィノ)-1,1’-ビナフチル(BINAP)、5,5’-ビス(ジフェニルホスフィノ)-4,4’-ビ-1,3-ベンゾジオキソール(SEGPHOS)等)等が挙げられる。これらは何れか一種を単独で使用してもよいが、二種以上を任意の組み合わせ及び比率で併用してもよい。
 また、反応効率を高める観点から、反応時に溶媒を用いてもよい。溶媒としては、特に制限されないが、例えば水性溶媒や有機溶媒が挙げられる。有機溶媒としては、制限されるものではないが、トルエン、キシレン等の芳香族炭化水素類、ペンタン、石油エーテル、テトラヒドロフラン(THF)、1-メチルテトラヒドロフラン(1-MeTHF)、ジイソプロピルエーテル(i-PrO)、ジエチルエーテル(EtO)、シクロペンチルメチルエーテル(CPME)等のエーテル類、アセトニトリル(MeCN)等の窒素系有機溶媒、ジクロロメタン(DCM)等の塩素系有機溶媒、酢酸エチル(AcOEt)等のエステル類、酢酸等の有機酸などが挙げられる。これらの溶媒は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。
・反応手順:
 本発明の第1のペプチド製造方法では、式(A)の縮合環ジペプチド化合物、式(R3)の保護アミノ酸又は保護ペプチド化合物、及び、式(R4)のアミノ酸エステル又はペプチドエステル化合物を反応させる。懸かる反応により、式(A)の縮合環ジペプチド化合物の式中左側のアミノ酸残基の環が開いて、そのN末端に式(R3)の保護アミノ酸又は保護ペプチドが連結されると共に、式(A)の縮合環ジペプチド化合物の式中右側のアミノ酸残基の環が開いて、そのC末端に式(R4)の保護アミノ酸又は保護ペプチドが連結され、その結果として、式(P1)のポリペプチド化合物が形成される。
 本発明の第1のペプチド製造方法では、上記の反応が生じる限り、各基質化合物の混合順は制限されない。例としては以下の2つの態様が挙げられるが、各基質化合物の混合順は、これらに限定されるものではない。
 第1の態様としては、工程(i)として、式(A)の縮合環ジペプチド化合物に、式(R3)の保護アミノ酸又は保護ペプチドを加えて反応させた後、次いで工程(ii)として、式(R4)のアミノ酸エステル又はペプチドエステルを反応系に加えて反応させる態様が挙げられる。本態様では、工程(i)において、式(A)の縮合環ジペプチド化合物の式中左側のアミノ酸残基の環が開いて、そのN末端に式(R3)の保護アミノ酸又は保護ペプチドが連結されると共に、工程(ii)において、式(A)の縮合環ジペプチド化合物の式中右側のアミノ酸残基の環が開いて、そのC末端に式(R4)の保護アミノ酸又は保護ペプチドが連結され、その結果として、式(P1)のポリペプチド化合物が形成される。
 第2の態様としては、工程(i)として、式(A)の縮合環ジペプチド化合物に、式(R4)のアミノ酸エステル又はペプチドエステルを加えて反応させた後、次いで工程(ii)として、式(R3)の保護アミノ酸又は保護ペプチドを反応系に加えて反応させる態様が挙げられる。本態様では、工程(i)において、式(A)の縮合環ジペプチド化合物の式中右側のアミノ酸残基の環が開いて、そのC末端に式(R4)の保護アミノ酸又は保護ペプチドが連結されると共に、工程(ii)において、式(A)の縮合環ジペプチド化合物の式中左側のアミノ酸残基の環が開いて、そのN末端に式(R3)の保護アミノ酸又は保護ペプチドが連結され、その結果として、式(P1)のポリペプチド化合物が形成される。
 なお、任意により用いられる縮合剤及び塩基等、その他の成分を反応系に添加するタイミングは特に制限されず、何れも任意のタイミングで加えればよい。但し、縮合剤及び/又は塩基を使用する場合は、第1及び第2の何れの態様においても、工程(i)及び/又は工程(ii)の開始時に系内に添加することが好ましい。また、縮合剤に加えてラセミ化防止剤を使用する場合には、縮合剤と一緒に系内に添加することが好ましい。また、溶媒を用いて反応を行う場合には、溶媒中で各成分を混合し、相互に接触させればよい。
・各成分の使用量比:
 本発明の第1のペプチド製造方法において、各成分の使用量は限定されるものではないが、好ましくは以下の通りである。
 式(A)の縮合環ジペプチド化合物と式(R3)の保護アミノ酸又は保護ペプチドとの量比は、特に制限されないが、式(A)の縮合環ジペプチド化合物1モルに対して、式(R3)の保護アミノ酸又は保護ペプチドを、例えば0.1モル以上、又は0.2モル以上、又は0.3モル以上、又は0.4モル以上、又は0.5モル以上、また、例えば20モル以下、又は15モル以下、又は10モル以下、又は8モル以下、又は6モル以下、又は4モル以下、又は2モル以下の範囲で用いることができる。
 式(A)の縮合環ジペプチド化合物と式(R4)のアミノ酸エステル又はペプチドエステルとの量比は、特に制限されないが、式(A)の縮合環ジペプチド化合物1モルに対して、式(R4)のアミノ酸エステル又はペプチドエステルを、例えば0.1モル以上、又は0.2モル以上、又は0.3モル以上、又は0.4モル以上、又は0.5モル以上、また、例えば20モル以下、又は15モル以下、又は10モル以下、又は8モル以下、又は6モル以下、又は4モル以下、又は2モル以下の範囲で用いることができる。
 なお、当然ながら、製造対象となる本発明の式(P1)のポリペプチド化合物の目標製造量に対し、基質となる式(A)の縮合環ジペプチド化合物、式(R3)の保護アミノ酸又は保護ペプチド、及び式(R4)のアミノ酸エステル又はペプチドエステルをそれぞれ1モル以上用いる必要がある。
 塩基を使用する場合、その使用量は特に制限されないが、式(A)の縮合環ジペプチド化合物1モルに対して、塩基を例えば0.2モル以上、又は0.4モル以上、又は0.6モル以上、又は0.8モル以上、又は1.0モル以上、また、例えば40モル以下、又は30モル以下、又は20モル以下、又は15モル以下、又は10モル以下、又は6モル以下、又は4モル以下の範囲で用いることができる。なお、複数の工程において塩基を添加する場合には、各工程において上記範囲内の量の塩基を添加することが好ましい。
 縮合剤を使用する場合、その使用量は特に制限されないが、式(A)の縮合環ジペプチド化合物1モルに対して、縮合剤を例えば0.2モル以上、又は0.4モル以上、又は0.6モル以上、又は0.8モル以上、又は1.0モル以上、また、例えば40モル以下、又は30モル以下、又は20モル以下、又は15モル以下、又は10モル以下、又は6モル以下、又は4モル以下の範囲で用いることができる。なお、複数の工程において縮合剤を添加する場合には、各工程において上記範囲内の量の縮合剤を添加することが好ましい。
 縮合剤に加えてラセミ化防止剤を使用する場合、その使用量は特に制限されないが、式(A)の縮合環ジペプチド化合物1モルに対して、ラセミ化防止剤を例えば0.2モル以上、又は0.4モル以上、又は0.6モル以上、又は0.8モル以上、又は1.0モル以上、また、例えば40モル以下、又は30モル以下、又は20モル以下、又は15モル以下、又は10モル以下、又は6モル以下、又は4モル以下の範囲で用いることができる。なお、複数の工程においてラセミ化防止剤を添加する場合には、各工程において上記範囲内の量のラセミ化防止剤を添加することが好ましい。
・反応条件:
 本発明の第1のペプチド製造方法における反応条件は、反応が進行する限りにおいて制限されないが、例として、前記の第1及び第2の各態様について、反応手順毎に例示すると以下のとおりである。
 まず、第1の態様の場合、工程(i)として、式(A)の縮合環ジペプチド化合物に、式(R3)の保護アミノ酸又は保護ペプチドを加えて反応させる際の反応条件は、反応が進行する限りにおいて制限されないが、例えば以下の通りである。
 工程(i)の反応温度は、反応が進行する限りにおいて制限されないが、例えば0℃以上、又は10℃以上、又は20℃以上、また、例えば100℃以下、又は80℃以下、又は60℃以下とすることができる。
 工程(i)の反応圧力も、反応が進行する限りにおいて制限されず、減圧下、常圧下、加圧下の何れで行ってもよいが、通常は常圧で実施することができる。
 工程(i)の反応雰囲気も、反応が進行する限りにおいて制限されないが、アルゴン、窒素等の不活性ガスの雰囲気下に行うことができる。
 工程(i)の反応時間も、反応が進行する限りにおいて制限されないが、反応を十分且つ効率的に進行させる観点からは、例えば10分間以上、又は20分間以上、又は30分間以上、また、例えば80時間以内、又は60時間以内、又は50時間以内とすることができる。
 一方、工程(ii)として、式(R4)のアミノ酸エステル又はペプチドエステルを反応系に加えて反応させる際の反応条件も、反応が進行する限りにおいて制限されないが、例えば以下の通りである。
 工程(ii)の反応温度は、反応が進行する限りにおいて制限されないが、例えば0℃以上、又は10℃以上、又は20℃以上、また、例えば100℃以下、又は80℃以下、又は60℃以下とすることができる。
 工程(ii)の反応圧力も、反応が進行する限りにおいて制限されず、減圧下、常圧下、加圧下の何れで行ってもよいが、通常は常圧で実施することができる。
 工程(ii)の反応雰囲気も、反応が進行する限りにおいて制限されないが、アルゴン、窒素等の不活性ガスの雰囲気下に行うことができる。
 工程(ii)の反応時間も、反応が進行する限りにおいて制限されないが、反応を十分且つ効率的に進行させる観点からは、例えば10分間以上、又は20分間以上、又は30分間以上、また、例えば80時間以内、又は60時間以内、又は50時間以内とすることができる。
 次に、第2の態様の場合、工程(i)として、式(A)の縮合環ジペプチド化合物に、式(R4)のアミノ酸エステル又はペプチドエステルを加えて反応させる際の反応条件は、反応が進行する限りにおいて制限されないが、例えば以下の通りである。
 工程(i)の反応温度は、反応が進行する限りにおいて制限されないが、例えば0℃以上、又は10℃以上、又は20℃以上、また、例えば100℃以下、又は80℃以下、又は60℃以下とすることができる。
 工程(i)の反応圧力も、反応が進行する限りにおいて制限されず、減圧下、常圧下、加圧下の何れで行ってもよいが、通常は常圧で実施することができる。
 工程(i)の反応雰囲気も、反応が進行する限りにおいて制限されないが、アルゴン、窒素等の不活性ガスの雰囲気下に行うことができる。
 工程(i)の反応時間も、反応が進行する限りにおいて制限されないが、反応を十分且つ効率的に進行させる観点からは、例えば10分間以上、又は20分間以上、又は30分間以上、また、例えば80時間以内、又は60時間以内、又は50時間以内とすることができる。
 一方、工程(ii)として、式(R3)の保護アミノ酸又は保護ペプチドを反応系に加えて反応させる際の反応条件も、反応が進行する限りにおいて制限されないが、例えば以下の通りである。
 工程(ii)の反応温度は、反応が進行する限りにおいて制限されないが、例えば0℃以上、又は10℃以上、又は20℃以上、また、例えば100℃以下、又は80℃以下、又は60℃以下とすることができる。
 工程(ii)の反応圧力も、反応が進行する限りにおいて制限されず、減圧下、常圧下、加圧下の何れで行ってもよいが、通常は常圧で実施することができる。
 工程(ii)の反応雰囲気も、反応が進行する限りにおいて制限されないが、アルゴン、窒素等の不活性ガスの雰囲気下に行うことができる。
 工程(ii)の反応時間も、反応が進行する限りにおいて制限されないが、反応を十分且つ効率的に進行させる観点からは、例えば10分間以上、又は20分間以上、又は30分間以上、また、例えば80時間以内、又は60時間以内、又は50時間以内とすることができる。
 なお、第1及び第2の態様のいずれにおいても、工程(i)及び工程(ii)は各々、逐次法(バッチ法)にて実施してもよく、連続法(フロー法)にて実施してもよい。具体的な逐次法(バッチ法)及び連続法(フロー法)の実施手順の詳細は、本技術分野では公知である。また、工程(i)及び工程(ii)を連続してワンポッドで行ってもよい。
・ポリペプチド(目的化合物):
 本発明の第1のポリペプチドの製造方法において最終的に製造される目的化合物たるポリペプチド化合物は、下記の式(P1)で表される化合物である。
 式(P1)中、R11、R12、R13、R21、及びR22は、前記式(A)における定義と同じ基を表し、PG、R31、R32、R33、A31、A32、p31、p32、及びmは、前記式(R3)における定義と同じ基を表し、PG、R41、R42、R43、A41、A42、p41、p42、及びnは、前記式(R4)における定義と同じ基を表す。
 ここで、式(P1)の化合物は、m+n+2をアミノ酸残基数とするポリペプチド化合物となる。即ち、例えば式(R3)の化合物が保護アミノ酸であり、式(R4)の化合物がアミノ酸エステルである場合(即ち、m及びnが共に1の場合)、製造される式(P1)の化合物はアミノ酸残基数m+n+2=4のポリペプチド化合物、即ちテトラペプチド化合物となる。また、例えば式(R3)の化合物が保護ジペプチドであり、式(R4)の化合物がアミノ酸エステルである場合(即ち、mが2、nが1の場合)や、例えば式(R3)の化合物が保護アミノ酸であり、式(R4)の化合物がジペプチドエステルである場合(即ち、mが1、nが2の場合)、製造される式(P1)の化合物はアミノ酸残基数m+n+2=5のポリペプチド化合物、即ちペンタペプチド化合物となる。また、例えば式(R3)の化合物が保護ジペプチドであり、式(R4)の化合物がジペプチドエステルである場合(即ち、mが2、nが2の場合)、製造される式(P1)の化合物はアミノ酸残基数m+n+2=6のポリペプチド化合物、即ちヘキサペプチド化合物となる。即ち、使用する式(R3)及び式(R4)の基質化合物の各アミノ酸残基数(m及びn)によって、得られる式(P1)のポリペプチド化合物(m+n+2)を調整することが可能となる。
 なお、上述の製造方法により得られた式(P1)のポリペプチド化合物に対して、更に種々の後処理を施してもよい。斯かる後処理としては、得られた式(P1)のポリペプチド化合物の単離・精製や、アミノ基の保護基PG及び/又はカルボキシル基の保護基PGの脱保護等が挙げられる。斯かる後処理についてはまとめて後述する。
(2)第2のポリペプチドの製造方法:
 本発明の第2のポリペプチドの製造方法は、一分子のポリペプチドの製造に、本発明の縮合環ジペプチド化合物を二分子用いる方法であって、少なくとも下記工程(i)~(iii)を含む方法である。
(i)下記式(A1)で表されるシラン含有縮合環ジペプチド化合物に、下記式(R3)で表される保護アミノ酸又は保護ペプチドを加えて反応させる工程。
(ii)前記工程(i)の反応物に、下記式(A2)で表されるシラン含有縮合環ジペプチド化合物を加えて更に反応させる工程。
(iii)前記工程(ii)の反応物に、下記式(R4)で表されるアミノ酸エステル又はペプチドエステルを加えて更に反応させることにより、下記式(P1)で表されるポリペプチド化合物を得る工程。
・シラン含有縮合環ジペプチド化合物(基質化合物):
 本発明の第2のポリペプチドの製造方法において基質化合物として使用されるシラン含有縮合環ジペプチド化合物は、前記の式(A)で表されるシラン含有縮合環ジペプチド化合物(本発明の縮合環ジペプチド化合物)と同様の化合物であるが、一分子のポリペプチドの合成に際し二分子のシラン含有縮合環ジペプチド化合物を使用する点で、前述した本発明の第1のポリペプチドの製造方法とは異なる。ここで、これら二分子のシラン含有縮合環ジペプチド化合物を区別するために、それぞれ下記の式(A1)及び式(A2)で表すものとする。
 式(A1)におけるR111、R112、R113、R121、及びR122、並びに、式(A2)におけるR211、R212、R213、R221、及びR222は、各々独立に、式(A)におけるR11、R12、R21、及びR22と同様の定義を表す。また、式(A1)におけるRa11及びRa12、並びに、式(A2)におけるRa21及びRa22は、各々独立に、式(A)におけるRa1及びRa2と同様の定義を表す。その詳細については、何れも前述したとおりである。
・保護アミノ酸・ペプチド及びアミノ酸・ペプチドエステル(基質化合物):
 本発明の第2のポリペプチドの製造方法において基質化合物として使用される保護アミノ酸又は保護ペプチド、及び、アミノ酸エステル又はペプチドエステルは、本発明の第2のポリペプチドの製造方法と同様、前述の式(R3)及び式(R4)で表される化合物である。その詳細については前述したとおりである。
・縮合剤:
 本発明の第2のペプチド製造方法でも、ペプチド形成反応の効率を高める観点から、縮合剤を系内に共存させてもよい。また、縮合剤を使用する場合、ラセミ化防止剤を併用してもよい。縮合剤及びラセミ化防止剤の詳細については、先の本発明の第1のペプチド製造方法の説明において詳述したとおりである。
・塩基:
 本発明の第2のペプチド製造方法でも、反応効率を高める観点から、塩基を系内に共存させてもよい。塩基の詳細についても、先の本発明の第1のペプチド製造方法の説明において詳述したとおりである。
・その他の成分:
 本発明の第2のペプチド製造方法でも、基質化合物である前述の式(A1)及び式(A2)の縮合環ジペプチド化合物、式(R3)の保護アミノ酸又は保護ペプチド、式(R4)のアミノ酸エステル又はペプチドエステル、並びに任意により用いられる塩基、縮合剤、及びラセミ化防止剤に加えて、他の成分を共存させてもよい。例としては、触媒、シラン化合物、リン化合物等が挙げられる。斯かる他の成分の詳細についても、先の本発明の第1のペプチド製造方法の説明において詳述したとおりである。
 なお、反応効率を高める観点からは、溶媒中で反応を行ってもよい。斯かる溶媒の詳細についても、先の本発明の第1のペプチド製造方法の説明において詳述したとおりである。
・反応手順:
 本発明の第2のペプチド製造方法では、式(A1)及び式(A2)の縮合環ジペプチド化合物、式(R3)の保護アミノ酸又は保護ペプチド化合物、及び、式(R4)のアミノ酸エステル又はペプチドエステル化合物を反応させる。懸かる反応により、式(A1)の縮合環ジペプチド化合物の式中右側のアミノ酸残基の環と、式(A2)の縮合環ジペプチド化合物の式中左側のアミノ酸残基の環が共に開いて、前者のアミノ酸残基のC末端に、後者のアミノ酸残基のN末端が連結されると共に、式(A1)の縮合環ジペプチド化合物の式中左側のアミノ酸残基の環が開いて、そのN末端に式(R3)の保護アミノ酸又は保護ペプチドが連結され、更には、式(A2)の縮合環ジペプチド化合物の式中右側のアミノ酸残基の環が開いて、式(R4)の保護アミノ酸又は保護ペプチドが連結され、その結果として、式(P2)のポリペプチド化合物が形成される。
 本発明の第1のペプチド製造方法では、上記の反応が生じる限り、各基質化合物の混合順は制限されない。例としては以下の2つの態様が挙げられるが、各基質化合物の混合順は、これらに限定されるものではない。
 第1の態様としては、工程(i)として、式(A1)の縮合環ジペプチド化合物に、式(R3)の保護アミノ酸又は保護ペプチドを加えて反応させ、次いで工程(ii)として、式(A2)の縮合環ジペプチド化合物を反応系に加えて反応させ、更に工程(iii)として、式(R4)のアミノ酸エステル又はペプチドエステルを反応系に加えて反応させる態様が挙げられる。本態様では、工程(i)において、式(A1)の縮合環ジペプチド化合物の式中左側のアミノ酸残基の環が開いて、そのN末端に式(R3)の保護アミノ酸又は保護ペプチドが連結され、工程(ii)において、式(A1)の縮合環ジペプチド化合物の式中右側のアミノ酸残基の環と、式(A2)の縮合環ジペプチド化合物の式中左側のアミノ酸残基の環が共に開いて、前者のアミノ酸残基のC末端に、後者のアミノ酸残基のN末端が連結され、工程(iii)において、式(A2)の縮合環ジペプチド化合物の式中右側のアミノ酸残基の環が開いて、式(R4)の保護アミノ酸又は保護ペプチドが連結され、その結果として、式(P2)のポリペプチド化合物が形成される。
 第2の態様としては、工程(i)として、式(A2)の縮合環ジペプチド化合物に、式(R4)のアミノ酸エステル又はペプチドエステルを加えて反応させ、次いで工程(ii)として、式(A1)の縮合環ジペプチド化合物を反応系に加えて反応させ、更に工程(iii)として、式(R3)の保護アミノ酸又は保護ペプチドを反応系に加えて反応させる態様が挙げられる。本態様では、工程(i)において、式(A2)の縮合環ジペプチド化合物の式中右側のアミノ酸残基の環が開いて、式(R4)の保護アミノ酸又は保護ペプチドが連結され、工程(ii)において、式(A1)の縮合環ジペプチド化合物の式中右側のアミノ酸残基の環と、式(A2)の縮合環ジペプチド化合物の式中左側のアミノ酸残基の環が共に開いて、前者のアミノ酸残基のC末端に、後者のアミノ酸残基のN末端が連結され、工程(iii)において、式(A1)の縮合環ジペプチド化合物の式中左側のアミノ酸残基の環が開いて、そのN末端に式(R3)の保護アミノ酸又は保護ペプチドが連結され、その結果として、式(P1)のポリペプチド化合物が形成される。
 なお、任意により用いられる縮合剤及び塩基等、その他の成分を反応系に添加するタイミングは特に制限されず、何れも任意のタイミングで加えればよい。但し、縮合剤及び/又は塩基を使用する場合は、第1及び第2の何れの態様においても、工程(i)及び/又は工程(ii)及び/又は工程(iii)の開始時に系内に添加することが好ましい。また、縮合剤に加えてラセミ化防止剤を使用する場合には、縮合剤と一緒に系内に添加することが好ましい。また、溶媒を用いて反応を行う場合には、溶媒中で各成分を混合し、相互に接触させればよい。
・各成分の使用量比:
 本発明の第2のペプチド製造方法において、各成分の使用量は限定されるものではないが、好ましくは以下の通りである。
 式(A1)の縮合環ジペプチド化合物と式(A2)の縮合環ジペプチド化合物との量比は、特に制限されないが、式(A1)の縮合環ジペプチド化合物1モルに対して、式(A2)の縮合環ジペプチド化合物を、例えば0.1モル以上、又は0.2モル以上、又は0.3モル以上、又は0.4モル以上、又は0.5モル以上、また、例えば20モル以下、又は15モル以下、又は10モル以下、又は8モル以下、又は6モル以下、又は4モル以下、又は2モル以下の範囲で用いることができる。
 式(A1)の縮合環ジペプチド化合物と式(R3)の保護アミノ酸又は保護ペプチドとの量比は、特に制限されないが、式(A1)の縮合環ジペプチド化合物1モルに対して、式(R3)の保護アミノ酸又は保護ペプチドを、例えば0.1モル以上、又は0.2モル以上、又は0.3モル以上、又は0.4モル以上、又は0.5モル以上、また、例えば20モル以下、又は15モル以下、又は10モル以下、又は8モル以下、又は6モル以下、又は4モル以下、又は2モル以下の範囲で用いることができる。
 式(A1)の縮合環ジペプチド化合物と式(R4)のアミノ酸エステル又はペプチドエステルとの量比は、特に制限されないが、式(A1)の縮合環ジペプチド化合物1モルに対して、式(R4)のアミノ酸エステル又はペプチドエステルを、例えば0.1モル以上、又は0.2モル以上、又は0.3モル以上、又は0.4モル以上、又は0.5モル以上、また、例えば20モル以下、又は15モル以下、又は10モル以下、又は8モル以下、又は6モル以下、又は4モル以下、又は2モル以下の範囲で用いることができる。
 なお、当然ながら、製造対象となる本発明の式(P2)のポリペプチド化合物の目標製造量に対し、基質となる式(A)の縮合環ジペプチド化合物、式(R3)の保護アミノ酸又は保護ペプチド、及び式(R4)のアミノ酸エステル又はペプチドエステルをそれぞれ1モル以上用いる必要がある。
 塩基を使用する場合、その使用量は特に制限されないが、式(A1)の縮合環ジペプチド化合物1モルに対して、塩基を例えば0.2モル以上、又は0.4モル以上、又は0.6モル以上、又は0.8モル以上、又は1.0モル以上、また、例えば40モル以下、又は30モル以下、又は20モル以下、又は15モル以下、又は10モル以下、又は6モル以下、又は4モル以下の範囲で用いることができる。なお、複数の工程において塩基を添加する場合には、各工程において上記範囲内の量の塩基を添加することが好ましい。
 縮合剤を使用する場合、その使用量は特に制限されないが、式(A1)の縮合環ジペプチド化合物1モルに対して、縮合剤を例えば0.2モル以上、又は0.4モル以上、又は0.6モル以上、又は0.8モル以上、又は1.0モル以上、また、例えば40モル以下、又は30モル以下、又は20モル以下、又は15モル以下、又は10モル以下、又は6モル以下、又は4モル以下の範囲で用いることができる。なお、複数の工程において縮合剤を添加する場合には、各工程において上記範囲内の量の縮合剤を添加することが好ましい。
 縮合剤に加えてラセミ化防止剤を使用する場合、その使用量は特に制限されないが、式(A1)の縮合環ジペプチド化合物1モルに対して、ラセミ化防止剤を例えば0.2モル以上、又は0.4モル以上、又は0.6モル以上、又は0.8モル以上、又は1.0モル以上、また、例えば40モル以下、又は30モル以下、又は20モル以下、又は15モル以下、又は10モル以下、又は6モル以下、又は4モル以下の範囲で用いることができる。なお、複数の工程においてラセミ化防止剤を添加する場合には、各工程において上記範囲内の量のラセミ化防止剤を添加することが好ましい。
・反応条件:
 本発明の第2のペプチド製造方法における反応条件は、反応が進行する限りにおいて制限されないが、例として、前記の第1及び第2の各態様について、反応手順毎に例示すると以下のとおりである。
 まず、第1の態様の場合、工程(i)として、式(A1)の縮合環ジペプチド化合物に、式(R3)の保護アミノ酸又は保護ペプチドを加えて反応させる際の反応条件は、反応が進行する限りにおいて制限されないが、例えば以下の通りである。
 工程(i)の反応温度は、反応が進行する限りにおいて制限されないが、例えば0℃以上、又は10℃以上、又は20℃以上、また、例えば100℃以下、又は80℃以下、又は60℃以下とすることができる。
 工程(i)の反応圧力も、反応が進行する限りにおいて制限されず、減圧下、常圧下、加圧下の何れで行ってもよいが、通常は常圧で実施することができる。
 工程(i)の反応雰囲気も、反応が進行する限りにおいて制限されないが、アルゴン、窒素等の不活性ガスの雰囲気下に行うことができる。
 工程(i)の反応時間も、反応が進行する限りにおいて制限されないが、反応を十分且つ効率的に進行させる観点からは、例えば10分間以上、又は20分間以上、又は30分間以上、また、例えば80時間以内、又は60時間以内、又は50時間以内とすることができる。
 次に、工程(ii)として、式(A2)の縮合環ジペプチド化合物を反応系に加えて反応させる際の反応条件も、反応が進行する限りにおいて制限されないが、例えば以下の通りである。
 工程(ii)の反応温度は、反応が進行する限りにおいて制限されないが、例えば0℃以上、又は10℃以上、又は20℃以上、また、例えば100℃以下、又は80℃以下、又は60℃以下とすることができる。
 工程(ii)の反応圧力も、反応が進行する限りにおいて制限されず、減圧下、常圧下、加圧下の何れで行ってもよいが、通常は常圧で実施することができる。
 工程(ii)の反応雰囲気も、反応が進行する限りにおいて制限されないが、アルゴン、窒素等の不活性ガスの雰囲気下に行うことができる。
 工程(ii)の反応時間も、反応が進行する限りにおいて制限されないが、反応を十分且つ効率的に進行させる観点からは、例えば10分間以上、又は20分間以上、又は30分間以上、また、例えば80時間以内、又は60時間以内、又は50時間以内とすることができる。
 更に、工程(iii)として、式(R4)のアミノ酸エステル又はペプチドエステルを反応系に加えて反応させる際の反応条件も、反応が進行する限りにおいて制限されないが、例えば以下の通りである。
 工程(iii)の反応温度は、反応が進行する限りにおいて制限されないが、例えば0℃以上、又は10℃以上、又は20℃以上、また、例えば100℃以下、又は80℃以下、又は60℃以下とすることができる。
 工程(iii)の反応圧力も、反応が進行する限りにおいて制限されず、減圧下、常圧下、加圧下の何れで行ってもよいが、通常は常圧で実施することができる。
 工程(iii)の反応雰囲気も、反応が進行する限りにおいて制限されないが、アルゴン、窒素等の不活性ガスの雰囲気下に行うことができる。
 工程(iii)の反応時間も、反応が進行する限りにおいて制限されないが、反応を十分且つ効率的に進行させる観点からは、例えば10分間以上、又は20分間以上、又は30分間以上、また、例えば80時間以内、又は60時間以内、又は50時間以内とすることができる。
 次に、第2の態様の場合、工程(i)として、式(A2)の縮合環ジペプチド化合物に、式(R4)のアミノ酸エステル又はペプチドエステルを加えて反応させる際の反応条件は、反応が進行する限りにおいて制限されないが、例えば以下の通りである。
 工程(i)の反応温度は、反応が進行する限りにおいて制限されないが、例えば0℃以上、又は10℃以上、又は20℃以上、また、例えば100℃以下、又は80℃以下、又は60℃以下とすることができる。
 工程(i)の反応圧力も、反応が進行する限りにおいて制限されず、減圧下、常圧下、加圧下の何れで行ってもよいが、通常は常圧で実施することができる。
 工程(i)の反応雰囲気も、反応が進行する限りにおいて制限されないが、アルゴン、窒素等の不活性ガスの雰囲気下に行うことができる。
 工程(i)の反応時間も、反応が進行する限りにおいて制限されないが、反応を十分且つ効率的に進行させる観点からは、例えば10分間以上、又は20分間以上、又は30分間以上、また、例えば80時間以内、又は60時間以内、又は50時間以内とすることができる。
 次に、工程(ii)として、式(A1)の縮合環ジペプチド化合物を反応系に加えて反応させる際の反応条件も、反応が進行する限りにおいて制限されないが、例えば以下の通りである。
 工程(ii)の反応温度は、反応が進行する限りにおいて制限されないが、例えば0℃以上、又は10℃以上、又は20℃以上、また、例えば100℃以下、又は80℃以下、又は60℃以下とすることができる。
 工程(ii)の反応圧力も、反応が進行する限りにおいて制限されず、減圧下、常圧下、加圧下の何れで行ってもよいが、通常は常圧で実施することができる。
 工程(ii)の反応雰囲気も、反応が進行する限りにおいて制限されないが、アルゴン、窒素等の不活性ガスの雰囲気下に行うことができる。
 工程(ii)の反応時間も、反応が進行する限りにおいて制限されないが、反応を十分且つ効率的に進行させる観点からは、例えば10分間以上、又は20分間以上、又は30分間以上、また、例えば80時間以内、又は60時間以内、又は50時間以内とすることができる。
 更に、工程(iii)として、式(R3)の保護アミノ酸又は保護ペプチドを反応系に加えて反応させる際の反応条件も、反応が進行する限りにおいて制限されないが、例えば以下の通りである。
 工程(iii)の反応温度は、反応が進行する限りにおいて制限されないが、例えば0℃以上、又は10℃以上、又は20℃以上、また、例えば100℃以下、又は80℃以下、又は60℃以下とすることができる。
 工程(iii)の反応圧力も、反応が進行する限りにおいて制限されず、減圧下、常圧下、加圧下の何れで行ってもよいが、通常は常圧で実施することができる。
 工程(iii)の反応雰囲気も、反応が進行する限りにおいて制限されないが、アルゴン、窒素等の不活性ガスの雰囲気下に行うことができる。
 工程(iii)の反応時間も、反応が進行する限りにおいて制限されないが、反応を十分且つ効率的に進行させる観点からは、例えば10分間以上、又は20分間以上、又は30分間以上、また、例えば80時間以内、又は60時間以内、又は50時間以内とすることができる。
 なお、第1及び第2の態様のいずれにおいても、工程(i)、工程(ii)、及び工程(ii)は各々、逐次法(バッチ法)にて実施してもよく、連続法(フロー法)にて実施してもよい。具体的な逐次法(バッチ法)及び連続法(フロー法)の実施手順の詳細は、本技術分野では公知である。また、工程(i)及び工程(ii)、及び/又は、工程(ii)及び工程(ii)を、それぞれ連続してワンポッドで行ってもよい。
・ポリペプチド(目的化合物):
 本発明の第2のポリペプチドの製造方法において最終的に製造される目的化合物たるポリペプチドは、下記の式(P2)で表される化合物である。
 式(P2)中、R111、R112、R113、R121、及びR122は、前記式(A1)における定義と同じ基を表し、R211、R212、R213、R221、及びR222は、前記式(A2)における定義と同じ基を表し、PG、R31、R32、R33、A31、A32、p31、p32、及びmは、前記式(R3)における定義と同じ基を表し、PG、R41、R42、R43、A41、A42、p41、p42、及びnは、前記式(R4)における定義と同じ基を表す。
 ここで、式(P2)の化合物は、m+n+4をアミノ酸残基数とするポリペプチド化合物となる。即ち、例えば式(R3)の化合物が保護アミノ酸であり、式(R4)の化合物がアミノ酸エステルである場合(即ち、m及びnが共に1の場合)、製造される式(P2)の化合物はアミノ酸残基数m+n+4=6のポリペプチド化合物、即ちヘキサペプチド化合物となる。また、例えば式(R3)の化合物が保護ジペプチドであり、式(R4)の化合物がアミノ酸エステルである場合(即ち、mが2、nが1の場合)や、例えば式(R3)の化合物が保護アミノ酸であり、式(R4)の化合物がジペプチドエステルである場合(即ち、mが1、nが2の場合)、製造される式(P2)の化合物はアミノ酸残基数m+n+4=7のポリペプチド化合物、即ちヘプタペプチド化合物となる。即ち、使用する式(R3)及び式(R4)の基質化合物の各アミノ酸残基数(m及びn)によって、得られる式(P2)のポリペプチド化合物(m+n+4)を調整することが可能となる。
 なお、上述の製造方法により得られた式(P2)のポリペプチド化合物に対して、更に種々の後処理を施してもよい。斯かる後処理としては、得られた式(P2)のポリペプチド化合物の単離・精製や、アミノ基の保護基PG及び/又はカルボキシル基の保護基PGの脱保護等が挙げられる。斯かる後処理についてはまとめて後述する。
[VI.本発明の縮合環トリペプチド化合物及びその製造方法]
・概要:
 また、本発明の縮合環ジペプチド化合物を用いて、トリペプチドが縮合環を形成した新規なシラン含有縮合環トリペプチド化合物を製造することも可能である。斯かる新規なシラン含有縮合環トリペプチド化合物(以下適宜「本発明の縮合環トリペプチド化合物」と称する。)及びその製造方法も、本発明の対象となる。
・シラン含有縮合環トリペプチド化合物:
 本発明の縮合環トリペプチド化合物は、下記式(B)で表される構造を有するシラン含有縮合環トリペプチド化合物である。
 式(B)中、R11、R12、R13、R21、R22、Ra1、及びRa2は、各々独立に、前記式(A)における同じ符号の基と同じ定義の基を表す。その詳細は、前述したとおりである。
 式(B)中、Rx1及びRx2は、各々独立に、水素原子、ハロゲン原子、水酸基、カルボキシル基、ニトロ基、シアノ基、若しくはチオール基、又は、1若しくは2以上の置換基を有していてもよい、一価の脂肪族炭化水素基、芳香族炭化水素基、若しくは複素環式基を表す。その詳細は、R11、R12、R13、R21、R22等について前述したものと同様である。
 式(B)中、PGは、1価の保護基を表す。その例としては、制限されるものではないが、1又は2以上の置換基を有していてもよい、一価の脂肪族炭化水素基、芳香族炭化水素基、又は複素環式基等が挙げられる。なお、置換基を有する場合、その種類については先に記載したとおりである。置換基の数の具体例は、例えば5、4、3、2、1、又は0である。
 式(B)の保護基PGが脂肪族炭化水素基の場合、脂肪族炭化水素基の(置換基を有する場合はその置換基も含めた)炭素原子数は、特に限定はされないが、上限が例えば20以下、15以下、10以下、8以下、又は6以下等である。下限は脂肪族炭化水素基の種類によっても異なるが、アルキル基の場合は1以上、アルケニル基やアルキニル基の場合は2以上、シクロアルキル基の場合には3以上、例えば4以上、又は5以上である。当該原子数の具体例は、例えば1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、又は20等である。
 式(B)の保護基PGが芳香族炭化水素基の場合、芳香族炭化水素基の(置換基を有する場合はその置換基も含めた)炭素原子数は、特に限定はされないが、上限が例えば20以下、15以下、10以下、8以下、又は6以下等である。下限は芳香族炭化水素基の種類によっても異なるが、通常4以上、例えば5以上、又は6以上である。当該原子数の具体例は、例えば4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、又は20等である。
 式(B)の保護基PGの具体的な種類は制限されるものではないが、例えば以下が挙げられる。
・メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、sec-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、ヘキシル基、へプチル基、オクチル基、デシル基、ノニル基等のアルキル基;
・エテニル基、プロペニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、へプテニル基、オクテニル基等のアルケニル基;
・プロパルギル基等のアルキニル基;
・シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロへプチル基、ビシクロオクチル基、スピロオクチル基等のシクロアルキル基;
・フェニル基、ベンジル基、トリル基、クミル基、1,1-ジフェニルエチル基、トリフェニルメチル基、フルオレニル基、ナフチル基、アントラセニル基等のアリール基及びアリールアルキル基;
・前記のアルキル基、アルケニル基、アルキニル基、シクロアルキル基、アリール基、及びアリールアルキル基がそれぞれ1又は2以上のハロゲンで置換された基;
・フラニル基、チオフェニル基、ピラニル基、ピロリニル基、ピロリル基、2,3-ジヒドロ-1H-ピロリル基、ピぺリジニル基、ピペラジニル基、ホモピペラジニル基、モルホリノ基、チオモルホリノ基、1,2,4,6-テトラヒドロピリジル基、ヘキサヒドロピリミジル基、ヘキサヒドロピリダジル基、1,2,4,6-テトラヒドロピリジル基、1,2,4,6-テトラヒドロピリダジル基、3,4-ジヒドロピリジル基、イミダゾリル基、4,5-ジヒドロ-1H-イミダゾリル基、2,3-ジヒドロ-1H-イミダゾリル基、ピラゾリル基、4,5-ジヒドロ-1H-ピラゾリル基、2,3-ジヒドロ-1H-ピラゾリル基、オキサゾリル基、4,5-ジヒドロ-1,3-オキサゾリル基、2,3-ジヒドロ-1,3-オキサゾリル基、2,5-ジヒドロ-1,3-オキサゾリル基、チアゾリル基、4,5-ジヒドロ-1,3-チアゾリル基、2,3-ジヒドロ-1,3-チアゾリル基、2,5-ジヒドロ-1,3-チアゾリル基、カルバゾリル基等の複素環式基;
トリメチルシリル(TMS)基、トリエチルシリル(TES)基、トリイソプロピルシリル(TIPS)基、トリtert-ブチルシリル(TBS)基、tert-ブチルジフェニルシリル(TBDPS)基、トリス(トリアルキルシリル)シリル基等のケイ素系保護基;等。
・シラン含有縮合環トリペプチド化合物の製造方法の概要:
 本発明の縮合環トリペプチド化合物は、以下の工程を含む方法(以下適宜「本発明の縮合環トリペプチド化合物」と称する。)により製造することが出来る。
(iv)式(A)の縮合環ジペプチド化合物を用意する工程。
(v)式(A)の縮合環ジペプチド化合物と、下記式(Rx)で表されるアミノ酸エステルとを反応させる工程。
・式(A)の縮合環ジペプチド化合物(基質化合物):
 工程(iv)では、式(A)の縮合環ジペプチド化合物を用意する。その方法は特に制限されないが、前述した本発明の縮合環ジペプチド化合物の製造方法により製造することが好ましい。
・式(Rx)のアミノ酸エステル(基質化合物):
 工程(v)では、工程(iv)で用意した式(A)の縮合環ジペプチド化合物を、下記式(Rx)で表されるアミノ酸エステルと反応させる。
 式(R1)中、Rx1、Rx2、及びPGは、各々独立に、前記式(B)における同じ符号の基と同じ定義の基を表す。その詳細は、前述したとおりである。
・第5のシラン化合物:
 なお、工程(v)において、式(A)の縮合環ジペプチド化合物と、式(Rx)のアミノ酸エステルとを反応させるに際しては、任意により反応系に第5のシラン化合物を共存させることが好ましい。
 第5のシラン化合物を使用する場合、その種類は特に限定されるものではないが、1-(トリメチルシリル)イミダゾール(TMSIM)、トリメチルブロモシラン(TMBS)、トリメチルクロロシラン(TMCS)、トリス(ハロアルキル)シラン、N-(トリメチルシリル)ジメチルアミン(TMSDMA)、トリフルオロメタンスルホン酸トリメチルシリル(TMS-OTf)、ジメチルシリルイミダゾール、ジメチルシリル(2-メチル)イミダゾール、ジメチルエチルシリルイミダゾール(DMESI)、ジメチルイソプロピルシリルイミダゾール(DMIPSI)、1-(tert-ブチルジメチルシリル)イミダゾール(TBSIM)、1-(トリメチルシリル)トリアゾール、1-(tert-ブチルジメチルシリル)トリアゾール、N-メチル-Nトリメチルシリルトリフルオロアセタミド(MSTFA)、N,O-ビス(トリメチルシリル)トリフルオロアセタミド(BSTFA)、N,O-ビス(トリメチルシリル)アセタミド(BSA)、N-(tert-ブチルジメチルシリル)-N-メチルトリフルオロアセトアミド(MTBSTFA)、及びヘキサメチルジシラザン(HMDS)から選択される化合物であることが好ましい。なお、第5のシラン化合物として、2種以上のシラン化合物を任意の組み合わせ及び比率で使用してもよい。
・その他の成分:
 工程(v)において、反応系内に他の成分を共存させてもよい。斯かる他の成分の例としては、制限されるものではないが、ルイス酸触媒、塩基、リン酸等が挙げられる。これらの詳細については前述したとおりである。これらは何れか一種を単独で使用してもよいが、二種以上を任意の組み合わせ及び比率で併用してもよい。
 なお、反応効率を高める観点からは、溶媒中で反応を行ってもよい。溶媒としては、特に制限されないが、例えば水性溶媒や有機溶媒が挙げられる。有機溶媒としては、制限されるものではないが、トルエン、キシレン等の芳香族炭化水素類、ペンタン、石油エーテル、テトラヒドロフラン(THF)、1-メチルテトラヒドロフラン(1-MeTHF)、ジイソプロピルエーテル(i-PrO)、ジエチルエーテル(EtO)、シクロペンチルメチルエーテル(CPME)等のエーテル類、アセトニトリル(MeCN)等の窒素系有機溶媒、ジクロロメタン(DCM)等の塩素系有機溶媒、酢酸エチル(AcOEt)等のエステル類、酢酸等の有機酸などが挙げられる。これらの溶媒は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。
・各成分の使用量比:
 工程(v)における、式(A)の縮合環ジペプチド化合物と、式(Rx)のアミノ酸エステルとの使用量の比率は、反応が阻害されない限り特に制限されない。例えば、式(A)の縮合環ジペプチド化合物1モルに対して、式(Rx)のアミノ酸エステルを、例えば0.1モル以上、又は0.2モル以上、又は0.3モル以上、又は0.4モル以上、又は0.5モル以上、また、例えば20モル以下、又は15モル以下、又は10モル以下、又は8モル以下、又は6モル以下、又は4モル以下、又は2モル以下の範囲で用いることができる。なお、2種類以上の式(A)の縮合環ジペプチド化合物及び/又は2種類以上の式(Rx)のアミノ酸エステルを併用する場合には、各成分の合計量が前記範囲を満たすようにすればよい。
 工程(v)において第5のシラン化合物を使用する場合、その使用量は、反応の妨げとならない限り特に制限されないが、例えば、式(A)の縮合環ジペプチド化合物1モルに対して、第5のシラン化合物を例えば0.2モル以上、又は0.4モル以上、又は0.6モル以上、又は0.8モル以上、又は1.0モル以上、また、例えば40モル以下、又は30モル以下、又は20モル以下、又は15モル以下、又は10モル以下、又は6モル以下、又は4モル以下の範囲で用いることができる。なお、2種類以上の第5のシラン化合物を併用する場合には、2種類以上の第4のシラン化合物物の合計量が前記範囲を満たすようにすればよい。
・反応条件:
 工程(v)における反応条件は、反応が進行する限りにおいて制限されないが、例示すると以下のとおりである。
 工程(v)の反応温度は、反応が進行する限りにおいて制限されないが、加熱条件下で実施することが好ましい。具体的には、例えば10℃以上、又は20℃以上、又は30℃以上、又は40℃以上、又は50℃以上とすることができる。上限は特に制限されないが、例えば120℃以下、又は110℃以下、又は100℃以下とすることができる。
 工程(v)の反応圧力も、反応が進行する限りにおいて制限されず、減圧下、常圧下、加圧下の何れで行ってもよいが、通常は常圧で実施することができる。
 工程(v)の反応雰囲気も、反応が進行する限りにおいて制限されないが、アルゴン、窒素等の不活性ガスの雰囲気下に行うことができる。
 工程(v)の反応時間も、反応が進行する限りにおいて制限されないが、反応を十分且つ効率的に進行させる観点からは、例えば10分間以上、又は20分間以上、又は30分間以上、また、例えば80時間以内、又は60時間以内、又は50時間以内とすることができる。
・後処理等(精製・回収等):
 工程(v)の反応により得られた本発明の縮合環トリペプチド化合物に対して、更に種々の後処理を施してもよい。例えば、生成された本発明の縮合環トリペプチド化合物を、カラムクロマトグラフィー、再結晶等の常法に従って単離・精製することができる。また、生成された本発明の縮合環ジペプチド化合物を直接、又は単離・精製後、後述する本発明のポリペプチドの製造方法に供し、ポリペプチドの製造に利用してもよい。
[VII.本発明の縮合環トリペプチド化合物を用いたポリペプチドの製造方法]
 本発明の縮合環トリペプチド化合物は、種々の反応に利用することが可能であるが、中でも、ポリペプチドの製造における利用が好適である。本発明の縮合環トリペプチド化合物を用いたポリペプチドの製造方法としては、二種類の態様が挙げられる(これらの態様を以下、適宜「本発明の第3のポリペプチドの製造方法」及び「本発明の第4のポリペプチドの製造方法」と略称する。)。但し、本発明の縮合環トリペプチド化合物を用いたポリペプチドの製造方法は、これら2つの態様に限定されるものではない。
(1)第3のポリペプチドの製造方法:
・概要:
 本発明の第3のポリペプチドの製造方法は、本発明の縮合環トリペプチド化合物を一分子用いて、テトラペプチド以上のポリペプチド化合物一分子を製造する方法であって、以下の工程(vi)を含む方法である。
(vi)前記式(B)で表されるシラン含有縮合環トリペプチド化合物を、下記式(Ra)で表される保護アミノ酸又は保護ペプチド化合物と反応させることにより、下記式(P3)で表されるポリペプチド化合物を得る工程。
・シラン含有縮合環トリペプチド化合物(基質化合物):
 本発明の第3のポリペプチドの製造方法では、基質化合物として、前記の式(B)で表されるシラン含有縮合環トリペプチド化合物(本発明の縮合環トリペプチド化合物)を使用する。その詳細は詳述したとおりである。
・保護アミノ酸・ペプチド(基質化合物):
 本発明の第3のポリペプチドの製造方法において基質化合物として使用される保護アミノ酸又は保護ペプチド化合物は、下記の式(Ra)で表される化合物である。
 式(Ra)中、PGは、アミノ基の保護基を表す。式(Ra)のPGの詳細は、本発明の第1及び第2のペプチド製造方法における式(R3)及び式(R4)のPGについて前述したとおりである。
 式(Ra)中、Ra1及びRa2は、各々独立に、水素原子、ハロゲン原子、水酸基、カルボキシル基、ニトロ基、シアノ基、若しくはチオール基、又は、1若しくは2以上の置換基を有していてもよい、アミノ基、一価の脂肪族炭化水素基、一価の芳香族炭化水素基、若しくは一価の複素環式基を表す。式(Ra)のRa1及びRa2の詳細は、式(R3)及び式(R4)のR31、R32、R41、及びR42について前述したとおりである。
 式(Ra)中、Ra3は、水素原子、カルボキシル基、水酸基、又は、1若しくは2以上の置換基を有していてもよい一価の脂肪族炭化水素基、芳香族炭化水素基、若しくは複素環式基を表す。ここで、一価の脂肪族炭化水素基、芳香族炭化水素基、又は複素環式基の場合は、連結基を介して窒素原子に結合していてもよい。或いは、Ra1とRa3とが互いに結合して、Ra1が結合する炭素原子及びRa3が結合する窒素原子と共に、1又は2以上の置換基を有していてもよい複素環を形成していてもよい。式(Ra)のRa3の詳細は、式(R3)及び式(R4)のR33及びR43について前述したとおりである。
 式(Ra)中、Aa1及びAa2は、各々独立に、1又は2以上の置換基を有していてもよい炭素数1~3の二価の脂肪族炭化水素基を表す。式(Ra)のAa1及びAa2の詳細は、式(R3)及び式(R4)のA31、A32、A41、及びA42について前述したとおりである。
 式(Ra)中、pa1及びpa2は、各々独立に、0又は1を表す。
 式(Ra)中、mは、1以上の整数であり、かつ、[ ]内の構造で表される構成単位の数を表す。但し、mが2以上である場合は、[ ]内の構造で表される複数の構成単位は各々同一でもよく、異なっていてもよい。式(Ra)のm及び[ ]内の構成単位の詳細は、式(R3)及び式(R4)のm及びn並びに[ ]内の構成単位について前述したとおりである。
・塩基:
 本発明の第3のペプチド製造方法でも、反応効率を高める観点から、塩基を系内に共存させてもよい。塩基の種類は制限されず、反応効率を向上させることが知られている公知の塩基を使用することができる。斯かる塩基の例としては、フッ化テトラブチルアンモニウム(TBAF)、トリエチルアミン(EtN)、ジイソプロピルアミン(i-PrNH)、ジイソプロピルエチルアミン(i-PrEtN)等の、炭素数1~10の直鎖又は分枝鎖状のアルキル基を1~4個有するアミンや、フッ化セシウム等の無機塩基などが挙げられる。これらは何れか一種を単独で使用してもよいが、二種以上を任意の組み合わせ及び比率で併用してもよい。
・縮合剤:
 本発明の第3のペプチド製造方法でも、ペプチド形成反応の効率を高める観点から、縮合剤を系内に共存させてもよい。また、縮合剤を使用する場合、ラセミ化防止剤を併用してもよい。縮合剤及びラセミ化防止剤の詳細については、先の本発明の第1及び第2のペプチド製造方法の説明において詳述したとおりである。
・その他の成分:
 本発明の第3のペプチド製造方法でも、基質化合物である前述の式(B)の縮合環トリペプチド化合物、式(Ra)の保護アミノ酸又は保護ペプチド、並びに任意により用いられる塩基、縮合剤、及びラセミ化防止剤に加えて、他の成分を共存させてもよい。例としては、触媒、シラン化合物、リン化合物等が挙げられる。斯かる他の成分の詳細についても、先の本発明の第1及び第2のペプチド製造方法の説明において詳述したとおりである。
 なお、反応効率を高める観点からは、溶媒中で反応を行ってもよい。斯かる溶媒の詳細についても、先の本発明の第1及び第2のペプチド製造方法の説明において詳述したとおりである。
・各成分の使用量比:
 本発明の第3のペプチド製造方法において、各成分の使用量は限定されるものではないが、好ましくは以下の通りである。
 式(B)の縮合環トリペプチド化合物と式(Ra)の保護アミノ酸又は保護ペプチドとの量比は、特に制限されないが、式(B)の縮合環トリペプチド化合物1モルに対して、式(Ra)の保護アミノ酸又は保護ペプチドを、例えば0.1モル以上、又は0.2モル以上、又は0.3モル以上、又は0.4モル以上、又は0.5モル以上、また、例えば20モル以下、又は15モル以下、又は10モル以下、又は8モル以下、又は6モル以下、又は4モル以下、又は2モル以下の範囲で用いることができる。
 なお、当然ながら、製造対象となる本発明の式(P3)のポリペプチド化合物の目標製造量に対し、基質となる式(B)の縮合環トリペプチド化合物及び式(Ra)の保護アミノ酸又は保護ペプチドをそれぞれ1モル以上用いる必要がある。
 塩基を使用する場合、その使用量は特に制限されないが、式(B)の縮合環トリペプチド化合物1モルに対して、塩基を例えば0.2モル以上、又は0.4モル以上、又は0.6モル以上、又は0.8モル以上、又は1.0モル以上、また、例えば40モル以下、又は30モル以下、又は20モル以下、又は15モル以下、又は10モル以下、又は6モル以下、又は4モル以下の範囲で用いることができる。なお、複数の工程において塩基を添加する場合には、各工程において上記範囲内の量の塩基を添加することが好ましい。
 縮合剤を使用する場合、その使用量は特に制限されないが、式(B)の縮合環トリペプチド化合物1モルに対して、縮合剤を例えば0.2モル以上、又は0.4モル以上、又は0.6モル以上、又は0.8モル以上、又は1.0モル以上、また、例えば40モル以下、又は30モル以下、又は20モル以下、又は15モル以下、又は10モル以下、又は6モル以下、又は4モル以下の範囲で用いることができる。なお、複数の工程において縮合剤を添加する場合には、各工程において上記範囲内の量の縮合剤を添加することが好ましい。
 縮合剤に加えてラセミ化防止剤を使用する場合、その使用量は特に制限されないが、式(B)の縮合環トリペプチド化合物1モルに対して、ラセミ化防止剤を例えば0.2モル以上、又は0.4モル以上、又は0.6モル以上、又は0.8モル以上、又は1.0モル以上、また、例えば40モル以下、又は30モル以下、又は20モル以下、又は15モル以下、又は10モル以下、又は6モル以下、又は4モル以下の範囲で用いることができる。なお、複数の工程においてラセミ化防止剤を添加する場合には、各工程において上記範囲内の量のラセミ化防止剤を添加することが好ましい。
・反応条件:
 本発明の第3のペプチド製造方法では、工程(vi)として、式(B)の縮合環トリペプチド化合物を、式(Ra)の保護アミノ酸又は保護ペプチド化合物と反応させる。その反応条件は、反応が進行する限りにおいて制限されないが、例示すると以下のとおりである。
 工程(vi)の反応温度は、反応が進行する限りにおいて制限されないが、例えば0℃以上、又は10℃以上、又は20℃以上、また、例えば100℃以下、又は80℃以下、又は60℃以下とすることができる。
 工程(vi)の反応圧力も、反応が進行する限りにおいて制限されず、減圧下、常圧下、加圧下の何れで行ってもよいが、通常は常圧で実施することができる。
 工程(vi)の反応雰囲気も、反応が進行する限りにおいて制限されないが、アルゴン、窒素等の不活性ガスの雰囲気下に行うことができる。
 工程(vi)の反応時間も、反応が進行する限りにおいて制限されないが、反応を十分且つ効率的に進行させる観点からは、例えば10分間以上、又は20分間以上、又は30分間以上、また、例えば80時間以内、又は60時間以内、又は50時間以内とすることができる。
・ポリペプチド(目的化合物):
 本発明の第3のポリペプチドの製造方法において最終的に製造される目的化合物たるポリペプチド化合物は、下記の式(P3)で表される化合物である。
(P3)
 式(P3)中、PG、Ra1、Ra2、Ra3、Aa1、Aa2、pa1、pa2、及びmは、前記式(Ra)における同じ符号の基と同じ定義の基を表し、R11、R12、R13、R21、R22、Rx1、Rx2、及びPGは、前記式(B)における同じ符号の基と同じ定義の基を表す。
 ここで、式(P3)の化合物は、m+3をアミノ酸残基数とするポリペプチド化合物となる。即ち、例えば式(Ra)の化合物が保護アミノ酸である場合(即ち、mが1の場合)、製造される式(P3)の化合物はアミノ酸残基数1+3=4のポリペプチド化合物、即ちテトラペプチド化合物となる。また、例えば式(Ra)の化合物が保護ジペプチドである場合(即ち、mが2の場合)、製造される式(P3)の化合物はアミノ酸残基数2+3=5のポリペプチド化合物、即ちペンタペプチド化合物となる。また、例えば式(Ra)の化合物がトリペプチド以上の保護ポリペプチドである場合(即ち、mが3以上の場合)、製造される式(P3)の化合物はアミノ酸残基数アミノ酸残基数3+3=6以上のポリペプチド化合物、即ちヘキサペプチド以上のポリペプチド化合物となる。即ち、使用する式(Ra)の基質化合物のアミノ酸残基数(m)によって、得られる式(P3)のポリペプチド化合物(m+3)を調整することが可能となる。
 なお、上述の製造方法により得られた式(P3)のポリペプチド化合物に対して、更に種々の後処理を施してもよい。斯かる後処理としては、得られた式(P3)のポリペプチド化合物の単離・精製や、アミノ基の保護基PG及び/又はカルボキシル基の保護基PGの脱保護等が挙げられる。斯かる後処理についてはまとめて後述する。
(2)第4のポリペプチドの製造方法:
・概要:
 本発明の第4のポリペプチドの製造方法は、本発明の縮合環トリペプチド化合物を二分子用いて、ヘキサペプチド化合物一分子を製造する方法である。また、任意により、得られたヘキサペプチド化合物に対して更に保護アミノ酸又は保護ペプチド化合物を反応させることにより、ヘプタペプチド以上のポリペプチド化合物を製造することも可能となる。
 即ち、本発明の第4のポリペプチドの製造方法は、下記工程(vii)及び(viii)を少なくとも含む方法である。更に任意により、下記工程(ix)を含んでいてもよい。
(vii)下記式(B1)で表されるシラン含有縮合環トリペプチド化合物を塩基と混合する工程。
(viii)工程(vii)の混合物を、下記式(B2)で表されるシラン含有縮合環トリペプチド化合物と反応させることにより、下記式(P4)で表されるヘキサペプチド化合物を得る工程。
(ix)工程(viii)のヘキサペプチド化合物を、下記式(Ra)で表される保護アミノ酸又は保護ペプチド化合物と反応させることにより、下記式(P5)で表されるヘプタペプチド以上のポリペプチド化合物を製造する工程。
 以下、まずは工程(vii)及び(viii)による式(P4)のヘキサペプチド化合物の合成手順を説明した上で、任意の工程(ix)による式(P5)のヘプタペプチド以上のポリペプチド化合物の合成手順を説明する。
・シラン含有縮合環トリペプチド化合物(基質化合物):
 本発明の第4のポリペプチドの製造方法において基質化合物として使用されるシラン含有縮合環トリペプチド化合物は、前記の式(B)で表されるシラン含有縮合環トリペプチド化合物(本発明の縮合環トリペプチド化合物)と同様の化合物であるが、一分子のポリペプチドの合成に際し二分子のシラン含有縮合環トリペプチド化合物を使用する点で、前述した本発明の第3のポリペプチドの製造方法とは異なる。ここで、これら二分子のシラン含有縮合環トリペプチド化合物を区別するために、求核種側の化合物を下記の式(B1)で、求電子種側の化合物を下記の式(B2)で表すものとする。
 式(B1)中、R111、R112、R113、R211、R212、Ra11、Ra12、Rx11、及びRx12はそれぞれ、前記式(B)におけるR11、R12、R13、R21、R22、Ra1、Ra2、Rx1、及びRx2と同じ定義の基を表す。
 式(B1)中、PGx1は、前記式(B)におけるPGと同じく、カルボキシル基の保護基を表す。その詳細は前述したとおりである。但し、求核種側の化合物である式(B1)のカルボキシル保護基PGとしては、制限されるものではないが、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、sec-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、ヘキシル基、へプチル基、オクチル基、デシル基、ノニル基等のアルキル基;前記アルキル基が1又は2以上のハロゲンで置換されたハロアリール基及びハロアリールアルキル基が挙げられる。
 式(B2)中、R121、R122、R123、R221、R222、Ra21、Ra22、Rx21、及びRx22はそれぞれ、前記式(B)におけるR11、R12、R13、R21、R22、Ra1、Ra2、Rx1、及びRx2と同じ定義の基を表す。
 式(B2)中、Rx23は、-O-PG、-NH-PG、又は-S-PGを表す。ここでPGは、前記式(B)におけるPGと同じ定義の一価の保護基を表す。PGについては前述したとおりである。中でも、求電子種である式(B2)の保護基PGとしては、プロパルギル基等のアルキニル基;フェニル基、ベンジル基、トリル基、クミル基、1,1-ジフェニルエチル基、トリフェニルメチル基、フルオレニル基、ナフチル基、アントラセニル基等のアリール基及びアリールアルキル基;前記アリール基及びアリールアルキル基が1又は2以上のハロゲン基で置換された、ペンタフルオロフェニル基等のハロアリール基及びハロアリールアルキル基;トリメチルシリル(TMS)基、トリエチルシリル(TES)基、トリイソプロピルシリル(TIPS)基、トリtert-ブチルシリル(TBS)基、tert-ブチルジフェニルシリル(TBDPS)基、トリス(トリアルキルシリル)シリル基等のケイ素系保護基;等が好ましい。
・塩基:
 本発明の第4のペプチド製造方法では、工程(vii)において塩基を使用する。塩基の種類は制限されず、反応効率を向上させることが知られている公知の塩基を使用することができる。斯かる塩基の例としては、フッ化テトラブチルアンモニウム(TBAF)、トリエチルアミン(EtN)、ジイソプロピルアミン(i-PrNH)、ジイソプロピルエチルアミン(i-PrEtN)等の、炭素数1~10の直鎖又は分枝鎖状のアルキル基を1~4個有するアミンや、フッ化セシウム等の無機塩基などが挙げられる。これらは何れか一種を単独で使用してもよいが、二種以上を任意の組み合わせ及び比率で併用してもよい。
・縮合剤:
 本発明の第4のペプチド製造方法でも、ペプチド形成反応の効率を高める観点から、縮合剤を系内に共存させてもよい。また、縮合剤を使用する場合、ラセミ化防止剤を併用してもよい。縮合剤及びラセミ化防止剤の詳細については、先の本発明の第1~3のペプチド製造方法の説明において詳述したとおりである。
・その他の成分:
 本発明の第4のペプチド製造方法でも、基質化合物である前述の式(B1)及び(B2)の縮合環トリペプチド化合物、及び塩基、更には任意により用いられる縮合剤、及びラセミ化防止剤に加えて、他の成分を共存させてもよい。例としては、触媒、シラン化合物、リン化合物等が挙げられる。斯かる他の成分の詳細についても、先の本発明の第1~3のペプチド製造方法の説明において詳述したとおりである。
 なお、反応効率を高める観点からは、溶媒中で反応を行ってもよい。斯かる溶媒の詳細についても、先の本発明の第1~3のペプチド製造方法の説明において詳述したとおりである。
・反応手順:
 本発明の第4のペプチド製造方法では、工程(vii)において、求核種側の基質化合物である式(B1)の縮合環トリペプチド化合物を塩基と混合する。次いで、工程(viii)において、工程(vii)の混合物を、求電子種側の基質化合物である式(B2)の縮合環トリペプチド化合物と混合する。これにより、式(B1)の縮合環トリペプチド化合物が開環して求核種として機能する一方、式(B2)の縮合環トリペプチド化合物が開環して求電子種として機能し、アミド結合を形成することにより、式(P4)のヘキサペプチド化合物が得られることになる。
 なお、任意により用いられる縮合剤等のその他の成分を反応系に添加するタイミングは特に制限されず、何れも任意のタイミングで加えればよい。但し、縮合剤及び/又は塩基を使用する場合は、工程(vii)及び/又は工程(viii)の開始時に系内に添加することが好ましい。また、縮合剤に加えてラセミ化防止剤を使用する場合には、縮合剤と一緒に系内に添加することが好ましい。また、溶媒を用いて反応を行う場合には、溶媒中で各成分を混合し、相互に接触させればよい。
・各成分の使用量比:
 本発明の第4のペプチド製造方法において、各成分の使用量は限定されるものではないが、好ましくは以下の通りである。
 式(B1)の縮合環トリペプチド化合物と式(B2)の縮合環トリペプチド化合物との量比は、特に制限されないが、式(B1)の縮合環トリペプチド化合物1モルに対して、式(B2)の縮合環トリペプチド化合物を、例えば0.05モル以上、又は0.1モル以上、又は0.2モル以上、又は0.3モル以上、又は0.4モル以上、又は0.5モル以上、また、例えば20モル以下、又は15モル以下、又は10モル以下、又は8モル以下、又は6モル以下、又は4モル以下、又は2モル以下の範囲で用いることができる。
 塩基の使用量は特に制限されないが、式(B1)の縮合環トリペプチド化合物1モルに対して、塩基を例えば0.2モル以上、又は0.4モル以上、又は0.6モル以上、又は0.8モル以上、又は1.0モル以上、また、例えば40モル以下、又は30モル以下、又は20モル以下、又は15モル以下、又は10モル以下、又は6モル以下、又は4モル以下の範囲で用いることができる。なお、複数の工程において塩基を添加する場合には、各工程において上記範囲内の量の塩基を添加することが好ましい。
 縮合剤を使用する場合、その使用量は特に制限されないが、式(B1)の縮合環トリペプチド化合物1モルに対して、縮合剤を例えば0.2モル以上、又は0.4モル以上、又は0.6モル以上、又は0.8モル以上、又は1.0モル以上、また、例えば40モル以下、又は30モル以下、又は20モル以下、又は15モル以下、又は10モル以下、又は6モル以下、又は4モル以下の範囲で用いることができる。なお、複数の工程において縮合剤を添加する場合には、各工程において上記範囲内の量の縮合剤を添加することが好ましい。
 縮合剤に加えてラセミ化防止剤を使用する場合、その使用量は特に制限されないが、式(B1)の縮合環トリペプチド化合物1モルに対して、ラセミ化防止剤を例えば0.2モル以上、又は0.4モル以上、又は0.6モル以上、又は0.8モル以上、又は1.0モル以上、また、例えば40モル以下、又は30モル以下、又は20モル以下、又は15モル以下、又は10モル以下、又は6モル以下、又は4モル以下の範囲で用いることができる。なお、複数の工程においてラセミ化防止剤を添加する場合には、各工程において上記範囲内の量のラセミ化防止剤を添加することが好ましい。
・反応条件:
 本発明の第4のペプチド製造方法における反応条件は、反応が進行する限りにおいて制限されないが、反応手順毎に例示すると以下のとおりである。
 まず、工程(vii)として、式(B1)の縮合環トリペプチド化合物と塩基を混合する際の反応条件は、反応が進行する限り制限されないが、例えば以下の通りである。
 工程(vii)の反応温度は、反応が進行する限りにおいて制限されないが、例えば0℃以上、又は10℃以上、又は20℃以上、また、例えば100℃以下、又は80℃以下、又は60℃以下とすることができる。
 工程(vii)の反応圧力も、反応が進行する限りにおいて制限されず、減圧下、常圧下、加圧下の何れで行ってもよいが、通常は常圧で実施することができる。
 工程(vii)の反応雰囲気も、反応が進行する限りにおいて制限されないが、アルゴン、窒素等の不活性ガスの雰囲気下に行うことができる。
 工程(vii)の反応時間も、反応が進行する限りにおいて制限されないが、反応を十分且つ効率的に進行させる観点からは、例えば10分間以上、又は20分間以上、又は30分間以上、また、例えば80時間以内、又は60時間以内、又は50時間以内とすることができる。
 次に、工程(viii)として、工程(vii)の混合物に式(B2)の縮合環トリペプチド化合物を加えて反応させる際の反応条件も、反応が進行する限りにおいて制限されないが、例えば以下の通りである。
 工程(viii)の反応温度は、反応が進行する限りにおいて制限されないが、例えば0℃以上、又は10℃以上、又は20℃以上、また、例えば100℃以下、又は80℃以下、又は60℃以下とすることができる。
 工程(viii)の反応圧力も、反応が進行する限りにおいて制限されず、減圧下、常圧下、加圧下の何れで行ってもよいが、通常は常圧で実施することができる。
 工程(viii)の反応雰囲気も、反応が進行する限りにおいて制限されないが、アルゴン、窒素等の不活性ガスの雰囲気下に行うことができる。
 工程(viii)の反応時間も、反応が進行する限りにおいて制限されないが、反応を十分且つ効率的に進行させる観点からは、例えば10分間以上、又は20分間以上、又は30分間以上、また、例えば80時間以内、又は60時間以内、又は50時間以内とすることができる。
 なお、工程(vii)及び工程(viii)は各々、逐次法(バッチ法)にて実施してもよく、連続法(フロー法)にて実施してもよい。具体的な逐次法(バッチ法)及び連続法(フロー法)の実施手順の詳細は、本技術分野では公知である。また、工程(vii)及び工程(viii)を、それぞれ連続してワンポッドで行ってもよい。
・ヘキサペプチド(目的化合物):
 本発明の第4のポリペプチドの製造方法において、工程(viii)の実施後に製造される目的化合物たるヘキサペプチド化合物は、下記の式(P4)で表される化合物である。
(P4)
 式(P4)中、R111、R112、R113、R211、R212、Rx11、Rx12、及びPGx1は、前記式(B1)における同じ符号の基と同じ定義の基を表し、R121、R122、R123、R221、R222、Rx21、及びRx22は、前記式(B2)における同じ符号の基と同じ定義の基を表す。
 なお、上述の製造方法により得られた式(P4)のヘキサペプチド化合物に対して、更に種々の後処理を施してもよい。斯かる後処理としては、得られた式(P4)のヘキサペプチド化合物の単離・精製や、カルボキシル基の保護基PGx1の脱保護等が挙げられる。斯かる後処理についてはまとめて後述する。
(3)第4のポリペプチドの製造方法の変形例:
・概要:
 本発明の第4のポリペプチドの製造方法では、工程(vii)及び(viii)により製造されたヘキサペプチド化合物に対して、更に工程(ix)として、保護アミノ酸又は保護ペプチド化合物を反応させてもよい(この態様を以下適宜「本発明の第4のポリペプチドの製造方法の変形例」とする。)。これにより、ヘプタペプチド以上のポリペプチド化合物を製造することも可能となる。
・保護アミノ酸・ペプチド(基質化合物):
 本発明の第4のポリペプチドの製造方法の変形例では、工程(ix)として、工程(viii)で得られた式(P4)のヘキサペプチド化合物に対し、下記式(Ra)で表される保護アミノ酸又は保護ペプチド化合物を混合する。
 式(Ra)の保護アミノ酸又は保護ペプチド化合物の詳細は、本発明の第3のペプチド製造方法について前述したとおりである。
 式(Ra)の保護アミノ酸又は保護ペプチド化合物の使用量は特に制限されないが、式(B1)の縮合環トリペプチド化合物1モルに対して、塩基を例えば0.2モル以上、又は0.4モル以上、又は0.6モル以上、又は0.8モル以上、又は1.0モル以上、また、例えば40モル以下、又は30モル以下、又は20モル以下、又は15モル以下、又は10モル以下、又は6モル以下、又は4モル以下の範囲で用いることができる。なお、複数の工程において塩基を添加する場合には、各工程において上記範囲内の量の塩基を添加することが好ましい。
・反応条件:
 本発明の第4のペプチド製造方法の変形例において、工程(ix)を実施してヘプタペプチド以上のポリペプチド化合物を合成する場合、工程(ix)における反応条件は、反応が進行する限りにおいて制限されないが、例示すると以下のとおりである。
 工程(ix)の反応温度は、反応が進行する限りにおいて制限されないが、例えば0℃以上、又は10℃以上、又は20℃以上、また、例えば100℃以下、又は80℃以下、又は60℃以下とすることができる。
 工程(ix)の反応圧力も、反応が進行する限りにおいて制限されず、減圧下、常圧下、加圧下の何れで行ってもよいが、通常は常圧で実施することができる。
 工程(ix)の反応雰囲気も、反応が進行する限りにおいて制限されないが、アルゴン、窒素等の不活性ガスの雰囲気下に行うことができる。
 工程(ix)の反応時間も、反応が進行する限りにおいて制限されないが、反応を十分且つ効率的に進行させる観点からは、例えば10分間以上、又は20分間以上、又は30分間以上、また、例えば80時間以内、又は60時間以内、又は50時間以内とすることができる。
 なお、工程(vii)及び(viii)の後に工程(ix)を実施する場合、工程(vii)及び(viii)と工程(ix)とは各々、逐次法(バッチ法)にて実施してもよく、連続法(フロー法)にて実施してもよい。具体的な逐次法(バッチ法)及び連続法(フロー法)の実施手順の詳細は、本技術分野では公知である。また、工程(vii)及び(viii)と工程(ix)とを、それぞれ連続してワンポッドで行ってもよい。
・ポリペプチド(目的化合物):
 本発明の第4のポリペプチドの製造方法の変形例において、工程(ix)の実施後に製造される目的化合物たるヘプタペプチド以上のポリペプチド化合物は、下記の式(P5)で表される化合物である。
(P5)
 式(P5)中、
PG、Ra1、Ra2、Ra3、Aa1、Aa2、pa1、pa2、及びmは、前記式(Ra)における同じ符号の基と同じ定義の基を表し、R111、R112、R113、R211、R212、Rx11、Rx12、PGx1、R121、R122、R123、R221、R222、Rx21、及びRx22は、前記式(P4)における同じ符号の基と同じ定義の基を表す。また、式(P5)中上段の構造の右端及び下段の構造の左端における丸囲み記号Aは、上段の構造と下段の構造がこの位置で連続していることを意味する。
 ここで、式(P5)の化合物は、m+6をアミノ酸残基数とするポリペプチド化合物となる。即ち、例えば式(Ra)の化合物が保護アミノ酸である場合(即ち、mが1の場合)、製造される式(P5)の化合物はアミノ酸残基数1+6=7のポリペプチド化合物、即ちヘプタペプチド化合物となる。また、例えば式(Ra)の化合物が保護ジペプチドである場合(即ち、mが2の場合)、製造される式(P5)の化合物はアミノ酸残基数2+6=8のポリペプチド化合物、即ちオクタペプチド化合物となる。また、例えば式(Ra)の化合物がトリペプチド以上の保護ポリペプチドである場合(即ち、mが3以上の場合)、製造される式(P5)の化合物はアミノ酸残基数アミノ酸残基数3+6=9以上のポリペプチド化合物、即ちノナペプチド以上のポリペプチド化合物となる。即ち、使用する式(Ra)の基質化合物のアミノ酸残基数(m)によって、得られる式(P5)のポリペプチド化合物(m+6)を調整することが可能となる。
 なお、上述の製造方法により得られた式(P5)のポリペプチド化合物に対して、更に種々の後処理を施してもよい。斯かる後処理としては、得られた式(P5)のポリペプチド化合物の単離・精製や、アミノ基の保護基PG及び/又はカルボキシル基の保護基PGの脱保護等が挙げられる。斯かる後処理についてはまとめて後述する。
(3)その他:
 上述の製造方法により得られた式(P1)~(P5)のポリペプチド化合物に対して、更に種々の後処理を施してもよい。
 例えば、上述の製造方法により得られた式(P1)~(P5)のポリペプチド化合物を、カラムクロマトグラフィー、再結晶等の常法に従って単離・精製することができる。
 また、上述の製造方法により得られた式(P1)~(P5)のポリペプチド化合物において、保護基PGにより保護されたアミノ基の脱保護を行うこともできる。保護アミノ基を脱保護する方法は特に制限されず、保護基PGの種類に応じて様々な方法を用いることができる。例としては、水素化による脱保護、弱酸による脱保護、フッ素イオンによる脱保護、一電子酸化剤による脱保護、ヒドラジンによる脱保護、酸素による脱保護などが挙げられる。水素化による脱保護の場合、(a)水素ガスの存在下に、還元触媒として、パラジウム、パラジウム-炭素、水酸化パラジウム、水酸化パラジウム-炭素等のなどの金属触媒を用いて還元して脱保護する方法、(b)パラジウム、パラジウム-炭素、水酸化パラジウム、水酸化パラジウム-炭素等のなどの金属触媒の存在下、水素化ホウ素ナトリウム、水素化アルミニウムリチウム、水素化ホウ素リチウム、ジボラン等の水素化還元剤を用いて還元して脱保護する方法等が挙げられる。
 また、上述の製造方法により得られた式(P1)~(P5)のポリペプチド化合物において、保護基PGにより保護されたカルボキシル基の脱保護を行うこともできる。保護カルボキシル基を脱保護する方法は特に制限されず、保護基PGの種類に応じて様々な方法を用いることができる。例としては、水素化による脱保護、塩基による脱保護、弱酸による脱保護などが挙げられる。塩基による脱保護の場合、塩基として、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等の強塩基を用いて脱保護する方法等が挙げられる。
 また、上述の製造方法により得られた式(P1)~(P5)のポリペプチド化合物を(必要に応じて脱保護した上で)、前記の式(R3)若しくは式(Ra)の保護ペプチド及び/又は式(R4)のペプチドエステルとして用い、再び本発明の第1~第4のペプチド製造方法に供してもよい。或いは、上述の製造方法により得られた式(P1)~(P5)のポリペプチド化合物を(必要に応じて脱保護した上で)、従来公知の他のアミド化方法又はペプチド製造方法に供してもよい。こうして、式(P1)~(P5)のポリペプチド化合物に他のアミノ酸又はペプチドをアミド結合により連結し、アミノ酸残基を伸長して、より大型のポリペプチドを合成することができる。こうした手順を逐次繰り返すことにより、原理的には任意のアミノ酸残基数及びアミノ酸配列のポリペプチドを合成することが可能となる。
 なお、本発明者等はアミノ酸又はペプチドを連結するためのアミド化反応やそれによるポリペプチドの製造方法に関し、以下の先行特許出願を行っているところ、本発明の種々のポリペプチドの製造方法を、これらの先行特許出願に記載のアミド化反応やポリペプチドの製造方法と適宜組み合わせて実施し、及び/又は、これらの先行特許出願に記載のアミド化反応やポリペプチドの製造方法の条件を考慮して適宜改変することも可能である。なお、これらの先行特許出願の記載は、その全体が援用により本明細書に組み込まれる。
(1)国際公開第2017/204144号(前記の特許文献1)
(2)国際公開第2018/199146号(前記の特許文献2)
(3)国際公開第2018/199147号(前記の特許文献3)
(4)国際公開第2019/208731号(前記の特許文献4)
(5)国際公開第2021/085635号(前記の特許文献5)
(6)国際公開第2021/085636号(前記の特許文献6)
(7)国際公開第2021/149814号(前記の特許文献7)
(8)国際公開第2022/190486号(前記の特許文献8)
 以下、本発明を実施例に則して更に詳細に説明するが、これらの実施例はあくまでも説明のために便宜的に示す例に過ぎず、本発明は如何なる意味でもこれらの実施例に限定されるものではない。なお、以下に述べるアミノ酸のうち、光学異性を有するものについては、別途明記するものを除き、L体を指すものとする。
[実施例1:シラン含有縮合環ジペプチド化合物の合成]
(一般的合成手順)
 5mLのバイヤル瓶に、無保護の第1のアミノ酸(0.25mmol)、ジメチルシリルジイミダゾール(第1のシラン化合物;2当量;96mg)、N-(tert-ブチルジメチルシリル)-N-メチルトリフルオロアセトアミド(MTBSTFA)(第3のシラン化合物;1当量;58μL)、及びジクロロメタン(0.1mL)を入れ、室温で一時間攪拌した。一方、20mLの試験管に、無保護の第2のアミノ酸(0.5mmol)及びN,O-ビス(トリメチルシリル)トリフルオロアセトアミド(BSTFA)(第2のシラン化合物;3当量;200μL)を入れ、室温で一時間攪拌した。各反応後、前記バイヤル瓶内の反応物を前記試験管内に添加し、前記バイヤル瓶の内表面をジクロロメタン(0.2mL)で洗い込んで前記試験管内に移した。その後、当該試験管にトリメチルシリルイミダゾール(第4のシラン化合物;2当量;73.2μL)を添加して、50℃で24時間攪拌することにより、所望のシラン含有縮合環ジペプチド化合物を得た。
(結果)
 結果を以下の表に示す。
[実施例2:シラン含有縮合環トリペプチド化合物の合成]
(一般的合成手順)
 20mL試験管に、実施例1に記載の手段で合成した下記表に示す式(A)のシラン含有縮合環ジペプチド化合物(1当量;0.25mmol)と、式(Rx)のアミノ酸エステル(3当量)及びトリメチルシリルイミダゾール(TMS-IM)(第5のシラン化合物;1当量)を入れ、90℃で24時間攪拌して加熱することにより、下記表に示す式(B)のシラン含有縮合環トリペプチド化合物を得た。
(結果)
 結果を以下の表に示す。
[実施例3:テトラペプチド化合物の合成]
(一般的合成手順)
 20mL試験管に、実施例2に記載の手段で合成した下記表に示す式(B)のシラン含有縮合環ジペプチド化合物(1当量;0.25mmol)と、下記表に示す式(Ra)の保護アミノ酸(2当量)、1Mテトラブチルアンモニウムフルオリド(TBAF;塩基;1.5当量)のテトラヒドロフラン(THF)溶液、及びジクロロメタン(DCM;1.5mL)を入れ、室温で12時間攪拌することにより、下記表に示す所望の式(P3)のテトラペプチド化合物を得た。
(結果)
 結果を以下の表に示す。
[実施例4:ヘキサペプチド化合物の合成]
 20mL試験管に、実施例2に記載の手段で合成した、上記反応式に示すシラン含有縮合環ジペプチド化合物(式(B1)においてPGx1がMeの化合物:1当量)と、1Mテトラブチルアンモニウムフルオリド(TBAF;塩基;1当量)のテトラヒドロフラン(THF)溶液、及びジクロロメタン(DCM;1.5mL)を入れ、50℃で24時間攪拌した。その後、実施例2に記載の手段で合成した、上記反応式に示すシラン含有縮合環ジペプチド化合物(式(B2)においてPGx2がBnの化合物:1当量)を入れ、50℃で24時間攪拌することにより、上記反応式に示すヘキサペプチド化合物を得た(収率21%)。
[実施例5:ヘプタペプチド化合物の合成]
 20mL試験管に、実施例2に記載の手段で合成した、上記反応式に示すシラン含有縮合環ジペプチド化合物(式(B1)においてPGx1がMeの化合物:1当量)と、1Mテトラブチルアンモニウムフルオリド(TBAF;塩基;1当量)のテトラヒドロフラン(THF)溶液、及びジクロロメタン(DCM;1.5mL)を入れ、50℃で24時間攪拌した。その後、実施例2に記載の手段で合成した、上記反応式に示すシラン含有縮合環ジペプチド化合物(式(B2)においてPGx2がBnの化合物:1当量)を入れ、50℃で24時間攪拌することにより、上記反応式に示すヘキサペプチド化合物を得た。更に、Fmoc-Ala-Cl(N末端Fmoc保護アラニンクロリド;2当量)を加えて、室温で24時間攪拌することにより、上記反応式に示すヘプタペプチド化合物を得た(収率11%)。

Claims (11)

  1.  下記式(A)で表されるシラン含有縮合環ジペプチド化合物を製造する方法であって、下記工程(i)~(iii)を含む方法。
    (i)下記式(R1)で表される第1のアミノ酸と、下記式(S1)で表される第1のシラン化合物を反応させる工程。
    (ii)下記式(R2)で表される第2のアミノ酸と、下記式(S2)で表される第2のシラン化合物を反応させる工程。
    (iii)前記工程(i)の反応物と、前記工程(ii)の反応物を混合して更に反応させることにより、前記式(A)のシラン含有縮合環ジペプチド化合物を得る工程。
    但し、式(A)中、
    11、R12、R13、R21、及びR22は、各々独立に、水素原子、ハロゲン原子、水酸基、カルボキシル基、ニトロ基、シアノ基、若しくはチオール基、又は、1若しくは2以上の置換基を有していてもよい、一価の脂肪族炭化水素基、芳香族炭化水素基、若しくは複素環式基を表し、
    a1及びRa2は、各々独立に、1又は2以上の置換基を有していてもよい、一価の脂肪族炭化水素基又は芳香族炭化水素基を表す。
    但し、式(R1)中、
    11、R12、及びR13は、各々独立に、前記式(A)における同じ符号の基と同じ定義の基を表す。
    但し、式(S1)中、
    a1及びRa2は、前記式(A)における同じ符号の基と同じ定義の基を表し、
    a1及びZa2は、各々独立に、1又は2以上の置換基を有していてもよい、環構成原子として1以上の窒素原子を含む5~10員の複素環式基を表す。
    但し、式(R2)中、
    21及びR22は、各々独立に、前記式(A)における同じ符号の基と同じ定義の基を表す。
    但し、式(S2)中、
    b1、Rb2、及びRb3は、各々独立に、水素原子、ハロゲン原子、又は、1又は2以上の置換基を有していてもよい、一価の脂肪族炭化水素基又は芳香族炭化水素基を表し、
    は1又は2の整数を表し、
    が1の場合、Zは、1又は2以上の置換基を有していてもよい、アミノ基、カルボニルアミノ基、アセトアミド基、又は、環構成原子として1以上の窒素原子を含む5~10員の一価の複素環式基を表し、
    が2の場合、Zは、窒素を含有する二価の連結基を表す。なお、nが2の場合、各々2つずつ存在するRb1、Rb2、及びRb3は、それぞれ同一であってもよく、異なっていてもよい。
  2.  前記工程(i)において、反応系に第3のシラン化合物を共存させる、請求項1に記載の方法。
  3.  前記工程(iii)において、反応系に第4のシラン化合物を共存させる、請求項1に記載の方法。
  4.  下記式(B)で表されるシラン含有縮合環トリペプチド化合物を製造する方法であって、下記工程(iv)及び(v)を含む方法。
    (iv)請求項1~3の何れか一項に記載の方法により、前記式(A)で表されるシラン含有縮合環ジペプチド化合物を製造する工程。
    (v)前記式(A)で表されるシラン含有縮合環ジペプチド化合物と、下記式(Rx)で表されるアミノ酸エステルとを反応させる工程。
    但し、式(B)中、
    11、R12、R13、R21、R22、Ra1、及びRa2は、各々独立に、前記式(A)における同じ符号の基と同じ定義の基を表し、
    x1及びRx2は、各々独立に、水素原子、ハロゲン原子、水酸基、カルボキシル基、ニトロ基、シアノ基、若しくはチオール基、又は、1若しくは2以上の置換基を有していてもよい、一価の脂肪族炭化水素基、芳香族炭化水素基、若しくは複素環式基を表し、
    PGは、1価の保護基を表す。
    但し、式(R1)中、
    x1、Rx2、及びPGは、各々独立に、前記式(B)における同じ符号の基と同じ定義の基を表す。
  5.  前記工程(v)において、反応系に第5のシラン化合物を共存させる、請求項4に記載の方法。
  6.  下記式(B)で表されるシラン含有縮合環トリペプチド化合物。
    但し、式(B)中、
    11、R12、R13、R21、R22、Ra1、及びRa2は、各々独立に、前記式(A)における同じ符号の基と同じ定義の基を表し、
    x1及びRx2は、各々独立に、水素原子、ハロゲン原子、水酸基、カルボキシル基、ニトロ基、シアノ基、若しくはチオール基、又は、1若しくは2以上の置換基を有していてもよい、一価の脂肪族炭化水素基、芳香族炭化水素基、若しくは複素環式基を表し、
    PGは、カルボキシル基の1価の保護基を表す。
  7.  請求項6に記載のシラン含有縮合環トリペプチド化合物を用いて、テトラペプチド以上のポリペプチド化合物を製造する方法であって、下記工程(vi)を含む方法。
    (vi)前記式(B)で表されるシラン含有縮合環トリペプチド化合物を、下記式(Ra)で表される保護アミノ酸又は保護ペプチド化合物と反応させることにより、下記式(P3)で表されるポリペプチド化合物を得る工程。
    但し、式(Ra)中、
    PGは、アミノ基の保護基を表し、
    a1及びRa2は、各々独立に、水素原子、ハロゲン原子、水酸基、カルボキシル基、ニトロ基、シアノ基、若しくはチオール基、又は、1若しくは2以上の置換基を有していてもよい、アミノ基、一価の脂肪族炭化水素基、一価の芳香族炭化水素基、若しくは一価の複素環式基を表し、
    a3は、水素原子、カルボキシル基、水酸基、又は、1若しくは2以上の置換基を有していてもよい一価の脂肪族炭化水素基、芳香族炭化水素基、若しくは複素環式基を表し、ここで、一価の脂肪族炭化水素基、芳香族炭化水素基、又は複素環式基の場合は、連結基を介して窒素原子に結合していてもよく、
    或いは、Ra1とRa3とが互いに結合して、Ra1が結合する炭素原子及びRa3が結合する窒素原子と共に、1又は2以上の置換基を有していてもよい複素環を形成していてもよく、
    a1及びAa2は、各々独立に、1又は2以上の置換基を有していてもよい炭素数1~3の二価の脂肪族炭化水素基を表し、
    a1及びpa2は、各々独立に、0又は1を表し、
    は、1以上の整数であり、かつ、[ ]内の構造で表される構成単位の数を表す。但し、mが2以上である場合は、[ ]内の構造で表される複数の構成単位は各々同一でもよく、異なっていてもよい。
    (P3)
    但し、式(P3)中、
    PG、Ra1、Ra2、Ra3、Aa1、Aa2、pa1、pa2、及びmは、前記式(Ra)における同じ符号の基と同じ定義の基を表し、
    11、R12、R13、R21、R22、Rx1、Rx2、及びPGは、前記式(B)における同じ符号の基と同じ定義の基を表す。
  8.  前記工程(iv)において、反応系に塩基を共存させる、請求項7に記載の方法。
  9.  請求項6に記載のシラン含有縮合環トリペプチド化合物を2分子用いて、ヘキサペプチド化合物を製造する方法であって、下記工程(vii)を含む方法。
    (vii)下記式(B1)で表されるシラン含有縮合環トリペプチド化合物を塩基と混合する工程。
    (viii)工程(vii)の混合物を、下記式(B2)で表されるシラン含有縮合環トリペプチド化合物と反応させることにより、下記式(P4)で表されるポリペプチド化合物を得る工程。
    但し、式(B1)中、R111、R112、R113、R211、R212、Ra11、Ra12、Rx11、Rx12、及びPGx1はそれぞれ、前記式(B)におけるR11、R12、R13、R21、R22、Ra1、Ra2、Rx1、Rx2、及びPGと同じ定義の基を表す。
    但し、式(B2)中、R121、R122、R123、R221、R222、Ra21、Ra22、Rx21、及びRx22はそれぞれ、前記式(B)におけるR11、R12、R13、R21、R22、Ra1、Ra2、Rx1、及びRx2同じ定義の基を表し、
    x23は、-O-PG、-NH-PG、又は-S-PGを表す。ここでPGは、前記式(B)におけるPGと同じ定義の一価の保護基を表す。
    (P4)
    但し、式(P4)中、
    111、R112、R113、R211、R212、Rx11、Rx12、及びPGx1は、前記式(B1)における同じ符号の基と同じ定義の基を表し、
    121、R122、R123、R221、R222、Rx21、及びRx22は、前記式(B2)における同じ符号の基と同じ定義の基を表す。
  10.  ヘプタペプチド以上のポリペプチド化合物を製造する方法であって、下記工程(viii)及び(ix)を含む方法。
    (viii)請求項9に記載の方法により、前記式(P4)で表されるヘキサペプチド化合物を製造する工程。
    (ix)前記ヘキサペプチド化合物を、下記式(Ra)で表される保護アミノ酸又は保護ペプチド化合物と反応させることにより、下記式(P5)で表されるポリペプチド化合物を製造する工程。
    但し、式(Ra)中、
    PGは、アミノ基の保護基を表し、
    a1及びRa2は、各々独立に、水素原子、ハロゲン原子、水酸基、カルボキシル基、ニトロ基、シアノ基、若しくはチオール基、又は、1若しくは2以上の置換基を有していてもよい、アミノ基、一価の脂肪族炭化水素基、一価の芳香族炭化水素基、若しくは一価の複素環式基を表し、
    a3は、水素原子、カルボキシル基、水酸基、又は、1若しくは2以上の置換基を有していてもよい一価の脂肪族炭化水素基、芳香族炭化水素基、若しくは複素環式基を表し、ここで、一価の脂肪族炭化水素基、芳香族炭化水素基、又は複素環式基の場合は、連結基を介して窒素原子に結合していてもよく、
    或いは、Ra1とRa3とが互いに結合して、Ra1が結合する炭素原子及びRa3が結合する窒素原子と共に、1又は2以上の置換基を有していてもよい複素環を形成していてもよく、
    a1及びAa2は、各々独立に、1又は2以上の置換基を有していてもよい炭素数1~3の二価の脂肪族炭化水素基を表し、
    a1及びpa2は、各々独立に、0又は1を表し、
    は、1以上の整数であり、かつ、[ ]内の構造で表される構成単位の数を表す。但し、mが2以上である場合は、[ ]内の構造で表される複数の構成単位は各々同一でもよく、異なっていてもよい。
    (P5)
    但し、式(P5)中、
    PG、Ra1、Ra2、Ra3、Aa1、Aa2、pa1、pa2、及びmは、前記式(Ra)における同じ符号の基と同じ定義の基を表し、
    111、R112、R113、R211、R212、Rx11、Rx12、PGx1、R121、R122、R123、R221、R222、Rx21、及びRx22は、前記式(P4)における同じ符号の基と同じ定義の基を表す。
    また、式(P5)中上段の構造の右端及び下段の構造の左端における丸囲み記号Aは、上段の構造と下段の構造がこの位置で連続していることを意味する。
  11.  前記工程(viii)及び(ix)がワンポットで実施される、請求項10に記載の方法。
PCT/JP2023/022441 2022-06-17 2023-06-16 シラン含有縮合環ジペプチド化合物の製造方法 WO2023243720A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023561912A JP7500119B2 (ja) 2022-06-17 2023-06-16 シラン含有縮合環ジペプチド化合物の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-098201 2022-06-17
JP2022098201 2022-06-17

Publications (1)

Publication Number Publication Date
WO2023243720A1 true WO2023243720A1 (ja) 2023-12-21

Family

ID=89191485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022441 WO2023243720A1 (ja) 2022-06-17 2023-06-16 シラン含有縮合環ジペプチド化合物の製造方法

Country Status (2)

Country Link
JP (1) JP7500119B2 (ja)
WO (1) WO2023243720A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022190486A1 (ja) * 2021-03-09 2022-09-15 学校法人中部大学 シラン含有縮合環ジペプチド化合物及びその製造方法、並びにそれを用いたポリペプチド化合物の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010103857A1 (ja) 2009-03-12 2010-09-16 国立大学法人北海道大学 ケイ素含有保護基を用いた糖ペプチド固相合成方法および合成装置
WO2020262258A1 (ja) 2019-06-28 2020-12-30 富士フイルム株式会社 ペプチド化合物の製造方法、保護基形成用試薬、及び、縮合多環芳香族炭化水素化合物
CN114206901B (zh) 2019-08-30 2024-02-20 日产化学株式会社 肽化合物的制造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022190486A1 (ja) * 2021-03-09 2022-09-15 学校法人中部大学 シラン含有縮合環ジペプチド化合物及びその製造方法、並びにそれを用いたポリペプチド化合物の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HATTORI TOMOHIRO, YAMAMOTO HISASHI: "Synthesis of Silacyclic Dipeptides: Peptide Elongation at Both N- and C-Termini of Dipeptide", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, AMERICAN CHEMICAL SOCIETY, vol. 144, no. 4, 2 February 2022 (2022-02-02), pages 1758 - 1765, XP093117053, ISSN: 0002-7863, DOI: 10.1021/jacs.1c11260 *
KOWALKE JANINE; BRENDLER ERICA; WAGLER JÖRG: "Valinate and SiMe2 – An interesting couple in pentacoordinate Si-complexes: Templated generation of the dipeptide val-val and formation of an organosilicon-ammonia-adduct", JOURNAL OF ORGANOMETALLIC CHEMISTRY, ELSEVIER, AMSTERDAM, NL, vol. 956, 16 October 2021 (2021-10-16), AMSTERDAM, NL , XP086861851, ISSN: 0022-328X, DOI: 10.1016/j.jorganchem.2021.122126 *

Also Published As

Publication number Publication date
JP7500119B2 (ja) 2024-06-17
JPWO2023243720A1 (ja) 2023-12-21

Similar Documents

Publication Publication Date Title
EP3786151B1 (en) Method for producing amide compound
JP7122004B2 (ja) アミド化合物の製造方法
JP7244134B2 (ja) アミド反応用反応剤及びそれを用いたアミド化合物の製造方法
JP6744669B2 (ja) 水酸基を配向基とするエステルからアミドへの変換触媒
WO2021085635A1 (ja) アミド反応用反応剤及びそれを用いたアミド化合物の製造方法
JP2021531326A (ja) 液相ペプチド合成のための方法およびその保護戦略
WO2021149814A1 (ja) アミド化合物の製造用触媒及び製造方法
JP7171115B1 (ja) シラン含有縮合環ジペプチド化合物及びその製造方法、並びにそれを用いたポリペプチド化合物の製造方法
JPWO2016047794A1 (ja) 疎水性ペプチドの製造法
Pradeille et al. The first total synthesis of the Peptaibol Hypomurocin A1 and its conformation analysis: an application of the ‘Azirine/Oxazolone Method’
JP7500119B2 (ja) シラン含有縮合環ジペプチド化合物の製造方法
TW202112759A (zh) 肽化合物的製造方法、保護基形成用試藥及縮合多環化合物
JP7327858B2 (ja) ペプチド化合物の製造方法及びアミド化反応剤
WO2023210692A1 (ja) ポリペプチド化合物の製造方法
JPH04502908A (ja) アミノ酸のトリアルキルシリルエステルおよびペプチド合成におけるその使用
JP7181662B1 (ja) ペプチド化合物の製造方法
WO2023136301A1 (ja) ペプチド化合物の製造方法
WO2022265115A1 (ja) ペプチド化合物の製造方法
US20240209020A1 (en) Reaction agent for amide reaction and method for producing amide compound using same
AU2019284745B2 (en) Method for producing amide
WO2019239880A1 (ja) アミドの製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023561912

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23824010

Country of ref document: EP

Kind code of ref document: A1