WO2019233001A1 - 电机过流堵转保护方法、装置、电子调速器和无人飞行器 - Google Patents

电机过流堵转保护方法、装置、电子调速器和无人飞行器 Download PDF

Info

Publication number
WO2019233001A1
WO2019233001A1 PCT/CN2018/109318 CN2018109318W WO2019233001A1 WO 2019233001 A1 WO2019233001 A1 WO 2019233001A1 CN 2018109318 W CN2018109318 W CN 2018109318W WO 2019233001 A1 WO2019233001 A1 WO 2019233001A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
current
throttle
threshold
value
Prior art date
Application number
PCT/CN2018/109318
Other languages
English (en)
French (fr)
Inventor
陈毅东
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Publication of WO2019233001A1 publication Critical patent/WO2019233001A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/085Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors against excessive load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/343Testing dynamo-electric machines in operation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/006Calibration or setting of parameters

Definitions

  • the embodiments of the present application relate to the technical field of motor control, and in particular, to a method, a device, an electronic governor, and an unmanned aerial vehicle for a motor overcurrent blocking protection.
  • Unmanned aerial vehicles With the development of unmanned aerial vehicle technology, unmanned aerial vehicles have been widely used in military and civilian fields. Unmanned aerial vehicles usually include multiple blades, which use the rotation of multiple blades to generate upward lift and forward power, and the power to rotate the blades is usually provided by a motor connected to it.
  • the purpose of the embodiments of the present application is to provide a method, a device, an electronic governor, and an unmanned aerial vehicle for overcurrent blocking protection of a motor, which can prevent the motor from being burned when the motor is blocked.
  • an embodiment of the present application provides a motor overcurrent blocking protection method.
  • the method is used for an electronic governor.
  • the motor overcurrent blocking protection method includes:
  • the speeder includes at least two gears, each of which has a corresponding current threshold,
  • motor protection measures are initiated.
  • determining the current gear of the electronic governor and determining the current current threshold according to the current gear includes:
  • the current threshold corresponding to each throttle interval is greater than the current peak value when the battery voltage is highest in the throttle interval, and is smaller than the current peak value when the battery voltage is lowest in the throttle interval and the motor stalls.
  • activating the motor protection measures includes:
  • the motor restarts continuously for more than three times, and the time interval between adjacent restarts is less than a preset second time threshold, the motor is turned off.
  • the minimum speed threshold value is obtained according to a minimum speed value, where the minimum speed value is the speed value when the battery voltage is the lowest and the throttle value of the electronic governor is the lower limit value of the throttle range.
  • an embodiment of the present application further provides a motor overcurrent blocking protection device, the device is used for an electronic governor, and the motor overcurrent blocking protection device includes:
  • the first motor stall determination module is configured to determine a current gear position of the electronic governor, determine a current current threshold value according to the current gear position, and obtain a current motor current. If the current motor current is greater than the current current threshold value, It is determined that the motor has stalled.
  • the electronic governor includes at least two gears, each gear has a corresponding current threshold.
  • the second motor stall determination module is used to obtain the current motor speed. If the current motor speed is less than the minimum speed threshold, it is determined that the motor stalls;
  • a motor protection module is configured to start motor protection measures if the time that the motor stalls exceeds a preset first time threshold.
  • the first motor stall determination module is specifically configured to:
  • the current threshold corresponding to each throttle interval is greater than the current peak value when the battery voltage is highest in the throttle interval, and is smaller than the current peak value when the battery voltage is lowest in the throttle interval and the motor stalls.
  • the motor protection module is specifically configured to:
  • the motor restarts continuously for more than three times, and the time interval between adjacent restarts is less than a preset second time threshold, the motor is turned off.
  • the minimum speed threshold value is obtained according to a minimum speed value, where the minimum speed value is the speed value when the battery voltage is the lowest and the throttle value of the electronic governor is the lower limit value of the throttle range.
  • an embodiment of the present application further provides an electronic speed governor for controlling the operation of the motor.
  • the electronic speed governor includes an electrically connected motor controller and a motor driver.
  • the motor drivers are all used to electrically connect with the motor, and the motor controller includes:
  • At least one processor At least one processor
  • a memory connected in communication with the at least one processor; wherein,
  • the memory stores instructions executable by the at least one processor, and the instructions are executed by the at least one processor, so that the at least one processor can execute the foregoing method.
  • an embodiment of the present application further provides an unmanned aerial vehicle, including:
  • a flight controller, a motor, and an electronic governor for controlling the operation of the motor are provided on the fuselage.
  • the electronic governor is the aforementioned electronic governor.
  • an embodiment of the present application further provides a non-volatile computer-readable storage medium, where the computer-readable storage medium stores computer-executable instructions, and when the computer-executable instructions are executed by an unmanned aerial vehicle To enable the unmanned aerial vehicle to perform the above method.
  • the embodiments of the present application determine whether the motor is blocked by obtaining the current motor current and determining whether the current motor current is greater than the current current threshold, and / or by obtaining the current motor speed and determining whether the current motor speed is less than the minimum speed threshold. Rotation; when the motor stalls exceeds the preset first time threshold, motor protection measures are started to prevent the motor from being burned when the stall occurs.
  • FIG. 1 is a schematic diagram of an application scenario of a method and a device for overcurrent blocking protection of a motor of the present application
  • FIG. 2 is a flowchart of an embodiment of a motor overcurrent blocking protection method according to the present application
  • FIG. 3 is a schematic structural diagram of an embodiment of a motor overcurrent blocking protection device of the present application.
  • FIG. 4 is a schematic diagram of a hardware structure of an electronic governor provided by an embodiment of the present application.
  • the method and device for motor overcurrent blocking protection provided by the embodiments of the present application are applicable to the application scenario shown in FIG. 1, where the application scenario includes an unmanned aerial vehicle 100, the unmanned aerial vehicle 100 includes a motor 10, and an electronic speed regulator ⁇ 20 and Flight controller 30.
  • the flight controller 30 is a control system of the unmanned aerial vehicle 100, and is used to send the throttle control signal and other control signals to the electronic governor 20, and the electronic governor 20 is used to adjust the motor according to the control signal sent by the flight controller 30
  • the motor 10 is used to rotate the blades (not shown) of the unmanned aerial vehicle 100 to provide power for the flight of the unmanned aerial vehicle 100.
  • the electronic governor 20 includes a motor driver 21 and a motor controller 22.
  • the motor controller 22 detects a two-phase or three-phase current signal from the motor 10 through a current sensor (not shown), and outputs a control signal to the motor driver 21 to The motor 10 controls the operation of the motor 10.
  • the electronic governor 20 can determine whether the motor 10 has stalled according to the current of the motor 10. If the stall occurs for more than a certain period of time, start and restart the motor or shut down the motor to prevent the motor from being burned.
  • the unmanned aerial vehicle 100 may be any suitable type of high-altitude or low-altitude aircraft, including a typical quadcopter, a hovering remote-control helicopter, and the like.
  • the motor 10 may be a suitable type of motor such as a permanent magnet synchronous motor or an asynchronous AC motor.
  • FIG. 2 is a schematic flowchart of an embodiment of a motor overcurrent blocking protection method according to an embodiment of the present application.
  • the motor overcurrent blocking protection method may be implemented by the motor controller 22 in the electronic governor 20 in FIG. 1. Execution, as shown in FIG. 2, the motor overcurrent blocking protection method includes:
  • the electronic governor Determine the current gear of the electronic governor, determine the current current threshold value according to the current gear, and obtain the current motor current. If the current motor current is greater than the current current threshold, determine that the motor has stalled, and
  • the electronic governor includes at least two gears, each gear having a corresponding current threshold.
  • the current current threshold can be obtained through calculation, or the electronic governor can be divided into multiple gears, and then a fixed current threshold can be set for each gear.
  • the method of dividing into multiple gears and setting a fixed current threshold for each gear has a small amount of calculation, can save CPU resources, and has a fast execution speed.
  • the electronic governor may be divided into multiple levels according to the throttle range of the electronic governor.
  • the electronic governor can be divided into 8 grades on average, and the size of the throttle interval of each grade is 87.5us. That is, the throttle range is 1200-1287.5 as the first level, the throttle range is 1287.5-1375 as the second level, and the third, fourth, fifth, sixth, seventh, and eighth levels are defined by analogy, and are The current thresholds I 1ref , I 2ref ... I 8ref are set for each grade.
  • the current throttle value of the electronic governor is 1550us, which corresponds to the throttle range of 1550-1637.5. It can be determined that the current gear of the electronic governor is the fifth gear, and the current current threshold is I 5ref .
  • the embodiment of the present application is not limited to being divided into 8 grades, and may also be divided into more or less grades.
  • the current threshold values (for example, I 1ref , I 2ref ... I 8ref ) can be obtained by measuring under different battery power and different throttle values. For example, taking the value of I 5ref as an example, take multiple throttle values (for example, 10 throttle values) in the throttle interval 1550-1637.5, and measure the current value at the highest battery voltage (V max ) as I 5max . The value of the stall current at the lowest battery voltage is taken as I 5 .
  • I 5ref can take a value in the range of I 5max -I 5 , that is, I 5max ⁇ I 5ref ⁇ I 5 .
  • the motor current may be a motor phase current (for example, any one of three-phase currents or a multi-phase current), and the battery is a power supply battery for a motor driver 21 (for example, an inverter).
  • a motor driver 21 for example, an inverter
  • the maximum speed threshold value can be obtained (e.g. 1.2n max) the rotational speed (n max) when the battery voltage up to obtain the minimum speed threshold (e.g. 0.8n min) the rotational speed (n min) at the lowest battery voltage. If it is detected during the flight that the current motor speed is greater than 1.2n max or less than 0.8n min , it is determined that the motor has a stalled condition. However, considering that when the motor is not on the blade, the maximum speed of the motor will increase by more than 20%, in this embodiment of the present application, only the minimum speed threshold is used for protection setting.
  • n min and n max are described by taking the throttle range of the electronic governor as 1200-1900us as an example.
  • the measured throttle value is the speed under the throttle range lower limit value of 1200us as n min .
  • the measured throttle value is the speed under the throttle range upper limit value of 1900us as n max .
  • whether the motor is stalled can be determined based on the current motor speed only, or whether the motor is stalled based on the current motor current only. Judgments can also be made based on the current motor speed and current motor current. For example, the current motor speed and current motor current can be obtained. If the current motor speed is less than the minimum speed threshold or the current motor current is greater than the current current threshold, it is determined that the motor has stalled.
  • start motor protection measures If the time that the motor stalls exceeds the preset first time threshold, start motor protection measures.
  • the motor protection measure may be to restart the motor if the duration of the motor stalled exceeds a preset first time threshold (for example, 0.8 s). If the motor restarts continuously for more than three times, and the time interval between adjacent restarts is less than a preset second time threshold (for example, 2s), the motor is turned off.
  • the number of failures can be set (for example, the initial value is 0). When the motor restarts, the number of failures is increased by 1. When the restart occurs again, if the time interval between two restarts is less than the preset second Time threshold, the number of failures is increased by 1; otherwise, the number of failures is cleared. When the number of faults reaches the preset threshold (for example, 3 times), the motor is stopped.
  • the embodiments of the present application determine whether the motor is blocked by obtaining the current motor current and determining whether the current motor current is greater than the current current threshold, and / or by obtaining the current motor speed and determining whether the current motor speed is less than the minimum speed threshold. Rotation; when the motor stalls exceeds the preset first time threshold, motor protection measures are started to prevent the motor from being burned when the stall occurs.
  • the method of the embodiment of the present application is applicable to various control strategies of the motor, for example, the reactive voltage uses the PI regulator closed-loop output through the reactive current, the active voltage is directly given, and the inductive strategy uses sliding film observation to control the position of the speedometer.
  • the strategy is also applicable to other control strategies, such as current loop, speed loop + current loop control strategies.
  • the embodiment of the present application also provides a motor overcurrent blocking protection device, which can be used for the electronic governor 20 in FIG. 1, as shown in FIG. 3.
  • the motor overcurrent blocking protection device 300 includes a first motor blocking determination module 301 and / or a second motor blocking determination module 302 and a motor protection module 303.
  • the first motor stall determination module 301 is configured to determine a current gear position of the electronic governor, determine a current current threshold value according to the current gear position, and obtain a current motor current. If the current motor current is greater than the current current, Threshold, it is determined that the motor has stalled.
  • the electronic governor includes at least two gears, and each gear has a corresponding current threshold.
  • the second motor stall determination module 302 is configured to obtain the current motor speed. If the current motor speed is less than the minimum speed threshold, it is determined that the motor stalls.
  • the motor protection module 303 is configured to start a motor protection measure if the stalled time of the motor exceeds a preset first time threshold.
  • the embodiments of the present application determine whether the motor is blocked by obtaining the current motor current and determining whether the current motor current is greater than the current current threshold, and / or by obtaining the current motor speed and determining whether the current motor speed is less than the minimum speed threshold. Rotation; when the motor stalls exceeds the preset first time threshold, motor protection measures are started to prevent the motor from being burned when the stall occurs.
  • the first motor stall determination module 301 is specifically configured to:
  • the current threshold corresponding to each throttle interval is greater than the current peak value when the battery voltage is highest in the throttle interval, and is smaller than the current peak value when the battery voltage is lowest in the throttle interval and the motor stalls.
  • the motor protection module 303 is specifically configured to:
  • the motor restarts continuously for more than three times, and the time interval between adjacent restarts is less than a preset second time threshold, the motor is turned off.
  • the minimum speed threshold is obtained according to a minimum speed value
  • the minimum speed value is a speed value when the battery voltage is the lowest
  • the throttle value of the electronic governor is the lower limit value of the throttle range.
  • the above-mentioned motor overcurrent blocking protection device can execute the motor overcurrent blocking protection method provided by the embodiments of the present application, and has the corresponding functional modules and beneficial effects of executing the motor overcurrent blocking protection method.
  • the motor overcurrent blocking protection method provided in the embodiments of the present application.
  • an embodiment of the present application further provides an electronic governor 20.
  • the electronic governor 20 includes a motor controller 22 and a motor driver 21 that are electrically connected.
  • the motor controller 22 and the motor driver 21 are both used.
  • the motor controller 22 includes:
  • One or more processors 221 and a memory 222 are taken as an example in FIG. 4.
  • One processor 221 is taken as an example in FIG. 4.
  • the processor 221 and the memory 222 may be connected through a bus or other manners, and the bus connection is taken as an example in FIG. 4.
  • the memory 222 is a non-volatile computer-readable storage medium, and can be used to store non-volatile software programs, non-volatile computer executable programs, and modules, such as the method for protecting a motor from overcurrent in the embodiments of the present application.
  • Corresponding program instructions / units for example, the first motor stall determination module 301, the second motor stall determination module 302, and the motor protection module 303 shown in FIG. 3).
  • the processor 221 executes various functional applications and data processing of the electronic governor by running the nonvolatile software programs, instructions, and units stored in the memory 222, that is, the motor overcurrent blocking protection of the method embodiment is implemented method.
  • the memory 222 may include a storage program area and a storage data area, where the storage program area may store an operating system and application programs required for at least one function; the storage data area may store data created according to the use of the electronic governor, and the like.
  • the memory 222 may include a high-speed random access memory, and may further include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage device.
  • the memory 222 may optionally include a memory remotely disposed with respect to the processor 221, and these remote memories may be connected to the electronic governor through a network. Examples of the above network include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the one or more units are stored in the memory 222, and when executed by the one or more processors 221, the motor overcurrent blocking protection method in any of the above method embodiments is executed, for example, the above description is performed.
  • the method steps 101-103 in FIG. 2 implement the functions of modules 301-303 shown in FIG.
  • the above electronic speed governor can execute the motor overcurrent blocking protection method provided by the embodiment of the present application, and has corresponding function modules and beneficial effects of the execution method.
  • the above electronic speed governor can execute the motor overcurrent blocking protection method provided by the embodiment of the present application, and has corresponding function modules and beneficial effects of the execution method.
  • An embodiment of the present application further provides a non-volatile computer-readable storage medium, where the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are executed by one or more processors, such as FIG. 4
  • One of the processors 221 may enable the one or more processors to execute the motor overcurrent blocking protection method in any of the foregoing method embodiments, for example, execute the method steps 101-103 in FIG. 2 described above to implement Functions of modules 301-330 shown in FIG.
  • an embodiment of the present application further provides an unmanned aerial vehicle 100.
  • the unmanned aerial vehicle 100 includes:
  • the flight controller 30, the motor 10, and an electronic governor 20 for controlling the operation of the motor 10 are installed on the fuselage.
  • the electronic governor 20 is the aforementioned electronic governor.
  • the above-mentioned unmanned aerial vehicle 100 includes the electronic governor provided in the embodiment of the present application, and has its corresponding functional modules and beneficial effects.
  • the electronic governor provided in the embodiment of the present application For technical details that are not described in detail in the embodiment of the unmanned aerial vehicle, refer to the electronic governor provided in the embodiment of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Electric Motors In General (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种电机过流堵转保护方法、装置、电子调速器和无人飞行器,所述方法包括:确定所述电子调速器的当前档位,根据所述当前档位确定当前电流阈值,获取当前电机电流,如果当前电机电流大于所述当前电流阈值,则判定电机发生堵转,所述电子调速器包括至少两个档位,每个档位具有对应的电流阈值(101),和/或,获取当前电机转速,如果当前电机转速小于最小转速阈值,则判定电机发生堵转(102);如果电机发生堵转的时间超过预设第一时间阈值,则启动电机保护措施(103)。通过判断电机是否发生堵转,在电机发生堵转时启动电机保护措施,可以避免电机在发生堵转时被烧毁。

Description

电机过流堵转保护方法、装置、电子调速器和无人飞行器
本申请要求于2018年06月06日提交中国专利局、申请号为2018105734989、申请名称为“电机过流堵转保护方法、装置、电子调速器和无人飞行器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及电机控制技术领域,特别是涉及一种电机过流堵转保护方法、装置、电子调速器和无人飞行器。
背景技术
随着无人飞行器技术的发展,无人飞行器在军事及民用领域都得到了广泛的应用。无人飞行器通常包括多个桨叶,利用多个桨叶的旋转产生向上的升力和前进的动力,而桨叶旋转的动力通常由与其相连的电机提供。
在现有无人飞行器使用过程中,由于无人飞行器自身设计的问题或者用户操作不当,有时会导致无人飞行器侧翻,在无人飞行器侧翻时如果此时电机依然在旋转,即发生电机堵转,容易导致电机烧毁。
发明内容
本申请实施例的目的是提供一种电机过流堵转保护方法、装置、电子调速器和无人飞行器,能在电机发生堵转时,避免电机被烧毁。
为解决上述技术问题,第一方面,本申请实施例提供了一种电机过流堵转保护方法,所述方法用于电子调速器,所述电机过流堵转保护方法包括:
确定所述电子调速器的当前档位,根据所述当前档位确定当前电流阈值,获取当前电机电流,如果当前电机电流大于所述当前电流阈值,则判定电机发生堵转,所述电子调速器包括至少两个档位,每个档位具有对应的电流阈值,
和/或,
获取当前电机转速,如果当前电机转速小于最小转速阈值,则判定电机发生堵转;
如果电机发生堵转的时间超过预设第一时间阈值,则启动电机保护措施。
在一些实施例中,所述确定所述电子调速器的当前档位,根据所述当前档位确定当前电流阈值,包括:
获取所述电子调速器的当前油门值,确认所述当前油门值符合的油门区间,将所述油门区间对应的电流阈值作为当前电流阈值,其中,所述电子调速器的至少两个档位预先根据电子调速器的油门范围获得,将所述油门范围分成多个连续的油门区间,每个油门区间对应一个所述档位。
在一些实施例中,每个油门区间对应的电流阈值大于该油门区间内电池电压最高时的电流峰值,并且小于该油门区间内电池电压最低且电机发生堵转时的电流峰值。
在一些实施例中,所述如果电机发生堵转的时间超过预设第一时间阈值,则启动电机保护措施,包括:
如果电机发生堵转的持续时间超过预设第一时间阈值,则重新启动所述电机;
如果电机发生三次以上的连续重新启动,且各相邻重新启动之间的时间间隔小于预设第二时间阈值,则关闭所述电机。
在一些实施例中,所述最小转速阈值根据最小转速值获得,所述最小转速值为电池电压最低且电子调速器的油门值为所述油门范围下限值时的转速值。
第二方面,本申请实施例还提供了一种电机过流堵转保护装置,所述装置用于电子调速器,所述电机过流堵转保护装置包括:
第一电机堵转确定模块,用于确定所述电子调速器的当前档位,根据所述当前档位确定当前电流阈值,获取当前电机电流,如果当前电机电流大于所述当前电流阈值,则判定电机发生堵转,所述电子调速器包括至少两个档位,每个档位具有对应的电流阈值,
和/或,
第二电机堵转确定模块,用于获取当前电机转速,如果当前电机转速小于最小转速阈值,则判定电机发生堵转;
电机保护模块,用于如果电机发生堵转的时间超过预设第一时间阈值,则启动电机保护措施。
在一些实施例中,所述第一电机堵转确定模块具体用于:
获取所述电子调速器的当前油门值,确认所述当前油门值符合的油门区间,将所述油门区间对应的电流阈值作为当前电流阈值,其中,所述电子调速器的至少两个档位预先根据电子调速器的油门范围获得,将所述油门范围分成多个连续的油门区间,每个油门区间对应一个所述档位。
在一些实施例中,每个油门区间对应的电流阈值大于该油门区间内电池 电压最高时的电流峰值,并且小于该油门区间内电池电压最低且电机发生堵转时的电流峰值。
在一些实施例中,所述电机保护模块具体用于:
如果电机发生堵转的持续时间超过预设第一时间阈值,则重新启动所述电机;
如果电机发生三次以上的连续重新启动,且各相邻重新启动之间的时间间隔小于预设第二时间阈值,则关闭所述电机。
在一些实施例中,所述最小转速阈值根据最小转速值获得,所述最小转速值为电池电压最低且电子调速器的油门值为所述油门范围下限值时的转速值。
第三方面,本申请实施例还提供了一种电子调速器,用于控制电机的运转,所述电子调速器包括电性连接的电机控制器和电机驱动器,所述电机控制器和所述电机驱动器均用于与所述电机电性连接,所述电机控制器包括:
至少一个处理器;以及,
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行上述的方法。
第四方面,本申请实施例还提供了一种无人飞行器,包括:
机身;
设置于所述机身上的飞行控制器、电机及用于控制所述电机运行的电子调速器,所述电子调速器为上述的电子调速器。
第五方面,本申请实施例还提供了一种非易失性计算机可读存储介质, 所述计算机可读存储介质存储有计算机可执行指令,当所述计算机可执行指令被无人飞行器执行时,使所述无人飞行器执行上述的方法。
本申请实施例通过获得当前电机电流,并判断所述当前电机电流是否大于当前电流阈值,和/或,通过获得当前电机转速,并判断当前电机转速是否小于最小转速阈值,来判断电机是否发生堵转;在电机发生堵转超过预设第一时间阈值时启动电机保护措施,可以避免电机在发生堵转时被烧毁。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍。显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请电机过流堵转保护方法和装置的应用场景示意图;
图2是本申请电机过流堵转保护方法的一个实施例的流程图;
图3是本申请电机过流堵转保护装置的一个实施例的结构示意图;
图4是本申请实施例提供的电子调速器的硬件结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本申请进一步详细说明。
需要说明的是,本申请实施例中所有使用“第一”和“第二”的表述均是为了区分两个相同名称非相同的实体或者非相同的参量,可见“第一”“第二”仅为了表述的方便,不应理解为对本申请实施例的限定,后续实施例对此不再一一说明。
本申请实施例提供的无人飞行器的电机过流堵转保护方法和装置适用于图1所示的应用场景,所述应用场景包括无人飞行器100,无人飞行器100包括电机10、电子调速器20和飞行控制器30。其中,飞行控制器30是无人飞行器100的控制系统,用于向电子调速器20发送油门控制信号及其他控制信号,电子调速器20用于根据飞行控制器30发送的控制信号调整电机10的转速,电机10用于带动无人飞行器100的桨叶(图中未示出)旋转从而为无人飞行器100的飞行提供动力。
电子调速器20包括电机驱动器21和电机控制器22,电机控制器22通过电流传感器(图中未示出)检测来自电机10的两相或三相电流信号,通过电机驱动器21输出控制信号到电机10以控制电机10的运行。电子调速器20可以根据电机10的电流判断电机10是否发生堵转,如果发生堵转超过一定时间时,启动重启电机或者关闭电机等保护措施,以避免电机被烧毁。
其中,无人飞行器100可以是任何合适类型的高空或者低空飞行器,包括典型的四轴飞行器、可悬停的遥控直升机等。电机10可以是永磁同步电机或异步交流电机等合适类型的电机。
图2为本申请实施例提供的电机过流堵转保护方法的一个实施例的流程示意图,所述电机过流堵转保护方法可以由图1中的电子调速器20中的电机控制器22执行,如图2所示,所述电机过流堵转保护方法包括:
101:确定所述电子调速器的当前档位,根据所述当前档位确定当前电流阈值,获取当前电机电流,如果当前电机电流大于所述当前电流阈值,则判 定电机发生堵转,所述电子调速器包括至少两个档位,每个档位具有对应的电流阈值。
确定电机是否发生堵转,可以实时通过电流传感器检测当前电机电流,然后确定当前电机电流是否大于当前电流阈值,如果大于当前电流阈值,则确定电机发生堵转。
其中,当前电流阈值可以通过运算获得,也可以将电子调速器分成多个档位,然后为每个档位设置固定的电流阈值。判断电机是否发生堵转时,需要先确定电子调速器的当前档位,获得当前档位的电流阈值,再将当前电机电流与当前电流阈值进行比较。相对来说,分成多个档位,每个档位设置固定电流阈值的方法运算量小、能节省CPU资源,且执行速度快。
具体的,在一些实施例中,由于电机电流跟电子调速器的油门值关系较大,可以根据电子调速器的油门范围将电子调速器分为多个档次。以电子调速器的油门范围为1200-1900us为例,可以把电子调速器平均分为8个档次,每个档次油门区间的大小为87.5us。即油门区间为1200-1287.5为第一档次,油门区间为1287.5-1375为第二档次,依此类推定义第三、第四、第五、第六、第七、第八档次等,并分别为每个档次设置电流阈值I 1ref、I 2ref...I 8ref。确定电机是否发生堵转时,需要先获得电子调速器的当前油门值,以确定电子调速器的当前档位。例如电子调速器的当前油门值为1550us,符合油门区间1550-1637.5,则可以确定电子调速器的当前档位是第五档位,则当前电流阈值为I 5ref。当然,本申请实施例不限于分为8个档次,也可以分成更多或者更少的档次。
其中,由于电机电流还与电池电量有较大关系,电流阈值(例如 I 1ref、I 2ref...I 8ref)的取值可以通过在不同电池电量和不同油门值下测量获得。例如,以I 5ref的取值为例说明,取油门区间1550-1637.5内的多个油门值(例如10个油门值),测量在电池电压最高(V max)时的电流值作为I 5max,在电池电压最低时的堵转电流值作为I 5。I 5ref可以在I 5max-I 5范围内取值,即I 5max<I 5ref<I 5
在一些实施例中,所述电机电流可以是电机相电流(例如是三相电流中的任意一相电流或者多相电流),所述电池为电机驱动器21(例如逆变器)的供电电池。
和/或,
102:获取当前电机转速,如果当前电机转速小于最小转速阈值,则判定电机发生堵转。
确定电机是否发生堵转,还可以获得当前电机转速,确定当前电机转速是否满足转速阈值,如果不满足转速阈值,则确定电机发生堵转。考虑到无人飞行器在飞行过程中电池电量是变化的,这样电池电压会存在一定的波动。可以根据电池电压最高时的转速(n max)获得最大转速阈值(例如1.2n max),根据电池电压最低时的转速(n min)获得最小转速阈值(例如0.8n min)。则如果在飞行过程中监测到当前电机转速大于1.2n max或小于0.8n min,则确定电机存在堵转的情况。但是,考虑到在电机不上桨叶时,电机最高转速会增加超过20%的情况,本申请实施例中仅以最小转速阈值进行保护设定。
其中,n min和n max的取值以电子调速器的油门范围为1200-1900us为例说明,在电池电压最低时,测量油门值为油门范围下限值1200us下的转速作为n min,在电池电压最高时,测量油门值为油门范围上限值1900us下的转速作 为n max
在实际应用中,可以仅根据当前电机转速判断电机是否堵转,也可以仅根据当前电机电流判断电机是否堵转。也可以同时根据当前电机转速和当前电机电流进行判断,例如,可以获得当前电机转速和当前电机电流,如果当前电机转速小于最小转速阈值或者当前电机电流大于当前电流阈值,则确定电机发生堵转。
103:如果电机发生堵转的时间超过预设第一时间阈值,则启动电机保护措施。
在其中一些实施例中,所述电机保护措施可以是,如果电机发生堵转的持续时间超过预设第一时间阈值(例如0.8s),则重新启动所述电机。如果电机发生三次以上的连续重新启动,且各相邻重新启动之间的时间间隔小于预设第二时间阈值(例如2s),则关闭所述电机。在实际应用中,可以设置故障次数(例如初始值为0),当电机发生重新启动时,则故障次数加1,当再次发生重新启动时,如果两次重新启动的时间间隔小于预设第二时间阈值,则故障次数再加1,否则,故障次数清零。当故障次数达到预设次数阈值时(例如3次),则使电机停机。
本申请实施例通过获得当前电机电流,并判断所述当前电机电流是否大于当前电流阈值,和/或,通过获得当前电机转速,并判断当前电机转速是否小于最小转速阈值,来判断电机是否发生堵转;在电机发生堵转超过预设第一时间阈值时启动电机保护措施,可以避免电机在发生堵转时被烧毁。
本申请实施例的方法适用于电机的多种控制策略,例如无功电压通过无功电流采用PI调节器闭环输出、有功电压直接给定、无感策略采用滑膜观测 进行速度计位置估计的控制策略,也适用于其他控制策略,例如电流环、速度环+电流环控制策略。
相应的,本申请实施例还提供了一种电机过流堵转保护装置,所述电机过流堵转保护装置可以用于图1中的电子调速器20,如图3所示,所述电机过流堵转保护装置300包括第一电机堵转确定模块301和/或第二电机堵转确定模块302以及电机保护模块303。其中,第一电机堵转确定模块301,用于确定所述电子调速器的当前档位,根据所述当前档位确定当前电流阈值,获取当前电机电流,如果当前电机电流大于所述当前电流阈值,则判定电机发生堵转,所述电子调速器包括至少两个档位,每个档位具有对应的电流阈值。第二电机堵转确定模块302,用于获取当前电机转速,如果当前电机转速小于最小转速阈值,则判定电机发生堵转。电机保护模块303,用于如果电机发生堵转的时间超过预设第一时间阈值,则启动电机保护措施。
本申请实施例通过获得当前电机电流,并判断所述当前电机电流是否大于当前电流阈值,和/或,通过获得当前电机转速,并判断当前电机转速是否小于最小转速阈值,来判断电机是否发生堵转;在电机发生堵转超过预设第一时间阈值时启动电机保护措施,可以避免电机在发生堵转时被烧毁。
具体的,在一些实施例中,第一电机堵转确定模块301具体用于:
获取所述电子调速器的当前油门值,确认所述当前油门值符合的油门区间,将所述油门区间对应的电流阈值作为当前电流阈值,其中,所述电子调速器的至少两个档位预先根据电子调速器的油门范围获得,将所述油门范围分成多个连续的油门区间,每个油门区间对应一个所述档位。
其中,在一些实施例中,每个油门区间对应的电流阈值大于该油门区间内电池电压最高时的电流峰值,并且小于该油门区间内电池电压最低且电机发生堵转时的电流峰值。
具体的,在一些实施例中,电机保护模块303具体用于:
如果电机发生堵转的持续时间超过预设第一时间阈值,则重新启动所述电机;
如果电机发生三次以上的连续重新启动,且各相邻重新启动之间的时间间隔小于预设第二时间阈值,则关闭所述电机。
其中,在一些实施例中,所述最小转速阈值根据最小转速值获得,所述最小转速值为电池电压最低且电子调速器的油门值为所述油门范围下限值时的转速值。
需要说明的是,上述电机过流堵转保护装置可执行本申请实施例所提供的电机过流堵转保护方法,具备执行电机过流堵转保护方法相应的功能模块和有益效果。未在装置实施例中详尽描述的技术细节,可参见本申请实施例所提供的电机过流堵转保护方法。
如图4所示,本申请实施例还提供了一种电子调速器20,电子调速器20包括电性连接的电机控制器22和电机驱动器21,电机控制器22和电机驱动器21均用于与电机10电性连接,电机控制器22包括:
一个或多个处理器221以及存储器222,图4中以一个处理器221为例。处理器221和存储器222可以通过总线或者其他方式连接,图4中以总线连接为例。
存储器222作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块,如本申请实施例中的电机过流堵转保护方法对应的程序指令/单元(例如,附图3所示的第一电机堵转确定模块301、第二电机堵转确定模块302和电机保护模块303)。处理器221通过运行存储在存储器222中的非易失性软件程序、指令以及单元,从而执行电子调速器的各种功能应用以及数据处理,即实现上述方法实施例的电机过流堵转保护方法。
存储器222可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据电子调速器使用所创建的数据等。此外,存储器222可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器222可选包括相对于处理器221远程设置的存储器,这些远程存储器可以通过网络连接至电子调速器。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述一个或者多个单元存储在所述存储器222中,当被所述一个或者多个处理器221执行时,执行上述任意方法实施例中的电机过流堵转保护方法,例如,执行以上描述的图2中的方法步骤101-103,实现图3所示的模块301-303的功能。
上述电子调速器可执行本申请实施例所提供的电机过流堵转保护方法,具备执行方法相应的功能模块和有益效果。未在电子调速器实施例中详尽描述的技术细节,可参见本申请实施例所提供的方法。
本申请实施例还提供了一种非易失性计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个处理器执行,例如图4中的一个处理器221,可使得上述一个或多个处理器可执行上述任意方法实施例中的电机过流堵转保护方法,例如,执行以上描述的图2中的方法步骤101-103,实现图3所示的模块301-303的功能。
如图1所示,本申请实施例还提供了一种无人飞行器100,无人飞行器100包括:
机身;
安装于所述机身上的飞行控制器30、电机10及用于控制所述电机10运行的电子调速器20,所述电子调速器20为上述的电子调速器。
上述无人飞行器100包括本申请实施例提供的电子调速器,具备其相应的功能模块和有益效果。未在无人飞行器实施例中详尽描述的技术细节,可参见本申请实施例所提供的电子调速器。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;在本申请的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征 进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (13)

  1. 一种电机过流堵转保护方法,所述方法用于电子调速器,其特征在于,所述电机过流堵转保护方法包括:
    确定所述电子调速器的当前档位,根据所述当前档位确定当前电流阈值,获取当前电机电流,如果当前电机电流大于所述当前电流阈值,则判定电机发生堵转,所述电子调速器包括至少两个档位,每个档位具有对应的电流阈值,
    和/或,
    获取当前电机转速,如果当前电机转速小于最小转速阈值,则判定电机发生堵转;
    如果电机发生堵转的时间超过预设第一时间阈值,则启动电机保护措施。
  2. 根据权利要求1所述的方法,其特征在于,所述确定所述电子调速器的当前档位,根据所述当前档位确定当前电流阈值,包括:
    获取所述电子调速器的当前油门值,确认所述当前油门值符合的油门区间,将所述油门区间对应的电流阈值作为当前电流阈值,其中,所述电子调速器的至少两个档位预先根据电子调速器的油门范围获得,将所述油门范围分成多个连续的油门区间,每个油门区间对应一个所述档位。
  3. 根据权利要求2所述的方法,其特征在于,每个油门区间对应的电流阈值大于该油门区间内电池电压最高时的电流峰值,并且小于该油门区间内电池电压最低且电机发生堵转时的电流峰值。
  4. 根据权利要求1-3任意一项所述的方法,其特征在于,所述如果电机 发生堵转的时间超过预设第一时间阈值,则启动电机保护措施,包括:
    如果电机发生堵转的持续时间超过预设第一时间阈值,则重新启动所述电机;
    如果电机发生三次以上的连续重新启动,且各相邻重新启动之间的时间间隔小于预设第二时间阈值,则关闭所述电机。
  5. 根据权利要求2所述的方法,其特征在于,所述最小转速阈值根据最小转速值获得,所述最小转速值为电池电压最低且电子调速器的油门值为所述油门范围下限值时的转速值。
  6. 一种电机过流堵转保护装置,所述装置用于电子调速器,其特征在于,所述电机过流堵转保护装置包括:
    第一电机堵转确定模块,用于确定所述电子调速器的当前档位,根据所述当前档位确定当前电流阈值,获取当前电机电流,如果当前电机电流大于所述当前电流阈值,则判定电机发生堵转,所述电子调速器包括至少两个档位,每个档位具有对应的电流阈值,
    和/或,
    第二电机堵转确定模块,用于获取当前电机转速,如果当前电机转速小于最小转速阈值,则判定电机发生堵转;
    电机保护模块,用于如果电机发生堵转的时间超过预设第一时间阈值,则启动电机保护措施。
  7. 根据权利要求6所述的装置,其特征在于,所述第一电机堵转确定模块具体用于:
    获取所述电子调速器的当前油门值,确认所述当前油门值符合的油门区间,将所述油门区间对应的电流阈值作为当前电流阈值,其中,所述电子调速器的至少两个档位预先根据电子调速器的油门范围获得,将所述油门范围分成多个连续的油门区间,每个油门区间对应一个所述档位。
  8. 根据权利要求7所述的装置,其特征在于,每个油门区间对应的电流阈值大于该油门区间内电池电压最高时的电流峰值,并且小于该油门区间内电池电压最低且电机发生堵转时的电流峰值。
  9. 根据权利要求6-8任意一项所述的装置,其特征在于,所述电机保护模块具体用于:
    如果电机发生堵转的持续时间超过预设第一时间阈值,则重新启动所述电机;
    如果电机发生三次以上的连续重新启动,且各相邻重新启动之间的时间间隔小于预设第二时间阈值,则关闭所述电机。
  10. 根据权利要求7所述的装置,其特征在于,所述最小转速阈值根据最小转速值获得,所述最小转速值为电池电压最低且电子调速器的油门值为所述油门范围下限值时的转速值。
  11. 一种电子调速器,用于控制电机的运转,所述电子调速器包括电性连接的电机控制器和电机驱动器,所述电机控制器和所述电机驱动器均用于与所述电机电性连接,其特征在于,所述电机控制器包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行权利要求1-5任一项所述的方法。
  12. 一种无人飞行器,其特征在于,包括:
    机身;
    设置于所述机身上的飞行控制器、电机及用于控制所述电机运行的电子调速器,所述电子调速器为权利要求11所述的电子调速器。
  13. 一种非易失性计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,当所述计算机可执行指令被无人飞行器执行时,使所述无人飞行器执行权利要求1-5的任一项所述的方法。
PCT/CN2018/109318 2018-06-06 2018-10-08 电机过流堵转保护方法、装置、电子调速器和无人飞行器 WO2019233001A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810573498.9A CN108711831B (zh) 2018-06-06 2018-06-06 电机过流堵转保护方法、装置、电子调速器和无人飞行器
CN201810573498.9 2018-06-06

Publications (1)

Publication Number Publication Date
WO2019233001A1 true WO2019233001A1 (zh) 2019-12-12

Family

ID=63870368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/109318 WO2019233001A1 (zh) 2018-06-06 2018-10-08 电机过流堵转保护方法、装置、电子调速器和无人飞行器

Country Status (2)

Country Link
CN (2) CN108711831B (zh)
WO (1) WO2019233001A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114081815A (zh) * 2021-11-19 2022-02-25 未来穿戴技术股份有限公司 按摩仪电机的控制方法、装置、按摩仪和计算机存储介质
CN115459218A (zh) * 2022-09-20 2022-12-09 广东尚研电子科技股份有限公司 直流电机驱动装置及其堵转保护方法
CN116158680A (zh) * 2021-11-24 2023-05-26 漳州松霖智能家居有限公司 一种皮肤清洁装置的控制方法及皮肤清洁装置
CN116776074A (zh) * 2023-08-21 2023-09-19 威晟汽车科技(宁波)有限公司 一种电子水泵堵转识别方法及装置

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109532514B (zh) * 2018-12-18 2020-08-04 深圳市英威腾电动汽车驱动技术有限公司 一种电驱动系统堵转保护方法、电机控制器及电动汽车
CN109856537B (zh) * 2018-12-28 2021-02-19 神驰机电股份有限公司 一种单比较器的bldc控制电路的堵转检测方法及系统
CN109742733B (zh) * 2019-02-22 2020-10-23 深圳市道通智能航空技术有限公司 过流保护方法、装置、系统和无人飞行器
CN109831144A (zh) * 2019-03-01 2019-05-31 深圳市道通智能航空技术有限公司 温度保护方法、装置和无人飞行器
CN111835266A (zh) * 2019-04-23 2020-10-27 江苏美的清洁电器股份有限公司 电机的控制方法、装置、电子设备及存储介质
CN112433151B (zh) * 2019-08-26 2024-01-16 上海汽车集团股份有限公司 一种油泵电机故障诊断方法及装置
CN110529338B (zh) * 2019-09-10 2020-11-10 上海电气风电集团股份有限公司 基于偏航速度预判的偏航马达保护故障穿越方法及系统
CN110554317A (zh) * 2019-09-24 2019-12-10 格力电器(武汉)有限公司 一种电机堵转实验监测系统、监测方法及其监测装置
CN110729703A (zh) * 2019-12-19 2020-01-24 峰岹科技(深圳)有限公司 基于foc电机控制的堵转保护方法及电机控制装置
CN111276940A (zh) * 2020-03-25 2020-06-12 珠海格力电器股份有限公司 一种电机堵转保护检测方法、装置及设备
CN111458635B (zh) * 2020-03-31 2022-12-02 江铃汽车股份有限公司 玻璃升降堵转状态确定方法、装置、存储介质及电子设备
TWI726690B (zh) * 2020-04-20 2021-05-01 三陽工業股份有限公司 用於電動車輛之堵轉判斷與保護方法
CN111492784B (zh) * 2020-05-25 2021-08-06 浙江大学 一种复杂地形下智能割草机自适应多段式障碍物检测方法
CN111953267A (zh) * 2020-08-02 2020-11-17 珠海市一微半导体有限公司 一种电机的堵转判断方法及转速控制方法
CN111917352B (zh) * 2020-08-07 2024-01-30 北京经纬恒润科技股份有限公司 无位置传感器直流无刷电机的堵转处理方法及装置
CN112067991B (zh) * 2020-08-07 2023-06-16 深圳市兆威机电股份有限公司 一种电机堵转检测方法、检测装置、终端设备及存储介质
CN114688328B (zh) * 2020-12-25 2023-05-02 杭州九阳小家电有限公司 一种食品加工机及其转阀位置控制方法
CN113131832B (zh) * 2021-04-21 2023-01-31 天津小鲨鱼智能科技有限公司 电子设备、电机异常检测方法及装置
CN113285423A (zh) * 2021-06-09 2021-08-20 华电江苏能源有限公司句容发电分公司 一种电动机堵转保护的方法
CN113866547A (zh) * 2021-10-09 2021-12-31 四川鼎鸿智电装备科技有限公司 一种基点确认方法、装置、电动缸及存储介质
CN114137935B (zh) * 2021-11-24 2023-08-15 广州极飞科技股份有限公司 飞行器解锁控制方法、系统、装置、存储介质及飞行器
CN114583660B (zh) * 2021-12-07 2023-12-26 江苏金智科技股份有限公司 用于皮带机划伤故障保护的电动机继电保护装置及方法
CN114512961B (zh) * 2022-02-22 2023-11-10 北京控制工程研究所 一种适用于深空采样大功率直流电机极限工况自适应保护设计方法
CN117559878B (zh) * 2024-01-12 2024-03-29 深圳市好盈科技股份有限公司 一种航模电子调速器的电流控制方法、装置和电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106123941A (zh) * 2016-06-13 2016-11-16 零度智控(北京)智能科技有限公司 无人机旋翼检测方法与装置
CN206023654U (zh) * 2016-08-31 2017-03-15 深圳市大疆创新科技有限公司 控制系统,包含该控制系统的动力系统及无人飞行器
CN106553767A (zh) * 2016-11-02 2017-04-05 重庆零度智控智能科技有限公司 无人机打桨的判定方法、装置和无人机
CN106655978A (zh) * 2016-11-02 2017-05-10 深圳市道通智能航空技术有限公司 永磁同步电机过流保护方法、过流保护系统及无人飞行器
CN106814747A (zh) * 2015-12-01 2017-06-09 深圳市大疆创新科技有限公司 飞行器及其闪避控制系统、方法
CN107425771A (zh) * 2017-08-28 2017-12-01 浙江华飞智能科技有限公司 一种无人机中电机的控制方法及电子调速器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201877806U (zh) * 2010-10-22 2011-06-22 佛山市米托力特种电机有限公司 一种风扇电机转速异常自动停止装置及风扇
CN102856882A (zh) * 2012-06-04 2013-01-02 深圳博英特科技有限公司 一种电机堵转保护电路及其保护方法
CN202678939U (zh) * 2012-08-11 2013-01-16 广东顺德美智电子有限公司 一种直流风扇控制器的防堵转保护装置
CN103746626B (zh) * 2013-11-20 2017-02-08 广东威灵电机制造有限公司 电机控制的堵转检测方法、装置和电机驱动装置
CN112083712A (zh) * 2016-02-29 2020-12-15 深圳市大疆创新科技有限公司 油门控制信号处理方法、电子调速器、控制器及移动平台
CN207117163U (zh) * 2017-08-22 2018-03-16 浙江绍兴苏泊尔生活电器有限公司 料理机电机堵转保护装置及包括该装置的料理机
CN107733318B (zh) * 2017-09-06 2020-10-09 深圳市道通智能航空技术有限公司 一种电机发音方法、装置、电子调速器和无人飞行器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106814747A (zh) * 2015-12-01 2017-06-09 深圳市大疆创新科技有限公司 飞行器及其闪避控制系统、方法
CN106123941A (zh) * 2016-06-13 2016-11-16 零度智控(北京)智能科技有限公司 无人机旋翼检测方法与装置
CN206023654U (zh) * 2016-08-31 2017-03-15 深圳市大疆创新科技有限公司 控制系统,包含该控制系统的动力系统及无人飞行器
CN106553767A (zh) * 2016-11-02 2017-04-05 重庆零度智控智能科技有限公司 无人机打桨的判定方法、装置和无人机
CN106655978A (zh) * 2016-11-02 2017-05-10 深圳市道通智能航空技术有限公司 永磁同步电机过流保护方法、过流保护系统及无人飞行器
CN107425771A (zh) * 2017-08-28 2017-12-01 浙江华飞智能科技有限公司 一种无人机中电机的控制方法及电子调速器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114081815A (zh) * 2021-11-19 2022-02-25 未来穿戴技术股份有限公司 按摩仪电机的控制方法、装置、按摩仪和计算机存储介质
CN116158680A (zh) * 2021-11-24 2023-05-26 漳州松霖智能家居有限公司 一种皮肤清洁装置的控制方法及皮肤清洁装置
CN115459218A (zh) * 2022-09-20 2022-12-09 广东尚研电子科技股份有限公司 直流电机驱动装置及其堵转保护方法
CN116776074A (zh) * 2023-08-21 2023-09-19 威晟汽车科技(宁波)有限公司 一种电子水泵堵转识别方法及装置
CN116776074B (zh) * 2023-08-21 2024-01-02 威晟汽车科技(宁波)有限公司 一种电子水泵堵转识别方法及装置

Also Published As

Publication number Publication date
CN108711831A (zh) 2018-10-26
CN110829378B (zh) 2022-12-20
CN108711831B (zh) 2019-12-31
CN110829378A (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
WO2019233001A1 (zh) 电机过流堵转保护方法、装置、电子调速器和无人飞行器
WO2020168886A1 (zh) 过流保护方法、装置、系统和无人飞行器
WO2019242197A1 (zh) 折叠螺旋桨控制方法、装置和设备
US9506445B2 (en) Method and apparatus to evaluate a starter motor for an internal combustion engine
EP3266644B1 (en) Vehicle and control method therefor
CN109085508A (zh) 确定电池的充电状态的方法、装置、芯片、电池及飞行器
CN106564587B (zh) 舵机保护系统及方法、无人机
WO2019223211A1 (zh) 控制无人飞行器的电机加速的方法、装置和电子调速器
CN110254696B (zh) 无人机模式切换控制方法、装置,存储介质及电子设备
CN107425771B (zh) 一种无人机中电机的控制方法及电子调速器
CN110848068B (zh) 发动机起动控制方法、系统及车辆
WO2017113968A1 (zh) 增程式电动汽车的增程器停机控制方法及系统
WO2019192183A1 (zh) 确定电池状态的方法和装置、芯片、电池及飞行器
WO2024017149A1 (zh) 混动汽车的起机控制方法、装置、汽车及介质
WO2019233021A1 (zh) 电机控制方法、装置、电子调速器和无人飞行器
CN109995274A (zh) 一种电机及其启动方法、装置、存储介质和电器
CN115102463A (zh) 一种电机堵转检测方法及装置
WO2024139994A1 (zh) 电机位置传感器的容错控制方法、飞行汽车和存储介质
CN117445695A (zh) 一种车辆中电机的控制方法、装置及车辆
WO2020177594A1 (zh) 温度保护方法、装置和无人飞行器
CN109625293A (zh) 飞行控制方法、系统和无人飞行器
EP3364020B1 (en) Control method, master controller, system, and central controller for wind turbines
CN108923714B (zh) 验证方法、验证装置、驱动系统、同步电机和存储介质
CN107444195A (zh) 一种电动汽车二次急加速抖动控制方法
CN109291913B (zh) 一种混合动力汽车超速状态下的电压保护方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921563

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18921563

Country of ref document: EP

Kind code of ref document: A1