WO2017113968A1 - 增程式电动汽车的增程器停机控制方法及系统 - Google Patents

增程式电动汽车的增程器停机控制方法及系统 Download PDF

Info

Publication number
WO2017113968A1
WO2017113968A1 PCT/CN2016/103622 CN2016103622W WO2017113968A1 WO 2017113968 A1 WO2017113968 A1 WO 2017113968A1 CN 2016103622 W CN2016103622 W CN 2016103622W WO 2017113968 A1 WO2017113968 A1 WO 2017113968A1
Authority
WO
WIPO (PCT)
Prior art keywords
generator
engine
range extender
apu
threshold
Prior art date
Application number
PCT/CN2016/103622
Other languages
English (en)
French (fr)
Inventor
金硕
易迪华
王金龙
崔天祥
周金龙
Original Assignee
北京新能源汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201511020423.0A external-priority patent/CN105539421B/zh
Priority claimed from CN201521130206.2U external-priority patent/CN205365586U/zh
Application filed by 北京新能源汽车股份有限公司 filed Critical 北京新能源汽车股份有限公司
Publication of WO2017113968A1 publication Critical patent/WO2017113968A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles

Definitions

  • the present invention relates to the field of automobile technology, and in particular, to a method and system for controlling a range extender of an extended-range electric vehicle.
  • the shutdown of the genset can be divided into normal shutdown and failure shutdown.
  • the shutdown control function of the general genset is at the appropriate time, the GCU (Generator Control Unit) controls the shutdown and unloading of the genset, but this
  • the shutdown control is not point-to-point control, that is, there is no further shutdown control processing for specific working conditions, nor does it describe the specific unloading process and whether the engine group's own operating state determines whether it can not be stopped, especially the range extender. Downtime control.
  • the object of the present invention is to solve at least one of the above technical problems to some extent.
  • the first object of the present invention is to provide a range extender control method for an extended-range electric vehicle, which can improve the service life of the component system and improve the driving experience while ensuring the safety of the entire vehicle.
  • a second object of the present invention is to provide a range extender control system for an extended-range electric vehicle.
  • the first aspect of the present invention provides a range extender control method for an extended-range electric vehicle, which includes a vehicle control unit VCU (Vehicle Control Unit) and an engine control unit EMS.
  • VCU Vehicle Control Unit
  • EMS Engine Control Unit
  • APU Auxiliary Power Unit
  • the method includes the following steps: the APU acquires the current range of the range extender a condition that the APU determines whether a highest fault level of the VCU, the EMS, and the GCU is less than a fault level that the range extender is allowed to operate; and if the range is less than the range extender The fault level that can be allowed to operate, then the APU controls the range extender according to the current operating conditions of the range extender.
  • the APU determines whether the highest fault level among the faults fed back by the VCU, the EMS, and the GCU is less than the fault level that the range extender can allow, and is less than the range extender.
  • the APU controls the range extender according to the current working condition of the acquired range extender. This method considers the current operating state of the engine and the generator under the premise of ensuring the safety of the whole vehicle, and selects an appropriate one.
  • the shutdown control method and the shutdown timing improve the service life of the component system and improve the driving experience.
  • the range extender control method of the extended-range electric vehicle further includes: if not less than a fault level that the range extender can allow, and the range extender is not in shutdown In the operating condition, the APU removes the torque of the generator and controls the engine to stall.
  • the current operating condition of the range extender is a shutdown condition
  • the controlling, by the APU, the range extender according to the current working condition of the range extender specifically: the APU Receiving a start range extender request of the VCU; the APU determines whether a stop request or an emergency stop request is received; if a stop request or an emergency stop request is received, maintaining a stop state; if no stop request or emergency stop request is received And determining, by the APU, whether the current engine speed is less than a first threshold, and whether the current engine torque is less than a second threshold; if the current engine speed is greater than or equal to the first threshold, and/or the engine current torque is greater than or equal to the a second threshold, maintaining a stop state; if the current engine speed is less than the first threshold, and the engine current torque is less than the second threshold, the APU further determines whether the generator is in a standby state; If the machine is in a standby state, the APU determines whether the number of
  • the current operating condition of the range extender is a starting condition
  • the controlling, by the APU, the range extender according to the current operating condition of the range extender specifically: the APU Determining whether the stop state retention time of the range extender is greater than a fourth threshold; if less than or equal to the fourth threshold value, maintaining a shutdown state; if greater than the fourth threshold, the APU determining the generator Whether the direction of rotation is a forward direction; if the direction of rotation of the generator is not the forward direction, the APU removes the torque of the generator and controls the engine to stop; if the direction of rotation of the generator In the forward direction, the APU determines whether an outage request or an emergency stop request is received; if an outage request or an emergency stop request is received, the APU removes the torque of the generator and controls the engine to stall; If the stop request or emergency stop request is not received, the APU determines whether the start time of the range extender is less than a start time allowable threshold; if
  • the current operating condition of the range extender is an idle condition
  • the controlling, by the APU, the range extender according to the current working condition of the range extender specifically: the APU Determining whether the direction of rotation of the generator is a forward direction; if the direction of rotation of the generator is not the forward direction, the APU removes the torque of the generator and controls the engine to stop and stop; If the rotation direction of the generator is the forward rotation direction, the APU determines whether the VCU sends an emergency stop request; if the VCU sends the emergency stop request, the APU removes the torque of the generator and controls The engine is turned off; if the VCU does not send the emergency stop request, the APU determines whether the VCU sends a shutdown request; if the VCU does not send the shutdown request, the APU continues to control the The range extender operates at an idle condition; if the VCU sends the stop request, the APU determines whether the engine disable stop flag is valid; if the engine disable stop flag is invalid,
  • the second aspect of the present invention provides an extended range shutdown control system for an extended-range electric vehicle, including a vehicle control unit VCU, an engine control unit EMS, a generator control unit GCU, and a range extender control.
  • a unit APU, a generator, and an engine wherein the APU is configured to acquire a current operating condition of the range extender, and a highest fault level among the feedback faults of the VCU, the EMS, and the GCU is less than
  • the range extender can allow faults to run At the level, the range extender is controlled according to the current operating conditions of the range extender.
  • the APU is further configured to remove the torque of the generator when the fault level is not less than the allowable range of the range extender, and the range extender is not in the shutdown condition. And controlling the engine to stall and stop.
  • the current operating condition of the range extender is a starting condition
  • the APU maintains the stop state when determining that the stop state of the range extender is less than or equal to the fourth threshold.
  • determining that the rotation direction of the generator is greater than a fourth threshold determining whether the rotation direction of the generator is a forward rotation direction, and the rotation direction of the generator is not the forward rotation direction
  • the torque of the generator is removed and the engine is turned off, and when the direction of rotation of the generator is in the forward direction, it is determined whether a stop request or an emergency stop request is received, and an interrupt request or emergency is received.
  • the torque of the generator is removed and the engine is turned off, and when the stop request or the emergency stop request is not received, it is determined whether the start time of the range extender is less than the allowable threshold of the start time, and When the start time of the range extender is greater than or equal to the start time allowable threshold value, the torque of the generator is removed and the engine stalling is controlled, and Starting time when the start time is less than the admission threshold extender successful start, and controls the extender idling condition.
  • FIG. 3 is a flow chart of a method for controlling a range extender when a current operating condition of a range extender is a starting condition according to an embodiment of the present invention
  • FIG. 6 is a schematic structural view of a range extender control system of an extended-range electric vehicle according to an embodiment of the present invention.
  • the extended-range electric vehicle may include, but is not limited to, a vehicle control unit VCU, an engine control unit EMS, a generator control unit GCU, a ranger control unit APU, a generator, an engine, and the like.
  • the range extender control method of the extended-range electric vehicle may include:
  • the APU acquires the current working condition of the range extender.
  • the current working conditions of the range extender include, but are not limited to, a shutdown condition, a starting condition, an idle condition, and a power generation condition.
  • the APU determines whether the highest fault level of the feedback faults of the VCU, the EMS, and the GCU is less than a fault level that the range extender can allow.
  • the vehicle control unit VCU can perform information interaction and state feedback and control through a CAN network (Controller Area Network) and a range controller control unit APU, for example,
  • the VCU can integrate all faults except the fault information of the generator control unit GCU and the engine control unit EMS according to its own fault diagnosis module, send it to the APU, and obtain the range extender according to the current vehicle state and driver demand. The demand for stop and power generation is sent to the APU.
  • the range extender control unit APU can receive control commands from the VCU and, through its own logic judgment and processing, decomposes into control signals to the engine control unit EMS and the generator control unit GCU, and sends these control signals through the CAN network.
  • the generator control unit GCU can receive a control command of the APU, and the control command can include a status command, a rotational speed command, a torque command, and a maximum torque limit command, and the generator can receive an instruction of the generator control unit GCU to perform corresponding actions, and The current state of the generator body is fed back so that the generator control unit GCU can feed back the operating state of the current generator to the APU.
  • the engine control unit EMS may receive a control command of the APU, and the control command may include a status command, a rotational speed command, a torque command, and a start stop control command, and the engine receives an instruction of the engine control unit EMS to perform a corresponding action, and uses the sensor to determine the current state of the engine body. Feedback is made such that the engine control unit EMS feeds back the current operating state of the engine to the APU.
  • the APU can receive relevant information fed back by the VCU, EMS, and GCU, for example, the demand for the start and stop of the ranger fed back by the VCU, the power generation; the current engine operating state fed back by the EMS; the current generator of the GCU feedback Operating status, etc.
  • the APU can perform integration judgment based on the information fed back by the VCU, EMS, and GCU to determine whether the VCU, EMS, and GCU have fault information. When there is a fault, determine the fault level and determine the faults reported by the VCU, EMS, and GCU. The highest fault level in the middle is less than the fault level that the range extender can allow.
  • the APU determines that the highest fault level of the feedback faults of the VCU, the EMS, and the GCU is not less than the fault level that the range extender can allow, and the range extender is not at During shutdown conditions, the APU removes the generator's torque and controls the engine to stall. That is, when the highest fault level of the VCU, EMS, and GCU feedback faults is not less than the fault level that the range extender is allowed to operate, and the range extender is not in the shutdown condition, the APU immediately removes the generator torque. And an emergency stop action that commands the engine to stall.
  • the APU controls the range extender according to the current working condition of the range extender.
  • the APU can perform different control on the range extender according to the current working condition of the range extender. . That is to say, when the range extender is in different working conditions, the control of the range extender by the APU is also different.
  • the implementation process of the specific control can be referred to the description of the subsequent embodiments.
  • the APU determines whether the highest fault level among the faults fed back by the VCU, the EMS, and the GCU is less than the fault level that the range extender can allow, and is less than the range extender.
  • the APU controls the range extender according to the current working condition of the acquired range extender. This method considers the current operating state of the engine and the generator under the premise of ensuring the safety of the whole vehicle, and selects an appropriate one.
  • the shutdown control method and the shutdown timing improve the service life of the component system and improve the driving experience.
  • FIG. 2 is a flow chart of a method for controlling the range extender when the current working condition of the range extender is a shutdown condition according to an embodiment of the present invention. As shown in FIG. 2, the current working condition of the range extender is a shutdown condition.
  • the specific implementation process of the APU controlling the range extender according to the current working condition of the range extender may include the following steps:
  • the APU receives a start range extender request of the VCU.
  • the APU determines whether the current engine speed is less than A first threshold and whether the current engine torque is less than a second threshold.
  • the APU further determines whether the generator is in a standby state.
  • the signal feedback of the GCU can be received, and the standby state is determined according to the current state of the generator, and at the same time, the rotational speed of the generator is small and a certain threshold, and at the same time, the torque of the generator is small and a certain threshold.
  • the comprehensive judgment is that the generator is in the state of complete shutdown before the next judgment can be made, otherwise the shutdown condition is maintained.
  • the judgment logic is to ensure the complete initial steady state of the generator, and to avoid the generator not stopping and restarting again. The situation ensures the safe and stable starting of the generator.
  • the APU feeds back the range extender fault message to the VCU and keeps the engine and the generator in a stop state.
  • the APU feeds back the range extender fault to the VCU and maintains the engine and generator shutdown states, prohibiting the starter from being restarted again until the power is turned back on.
  • the APU controls the range extender according to the shutdown condition of the range extender. It realizes that the current working condition of the range extender is under the shutdown condition, ensuring that the engine and the generator are in a completely stopped state before proceeding to the next step to ensure the complete initial steady state of the engine and the generator, avoiding the occurrence of the engine and The situation that the generator has not stopped and restarted again ensures the safe and stable starting of the engine and generator.
  • FIG. 3 is a flow chart of a method for controlling the range extender when the current working condition of the range extender is a starting condition according to an embodiment of the present invention. As shown in FIG. 3, the current working condition of the range extender is a starting condition.
  • the specific implementation process of the APU controlling the range extender according to the current working condition of the range extender may include:
  • the APU determines whether the stop state retention time of the range extender is greater than a fourth threshold.
  • the APU determines whether the direction of rotation of the generator is a forward direction.
  • the APU can receive the generator rotation direction signal fed back by the GCU to determine whether the generator is in the forward direction. Therefore, the judgment of the forward direction of the generator can ensure that the engine cannot be reversed when the fuel is ignited, otherwise the engine will be damaged.
  • the APU removes the torque of the generator and controls the engine to stall.
  • the APU determines whether a stop request or an emergency stop request is received.
  • the APU determines whether the start time of the range extender is less than the start time allowable threshold.
  • the APU can determine whether the start time of the range extender is less than the start time allowable threshold. In an embodiment of the invention, when the APU receives a shutdown request, the APU will immediately remove the generator torque and the emergency shutdown action that commands the engine to stall.
  • the APU removes the torque of the generator and controls the engine to stall.
  • the start time is set.
  • the start time of the start is the start of the start of the generator, and the end of the time is the EMS feedback engine start success flag.
  • the start time of the range extender is less than the start time allowable threshold, The APU enters the range extender successfully and controls the range extender to perform the idle condition. Otherwise, the APU will immediately remove the generator torque and the emergency stop action that commands the engine to stop and stop.
  • the APU controls the range extender according to the starting condition of the range extender.
  • the current working condition of the range extender is the starting condition
  • the engine and the generator can be better ensured that the engine and the generator are completely in the standby state before starting, and the components are improved.
  • FIG. 4 is a flow chart of a method for controlling the range extender when the current working condition of the range extender is an idle condition according to an embodiment of the present invention. As shown in FIG. 4, the current working condition of the range extender is an idle condition.
  • the specific implementation process of the APU controlling the range extender according to the current working condition of the range extender may include:
  • the APU determines whether the rotation direction of the generator is a forward rotation direction.
  • the APU when the APU determines that the direction of rotation of the generator is not in the forward direction, the APU will immediately remove the generator torque and the emergency stop action that commands the engine to stop and stop.
  • the APU removes the torque of the generator and controls the engine to stall.
  • the APU determines whether the VCU sends an emergency stop request.
  • the APU removes the torque of the generator and controls the engine to stall.
  • the APU determines whether the VCU sends an outage request.
  • the APU can control the range extender to operate under the control policy of the current working condition.
  • the APU determines whether the engine disable stop flag is valid.
  • the APU when the APU receives the emergency stop request sent by the VCU, the APU can feed back the information of the EMS at any time.
  • the information includes the engine stop stop flag
  • the APU can start timing at the same time, and determine whether the engine disable stop flag is valid.
  • the APU determines that the engine prohibition stop flag is invalid, it indicates that the EMS detects that the current state of the engine is allowed to stop; when the APU determines that the engine prohibition stop flag is valid, it indicates that the EMS detects that the current state of the engine is not allowed to stop.
  • the APU may determine whether the timing time exceeds a certain threshold (ie, a fifth threshold), and if not, the APU continues to detect the engine prohibition stop flag until the engine prohibition stop flag is invalid. Or timeout and then stop the action
  • the APU removes the torque of the generator and controls the engine to stall.
  • FIG. 5 is a flow chart of a method for controlling the range extender when the current operating condition of the range extender is a power generating condition according to an embodiment of the present invention. As shown in FIG. 5, the current working condition of the range extender is a power generating condition.
  • the specific implementation process of the APU controlling the range extender according to the current working condition of the range extender may include:
  • the APU removes the torque of the generator and controls the engine to stall.
  • the APU determines whether the VCU sends an emergency shutdown request.
  • the APU removes the torque of the generator and controls the engine to stall.
  • the APU further determines whether the power generation request is greater than a seventh threshold and whether the VCU sends an outage request.
  • the APU when the VCU sends an emergency stop request, the APU will immediately remove the generator torque and the emergency stop action that commands the engine to stall.
  • the APU continues to control the range extender to operate in a power generating condition only if there is no shutdown request and the power generation request is greater than 0 kW (ie, the seventh threshold).
  • the APU when it is judged that the torque of the generator is greater than or equal to the eighth threshold, the APU can continuously perform the action of reducing the torque according to the gradient of the generator.
  • S5010 sends an idle command to the engine.
  • the APU can send an idle command to the engine to perform a speed drop of the engine and the generator, and ensure that the engine and the generator rotate from a high speed to a low speed operation state.
  • S5011 Determine whether the engine speed is less than a ninth threshold.
  • the APU controls the range extender according to the power generating condition of the range extender.
  • the control generator performs torque unloading according to the preset gradient to ensure that the torque is unloaded according to the preset gradient. While the engine and generator speed are stably controlled, the engine is smoothly unloaded and the engine is stopped and controlled. The engine speed is controlled below a certain threshold to ensure that the engine stop is safe and efficient at this time.
  • an embodiment of the present invention further provides a range extender control system for an extended-range electric vehicle, which is an embodiment of the present invention.
  • the extended range stop control system of the extended-range electric vehicle provided corresponds to the range extender control method of the extended-range electric vehicle provided by the above embodiments, and thus the range extender control method of the aforementioned extended-range electric vehicle
  • the embodiment is also applicable to the range extender control system of the extended-range electric vehicle provided in this embodiment, which will not be described in detail in this embodiment.
  • 6 is a schematic structural view of a range extender control system of an extended-range electric vehicle according to an embodiment of the present invention. As shown in FIG. 6, the system may include an extended-range electric vehicle including a vehicle control unit VCU 10, an engine control unit EMS 20, a generator control unit GCU 30, a ranger control unit APU 40, a generator 50, and an engine 60.
  • the range extender control unit APU 40 is configured to acquire the current operating condition of the range extender and the highest fault among the feedback faults of the vehicle control unit VCU 10, the engine control unit EMS 20 and the generator control unit GCU 30 When the level is less than the range at which the range extender can allow operation, the range extender is controlled according to the current operating conditions of the range extender.
  • the current operating condition of the range extender is a shutdown condition
  • the APU 40 receives the start range extender request of the VCU 10 and maintains a stop state upon receipt of the stop request or emergency stop request, and When the stop request or emergency stop request is not received, it is determined whether the current engine speed is less than a first threshold, and the current torque of the engine 60 is less than a second threshold, and the current engine speed is greater than or equal to a first threshold, and/or the engine 60 current twist
  • the shutdown state is maintained, and when the current speed of the engine 60 is less than the first threshold, and the current torque of the engine 60 is less than the second threshold, it is further determined whether the generator 50 is in the standby state, and is generating electricity.
  • the range extender When the machine 50 is in the standby state, and the number of engine failures of the engine 60 is less than the third threshold, the range extender is started, and when the number of engine failures is greater than or equal to the third threshold, the ranger fault message is fed back to the VCU 10, and The engine 60 and generator 50 are kept in a stopped state.
  • the current working condition of the range extender is under the shutdown condition, and the engine and the generator are completely stopped, so that the next step can be judged to ensure the complete initial steady state of the engine and the generator, and the avoidance is avoided.
  • the situation that the engine and the generator have not stopped and restarted again ensures the safe and stable starting of the engine and the generator.
  • the current working condition of the range extender is a starting condition
  • the APU 40 maintains the stop state when determining that the stop state of the range extender is less than or equal to the fourth threshold, and determines the range extender.
  • the stop state holding time is greater than the fourth threshold, it is judged whether the rotation direction of the generator 50 is the forward rotation direction, and when the rotation direction of the generator 50 is not the forward rotation direction, the torque of the generator 50 is removed and the engine 60 is controlled.
  • the flameout is stopped, and when the rotation direction of the generator 50 is the forward rotation direction, it is judged whether the stop request or the emergency stop request is received, and when the stop request or the emergency stop request is received, the torque of the generator 50 is removed and the engine is controlled.
  • the torque of the generator 50 controls the engine 60 to be turned off, and when the start time of the range extender is less than the allowable threshold of the start time, the APU 40 determines to increase Is successful start, and controls the extender idling condition.
  • the current operating condition of the range extender is that the idle condition APU 40 determines whether the direction of rotation of the generator 50 is a forward direction, and when not in the forward direction, the torque of the generator 50 is removed. And controlling the engine 60 to stop and stop, and when the direction of rotation of the generator 50 is in the forward direction, determining whether the VCU 10 sends an emergency stop request, and when the VCU 10 sends an emergency stop request, the torque of the generator 50 is removed and the engine 60 is turned off.
  • Stopping and when the VCU 10 does not send an emergency stop request, and judges that the VCU does not send a shutdown request, continues to control the range extender to operate in an idle condition, and sends the shutdown request at the VCU, and the
  • the APU removes the torque of the generator and controls the engine to stop the shutdown, or sends the shutdown request at the VCU, and the engine 60 prohibits the stop flag being valid, and the timing is greater than
  • the APU 40 removes the torque of the generator 50 and controls the engine 60 to stall.
  • control strategy operation for maintaining the current working condition under the current working condition of the range extender is an idle condition, and When it is detected that the engine prohibition stop flag is invalid or timeout, the APU immediately removes the generator torque and controls the engine to stop the engine. Considering the current operating state of the engine and the generator, selecting the appropriate shutdown timing, and improving the component system. The service life increases the driving experience.
  • the current operating condition of the range extender is that the power generation condition APU 40 determines whether the direction of rotation of the generator 50 is a forward direction, and whether the speed of the generator 50 is greater than a sixth threshold, and is in the generator The direction of rotation of 50 is not the forward direction, and/or, when the speed of the generator is less than or equal to the sixth threshold, the torque of the generator 50 is removed and the engine 60 is controlled to be turned off, and the direction of rotation of the generator 50 is the forward direction.
  • the rotational speed of the generator 50 is greater than the sixth threshold, it is determined whether the VCU 10 sends an emergency stop request, and when the VCU 10 sends an emergency stop request, the torque of the generator 50 is removed and the engine 60 is controlled to be turned off, and is not sent in the VCU 10.
  • the emergency stop request and the APU 40 power generation request are greater than the seventh threshold, and the VCU 10 does not send the shutdown request, the APU 40 continues to control the range extender to operate in the power generation condition.
  • the APU 40 controls the generator 50 to perform torque unloading according to a preset gradient, and the torque at the generator 50.
  • the standby command is sent to the generator 50, and the generator 50 is switched to the standby state, and the idle command is sent to the engine 60, and when the engine 60 is less than the ninth threshold, the engine 60 is switched to the idle speed. Downtime control.
  • the control generator performs the torque according to the preset gradient. Unloading, ensuring stable control of engine and generator speed, while the engine is smoothly unloading and controlling the engine during shutdown control, the engine speed is controlled below a certain threshold, ensuring the safest engine stop at this time. , efficient.
  • the APU determines whether the highest fault level in the faults fed back by the VCU, EMS, and GCU is less than the fault level that the range extender can allow, and is less than the range extender.
  • the APU controls the range extender according to the current working condition of the acquired range extender. This method considers the current operating state of the engine and the generator under the premise of ensuring the safety of the whole vehicle, and selects an appropriate one.
  • the shutdown control method and the shutdown timing improve the service life of the component system and improve the driving experience.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

一种增程式电动汽车的增程器停机控制方法及系统,增程式电动汽车包括整车控制单元VCU、发动机控制单元EMS、发电机控制单元GCU、增程器控制单元APU、发电机和发动机等,其中该方法包括以下步骤:APU获取增程器的当前工况;APU判断VCU、EMS和GCU的所反馈的故障中的最高故障级别是否小于增程器可允许运行的故障级别;以及如果小于增程器可允许运行的故障级别,则APU根据增程器的当前工况对增程器进行控制。该方法能够在保证整车安全的同时提高零部件系统的使用寿命,并提升驾驶体验。

Description

增程式电动汽车的增程器停机控制方法及系统
相关申请的交叉引用
本申请要求北京新能源汽车股份有限公司于2015年12月30日提交的、发明名称为“增程式电动汽车的增程器停机控制方法及系统”的、中国专利申请号“201511020423.0”、以及发明名称为“增程式电动汽车的增程器停机控制系统”的、中国专利申请号“201521130206.2”的优先权。
技术领域
本发明涉及汽车技术领域,尤其涉及一种增程式电动汽车的增程器停机控制方法及系统。
背景技术
发电机组的停机可分为正常停机和故障停机,一般的发电机组的停机控制功能是在适当的时间,GCU(Generator Control Unit,发电机控制单元)控制发电机组停机、卸载等过程,但这种停机控制不是点对点的控制,即没有针对具体的工况判断再进一步停机控制处理,也没有阐述具体的卸载过程以及针对发动机组的自身运行状态判定其是否存在不能停机的情况,特别是增程器的停机控制。
发明内容
本发明的目的旨在至少在一定程度上解决上述的技术问题之一。
为此,本发明的第一个目的在于提出一种增程式电动汽车的增程器停机控制方法,该方法能够在保证整车安全的同时提高了零部件系统的使用寿命和提升了驾驶体验。
本发明的第二个目的在于提出一种增程式电动汽车的增程器停机控制系统。
为达上述目的,本发明第一方面实施例提出了一种增程式电动汽车的增程器停机控制方法,所述增程式电动汽车包括整车控制单元VCU(Vehicle Control Unit)、发动机控制单元EMS(Engine Management System)、发电机控制单元GCU(Generator Control Unit)、增程器控制单元APU(Auxiliary Power Unit)、发电机和发动机,所述方法包括以下步骤:所述APU获取增程器的当前工况;所述APU判断所述VCU、所述EMS和所述GCU的所反馈的故障中的最高故障级别是否小于所述增程器可允许运行的故障级别;以及如果小于所述增程器可允许运行的故障级别,则所述APU根据所述增程器的当前工况对所述增程器进行控制。
根据本发明实施例的增程式电动汽车的增程器停机控制方法,APU判断VCU、EMS和GCU反馈的故障中的最高故障级别是否小于增程器可允许运行的故障级别,在小于增程器可允许运行的故障级别时,APU根据获取增程器的当前工况对增程器进行控制,该方法在保证整车安全的前提下,考虑了发动机及发电机当前的运行状态,选择合适的停机控制方法及停机时机,提高了零部件系统的使用寿命,提升了驾驶体验。
在本发明的一个实施例中,所述增程式电动汽车的增程器停机控制方法,还包括:如果不小于所述增程器可允许运行的故障级别,且所述增程器不处于停机工况,则所述APU卸掉发电机的扭矩并控制所述发动机熄火停机。
在本发明的一个实施例中,所述增程器的当前工况为停机工况,所述APU根据所述增程器的当前工况对所述增程器进行控制具体包括:所述APU接收所述VCU的启动增程器请求;所述APU判断是否接收到停机请求或紧急停机请求;如果接收到停机请求或紧急停机请求,则保持停机状态;如果未接收到停机请求或紧急停机请求,则所述APU判断发动机当前转速是否小于第一阈值,且发动机当前扭矩是否小于第二阈值;如果发动机当前转速大于或等于所述第一阈值,和/或,发动机当前扭矩大于或等于所述第二阈值,则保持停机状态;如果发动机当前转速小于所述第一阈值,且发动机当前扭矩小于所述第二阈值,则所述APU进一步判断所述发电机是否处于待机状态;如果所述发电机处于待机状态,则所述APU判断所述发动机起动失败次数是否小于第三阈值;如果所述发动机起动失败次数小于所述第三阈值,则所述APU控制所述增程器启动;以及如果所述发动机起动失败次数大于或等于所述第三阈值,则所述APU向所述VCU反馈增程器故障消息,并保持所述发动机和发电机处于停机状态。
在本发明的一个实施例中,所述增程器的当前工况为起动工况,所述APU根据所述增程器的当前工况对所述增程器进行控制具体包括:所述APU判断所述增程器的停机状态保持时间是否大于第四阈值;如果小于或等于所述第四阈值,则保持停机状态;如果大于所述第四阈值,则所述APU判断所述发电机的旋转方向是否为正转方向;如果所述发电机的旋转方向不为所述正转方向,则所述APU卸掉发电机的扭矩并控制所述发动机熄火停机;如果所述发电机的旋转方向为所述正转方向,则所述APU判断是否接收到停机请求或紧急停机请求;如果接收到停机请求或紧急停机请求,则所述APU卸掉发电机的扭矩并控制所述发动机熄火停机;如果未接收到停机请求或紧急停机请求,则所述APU判断所述增程器的起动时间是否小于起动时间允许阈值;如果所述增程器的起动时间大于或等于所述起动时间允许阈值,则所述APU卸掉发电机的扭矩并控制所述发动机熄火停机;如果增程器的起动时间小于所述起动时间允许阈值,则判断所述增程器起动成功,并控制所述增程器进行怠速工况。
在本发明的一个实施例中,所述增程器的当前工况为怠速工况,所述APU根据所述增程器的当前工况对所述增程器进行控制具体包括:所述APU判断所述发电机的旋转方向是否为正转方向;如果所述发电机的旋转方向不为所述正转方向,则所述APU卸掉发电机的扭矩并控制所述发动机熄火停机;如果所述发电机的旋转方向为所述正转方向,则所述APU判断所述VCU是否发送紧急停机请求;如果所述VCU发送所述紧急停机请求,则所述APU卸掉发电机的扭矩并控制所述发动机熄火停机;如果所述VCU未发送所述紧急停机请求,则所述APU判断所述VCU是否发送停机请求;如果所述VCU未发送所述停机请求,则所述APU继续控制所述增程器以怠速工况运行;如果所述VCU发送所述停机请求,则所述APU判断发动机禁止停机标志位是否有效;如果所述发动机禁止停机标志位无效,则所述APU卸掉发电机的扭矩并控制所述发动机熄火停机;如果所述发动机禁止停机标志位有效,则判断计时时间是否小于第五阈值;如果大于所述第五阈值,则所述APU卸掉发电机的扭矩并控制所述发动机熄火停机。
在本发明的一个实施例中,所述增程器的当前工况为发电工况,所述APU根据所述增程器的当前工况对所述增程器进行控制具体包括:所述APU判断所述发电机的旋转方向是否为正转方向,且所述发电机的转速是否大于第六阈值;如果所述发电机的旋转方向不为所述正转方向,和/或,所述发电机的转速小于或等于所述第六阈值,则所述APU卸掉发电机的扭矩并控制所述发动机熄火停机;如果所述发电机的旋转方向为正转方向,且所述发电机的转速大于所述第六阈值,则所述APU判断所述VCU是否发送紧急停机请求;如果所述VCU发送所述紧急停机请求,则所述APU卸掉发电机的扭矩并控制所述发动机熄火停机;如果所述VCU未发送所述紧急停机请求,则所述APU进一步判断发电功率请求是否大于第七阈值以及所述VCU是否发送停机请求;如果所述发电功率请求大于所述第七阈值且所述VCU未发送所述停机请求,则所述APU继续控制所述增程器以发电工况运行。
在本发明的一个实施例中,所述增程式电动汽车的增程器停机控制方法,还包括:如果所述发电功率请求小于或等于所述第七阈值,和/或,所述VCU发送所述停机请求,则控制所述发电机按照预设梯度进行扭矩卸载;判断所述发电机的扭矩是否小于第八阈值;如果小于所述第八阈值,则向所述发电机发送待机指令,并将所述发电机切换为待机状态;向所述发动机发送怠速指令;判断所述发动机的转速是否小于第九阈值;如果小于所述第九阈值,则将所述发动机切换至怠速工况下的停机控制。
为达上述目的,本发明第二方面实施例提出了一种增程式电动汽车的增程器停机控制系统,包括整车控制单元VCU、发动机控制单元EMS、发电机控制单元GCU、增程器控制单元APU、发电机和发动机,其中,所述APU,用于获取增程器的当前工况,并在所述VCU、所述EMS和所述GCU的所反馈的故障中的最高故障级别小于所述增程器可允许运行的故障 级别时,根据所述增程器的当前工况对所述增程器进行控制。
根据本发明实施例的增程式电动汽车的增程器停机控制系统,APU判断VCU、EMS和GCU反馈的故障中的最高故障级别是否小于增程器可允许运行的故障级别,在小于增程器可允许运行的故障级别时,APU根据获取增程器的当前工况对增程器进行控制,该方法在保证整车安全的前提下,考虑了发动机及发电机当前的运行状态,选择合适的停机控制方法及停机时机,提高了零部件系统的使用寿命,提升了驾驶体验。
在本发明的一个实施例中,所述APU,还用于在不小于所述增程器可允许运行的故障级别,且所述增程器不处于停机工况时,卸掉发电机的扭矩并控制所述发动机熄火停机。
在本发明的一个实施例中,所述增程器的当前工况为停机工况,所述APU接收所述VCU的启动增程器请求,并在接收到停机请求或紧急停机请求时保持停机状态,并在未接收到停机请求或紧急停机请求时,判断发动机当前转速是否小于第一阈值,且发动机当前扭矩是否小于第二阈值,并在发动机当前转速大于或等于所述第一阈值,和/或,发动机当前扭矩大于或等于所述第二阈值时,保持停机状态,并在发动机当前转速小于第一阈值,且发动机当前扭矩小于第二阈值时,进一步判断所述发电机是否处于待机状态,以及在所述发电机处于待机状态时,且所述发动机起动失败次数小于第三阈值时控制所述增程器启动,以及在所述发动机起动失败次数大于或等于所述第三阈值时,向所述VCU反馈增程器故障消息,并保持所述发动机和发电机处于停机状态。
在本发明的一个实施例中,所述增程器的当前工况为起动工况所述APU在判断所述增程器的停机状态保持时间小于或等于所述第四阈值时,保持停机状态,并在判断所述增程器的停机状态保持时间大于第四阈值时,判断所述发电机的旋转方向是否为正转方向,并在所述发电机的旋转方向不为所述正转方向时,卸掉发电机的扭矩并控制所述发动机熄火停机,并在所述发电机的旋转方向为正转方向时,判断是否接收到停机请求或紧急停机请求,并在接收到停机请求或紧急停机请求时,卸掉发电机的扭矩并控制所述发动机熄火停机,并在未接收到停机请求或紧急停机请求时,判断所述增程器的起动时间是否小于起动时间允许阈值,并在所述增程器的起动时间大于或等于所述起动时间允许阈值时,卸掉发电机的扭矩并控制所述发动机熄火停机,以及在所述增程器的起动时间小于起动时间允许阈值时所述增程器起动成功,并控制所述增程器进行怠速工况。
在本发明的一个实施例中,所述增程器的当前工况为怠速工况,所述APU判断所述发电机的旋转方向是否为正转方向,并在不为所述正转方向时,卸掉发电机的扭矩并控制所述发动机熄火停机,并在所述发电机的旋转方向为正转方向时,判断所述VCU是否发送紧急停机请求,并在所述VCU发送所述紧急停机请求时,卸掉发电机的扭矩并控制所述发动机熄火停机,并在所述VCU未发送紧急停机请求,且判断所述VCU未发送停机请求时,继 续控制所述增程器以怠速工况运行,并在所述VCU发送所述停机请求,且所述发动机禁止停机标志位无效时,所述APU卸掉发电机的扭矩并控制所述发动机熄火停机,或,在所述VCU发送所述停机请求,且发动机禁止停机标志位有效,以及计时时间大于第五阈值时,所述APU卸掉发电机的扭矩并控制所述发动机熄火停机。
在本发明的一个实施例中,所述增程器的当前工况为发电工况所述APU判断所述发电机的旋转方向是否为正转方向,且所述发电机的转速是否大于第六阈值,并在所述发电机的旋转方向不为所述正转方向,和/或,所述发电机的转速小于或等于所述第六阈值时,卸掉发电机的扭矩并控制所述发动机熄火停机,并在所述发电机的旋转方向为正转方向,且所述发电机的转速大于第六阈值时,判断所述VCU是否发送紧急停机请求,并在所述VCU发送所述紧急停机请求时,卸掉发电机的扭矩并控制所述发动机熄火停机,并在所述VCU未发送所述紧急停机请求,以及所述APU发电功率请求大于第七阈值,以及所述VCU未发送所述停机请求时,所述APU继续控制所述增程器以发电工况运行。
在本发明的一个实施例中,所述的增程式电动汽车的增程器停机控制系统,在所述发电功率请求小于或等于所述第七阈值,和/或,所述VCU发送所述停机请求时,所述APU控制所述发电机按照预设梯度进行扭矩卸载,并在所述发电机的扭矩小于第八阈值时向所述发电机发送待机指令,并将所述发电机切换为待机状态,以及向所述发动机发送怠速指令,并在所述发动机的转速小于第九阈值时,将所述发动机切换至怠速工况下的停机控制。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的时间了解到。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中,
图1为根据本发明一个实施例的增程式电动汽车的增程器停机控制方法的流程图;
图2为根据本发明一个实施例的增程器的当前工况为停机工况时、增程器停机控制方法的流程图;
图3为根据本发明一个实施例的增程器的当前工况为起动工况时、增程器停机控制方法的流程图;
图4为根据本发明一个实施例的增程器的当前工况为怠速工况时、增程器停机控制方法的流程图;
图5为根据本发明一个实施例的增程器的当前工况为发电工况时、增程器停机控制方法的流程图;
图6为根据本发明一个实施例的增程式电动汽车的增程器停机控制系统的结构示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参考附图描述本发明实施例的增程式电动汽车的增程器停机控制方法及系统。
图1为根据本发明一个实施例的增程式电动汽车的增程器停机控制方法的流程图。需要说明的是,本发明实施例的增程器停机控制方法可应用于增程式电动汽车。该增程式电动汽车可包括但不限于整车控制单元VCU、发动机控制单元EMS、发电机控制单元GCU、增程器控制单元APU、发电机和发动机等。
如图1所示,该增程式电动汽车的增程器停机控制方法可以包括:
S11,APU获取增程器的当前工况。其中,增程器的当前工况包括但不限于为停机工况、起动工况、怠速工况和发电工况等。
S12,APU判断VCU、EMS和GCU的所反馈的故障中的最高故障级别是否小于增程器可允许运行的故障级别。
需要说明的是,在本发明的实施例中,整车控制单元VCU可通过CAN网络(Controller Area Network,控制器局域网络)与增程器控制单元APU进行信息交互及状态反馈和控制,例如,VCU可根据自身的故障诊断模块将除了发电机控制单元GCU和发动机控制单元EMS的故障信息之外的所有故障进行整合,发给APU,并根据当前整车状态和驾驶员需求得到增程器起停、发电的需求发给APU。
增程器控制单元APU可接收来自VCU的控制指令,并经过自身逻辑判断和处理,分解为发给发动机控制单元EMS和发电机控制单元GCU的控制信号,并通过CAN网络将这些控制信号发出。
发电机控制单元GCU可接收APU的控制指令,该控制指令可包括状态指令、转速指令、扭矩指令和最大扭矩限制指令,发电机可接收发电机控制单元GCU的指令进行相应动作,并通过传感器将发电机本体当前状态进行反馈,从而发电机控制单元GCU可将当前发电机的运行状态反馈给APU。
发动机控制单元EMS可接收APU的控制指令,该控制指令可包括状态指令、转速指令、扭矩指令和起动停机控制命令,发动机接收发动机控制单元EMS的指令进行相应动作,并通过传感器将发动机本体当前状态进行反馈,从而发动机控制单元EMS将当前发动机的运行状态反馈给APU。
也就是说,APU可接收到VCU、EMS和GCU所反馈的相关信息,例如,VCU反馈的增程器起停、发电的需求;EMS反馈的当前发动机的运行状态;GCU反馈的当前发电机的运行状态等。APU可根据VCU、EMS和GCU所反馈的信息进行整合判断以确定VCU、EMS和GCU是否有故障信息,当有故障时,确定该故障的级别,并判断VCU、EMS和GCU的所反馈的故障中的最高故障级别是否小于增程器可允许运行的故障级别。
需要说明的是,在本发明的一个实施例中,如果APU判断VCU、EMS和GCU的所反馈的故障中的最高故障级别不小于增程器可允许运行的故障级别,且增程器不处于停机工况时,则APU卸掉发电机的扭矩并控制发动机熄火停机。也就是说,当VCU、EMS和GCU的所反馈的故障中的最高故障级别不小于增程器可允许运行的故障级别,且增程器不处于停机工况时,APU立刻卸掉发电机扭矩和命令发动机熄火停机的紧急停机动作。
S13,如果小于增程器可允许运行的故障级别,则APU根据增程器的当前工况对增程器进行控制。
具体地,当VCU、EMS和GCU的所反馈的故障中的最高故障级别小于增程器可允许运行的故障级别时,APU可根据增程器的当前工况对增程器进行相应的不同控制。也就是说,增程器处于不同的工况时,APU对增程器的控制也会不同,具体控制的实现过程可参照后续实施例的描述。
根据本发明实施例的增程式电动汽车的增程器停机控制方法,APU判断VCU、EMS和GCU反馈的故障中的最高故障级别是否小于增程器可允许运行的故障级别,在小于增程器可允许运行的故障级别时,APU根据获取增程器的当前工况对增程器进行控制,该方法在保证整车安全的前提下,考虑了发动机及发电机当前的运行状态,选择合适的停机控制方法及停机时机,提高了零部件系统的使用寿命,提升了驾驶体验。
为了使得本领域技术人员能够更加清楚地了解本发明增程器停机控制方法的具体实现过程,下面结合图2至图5将针对增程器的不同工况分别进行描述。
图2为根据本发明一个实施例的增程器的当前工况为停机工况时、增程器停机控制方法的流程图,如图2所示,增程器的当前工况为停机工况,APU根据增程器的当前工况对增程器进行控制的具体实现过程可包括如下步骤:
S201,APU接收VCU的启动增程器请求。
S202,APU判断是否接收到停机请求或紧急停机请求。
可以理解,在接收到VCU启动增程器请求的同时,检测VCU是否有停机请求和紧急停机请求,这样,可以防止VCU的命令误发,确保在没有任何停机请求的情况下有起动请求。
S203,如果接收到停机请求或紧急停机请求,则保持停机状态。
S204,如果未接收到停机请求或紧急停机请求,则APU判断发动机当前转速是否小于 第一阈值,且发动机当前扭矩是否小于第二阈值。
S205,如果发动机当前转速大于或等于第一阈值,和/或,发动机当前扭矩大于或等于第二阈值,则保持停机状态。
S206,如果发动机当前转速小于第一阈值,且发动机当前扭矩小于第二阈值,则APU进一步判断发电机是否处于待机状态。
可以理解,通过接收EMS的信号反馈,并根据发动机的当前状态为待机状态,且同时发动机的转速小于一定阈值(如第一阈值),且同时发动机的扭矩小于一定阈值(如第二阈值),综合可以判断发动机处于完全停机状态下,才可以进行下一步判断,否则保持停机工况,此判断逻辑是保证发动机的完全初始稳定状态,避免出现发动机还未停稳又再次起动的情况,保证发动机的安全稳定起动。
当判断发动机处于完全停机状态下时,可通过接收GCU的信号反馈,并根据发电机的当前状态为待机状态,且同时发电机的转速小与一定阈值,且同时发电机的扭矩小与一定阈值,综合判断为发电机处于完全停机状态下,方可进行下一步判断,否则保持停机工况,此判断逻辑是保证发电机的完全初始稳定状态,避免出现发电机还未停稳又再次起动的情况,保证发电机的安全稳定起动。
S207,如果发电机处于待机状态,则APU判断发动机起动失败次数是否小于第三阈值。
S208,如果发动机起动失败次数小于第三阈值,则APU控制增程器启动。
S209,如果发动机起动失败次数大于或等于第三阈值,则APU向VCU反馈增程器故障消息,并保持发动机和发电机处于停机状态。
也就是说,在发动机起动失败次数大于或等于第三阈值时,APU向VCU反馈增程器起动故障并保持发动机和发电机停机状态,禁止再次进行增程器起动,直至重新上电。
综上所述的方法,当增程器的当前工况为停机工况时,APU根据增程器的停机工况对增程器进行控制。实现了在增程器的当前工况为停机工况下,确保发动机和发电机处于完全停机状态下,方可进行下一步判断,保证发动机和发电机的完全初始稳定状态,避免了出现发动机和发电机还未停稳又再次起动的情况,保证了发动机和发电机的安全稳定起动。
图3为根据本发明一个实施例的增程器的当前工况为起动工况时、增程器停机控制方法的流程图,如图3所示,增程器的当前工况为起动工况,APU根据增程器的当前工况对增程器进行控制的具体实现过程可包括:
S301,APU判断增程器的停机状态保持时间是否大于第四阈值。
其中,进行停机状态保持时间是否大于第四阈值的判断是为了更好地保证发动机和发电机在起动前完全处于待机状态,提高了部件的使用寿命。
S302,如果小于或等于第四阈值,则保持停机状态。
S303,如果大于第四阈值,则APU判断发电机的旋转方向是否为正转方向。
具体地,APU可接收GCU反馈的发电机旋转方向信号,以判断发电机是否为正转方向。由此,通过发电机的正转方向的判断可以保证发动机在喷油点火时不能反转运行,否则会损坏发动机。
S304,如果发电机的旋转方向不为正转方向,则APU卸掉发电机的扭矩并控制发动机熄火停机。
S305,如果发电机的旋转方向为正转方向,则APU判断是否接收到停机请求或紧急停机请求。
S306,如果接收到停机请求或紧急停机请求,则APU卸掉发电机的扭矩并控制发动机熄火停机。
S307,如果未接收到停机请求或紧急停机请求,则所APU判断增程器的起动时间是否小于起动时间允许阈值。
具体地,当APU没有接收到任何停机请求时,APU可判断增程器的起动时间是否小于起动时间允许阈值。在本发明的实施例中,当APU接收到停机请求时,APU将立刻卸掉发电机扭矩和命令发动机熄火停机的紧急停机动作。
S308,如果增程器的起动时间大于或等于起动时间允许阈值,则APU卸掉发电机的扭矩并控制发动机熄火停机。
S309,如果增程器的起动时间小于起动时间允许阈值,则判断增程器起动成功,并控制增程器进行怠速工况。
在增程器起动过程中,设置起动时间计时,计时开始时刻为发电机开始拖动开始,计时结束时刻为EMS反馈发动机起动成功标志位,当增程器的起动时间小于起动时间允许阈值时,APU进入增程器起动成功,并控制增程器进行怠速工况,否则APU将立刻卸掉发电机扭矩和命令发动机熄火停机的紧急停机动作。
综上所述的方法,当增程器的当前工况为起动工况时,APU根据增程器的起动工况对增程器进行控制。实现了在增程器的当前工况为起动工况下,通过确保增程器的停机状态保持时间大于一定阈值,可以更好地保证发动机和发电机在起动前完全处于待机状态,提高了部件的使用寿命,并且,通过确保发电机的旋转方向为正转方向,保证了发动机在喷油点火时不能反转运行,否则会损坏发动机。
图4为根据本发明一个实施例的增程器的当前工况为怠速工况时、增程器停机控制方法的流程图,如图4所示,增程器的当前工况为怠速工况,APU根据增程器的当前工况对增程器进行控制的具体实现过程可包括:
S401,APU判断发电机的旋转方向是否为正转方向。
需要说明的是,在本发明的实施例中,APU判断发电机的旋转方向不为正转方向时,APU将立刻卸掉发电机扭矩和命令发动机熄火停机的紧急停机动作。
S402,如果发电机的旋转方向不为正转方向,则APU卸掉发电机的扭矩并控制发动机熄火停机。
S403,如果发电机的旋转方向为正转方向,则APU判断VCU是否发送紧急停机请求。
S404,如果VCU发送紧急停机请求,则APU卸掉发电机的扭矩并控制发动机熄火停机。
S405,如果VCU未发送紧急停机请求,则APU判断VCU是否发送停机请求。
S406,如果所述VCU未发送所述停机请求,则APU继续控制增程器以怠速工况运行。
也就是说,当APU判断VCU未发送紧急停机请求时,APU可控制增程器以当前工况的控制策略运行。
S407,如果VCU未发送紧急停机请求,则APU判断发动机禁止停机标志位是否有效。
具体地,当APU接收到VCU发送的紧急停机请求时,APU可随时EMS反馈的信息,当该信息包含发动机禁止停机标志位时,APU可同时开始进行计时,并判断发动机禁止停机标志位是否有效。可以理解,APU在判断发动机禁止停机标志位无效时,说明EMS检测到发动机当前状态允许进行停机;APU在判断发动机禁止停机标志位有效时,说明EMS检测到发动机当前状态不允许进行停机。
S408,如果发动机禁止停机标志位无效,则APU卸掉发电机的扭矩并控制发动机熄火停机。
S409,如果发动机禁止停机标志位有效,则判断计时时间是否小于第五阈值。
具体地,当APU判断发动机禁止停机标志位有效时,可判断计时时间是否超过一定阈值(即第五阈值),如果没有超过,则APU继续检测发动机禁止停机标志位,直到发动机禁止停机标志位无效或超时再进行停机动作
S410,如果大于第五阈值,则APU卸掉发电机的扭矩并控制发动机熄火停机。
综上所述的方法,当增程器的当前工况为怠速工况时,APU根据增程器的怠速工况对增程器进行控制。实现了在增程器的当前工况为怠速工况下,保持当前工况的控制策略运行,并在检测到发动机禁止停机标志位无效或超时时,APU立刻卸掉发电机的扭矩并控制发动机熄火停机,考虑了发动机及发电机当前的运行状态,选择合适的停机时机,提高了零部件系统的使用寿命,提升了驾驶体验。
图5为根据本发明一个实施例的增程器的当前工况为发电工况时、增程器停机控制方法的流程图,如图5所示,增程器的当前工况为发电工况,APU根据增程器的当前工况对增程器进行控制的具体实现过程可包括:
S501,APU判断发电机的旋转方向是否为正转方向,且发电机的转速是否大于第六阈值。
S502,如果发电机的旋转方向不为正转方向,和/或,发电机的转速小于或等于第六阈值,则APU卸掉发电机的扭矩并控制发动机熄火停机。
在本发明的实施例中,当发电机不为正转运行,或发电机的转速不大于第六阈值时,APU将立刻卸掉发电机扭矩和命令发动机熄火停机的紧急停机动作。可以理解,通过发电机转速的判断是为了保证发电机在有反转趋势前还有扭矩命令时能够及时停机,保证发动机在喷油点火时不能反转运行,否则会损坏发动机。
S503,如果发电机的旋转方向为正转方向,且发电机的转速大于第六阈值,则APU判断VCU是否发送紧急停机请求。
具体地,接收GCU反馈的发电机旋转方向信号和发电机当前转速信号,进行发电机正转方向判断和发电机转速阈值判断,当发电机为正转运行且同时发电机当前转速大于一定阈值时,APU判断VCU是否发送紧急停机请求。
S504,如果VCU发送紧急停机请求,则APU卸掉发电机的扭矩并控制发动机熄火停机。
S505,如果VCU未发送紧急停机请求,则APU进一步判断发电功率请求是否大于第七阈值以及VCU是否发送停机请求。
需要说明的是,在本发明的实施例中,当VCU发送紧急停机请求时,APU将立刻卸掉发电机扭矩和命令发动机熄火停机的紧急停机动作。
S506,如果发电功率请求大于第七阈值且VCU未发送停机请求,则APU继续控制增程器以发电工况运行。
举例而言,只有没有停机请求且发电功率请求大于0kW(即第七阈值)时,APU继续控制增程器以发电工况运行。
S507,如果发电功率请求小于或等于第七阈值,和/或,VCU发送停机请求,则控制发电机按照预设梯度进行扭矩卸载。
当APU判断发电功率请求小于或等于第七阈值时,说明这个时刻已经要求增程器停机,但是由于发电机还有扭矩控制,此时先让发电机按照一定梯度进行扭矩卸载控制。可以理解,梯度设置是为了保证发动机及发电机转速稳定控制的同时,为发动机平稳的卸掉负载。
S508,判断发电机的扭矩是否小于第八阈值。
需要说明的是,在本发明的实施例中,当判断发电机的扭矩大于或等于第八阈值时,APU可持续进行发电机的按照梯度降扭矩的动作。
S509,如果小于第八阈值,则向发电机发送待机指令,并将发电机切换为待机状态。
当判断当前发电机的扭矩小于一定阈值时,可以认为发电机的扭矩已经平稳卸掉,即发动机已无负载,此时可向发电机发送待机指令,并将发电机切换为待机状态。由此,可确保发电机已经完全待机。
S5010,向发动机发送怠速指令。
具体地,APU可向发动机发送怠速命令,进行发动机、发电机的转速降,保证了发动机和发电机的转速由高转速进入低转速运行状态。
S5011,判断发动机的转速是否小于第九阈值。
S5012,如果小于第九阈值,则将发动机切换至怠速工况下的停机控制。
具体地,当判断发动机的转速小于第九阈值时,可将发动机切换至怠速工况下的停机控制,控制逻辑与怠速状态下相同,并立刻卸掉发电机扭矩,以及命令发动机熄火停机。
由此,通过将发动机的转速控制在第九阈值以下,可以确保此时进行发动机停机最为安全,高效。
综上所述的方法,当增程器的当前工况为发电工况时,APU根据增程器的发电工况对增程器进行控制。实现了在增程器的当前工况为发电工况下,在VCU未发送紧急停机请求,且APU判断发电功率请求小于或等于第七阈值时,控制发电机按照预设梯度进行扭矩卸载,保证发动机及发电机转速稳定控制的同时,为发动机平稳的卸掉负载,并对发动机进行停机控制的过程中,将发动机的转速控制在一定阈值以下,确保了此时进行发动机停机最为安全,高效。
与上述几种实施例提供的增程式电动汽车的增程器停机控制方法相对应,本发明的一种实施例还提供一种增程式电动汽车的增程器停机控制系统,由于本发明实施例提供的增程式电动汽车的增程器停机控制系统与上述几种实施例提供的增程式电动汽车的增程器停机控制方法相对应,因此在前述增程式电动汽车的增程器停机控制方法的实施方式也适用于本实施例提供的增程式电动汽车的增程器停机控制系统,在本实施例中不再详细描述。图6为根据本发明一个实施例的增程式电动汽车的增程器停机控制系统的结构示意图。如图6所示,该系统可以包括增程式电动汽车包括整车控制单元VCU 10、发动机控制单元EMS20、发电机控制单元GCU 30、增程器控制单元APU 40、发电机50和发动机60。
其中,增程器控制单元APU 40用于获取增程器的当前工况,并在整车控制单元VCU 10、发动机控制单元EMS 20和发电机控制单元GCU 30的所反馈的故障中的最高故障级别小于增程器可允许运行的故障级别时,根据增程器的当前工况对增程器进行控制。
可选地,在本发明的一个实施例中,APU 40还用于在不小于增程器可允许运行的故障级别,且增程器不处于停机工况时,卸掉发电机50的扭矩并控制发动机60熄火停机。
在本发明的一个实施例中,增程器的当前工况为停机工况,APU 40接收VCU 10的启动增程器请求,并在接收到停机请求或紧急停机请求时保持停机状态,并在未接收到停机请求或紧急停机请求时判断发动机60当前转速是否小于第一阈值,且发动机60当前扭矩是否小于第二阈值,并在发动机60当前转速大于或等于第一阈值,和/或,发动机60当前扭 矩大于或等于第二阈值时,保持停机状态,并在,且发动机60当前转速小于第一阈值,且发动机60当前扭矩小于第二阈值时,进一步判断发电机50是否处于待机状态,以及在发电机50处于待机状态时,且发动机60起动失败次数小于第三阈值时控制增程器启动,以及在发动机60起动失败次数大于或等于第三阈值时,向VCU 10反馈增程器故障消息,并保持发动机60和发电机50处于停机状态。
由此,实现了在增程器的当前工况为停机工况下,确保发动机和发电机处于完全停机状态下,方可进行下一步判断,保证发动机和发电机的完全初始稳定状态,避免了出现发动机和发电机还未停稳又再次起动的情况,保证了发动机和发电机的安全稳定起动。
在本发明的一个实施例中,增程器的当前工况为起动工况,APU40在判断增程器的停机状态保持时间小于或等于第四阈值时,保持停机状态,并在判断增程器的停机状态保持时间大于第四阈值时,判断发电机50的旋转方向是否为正转方向,并在发电机50的旋转方向不为正转方向时,卸掉发电机50的扭矩并控制发动机60熄火停机,并在发电机50的旋转方向为正转方向时,判断是否接收到停机请求或紧急停机请求,并在接收到停机请求或紧急停机请求时,卸掉发电机50的扭矩并控制发动机60熄火停机,并在未接收到停机请求或紧急停机请求时,判断增程器的起动时间是否小于起动时间允许阈值,并在增程器的起动时间大于或等于起动时间允许阈值时,卸掉发电机50的扭矩并控制发动机60熄火停机,以及在增程器的起动时间小于起动时间允许阈值时,APU 40判断增程器起动成功,并控制增程器进行怠速工况。
由此,实现了在增程器的当前工况为起动工况下,通过确保增程器的停机状态保持时间大于一定阈值,可以更好地保证发动机和发电机在起动前完全处于待机状态,提高了部件的使用寿命,并且,通过确保发电机的旋转方向为正转方向,保证了发动机在喷油点火时不能反转运行,否则会损坏发动机。
在本发明的一个实施例中,增程器的当前工况为怠速工况APU40判断发电机50的旋转方向是否为正转方向,并在不为正转方向时,卸掉发电机50的扭矩并控制发动机60熄火停机,并在发电机50的旋转方向为正转方向时,判断VCU10是否发送紧急停机请求,并在VCU10发送紧急停机请求时,卸掉发电机50的扭矩并控制发动机60熄火停机,并在VCU 10未发送紧急停机请求,且判断所述VCU未发送停机请求时,继续控制所述增程器以怠速工况运行,并在所述VCU发送所述停机请求,且所述发动机禁止停机标志位无效时,所述APU卸掉发电机的扭矩并控制所述发动机熄火停机,或,在所述VCU发送所述停机请求,且发动机60禁止停机标志位有效,以及计时时间大于第五阈值时,APU 40卸掉发电机50的扭矩并控制发动机60熄火停机。
由此,实现了在增程器的当前工况为怠速工况下,保持当前工况的控制策略运行,并 在检测到发动机禁止停机标志位无效或超时时,APU立刻卸掉发电机的扭矩并控制发动机熄火停机,考虑了发动机及发电机当前的运行状态,选择合适的停机时机,提高了零部件系统的使用寿命,提升了驾驶体验。
在本发明的一个实施例中,增程器的当前工况为发电工况APU40判断发电机50的旋转方向是否为正转方向,且发电机50的转速是否大于第六阈值,并在发电机50的旋转方向不为正转方向,和/或,发电机的转速小于或等于第六阈值时,卸掉发电机50的扭矩并控制发动机60熄火停机,并发电机50的旋转方向为正转方向,且发电机50的转速大于第六阈值时,判断VCU10是否发送紧急停机请求,并在VCU10发送紧急停机请求时,卸掉发电机50的扭矩并控制发动机60熄火停机,并在VCU 10未发送紧急停机请求且APU 40发电功率请求大于第七阈值,以及VCU10未发送所述停机请求时,APU 40继续控制增程器以发电工况运行。
在本发明的实施例中,在发电功率请求小于或等于第七阈值,和/或,VCU10发送停机请求时,APU 40控制发电机50按照预设梯度进行扭矩卸载,并在发电机50的扭矩小于第八阈值时向发电机50发送待机指令,并将发电机50切换为待机状态,以及向发动机60发送怠速指令,并在发动机60的转速小于第九阈值时,将发动机60切换至怠速工况下的停机控制。
由此,实现了在增程器的当前工况为发电工况下,在VCU未发送紧急停机请求,且APU判断发电功率请求小于或等于第七阈值时,控制发电机按照预设梯度进行扭矩卸载,保证发动机及发电机转速稳定控制的同时,为发动机平稳的卸掉负载,并对发动机进行停机控制的过程中,将发动机的转速控制在一定阈值以下,确保了此时进行发动机停机最为安全,高效。
根据本发明实施例的增程式电动汽车的增程器停机控制系统,APU判断VCU、EMS和GCU反馈的故障中的最高故障级别是否小于增程器可允许运行的故障级别,在小于增程器可允许运行的故障级别时,APU根据获取增程器的当前工况对增程器进行控制,该方法在保证整车安全的前提下,考虑了发动机及发电机当前的运行状态,选择合适的停机控制方法及停机时机,提高了零部件系统的使用寿命,提升了驾驶体验。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必 须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (14)

  1. 一种增程式电动汽车的增程器停机控制方法,其特征在于,所述增程式电动汽车包括整车控制单元VCU、发动机控制单元EMS、发电机控制单元GCU、增程器控制单元APU、发电机和发动机,所述方法包括以下步骤:
    所述APU获取增程器的当前工况;
    所述APU判断所述VCU、所述EMS和所述GCU的所反馈的故障中的最高故障级别是否小于所述增程器可允许运行的故障级别;以及
    如果小于所述增程器可允许运行的故障级别,则所述APU根据所述增程器的当前工况对所述增程器进行控制。
  2. 如权利要求1所述的增程式电动汽车的增程器停机控制方法,其特征在于,还包括:
    如果不小于所述增程器可允许运行的故障级别,且所述增程器不处于停机工况,则所述APU卸掉发电机的扭矩并控制所述发动机熄火停机。
  3. 如权利要求1所述的增程式电动汽车的增程器停机控制方法,其特征在于,所述增程器的当前工况为停机工况,所述APU根据所述增程器的当前工况对所述增程器进行控制具体包括:
    所述APU接收所述VCU的启动增程器请求;
    所述APU判断是否接收到停机请求或紧急停机请求;
    如果接收到停机请求或紧急停机请求,则保持停机状态;
    如果未接收到停机请求或紧急停机请求,则所述APU判断发动机当前转速是否小于第一阈值,且发动机当前扭矩是否小于第二阈值;
    如果发动机当前转速大于或等于所述第一阈值,和/或,发动机当前扭矩大于或等于所述第二阈值,则保持停机状态;
    如果发动机当前转速小于所述第一阈值,且发动机当前扭矩小于所述第二阈值,则所述APU进一步判断所述发电机是否处于待机状态;
    如果所述发电机处于待机状态,则所述APU判断所述发动机起动失败次数是否小于第三阈值;
    如果所述发动机起动失败次数小于所述第三阈值,则所述APU控制所述增程器启动;以及
    如果所述发动机起动失败次数大于或等于所述第三阈值,则所述APU向所述VCU反馈增程器故障消息,并保持所述发动机和发电机处于停机状态。
  4. 如权利要求1所述的增程式电动汽车的增程器停机控制方法,其特征在于,所述增 程器的当前工况为起动工况,所述APU根据所述增程器的当前工况对所述增程器进行控制具体包括:
    所述APU判断所述增程器的停机状态保持时间是否大于第四阈值;
    如果小于或等于所述第四阈值,则保持停机状态;
    如果大于所述第四阈值,则所述APU判断所述发电机的旋转方向是否为正转方向;
    如果所述发电机的旋转方向不为所述正转方向,则所述APU卸掉发电机的扭矩并控制所述发动机熄火停机;
    如果所述发电机的旋转方向为所述正转方向,则所述APU判断是否接收到停机请求或紧急停机请求;
    如果接收到停机请求或紧急停机请求,则所述APU卸掉发电机的扭矩并控制所述发动机熄火停机;
    如果未接收到停机请求或紧急停机请求,则所述APU判断所述增程器的起动时间是否小于起动时间允许阈值;
    如果所述增程器的起动时间大于或等于所述起动时间允许阈值,则所述APU卸掉发电机的扭矩并控制所述发动机熄火停机;
    如果增程器的起动时间小于所述起动时间允许阈值,则判断所述增程器起动成功,并控制所述增程器进行怠速工况。
  5. 如权利要求1所述的增程式电动汽车的增程器停机控制方法,其特征在于,所述增程器的当前工况为怠速工况,所述APU根据所述增程器的当前工况对所述增程器进行控制具体包括:
    所述APU判断所述发电机的旋转方向是否为正转方向;
    如果所述发电机的旋转方向不为所述正转方向,则所述APU卸掉发电机的扭矩并控制所述发动机熄火停机;
    如果所述发电机的旋转方向为所述正转方向,则所述APU判断所述VCU是否发送紧急停机请求;
    如果所述VCU发送所述紧急停机请求,则所述APU卸掉发电机的扭矩并控制所述发动机熄火停机;
    如果所述VCU未发送所述紧急停机请求,则所述APU判断所述VCU是否发送停机请求;
    如果所述VCU未发送所述停机请求,则所述APU继续控制所述增程器以怠速工况运行;
    如果所述VCU发送所述停机请求,则所述APU判断发动机禁止停机标志位是否有效;
    如果所述发动机禁止停机标志位无效,则所述APU卸掉发电机的扭矩并控制所述发动机熄火停机;
    如果所述发动机禁止停机标志位有效,则判断计时时间是否小于第五阈值;
    如果大于所述第五阈值,则所述APU卸掉发电机的扭矩并控制所述发动机熄火停机。
  6. 如权利要求1所述的增程式电动汽车的增程器停机控制方法,其特征在于,所述增程器的当前工况为发电工况,所述APU根据所述增程器的当前工况对所述增程器进行控制具体包括:
    所述APU判断所述发电机的旋转方向是否为正转方向,且所述发电机的转速是否大于第六阈值;
    如果所述发电机的旋转方向不为所述正转方向,和/或,所述发电机的转速小于或等于所述第六阈值,则所述APU卸掉发电机的扭矩并控制所述发动机熄火停机;
    如果所述发电机的旋转方向为正转方向,且所述发电机的转速大于所述第六阈值,则所述APU判断所述VCU是否发送紧急停机请求;
    如果所述VCU发送所述紧急停机请求,则所述APU卸掉发电机的扭矩并控制所述发动机熄火停机;
    如果所述VCU未发送所述紧急停机请求,则所述APU进一步判断发电功率请求是否大于第七阈值以及所述VCU是否发送停机请求;
    如果所述发电功率请求大于所述第七阈值且所述VCU未发送所述停机请求,则所述APU继续控制所述增程器以发电工况运行。
  7. 如权利要求6所述的增程式电动汽车的增程器停机控制方法,其特征在于,还包括:
    如果所述发电功率请求小于或等于所述第七阈值,和/或,所述VCU发送所述停机请求,则控制所述发电机按照预设梯度进行扭矩卸载;
    判断所述发电机的扭矩是否小于第八阈值;
    如果小于所述第八阈值,则向所述发电机发送待机指令,并将所述发电机切换为待机状态;
    向所述发动机发送怠速指令;
    判断所述发动机的转速是否小于第九阈值;
    如果小于所述第九阈值,则将所述发动机切换至怠速工况下的停机控制。
  8. 一种增程式电动汽车的增程器停机控制系统,其特征在于,包括整车控制单元VCU、发动机控制单元EMS、发电机控制单元GCU、增程器控制单元APU、发电机和发动机,其中,
    所述APU,用于获取增程器的当前工况,并在所述VCU、所述EMS和所述GCU的所反馈的故障中的最高故障级别小于所述增程器可允许运行的故障级别时,根据所述增程器的当前工况对所述增程器进行控制。
  9. 如权利要求8所述的增程式电动汽车的增程器停机控制系统,其特征在于,所述 APU,还用于在不小于所述增程器可允许运行的故障级别,且所述增程器不处于停机工况时,卸掉发电机的扭矩并控制所述发动机熄火停机。
  10. 如权利要求8所述的增程式电动汽车的增程器停机控制系统,其特征在于,所述增程器的当前工况为停机工况,所述APU接收所述VCU的启动增程器请求,并在接收到停机请求或紧急停机请求时保持停机状态,并在未接收到停机请求或紧急停机请求时,判断发动机当前转速是否小于第一阈值,且发动机当前扭矩是否小于第二阈值,并在发动机当前转速大于或等于所述第一阈值,和/或,发动机当前扭矩大于或等于所述第二阈值时,保持停机状态,并在发动机当前转速小于第一阈值,且发动机当前扭矩小于第二阈值时,进一步判断所述发电机是否处于待机状态,以及在所述发电机处于待机状态时,且所述发动机起动失败次数小于第三阈值时控制所述增程器启动,以及在所述发动机起动失败次数大于或等于所述第三阈值时,向所述VCU反馈增程器故障消息,并保持所述发动机和发电机处于停机状态。
  11. 如权利要求8所述的增程式电动汽车的增程器停机控制系统,其特征在于,所述增程器的当前工况为起动工况,所述APU在判断所述增程器的停机状态保持时间小于或等于所述第四阈值时,保持停机状态,并在判断所述增程器的停机状态保持时间大于第四阈值时,判断所述发电机的旋转方向是否为正转方向,并在所述发电机的旋转方向不为所述正转方向时,卸掉发电机的扭矩并控制所述发动机熄火停机,并在所述发电机的旋转方向为正转方向时,判断是否接收到停机请求或紧急停机请求,并在接收到停机请求或紧急停机请求时,卸掉发电机的扭矩并控制所述发动机熄火停机,并在未接收到停机请求或紧急停机请求时,判断所述增程器的起动时间是否小于起动时间允许阈值,并在所述增程器的起动时间大于或等于所述起动时间允许阈值时,卸掉发电机的扭矩并控制所述发动机熄火停机,以及在所述增程器的起动时间小于起动时间允许阈值时所述增程器起动成功,并控制所述增程器进行怠速工况。
  12. 如权利要求8所述的增程式电动汽车的增程器停机控制系统,其特征在于,所述增程器的当前工况为怠速工况,所述APU判断所述发电机的旋转方向是否为正转方向,并在不为所述正转方向时,卸掉发电机的扭矩并控制所述发动机熄火停机,并在所述发电机的旋转方向为正转方向时,判断所述VCU是否发送紧急停机请求,并在所述VCU发送所述紧急停机请求时,卸掉发电机的扭矩并控制所述发动机熄火停机,并在所述VCU未发送紧急停机请求,且判断所述VCU未发送停机请求时,继续控制所述增程器以怠速工况运行,并在所述VCU发送所述停机请求,且所述发动机禁止停机标志位无效时,所述APU卸掉发电机的扭矩并控制所述发动机熄火停机,或,在所述VCU发送所述停机请求,且发动机禁止停机标志位有效,以及计时时间大于第五阈值时,所述APU卸掉发电机的扭矩并控制所 述发动机熄火停机。
  13. 如权利要求8所述的增程式电动汽车的增程器停机控制系统,其特征在于,所述增程器的当前工况为发电工况,所述APU判断所述发电机的旋转方向是否为正转方向,且所述发电机的转速是否大于第六阈值,并在所述发电机的旋转方向不为所述正转方向,和/或,所述发电机的转速小于或等于所述第六阈值时,卸掉发电机的扭矩并控制所述发动机熄火停机,并在所述发电机的旋转方向为正转方向,且所述发电机的转速大于第六阈值时,判断所述VCU是否发送紧急停机请求,并在所述VCU发送所述紧急停机请求时,卸掉发电机的扭矩并控制所述发动机熄火停机,并在所述VCU未发送所述紧急停机请求,且所述APU发电功率请求大于第七阈值,以及所述VCU未发送所述停机请求时,继续控制所述增程器以发电工况运行。
  14. 如权利要求13所述的增程式电动汽车的增程器停机控制系统,其特征在于,在所述发电功率请求小于或等于所述第七阈值,和/或,所述VCU发送所述停机请求时,所述APU控制所述发电机按照预设梯度进行扭矩卸载,并在所述发电机的扭矩小于第八阈值时向所述发电机发送待机指令,并将所述发电机切换为待机状态,以及向所述发动机发送怠速指令,并在所述发动机的转速小于第九阈值时,将所述发动机切换至怠速工况下的停机控制。
PCT/CN2016/103622 2015-12-30 2016-10-27 增程式电动汽车的增程器停机控制方法及系统 WO2017113968A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201511020423.0A CN105539421B (zh) 2015-12-30 2015-12-30 增程式电动汽车的增程器停机控制方法及系统
CN201521130206.2 2015-12-30
CN201511020423.0 2015-12-30
CN201521130206.2U CN205365586U (zh) 2015-12-30 2015-12-30 增程式电动汽车的增程器停机控制系统

Publications (1)

Publication Number Publication Date
WO2017113968A1 true WO2017113968A1 (zh) 2017-07-06

Family

ID=59224663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103622 WO2017113968A1 (zh) 2015-12-30 2016-10-27 增程式电动汽车的增程器停机控制方法及系统

Country Status (1)

Country Link
WO (1) WO2017113968A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112092798A (zh) * 2020-08-28 2020-12-18 广西玉柴机器股份有限公司 一种增程器反转保护控制系统及方法
CN113311276A (zh) * 2021-06-22 2021-08-27 哈尔滨东安汽车动力股份有限公司 一种增程器系统启停及发电功能校验方法
CN113547916A (zh) * 2021-08-24 2021-10-26 李浩然 一种增程式电动汽车恒压模式控制方法
CN113581162A (zh) * 2021-08-23 2021-11-02 一汽解放汽车有限公司 一种增程式电动汽车的转速控制方法
CN116181507A (zh) * 2023-02-02 2023-05-30 重庆赛力斯新能源汽车设计院有限公司 优化增程车型热机启停的控制方法、系统、终端、介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010042183A1 (de) * 2010-10-08 2012-04-12 Robert Bosch Gmbh Hybridantriebseinrichtung
CN103991386A (zh) * 2014-05-16 2014-08-20 航天新长征电动汽车技术有限公司 一种增程式电动汽车整车控制系统及控制方法
CN104118436A (zh) * 2014-07-10 2014-10-29 奇瑞汽车股份有限公司 一种电动车增程系统的安全监控方法
CN104627016A (zh) * 2014-12-22 2015-05-20 北京新能源汽车股份有限公司 一种基于状态管理的增程式电动汽车控制方法
CN105539421A (zh) * 2015-12-30 2016-05-04 北京新能源汽车股份有限公司 增程式电动汽车的增程器停机控制方法及系统
CN205365586U (zh) * 2015-12-30 2016-07-06 北京新能源汽车股份有限公司 增程式电动汽车的增程器停机控制系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010042183A1 (de) * 2010-10-08 2012-04-12 Robert Bosch Gmbh Hybridantriebseinrichtung
CN103991386A (zh) * 2014-05-16 2014-08-20 航天新长征电动汽车技术有限公司 一种增程式电动汽车整车控制系统及控制方法
CN104118436A (zh) * 2014-07-10 2014-10-29 奇瑞汽车股份有限公司 一种电动车增程系统的安全监控方法
CN104627016A (zh) * 2014-12-22 2015-05-20 北京新能源汽车股份有限公司 一种基于状态管理的增程式电动汽车控制方法
CN105539421A (zh) * 2015-12-30 2016-05-04 北京新能源汽车股份有限公司 增程式电动汽车的增程器停机控制方法及系统
CN205365586U (zh) * 2015-12-30 2016-07-06 北京新能源汽车股份有限公司 增程式电动汽车的增程器停机控制系统

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112092798A (zh) * 2020-08-28 2020-12-18 广西玉柴机器股份有限公司 一种增程器反转保护控制系统及方法
CN112092798B (zh) * 2020-08-28 2023-08-08 广西玉柴机器股份有限公司 一种增程器反转保护控制系统及方法
CN113311276A (zh) * 2021-06-22 2021-08-27 哈尔滨东安汽车动力股份有限公司 一种增程器系统启停及发电功能校验方法
CN113311276B (zh) * 2021-06-22 2023-08-22 哈尔滨东安汽车动力股份有限公司 一种增程器系统启停及发电功能校验方法
CN113581162A (zh) * 2021-08-23 2021-11-02 一汽解放汽车有限公司 一种增程式电动汽车的转速控制方法
CN113581162B (zh) * 2021-08-23 2023-10-17 一汽解放汽车有限公司 一种增程式电动汽车的转速控制方法
CN113547916A (zh) * 2021-08-24 2021-10-26 李浩然 一种增程式电动汽车恒压模式控制方法
CN113547916B (zh) * 2021-08-24 2022-03-22 李浩然 一种增程式电动汽车恒压模式控制方法
CN116181507A (zh) * 2023-02-02 2023-05-30 重庆赛力斯新能源汽车设计院有限公司 优化增程车型热机启停的控制方法、系统、终端、介质
CN116181507B (zh) * 2023-02-02 2024-04-19 重庆赛力斯新能源汽车设计院有限公司 优化增程车型热机启停的控制方法、系统、终端、介质

Similar Documents

Publication Publication Date Title
WO2017113968A1 (zh) 增程式电动汽车的增程器停机控制方法及系统
WO2017113939A1 (zh) 增程式电动汽车及其发动机起动控制方法、系统
WO2017190510A1 (zh) 增程式电动汽车及其发电控制方法
CN105539421B (zh) 增程式电动汽车的增程器停机控制方法及系统
WO2017197833A1 (zh) 电动汽车增程器系统的控制方法和装置
EP3505411B1 (en) Power source for electric vehicle and power source selection method
JP2008206288A (ja) 車両制御装置、車両制御方法及び車両制御プログラム
JP6172087B2 (ja) 車両用電源制御装置
CN205365586U (zh) 增程式电动汽车的增程器停机控制系统
WO2014073097A1 (ja) オルタネータ制御装置
WO2022143437A1 (zh) 发动机起机方法、车辆电气系统及存储介质
JP7128661B2 (ja) バッテリ診断装置
JP5855608B2 (ja) 車両用電源装置
JP2007152983A (ja) 車両用電源制御装置
JP5181975B2 (ja) エンジンの制御装置
JP2017185981A (ja) 車両
JP2010077859A (ja) エンジン始動装置及びエンジン始動制御方法
JP2006220113A (ja) エンジンの制御装置
JP2010023727A (ja) 制御システム及び制御装置
JP2017109505A (ja) ミキサ車およびミキサ車の制御装置
JP5859490B2 (ja) 車両用電源装置
JP5810905B2 (ja) モータ制御装置
JP2007209106A (ja) 負荷制御装置、負荷装置及び負荷制御方法
JP2017008738A (ja) エンジン始動装置
JP2004150354A (ja) 内燃機関の運転制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16880759

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16880759

Country of ref document: EP

Kind code of ref document: A1