WO2024017149A1 - 混动汽车的起机控制方法、装置、汽车及介质 - Google Patents

混动汽车的起机控制方法、装置、汽车及介质 Download PDF

Info

Publication number
WO2024017149A1
WO2024017149A1 PCT/CN2023/107363 CN2023107363W WO2024017149A1 WO 2024017149 A1 WO2024017149 A1 WO 2024017149A1 CN 2023107363 W CN2023107363 W CN 2023107363W WO 2024017149 A1 WO2024017149 A1 WO 2024017149A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
preset
power
starting
state
Prior art date
Application number
PCT/CN2023/107363
Other languages
English (en)
French (fr)
Inventor
尹建坤
马艳红
刘维艳
刘建康
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2024017149A1 publication Critical patent/WO2024017149A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/50Control strategies for responding to system failures, e.g. for fault diagnosis, failsafe operation or limp mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present application relates to the technical field of automobile manufacturing, for example, to the starting control method, device, automobile and medium of a hybrid automobile.
  • the dual-motor hybrid system can decouple the driver's power demand from the engine power, thereby achieving good fuel-saving effects.
  • the generator when the power battery is low, the generator is usually used to start the engine, and the engine charges the power battery.
  • the power battery's power is particularly low due to the correction of the state of charge of the power battery or the long-term storage of the vehicle, the driver can apply high-voltage power, and the vehicle will start the engine to charge the power battery.
  • engine failure even if the generator drags the engine to a higher speed and maintains it for a certain period of time, the engine still does not start. At this time, multiple failed starting operations will cause the power battery's power to continue to decline, thereby affecting the service life of the power battery, and may even cause subsequent high-voltage power-on failures, seriously affecting the user's vehicle experience.
  • This application provides a starting control method, device, vehicle and medium for a hybrid vehicle, which can avoid the continuous decline of power battery power, avoid affecting the service life of the power battery, make full use of the vehicle's starting ability, and improve User’s vehicle experience.
  • a starting control method for a hybrid vehicle is provided, which is executed by a hybrid control unit and includes:
  • control the hybrid car In response to the user's request to start the car, control the hybrid car to perform high-voltage power-on and obtain the state-of-charge value of the power battery;
  • the engine In response to detecting that the state-of-charge value of the power battery meets the preset starting detection conditions, the engine is controlled to perform a cyclic starting, and in response to detecting that the engine has not been successfully started, the number of abnormal starts of the engine is obtained ;
  • the hybrid vehicle is controlled to perform a high-voltage power-down: it is detected that the number of abnormal starts of the engine is greater than or equal to a preset number threshold; it is detected that the state-of-charge value of the power battery satisfies Preset power-off detection conditions.
  • a starting control device for a hybrid vehicle which is applied to a hybrid control unit and includes:
  • the high-voltage power-on control module is configured to respond to the user's vehicle start request, control the hybrid vehicle to perform high-voltage power-on, and obtain the state-of-charge value of the power battery;
  • the starting detection module is configured to control the engine to perform a cyclic starting in response to detecting that the state of charge value of the power battery meets the preset starting detection conditions, and in response to detecting that the engine has not started successfully, obtain all Describe the number of abnormal engine starts;
  • a high-voltage power-off control module is configured to control the hybrid vehicle to perform high-voltage power-off in response to at least one of the following situations: detecting that the number of abnormal starts of the engine is greater than or equal to a preset number threshold; detecting that the number of abnormal starts of the engine is greater than or equal to a preset number threshold; The state-of-charge value of the power battery meets the preset power-off detection conditions.
  • an automobile including:
  • a hybrid control unit including at least one processor, and a memory communicatively connected to the at least one processor;
  • the memory stores a computer program that can be executed by the at least one processor, and the computer program is executed by the at least one processor, so that the at least one processor can execute the method described in any embodiment of the present application. Start control method of hybrid vehicles.
  • a computer-readable storage medium stores a computer program.
  • the computer program is configured to enable the processor to implement any of the embodiments of the present application when executed. Start control method for hybrid vehicles.
  • Figure 1A is a flow chart of a hybrid vehicle starting control method provided according to Embodiment 1 of the present application;
  • FIG. 1B is a schematic structural diagram of a dual-motor series-parallel hybrid system provided according to Embodiment 1 of the present application;
  • Figure 2 is a flow chart of a hybrid vehicle starting control method provided according to Embodiment 2 of the present application.
  • Figure 3 is a schematic structural diagram of a starting control device for a hybrid vehicle provided according to Embodiment 3 of the present application;
  • Figure 4 is a schematic structural diagram of a vehicle that implements the starting control method of a hybrid vehicle according to an embodiment of the present application.
  • Figure 1A is a flow chart of a hybrid vehicle start control method provided in Embodiment 1 of the present application. This embodiment can be applied to the situation of performing start control of a hybrid vehicle when the power battery is low. This method The method can be applied to the hybrid control unit and executed by the starting control device of the hybrid vehicle.
  • the starting control device of the hybrid vehicle can be implemented in the form of at least one of hardware and software.
  • the starting control device of the hybrid vehicle The machine control device can be configured in the car. As shown in Figure 1A, the method includes:
  • the hybrid vehicle can be based on a hybrid system with two motors connected in series and parallel.
  • the drive motor is directly coupled to the reduction mechanism through gears, and the generator and the engine are connected through gear meshing.
  • the flywheel end of the engine connects and interrupts power through the clutch and the rear-end reduction mechanism.
  • FIG. 1B A typical topology of a dual-motor series-parallel hybrid system can be shown in Figure 1B, in which the hybrid system can include three operating modes, pure electric mode, series mode and parallel mode.
  • pure electric mode the engine stops, the clutch opens, and the drive motor drives alone; in series mode, the engine runs to drive the generator to generate electricity, the clutch opens, and the drive motor Single drive; in parallel mode, the engine drives, the clutch is combined, the generator generates electricity or follows, and the drive motor assists or follows.
  • the user can perform a vehicle start operation to send a vehicle start request to a hybrid control unit (Hybrid Control Unit, HCU).
  • HCU Hybrid Control Unit
  • the HCU detects the car start request, if it detects that the high-voltage power-on conditions are currently met, for example, the power of the power battery meets the high-voltage power-on requirements, it can perform the high-voltage system power-on (system main positive, main and auxiliary relay combination) operation.
  • HCU Hybrid Control Unit
  • the HCU controls the hybrid vehicle to successfully power on at high voltage, it can obtain the current state of charge (SOC) value of the power battery, where the state of charge value can be the current remaining power and the capacity of the power battery.
  • SOC state of charge
  • the HCU can obtain the current state of charge value of the power battery through the battery management system (Battery Management System, BMS).
  • BMS Battery Management System
  • control the engine In response to detecting that the state-of-charge value of the power battery meets the preset starting detection conditions, control the engine to perform a cyclic starting, and in response to detecting that the engine fails to start, obtain the abnormal starting of the engine. machine times.
  • the preset starting detection conditions may be preset condition information used to determine whether the current state of charge value of the power battery meets the starting requirements.
  • the preset startup detection condition may be that the state of charge value of the power battery is less than a preset power threshold, or it may be that the state of charge value of the power battery is between two preset power thresholds.
  • the HCU can control the engine to start. For example, the HCU can control the generator to output driving torque to drag the engine to a certain speed, and then the engine is started by fuel injection and ignition.
  • the generator will keep driving the engine, but the engine cannot inject fuel and ignite, or inject fuel but not ignite, that is, the engine cannot start successfully.
  • the HCU can control the engine to shut down. Then, after waiting for a period of time, the HCU can regain control of the engine to start. For example, if the engine never starts successfully, the above process can be repeated, and the number of abnormal engine starts can be counted, that is, the number of times the engine fails to start.
  • S130 Control the hybrid vehicle to perform high-voltage power-off in response to at least one of the following: detecting that the number of abnormal starts of the engine is greater than or equal to a preset number threshold; detecting that the state-of-charge value of the power battery satisfies Preset power-off detection conditions.
  • the preset number threshold may be the maximum number of failed starts allowed in a driving cycle from high-voltage power-on to high-voltage power-off.
  • the preset power-off detection condition can be pre-set condition information used to determine whether high-voltage power-off is required. For example, it can be that the SOC of the power battery is less than the pre-set SOC value.
  • the HCU can control the hybrid vehicle to perform a high-voltage power off.
  • the hybrid vehicle can also be controlled to perform high-voltage power-off.
  • the hybrid vehicle can also be controlled to perform high-voltage power-off.
  • the HCU can control the hybrid vehicle to perform a high-voltage power-off.
  • the power of the power battery will be continuously consumed.
  • the preset times threshold and preset power-off detection conditions it is possible to avoid the continuous consumption of the power battery during the cycle starting process, resulting in the SOC of the power battery being too low, and to avoid affecting the power.
  • the hybrid car by responding to the user's request to start the car, the hybrid car is controlled to perform high-voltage power-on, and the state-of-charge value of the power battery is obtained; if it is detected that the state-of-charge value of the power battery meets the preset start detection conditions, the engine is controlled to perform cyclic starting, and when it is detected that the engine has not started successfully, the number of abnormal starting times of the engine is obtained; in response to at least one of the following situations, the hybrid vehicle is controlled to perform high-voltage power-off: detection It is detected that the number of abnormal starts of the engine is greater than or equal to the preset number threshold; it is detected that the state of charge value of the power battery meets the preset power-off detection conditions.
  • controlling the engine to start a cycle may include include:
  • controlling the generator In response to detecting that the engine has not started successfully according to the engine state, controlling the generator to drive the engine to a second preset speed to control the engine to stop, waiting for a preset time, and controlling the engine Restart the computer.
  • the first preset rotation speed may be greater than the second preset rotation speed, and the first preset rotation speed and the second preset rotation speed may be set based on historical experience.
  • the HCU when performing the engine starting operation, can control the generator to output driving torque to bring the engine to a set higher speed (first preset speed), thereby controlling the engine to start starting. machine. After that, the HCU can obtain the engine status in real time. If it is detected that the current engine status is not started, it means that the engine has failed to start this time. At this time, the HCU can perform the engine shutdown operation.
  • the HCU when performing a shutdown operation, can control the generator to output driving torque to bring the engine to a set lower speed (second preset speed), thereby causing the engine to stop quickly.
  • the HCU After starting the engine shutdown operation, the HCU can re-control the engine to start after a preset time. Afterwards, the HCU can repeat the above process to achieve cyclic starting of the engine.
  • the preset time may be a preset time for the engine to complete shutdown.
  • the priority of shutdown is higher than the priority of startup.
  • detecting that the engine has not started successfully based on the engine state may include:
  • the duration of the engine's non-start state can be obtained. If it is detected that the duration is greater than or equal to the preset time If the time threshold is exceeded, it means that a boot process has exceeded a certain time. At this time, it can be considered that the boot was unsuccessful.
  • the advantage of the above setting is that it can avoid engine damage caused by the generator dragging the engine for a long time.
  • the engine may also include: generating abnormal starting alarm information, and visualizing the abnormal starting alarm information through an instrument interface. exhibit.
  • the HCU when it detects that the engine has not started successfully, the HCU can also generate abnormal start alarm information and send it to the vehicle equipment, so that the abnormal start alarm information can be visually displayed through the instrument interface of the vehicle equipment. , for example, flashing the instrument icon corresponding to the startup abnormality to remind the driver that there is currently a startup abnormality, and at the same time, it can provide developers with convenience for troubleshooting.
  • the HCU can also generate a starting abnormal warning message and send it to the driver after controlling the hybrid vehicle to complete high-voltage power-off to remind the driver that there is currently a vehicle starting abnormality.
  • Figure 2 is a flow chart of a hybrid vehicle starting control method provided in Embodiment 2 of the present application. This embodiment is a refinement of the above technical solution. The technical solution in this embodiment can be combined with one or more of the above Implementation combination. As shown in Figure 2, the method includes:
  • the starting detection condition controls the engine to perform cyclic starting, and when it is detected that the engine has not started successfully, the number of abnormal starts of the engine is obtained.
  • the preset starting threshold value may be a preset SOC of the power battery used to determine whether the engine needs to be started. When the SOC of the power battery is less than or equal to the preset starting threshold value, it means that the engine needs to be started to charge the power battery; when the SOC of the power battery is greater than When the starting threshold value is preset, it means that the power battery has sufficient power and there is no need to start the engine.
  • the preset starting prohibition threshold value can be the SOC of the power battery that is preset to prohibit the engine from restarting; when the SOC of the power battery is less than or equal to the preset starting prohibition threshold value, it indicates the remaining power of the power battery If it is too little, the engine is prohibited from restarting at this time, which can avoid the reduction of the service life of the power battery caused by too low power of the power battery, and at the same time, enough power can be reserved for subsequent high-voltage power-on.
  • the corresponding preset starting threshold and the preset starting prohibition threshold can be set based on historical experience, or the preset starting prohibition threshold can be set in advance and based on the number of starts required. Set the corresponding preset starting threshold value.
  • the HCU can start to control the engine for cyclic starting.
  • the shutdown threshold can also be set in advance. After the HCU controls the engine to start the cycle, if it is detected that the engine has started successfully, the engine can charge the power battery, thereby improving the SOC of the power battery. When it is detected that the SOC of the power battery is greater than or equal to the preset shutdown threshold, the HCU can control the engine to stop, thereby stopping the engine from continuing to charge the power battery.
  • the shutdown threshold can be set according to the maximum SOC of the power battery.
  • control the hybrid vehicle to perform a high-voltage power-off detecting that the number of abnormal starts of the engine is greater than or equal to a preset number threshold; detecting the state of charge of the power battery The value meets the preset power-off detection conditions.
  • the HCU will control the hybrid vehicle to operate under high voltage. After the battery is powered on, it can still respond to the user's request to restart the vehicle, re-control the hybrid vehicle for high-voltage power-on, and re-control the engine for cycle starting.
  • HCU can send startup fault prompts to users so that users can handle faults in a timely manner.
  • the technical solution of the embodiment of the present application controls the hybrid vehicle to perform high-voltage power-on in response to the user's request to start the vehicle, and obtains the state-of-charge value of the power battery. If it is detected that the state-of-charge value of the power battery is less than or equal to the predetermined value, If the starting threshold value is set and is greater than the preset starting prohibition threshold value, then it is determined that the state of charge value of the power battery meets the preset starting detection conditions, and the engine is controlled to perform a cyclic starting, and when it is detected that the engine has not started successfully When the engine is running, the number of abnormal engine starts is obtained, and the hybrid vehicle is controlled to perform high-voltage power-off in response to at least one of the following situations: it is detected that the number of abnormal engine starts is greater than or equal to the preset number threshold; power is detected The battery's state-of-charge value meets the preset power-off detection conditions.
  • the preset startup threshold By setting the preset startup threshold, the preset startup prohibition threshold, the preset times threshold and the preset power-off detection conditions, you can avoid starting the battery. While the battery power continues to decline due to failure, making full use of the vehicle's starting ability can avoid affecting the service life of the power battery and improve the user's vehicle experience.
  • the state-of-charge value of the power battery meets the preset power-off detection conditions, including:
  • the HCU controls the engine to perform a starting cycle
  • the SOC of the power battery will continue to decrease.
  • the SOC of the power battery drops to the preset starting prohibition threshold value, it can be determined that the SOC of the power battery meets the preset power-off detection conditions.
  • the HCU can stop trying to start the engine and can control the hybrid vehicle to start. High voltage power off.
  • the technical solution of this embodiment may also include:
  • the power required for a single start may include the power required for starting and the power consumed by high-voltage accessories (such as DC converters, air conditioners, etc.).
  • the sum of the power required for starting and the power consumed by the high-voltage accessories can be used as the power required for a single start.
  • the corresponding preset starting prohibition threshold and the preset starting threshold can also be set in advance.
  • the power required for a single startup can be multiplied by the preset number of startups to obtain the reserved power for startup.
  • the number of startups can be adaptively set according to task requirements. Typically, the number of startups can be greater than or equal to 9.
  • the preset starting prohibition threshold value can be set according to the minimum SOC allowed by the power battery, and the SOC value corresponding to the reserved power for starting can be calculated, and then the SOC value can be compared with the preset starting prohibition threshold value. Add, and use the sum as the final preset starting threshold value.
  • the advantage of the above setting is that it can allow a certain number of starting failures, fully utilize the starting ability, and improve the robustness of the hybrid system.
  • Setting the preset starting prohibition threshold value according to the minimum SOC allowed by the power battery may include adding the minimum SOC allowed by the power battery and the preset SOC to obtain the preset starting prohibition threshold value.
  • Figure 3 is a schematic structural diagram of a starting control device for a hybrid vehicle provided in Embodiment 3 of the present application. As shown in Figure 3, the device is applied to the hybrid control unit and includes: a high-voltage power-on control module 310, a starting detection module 320 and a high-voltage power-off control module 330; where,
  • the high-voltage power-on control module 310 is configured to respond to the user's vehicle start request, control the hybrid vehicle to perform high-voltage power-on, and obtain the state-of-charge value of the power battery;
  • the starting detection module 320 is configured to control the engine to perform a cyclic starting in response to detecting that the state of charge value of the power battery satisfies the preset starting detection conditions, and in response to detecting that the engine has not started successfully, obtain The number of abnormal starts of the engine;
  • the high-voltage power-off control module 330 is configured to control the hybrid vehicle to perform high-voltage power-off in response to at least one of the following situations: detecting that the number of abnormal starts of the engine is greater than or equal to a preset number threshold; detecting that the number of abnormal starts of the engine is greater than or equal to a preset number threshold; The state-of-charge value of the power battery meets the preset power-off detection conditions.
  • the technical solution of the embodiment of the present application controls the hybrid vehicle to perform high-voltage power-on in response to the user's request to start the car, and obtains the state-of-charge value of the power battery; if it is detected that the state-of-charge value of the power battery meets the preset If the machine detects conditions, the engine is controlled to perform a cyclic start, and when it is detected that the engine has not started successfully, the number of abnormal starts of the engine is obtained; in response to at least one of the following situations, the hybrid vehicle is controlled to perform a high-voltage power-off.
  • startup detection module 320 includes:
  • the first control unit is configured to control the generator to drive the engine to a first preset speed to control the engine to start and obtain the engine status;
  • the second control unit is configured to, in response to detecting that the engine has failed to start according to the engine state, control the generator to drive the engine to a second preset speed to control the engine to stop and wait for the preset speed. Set the time to control the engine to restart.
  • Optional second control unit including:
  • the duration acquisition subunit is configured to obtain the duration corresponding to the unstarted state in response to detecting that the engine status is a non-started state;
  • the non-start determination subunit is configured to determine that the engine has not been successfully started in response to detecting that the duration corresponding to the non-start state is greater than or equal to a preset time threshold.
  • the starting control device of the hybrid vehicle also includes:
  • Abnormal alarm module is set to generate abnormal startup alarm information and respond to the abnormal alarm information through the instrument interface. Visual display of machine abnormality alarm information.
  • the start-up detection module 320 is configured to determine that the state-of-charge value of the power battery is less than or equal to the preset start-up threshold value and greater than the preset start-up prohibition threshold value. The state-of-charge value of the power battery meets the preset starting detection conditions.
  • the high-voltage power-off control module 330 is configured to determine the state-of-charge value of the power battery in response to detecting that the state-of-charge value of the power battery is less than or equal to the preset starting prohibition threshold value. Meet the preset power-off detection conditions.
  • the starting control device of the hybrid vehicle also includes:
  • the reserved power acquisition module for starting is configured to obtain the power required for a single start, and obtain the reserved power for starting based on the power required for a single start;
  • the preset starting threshold acquisition module is configured to obtain the preset starting prohibition threshold, and obtain the preset starting threshold according to the preset starting prohibition threshold and the reserved power for starting. value.
  • the starting control device of a hybrid vehicle provided by the embodiments of this application can execute the starting control method of a hybrid vehicle provided by any embodiment of this application, and has functional modules and effects corresponding to the execution method.
  • FIG. 4 shows a schematic structural diagram of an automobile 400 that can be used to implement embodiments of the present application.
  • Automobile 400 may include hybrid control unit 410 .
  • the hybrid control unit 410 includes at least one processor 411, and a memory communicatively connected to the at least one processor 411, such as a read-only memory (Read-Only Memory, ROM) 412, a random access memory (Random Access Memory, RAM) 413, etc., wherein the memory stores a computer program that can be executed by at least one processor.
  • the processor 411 can be loaded into a random access memory according to the computer program stored in the read-only memory (ROM) 412 or from the storage unit 418.
  • the computer program in the memory (RAM) 413 performs various appropriate actions and processes.
  • RAM 413 Various programs and data required for the operation of the hybrid control unit 410 may also be stored.
  • the processor 411, ROM 412, and RAM 413 are connected to each other through a bus 414.
  • An input/output (I/O) interface 415 is also connected to bus 414.
  • the hybrid control unit 410 Multiple components in the hybrid control unit 410 are connected to the I/O interface 415, including: an input unit 416; an output unit 417, such as various types of displays, speakers, etc.; a storage unit 418, such as a magnetic disk, an optical disk, etc.; and communication Unit 419, such as a network card, modem, wireless communication transceiver, etc.
  • the communication unit 419 allows the hybrid control unit 410 to exchange information/data with other devices through a computer network such as the Internet and/or various telecommunications networks.
  • Processor 411 may be a variety of general or special purpose processing components having processing and computing capabilities. Examples of the processor 411 include, but are not limited to, a central processing unit (Central Processing Unit, CPU), a graphics processing unit (Graphics Processing Unit, GPU), various dedicated artificial intelligence (Artificial Intelligence, AI) computing chips, and various running machines. Processor of learning model algorithm, digital signal processor (Digital Signal Processing, DSP), and any appropriate processor, controller, microcontroller, etc. The processor 411 executes the methods and processes described above, such as the starting control method of a hybrid vehicle.
  • CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • AI Artificial Intelligence
  • DSP Digital Signal Processing
  • the processor 411 executes the methods and processes described above, such as the starting control method of a hybrid vehicle.
  • the starting control method of a hybrid vehicle may be implemented as a computer program, which is tangibly included in a computer-readable storage medium, such as the storage unit 418 .
  • part or all of the computer program may be loaded or installed onto the hybrid control unit 410 via at least one of the ROM 412 and the communication unit 419.
  • the processor 411 may be configured to perform the launch control method of the hybrid vehicle through any other suitable means (eg, by means of firmware).
  • Various implementations of the systems and techniques described above may be implemented in digital electronic circuit systems, integrated circuit systems, Field Programmable Gate Arrays (FPGAs), Application Specific Integrated Circuits (ASICs), Application Specific Standard Parts (ASSP), System on Chip (System on Chip, SOC), Complex Programmable Logic Device (CPLD), computer hardware, firmware, software, and their combinations.
  • FPGAs Field Programmable Gate Arrays
  • ASICs Application Specific Integrated Circuits
  • ASSP Application Specific Standard Parts
  • System on Chip System on Chip, SOC
  • Complex Programmable Logic Device CPLD
  • computer hardware firmware, software, and their combinations.
  • These various embodiments may include implementation in at least one computer program executable or interpreted on a programmable system including at least one programmable processor, which may be a special purpose or general purpose programmable processor.
  • the processor is programmed to receive data and instructions from the storage system, at least one input device, and at least one output device, and to transmit data and instructions to the storage system, the at least one input device, and
  • Computer programs for implementing the methods of the present application may be written in any combination of at least one programming language. These computer programs may be provided to a processor of a general-purpose computer, a special-purpose computer, or other programmable data processing device, such that when executed by the processor, the computer program causes the functions or operations specified in the flowcharts and block diagrams to be implemented.
  • a computer program may execute entirely on the machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • a computer-readable storage medium may be a tangible medium that may contain or store a computer program for use by or in connection with an instruction execution system, apparatus, or device.
  • Computer-readable storage media may include, but are not limited to, electronic, magnetic, optical, electromagnetic, infrared, or semiconductor systems, devices or devices, or any suitable combination of the foregoing.
  • the computer-readable storage medium may be a machine-readable signal medium.
  • machine-readable storage media examples include at least one wire-based electrical connection, a portable computer disk, a hard disk, random access memory (RAM), read only memory (ROM), Erasable Programmable Read -Only Memory (EPROM), flash memory, optical fiber, portable compact disk read-only memory (Compact Disc Read-Only Memory, CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • RAM random access memory
  • ROM read only memory
  • EPROM Erasable Programmable Read -Only Memory
  • flash memory optical fiber
  • portable compact disk read-only memory Compact Disc Read-Only Memory
  • CD-ROM Compact Disc Read-Only Memory
  • optical storage device magnetic storage device, or any suitable combination of the above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种混动汽车的起机控制方法、装置、汽车及介质。该方法包括:响应于用户的汽车启动请求,控制混动汽车进行高压上电,并获取动力电池的荷电状态值;响应于检测到荷电状态值满足预设起机检测条件,控制发动机进行循环起机,并响应于检测到发动机未成功起机,获取发动机的异常起机次数;响应于以下情况中至少之一,控制所述混动汽车进行高压下电:检测到异常起机次数大于或者等于预设次数阈值;荷电状态值满足预设下电检测条件。

Description

混动汽车的起机控制方法、装置、汽车及介质
本申请要求在2022年7月18日提交中国专利局、申请号为202210840184.7的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及汽车制造技术领域,例如涉及混动汽车的起机控制方法、装置、汽车及介质。
背景技术
双电机混合动力系统可以实现驾驶员需求功率与发动机功率的解耦,从而可以达到很好的节油效果。
在双电机混合动力系统中,当动力电池电量较低时,通常采用发电机起动发动机,由发动机为动力电池充电。例如,当由于动力电池的荷电状态修正或者车辆长期放置导致动力电池的电量特别低时,驾驶员可以进行高压上电,此时整车会起动发动机为动力电池充电。然而,在特殊场景下,例如,发动机故障,即使发电机将发动机拖动到较高转速,并维持一定时间,发动机仍然没有启动。此时,多次失败的起机操作会导致动力电池的电量持续下降,从而影响动力电池的使用寿命,甚至可能导致后续的高压上电失败,严重影响用户的车辆使用体验。
发明内容
本申请提供了一种混动汽车的起机控制方法、装置、汽车及介质,可以避免动力电池电量的持续下降,可以避免影响动力电池的使用寿命,可以充分利用车辆的起机能力,可以提升用户的车辆使用体验。
根据本申请的一方面,提供了一种混动汽车的起机控制方法,由混动控制单元执行,包括:
响应于用户的汽车启动请求,控制混动汽车进行高压上电,并获取动力电池的荷电状态值;
响应于检测到所述动力电池的荷电状态值满足预设起机检测条件,控制发动机进行循环起机,并响应于检测到所述发动机未成功起机,获取所述发动机的异常起机次数;
响应于以下情况中至少之一,控制所述混动汽车进行高压下电:检测到所述发动机的异常起机次数大于或者等于预设次数阈值;检测到所述动力电池的荷电状态值满足预设下电检测条件。
根据本申请的另一方面,提供了一种混动汽车的起机控制装置,应用于混动控制单元,包括:
高压上电控制模块,设置为响应于用户的汽车启动请求,控制混动汽车进行高压上电,并获取动力电池的荷电状态值;
起机检测模块,设置为响应于检测到所述动力电池的荷电状态值满足预设起机检测条件,控制发动机进行循环起机,并响应于检测到所述发动机未成功起机,获取所述发动机的异常起机次数;
高压下电控制模块,设置为响应于以下情况中至少之一,控制所述混动汽车进行高压下电:检测到所述发动机的异常起机次数大于或者等于预设次数阈值;检测到所述动力电池的荷电状态值满足预设下电检测条件。
根据本申请的另一方面,提供了一种汽车,包括:
混动控制单元,包括至少一个处理器,以及与所述至少一个处理器通信连接的存储器;
所述存储器存储有可被所述至少一个处理器执行的计算机程序,所述计算机程序被所述至少一个处理器执行,以使所述至少一个处理器能够执行本申请任一实施例所述的混动汽车的起机控制方法。
根据本申请的另一方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序设置为使处理器执行时实现本申请任一实施例所述的混动汽车的起机控制方法。
附图说明
图1A是根据本申请实施例一提供的一种混动汽车的起机控制方法的流程图;
图1B是根据本申请实施例一提供的一种双电机串并联的混合动力系统的结构示意图;
图2是根据本申请实施例二提供的一种混动汽车的起机控制方法的流程图;
图3是根据本申请实施例三提供的一种混动汽车的起机控制装置的结构示意图;
图4是实现本申请实施例的混动汽车的起机控制方法的汽车的结构示意图。
具体实施方式
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“目标”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
实施例一
图1A为本申请实施例一提供了一种混动汽车的起机控制方法的流程图,本实施例可适用于在动力电池低电量时进行混动汽车的起机控制的情况,该方 法可以应用于混动控制单元,并由混动汽车的起机控制装置来执行,该混动汽车的起机控制装置可以采用硬件和软件中至少之一的形式实现,该混动汽车的起机控制装置可配置于汽车中。如图1A所示,该方法包括:
S110、响应于用户的汽车启动请求,控制混动汽车进行高压上电,并获取动力电池的荷电状态值。
在本实施例中,混动汽车,可以基于双电机串并联的混合动力系统;在双电机串并联的混合动力系统中,驱动电机通过齿轮直接与减速机构耦合,发电机与发动机通过齿轮啮合连接,发动机飞轮端通过离合器与后端减速机构进行动力连接与中断。
典型的,双电机串并联的混合动力系统的拓扑结构可以如图1B所示,其中,混合动力系统可以包括三种工作模式,纯电模式、串联模式和并联模式。在纯电模式下,发动机(Engine)停机,离合器(coupling clutch)打开,驱动电机(Motor)单独驱动;在串联模式下,发动机(Engine)运行带动发电机(Generator)发电,离合器打开,驱动电机单独驱动;在并联模式下,发动机驱动,离合器结合,发电机发电或随动,驱动电机助力或随动。
在本实施例中,用户可以执行车辆启动操作,以向混动控制单元(Hybrid Control Unit,HCU)发送汽车启动请求。HCU在检测到汽车启动请求之后,如果检测到当前满足高压上电条件,例如,动力电池的电量满足高压上电需求,则可以进行高压系统上电(系统主正、主副继电器结合)操作。
之后,HCU在控制混动汽车成功高压上电之后,可以获取动力电池当前的荷电状态值(State of Charge,SOC),其中,荷电状态值,可以是动力电池的当前剩余电量与可容纳电量之间的比值。在本实施例中,HCU可以通过电池管理系统(Battery Management System,BMS)获取动力电池当前的荷电状态值。
S120、响应于检测到所述动力电池的荷电状态值满足预设起机检测条件,控制发动机进行循环起机,并响应于检测到所述发动机未成功起机,获取所述发动机的异常起机次数。
其中,预设起机检测条件,可以是预先设置的用于判断动力电池当前的荷电状态值是否满足起机需求的条件信息。例如,预设起机检测条件,可以是动力电池的荷电状态值小于预先设置的电量阈值,或者,也可以是动力电池的荷电状态值位于预先设置的两个电量阈值之间。
在本实施例中,若检测到动力电池当前的荷电状态值满足预设起机检测条件,则表示此时动力电池的电量较低,需要启动发动机为动力电池充电。因此,HCU可以控制发动机进行起机。示例性的,HCU可以控制发电机输出驱动扭矩,以拖动发动机到一定转速,进而由发动机喷油点火完成启动。
然而,若发动机存在故障,例如,发动机没油,或者发动机喷油嘴损坏等,则发电机会一直拖动发动机,但发动机无法喷油点火,或者喷油但不点火,即发动机无法成功启动。此时,HCU可以控制发动机进行停机。之后,在等待一段时间之后,HCU可以重新控制发动机进行起机。示例性的,若发动机始终无法成功起机,则可以重复上述过程,并统计发动机的异常起机次数,即发动机失败起机的次数。
可选的,可以采用设定的标志位的不同数值对发动机是否成功起机进行表示,例如,标志位可以是ErrEngStpReq,若发动机起机失败,则标志位置位,即ErrEngStpReq=1,在一定时间后,可以自动将标志位复位,即ErrEngStpReq=0。由此,根据设定标志位的数值,可以判断当前发动机是否成功起机。此外,当发动机失败起机的次数超过一定值时,可以在当前的高压上电到高压下电的驾驶循环中,将该标志位永久置位。
S130、响应于以下至少之一,控制所述混动汽车进行高压下电:检测到所述发动机的异常起机次数大于或者等于预设次数阈值;检测到所述动力电池的荷电状态值满足预设下电检测条件。
其中,预设次数阈值,可以是一次从高压上电到高压下电的驾驶循环中所允许的最大失败起机次数。预设下电检测条件,可以是预先设置的用于判断是否需要进行高压下电的条件信息,例如,可以是动力电池的SOC小于预先设置 的SOC值。
在本实施例中,若检测到发动机的异常起机次数大于或者等于预设次数阈值,即发动机连续的起机失败,则HCU可以控制混动汽车进行高压下电。或者当检测到动力电池的SOC满足预设下电检测条件,例如,小于预设的SOC值时,也可以控制混动汽车进行高压下电。或者,在同时检测到发动机的异常起机次数大于或者等于预设次数阈值,和动力电池的荷电状态值满足预设下电检测条件时,也可以控制混动汽车进行高压下电。
在一个例子中,当动力电池的SOC小于预先设置的SOC值,且预先设置的与发动机是否成功起机对应的标志位ErrEngStpReq的数值为1时,HCU可以控制混动汽车进行高压下电。
可以理解的是,在循环起机的过程中,动力电池的电量会被持续地消耗。在本实施例中,通过设置预设次数阈值和预设下电检测条件,可以避免在循环起机过程中持续消耗动力电池的电量,从而导致动力电池的SOC过低的情况,可以避免影响动力电池的使用寿命;同时,通过上述设置,可以允许一定数量的失败起机次数,从而可以充分利用混动系统的起机能力。
本申请实施例中,通过响应于用户的汽车启动请求,控制混动汽车进行高压上电,并获取动力电池的荷电状态值;若检测到动力电池的荷电状态值满足预设起机检测条件,则控制发动机进行循环起机,并在检测到发动机未成功起机时,获取发动机的异常起机次数;响应于以下情况中至少之一,控制所述混动汽车进行高压下电:检测到发动机的异常起机次数大于或者等于预设次数阈值;检测到动力电池的荷电状态值满足预设下电检测条件。通过在电池电量满足预设起机检测条件时,允许一定的起机次数,并最终在检测到电池电量满足预设下电检测条件时进行主动高压下电,可以在避免起机失败导致的电池电量持续下降的同时,充分利用车辆的起机能力,可以避免影响动力电池的使用寿命,可以提升用户的车辆使用体验。
在本实施例的一个可选的实施方式中,控制发动机进行循环起机,可以包 括:
控制发电机带动所述发动机到达第一预设转速,以控制所述发动机进行起机,并获取发动机状态;
响应于根据所述发动机状态检测到所述发动机未成功起机,控制所述发电机带动所述发动机到达第二预设转速,以控制所述发动机进行停机,等待预设时间,控制所述发动机重新进行起机。
其中,第一预设转速可以大于第二预设转速,第一预设转速和第二预设转速可以根据历史经验进行设置。
在本实施例中,在执行发动机的起机操作时,HCU可以控制发电机输出驱动扭矩,以带到发动机到一个设定的较高转速(第一预设转速),从而控制发动机开始进行起机。之后,HCU可以实时获取发动机状态。若检测到当前的发动机状态为未启动状态,则表示发动机此次的起机失败,此时HCU可以执行发动机的停机操作。
示例性的,HCU在执行停机操作时,可以控制发电机输出驱动扭矩,以带到发动机到一个设定的较低转速(第二预设转速),从而使得发动机快速停机。在开始执行发动机的停机操作之后,HCU可以在预设时间之后,重新控制发动机进行起机。之后,HCU可以重复上述过程,以实现发动机的循环起机。其中,预设时间,可以是预先设置的用于发动机完成停机的时间。此外,停机的优先级高于起机的优先级。
在本实施例的另一个可选的实施方式中,根据所述发动机状态检测到所述发动机未成功起机,可以包括:
响应于检测到所述发动机状态为未启动状态,获取未启动状态对应的持续时间;响应于检测到所述未启动状态对应的持续时间大于或者等于预设时间阈值,确定所述发动机未成功起机。
在一个例子中,在根据发动机状态确定发动机未成功起机时,可以获取发动机的未启动状态的持续时间,若检测到持续时间大于或者等于预先设置的时 间阈值,则表示一次起机过程超过了一定时间,此时可以认为起机未成功。
上述设置的好处在于,可以避免发电机长时间拖动发动机,导致的发动机损坏。
在本实施例的另一个可选的实施方式中,在确定所述发动机未成功起机之后,还可以包括:生成起机异常告警信息,并通过仪表界面对所述起机异常告警信息进行可视化展示。
在本实施例中,在检测到存在发动机未成功起机时,HCU还可以生成起机异常告警信息发送至车机设备,以通过车机设备的仪表界面对该起机异常告警信息进行可视化展示,例如,对与起机异常对应的仪表图标进行闪烁显示,以提示驾驶员当前存在起机异常,同时可以为开发人员进行故障处理提供便捷。
可选的,HCU也可以在控制混动汽车完成高压下电之后,生成启动异常告警信息发送到驾驶员,以提示驾驶员当前存在车辆启动异常。
实施例二
图2为本申请实施例二提供的一种混动汽车的起机控制方法的流程图,本实施例是对上述技术方案的细化,本实施例中的技术方案可以与上述一个或者多个实施方式结合。如图2所示,该方法包括:
S210、响应于用户的汽车启动请求,控制混动汽车进行高压上电,并获取动力电池的荷电状态值。
S220、响应于检测到所述动力电池的荷电状态值小于或者等于预设起机门限值,且大于预设起机禁止门限值,确定所述动力电池的荷电状态值满足预设起机检测条件,控制发动机进行循环起机,并在检测到所述发动机未成功起机时,获取所述发动机的异常起机次数。
其中,预设起机门限值,可以是预先设置的用于判断是否需要进行发动机起机的动力电池的SOC。当动力电池的SOC小于或者等于预设起机门限值时,表示需要对发动机进行起机,以对动力电池进行充电;当动力电池的SOC大于 预设起机门限值时,表示动力电池的电量充足,不需要对发动机进行起机。
预设起机禁止门限值,可以是预先设置的用于禁止发动机再起机的动力电池的SOC;当动力电池的SOC小于或者等于预设起机禁止门限值时,表示动力电池的剩余电量过少,此时禁止发动机再起机,可以避免动力电池的电量过低导致的动力电池的使用寿命的降低,同时可以为后续的高压上电预留足够的电量。
在本实施例中,可以根据历史经验设置相应的预设起机门限值和预设起机禁止门限值,或者,可以预先设置预设起机禁止门限值,并根据起机次数需求设置对应的预设起机门限值。
示例性的,当检测到动力电池当前的SOC小于或者等于预设起机门限值,且大于预设起机禁止门限值时,表示动力电池当前的SOC较低,但仍足够进行发动机起机,此时可以确定动力电池的SOC满足预设起机检测条件,HCU可以开始控制发动机进行循环起机。
可选的,还可以预先设置停机门限值,当HCU控制发动机进行循环起机之后,若检测到发动机成功起机,发动机可以对动力电池进行充电,从而提高动力电池的SOC。当检测到动力电池的SOC大于或者等于预先设置的停机门限值时,HCU可以控制发动机进行停机,从而停止发动机对动力电池的继续充电。其中,停机门限值,可以根据动力电池的最大SOC进行设置。
S230、响应于以下情况中至少之一,控制所述混动汽车进行高压下电:检测到所述发动机的异常起机次数大于或者等于预设次数阈值;检测到所述动力电池的荷电状态值满足预设下电检测条件。
在本实施例中,若检测到发动机的异常起机次数大于或者等于预设次数阈值,但动力电池的荷电状态值不满足预设下电检测条件,则HCU在控制混动汽车进行高压下电之后,仍可以响应于用户的汽车再启动请求,重新控制混动汽车进行高压上电,并重新控制发动机进行循环起机。之后,若发动机的起机仍均失败,则可以再次控制混动汽车进行高压下电,并重复上述过程,直至检测 到动力电池的荷电状态值满足预设下电检测条件,控制混动汽车进行高压下电,并可以不再进行起机尝试。同时,HCU可以向用户发送起机故障提示,以使用户及时进行故障处理。
本申请实施例的技术方案,通过响应于用户的汽车启动请求,控制混动汽车进行高压上电,并获取动力电池的荷电状态值,若检测到动力电池的荷电状态值小于或者等于预设起机门限值,且大于预设起机禁止门限值,则确定动力电池的荷电状态值满足预设起机检测条件,控制发动机进行循环起机,并在检测到发动机未成功起机时,获取发动机的异常起机次数,响应于以下情况中至少之一,控制所述混动汽车进行高压下电:检测到发动机的异常起机次数大于或者等于预设次数阈值;检测到动力电池的荷电状态值满足预设下电检测条件,通过设置预设起机门限值、预设起机禁止门限值、预设次数阈值和预设下电检测条件,可以在避免起机失败导致的电池电量持续下降的同时,充分利用车辆的起机能力,可以避免影响动力电池的使用寿命,可以提升用户的车辆使用体验。
在本实施例的一个可选的实施方式中,检测到所述动力电池的荷电状态值满足预设下电检测条件,包括:
响应于检测到所述动力电池的荷电状态值小于或者等于所述预设起机禁止门限值,确定所述动力电池的荷电状态值满足预设下电检测条件。
在一个例子中,HCU在控制发动机进行循环起机之后,若存在连续的起机失败,此时动力电池的SOC将不断降低。当动力电池的SOC降低到预设起机禁止门限值时,可以确定动力电池的SOC满足预设下电检测条件,此时HCU可以停止对发动机的起机尝试,并可以控制混动汽车进行高压下电。
在本实施例的另一个可选的实施方式中,本实施例的技术方案还可以包括:
获取单次起机所需电量,并根据所述单次起机所需电量,获取起机预留电量;
获取预设起机禁止门限值,并根据所述预设起机禁止门限值和所述起机预 留电量,获取预设起机门限值。
其中,单次起机所需电量,可以包括起机所需的电量和高压附件(例如,直流转换器、空调等)消耗的电量。在本实施例中,可以将起机所需的电量与高压附件消耗的电量的和值,作为单次起机所需电量。
在本实施例中,还可以预先设置相应的预设起机禁止门限值和预设起机门限值。示例性的,可以将单次起机所需电量和预先设置的起机次数进行相乘,以获取起机预留电量。其中,起机次数,可以根据任务需求进行自适应设置,典型的,起机次数可以大于或者等于9。之后,可以根据动力电池允许的最小SOC设置预设起机禁止门限值,并计算得到起机预留电量对应的SOC值,进而可以将该SOC值与预设起机禁止门限值进行相加,并将和值作为最终的预设起机门限值。
上述设置的好处在于,可以允许一定数量的起机失败次数,可以实现对起机能力的充分利用,可以提升混动系统的鲁棒性。
其中,根据动力电池允许的最小SOC设置预设起机禁止门限值,可以包括:将动力电池允许的最小SOC与预先设置的SOC进行相加,以获取预设起机禁止门限值。
实施例三
图3为本申请实施例三提供的一种混动汽车的起机控制装置的结构示意图。如图3所示,该装置应用于混动控制单元,包括:高压上电控制模块310、起机检测模块320和高压下电控制模块330;其中,
高压上电控制模块310,设置为响应于用户的汽车启动请求,控制混动汽车进行高压上电,并获取动力电池的荷电状态值;
起机检测模块320,设置为响应于检测到所述动力电池的荷电状态值满足预设起机检测条件,控制发动机进行循环起机,并响应于检测到所述发动机未成功起机,获取所述发动机的异常起机次数;
高压下电控制模块330,设置为响应于以下情况中至少之一,控制所述混动汽车进行高压下电:检测到所述发动机的异常起机次数大于或者等于预设次数阈值;检测到所述动力电池的荷电状态值满足预设下电检测条件。
本申请实施例的技术方案,通过响应于用户的汽车启动请求,控制混动汽车进行高压上电,并获取动力电池的荷电状态值;若检测到动力电池的荷电状态值满足预设起机检测条件,则控制发动机进行循环起机,并在检测到发动机未成功起机时,获取发动机的异常起机次数;响应于以下情况中至少之一,控制所述混动汽车进行高压下电:检测到发动机的异常起机次数大于或者等于预设次数阈值;检测到动力电池的荷电状态值满足预设下电检测条件。通过在电池电量满足预设起机检测条件时,允许一定的起机次数,并最终在检测到电池电量满足预设下电检测条件时进行主动高压下电,可以在避免起机失败导致的电池电量持续下降的同时,充分利用车辆的起机能力,可以避免影响动力电池的使用寿命,可以提升用户的车辆使用体验。
可选的,起机检测模块320,包括:
第一控制单元,设置为控制发电机带动所述发动机到达第一预设转速,以控制所述发动机进行起机,并获取发动机状态;
第二控制单元,设置为响应于根据所述发动机状态检测到所述发动机未成功起机,控制所述发电机带动所述发动机到达第二预设转速,以控制所述发动机进行停机,等待预设时间,控制所述发动机重新进行起机。
可选的,第二控制单元,包括:
持续时间获取子单元,设置为响应于检测到所述发动机状态为未启动状态,获取未启动状态对应的持续时间;
未起机确定子单元,设置为响应于检测到所述未启动状态对应的持续时间大于或者等于预设时间阈值,确定所述发动机未成功起机。
可选的,所述混动汽车的起机控制装置,还包括:
异常告警模块,设置为生成起机异常告警信息,并通过仪表界面对所述起 机异常告警信息进行可视化展示。
可选的,起机检测模块320,设置为响应于检测到所述动力电池的荷电状态值小于或者等于预设起机门限值,且大于预设起机禁止门限值,确定所述动力电池的荷电状态值满足预设起机检测条件。
可选的,高压下电控制模块330,设置为响应于检测到所述动力电池的荷电状态值小于或者等于所述预设起机禁止门限值,确定所述动力电池的荷电状态值满足预设下电检测条件。
可选的,所述混动汽车的起机控制装置,还包括:
起机预留电量获取模块,设置为获取单次起机所需电量,并根据所述单次起机所需电量,获取起机预留电量;
预设起机门限值获取模块,设置为获取预设起机禁止门限值,并根据所述预设起机禁止门限值和所述起机预留电量,获取预设起机门限值。
本申请实施例所提供的混动汽车的起机控制装置可执行本申请任意实施例所提供的混动汽车的起机控制方法,具备执行方法相应的功能模块和效果。
实施例四
图4示出了可以用来实施本申请的实施例的汽车400的结构示意图。汽车400可以包括混动控制单元410。
本文所示的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和要求的本申请的实现。
如图4所示,混动控制单元410包括至少一个处理器411,以及与至少一个处理器411通信连接的存储器,如只读存储器(Read-Only Memory,ROM)412、随机访问存储器(Random Access Memory,RAM)413等,其中,存储器存储有可被至少一个处理器执行的计算机程序,处理器411可以根据存储在只读存储器(ROM)412中的计算机程序或者从存储单元418加载到随机访问存储器(RAM)413中的计算机程序,来执行各种适当的动作和处理。在RAM 413中, 还可存储混动控制单元410操作所需的各种程序和数据。处理器411、ROM 412以及RAM 413通过总线414彼此相连。输入/输出(Input/Output,I/O)接口415也连接至总线414。
混动控制单元410中的多个部件连接至I/O接口415,包括:输入单元416;输出单元417,例如各种类型的显示器、扬声器等;存储单元418,例如磁盘、光盘等;以及通信单元419,例如网卡、调制解调器、无线通信收发机等。通信单元419允许混动控制单元410通过诸如因特网的计算机网络和/或各种电信网络与其他设备交换信息/数据。
处理器411可以是各种具有处理和计算能力的通用或专用处理组件。处理器411的示例包括但不限于中央处理单元(Central Processing Unit,CPU)、图形处理单元(Graphics Processing Unit,GPU)、各种专用的人工智能(Artificial Intelligence,AI)计算芯片、各种运行机器学习模型算法的处理器、数字信号处理器(Digital Signal Processing,DSP)、以及任何适当的处理器、控制器、微控制器等。处理器411执行上文所描述的方法和处理,例如混动汽车的起机控制方法。
在一些实施例中,混动汽车的起机控制方法可被实现为计算机程序,其被有形地包含于计算机可读存储介质,例如存储单元418。在一些实施例中,计算机程序的部分或者全部可以经由ROM 412和通信单元419中至少之一而被载入或安装到混动控制单元410上。当计算机程序加载到RAM 413并由处理器411执行时,可以执行上文描述的混动汽车的起机控制方法的至少一个步骤。备选地,在其他实施例中,处理器411可以通过其他任何适当的方式(例如,借助于固件)而被配置为执行混动汽车的起机控制方法。
本文中以上描述的系统和技术的各种实施方式可以在数字电子电路系统、集成电路系统、场可编程门阵列(Field Programmable Gate Array,FPGA)、专用集成电路(Application Specific Integrated Circuit,ASIC)、专用标准产品(Application Specific Standard Parts,ASSP)、芯片上系统(System on Chip, SOC)、复杂可编程逻辑设备(Complex Programmable Logic Device,CPLD)、计算机硬件、固件、软件、和它们的组合中实现。这些各种实施方式可以包括:实施在至少一个计算机程序中,该至少一个计算机程序可在包括至少一个可编程处理器的可编程系统上执行或解释,该可编程处理器可以是专用或者通用可编程处理器,可以从存储系统、至少一个输入装置、和至少一个输出装置接收数据和指令,并且将数据和指令传输至该存储系统、该至少一个输入装置、和该至少一个输出装置。
用于实施本申请的方法的计算机程序可以采用至少一个编程语言的任何组合来编写。这些计算机程序可以提供给通用计算机、专用计算机或其他可编程数据处理装置的处理器,使得计算机程序当由处理器执行时使流程图和框图中所规定的功能或操作被实施。计算机程序可以完全在机器上执行、部分地在机器上执行,作为独立软件包部分地在机器上执行且部分地在远程机器上执行或完全在远程机器或服务器上执行。
在本申请的上下文中,计算机可读存储介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的计算机程序。计算机可读存储介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。备选地,计算机可读存储介质可以是机器可读信号介质。机器可读存储介质的示例会包括基于至少一个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、快闪存储器、光纤、便捷式紧凑盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本申请中记载的步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本申请的技术方案所期望的结果,本文在此不进 行限制。

Claims (10)

  1. 一种混动汽车的起机控制方法,由混动控制单元执行,包括:
    响应于用户的汽车启动请求,控制混动汽车进行高压上电,并获取动力电池的荷电状态值;
    响应于检测到所述动力电池的荷电状态值满足预设起机检测条件,控制发动机进行循环起机,并响应于检测到所述发动机未成功起机,获取所述发动机的异常起机次数;
    响应于以下情况中至少之一,控制所述混动汽车进行高压下电:检测到所述发动机的异常起机次数大于或者等于预设次数阈值;检测到所述动力电池的荷电状态值满足预设下电检测条件。
  2. 根据权利要求1所述的方法,其中,控制发动机进行循环起机,包括:
    控制发电机带动所述发动机到达第一预设转速,以控制所述发动机进行起机,并获取发动机状态;
    响应于根据所述发动机状态检测到所述发动机未成功起机,控制所述发电机带动所述发动机到达第二预设转速,以控制所述发动机进行停机,等待预设时间,控制所述发动机重新进行起机。
  3. 根据权利要求2所述的方法,其中,根据所述发动机状态检测到所述发动机未成功起机,包括:
    响应于检测到所述发动机状态为未启动状态,获取未启动状态对应的持续时间;
    响应于检测到所述未启动状态对应的持续时间大于或者等于预设时间阈值,确定所述发动机未成功起机。
  4. 根据权利要求3所述的方法,其中,在确定所述发动机未成功起机之后,还包括:
    生成起机异常告警信息,并通过仪表界面对所述起机异常告警信息进行可视化展示。
  5. 根据权利要求1所述的方法,其中,检测到所述动力电池的荷电状态值 满足预设起机检测条件,包括:
    响应于检测到所述动力电池的荷电状态值小于或者等于预设起机门限值,且大于预设起机禁止门限值,确定所述动力电池的荷电状态值满足预设起机检测条件。
  6. 根据权利要求5所述的方法,其中,检测到所述动力电池的荷电状态值满足预设下电检测条件,包括:
    响应于检测到所述动力电池的荷电状态值小于或者等于所述预设起机禁止门限值,确定所述动力电池的荷电状态值满足预设下电检测条件。
  7. 根据权利要求5所述的方法,还包括:
    获取单次起机所需电量,并根据所述单次起机所需电量,获取起机预留电量;
    获取预设起机禁止门限值,并根据所述预设起机禁止门限值和所述起机预留电量,获取预设起机门限值。
  8. 一种混动汽车的起机控制装置,应用于混动控制单元,包括:
    高压上电控制模块(310),设置为响应于用户的汽车启动请求,控制混动汽车进行高压上电,并获取动力电池的荷电状态值;
    起机检测模块(320),设置为响应于检测到所述动力电池的荷电状态值满足预设起机检测条件,控制发动机进行循环起机,并响应于检测到所述发动机未成功起机,获取所述发动机的异常起机次数;
    高压下电控制模块(330),设置为响应于以下情况中至少之一,控制所述混动汽车进行高压下电:检测到所述发动机的异常起机次数大于或者等于预设次数阈值;检测到所述动力电池的荷电状态值满足预设下电检测条件。
  9. 一种汽车,包括:
    混动控制单元(410),包括至少一个处理器(411),以及与所述至少一个处理器(411)通信连接的存储器;
    所述存储器存储有可被所述至少一个处理器(411)执行的计算机程序,所 述计算机程序被所述至少一个处理器(411)执行,以使所述至少一个处理器(411)能够执行权利要求1-7中任一项所述的混动汽车的起机控制方法。
  10. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序设置为使处理器执行时实现权利要求1-7中任一项所述的混动汽车的起机控制方法。
PCT/CN2023/107363 2022-07-18 2023-07-14 混动汽车的起机控制方法、装置、汽车及介质 WO2024017149A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210840184.7 2022-07-18
CN202210840184.7A CN115009264A (zh) 2022-07-18 2022-07-18 混动汽车的起机控制方法、装置、汽车及介质

Publications (1)

Publication Number Publication Date
WO2024017149A1 true WO2024017149A1 (zh) 2024-01-25

Family

ID=83080088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/107363 WO2024017149A1 (zh) 2022-07-18 2023-07-14 混动汽车的起机控制方法、装置、汽车及介质

Country Status (2)

Country Link
CN (1) CN115009264A (zh)
WO (1) WO2024017149A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115009264A (zh) * 2022-07-18 2022-09-06 中国第一汽车股份有限公司 混动汽车的起机控制方法、装置、汽车及介质
CN115891967B (zh) * 2023-02-28 2023-05-12 中国第一汽车股份有限公司 混合动力系统控制方法、装置、设备以及介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005051830A (ja) * 2003-07-29 2005-02-24 Toyota Motor Corp 動力出力装置およびその制御方法並びに自動車
JP2010111291A (ja) * 2008-11-06 2010-05-20 Toyota Motor Corp ハイブリッド車両の制御装置
CN105774571A (zh) * 2015-12-30 2016-07-20 北京新能源汽车股份有限公司 增程式电动汽车及其发动机起动控制方法、系统
CN107021102A (zh) * 2015-10-20 2017-08-08 福特全球技术公司 基于荷电状态的发动机启停控制
CN108045266A (zh) * 2017-11-09 2018-05-18 浙江吉利新能源商用车有限公司 一种増程器启动控制方法及装置
WO2021143743A1 (zh) * 2020-01-17 2021-07-22 长城汽车股份有限公司 混动车辆的电池包的保护方法和装置
CN115009264A (zh) * 2022-07-18 2022-09-06 中国第一汽车股份有限公司 混动汽车的起机控制方法、装置、汽车及介质
CN115107735A (zh) * 2022-01-07 2022-09-27 长城汽车股份有限公司 汽车电池包的亏电保护方法及相关装置
CN116461489A (zh) * 2023-03-28 2023-07-21 蜂巢传动系统(江苏)有限公司 发动机启停控制方法、装置、存储介质和车辆

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005051830A (ja) * 2003-07-29 2005-02-24 Toyota Motor Corp 動力出力装置およびその制御方法並びに自動車
JP2010111291A (ja) * 2008-11-06 2010-05-20 Toyota Motor Corp ハイブリッド車両の制御装置
CN107021102A (zh) * 2015-10-20 2017-08-08 福特全球技术公司 基于荷电状态的发动机启停控制
CN105774571A (zh) * 2015-12-30 2016-07-20 北京新能源汽车股份有限公司 增程式电动汽车及其发动机起动控制方法、系统
CN108045266A (zh) * 2017-11-09 2018-05-18 浙江吉利新能源商用车有限公司 一种増程器启动控制方法及装置
WO2021143743A1 (zh) * 2020-01-17 2021-07-22 长城汽车股份有限公司 混动车辆的电池包的保护方法和装置
CN115107735A (zh) * 2022-01-07 2022-09-27 长城汽车股份有限公司 汽车电池包的亏电保护方法及相关装置
CN115009264A (zh) * 2022-07-18 2022-09-06 中国第一汽车股份有限公司 混动汽车的起机控制方法、装置、汽车及介质
CN116461489A (zh) * 2023-03-28 2023-07-21 蜂巢传动系统(江苏)有限公司 发动机启停控制方法、装置、存储介质和车辆

Also Published As

Publication number Publication date
CN115009264A (zh) 2022-09-06

Similar Documents

Publication Publication Date Title
WO2024017149A1 (zh) 混动汽车的起机控制方法、装置、汽车及介质
US9181895B2 (en) Start-stop retrofit systems and methods
US9050975B2 (en) Vehicle and method of controlling vehicle
JP7189693B2 (ja) 電源システム
CN205365586U (zh) 增程式电动汽车的增程器停机控制系统
CN110259618B (zh) 一种起动机的监测方法及装置
CN110530646A (zh) 发动机检测诊断方法、装置及增程式电动汽车
JP7128661B2 (ja) バッテリ診断装置
CN111591281B (zh) 一种怠速控制方法、装置、车辆和存储介质
CN113696748B (zh) 一种燃料电池供电系统及其控制方法和控制装置
WO2024017152A1 (zh) 混合动力汽车的控制方法、装置、汽车及介质
CN112160857B (zh) 一种双电机车辆发动机控制方法、装置、车辆及存储介质
CN111891112B (zh) 混合动力汽车发动机启停控制方法、装置、设备和介质
CN116461489A (zh) 发动机启停控制方法、装置、存储介质和车辆
CN114030458B (zh) 一种混动车控制方法、装置、设备和介质
CN113561958B (zh) 混合动力汽车后氧传感器动态响应诊断方法及系统
CN111114531B (zh) 基于p2结构混合动力系统的跛行方法及控制系统
JP6851743B2 (ja) ジャンピングスタート判定装置
US20140032024A1 (en) Method for operating a hybrid vehicle
CN115285105B (zh) 混动汽车亏电控制方法、装置、设备及存储介质
CN115891967B (zh) 混合动力系统控制方法、装置、设备以及介质
CN110535234B (zh) 一种bsg车型自主发电控制方法及装置
JP2020089038A (ja) 車両の電源制御装置
CN114194030B (zh) 作业机械dc/dc转换器控制方法、装置及作业机械
CN118024884A (zh) 一种跛行模式下的电压控制方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842212

Country of ref document: EP

Kind code of ref document: A1