WO2019229895A1 - 超音波測距装置 - Google Patents

超音波測距装置 Download PDF

Info

Publication number
WO2019229895A1
WO2019229895A1 PCT/JP2018/020828 JP2018020828W WO2019229895A1 WO 2019229895 A1 WO2019229895 A1 WO 2019229895A1 JP 2018020828 W JP2018020828 W JP 2018020828W WO 2019229895 A1 WO2019229895 A1 WO 2019229895A1
Authority
WO
WIPO (PCT)
Prior art keywords
correlation function
signal
frequency
received signal
transmission signal
Prior art date
Application number
PCT/JP2018/020828
Other languages
English (en)
French (fr)
Inventor
武史 羽鳥
敏 川村
井上 悟
幹次 北村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/020828 priority Critical patent/WO2019229895A1/ja
Publication of WO2019229895A1 publication Critical patent/WO2019229895A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • G01S7/526Receivers

Definitions

  • the present invention relates to an ultrasonic distance measuring device that determines the distance to an obstacle by measuring the propagation time of ultrasonic waves.
  • the ultrasonic wave propagation time can be obtained by transmitting an ultrasonic wave toward the obstacle and receiving the ultrasonic wave reflected by the obstacle (hereinafter also referred to as a reflected wave). Since the propagation speed of the ultrasonic wave in the medium is constant, the distance to the obstacle in the medium can be obtained. Based on this principle, the ultrasonic distance measuring device multiplies the propagation time by the propagation velocity to determine the distance that the ultrasonic wave reciprocates, and calculates 1/2 of the determined distance as the distance to the obstacle. In this ultrasonic distance measuring device, it is important to correctly measure the time when the reflected wave from the obstacle arrives due to the measurement principle.
  • An ultrasonic range finder for automobiles uses a low-cost, small-sized ultrasonic sensor placed inside a bumper to transmit and receive ultrasonic waves, calculate correlations, and use digital communication to determine the time when peak values are observed. It is desired to transmit to a distance measurement ECU (Electronic Control Unit).
  • the frequency of the ultrasonic wave used at this time is 20 kHz or more, and is a high-frequency sound wave that cannot be heard by humans.
  • the ultrasonic distance measuring device stores the received signal obtained by A / D (Analog Digital) conversion for the time required for the ultrasonic wave to reciprocate between obstacles Need to remember. Further, in order to detect a reflected wave included in a signal from the ultrasonic sensor, it is necessary to increase the sampling frequency of A / D conversion. However, when the sampling frequency is increased, a large amount of memory is required and the amount of calculation increases.
  • the present invention has been made to solve the above-described problems, and an object thereof is to make it possible to detect a reflected wave contained in a received signal even when the sampling frequency of the received signal is lowered.
  • An ultrasonic distance measuring device transmits an ultrasonic wave corresponding to a transmission signal, receives an ultrasonic wave reflected by an obstacle and outputs an analog signal, and n is 3 or less.
  • the analog-to-digital converter that outputs the received signal by converting the analog signal to analog at a sampling frequency 4n times the frequency of the transmitted signal, and the correlation for calculating the correlation function between the received signal and the transmitted signal
  • a distance measuring unit that calculates the distance to the obstacle based on the time when the peak value of the amplitude of the correlation function is detected.
  • a correlation function between a reception signal and an A / D conversion signal that is A / D converted at a sampling frequency 4n times the frequency of the transmission signal is calculated, and two sampling values separated by n of the correlation function are squared. Since the correlation function amplitude is calculated by adding the values, the reflected wave contained in the received signal can be detected even if the sampling frequency of the received signal is lower than the conventional one.
  • FIG. 1 is a block diagram illustrating a configuration example of an ultrasonic distance measuring apparatus according to Embodiment 1.
  • FIG. 2 is a block diagram illustrating a configuration example of a signal processing circuit according to the first embodiment.
  • FIG. 5 is a graph for explaining processing of a detection unit in the first embodiment.
  • 4A is a diagram illustrating an example in which the correlation function calculation unit uses linear convolution in Embodiment 1
  • FIG. 4B is a diagram illustrating an example in which cyclic convolution is used.
  • 5A to 5D are graphs showing signal waveforms related to the calculation of the correlation function by the correlation function calculation unit of the first embodiment.
  • 6A to 6F are graphs showing the results of the discrete Fourier transform performed by the correlation function calculation unit according to the first embodiment.
  • FIG. 1 is a block diagram illustrating a configuration example of an ultrasonic distance measuring apparatus according to Embodiment 1.
  • FIG. 2 is a block diagram illustrating a configuration example of a signal processing circuit according to
  • FIG. 7A is a graph showing the result of convolution by the correlation function calculation unit of the first embodiment
  • FIG. 7A is the result of linear convolution
  • FIG. 7B is the result of cyclic convolution.
  • 6 is a diagram illustrating an example in which a received signal is divided into blocks in a correlation function calculation unit according to Embodiment 1.
  • FIG. 9A to 9F are graphs showing the influence of the Doppler effect on the DFT result by the correlation function calculation unit of the first embodiment.
  • 6 is a graph showing a waveform without Doppler compensation and a waveform with Doppler compensation of a transmission signal DFT result by the correlation function calculation unit according to the first embodiment.
  • 11A is a graph showing a waveform without Doppler compensation of a correlation function calculation result by the correlation function calculation unit of Embodiment 1
  • FIG. 11B is a graph showing a waveform with Doppler compensation.
  • 12A to 12D are graphs showing signal waveforms related to the calculation of the correlation function by the correlation function calculation unit of the first embodiment.
  • 13A to 13F are graphs showing the results of DFT performed by the correlation function calculation unit according to the first embodiment.
  • 6 is a graph showing a waveform without Doppler compensation and a waveform with Doppler compensation of a transmission signal DFT result by the correlation function calculation unit according to the first embodiment.
  • FIG. 15A is a graph showing a waveform without Doppler compensation of a correlation function calculation result in the correlation function calculation unit of Embodiment 1
  • FIG. 15B is a graph showing a waveform with Doppler compensation.
  • FIG. 16A to FIG. 16C are graphs showing waveforms of transmission signals used for correlation function calculation by the correlation function calculation unit of the first embodiment.
  • 17A to 17D are graphs showing signal waveforms related to the calculation of the correlation function by the correlation function calculation unit of the first embodiment.
  • 18A to 18F are graphs showing DFT results obtained by the correlation function calculation unit of the first embodiment.
  • 6 is a graph showing a waveform without Doppler compensation and a waveform with Doppler compensation of a transmission signal DFT result by the correlation function calculation unit according to the first embodiment.
  • FIG. 20A is a graph showing a waveform without Doppler compensation of a correlation function calculation result by the correlation function calculator of Embodiment 1
  • FIG. 20B is a graph showing a waveform with Doppler compensation.
  • 6 is a graph illustrating an example of sampling of a sin component and a cos component of a reception signal by the correlation function calculation unit according to the first embodiment.
  • 6 is a flowchart illustrating an example of sampling operation of a sin component and a cos component of a reception signal by a correlation function calculation unit according to the first embodiment.
  • 3 is a graph showing a relationship between a phase ⁇ of a received signal and a frequency difference ⁇ f in the first embodiment.
  • 6 is a block diagram illustrating a configuration example of a signal processing circuit according to a second embodiment.
  • FIG. It is a figure which shows the hardware structural example of the signal processing circuit which concerns on each embodiment.
  • FIG. 1 is a block diagram illustrating a configuration example of an ultrasonic distance measuring apparatus 10 according to the first embodiment.
  • An ultrasonic distance measuring apparatus 10 shown in FIG. 1 is mounted on a vehicle and measures the distance between the vehicle and an obstacle 7 around the vehicle.
  • the ultrasonic distance measuring device 10 includes one or more ultrasonic sensors 1.
  • the ultrasonic sensor 1 includes a transmission element 2, a reception element 3, and a signal processing circuit 4.
  • the transmission element 2 transmits an ultrasonic wave corresponding to the transmission signal.
  • the receiving element 3 receives the reflected wave reflected by the obstacle 7 from the ultrasonic wave transmitted by the transmitting element 2, and outputs a voltage corresponding to the reflected wave (hereinafter referred to as an analog signal).
  • One element may realize both functions of the transmitting element 2 and the receiving element 3.
  • the signal processing circuit 4 applies a voltage corresponding to the transmission signal to the transmission element 2 and also performs signal processing on the analog signal output from the reception element 3 to detect an amplitude peak value and the like. Then, the signal processing circuit 4 transmits information such as the peak value and the time when the peak value is detected to the distance measurement ECU 5 by digital communication.
  • the distance measurement ECU 5 receives information from the signal processing circuit 4, and the distance to the obstacle 7 based on the time when the transmitting element 2 transmits the ultrasonic wave and the time when the peak value is detected in the signal processing circuit 4. Is calculated.
  • the distance measurement ECU 5 transmits the calculated distance information to the obstacle 7 to the vehicle control ECU 6 through an in-vehicle LAN (Local Area Network).
  • LAN Local Area Network
  • the vehicle control ECU 6 receives distance information from the distance measurement ECU 5 and controls the vehicle based on the distance to the obstacle 7 to realize functions such as automatic parking of the vehicle, automatic braking, or erroneous start prevention. To do.
  • FIG. 2 is a block diagram illustrating a configuration example of the signal processing circuit 4 according to the first embodiment.
  • the signal processing circuit 4 includes an analog filter unit 401, an A / D conversion unit 402, a digital filter unit 403, a correlation function calculation unit 404, a detection unit 405, a waveform extraction unit 413, a communication processing unit 410, and a transmission processing unit 411. .
  • the analog filter unit 401, the A / D conversion unit 402, and the transmission processing unit 411 are analog circuits.
  • the digital filter unit 403, the correlation function calculation unit 404, the detection unit 405, the waveform extraction unit 413, and the communication processing unit 410 are digital circuits.
  • the analog filter unit 401 performs a process of simultaneously blocking a high frequency and a low frequency with respect to the frequency of the transmission signal out of the analog signal from the receiving element 3, that is, so-called band-pass filtering.
  • the analog filter unit 401 amplifies the analog signal.
  • the A / D conversion unit 402 samples the analog signal output from the analog filter unit 401 at a predetermined sampling frequency or the sampling frequency notified from the transmission processing unit 411, converts the analog signal into a digital signal (hereinafter referred to as “digital signal”). , Referred to as a received signal).
  • the sampling frequency is 4n times the frequency of the transmission signal, where n is a positive integer of 3 or less.
  • the A / D conversion unit 402 can ensure the reproducibility of the waveform of the reflected wave in the received signal by A / D converting the analog signal at a sampling frequency that is four times or more the frequency of the transmission signal.
  • the A / D conversion unit 402 can prevent an increase in the data amount of the reception signal by performing A / D conversion on the analog signal at a sampling frequency that is 12 times or less the frequency of the transmission signal.
  • the signal processing circuit 4 processes the digital signal at a stage subsequent to the A / D conversion unit 402. Since digital processing cannot remove a frequency of 1/2 or more of the sampling frequency, the analog filter unit 401 needs to remove noise having a frequency of 1/2 or more of the sampling frequency.
  • the digital filter unit 403 removes noise by performing band-pass filtering that extracts a signal in the vicinity of the frequency of the transmission signal from the reception signal.
  • Correlation function calculation section 404 convolves and integrates the transmission signal from communication processing section 410 and the reception signal from digital filter section 403 to calculate a correlation function. Note that the sampling frequency of the transmission signal is the same as the sampling frequency of the reception signal. Details of the correlation function calculation unit 404 will be described later.
  • the detection unit 405 squares and adds two samples separated by n in the time series data, which is the calculation result of the correlation function, and obtains the square value of the amplitude of the correlation function.
  • FIG. 3 is a graph illustrating the processing of the detection unit 405 in the first embodiment. The vertical axis of the graph is amplitude, and the horizontal axis is time. In the example of FIG. 3, it is assumed that the A / D conversion unit 402 samples an analog signal at four times the frequency of the transmission signal.
  • the correlation function is assumed to be a sine wave of a (t) ⁇ sin (2 ⁇ ft + ⁇ ). a is the amplitude, t is the sampling time, f is the frequency of the transmission signal, and ⁇ is the initial phase.
  • the detection unit 405 obtains a (t1) 2 as the square value of the amplitude of the sampling time t1 in the correlation function, obtains a (t2) 2 as the square value of the sampling time t2, and squares the amplitude of the sampling time t3.
  • a (t3) 2 is obtained as a value.
  • the waveform extraction unit 413 determines information to be transmitted to the distance measurement ECU 5 using the time series data of the squared amplitude value of the correlation function detected by the detection unit 405, and outputs the determined information to the communication processing unit 410. Specifically, the waveform extraction unit 413 detects the peak value in the time-series data of the amplitude square value of the correlation function, and uses the peak value and the time when the peak value is detected as information to be transmitted to the distance measurement ECU 5. . The time when this peak value is detected is the time when the ultrasonic wave transmitted from the transmitting element 2 is reflected by the obstacle 7 and returned to the receiving element 3.
  • the waveform extraction unit 413 may include all time series data of square amplitude values or data obtained by thinning out all time series data in the information transmitted to the distance measurement ECU 5.
  • the communication processing unit 410 performs digital communication with the distance measurement ECU 5.
  • the communication processing unit 410 transmits information from the waveform extraction unit 413 to the distance measurement ECU 5. Further, the communication processing unit 410 receives information such as the frequency of the transmission signal from the distance measurement ECU 5 and outputs the information to the correlation function calculation unit 404 and the transmission processing unit 411.
  • the transmission processing unit 411 controls the voltage waveform applied to the transmission element 2 using information on the transmission signal from the communication processing unit 410.
  • the transmission processing unit 411 may modify the voltage waveform applied to the transmission element 2 such as modulating the transmission signal.
  • the transmission processing unit 411 may notify the A / D conversion unit 402 of a frequency that is 4n times the frequency of the transmission signal as a sampling frequency.
  • the correlation function calculation unit 404 calculates the correlation function w using the following equation (1).
  • u is a transmission signal, and v is a reception signal.
  • the correlation function calculation unit 404 performs discrete convolution using Expression (1).
  • the convolution calculation method for calculating the correlation function includes linear convolution and circular convolution.
  • FIG. 4A shows an example in which the correlation function calculation unit 404 uses linear convolution in the first embodiment.
  • the correlation function calculation unit 404 calculates Equation (1) when calculating the correlation function using linear convolution.
  • FIG. 4B shows an example in which the correlation function calculation unit 404 uses cyclic convolution in the first embodiment.
  • n is the data length of the transmission signal
  • m is the data length of the reception signal.
  • correlation function calculation section 404 performs discrete Fourier transform (DFT) on the transmission signal and the reception signal, multiplies the DFT result of the transmission signal and the DFT result of the reception signal, and discretes the result of the multiplication.
  • DFT discrete Fourier transform
  • FIG. 5 is a graph showing signal waveforms related to the calculation of the correlation function by the correlation function calculation unit 404 of the first embodiment.
  • FIG. 5A is a waveform of a transmission signal
  • FIG. 5B is a waveform of a reflected wave
  • FIG. FIG. 5D shows the waveform of the received signal.
  • the vertical axis of each graph is amplitude
  • the horizontal axis is time.
  • An ultrasonic wave having a waveform equivalent to the waveform of the transmission signal shown in FIG. 5A is transmitted from the transmission element 2.
  • This ultrasonic wave collides with the obstacle 7 and is reflected to become a reflected wave, and returns to the receiving element 3 after a certain delay time (for example, 1.5 msec) as shown in FIG. 5B. Since noise as shown in FIG. 5C is superimposed on the receiving element 3, the waveform of the received signal becomes a waveform in which reflected waves and noise are mixed as shown in FIG. 5D.
  • the sampling frequency of each waveform is 480 kHz
  • the data length is 1024
  • the frequency of the transmission signal is 48 kHz.
  • the amplitudes of the transmission signal, reflected wave, and noise are ⁇ 1.
  • the reflected wave returning to the receiving element 3 has a waveform that is greatly attenuated with respect to the ultrasonic wave transmitted from the transmitting element 2.
  • the correlation function calculation unit 404 sets the data lengths of the transmission signal and the reception signal for the efficiency of the FFT. It is desirable to make it a power of two. Further, as shown in FIG. 5A, correlation function calculation section 404 adds “0” to the rear part of the transmission signal so that the data length of the transmission signal is the same as the data length of the reception signal.
  • linear convolution does not have this limitation.
  • FIG. 6 is a graph showing the results of DFT performed by the correlation function calculation unit 404 according to the first embodiment.
  • FIG. 6A shows the amplitude of the transmission signal
  • FIG. 6B shows the phase of the transmission signal
  • FIG. 6C shows the amplitude of the reception signal
  • FIG. I s the phase of the received signal
  • FIG. 6E is the amplitude of the correlation function
  • FIG. 6F is the phase of the correlation function.
  • the vertical axis of the amplitude graph is displayed as “dB”
  • the vertical axis of the phase graph is displayed as “rad”.
  • the horizontal axis of each graph is frequency.
  • the result of DFT is folded back at a Nyquist frequency that is a half of the sampling frequency of 480 kHz, and becomes a complex conjugate.
  • the DFT result display is limited to the Nyquist frequency.
  • the DFT results of the transmission signal, the reception signal, and the correlation function shown in FIGS. 6A, 6C, and 6E all have a peak around 48 kHz that is the same as the frequency of the transmission signal.
  • FIG. 7 is a graph showing the result of convolution by the correlation function calculation unit 404 of the first embodiment
  • FIG. 7A shows the result of linear convolution
  • FIG. 7B shows the result of cyclic convolution.
  • the vertical axis of the graph is amplitude
  • the horizontal axis is time.
  • the correlation function shown in FIG. 7A calculated using linear convolution and the correlation function shown in FIG. 7B calculated using circular convolution are the same.
  • FIGS. 7A and 7B start.
  • the transmission signal When the transmission signal is shifted to the position of 1.5 ms, the transmission signal and the reflected wave are completely overlapped, and the amplitude value of the correlation function becomes maximum at 1.5 ms.
  • the waveform of the correlation function shown in FIGS. 7A and 7B is compared with the waveform of the received signal shown in FIG. 5D, the correlation function shows a sharper peak at a position of 1.5 ms than the received signal. It is easy to detect the position, that is, the time when the reflected wave returns to the receiving element 3.
  • the correlation function calculation unit 404 performs a convolution operation without processing the transmission signal and the reception signal. That is, the transmission signal and the reception signal are not subjected to preprocessing corresponding to the digital filter unit 403 in FIG. As described above, when the correlation function calculation unit 404 calculates the correlation function, the ultrasonic distance measuring device 10 can remove noise without performing preprocessing such as filtering.
  • the correlation function calculation unit 404 stores a received signal having a certain data length during the FFT of the circular convolution, and performs a batch process for processing the whole.
  • FIG. 5D illustrates a short received signal of about 2.1 ms for the sake of simplicity.
  • ultrasonic distance measurement used in vehicles requires longer distance measurement, and the amount of received signal data is enormous.
  • a large amount of memory is required to perform FFT on the entire received signal having a huge amount of data at one time. Installing a large amount of memory on the ultrasonic distance measuring device 10 is a heavy burden when aiming at a low price. Therefore, it is desirable that correlation function calculation section 404 divides the received signal into a plurality of blocks and performs circular convolution for each block. By dividing the received signal into a plurality of blocks, the memory may have an amount necessary for FFT of one block.
  • FIG. 8 is a diagram illustrating an example in which the received signal is divided into blocks in the correlation function calculation unit 404 according to the first embodiment.
  • the correlation function calculation unit 404 divides the received signal into a plurality of blocks like the first block and the second block. At that time, the correlation function calculation unit 404 divides the received signal so that each block has an overlap equal to or longer than the length of the transmission signal so that the reflected wave included in the received signal is not divided at the block breaks.
  • the correlation function calculation unit 404 needs to perform DFT for each block of the received signal, but for the transmission signal, DFT only needs to be performed once when performing circular convolution with the first block of the received signal. When performing circular convolution with the second and subsequent blocks, the result of the DFT can be reused. Therefore, the calculation amount of the circular convolution can be reduced.
  • the correlation function calculation unit 404 uses the FFT for the circular convolution DFT, so that when the data length increases, the correlation function calculation unit 404 has a smaller calculation load than the linear convolution, and can perform the calculation at a higher speed.
  • the linear convolution and the circular convolution are compared with respect to the number of multiplications.
  • the linear convolution does not need to block the received signal, but uses one block of the received signal for comparison. Assuming that the data length of the transmission signal is N and the effective data length of one block of the reception signal is M, each block of the reception signal has an overlap at the rear of the block, so the length is (N + M).
  • the number of multiplications is NM because there is no need to calculate the overlap.
  • both the transmission signal and the reception signal are subjected to FFT.
  • the correlation function calculation unit 404 performs FFT of the transmission signal only once and FFT of the reception signal as many times as the number of blocks. Therefore, the number of multiplications in the circular convolution is obtained by IDFT of the number of multiplications at the time of FFT of the reception signal, the number of multiplications at the time of multiplication of the FFT result of the reception signal and the FFT result of the transmission signal, and the result of multiplication. This is the sum of the number of times of multiplication.
  • the number of multiplications during FFT is log 2 (N + M) ⁇ (N + M)
  • the number of multiplications during IDFT is also log 2 (N + M) ⁇ (N + M)
  • the number of multiplications when multiplying the FFT result and the FFT result of the transmission signal is (N + M). Therefore, in the case of circular convolution, the number of multiplications is 2 (N + M) ⁇ log 2 (N + M) + (N + M). If N increases, NM> 2 (N + M) ⁇ log 2 (N + M) + (N + M) will eventually be reached. Therefore, if N is large, if the effective data length M for one block of the received signal is set large, linear convolution can be used. Cyclic convolution requires less computation.
  • the correlation function calculation unit 404 may use linear convolution when the data length N of the transmission signal is less than a predetermined threshold, and may use cyclic convolution when the data length N is equal to or greater than the threshold.
  • the Doppler compensation at the time of cyclic convolution by the correlation function calculation unit 404 will be described.
  • the Doppler compensation at the time of linear convolution will be described later.
  • the frequency of the reflected wave is shifted by the Doppler effect.
  • the correlation function calculation unit 404 compensates for the frequency shift of the reflected wave due to the Doppler effect by performing Doppler compensation on the transmission signal.
  • FIG. 9 is a graph showing the influence of the Doppler effect on the DFT result by the correlation function calculation unit 404 of Embodiment 1
  • FIG. 9A is the amplitude of the transmission signal
  • FIG. 9B is the phase of the transmission signal
  • FIG. 9C is the phase of the reception signal
  • 9D shows the phase of the received signal
  • FIG. 9E shows the amplitude of the correlation function
  • FIG. 9F shows the phase of the correlation function.
  • the vertical axis of the amplitude graph is displayed as “dB”
  • the vertical axis of the phase graph is displayed as “rad”.
  • the horizontal axis of each graph is frequency.
  • the sampling frequency of each graph in FIG. 9 and FIGS. 10 and 11 described later is 480 kHz.
  • the peak frequency fs (48 kHz) of the transmission signal and the peak frequency fr of the reception signal shift due to the Doppler effect.
  • correlation function calculation section 404 performs DFT on the transmission signal in the circular convolution of FIG. 4B, and then corrects the frequency axis of the DFT result of the transmission signal using the frequency change rate rd. At this time, correlation function calculation section 404 shifts the frequency range below the Nyquist frequency in the DFT result of the transmission signal by the frequency change rate rd in the frequency axis direction. Correlation function calculation section 404 folds the frequency range equal to or higher than the Nyquist frequency in the DFT result of the transmission signal symmetrically with the Nyquist frequency as the axis of symmetry to make a complex conjugate.
  • FIG. 10 is a graph showing a waveform without Doppler compensation and a waveform with Doppler compensation of the transmission signal DFT result by the correlation function calculation unit 404 of the first embodiment.
  • the vertical axis of the graph is amplitude “dB”, and the horizontal axis is frequency “Hz”.
  • FIG. 11A is a graph showing a waveform without Doppler compensation of a correlation function calculation result by the correlation function calculation unit 404 of Embodiment 1
  • FIG. 11B is a graph showing a waveform with Doppler compensation.
  • the vertical axis of each graph is amplitude, and the horizontal axis is time.
  • the peak is about the same as the noise, and the detection of the reflected wave included in the received signal is as follows. Have difficulty.
  • FIG. 11B when the DFT result of the received signal is multiplied by the DFT result of the transmission signal after Doppler compensation, a peak larger than noise is detected at the position of the reflected wave (around 1.5 ms). Is done.
  • FIGS. 12A to 12D, FIGS. 13A to 13F, FIG. 14, and FIGS. 15A and 15B the correlation when the sampling frequency is lower than those of FIGS. 5 to 7 and FIGS. A calculation result by the function calculation unit 404 will be described.
  • the frequency of the transmission signal is 48 kHz
  • FIG. 12 is a graph showing signal waveforms related to the calculation of the correlation function by the correlation function calculation unit 404 according to the first embodiment.
  • FIG. 12A shows the waveform of the transmission signal
  • FIG. 12B shows the waveform of the reflected wave
  • FIG. FIG. 12D shows the waveform of the received signal.
  • the vertical axis of each graph is amplitude, and the horizontal axis is time.
  • the frequency of the reflected wave in FIG. 12B is shifted due to the Doppler effect.
  • the actual waveform of the ultrasonic wave transmitted from the transmitting element 2 is the same in FIG. 12A and FIG. 5A, but the transmission signal in FIG. 12A has a rough waveform because the sampling frequency is lower than that in FIG. 5A. .
  • FIG. 13 is a graph showing the results of DFT performed by the correlation function calculation unit 404 according to the first embodiment.
  • FIG. 13A shows the amplitude of the transmission signal
  • FIG. 13B shows the phase of the transmission signal
  • FIG. 13C shows the amplitude of the reception signal
  • FIG. 13E is the amplitude of the correlation function
  • FIG. 13F is the phase of the correlation function.
  • the vertical axis of the amplitude graph is displayed as “dB”
  • the vertical axis of the phase graph is displayed as “rad”.
  • the sampling frequency of each graph is 48 ⁇ 4 kHz. Compared to FIG. 8, the Nyquist frequency is lowered in FIG. 13 due to the lower sampling frequency, so that the low frequency region has a waveform expanded in the frequency axis direction.
  • FIG. 14 is a graph showing a waveform without Doppler compensation and a waveform with Doppler compensation of the transmission signal DFT result by the correlation function calculation unit 404 of the first embodiment.
  • the vertical axis of the graph is amplitude “dB”, and the horizontal axis is frequency “Hz”.
  • FIG. 15A is a graph showing a waveform without Doppler compensation of a correlation function calculation result by the correlation function calculation unit 404 of Embodiment 1
  • FIG. 15B is a graph showing a waveform with Doppler compensation.
  • the vertical axis of each graph is amplitude, and the horizontal axis is time. Comparing the graphs of FIG. 14, FIG. 15A and FIG. 15B with the graphs of FIG. 10, FIG. 11A and FIG.
  • the ultrasonic distance measuring device 10 can calculate the distance to the obstacle 7 with the same accuracy as when the sampling frequency of the A / D conversion unit 402 is four times the frequency of the transmission signal. It can be measured.
  • FIG. 16 is a graph showing a waveform of a transmission signal used for correlation function calculation in correlation function calculation section 404 of the first embodiment.
  • the frequency of the transmission signal is 48 kHz.
  • 16A shows a waveform with a sampling frequency of 48 ⁇ 10 kHz
  • FIG. 16B shows a waveform with a sampling frequency of 48 ⁇ 4 kHz
  • FIG. 16C shows a waveform obtained by binarizing the sampling value with a sampling frequency of 48 ⁇ 4 kHz.
  • the vertical axis of each graph is amplitude, and the horizontal axis is time.
  • the waveform sampled at 10 times the frequency of the transmission signal has almost no distortion from the waveform of the original transmission signal.
  • the waveform sampled at four times the frequency of the transmission signal is a rough waveform with no roundness compared to the waveform of FIG. 16A.
  • the correlation function calculation unit 404 may convert the amplitude of the transmission signal into three values “V”, “0”, and “ ⁇ V”.
  • the correlation function calculation unit 404 converts this sampling value to “+ V” when the sampling value is larger than the predetermined threshold thp, and converts this sampling value to “+ V” when it is smaller than another predetermined threshold thn that is equal to or smaller than the threshold thp. The value is converted to “ ⁇ V”, and when it is not less than the threshold thn and not more than the threshold thp, it is converted to “0”.
  • FIG. 17 is a graph showing signal waveforms related to the calculation of the correlation function by the correlation function calculation unit 404 according to the first embodiment.
  • FIG. 17A shows the waveform of the transmission signal
  • FIG. 17B shows the waveform of the reflected wave
  • FIG. FIG. 17D shows the waveform of the received signal.
  • the vertical axis of each graph is amplitude, and the horizontal axis is time.
  • the sampling frequency of each graph is 48 ⁇ 4 kHz.
  • the waveform of the transmission signal in FIG. 17A is a waveform obtained by binarizing the sampling value. Further, the frequency of the reflected wave in FIG. 17B is shifted due to the Doppler effect.
  • the actual ultrasonic waveform transmitted from the transmission element 2 is the same in FIG. 17A and FIG. 5A, but the transmission signal in FIG. 17A has a lower sampling frequency and is binarized compared to FIG. 5A. Therefore, the waveform is rough and large in distortion.
  • FIG. 18 is a graph showing the results of DFT performed by correlation function calculation section 404 of Embodiment 1,
  • FIG. 18A shows the amplitude of the transmission signal
  • FIG. 18B shows the phase of the transmission signal
  • FIG. 18C shows the amplitude of the reception signal
  • FIG. I s the phase of the received signal
  • FIG. 18E is the amplitude of the correlation function
  • FIG. 18F is the phase of the correlation function.
  • the vertical axis of the amplitude graph is displayed as “dB”
  • the vertical axis of the phase graph is displayed as “rad”.
  • the sampling frequency of each graph is 48 ⁇ 4 kHz, and the transmission signal is binarized. Compared to FIG. 9, the Nyquist frequency is lowered in FIG. 18 because the sampling frequency is lower, so that the low frequency region has a waveform expanded in the frequency axis direction.
  • FIG. 19 is a graph showing a waveform without Doppler compensation and a waveform with Doppler compensation of the transmission signal DFT result by the correlation function calculation unit 404 of the first embodiment.
  • the vertical axis of the graph is amplitude “dB”, and the horizontal axis is frequency “Hz”.
  • the sampling frequency is 48 ⁇ 4 kHz, and the transmission signal is binarized.
  • FIG. 20A is a graph showing a waveform without Doppler compensation
  • FIG. 20B is a graph showing a waveform with Doppler compensation, as a result of calculation of a correlation function by the correlation function calculation unit 404 according to the first embodiment.
  • the vertical axis of each graph is amplitude
  • the horizontal axis is time. As shown in FIG.
  • the ultrasonic distance measuring device 10 can measure the distance to the obstacle 7 even when the correlation function calculation unit 404 binarizes the transmission signal and calculates the correlation function. Further, the correlation function calculation unit 404 can reduce the calculation amount and the memory amount when calculating the correlation function by binarizing or ternarizing the transmission signal.
  • phase detection by the correlation function calculation unit 404 will be described.
  • a method will be described in which the A / D conversion unit 402 easily obtains the phase of a received signal when an analog signal is sampled and converted into a received signal at a frequency 4n times the frequency of the transmitted signal.
  • n 1.
  • FIG. 21 is a graph showing a sampling example of the sin component and the cos component of the received signal by the correlation function calculation unit 404 of the first embodiment.
  • the vertical axis of the graph is amplitude, and the horizontal axis is time.
  • the asterisk mark in the received signal indicates the sampling position, and the numerical value in parentheses indicates the remainder of 4 of the sampling number indicating the sampling order.
  • FIG. 22 is a flowchart illustrating an example of the sampling operation of the sin component and the cos component of the received signal by the correlation function calculation unit 404 according to the first embodiment.
  • Correlation function calculation section 404 repeats the operation shown in the flowchart of FIG. 22 for every four times the frequency of the transmission signal, that is, for every 90 degrees of the phase of the reception signal.
  • step ST1 the correlation function calculation unit 404 samples the amplitude value of the received signal and substitutes it for the current value.
  • the correlation function calculation unit 404 increments the sampling number.
  • step ST3 when the sampling number is larger than “3” (step ST3 “YES”), the correlation function calculation unit 404 sets the sampling number to “0” in step ST4, and proceeds to step ST5. On the other hand, if the sampling number is “3” or less (step ST3 “NO”), correlation function calculation section 404 proceeds to step ST5.
  • step ST5 when the sampling number is “3” (step ST5 “YES”), the correlation function calculation unit 404 extracts the current value as a sine component of the remainder [3] in step ST6, and returns to step ST1. .
  • step ST5 “NO”) correlation function calculation section 404 proceeds to step ST7.
  • step ST7 when the sampling number is “2” (step ST7 “YES”), the correlation function calculation unit 404 extracts ( ⁇ 1 ⁇ current value) as a cos component of the remainder [2] in step ST8. Return to step ST1. On the other hand, if the sampling number is not “2” (step ST7 “NO”), correlation function calculation section 404 proceeds to step ST9.
  • step ST9 when the sampling number is “1” (step ST9 “YES”), the correlation function calculation unit 404 extracts ( ⁇ 1 ⁇ current value) as a sine component of the remainder [1] in step ST10. Return to step ST1.
  • step ST9 “NO”) when the sampling number is not “1” (step ST9 “NO”), that is, when the sampling number is “0”, the correlation function calculation unit 404 converts the current value into the cos component of the remainder number [0] in step ST11. And return to step ST1.
  • the correlation function calculation unit 404 replaces the current value in step ST6, step ST8, step ST10, and step ST11 with (current value ⁇ previous value) ⁇ By using 2, the DC component may be removed.
  • the sin component and cos component for one period of the received signal extracted by the correlation function calculation unit 404 performing the operation shown in the flowchart of FIG. 22 are expressed by the following equation (2).
  • j is a remainder number.
  • the correlation function calculation unit 404 calculates the following expression (3) and the following expression (4) using the sin component and the cos component that are shifted from each other by 90 degrees in the following expression (2). ) And the following equation (4) are both satisfied as the phase ⁇ of the received signal.
  • the correlation function calculation unit 404 may determine the presence or absence of a reflected wave in the received signal using the amplitude value P. Further, the correlation function calculation unit 404 can stabilize these values and detect a specific signal by filtering the time series data of the phase ⁇ and the amplitude value P.
  • FIG. 23 illustrates the relationship between the phase ⁇ of the received signal and the frequency difference ⁇ f [rad / sec].
  • the vertical axis of the graph is phase, and the horizontal axis is time.
  • the function calculation unit 404 may be used for Doppler compensation at the time of linear convolution.
  • the correlation function calculation unit 404 may output information such as the phase ⁇ to the communication processing unit 410 as information to be transmitted to the distance measurement ECU 5.
  • the correlation function calculation unit 404 calculates the phase ⁇ before calculating Equation (1), and uses the change rate of the phase ⁇ to calculate the reflected wave frequency due to the Doppler effect. The shift amount is specified and the transmission signal is Doppler compensated. Subsequently, correlation function calculation section 404 calculates equation (1) using the received signal and the transmission signal after Doppler compensation.
  • the ultrasonic distance measuring device 10 includes the ultrasonic sensor 1, the signal processing circuit 4, and the distance measurement ECU 5.
  • the ultrasonic sensor 1 transmits an ultrasonic wave corresponding to the transmission signal, receives a reflected wave reflected by the obstacle 7 and outputs an analog signal.
  • the A / D converter 402 of the signal processing circuit 4 converts the analog signal from analog to digital at a sampling frequency 4n times the frequency of the transmission signal, and outputs a reception signal, where n is a positive integer of 3 or less.
  • the correlation function calculation unit 404 of the signal processing circuit 4 calculates a correlation function between the reception signal and the transmission signal.
  • the detection unit 405 of the signal processing circuit 4 calculates the amplitude of the correlation function by squaring and adding two sampling values separated by n from the correlation function.
  • the waveform extraction unit 413 of the signal processing circuit 4 detects the peak value of the amplitude of the correlation function.
  • the distance measurement ECU 5 calculates the distance to the obstacle 7 based on the time when the peak value of the amplitude of the correlation function is detected.
  • correlation function calculation section 404 of Embodiment 1 converts V into a binary value of V and ⁇ V, or a binary value of V, 0, and ⁇ V, using V as a positive real number, and receives the received signal. And the correlation function of the converted transmission signal. Thereby, the memory amount and calculation amount in the ultrasonic distance measuring device 10 can be further reduced.
  • the correlation function calculation unit 404 calculates a correlation function using discrete convolution. Thereby, the ultrasonic distance measuring device 10 can remove noise in the transmission signal and the reception signal without performing preprocessing corresponding to bandpass filtering in the digital filter unit 403.
  • the discrete convolution is a circular convolution. Therefore, the ultrasonic distance measuring device 10 can reduce the amount of calculation when the transmission signal is long.
  • the correlation function calculation unit 404 obtains a frequency that maximizes the amplitude by DFT of the received signal, and performs Doppler compensation on the transmission signal based on this frequency. Thereby, the ultrasonic distance measuring device 10 can detect the reflected wave included in the received signal even when at least one of the vehicle or the obstacle 7 is moving.
  • the correlation function calculation unit 404 divides the received signal into a plurality of blocks having an overlap that is equal to or longer than the length of the transmission signal, and calculates a correlation function for each block. Thereby, the ultrasonic distance measuring device 10 can reduce the amount of memory.
  • the discrete convolution may be a linear convolution.
  • the ultrasonic distance measuring device 10 can reduce the calculation amount when the transmission signal is short.
  • the correlation function calculation unit 404 of the first embodiment may use cyclic convolution when the length of the transmission signal is equal to or greater than a predetermined threshold, and may use linear convolution when the length is less than the threshold. Thereby, the ultrasonic distance measuring device 10 can select a convolution with a smaller calculation amount in accordance with the length of the transmission signal.
  • correlation function calculation section 404 in Embodiment 1 uses i and j as integers, the 4ni-th sampling value of the received signal as y (4ni), and a sampling value y separated by jn from the 4ni-th sampling value. Assuming that (4ni + jn) is 90j degrees out of phase from the sampling value y (4ni), the cos component and sin component of the received signal are extracted, and the phase of the received signal is detected from the extracted cos component and sin component. Thereby, the ultrasonic distance measuring device 10 can detect the phase with a small amount of calculation. At this time, correlation function calculation section 404 may remove the DC component remaining in received signal y by subtracting sampling value y (4ni ⁇ 2n) that is 180 degrees out of phase from y (4ni).
  • the correlation function calculation unit 404 detects the frequency of the reflected wave based on the phase change speed with respect to the transmission signal. Thereby, the correlation function calculation unit 404 can doppler compensate the transmission signal based on the frequency of the reflected wave in the linear convolution. Further, the ultrasonic distance measuring device 10 can detect a signal in the vicinity of the frequency of the transmission signal in the reception signal with a calculation amount smaller than that of the DFT, and demodulate the reception signal frequency-modulated using the frequency of the detected reflected wave. Etc. can be performed.
  • FIG. FIG. 24 is a block diagram illustrating a configuration example of the signal processing circuit 4 of the ultrasonic distance measuring apparatus 10 according to the second embodiment.
  • the signal processing circuit 4 according to the second embodiment has a configuration in which a phase detection unit 412 is added to the signal processing circuit 4 according to the first embodiment shown in FIG. .
  • FIG. 24 the same or corresponding parts as those in FIG.
  • the configuration of the ultrasonic distance measuring device 10 according to the second embodiment is the same as that shown in FIG. 1 of the first embodiment in the drawing, and therefore FIG.
  • the signal processing circuit 4 detects the peak value of the squared amplitude value of the correlation function, and the ultrasonic wave transmitted from the transmitting element 2 is reflected by the obstacle 7 during the time when the peak value is detected. Thus, the time returned to the receiving element 3 was used.
  • the signal processing circuit 4 according to the second embodiment detects the peak of the squared amplitude value of the received signal instead of the correlation function, and the ultrasonic wave transmitted from the transmitting element 2 is the time when the peak value is detected. Is the time when the light is reflected by the obstacle 7 and returned to the receiving element 3.
  • a / D conversion section 402 performs A / D conversion on the received signal at a sampling frequency 4n times the frequency of the transmission signal, as in the first embodiment.
  • the phase detection unit 412 inputs the reception signal output from the digital filter unit 403 to the detection unit 405.
  • the phase detection unit 412 detects the phase ⁇ of the received signal from the digital filter unit 403. Since the phase detection operation performed by the phase detection unit 412 is the same as the phase detection operation performed by the correlation function calculation unit 404 of the first embodiment, description thereof is omitted.
  • the change rate of the phase ⁇ detected by the phase detector 412 may be used, for example, for demodulation of a frequency-modulated or phase-modulated received signal, or may be used for detecting the moving speed of the obstacle 7. , May be used for Doppler compensation.
  • the phase detection unit 412 may output information such as the phase ⁇ to the communication processing unit 410 as information to be transmitted to the distance measurement ECU 5. When the phase ⁇ information is not necessary, the phase detection unit 412 does not perform the phase detection operation and inputs the reception signal from the digital filter unit 403 to the detection unit 405.
  • the detection unit 405 squares and adds two samples separated by n in the received signal, and calculates the square value of the amplitude of the received signal.
  • the amplitude square value of the received signal is used as an alternative to the amplitude value of the received signal.
  • the waveform extraction unit 413 determines information to be transmitted to the distance measurement ECU 5 using the time-series data of the square value of the amplitude of the received signal detected by the detection unit 405, and outputs the determined information to the communication processing unit 410. Specifically, the waveform extraction unit 413 detects the peak value in the time-series data of the amplitude square value of the received signal, and uses the peak value and the time when the peak value is detected as information to be transmitted to the distance measurement ECU 5. . The time when this peak value is detected is the time when the ultrasonic wave transmitted from the transmitting element 2 is reflected by the obstacle 7 and returned to the receiving element 3.
  • the waveform extraction unit 413 may include all time series data of square amplitude values or data obtained by thinning out all time series data in the information transmitted to the distance measurement ECU 5.
  • the ultrasonic distance measuring device 10 includes the ultrasonic sensor 1, the signal processing circuit 4, and the distance measurement ECU 5.
  • the ultrasonic sensor 1 transmits an ultrasonic wave corresponding to the transmission signal, receives a reflected wave reflected by the obstacle 7 and outputs an analog signal.
  • the A / D converter 402 of the signal processing circuit 4 converts the analog signal from analog to digital at a sampling frequency 4n times the frequency of the transmission signal, and outputs a reception signal, where n is a positive integer of 3 or less.
  • the detector 405 of the signal processing circuit 4 calculates the amplitude of the received signal by squaring and adding two sampling values separated by n from the received signal.
  • the waveform extraction unit 413 of the signal processing circuit 4 detects the peak value of the amplitude of the received signal.
  • the distance measurement ECU 5 calculates the distance to the obstacle 7 based on the time when the peak value of the amplitude of the received signal is detected.
  • FIG. 25 is a diagram illustrating a hardware configuration example of the signal processing circuit 4 according to each embodiment.
  • the analog filter unit 401 in the signal processing circuit 4 is an analog filter circuit 1000.
  • An A / D conversion unit 402 in the signal processing circuit 4 is an A / D conversion circuit 1001.
  • a transmission processing unit 411 in the signal processing circuit 4 is a drive circuit 1002 that applies a voltage to the transmission element 2.
  • the functions of the digital filter unit 403, the correlation function calculation unit 404, the detection unit 405, the communication processing unit 410, the phase detection unit 412, and the waveform extraction unit 413 in the signal processing circuit 4 are processors that execute programs stored in the memory 1003. 1004. That is, the functions of the digital filter unit 403, the correlation function calculation unit 404, the detection unit 405, the communication processing unit 410, the phase detection unit 412, and the waveform extraction unit 413 are realized by software, firmware, or a combination of software and firmware.
  • the Software or firmware is described as a program and stored in the memory 1003.
  • the processor 1004 reads out and executes the program stored in the memory 1003, thereby realizing the function of each unit.
  • the signal processing circuit 4 includes a memory 1003 for storing a program that, when executed by the processor 1004, results in the above processing being executed.
  • This program can also be said to cause a computer to execute the procedures or methods of the digital filter unit 403, the correlation function calculation unit 404, the detection unit 405, the communication processing unit 410, the phase detection unit 412, and the waveform extraction unit 413. .
  • the processor 1004 refers to a CPU (Central Processing Unit), a processing device, an arithmetic device, a microprocessor, or the like.
  • the memory 1003 is a nonvolatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), or a flash memory.
  • the received signal after A / D conversion is temporarily stored in the memory 1003 and used for calculation of a correlation function, detection of a peak value, and the like.
  • the ultrasonic distance measuring apparatus according to the present invention is reduced in cost and size, it is suitable for use in an ultrasonic distance measuring apparatus for automobiles.
  • 1 ultrasonic sensor 1 transmitting element, 2 transmitting element, 3 receiving element, 4 signal processing circuit, 5 distance measuring ECU (distance measuring unit), 6 vehicle control ECU, 7 obstacle, 10 ultrasonic ranging device, 401 analog filter unit, 402 A / D conversion unit, 403 digital filter unit, 404 correlation function calculation unit, 405 detection unit, 410 communication processing unit, 411 transmission processing unit, 412 phase detection unit, 413 waveform extraction unit, 1000 analog filter circuit, 1001 A / D Conversion circuit, 1002 drive circuit, 1003 memory, 1004 processor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

超音波センサ(1)は、送信信号に対応する超音波を送信し、超音波が障害物(7)で反射した反射波を受信してアナログ信号を出力する。信号処理回路(4)のA/D変換部(402)は、nを3以下の正の整数とし、送信信号の周波数の4n倍のサンプリング周波数で、アナログ信号をA/D変換して受信信号を出力する。相関関数計算部(404)は、受信信号と送信信号との相関関数を計算する。検波部(405)は、相関関数のn個離れた2つのサンプリング値をそれぞれ2乗して加算することにより相関関数の振幅を計算する。波形抽出部(413)は、相関関数の振幅のピーク値を検出する。

Description

超音波測距装置
 この発明は、超音波の伝播時間を測定することにより、障害物までの距離を求める超音波測距装置に関するものである。
 超音波は、気体及び液体等の媒体中を伝播する。そのため、障害物に向かって超音波を送信し、障害物において反射した超音波(以下、反射波とも呼ぶ。)を受信することにより、超音波の伝播時間を求めることができる。媒体における超音波の伝播速度は一定であるので、媒体中にある障害物までの距離を求めることができる。超音波測距装置は、この原理により、伝播時間に伝播速度を乗じて超音波が往復する距離を求め、求めた距離の1/2を障害物までの距離として算出する。この超音波測距装置は、その測定原理上、障害物からの反射波が到着した時間を正しく測定することが重要である。
 超音波測距装置において、媒体の揺らぎ及び周囲の雑音等は、正確な距離測定を阻害する要因となる。阻害要因を排除する方法として、送信信号を変調して受信信号との相関を計算してピーク値を求め、ピーク値が観測された時間を反射波が到着した時間とする方法が提案されている(例えば、特許文献1参照)。
特開2005-337848号公報
 自動車用の超音波測距装置は、バンパ内部に配置された低コストかつ小型の超音波センサを用いて超音波を送受信して相関を計算し、ピーク値が観測された時間等をデジタル通信で距離測定ECU(Electronic Control Unit)に送信することが望まれる。このとき使用される超音波の周波数は、20kHz以上であり、人には聞こえない高周波の音波である。超音波測距装置は、この超音波を用いてデジタル演算により距離を計算するために、A/D(Analog Digital)変換した受信信号を、超音波が障害物との間を往復する時間分メモリに記憶する必要がある。また、超音波センサからの信号に含まれる反射波を検出するためには、A/D変換のサンプリング周波数を高くする必要がある。しかしながら、サンプリング周波数を高くすると大量のメモリが必要になると共に計算量も増えるという課題があった。
 この発明は、上記のような課題を解決するためになされたもので、受信信号のサンプリング周波数を低くしてもこの受信信号に含まれる反射波を検出可能とすることを目的とする。
 この発明に係る超音波測距装置は、送信信号に対応する超音波を送信し、超音波が障害物で反射した反射波を受信してアナログ信号を出力する超音波センサと、nを3以下の正の整数とし、送信信号の周波数の4n倍のサンプリング周波数で、アナログ信号をアナログデジタル変換して受信信号を出力するアナログデジタル変換部と、受信信号と送信信号との相関関数を計算する相関関数計算部と、相関関数のn個離れた2つのサンプリング値をそれぞれ2乗して加算することにより相関関数の振幅を計算する検波部と、相関関数の振幅のピーク値を検出する波形抽出部と、相関関数の振幅のピーク値が検出された時間に基づいて障害物までの距離を算出する距離測定部とを備えるものである。
 この発明によれば、送信信号の周波数の4n倍のサンプリング周波数でA/D変換した受信信号と送信信号との相関関数を計算し、相関関数のn個離れた2つのサンプリング値をそれぞれ2乗して加算することにより相関関数の振幅を計算するようにしたので、受信信号のサンプリング周波数を従来より低くしても受信信号に含まれる反射波を検出できる。
実施の形態1に係る超音波測距装置の構成例を示すブロック図である。 実施の形態1に係る信号処理回路の構成例を示すブロック図である。 実施の形態1における検波部の処理を説明するグラフである。 図4Aは、実施の形態1において相関関数計算部が線形畳み込みを用いる例を示す図であり、図4Bは、循環畳み込みを用いる例を示す図である。 図5A~図5Dは、実施の形態1の相関関数計算部による相関関数の計算に関係する信号波形を示すグラフである。 図6A~図6Fは、実施の形態1の相関関数計算部による離散フーリエ変換の結果を示すグラフである。 実施の形態1の相関関数計算部による畳み込みの結果を示すグラフであり、図7Aは線形畳み込みの結果、図7Bは循環畳み込みの結果である。 実施の形態1の相関関数計算部において受信信号をブロックに分割する例を示す図である。 図9A~図9Fは、実施の形態1の相関関数計算部によるDFT結果に対するドプラ効果の影響を示すグラフである。 実施の形態1の相関関数計算部による送信信号DFT結果のドプラ補償なしの波形とドプラ補償ありの波形を示すグラフである。 図11Aは、実施の形態1の相関関数計算部による相関関数の計算結果のドプラ補償なしの波形、図11Bはドプラ補償ありの波形を示すグラフである。 図12A~図12Dは、実施の形態1の相関関数計算部による相関関数の計算に関係する信号波形を示すグラフである。 図13A~図13Fは、実施の形態1の相関関数計算部によるDFTの結果を示すグラフである。 実施の形態1の相関関数計算部による送信信号DFT結果のドプラ補償なしの波形とドプラ補償ありの波形を示すグラフである。 図15Aは、実施の形態1の相関関数計算部において相関関数の計算結果のドプラ補償なしの波形、図15Bはドプラ補償ありの波形を示すグラフである。 図16A~図16Cは、実施の形態1の相関関数計算部による相関関数の計算に用いる送信信号の波形を示すグラフである。 図17A~図17Dは、実施の形態1の相関関数計算部による相関関数の計算に関係する信号波形を示すグラフである。 図18A~図18Fは、実施の形態1の相関関数計算部によるDFTの結果を示すグラフである。 実施の形態1の相関関数計算部による送信信号DFT結果のドプラ補償なしの波形とドプラ補償ありの波形を示すグラフである。 図20Aは、実施の形態1の相関関数計算部による相関関数の計算結果のドプラ補償なしの波形、図20Bはドプラ補償ありの波形を示すグラフである。 実施の形態1の相関関数計算部による受信信号のsin成分とcos成分のサンプリング例を示すグラフである。 実施の形態1の相関関数計算部による受信信号のsin成分とcos成分のサンプリング動作例を示すフローチャートである。 実施の形態1における受信信号の位相θと周波数差Δfとの関係を示すグラフである。 実施の形態2に係る信号処理回路の構成例を示すブロック図である。 各実施の形態に係る信号処理回路のハードウェア構成例を示す図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、実施の形態1に係る超音波測距装置10の構成例を示すブロック図である。図1に示される超音波測距装置10は、車両に搭載され、この車両と車両周辺の障害物7との距離を測定するものである。超音波測距装置10は、1つ以上の超音波センサ1を備える。超音波センサ1は、送信素子2、受信素子3、及び信号処理回路4を備える。送信素子2は、送信信号に対応する超音波を送信する。受信素子3は、送信素子2が送信した超音波が障害物7で反射した反射波を受信し、反射波に対応する電圧(以下、アナログ信号と称する。)を出力する。なお、1つの素子が、送信素子2及び受信素子3の両機能を実現してもよい。信号処理回路4は、送信素子2に対して送信信号に対応する電圧を印加すると共に、受信素子3が出力するアナログ信号を信号処理して振幅のピーク値等を検出する。そして、信号処理回路4は、デジタル通信により、ピーク値及びピーク値が検出された時間等の情報を、距離測定ECU5へ送信する。
 距離測定ECU5は、信号処理回路4からの情報を受信し、送信素子2が超音波を送信した時間と信号処理回路4においてピーク値が検出された時間とに基づいて、障害物7までの距離を算出する。距離測定ECU5は、車載LAN(Local Area Network)により、算出した障害物7までの距離情報を、車両制御ECU6へ送信する。
 車両制御ECU6は、距離測定ECU5からの距離情報を受信し、障害物7までの距離等に基づいて車両を制御することにより、車両の自動駐車、自動ブレーキ、又は誤発進防止等の機能を実現する。
 図2は、実施の形態1に係る信号処理回路4の構成例を示すブロック図である。
 信号処理回路4は、アナログフィルタ部401、A/D変換部402、デジタルフィルタ部403、相関関数計算部404、検波部405、波形抽出部413、通信処理部410、及び送信処理部411を含む。アナログフィルタ部401、A/D変換部402、及び送信処理部411は、アナログ回路である。デジタルフィルタ部403、相関関数計算部404、検波部405、波形抽出部413、及び通信処理部410は、デジタル回路である。
 アナログフィルタ部401は、受信素子3からのアナログ信号のうち、送信信号の周波数に対して高い周波数と低い周波数とを同時に遮断する処理、いわゆるバンドパスフィルタリングを行う。また、アナログフィルタ部401は、このアナログ信号を増幅する。
 A/D変換部402は、アナログフィルタ部401から出力されるアナログ信号を、予め定められたサンプリング周波数又は送信処理部411から通知されたサンプリング周波数でサンプリングしてアナログデジタル変換し、デジタル信号(以下、受信信号と称する)を出力する。サンプリング周波数は、nを3以下の正の整数とし、送信信号の周波数の4n倍である。A/D変換部402は、送信信号の周波数の4倍以上のサンプリング周波数でアナログ信号をA/D変換することにより、受信信号において反射波の波形の再現性を確保できる。また、A/D変換部402は、送信信号の周波数の12倍以下のサンプリング周波数でアナログ信号をA/D変換することにより、受信信号のデータ量の増大を防ぐことができる。
 信号処理回路4は、A/D変換部402より後段では、デジタル信号を処理する。デジタル処理では、サンプリング周波数の1/2以上の周波数を除去できないので、アナログフィルタ部401がサンプリング周波数の1/2以上の周波数のノイズを除去しておく必要がある。
 デジタルフィルタ部403は、受信信号のうち、送信信号の周波数近傍の信号を抽出するバンドパスフィルタリングを行うことにより、ノイズを除去する。
 相関関数計算部404は、通信処理部410からの送信信号と、デジタルフィルタ部403からの受信信号とを畳み込み積分し、相関関数を計算する。なお、送信信号のサンプリング周波数は、受信信号のサンプリング周波数と同じであるものとする。
 相関関数計算部404の詳細は後述する。
 検波部405は、相関関数の計算結果である時系列データにおけるn個離れた2サンプルを2乗して加算し、相関関数の振幅の2乗値を求める。図3は、実施の形態1における検波部405の処理を説明するグラフである。グラフの縦軸は振幅、横軸は時間である。図3の例では、A/D変換部402が、アナログ信号を送信信号の周波数の4倍でサンプリングしたものとする。相関関数をa(t)・sin(2πft+φ)の正弦波と仮定する。aは振幅、tはサンプリング時間、fは送信信号の周波数、φは初期位相である。この相関関数の任意のサンプリング時間t0とこれに続く3つのサンプリング時間t1,t2,t3における位相[rad]は、θ0、θ0+π/2、θ0+π、θ0+3π/2(θ0=2πft0+φ)になる。
 sin(θ+π/2)=cos(θ)、sin(θ+π)=-sin(θ)、sin(θ+3π/2)=-cos(θ)である。1周期に対するa(t)の変化は小さくほぼ一定であると仮定すると、n個離れた2サンプル、即ちn=1である図3の例では隣り合う2サンプルを2乗して加算した振幅2乗値は、a(t)・sinθ0+a(t)・cos(θ0)=a(t)になる。よって、振幅2乗値は、相関関数の振幅値の代替として使用できる。
 検波部405は、相関関数におけるサンプリング時間t1の振幅の2乗値としてa(t1)を求め、サンプリング時間t2の2乗値としてa(t2)を求め、サンプリング時間t3の振幅の2乗値としてa(t3)を求める。
 波形抽出部413は、検波部405が検波した相関関数の振幅2乗値の時系列データを用いて、距離測定ECU5へ送信する情報を決定し、決定した情報を通信処理部410へ出力する。具体的には、波形抽出部413は、相関関数の振幅2乗値の時系列データにおけるピーク値を検出し、ピーク値及びピーク値が検出された時間等を距離測定ECU5へ送信する情報とする。このピーク値が検出された時間は、送信素子2から送信された超音波が障害物7で反射して受信素子3に返ってきた時間である。波形抽出部413は、振幅2乗値の全時系列データ、又は全時系列データを間引いたデータを、距離測定ECU5へ送信する情報に含めてもよい。
 通信処理部410は、距離測定ECU5との間でデジタル通信を行う。通信処理部410は、波形抽出部413からの情報を、距離測定ECU5へ送信する。また、通信処理部410は、送信信号の周波数等の情報を距離測定ECU5から受信し、相関関数計算部404及び送信処理部411へ出力する。
 送信処理部411は、通信処理部410からの送信信号の情報を用いて、送信素子2に印加する電圧波形を制御する。なお、送信処理部411は、送信信号を変調する等、送信素子2に印加する電圧波形を変形してもよい。この送信処理部411は、送信信号の周波数の4n倍の周波数を、サンプリング周波数として、A/D変換部402に通知してもよい。
 次に、相関関数計算部404の詳細を説明する。
 相関関数計算部404は、下式(1)を用いて、相関関数wを計算する。uは送信信号、vは受信信号である。相関関数計算部404は、式(1)を用いて、離散畳み込みを行う。

  w(k)=Σu(j)v(k+j)   (1)
 相関関数を計算するための畳み込みの演算方法には、線形畳み込みと循環畳み込みとがある。
 図4Aは、実施の形態1において相関関数計算部404が線形畳み込みを用いる例を示す。相関関数計算部404は、線形畳み込みを用いて相関関数を計算する場合、式(1)を演算する。
 図4Bは、実施の形態1において相関関数計算部404が循環畳み込みを用いる例を示す。相関関数計算部404は、循環畳み込みを用いて相関関数を計算する場合、まず送信信号のデータ長が受信信号データ長と同一になるよう、送信信号u(j)の後部j=n+1からj=mまでに、「0」を追加する。ここで、nは送信信号のデータ長であり、mは受信信号のデータ長である。そして、相関関数計算部404は、送信信号及び受信信号をそれぞれ離散フーリエ変換(Discrete Fourier Transform:DFT)し、送信信号のDFT結果と受信信号のDFT結果とを掛け合わせ、掛け合わせた結果を離散逆フーリエ変換(Inverse DFT:IDFT)する。なお、相関関数計算部404は、送信信号のDFT結果におけるナイキスト周波数以上の周波数域を、ナイキスト周波数を対称軸として左右対称に折り返し、複素共役にする。なお、受信信号のデータ長がmであるため、k>m-nにおける相関関数w(k)の値は有効ではないデータとなる。これは線形畳み込みにおいても同様であり、式(1)で計算できるのはk=m-nまでである。
 ここで、図5A~図5D、図6A~図6F、並びに、図7A及び図7Bを参照して、相関関数計算部404による相関関数の計算結果を説明する。
 図5は、実施の形態1の相関関数計算部404による相関関数の計算に関係する信号波形を示すグラフであり、図5Aは送信信号の波形、図5Bは反射波の波形、図5Cはノイズの波形、図5Dは受信信号の波形である。各グラフの縦軸は振幅、横軸は時間である。図5Aに示される送信信号の波形と同等の波形の超音波が、送信素子2から送信される。この超音波は、障害物7に衝突し反射して反射波となり、図5Bに示されるようにある遅延時間(例えば、1.5msec)の経過後、受信素子3に返ってくる。受信素子3には、図5Cに示されるようなノイズが重畳するので、受信信号の波形は、図5Dに示されるように反射波とノイズとが混在した波形になる。図5の各グラフにおいて、各波形のサンプリング周波数は480kHz、データ長は1024、送信信号の周波数は48kHzである。また、送信信号、反射波、及びノイズの振幅は±1である。ただし、実際の超音波測距装置10では、受信素子3に返ってくる反射波は、送信素子2から送信される超音波に対して大きく減衰した波形になる。
 相関関数計算部404は、循環畳み込みを用いて相関関数を計算するにあたってDFTに高速フーリエ変換(Fast Fourier Transform:FFT)アルゴリズムを使用する場合、FFTの効率上、送信信号及び受信信号のデータ長を2の累乗にすることが望ましい。また、相関関数計算部404は、図5Aに示されるように、送信信号の後部に「0」を追加し、送信信号のデータ長を受信信号のデータ長と同じにする。一方、線形畳み込みは、このような制限がない。
 図6は、実施の形態1の相関関数計算部404によるDFTの結果を示すグラフであり、図6Aは送信信号の振幅、図6Bは送信信号の位相、図6Cは受信信号の振幅、図6Dは受信信号の位相、図6Eは相関関数の振幅、図6Fは相関関数の位相である。振幅のグラフの縦軸を「dB」で表示し、位相のグラフの縦軸を「rad」で表示する。各グラフの横軸は周波数である。DFTの結果は、サンプリング周波数480kHzの1/2の周波数であるナイキスト周波数で折り返し、複素共役になる。そのため、図6以降のグラフにおいて、DFTの結果表示はナイキスト周波数までとする。図6A、図6C、及び図6Eに示される送信信号、受信信号、及び相関関数のDFT結果は、すべて、送信信号の周波数と同じ48kHzあたりにピークをもつ。
 図7は、実施の形態1の相関関数計算部404による畳み込みの結果を示すグラフであり、図7Aは線形畳み込みの結果、図7Bは循環畳み込みの結果である。グラフの縦軸は振幅、横軸は時間である。線形畳み込みを用いて計算された図7Aに示される相関関数と、循環畳み込みを用いて計算された図7Bに示される相関関数は同じになる。また、図5に示される送信信号をグラフの右方向にシフトさせていくと、1.5msの位置で受信信号に埋め込まれた反射波と重なり始め、この1.5msあたりから図7A及び図7Bに示される相関関数の振幅値は大きくなる。送信信号を1.5msの位置へシフトさせると、送信信号と反射波が完全に重なり、この1.5msで相関関数の振幅値は最大になる。図7A及び図7Bに示される相関関数の波形と図5Dに示される受信信号の波形とを比べると、受信信号より相関関数のほうが1.5msの位置に急峻なピークが表れるため、反射波の位置、即ち反射波が受信素子3に返ってきた時間を検出しやすい。
 なお、図7A及び図7Bに示される相関関数の計算過程において、相関関数計算部404は、送信信号及び受信信号を処理せずそのまま畳み込み演算した。つまり、送信信号及び受信信号は、図2のデジタルフィルタ部403に相当する前処理が行われていない。このように、超音波測距装置10は、相関関数計算部404により相関関数を計算する場合、フィルタリング等の前処理を行わずともノイズ除去が可能になる。
 次に、受信信号を複数のブロックに分割して循環畳み込みを行う方法について説明する。
 相関関数計算部404は、循環畳み込みのFFT時、あるデータ長の受信信号を記憶して、その全体を処理するバッチ処理を行う。図5Dでは、説明を簡単にするために、2.1ms程度の短い受信信号を例示した。しかし、車両で用いられる超音波測距では、より長距離の測距が必要であり、受信信号のデータ量は膨大になる。膨大なデータ量の受信信号全体を1回でFFTするためには多くのメモリが必要になる。超音波測距装置10に多くのメモリを搭載させることは、低価格を目指す場合に大きな負担になる。そこで、相関関数計算部404は、受信信号を複数のブロックに分割し、ブロックごとに循環畳み込みを行うことが望ましい。受信信号を複数のブロックに分割することで、メモリは1ブロックをFFTするのに必要な量でよい。
 図8は、実施の形態1の相関関数計算部404において受信信号をブロックに分割する例を示す図である。相関関数計算部404は、受信信号を、第1ブロック及び第2ブロックのように、複数のブロックに分割する。その際、相関関数計算部404は、受信信号に含まれる反射波がブロックの切れ目で分断されないよう、各ブロックが送信信号の長さ以上のオーバラップを持つように受信信号を分割する。なお、相関関数計算部404は、受信信号についてはブロックごとにDFTする必要があるが、送信信号については、受信信号の第1ブロックとの循環畳み込みを行うときに1回だけDFTすればよく、第2ブロック以降との循環畳み込みを行うときには上記DFTの結果を再利用できる。よって、循環畳み込みの計算量を軽減できる。
 次に、線形畳み込みの計算量と循環畳み込みの計算量とを比較する。
 相関関数計算部404は、循環畳み込みのDFTにFFTを使用することで、データ長が大きくなると、線形畳み込みに比べて演算負荷が少なく、より高速に演算できる。ここで、掛け算の回数について、線形畳み込みと循環畳み込みとを比較する。線形畳み込みは受信信号をブロック化する必要はないが、比較のため受信信号1ブロック分を用いる。送信信号のデータ長をN、受信信号1ブロック分の有効データ長をMとすると、受信信号の各ブロックは、ブロック後部にオーバラップを持つため、長さは(N+M)になる。
 線形畳み込みの場合、オーバラップ分の計算は必要ないので、掛け算の回数はNMとなる。一方、循環畳み込みの場合、送信信号、受信信号ともにFFTする。ただし、上述したように、相関関数計算部404は、送信信号を1回だけFFTし、受信信号をブロック数と同じ回数FFTする。よって、循環畳み込みにおける掛け算の回数は、受信信号のFFT時の掛け算の回数と、受信信号のFFT結果と送信信号のFFT結果との掛け合わせ時の掛け算の回数と、掛け合わせた結果をIDFTする時の掛け算の回数との合計になる。受信信号のブロック長を(N+M)とした場合、FFT時の掛け算の回数はlog(N+M)・(N+M)、IDFT時の掛け算の回数もlog(N+M)・(N+M)、受信信号のFFT結果と送信信号のFFT結果との掛け合わせ時の掛け算の回数は(N+M)である。よって、循環畳み込みの場合、掛け算の回数は2(N+M)・log(N+M)+(N+M)になる。Nが増加すると、いずれ、NM>2(N+M)・log(N+M)+(N+M)になるので、Nが大きい場合、受信信号1ブロック分の有効データ長Mを大きく取れば、線形畳み込みより循環畳み込みのほうが計算量は少なくなる。
 上述のように、送信信号のデータ長Nが小さい場合、循環畳み込みより線形畳み込みのほうが計算量が少なくなり、データ長Nが大きい場合、受信信号1ブロック分の有効データ長Mを大きく取れば線形畳み込みより循環畳み込みのほうが計算量が少なくなる。そこで、相関関数計算部404は、送信信号のデータ長Nが予め定められた閾値未満である場合に線形畳み込みを使用し、閾値以上である場合に循環畳み込みを使用してもよい。
 次に、相関関数計算部404による循環畳み込み時のドプラ補償について説明する。線形畳み込み時のドプラ補償については後述する。
 障害物又は超音波測距装置10の少なくとも一方が移動している場合、ドプラ効果により反射波の周波数がシフトする。このシフト量が大きくなると、送信した超音波の波形と受信した反射波の波形とが異なるため、送信信号と受信信号との相関関数のピークが大きくならない。そこで、相関関数計算部404は、送信信号をドプラ補償することにより、ドプラ効果による反射波の周波数シフトを補償する。
 図9は、実施の形態1の相関関数計算部404によるDFT結果に対するドプラ効果の影響を示すグラフであり、図9Aは送信信号の振幅、図9Bは送信信号の位相、図9Cは受信信号の振幅、図9Dは受信信号の位相、図9Eは相関関数の振幅、図9Fは相関関数の位相である。振幅のグラフの縦軸を「dB」で表示し、位相のグラフの縦軸を「rad」で表示する。各グラフの横軸は周波数である。図9並びに後述する図10及び図11の各グラフのサンプリング周波数は480kHzである。図6の各グラフとは異なり、図9の各グラフでは、ドプラ効果により、送信信号のピーク周波数fs(48kHz)と受信信号のピーク周波数frとがずれる。
 相関関数計算部404は、送信信号の周波数近傍におけるピーク周波数fs,frのずれに基づいて、ドプラ効果による反射波周波数のシフト量を求める。具体的には、相関関数計算部404は、図4Bの循環畳み込みにおいて受信信号をDFTした後、送信信号の周波数を中心とした予め定められた検索範囲(例えば、±30%)における受信信号のDFT結果の最大値、即ち受信信号のピーク周波数frを検索する。検索範囲は、図9Cに矢印で示される。続いて、相関関数計算部404は、周波数変化率rd=(fr/fs)を求める。そして、相関関数計算部404は、図4Bの循環畳み込みにおいて送信信号をDFTした後、上記周波数変化率rdを用いて送信信号のDFT結果の周波数軸を補正する。このとき、相関関数計算部404は、送信信号のDFT結果におけるナイキスト周波数以下の周波数域を、周波数軸方向に上記周波数変化率rdだけシフトさせる。また、相関関数計算部404は、送信信号のDFT結果におけるナイキスト周波数以上の周波数域を、ナイキスト周波数を対称軸として左右対称に折り返し、複素共役にする。図10は、実施の形態1の相関関数計算部404による送信信号DFT結果のドプラ補償なしの波形とドプラ補償ありの波形を示すグラフである。グラフの縦軸は振幅「dB」、横軸は周波数「Hz」である。
 図11Aは、実施の形態1の相関関数計算部404による相関関数の計算結果のドプラ補償なしの波形、図11Bはドプラ補償ありの波形を示すグラフである。各グラフの縦軸は振幅、横軸は時間である。図11Aに示されるように、受信信号のDFT結果と、ドプラ補償をしない送信信号のDFT結果とを掛け合わせた場合、ピークはノイズと同程度であり、受信信号に含まれる反射波の検出は困難である。一方、図11Bに示されるように、受信信号のDFT結果と、ドプラ補償後の送信信号のDFT結果とを掛け合わせた場合、反射波の位置(1.5ms付近)でノイズより大きなピークが検出される。
 次に、図12A~図12D、図13A~図13F、図14、並びに、図15A及び図15Bを参照して、サンプリング周波数が図5~図7及び図9~図11よりも低い場合の相関関数計算部404による計算結果を説明する。ここでは、送信信号の周波数が48kHzであり、A/D変換部402のサンプリング周波数が48kHzの4倍(即ち、n=1)である。
 図12は、実施の形態1の相関関数計算部404による相関関数の計算に関係する信号波形を示すグラフであり、図12Aは送信信号の波形、図12Bは反射波の波形、図12Cはノイズの波形、図12Dは受信信号の波形である。各グラフの縦軸は振幅、横軸は時間である。また、図12Bの反射波は、ドプラ効果により周波数がシフトしている。送信素子2から送信される実際の超音波の波形は図12Aと図5Aとで同一であるが、図12Aの送信信号は、図5Aに比べてサンプリング周波数が低いため、粗い波形になっている。
 図13は、実施の形態1の相関関数計算部404によるDFTの結果を示すグラフであり、図13Aは送信信号の振幅、図13Bは送信信号の位相、図13Cは受信信号の振幅、図13Dは受信信号の位相、図13Eは相関関数の振幅、図13Fは相関関数の位相である。振幅のグラフの縦軸を「dB」で表示し、位相のグラフの縦軸を「rad」で表示する。各グラフのサンプリング周波数は48×4kHzである。図8に比べて図13のほうがサンプリング周波数が低いことによりナイキスト周波数が低下しているので、低周波域が周波数軸方向に拡大された波形になっている。
 図14は、実施の形態1の相関関数計算部404による送信信号DFT結果のドプラ補償なしの波形とドプラ補償ありの波形を示すグラフである。グラフの縦軸は振幅「dB」、横軸は周波数「Hz」である。図15Aは、実施の形態1の相関関数計算部404による相関関数の計算結果のドプラ補償なしの波形、図15Bはドプラ補償ありの波形を示すグラフである。各グラフの縦軸は振幅、横軸は時間である。図14、図15A及び図15Bの各グラフと図10、図11A及び図11Bの各グラフとを比べると、48×4kHzサンプリングでも480kHzサンプリングと類似の波形が得られ、相関関数の計算結果において反射波の位置でノイズより大きなピークが検出される。よって、超音波測距装置10は、A/D変換部402のサンプリング周波数を、送信信号の周波数の4倍にした場合でも、10倍にした場合と同等の精度で障害物7までの距離を測定できる。
 次に、図16A~図16C、図17A~図17D、図18A~図18F、図19、並びに、図20A及び図20Bを参照して、送信信号の2値化について説明する。
 図16は、実施の形態1の相関関数計算部404において相関関数の計算に用いる送信信号の波形を示すグラフである。送信信号の周波数は48kHzである。図16Aはサンプリング周波数48×10kHzの波形、図16Bはサンプリング周波数48×4kHzの波形、図16Cはサンプリング周波数48×4kHzのサンプリング値を2値化した波形である。各グラフの縦軸は振幅、横軸は時間である。
 図16Aに示されるように、送信信号の周波数の10倍でサンプリングされた波形は、元の送信信号の波形からの歪はほとんどない。図16Bに示されるように、送信信号の周波数の4倍でサンプリングされた波形は、図16Aの波形に比べて丸みがない粗い波形になっている。
 相関関数計算部404は、図16Bに示されるサンプリング値が「0」以上である場合にこのサンプリング値を「+V」に変換し、「0」未満である場合にこのサンプリング値を「-V」に変換することによって、図16Cに示されるように送信信号を2値化する。図16の例では、V=1であるが、Vは正の実数であればよい。
 なお、相関関数計算部404は、送信信号の振幅を「V」、「0」、及び「-V」の3値に変換してもよい。相関関数計算部404は、サンプリング値が予め定められた閾値thpより大きい場合にこのサンプリング値を「+V」に変換し、閾値thp以下である別の予め定められた閾値thnより小さい場合にこのサンプリング値を「-V」に変換し、閾値thn以上かつ閾値thp以下である場合は「0」に変換する。
 図17は、実施の形態1の相関関数計算部404による相関関数の計算に関係する信号波形を示すグラフであり、図17Aは送信信号の波形、図17Bは反射波の波形、図17Cはノイズの波形、図17Dは受信信号の波形である。各グラフの縦軸は振幅、横軸は時間である。各グラフのサンプリング周波数は48×4kHzである。また、図17Aの送信信号の波形は、サンプリング値を2値化した波形である。また、図17Bの反射波は、ドプラ効果により周波数がシフトしている。送信素子2から送信される実際の超音波の波形は図17Aと図5Aとで同一であるが、図17Aの送信信号は、図5Aに比べてサンプリング周波数が低く、かつ2値化されているため、粗く歪の大きい波形になっている。
 図18は、実施の形態1の相関関数計算部404によるDFTの結果を示すグラフであり、図18Aは送信信号の振幅、図18Bは送信信号の位相、図18Cは受信信号の振幅、図18Dは受信信号の位相、図18Eは相関関数の振幅、図18Fは相関関数の位相である。振幅のグラフの縦軸を「dB」で表示し、位相のグラフの縦軸を「rad」で表示する。各グラフのサンプリング周波数は48×4kHzであり、送信信号は2値化されている。図9に比べて図18のほうがサンプリング周波数が低いことによりナイキスト周波数が低下しているので、低周波域が周波数軸方向に拡大された波形になっている。
 図19は、実施の形態1の相関関数計算部404による送信信号DFT結果のドプラ補償なしの波形とドプラ補償ありの波形を示すグラフである。グラフの縦軸は振幅「dB」、横軸は周波数「Hz」である。サンプリング周波数は48×4kHzであり、送信信号は2値化されている。図20Aは、実施の形態1の相関関数計算部404による相関関数の計算結果のドプラ補償なしの波形、図20Bはドプラ補償ありの波形を示すグラフである。各グラフの縦軸は振幅、横軸は時間である。図20Bに示されるように、相関関数の計算結果において反射波の位置でノイズより大きなピークが検出される。よって、超音波測距装置10は、相関関数計算部404において送信信号を2値化して相関関数を計算した場合でも、障害物7までの距離を測定できる。また、相関関数計算部404は、送信信号を2値化又は3値化することにより、相関関数計算時の計算量及びメモリ量を軽減できる。
 次に、相関関数計算部404による位相検出について説明する。
 ここでは、A/D変換部402において、送信信号の周波数の4n倍の周波数でアナログ信号をサンプリングして受信信号に変換した場合に、受信信号の位相を容易に求める方法を説明する。以下では、n=1とする。
 図21は、実施の形態1の相関関数計算部404による受信信号のsin成分とcos成分のサンプリング例を示すグラフである。グラフの縦軸は振幅、横軸は時間である。受信信号におけるアスタリスクのマークは、サンプリング位置を示し、括弧内の数値は、サンプリング順を示すサンプリング番号の4の剰余数を示す。
 図22は、実施の形態1の相関関数計算部404による受信信号のsin成分とcos成分のサンプリング動作例を示すフローチャートである。相関関数計算部404は、図22のフローチャートに示される動作を、送信信号の周波数の4倍の周波数ごと、即ち受信信号の位相90度ごとに繰り返す。
 ステップST1において、相関関数計算部404は、受信信号の振幅値をサンプリングして今回値に代入する。ステップST2において、相関関数計算部404は、サンプリング番号をインクリメントする。
 ステップST3において、相関関数計算部404は、サンプリング番号が「3」より大きい場合(ステップST3“YES”)、ステップST4においてサンプリング番号を「0」にし、ステップST5へ進む。一方、相関関数計算部404は、サンプリング番号が「3」以下である場合(ステップST3“NO”)、ステップST5へ進む。
 ステップST5において、相関関数計算部404は、サンプリング番号が「3」である場合(ステップST5“YES”)、ステップST6において今回値を剰余数[3]のsin成分として抽出し、ステップST1へ戻る。一方、相関関数計算部404は、サンプリング番号が「3」でない場合(ステップST5“NO”)、ステップST7へ進む。
 ステップST7において、相関関数計算部404は、サンプリング番号が「2」である場合(ステップST7“YES”)、ステップST8において(-1×今回値)を剰余数[2]のcos成分として抽出し、ステップST1へ戻る。一方、相関関数計算部404は、サンプリング番号が「2」でない場合(ステップST7“NO”)、ステップST9へ進む。
 ステップST9において、相関関数計算部404は、サンプリング番号が「1」である場合(ステップST9“YES”)、ステップST10において(-1×今回値)を剰余数[1]のsin成分として抽出し、ステップST1へ戻る。一方、相関関数計算部404は、サンプリング番号が「1」でない場合(ステップST9“NO”)、即ちサンプリング番号が「0」である場合、ステップST11において今回値を剰余数[0]のcos成分として抽出し、ステップST1へ戻る。
 なお、相関関数計算部404は、サンプリングされた値に直流成分が重畳している場合、ステップST6、ステップST8、ステップST10、及びステップST11における今回値の代わりに、(今回値-前々回値)÷2を用いることで、直流成分を除去してもよい。
 相関関数計算部404が、図22のフローチャートに示される動作を行って抽出した受信信号1周期分のsin成分及びcos成分は、下式(2)で表される。jは剰余数である。相関関数計算部404は、下式(2)のうちの互いに90度ずれたsin成分とcos成分とを用いて、下式(3)と下式(4)とを計算し、下式(3)及び下式(4)が両方成立するθを受信信号の位相θとする。

  y(4・n・i+jn)=cos成分(j=0)
  -y(4・n・i+jn)=sin成分(j=1)
  -y(4・n・i+jn)=cos成分(j=2)      (2)
  y(4・n・i+jn)=sin成分(j=3)

Figure JPOXMLDOC01-appb-I000001
 さらに、相関関数計算部404は、P=sin成分+cos成分を計算し、Pの平方根を算出することにより受信信号の振幅値Pを求めてもよい。相関関数計算部404は、振幅値Pを用いて、受信信号における反射波の有無を判定してもよい。また、相関関数計算部404は、位相θ及び振幅値Pの時系列データをフィルタリングすることにより、これらの値を安定化すること、及び特定の信号を検出することも可能である。
 送信信号が周波数変調されている場合、又はドプラ効果により反射波の周波数がシフトしている場合、受信信号の周波数とサンプリング周波数の1/4倍(即ち、送信信号の周波数)との間にΔf[rad/sec]の周波数差が生じる。この周波数差により、位相θの値はΔf[rad/sec]の速さで変化していく。ここで、図23に、受信信号の位相θと周波数差Δf[rad/sec]との関係を図示する。グラフの縦軸は位相、横軸は時間である。図23に示される位相θの変化速度は、例えば、周波数変調又は位相変調された受信信号の復調に使用されてもよいし、障害物7の移動速度の検出に使用されてもよいし、相関関数計算部404の線形畳み込み時のドプラ補償に使用されてもよい。相関関数計算部404は、位相θ等の情報を、距離測定ECU5へ送信する情報として通信処理部410へ出力してもよい。
 相関関数計算部404は、図4Aの線形畳み込みにおいてドプラ補償を行う場合、式(1)を計算する前に位相θを計算し、位相θの変化速度を使用してドプラ効果による反射波周波数のシフト量を特定して送信信号をドプラ補償する。続いて、相関関数計算部404は、受信信号とドプラ補償後の送信信号とを用いて式(1)を計算する。
 以上のように、実施の形態1に係る超音波測距装置10は、超音波センサ1と、信号処理回路4と、距離測定ECU5とを備える。超音波センサ1は、送信信号に対応する超音波を送信し、超音波が障害物7で反射した反射波を受信してアナログ信号を出力する。信号処理回路4のA/D変換部402は、nを3以下の正の整数とし、送信信号の周波数の4n倍のサンプリング周波数で、アナログ信号をA/D変換して受信信号を出力する。信号処理回路4の相関関数計算部404は、受信信号と送信信号との相関関数を計算する。信号処理回路4の検波部405は、相関関数のn個離れた2つのサンプリング値をそれぞれ2乗して加算することにより相関関数の振幅を計算する。信号処理回路4の波形抽出部413は、相関関数の振幅のピーク値を検出する。距離測定ECU5は、相関関数の振幅のピーク値が検出された時間に基づいて障害物7までの距離を算出する。この構成により、超音波測距装置10は、受信信号のサンプリング周波数を従来より低くしても受信信号に含まれる反射波を検出できる。また、受信信号のデータ量が小さくなることにより、メモリ量及び計算量が軽減するため、超音波測距装置10を低コストかつ小型に実現できる。
 また、実施の形態1の相関関数計算部404は、Vを正の実数とし、送信信号の振幅をVと-Vの2値、又はVと0と-Vの3値に変換し、受信信号と変換後の送信信号との相関関数を計算する。これにより、超音波測距装置10におけるメモリ量及び計算量がさらに軽減できる。
 また、実施の形態1の相関関数計算部404は、離散畳み込みを用いて相関関数を計算する。これにより、超音波測距装置10は、デジタルフィルタ部403におけるバンドパスフィルタリングに相当する前処理を行わずとも、送信信号及び受信信号のノイズを除去できる。
 また、実施の形態1によれば、離散畳み込みは循環畳み込みである。これにより、超音波測距装置10は、送信信号が長い場合に計算量を軽減できる。
 また、実施の形態1の相関関数計算部404は、受信信号をDFTして振幅が最大になる周波数を求め、この周波数に基づいて送信信号をドプラ補償する。これにより、超音波測距装置10は、車両又は障害物7の少なくとも一方が移動している場合でも、受信信号に含まれる反射波を検出できる。
 また、実施の形態1の相関関数計算部404は、受信信号を、送信信号の長さ以上のオーバラップを持つ複数のブロックに分割し、ブロックごとに相関関数を計算する。これにより、超音波測距装置10は、メモリ量を軽減できる。
 また、実施の形態1によれば、離散畳み込みは線形畳み込みでもよい。これにより、超音波測距装置10は、送信信号が短い場合に計算量を軽減できる。
 また、実施の形態1の相関関数計算部404は、送信信号の長さが予め定められた閾値以上である場合に循環畳み込みを用い、閾値未満である場合に線形畳み込みを用いてもよい。これにより、超音波測距装置10は、送信信号の長さに応じて、より計算量の少ない畳み込みを選択できる。
 また、実施の形態1の相関関数計算部404は、i及びjを整数とし、受信信号の4ni番目のサンプリング値をy(4ni)とし、当該4ni番目のサンプリング値からjn個離れたサンプリング値y(4ni+jn)をサンプリング値y(4ni)から90j度位相がずれたものとして受信信号のcos成分及びsin成分を抽出し、抽出したcos成分及びsin成分から受信信号の位相を検出する。これにより、超音波測距装置10は、少ない計算量で位相を検出できる。この際、相関関数計算部404は、y(4ni)から180度位相がずれたサンプリング値y(4ni-2n)を引くことにより、受信信号yに残留した直流成分を除去してもよい。
 また、実施の形態1の相関関数計算部404は、送信信号に対する位相の変化速度に基づいて反射波の周波数を検出する。これにより、相関関数計算部404は、線形畳み込みにおける反射波の周波数に基づいて送信信号をドプラ補償できる。また、超音波測距装置10は、DFTよりも少ない計算量で、受信信号における送信信号の周波数近傍の信号を検出できると共に、検出した反射波の周波数を用いて周波数変調された受信信号の復調等を行うことができる。
実施の形態2.
 図24は、実施の形態2に係る超音波測距装置10の信号処理回路4の構成例を示すブロック図である。実施の形態2に係る信号処理回路4は、図2に示された実施の形態1の信号処理回路4に対して、相関関数計算部404の代わりに位相検出部412が追加された構成である。図24において図2と同一又は相当する部分は、同一の符号を付し説明を省略する。また、実施の形態2に係る超音波測距装置10の構成は、実施の形態1の図1に示された構成と図面上は同一であるため、以下では図1を援用する。
 実施の形態1の信号処理回路4は、相関関数の振幅2乗値のピーク値を検出し、ピーク値が検出された時間を、送信素子2から送信された超音波が障害物7で反射して受信素子3に返ってきた時間とした。これに対し、実施の形態2の信号処理回路4は、相関関数ではなく受信信号の振幅2乗値のピークを検出し、ピーク値が検出された時間を、送信素子2から送信された超音波が障害物7で反射して受信素子3に返ってきた時間とする。なお、A/D変換部402は、実施の形態2において、実施の形態1と同様に、送信信号の周波数の4n倍のサンプリング周波数で受信信号をA/D変換する。
 位相検出部412は、デジタルフィルタ部403から出力される受信信号を、検波部405へ入力する。また、位相検出部412は、デジタルフィルタ部403からの受信信号の位相θを検出する。位相検出部412が行う位相検出動作は、実施の形態1の相関関数計算部404が行う位相検出動作と同じであるため、説明を省略する。位相検出部412が検出する位相θの変化速度は、例えば、周波数変調又は位相変調された受信信号の復調に使用されてもよいし、障害物7の移動速度の検出に使用されてもよいし、ドプラ補償に使用されてもよい。位相検出部412は、位相θ等の情報を、距離測定ECU5へ送信する情報として通信処理部410へ出力してもよい。なお、位相θの情報が必要ない場合、位相検出部412は、位相検出動作を行わず、デジタルフィルタ部403からの受信信号を検波部405へ入力する。
 検波部405は、受信信号におけるn個離れた2サンプルを2乗して加算し、受信信号の振幅の2乗値を求める。受信信号の振幅2乗値は、受信信号の振幅値の代替として使用される。
 波形抽出部413は、検波部405が検波した受信信号の振幅2乗値の時系列データを用いて、距離測定ECU5へ送信する情報を決定し、決定した情報を通信処理部410へ出力する。具体的には、波形抽出部413は、受信信号の振幅2乗値の時系列データにおけるピーク値を検出し、ピーク値及びピーク値が検出された時間等を距離測定ECU5へ送信する情報とする。このピーク値が検出された時間は、送信素子2から送信された超音波が障害物7で反射して受信素子3に返ってきた時間である。波形抽出部413は、振幅2乗値の全時系列データ、又は全時系列データを間引いたデータを、距離測定ECU5へ送信する情報に含めてもよい。
 以上のように、実施の形態2に係る超音波測距装置10は、超音波センサ1と、信号処理回路4と、距離測定ECU5とを備える。超音波センサ1は、送信信号に対応する超音波を送信し、超音波が障害物7で反射した反射波を受信してアナログ信号を出力する。信号処理回路4のA/D変換部402は、nを3以下の正の整数とし、送信信号の周波数の4n倍のサンプリング周波数で、アナログ信号をA/D変換して受信信号を出力する。信号処理回路4の検波部405は、受信信号のn個離れた2つのサンプリング値をそれぞれ2乗して加算することにより受信信号の振幅を計算する。信号処理回路4の波形抽出部413は、受信信号の振幅のピーク値を検出する。距離測定ECU5は、受信信号の振幅のピーク値が検出された時間に基づいて障害物7までの距離を算出する。この構成により、超音波測距装置10は、受信信号のサンプリング周波数を従来より低くしても受信信号に含まれる反射波を検出できる。また、受信信号のデータ量が小さくなることにより、メモリ量及び計算量が軽減するため、超音波測距装置10を低コストかつ小型に実現できる。
 最後に、各実施の形態に係る信号処理回路4のハードウェア構成を説明する。
 図25は、各実施の形態に係る信号処理回路4のハードウェア構成例を示す図である。信号処理回路4におけるアナログフィルタ部401は、アナログフィルタ回路1000である。信号処理回路4におけるA/D変換部402は、A/D変換回路1001である。信号処理回路4における送信処理部411は、送信素子2に電圧を印加する駆動回路1002である。
 信号処理回路4におけるデジタルフィルタ部403、相関関数計算部404、検波部405、通信処理部410、位相検出部412、及び波形抽出部413の機能は、メモリ1003に格納されるプログラムを実行するプロセッサ1004により実現される。即ち、デジタルフィルタ部403、相関関数計算部404、検波部405、通信処理部410、位相検出部412、及び波形抽出部413の機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェア又はファームウェアはプログラムとして記述され、メモリ1003に格納される。プロセッサ1004は、メモリ1003に格納されたプログラムを読みだして実行することにより、各部の機能を実現する。即ち、信号処理回路4は、プロセッサ1004により実行されるときに、上記の処理が結果的に実行されることになるプログラムを格納するためのメモリ1003を備える。また、このプログラムは、デジタルフィルタ部403、相関関数計算部404、検波部405、通信処理部410、位相検出部412、及び波形抽出部413の手順又は方法をコンピュータに実行させるものであるとも言える。
 ここで、プロセッサ1004とは、CPU(Central Processing Unit)、処理装置、演算装置、又はマイクロプロセッサ等のことである。
 メモリ1003は、RAM(Random Access Memory)、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、又はフラッシュメモリ等の不揮発性もしくは揮発性の半導体メモリである。なお、A/D変換後の受信信号は、メモリ1003に一時的に格納され、相関関数の計算及びピーク値の検出等に使用される。
 なお、本発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、各実施の形態の任意の構成要素の変形、又は各実施の形態の任意の構成要素の省略が可能である。
 この発明に係る超音波測距装置は、低コスト化及び小型化するようにしたので、自動車用の超音波測距装置などに用いるのに適している。
 1 超音波センサ、2 送信素子、3 受信素子、4 信号処理回路、5 距離測定ECU(距離測定部)、6 車両制御ECU、7 障害物、10 超音波測距装置、401 アナログフィルタ部、402 A/D変換部、403 デジタルフィルタ部、404 相関関数計算部、405 検波部、410 通信処理部、411 送信処理部、412 位相検出部、413 波形抽出部、1000 アナログフィルタ回路、1001 A/D変換回路、1002 駆動回路、1003 メモリ、1004 プロセッサ。

Claims (14)

  1.  送信信号に対応する超音波を送信し、前記超音波が障害物で反射した反射波を受信してアナログ信号を出力する超音波センサと、
     nを3以下の正の整数とし、前記送信信号の周波数の4n倍のサンプリング周波数で、前記アナログ信号をアナログデジタル変換して受信信号を出力するアナログデジタル変換部と、
     前記受信信号と前記送信信号との相関関数を計算する相関関数計算部と、
     前記相関関数のn個離れた2つのサンプリング値をそれぞれ2乗して加算することにより前記相関関数の振幅を計算する検波部と、
     前記相関関数の振幅のピーク値を検出する波形抽出部と、
     前記相関関数の振幅のピーク値が検出された時間に基づいて前記障害物までの距離を算出する距離測定部とを備える超音波測距装置。
  2.  前記相関関数計算部は、Vを正の実数とし、前記送信信号の振幅をVと-V、又はVと0と-Vに変換し、前記受信信号と変換後の前記送信信号との相関関数を計算することを特徴とする請求項1記載の超音波測距装置。
  3.  前記相関関数計算部は、離散畳み込みを用いて相関関数を計算することを特徴とする請求項1記載の超音波測距装置。
  4.  前記離散畳み込みは、循環畳み込みであることを特徴とする請求項3記載の超音波測距装置。
  5.  前記相関関数計算部は、前記受信信号を離散フーリエ変換して振幅が最大になる周波数を求め、前記周波数に基づいて前記送信信号をドプラ補償することを特徴とする請求項4記載の超音波測距装置。
  6.  前記相関関数計算部は、前記受信信号を、前記送信信号の長さ以上のオーバラップを持つ複数のブロックに分割し、前記ブロックごとに相関関数を計算することを特徴とする請求項4記載の超音波測距装置。
  7.  前記離散畳み込みは、線形畳み込みであることを特徴とする請求項3記載の超音波測距装置。
  8.  前記相関関数計算部は、前記離散畳み込みとして、前記送信信号の長さが予め定められた閾値以上である場合に循環畳み込みを用い、前記閾値未満である場合に線形畳み込みを用いることを特徴とする請求項3記載の超音波測距装置。
  9.  前記相関関数計算部は、i及びjを整数とし、前記受信信号の4ni番目のサンプリング値をy(4ni)とし、当該4ni番目のサンプリング値からjn個離れたサンプリング値y(4ni+jn)を前記サンプリング値y(4ni)から90j度位相がずれたものとして前記受信信号のcos成分及びsin成分を抽出し、抽出した前記cos成分及び前記sin成分から前記受信信号の位相を検出することを特徴とする請求項1記載の超音波測距装置。
  10.  前記相関関数計算部は、前記送信信号に対する前記位相の変化速度に基づいて前記反射波の周波数を検出することを特徴とする請求項9記載の超音波測距装置。
  11.  前記相関関数計算部は、前記反射波の周波数に基づいて前記送信信号をドプラ補償することを特徴とする請求項10記載の超音波測距装置。
  12.  送信信号に対応する超音波を送信し、前記超音波が障害物で反射した反射波を受信してアナログ信号を出力する超音波センサと、
     nを3以下の正の整数とし、前記送信信号の周波数の4n倍のサンプリング周波数で、前記アナログ信号をアナログデジタル変換して受信信号を出力するアナログデジタル変換部と、
     前記受信信号のn個離れた2つのサンプリング値をそれぞれ2乗して加算することにより前記受信信号の振幅を計算する検波部と、
     前記受信信号の振幅のピーク値を検出する波形抽出部と、
     前記受信信号の振幅のピーク値が検出された時間に基づいて前記障害物までの距離を算出する距離測定部とを備える超音波測距装置。
  13.  i及びjを整数とし、前記受信信号の4ni番目のサンプリング値をy(4ni)とし、当該4ni番目のサンプリング値からjn個離れたサンプリング値y(4ni+jn)を前記サンプリング値y(4ni)から90j度位相がずれたものとして前記受信信号のcos成分及びsin成分を抽出し、抽出した前記cos成分及び前記sin成分から前記受信信号の位相を検出する位相検出部を備えることを特徴とする請求項12記載の超音波測距装置。
  14.  前記位相検出部は、前記送信信号に対する前記位相の変化速度に基づいて前記反射波の周波数を検出することを特徴とする請求項13記載の超音波測距装置。
PCT/JP2018/020828 2018-05-30 2018-05-30 超音波測距装置 WO2019229895A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/020828 WO2019229895A1 (ja) 2018-05-30 2018-05-30 超音波測距装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/020828 WO2019229895A1 (ja) 2018-05-30 2018-05-30 超音波測距装置

Publications (1)

Publication Number Publication Date
WO2019229895A1 true WO2019229895A1 (ja) 2019-12-05

Family

ID=68696880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020828 WO2019229895A1 (ja) 2018-05-30 2018-05-30 超音波測距装置

Country Status (1)

Country Link
WO (1) WO2019229895A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023058272A1 (ja) * 2021-10-07 2023-04-13 株式会社村田製作所 物体検知装置及び方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08327609A (ja) * 1995-05-31 1996-12-13 Hitachi Ltd 超音波装置
JPH09184716A (ja) * 1995-10-31 1997-07-15 Sanyo Electric Co Ltd 超音波センサ及びこれを用いた分注装置
JPH09224937A (ja) * 1996-02-23 1997-09-02 Aloka Co Ltd 超音波診断装置
JP2000341353A (ja) * 1999-05-26 2000-12-08 Aloka Co Ltd 信号検波装置
WO2011102130A1 (ja) * 2010-02-18 2011-08-25 パナソニック株式会社 超音波測定方法および超音波測定装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08327609A (ja) * 1995-05-31 1996-12-13 Hitachi Ltd 超音波装置
JPH09184716A (ja) * 1995-10-31 1997-07-15 Sanyo Electric Co Ltd 超音波センサ及びこれを用いた分注装置
JPH09224937A (ja) * 1996-02-23 1997-09-02 Aloka Co Ltd 超音波診断装置
JP2000341353A (ja) * 1999-05-26 2000-12-08 Aloka Co Ltd 信号検波装置
WO2011102130A1 (ja) * 2010-02-18 2011-08-25 パナソニック株式会社 超音波測定方法および超音波測定装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023058272A1 (ja) * 2021-10-07 2023-04-13 株式会社村田製作所 物体検知装置及び方法

Similar Documents

Publication Publication Date Title
US10855328B1 (en) Interference suppression for multi-radar coexistence
US20210333390A1 (en) Method and system for ultrasound time-of-flight measurement
US10564255B2 (en) Method and device for operating a radar system of a motor vehicle
US10120073B2 (en) Method for operating a surroundings-detection system of a vehicle
TWI504916B (zh) 調頻連續波雷達感測系統之信號處理方法及信號處理裝置
JP3788322B2 (ja) レーダ
JP6744478B2 (ja) レーダ装置
JP4283170B2 (ja) 物体検出装置
JP2020067455A (ja) 妨害信号抑圧を行うfmcwレーダー
KR101886366B1 (ko) Fmcw 레이더 시스템의 이동타겟 탐지 장치 및 방법
JPH09222474A (ja) Fmcwレーダ装置
KR101526688B1 (ko) 초음파 시스템의 노이즈 제거 장치 및 방법
US20090102698A1 (en) Measuring device and method
WO2019229895A1 (ja) 超音波測距装置
EP3270180A1 (en) Signal processing apparatus for generating a range-doppler map
US6686870B2 (en) Radar
JP3505441B2 (ja) Fft信号処理でのピーク周波数算出方法
WO2019229896A1 (ja) 超音波測距装置
JP5564244B2 (ja) 観測信号処理装置
KR102144498B1 (ko) 차량용 fmcw 레이더 간섭 제거를 위한 차량 주행 제어 시스템 및 간섭 제거 방법
JP6161465B2 (ja) レーダ信号処理装置
KR20140064489A (ko) 트랙킹 정보를 이용한 타겟 차량 인식 방법
JP6976189B2 (ja) 物体検出装置
JP2022124824A (ja) 物体検知装置
JP7316854B2 (ja) 物体検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18920336

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18920336

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP