WO2019228003A1 - 一种预锂化膜及其制备方法和应用 - Google Patents

一种预锂化膜及其制备方法和应用 Download PDF

Info

Publication number
WO2019228003A1
WO2019228003A1 PCT/CN2019/077117 CN2019077117W WO2019228003A1 WO 2019228003 A1 WO2019228003 A1 WO 2019228003A1 CN 2019077117 W CN2019077117 W CN 2019077117W WO 2019228003 A1 WO2019228003 A1 WO 2019228003A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithiated
film
sodium
lithium
lithium battery
Prior art date
Application number
PCT/CN2019/077117
Other languages
English (en)
French (fr)
Inventor
闫昭
罗飞
李泓
Original Assignee
溧阳天目先导电池材料科技有限公司
中国科学院物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 溧阳天目先导电池材料科技有限公司, 中国科学院物理研究所 filed Critical 溧阳天目先导电池材料科技有限公司
Priority to US17/058,988 priority Critical patent/US20210230441A1/en
Priority to KR1020207034313A priority patent/KR102577440B1/ko
Priority to JP2020567074A priority patent/JP2021528808A/ja
Publication of WO2019228003A1 publication Critical patent/WO2019228003A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/68Particle size between 100-1000 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • H01M4/0445Forming after manufacture of the electrode, e.g. first charge, cycling
    • H01M4/0447Forming after manufacture of the electrode, e.g. first charge, cycling of complete cells or cells stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2506/00Halogenated polymers
    • B05D2506/10Fluorinated polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/14Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by electrical means
    • B05D3/141Plasma treatment
    • B05D3/142Pretreatment
    • B05D3/144Pretreatment of polymeric substrates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2203Oxides; Hydroxides of metals of lithium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2248Oxides; Hydroxides of metals of copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of lithium battery materials, in particular to a pre-lithiated film and a preparation method and application thereof.
  • Lithium-ion batteries have been successfully used in mobile power applications as main energy storage devices due to their high output voltage, high energy density, long cycle life, good safety performance, and no memory effect.
  • electrode materials and lithium battery systems with longer cycle life, better safety, and higher energy density have become research hotspots.
  • lithium ions shuttle between the positive and negative electrodes.
  • a large part of the energy density of a lithium battery depends on the amount of active lithium ions in the battery.
  • the positive electrode material and the negative electrode material often consume lithium ions irreversibly in the first week. Therefore, supplementing the consumed lithium ions has become a means to effectively improve the energy density of lithium batteries.
  • the pre-lithiation technology is mainly negative electrode pre-lithiation, positive electrode pre-lithiation, etc.
  • the negative electrode pre-lithiation often uses metal lithium or a more reducible lithium material as the lithium source. Compared with the environmental requirements during the preparation and use, And very dangerous.
  • the lithiated material is often directly coated with the positive electrode material, which reduces the amount of positive electrode material used, and therefore reduces the reversible capacity of the battery.
  • the invention provides a pre-lithiated film and a preparation method and application thereof.
  • the pre-lithiated film of the present invention includes a base film, a pre-lithiated material, a binder, an additive, and an auxiliary agent coated on the surface; during the first week of operation of a battery using the material of the present invention, the pre-lithiated film is released. Lithium ions are used to supplement the loss of lithium ions in the electrode material in the first week.
  • the pre-lithiated film also has the advantages of a ceramic separator, which improves the performance of the separator such as temperature and liquid absorption.
  • the preparation method of the pre-lithiated film of the present invention is simple, has low environmental requirements, abundant raw materials, simple processes, and is easy to be mass-produced.
  • the pre-lithiated film provided by the present invention can be applied to liquid lithium-ion batteries, quasi-solid-state lithium-ion batteries, All solid-state batteries and lithium metal batteries.
  • an embodiment of the present invention provides a pre-lithiation film, which includes: a base film of 1um-50um and a pre-lithiation layer of 0.02um-100um coated on the base film;
  • the pre-lithiated layer includes: 1 wt% to 99.99 wt% of a pre-lithiated material, 0 wt% to 98.99 wt% of a coating material, 0.01 wt% to 10 wt% of a binder, and 0% to 10 wt% of a conductive additive. Materials and 0wt% -2wt% dispersant and 0wt% -2wt% auxiliary;
  • the pre-lithiated material is: a material that can undergo electrochemical reaction to release lithium ions under voltage control; the pre-lithiated material specifically includes: Li x M1 y A z , Li x M2 y (PO 4 ) z , Li x M2 y (SiO 4 ) z , Li 2 S or Li x M1 y S z ;
  • M1 is one or more combinations of metal elements, transition metal elements, rare earth elements, alkali metal elements, and IVA elements
  • M2 is a metal element , Transition metal element, one or more combinations of IVA elements
  • A is one or more combinations of O, F, Cl, S, N elements; wherein the prelithiated material is After being charged and transformed, it is converted into a lithium-containing source material or a lithium-free source material;
  • the lithium-containing source material specifically includes: Li a M1 b A c , Li a M2 b (PO 4 ) c or Li a M2 b (SiO 4 ) c , Li 2 S, Li a M1 b S c ; wherein a, b, c are integer or non-integer and satisfy the price balance of the chemical formula;
  • the lithium-free source material includes: CuO, Cu 2 O, Fe 2 O 3 , Fe 3 O 4 , FeO, Al 2 O 3 , Co 3 O 4 , Co 2 O 3 , V 2 O 5 , MnO, Mn One of 2 O 3 , NiO, MgO, TiO 2 , AlPO 4 , TiPO 4 , CoPO 4 , MnPO 4 , Ni 3 (PO4) 2 , Mg 3 (PO 4 ) 2 , Co 2 (PO 4 ) 3 or Multiple combinations.
  • the pre-lithiated material specifically includes: Li x Cu y O z , Li x Fe y O z , Li x Al y O z , Li x V y O z , Li x Co y O z , Li x Mn y O z , Li x Ni y O z , Li 2 C 2 O 4 , Li x Mg y O z , Li x Ti y O z , Li x Cu y (PO4) z , Li x Fe y (PO 4 ) z , Li x Al y (PO 4 ) z , Li x V y (PO 4 ) z , Li x Mn y (PO 4 ) z , Li x Ni y (PO 4 ) z , Li x Cu y (O c1 S c2 ) z , Li x Cu y (O c1 F c2 ) z , Li x Cu
  • the base film includes one or more of a polypropylene PP film, a polyethylene PE film, a non-woven fabric separator, a fiber separator, a ceramic separator, and a solid electrolyte separator.
  • the pre-lithiated material is spherical, ellipsoidal or irregular polygonal particles with a size of 50 nm-5000 nm.
  • the coating material includes one or several combinations of ceramic materials, polymer materials, piezoelectric materials, thermally conductive materials, and conductive materials;
  • the binder is polyvinylidene fluoride, styrene-butadiene latex, styrene-acrylic latex, polyvinyl alcohol, ethylene-vinyl acetate, sodium alginate, polyacrylamide, polymethyl methacrylate-butyl acrylate, ethylene-acetic acid
  • ethylene copolymer polyvinyl acetate, polyurethane, hydroxyethyl cellulose, methyl hydroxyethyl cellulose, sodium carboxymethyl cellulose, polyacrylamide, polyethylene oxide, and polytetrafluoroethylene Species mixed
  • the conductive additive is carbon black, conductive graphite, carbon fiber, carbon nanotube, acetylene black, Ketjen carbon, graphene, metallic silver, metallic gold, vapor-grown carbon fiber VGCF, conductive graphite KS-6, and carbon black SUPER-P.
  • the dispersant is sodium polyacrylate, sodium dodecylbenzenesulfonate, sodium lauryl sulfate, sodium hexametaphosphate, polyacrylic acid, cetyltrimethylammonium bromide, polyethylene glycol, poly One or more of potassium acrylate, octylphenol polyoxyethylene or sulfonate fluorine dispersant;
  • the auxiliary agents are polydimethylsiloxane, silicone oil, polyethers, sodium polyacrylate, polyvinyl alcohol, sodium alkyl polyoxyethylene ether carboxylate, polyoxyethylene alkyl phenol ether, and alkylbenzene sulfonic acid.
  • auxiliary agents are polydimethylsiloxane, silicone oil, polyethers, sodium polyacrylate, polyvinyl alcohol, sodium alkyl polyoxyethylene ether carboxylate, polyoxyethylene alkyl phenol ether, and alkylbenzene sulfonic acid.
  • an embodiment of the present invention provides a method for preparing the pre-lithiated film described in the first aspect, including:
  • Dispersant, binder, conductive additive, auxiliary agent and solvent are added to the pre-stirring tank according to the required ratio, and the first mixture is completely dissolved;
  • the solvent is a polar solvent, including deionized water, N -Methylpyrrolidone NMP, alcohol or dimethylformamide DMF;
  • the binder is polyvinylidene fluoride, styrene butadiene latex, styrene acrylic latex, polyvinyl alcohol, ethylene vinyl acetate, sodium alginate, polyacrylamide , Polymethyl methacrylate-butyl acrylate, ethylene-vinyl acetate copolymer, polyvinyl acetate, polyurethane, hydroxyethyl cellulose, methyl hydroxyethyl cellulose, sodium carboxymethyl cellulose, polyacrylamide Or one or more of polyethylene, polyoxyethylene, and polytetrafluoroethylene;
  • the conductive additive is carbon black, conductive graphite,
  • the pre-lithiated material and the coating material are gradually added to the first mixture according to a required ratio, and the high-speed stirring and dispersion are performed at a stirring speed of 10-5000 rpm to obtain a second mixture.
  • the pre-lithiated material is specifically Materials that can release lithium ions by electrochemical reaction under voltage control, including: Li x M1 y A z , Li x M2 y (PO 4 ) z , Li x M2 y (SiO 4 ) z , Li 2 S or Li x M1 y S z ; where x, y, z are integers or non-integers and satisfy the price balance of the chemical formula; M1 is one or more of a metal element, a transition metal element, a rare earth element, an alkali metal element, and an IVA group element Combination; M2 is one or more combination of metal element, transition metal element, group IVA element; A is one or more combination of O, F, Cl, S, N element;
  • the base film includes PP Any of a film, a PE film, a non-woven fabric film, or a fiber film.
  • the method before applying the coating slurry to one or both sides of the base film at a speed of 1 m / min to 100 m / min, the method further includes:
  • the base film is subjected to a corona treatment.
  • an embodiment of the present invention provides a method for performing pre-lithiation on the pre-lithiation film described in the first aspect, including:
  • the lithium battery is divided according to a structural composition, and includes one or more of a liquid lithium battery, a quasi-solid lithium battery, and a solid lithium battery;
  • the lithium battery is divided according to an external structure, and includes one or more of a cylindrical lithium battery, a square lithium battery, a flexible lithium battery, a laminated lithium battery, and a button lithium battery.
  • an embodiment of the present invention provides a lithium battery including the pre-lithiated film according to the first aspect.
  • the pre-lithiated film of the present invention includes a base film, a pre-lithiated material, a binder, an additive, and an auxiliary agent coated on the surface; during the first week of operation of a battery using the material of the present invention, the pre-lithiated film is released. Lithium ions are used to supplement the loss of lithium ions in the electrode material in the first week.
  • the pre-lithiated film also has the advantages of a ceramic separator, which improves the performance of the separator such as temperature and liquid absorption.
  • the preparation method of the pre-lithiated film of the present invention is simple, has low environmental requirements, abundant raw materials, simple processes, and is easy to be mass-produced.
  • the pre-lithiated film provided by the present invention can be applied to liquid lithium-ion batteries, quasi-solid-state lithium-ion batteries, All solid-state batteries and lithium metal batteries.
  • FIG. 1 is a schematic structural diagram of a pre-lithiated film according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of a method for preparing a pre-lithiated film according to an embodiment of the present invention
  • Example 3 is a SEM image of a pre-lithiated film provided in Example 1 of the present invention.
  • Embodiment 4 is a performance test chart of a pre-lithiated film half-cell provided in Embodiment 1 of the present invention.
  • Example 5 is a comparison chart of performance tests of a pre-lithiated film half-cell provided in Example 2 of the present invention and Comparative Example 1;
  • FIG. 6 is a performance test comparison chart of a pre-lithiated film half-cell provided in Example 2 of the present invention and Comparative Example 3;
  • Embodiment 7 is a performance test chart of a pre-lithiated film half-cell provided in Embodiment 7 of the present invention.
  • Embodiment 8 is a performance test chart of a pre-lithiated film half-cell provided in Embodiment 8 of the present invention.
  • FIG. 9 is a performance test chart of a pre-lithiated film half-cell provided in Embodiment 9 of the present invention.
  • An embodiment of the present invention provides a pre-lithiation film including: a base film of 1um-50um and a pre-lithiation layer of 0.02um-100um coated on the base film; the structure is shown in FIG. 1.
  • the pre-lithiated layer includes: 1 wt% to 99.99 wt% of pre-lithiated material, 0 wt% to 98.99 wt% of a coating material, 0.01 wt% to 10 wt% of a binder, 0% to 10 wt% of a conductive additive material, and 0wt% -2wt% dispersant and 0wt% -2wt% adjuvant;
  • the pre-lithiated material is: a material that can undergo an electrochemical reaction to release lithium ions under voltage control; the pre-lithiated material specifically includes: Li x M1 y O z , Li x M2 y (PO 4 ) z , Li x M2 y (SiO 4 ) z , Li 2 S or Li x M1 y S z ; x, y, z are integers or non-integers and satisfy the chemical price balance; M1 is a metal element, transition metal element, rare earth element, alkali metal Element, one or more combinations of IVA elements; M2 is one, or a combination of one or more metal elements, transition metal elements, and IVA elements.
  • the pre-lithiation material may also include Li x M1 y A z ;
  • A is one of the elements F, Cl, S, and N, or any combination of O, F, Cl, S, and N.
  • the pre-lithiated material further specifically includes: Li x Cu y O z , Li x Fe y O z , Li x Al y O z , Li x V y O z , Li x Co y O z , Li x Mn y O z , Li x Ni y O z , Li 2 C 2 O 4 , LixMgyOz, Li x Ti y O z , Li x Cu y (PO4) z , Li x Fe y (PO 4 ) z , Li x Al y (PO 4 ) z , Li x V y (PO 4 ) z , Li x Mn y (PO 4 ) z , Li x Ni y (PO 4 ) z , Li x Mg y (PO 4 ) z or Li x Ti y (PO 4 ) A combination of one or more of z .
  • the pre-lithiation material may further specifically include: Li x Cu y (O c1 S c2 ) z , Li x Cu y (O c1 F c2 ) z , Li x (FeZn) y O z , Li x Fe y (O c1 Cl c2 ) z .
  • x, y, c1, c2, and z are integers or non-integer numbers and satisfy the price balance of the chemical formula.
  • the lithium-containing source materials include: Li a M1 b O c , Li a M2 b (PO 4 ) c , Li a M2 b (SiO 4 ) c , Li 2 S or Li a M1 b S c ; a, b, c is an integer or non-integer and satisfies the chemical price balance.
  • Li a M1 b A c may also be included.
  • the lithium-containing source material specifically includes: Li x Cu y O z , Li x Fe y O z , Li x Al y O z , Li x V y O z , Li x Co y O z , Li x Mn y O z , Li x Ni y O z , Li 2 C 2 O 4 , Li x Mg y O z , Li x Ti y O z , Li x Cu y (PO4) z , Li x Fe y (PO 4 ) z , Li x Al y (PO 4 ) z , Li x V y (PO 4 ) z , Li x Mn y (PO 4 ) z , Li x Ni y (PO 4 ) z , Li x Mg y (PO 4 ) z or Li x Ti y (PO 4 ) z is a combination of one or more.
  • Lithium-free source materials include: S, CuO, Cu 2 O, Fe 2 O 3 , Fe 3 O 4 , FeO, Al 2 O 3 , Co 3 O 4 , Co 2 O 3 , V 2 O 5 , MnO, Mn One of 2 O 3 , NiO, MgO, TiO 2 , AlPO 4 , TiPO 4 , CoPO 4 , MnPO 4 , Ni 3 (PO4) 2 , Mg 3 (PO 4 ) 2 , Co 2 (PO 4 ) 3 or Multiple combinations.
  • the base film includes one or more of polypropylene (PP) film, polyethylene (PE) film, non-woven fabric separator, fiber separator, ceramic separator, and solid electrolyte separator.
  • PP polypropylene
  • PE polyethylene
  • the pre-lithiated material is spherical, ellipsoidal or irregular polygonal particles with a size of 50nm-5000nm.
  • Coating materials include ceramic materials, polymer materials, piezoelectric materials, thermally conductive materials, or one or more combinations of conductive materials, including Al 2 O 3 , BaTiO 3 , poly (vinylidene fluoride-co-hexafluoropropylene) ) (PVDF-HFP), polyvinylidene fluoride (PVDF), polyethylene oxide (PEO), TiO 2 , polymethyl methacrylate (PMMA), CuO, solid electrolyte materials, and conductive carbon materials.
  • conductive materials including Al 2 O 3 , BaTiO 3 , poly (vinylidene fluoride-co-hexafluoropropylene) ) (PVDF-HFP), polyvinylidene fluoride (PVDF), polyethylene oxide (PEO), TiO 2 , polymethyl methacrylate (PMMA), CuO, solid electrolyte materials, and conductive carbon materials.
  • Binders are polyvinylidene fluoride, styrene-butadiene latex, styrene-acrylic latex, polyvinyl alcohol, ethylene-vinyl acetate, sodium alginate, polyacrylamide, polymethyl methacrylate-butyl acrylate, and ethylene-vinyl acetate copolymerization Materials, polyvinyl acetate, polyurethane, hydroxyethyl cellulose, methyl hydroxyethyl cellulose, sodium carboxymethyl cellulose, polyacrylamide, polyethylene oxide, and polytetrafluoroethylene ;
  • the conductive additives are carbon black, conductive graphite, carbon fiber, carbon nanotubes, acetylene black, Ketjen carbon, graphene, metallic silver, metallic gold, vapor-grown carbon fiber (VGCF), and conductive graphite KS-6.
  • carbon black SUPER-P One or more of carbon black SUPER-P;
  • Dispersants are sodium polyacrylate, sodium dodecylbenzenesulfonate, sodium lauryl sulfate, sodium hexametaphosphate, polyacrylic acid, cetyltrimethylammonium bromide, polyethylene glycol, potassium polyacrylate One or more of octylphenol polyoxyethylene or sulfonate fluorine dispersant;
  • Auxiliaries are polydimethylsiloxane, silicone oil, polyethers, sodium polyacrylate, polyvinyl alcohol, sodium alkyl polyoxyethylene ether carboxylate, polyoxyethylene alkyl phenol ether, sodium alkylbenzene sulfonate, One or more combinations of alkylphenol polyoxyethylene ether, polyoxyethylene alkylamine, or polyoxyethylene amide.
  • the pre-lithiated film of the present invention includes a base film, a pre-lithiated material, a binder, an additive, and an auxiliary agent coated on the surface; during the first week of operation of a battery using the material of the present invention, the pre-lithiated film is released. Lithium ions are used to supplement the loss of lithium ions in the electrode material in the first week.
  • the pre-lithiated film also has the advantages of a ceramic separator, which improves the performance of the separator such as temperature and liquid absorption.
  • the pre-lithiated film provided by the present invention can be applied to liquid lithium-ion batteries, quasi-solid-state lithium-ion batteries, all-solid-state batteries, and lithium metal batteries.
  • the method for preparing a pre-lithiated film provided in this embodiment is shown in FIG. 2 and includes:
  • Step 210 Add a dispersant, a binder, a conductive additive, an auxiliary agent, and a solvent into a pre-stirring tank according to a required ratio, and dissolve to obtain a first mixture completely;
  • the solvent is a polar solvent, including deionized water, N-methylpyrrolidone NMP, alcohol, or dimethylformamide DMF;
  • the binder is polyvinylidene fluoride, styrene-butadiene latex, styrene-acrylic latex, polyvinyl alcohol, Ethylene-vinyl acetate, sodium alginate, polyacrylamide, polymethyl methacrylate-butyl acrylate, ethylene-vinyl acetate copolymer, polyvinyl acetate, polyurethane, hydroxyethyl cellulose, methyl hydroxyethyl fiber
  • the conductive additive is carbon black, conductive graphite, carbon fiber, carbon nanotube, acetylene black, Ketjen Carbon, graphene, metallic silver, metallic gold, VGCF, KS-6, SUPER-P in one or more mixtures;
  • the water is a polar solvent, including deionized water, N-methylpyrrolidon
  • step 220 the pre-lithiated material and the coating material are gradually added to the first mixture according to a required ratio, and the high-speed stirring and dispersion are performed at a stirring speed of 10-5000 rpm to obtain a second mixture;
  • the pre-lithiated material is specifically a material that can undergo electrochemical reaction to release lithium ions under voltage control, and includes: Li x M1 y O z , Li x M2 y (PO 4 ) z , Li x M2 y (SiO 4 ) z , Li 2 S or Li x M1 y S z ; where x, y, z are integers or non-integers and satisfy the price balance of the chemical formula; M1 is a metal element, transition metal element, rare earth element, alkali metal element, group IVA One or more combinations of elements; M2 is one or more combinations of metal elements, transition metal elements, and IVA group elements; wherein the coating material includes ceramic materials, polymer materials, and piezoelectric materials , Thermally conductive materials, one or more combinations of conductive materials.
  • the pre-lithiation material may also include Li x M1 y A z ; A is one of the elements F, Cl, S, and N, or any
  • Step 230 filter the second mixture with a screen to obtain a coating slurry
  • step 240 the coating slurry is coated on one or both sides of the base film at a speed of 1m / min-100m / min, and dried at 40 ° C-100 ° C to obtain a pre-lithiated film.
  • the base film includes any of a PP film, a PE film, a non-woven fabric film, and a fiber film.
  • the base film may also be corona treated before this step.
  • the preparation method of the pre-lithiated film of the invention is simple, has low environmental requirements, abundant raw materials, simple technology, and is easy for large-scale production.
  • the assembled lithium batteries are divided according to their structural composition, including one or more of liquid lithium batteries, quasi-solid lithium batteries, and solid lithium batteries;
  • a cylindrical lithium battery including one or more of a cylindrical lithium battery, a square lithium battery, a soft-pack lithium battery, a laminated lithium battery, and a button lithium battery.
  • lithium ions are released from the pre-lithiated film, which is used to supplement the loss of lithium ions from the electrode material of the first week.
  • This embodiment provides a pre-lithiation film, including a base film and a pre-lithiation layer composed of a lithiation slurry coated on one side of the base film.
  • the base film is a polypropylene porous film with a thickness of 16 ⁇ m.
  • Surface coating method with a coating thickness of 2um, to form a pre-lithiated layer.
  • the mass ratio of the coating slurry the lithiated composition is 20%, and the NMP is 80%.
  • the preparation of the lithiated composition is based on the mass ratio: the lithiated material Li 2 CuO 2 powder is 50%, and the particle diameter D50 is 1um, binder PVDF is 50%.
  • the pre-lithiated film in this embodiment is prepared by the following method, and specifically includes steps:
  • Lithium material Li 2 CuO 2 powder is gradually added to the mixture I, and is stirred and dispersed at a high speed at a stirring speed of 50 rpm and a dispersion speed of 1700 rpm to obtain a mixture II;
  • the coating speed is 5 m / min, drying at 50 ° C, and drying to obtain a pre-lithiated film.
  • Example 3 The SEM image of the pre-lithiated film provided in Example 1 of the present invention is shown in FIG. 3. It can be seen from FIG. 3 that the lithiated material is uniformly distributed.
  • Example 1 of the present invention A pre-lithiated film provided in Example 1 of the present invention, a positive electrode sheet coated with a lithium cobaltate positive electrode material, metallic lithium, and an electrolyte were assembled into a half-cell, and a battery performance test was performed. The results are shown in FIG. 4.
  • This embodiment provides a pre-lithiation film, including a base film and a pre-lithiation layer composed of a lithiation slurry coated on one side of the base film.
  • the base film is a polypropylene porous film with a thickness of 16 ⁇ m.
  • Surface coating method with a coating thickness of 10um, to form a pre-lithiated layer.
  • the mass ratio of the coating slurry the lithiated composition is 20%, and the NMP is 80%.
  • the preparation of the lithiated composition is based on the mass ratio: the lithiated material Li 2 CuO 2 powder is 50%, and the particle diameter D50 is 1um, binder PVDF is 50%.
  • the method for preparing the pre-lithiated film is the same as in Example 1.
  • the pre-lithiated film provided in this embodiment is assembled into a half-cell with a positive electrode sheet coated with a lithium cobaltate positive electrode material, metallic lithium, and an electrolyte, and a battery performance test is performed. The results are shown in FIG. 5.
  • the pre-lithiated film provided in this embodiment, the positive electrode sheet coated with the NCM positive electrode material, the negative electrode sheet coated with the SC400 negative electrode material, and the electrolyte were assembled into a half-cell, and the battery performance test was performed. The results are shown in FIG. 6 .
  • This embodiment provides a pre-lithiation film, including a base film and a pre-lithiation layer composed of a lithiation slurry coated on one side of the base film.
  • the base film is a polypropylene porous film with a thickness of 16 ⁇ m.
  • Surface coating method with a coating thickness of 10um, to form a pre-lithiated layer.
  • the mass ratio of the coating slurry the lithiated composition is 20%, and the NMP is 80%.
  • the preparation of the lithiated composition is based on the mass ratio: the lithiated material Li 2 CuO 2 powder is 20%, and the particle diameter D50 is 1um, alumina powder is 20%, particle diameter D50 is 200nm, and binder PVDF is 50%.
  • the method for preparing the pre-lithiated film is the same as in Example 1.
  • the pre-lithiated film provided in this embodiment was assembled into a half-cell with a positive electrode sheet coated with a lithium cobaltate positive electrode material, metallic lithium, and an electrolyte, and a battery performance test was performed. The results are shown in Table 1.
  • This embodiment provides a pre-lithiation film, including a base film and a pre-lithiation layer composed of a lithiation slurry coated on one side of the base film.
  • the base film is a polypropylene porous film with a thickness of 16 ⁇ m.
  • Surface coating method with a coating thickness of 10um, to form a pre-lithiated layer.
  • the mass ratio of the coating slurry 20% of the lithiated composition and 80% of deionized water; among which, the preparation of the lithiated composition is based on the mass ratio: 96% of the lithiated material Li 2 CuO 2 powder, particle size D50 is 1um, binder carboxymethylcellulose sodium is 1%, binder styrene-butadiene latex is 1%, dispersant polyethylene glycol is 1%, auxiliary octylphenol polyoxyethylene is 1%.
  • the method for preparing the pre-lithiated film is the same as in Example 1.
  • the pre-lithiated film provided in this embodiment was assembled into a half-cell with a positive electrode sheet coated with a lithium cobaltate positive electrode material, metallic lithium, and an electrolyte, and a battery performance test was performed. The results are shown in Table 1.
  • This embodiment provides a pre-lithiation film, including a base film and a pre-lithiation layer composed of a lithiation slurry coated on one side of the base film.
  • the base film is a polypropylene porous film with a thickness of 16 ⁇ m.
  • Surface coating method with a coating thickness of 10um, to form a pre-lithiated layer.
  • the mass ratio of the coating slurry the lithiated composition is 20%, and the NMP is 80%.
  • the preparation of the lithiated composition is based on the mass ratio: the lithiated material Li 5 FeO 4 powder is 50%, and the particle diameter D50 is 200um, binder PVDF is 50%.
  • the method for preparing the pre-lithiated film is the same as in Example 1.
  • This embodiment provides a pre-lithiation film, which includes a base film and a pre-lithiation layer composed of a lithiation slurry coated on one side of the base film, wherein the base film is a ceramic diaphragm with a thickness of 12 ⁇ m, and is coated on one side.
  • the coating thickness is 10um to form a pre-lithiated layer.
  • the mass ratio of the coating slurry the lithiated composition is 20%, and the NMP is 80%.
  • the preparation of the lithiated composition is based on the mass ratio: the lithiated material Li 2 CuO 2 powder is 60%, and the particle diameter D50 is 200um, binder PVDF is 40%.
  • the method for preparing the pre-lithiated film is the same as in Example 1.
  • This embodiment provides a pre-lithiation film including a base film and a pre-lithiation layer composed of a lithiation slurry coated on one side of the base film.
  • the base film is a polypropylene porous film with a thickness of 10 ⁇ m.
  • Surface coating method with a coating thickness of 5um, to form a pre-lithiated layer.
  • the mass ratio of the coating slurry the lithiated composition is 20%, and the NMP is 80%.
  • the preparation of the lithiated composition is based on the mass ratio: the lithiated material Li 1.8 CuO 1.8 F 0.2 powder is 50%, and the particle size is 50%. D50 is 2um and binder PVDF is 50%.
  • the method for preparing the pre-lithiated film is the same as in Example 1.
  • the pre-lithiated film, aluminum foil, metallic lithium, and electrolytic solution provided in this embodiment are assembled into a half-cell, and a battery performance test is performed. The results are shown in FIG. 7.
  • This embodiment provides a pre-lithiation film including a base film and a pre-lithiation layer composed of a lithiation slurry coated on one side of the base film.
  • the base film is a polypropylene porous film with a thickness of 10 ⁇ m.
  • Surface coating method the coating thickness is 3um to form a pre-lithiated layer.
  • the mass ratio of the coating slurry the lithiated composition is 20%, and the NMP is 80%.
  • the preparation of the lithiated composition is based on the mass ratio: the lithiated material Li 4.8 FeO 3.8 F 0.2 powder is 50%, and the particle size is 50%. D50 is 2um and binder PVDF is 50%.
  • the method for preparing the pre-lithiated film is the same as in Example 1.
  • the pre-lithiated film, aluminum foil, metallic lithium, and electrolytic solution provided in this embodiment are assembled into a half-cell, and a battery performance test is performed. The results are shown in FIG. 8.
  • This embodiment provides a pre-lithiation film, including a base film and a pre-lithiation layer composed of a lithiation slurry coated on one side of the base film.
  • the base film is a polypropylene porous film with a thickness of 16 ⁇ m.
  • Surface coating method the coating thickness is 3um to form a pre-lithiated layer.
  • the mass ratio of the coating slurry the lithiated composition is 20%, and the NMP is 80%.
  • the preparation of the lithiated composition is based on the mass ratio: the lithiated material Li 5 FeO 3.8 S 0.2 powder is 50%, and the particle size is 50%. D50 is 1um and the binder PVDF is 50%.
  • the method for preparing the pre-lithiated film is the same as in Example 1.
  • the pre-lithiated film, aluminum foil, metallic lithium, and electrolytic solution provided in this embodiment are assembled into a half-cell, and a battery performance test is performed. The results are shown in FIG. 9.
  • This embodiment provides a pre-lithiation film, including a base film and a pre-lithiation layer composed of a lithiation slurry coated on one side of the base film.
  • the base film is a polypropylene porous film with a thickness of 16 ⁇ m.
  • Surface coating method the coating thickness is 3um to form a pre-lithiated layer.
  • the mass ratio of the coating slurry the lithiated composition is 20%, and the NMP is 80%.
  • the preparation of the lithiated composition is based on the mass ratio: the lithiated material Li 1.9 CuO 1.9 Cl 0.1 powder is 50%, particle size D50 is 2um and binder PVDF is 50%.
  • the method for preparing the pre-lithiated film is the same as in Example 1.
  • This embodiment provides a pre-lithiation film, including a base film and a pre-lithiation layer composed of a lithiation slurry coated on one side of the base film.
  • the base film is a polypropylene porous film with a thickness of 16 ⁇ m.
  • Surface coating method with a coating thickness of 5um, to form a pre-lithiated layer.
  • the mass ratio of the coating slurry the lithiated composition is 20%, and the NMP is 80%.
  • the preparation of the lithiated composition is based on the mass ratio: the lithiated material Li 5 FeS 4 powder is 50%, and the particle diameter D50 is 2um, binder PVDF is 50%.
  • the method for preparing the pre-lithiated film is the same as in Example 1.
  • the pre-lithiated film provided in this embodiment 1-11 and a positive electrode sheet coated with a lithium cobaltate positive electrode material, metallic lithium, and an electrolyte were assembled into a half-cell, and a battery performance test was performed. The results are shown in Table 1.
  • a ceramic Al 2 O 3 separator, a positive electrode sheet coated with a lithium cobaltate positive electrode material, metallic lithium, and an electrolyte were assembled into a half-cell, and a battery performance test was performed. The results are shown in Table 1.
  • a half battery was assembled with a PP separator, a positive electrode sheet coated with a lithium cobaltate positive electrode material, metallic lithium, and an electrolyte, and a battery performance test was performed. The results are shown in Table 1.
  • This comparative example provides a copper oxide ceramic diaphragm, which includes a base film and a copper oxide layer coated on one side of the base film, wherein the base film is a polypropylene porous film with a thickness of 16um.
  • a copper oxide ceramic separator, a positive electrode sheet coated with NCM positive electrode material, a negative electrode sheet coated with SC400 negative electrode material, and an electrolyte were assembled into a half-cell, and the battery performance test was performed. The results are shown in FIG. 6.
  • the method for preparing the pre-lithiated film is the same as in Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Ceramic Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种预锂化膜及其制备方法和应用,包括:1um-50um的基膜和涂布在所述基膜之上的0.02um-100um的预锂化层;所述预锂化层包括:1wt%-99.99wt%的预锂化材料,0wt%-98.99wt%的涂层材料,0.01wt%-10wt%的粘结剂,0%-10wt%的导电添加剂材料和0wt%-2wt%的分散剂和0wt%-2wt%的助剂;其中,所述预锂化材料为:在电压控制下可以发生电化学反应释放出锂离子的材料;所述预锂化材料具体包括:Li xM1 yA z、Li xM2 y(PO 4) z、Li xM2 y(SiO 4) z、Li 2S、Li xM1 yS z;其中x,y,z为整数或非整数且满足化学式的电价平衡;M1为金属元素、过渡金属元素、稀土元素、碱金属元素、IVA族元素的一种或者一种以上的组合;M2为金属元素、过渡金属元素、稀土元素、碱金属元素、IVA族元素的一种或者一种以上的组合;A为O、F、Cl、S、N元素中的一种或者一种以上的组合。

Description

一种预锂化膜及其制备方法和应用
本申请要求于2018年05月29日提交中国专利局、申请号为201810529006.6、发明名称为“一种预锂化膜及其制备方法和应用”的中国专利申请的优先权。
技术领域
本发明涉及锂电池材料技术领域,尤其涉及一种预锂化膜及其制备方法和应用。
背景技术
锂离子电池因具有输出电压高、能量密度高、循环寿命长、安全性能好、无记忆效应等特点,作为主要的储能器件成功应用于移动电源领域。为了进一步满足电网储能、电动汽车以及消费类电子产品对储能器件的需求,更长循环寿命、安全性更好、能量密度更高的电极材料以及锂电池体系成为研究热点。
锂电池在工作过程中,锂离子在正负极中进行穿梭。锂电池能量密度的高低很大一部分上取决于电池中活性锂离子的多少。然而目前商业化中的锂电池中,首周时正极材料和负极材料往往不可逆的消耗锂离子。因此补充被消耗的锂离子成为一种有效提高锂电池能量密度的手段。
目前预锂化技术主要为负极预锂化、正极预锂化等,负极预锂化往往采用金属锂或者还原性较强的锂化材料作为锂源,在制备和使用过程中对环境要求比较、并且十分危险。而正极预锂化往往是将锂化材料直接和正极材料一起进行涂布,降低了正极材料使用量,因此降低了电池的可逆容量。
因此,迫切需要提出一种可以大规模生产、应用的预锂化方法。
发明内容
本发明提供了一种预锂化膜及其制备方法和应用。本发明的预锂化膜包括基膜、涂布在其表面的预锂化材料、粘结剂、添加剂和助剂;应用本发明材料的电池在首周运行过程中,预锂化膜释放出锂离子,用于补充首周电极材料锂离子的损耗,预锂化膜同时兼具陶瓷隔膜的优点,提高了隔膜的使用温度、吸液性等性能。本发明预锂化膜的制备方法简单、对环境要求低、原材料丰富、工艺简单,易于大规模生产;本发明所提供的预锂化膜可以应用于液态锂离子电池、准固态锂离子电池、全固态电池以及锂金属电池中。
第一方面,本发明实施例提供了一种预锂化膜,所述包括:1um-50um的基膜和涂布在所述基膜之上的0.02um-100um的预锂化层;
所述预锂化层包括:1wt%-99.99wt%的预锂化材料,0wt%-98.99wt%的涂层材料,0.01wt%-10wt%的粘结剂,0%-10wt%的导电添加剂材料和0wt%-2wt%的分散剂和0wt%-2wt%的助剂;
其中,所述预锂化材料为:在电压控制下可以发生电化学反应释放出锂离子的材料;所述预锂化材料具体包括:Li xM1 yA z、Li xM2 y(PO 4) z、Li xM2 y(SiO 4) z、Li 2S或Li xM1 yS z
x,y,z为整数或非整数且满足化学式的电价平衡;M1为金属元素、过渡金属元素、稀土元素、碱金属元素、IVA族元素的一种或者一种以上的组合;M2为金属元素、过渡金属元素、IVA族元素的一种或者一种以上的组合;A为O、F、Cl、S、N元素中的一种或者一种以上的组合;其中,所述预锂化材料在充电化成后,转化为含锂源材料或不含锂源材料;
所述含锂源材料具体包括:Li aM1 bA c、Li aM2 b(PO 4) c或Li aM2 b(SiO 4) c、Li 2S、Li aM1 bS c;其中a,b,c为整数或非整数且满足化学式的电价平衡;
所述不含锂源材料包括:CuO、Cu 2O、Fe 2O 3、Fe 3O 4、FeO、Al 2O 3、Co 3O 4、Co 2O 3、V 2O 5、MnO、Mn 2O 3、NiO、MgO、TiO 2、AlPO 4、TiPO 4、CoPO 4、MnPO 4、 Ni 3(PO4) 2、Mg 3(PO 4) 2、Co 2(PO 4) 3中的一种或多种组合。
优选的,所述预锂化材料具体包括:Li xCu yO z、Li xFe yO z、Li xAl yO z、Li xV yO z、Li xCo yO z、Li xMn yO z、Li xNi yO z、Li 2C 2O 4、Li xMg yO z、Li xTi yO z、Li xCu y(PO4) z、Li xFe y(PO 4) z、Li xAl y(PO 4) z、Li xV y(PO 4) z、Li xMn y(PO 4) z、Li xNi y(PO 4) z、Li xCu y(O c1S c2) z、Li xCu y(O c1F c2) z、Li x(FeZn) yO z、Li xFe y(O c1Cl c2) z、Li xMg y(PO 4) z或Li xTi y(PO 4) z的一种或多种的组合;其中,x,y,c1、c2、z为整数或非整数且满足化学式的电价平衡。
优选的,所述基膜包括聚丙烯PP膜、聚乙烯PE膜、无纺布隔膜、纤维隔膜、陶瓷隔膜、固态电解质隔膜中的一种或多种复合。
优选的,所述预锂化材料为球形、椭球形或无规则多边形的颗粒,尺寸为50nm-5000nm。
优选的,所述涂层材料包括陶瓷材料、聚合物材料、压电材料、导热材料、导电材料的一种或者几种组合;
所述粘结剂为聚偏氟乙烯、丁苯乳胶、苯丙乳胶、聚乙烯醇、乙烯-醋酸乙烯、海藻酸钠、聚丙烯酰胺、聚甲基丙烯酸甲酯-丙烯酸丁脂、乙烯-醋酸乙烯共聚物、聚醋酸乙烯酯、聚氨酯、羟乙基纤维素、甲基羟乙基纤维素、羧甲基纤维素钠、聚丙烯酰胺、聚氧化乙烯以及聚四氟乙烯中的一种或者多种混合;
所述导电添加剂为炭黑、导电石墨、碳纤维、碳纳米管、乙炔黑、科琴碳、石墨烯、金属银、金属金、气相生长炭纤维VGCF、导电石墨KS-6、炭黑SUPER-P的一种或者多种混合;
所述分散剂为聚丙烯酸钠、十二烷基苯磺酸钠、十二烷基硫酸钠、六偏磷酸钠、聚丙烯酸、十六烷基三甲基溴化铵、聚乙二醇、聚丙烯酸钾、辛基苯酚聚氧乙烯或磺酸盐氟分散剂中的一种或者多种;
所述助剂为聚二甲基硅氧烷、硅油、聚醚类、聚丙烯酸钠、聚乙烯醇、烷基聚氧乙烯醚羧酸钠、聚氧乙烯烷基酚醚、烷基苯磺酸钠、烷基酚聚氧 乙烯醚、聚氧乙烯烷基胺或聚氧乙烯酰胺的一种或几种组合。
第二方面,本发明实施例提供了一种用于制备上述第一方面所述的预锂化膜的制备方法,包括:
将分散剂、粘结剂、导电添加剂以及助剂和溶剂按所需比例加入到预搅拌罐中,溶解完全得到第一混合物;其中,所述的溶剂为极性溶剂,包括去离子水、N-甲基吡咯烷酮NMP、酒精或二甲基甲酰胺DMF;所述粘结剂为聚偏氟乙烯、丁苯乳胶、苯丙乳胶、聚乙烯醇、乙烯-醋酸乙烯、海藻酸钠、聚丙烯酰胺、聚甲基丙烯酸甲酯-丙烯酸丁脂、乙烯-醋酸乙烯共聚物、聚醋酸乙烯酯、聚氨酯、羟乙基纤维素、甲基羟乙基纤维素、羧甲基纤维素钠、聚丙烯酰胺、聚氧化乙烯以及聚四氟乙烯中的一种或者多种混合;所述导电添加剂为炭黑、导电石墨、碳纤维、碳纳米管、乙炔黑、科琴碳、石墨烯、金属银、金属金、VGCF、KS-6、SUPER-P的一种或者多种混合;所述水溶性分散剂为聚丙烯酸钠、十二烷基苯磺酸钠、十二烷基硫酸钠、六偏磷酸钠、聚丙烯酸、十六烷基三甲基溴化铵、聚乙二醇、聚丙烯酸钾、辛基苯酚聚氧乙烯或磺酸盐氟分散剂中的一种或者多种;所述助剂为聚二甲基硅氧烷、硅油、聚醚类、聚丙烯酸钠、聚乙烯醇、烷基聚氧乙烯醚羧酸钠、聚氧乙烯烷基酚醚、烷基苯磺酸钠、烷基酚聚氧乙烯醚、聚氧乙烯烷基胺或聚氧乙烯酰胺的一种或几种组合;
按所需比例将预锂化材料和涂层材料逐步加入到所述第一混合物中,进行高速搅拌分散,搅拌速度为10-5000rpm,得到第二混合物;其中所述预锂化材料具体为在电压控制下可以发生电化学反应释放出锂离子的材料,包括:Li xM1 yA z、Li xM2 y(PO 4) z、Li xM2 y(SiO 4) z、Li 2S或Li xM1 yS z;其中x,y,z为整数或非整数且满足化学式的电价平衡;M1为金属元素、过渡金属元素、稀土元素、碱金属元素、IVA族元素的一种或者一种以上的组合;M2为金属元素、过渡金属元素、IVA族元素的一种或者一种以上的组合;A为O、F、Cl、S、N元素中的一种或者一种以上的组合;其中所述涂层材料 包括陶瓷材料、聚合物材料、压电材料、导热材料、导电材料的一种或者几种组合;
将所述第二混合物用筛网过滤得到涂覆浆料;
将所述涂覆浆料以1m/min-100m/min的速度涂布于基膜的一面或者两面,在40℃-100℃下干燥后得到预锂化膜;其中,所述基膜包括PP膜、PE膜、无纺布膜或纤维膜中的任一种。
优选的,所述将所述涂覆浆料以1m/min-100m/min的速度涂布于基膜的一面或者两面之前,所述方法还包括:
对所述基膜进行电晕处理。
第三方面,本发明实施例提供了一种对第一方面所述的预锂化膜进行预锂化处理的方法,包括:
将预锂化膜作为隔膜材料装配锂电池,其中,将涂覆有预锂化层的一侧靠近正极极片进行装配;
将装配得到的锂电池进行充电化成;
其中,所述锂电池按照结构组成划分,包括液态锂电池、准固态锂电池、固态锂电池的一种或者多种;
或者,所述锂电池按照外形结构划分,包括圆柱锂电池、方形锂电池、软包锂电池、叠片锂电池、扣式锂电池的一种或者多种。
第四方面,本发明实施例提供了一种包括上述第一方面所述的预锂化膜的锂电池。
本发明的预锂化膜包括基膜、涂布在其表面的预锂化材料、粘结剂、添加剂和助剂;应用本发明材料的电池在首周运行过程中,预锂化膜释放出锂离子,用于补充首周电极材料锂离子的损耗,预锂化膜同时兼具陶瓷隔膜的优点,提高了隔膜的使用温度、吸液性等性能。本发明预锂化膜的制备方法简单、对环境要求低、原材料丰富、工艺简单,易于大规模生产;本发明所提供的预锂化膜可以应用于液态锂离子电池、准固态锂离子电池、全固态电 池以及锂金属电池中。
附图说明
下面通过附图和实施例,对本发明实施例的技术方案做进一步详细描述。
图1为本发明实施例提供的预锂化膜的结构示意图;
图2为本发明实施例提供的预锂化膜的制备方法流程图;
图3为本发明实施例1提供的预锂化膜SEM图;
图4为本发明实施例1提供的预锂化膜半电池性能测试图;
图5为本发明实施例2提供的预锂化膜半电池与对比例1的性能测试对比图;
图6为本发明实施例2提供的预锂化膜半电池与对比例3的性能测试对比图;
图7为本发明实施例7提供的预锂化膜半电池性能测试图;
图8为本发明实施例8提供的预锂化膜半电池性能测试图;
图9为本发明实施例9提供的预锂化膜半电池性能测试图。
具体实施方式
下面结合实施例,对本发明进行进一步的详细说明,但并不意于限制本发明的保护范围。
本发明实施例提供了一种预锂化膜包括:1um-50um的基膜和涂布在基膜之上的0.02um-100um的预锂化层;结构如图1所示。
预锂化层包括:1wt%-99.99wt%的预锂化材料,0wt%-98.99wt%的涂层材料,0.01wt%-10wt%的粘结剂,0%-10wt%的导电添加剂材料和0wt%-2wt%的分散剂和0wt%-2wt%的助剂;
其中,预锂化材料为:在电压控制下可以发生电化学反应释放出锂离子的材料;预锂化材料具体包括:Li xM1 yO z、Li xM2 y(PO 4) z、Li xM2 y(SiO 4) z、 Li 2S或Li xM1 yS z;x,y,z为整数或非整数且满足化学式的电价平衡;M1为金属元素、过渡金属元素、稀土元素、碱金属元素、IVA族元素的一种或者一种以上的组合;M2为金属元素、过渡金属元素、IVA族元素的一种或者一种以上的组合。
此外,预锂化材料还可以包括Li xM1 yA z;A为F、Cl、S、N元素中的一种或者为O、F、Cl、S、N的任意几种的组合。
更具体的,预锂化材料进一步具体包括:Li xCu yO z、Li xFe yO z、Li xAl yO z、Li xV yO z、Li xCo yO z、Li xMn yO z、Li xNi yO z、Li 2C 2O 4、LixMgyOz、Li xTi yO z、Li xCu y(PO4) z、Li xFe y(PO 4) z、Li xAl y(PO 4) z、Li xV y(PO 4) z、Li xMn y(PO 4) z、Li xNi y(PO 4) z、Li xMg y(PO 4) z或Li xTi y(PO 4) z的一种或多种的组合。
此外,预锂化材料还可以更进一步具体包括:Li xCu y(O c1S c2) z、Li xCu y(O c1F c2) z、Li x(FeZn) yO z、Li xFe y(O c1Cl c2) z。上述预锂化材料的化学式中,x,y,c1、c2、z为整数或非整数且满足化学式的电价平衡。
上述预锂化材料在充电化成后,转化为含锂源材料或不含锂源材料。其中,含锂源材料包括:Li aM1 bO c、Li aM2 b(PO 4) c、Li aM2 b(SiO 4) c、Li 2S或Li aM1 bS c;a,b,c为整数或非整数且满足化学式的电价平衡。当然,还可以包括Li aM1 bA c
进一步的,含锂源材料具体包括:Li xCu yO z、Li xFe yO z、Li xAl yO z、Li xV yO z、Li xCo yO z、Li xMn yO z、Li xNi yO z、Li 2C 2O 4、Li xMg yO z、Li xTi yO z、Li xCu y(PO4) z、Li xFe y(PO 4) z、Li xAl y(PO 4) z、Li xV y(PO 4) z、Li xMn y(PO 4) z、Li xNi y(PO 4) z、Li xMg y(PO 4) z或Li xTi y(PO 4) z的一种或多种的组合。
不含锂源材料包括:S、CuO、Cu 2O、Fe 2O 3、Fe 3O 4、FeO、Al 2O 3、Co 3O 4、Co 2O 3、V 2O 5、MnO、Mn 2O 3、NiO、MgO、TiO 2、AlPO 4、TiPO 4、CoPO 4、MnPO 4、Ni 3(PO4) 2、Mg 3(PO 4) 2、Co 2(PO 4) 3中的一种或多种组合。
基膜包括聚丙烯(PP)膜、聚乙烯(PE)膜、无纺布隔膜、纤维隔膜、陶瓷隔膜、固态电解质隔膜中的一种或多种复合。
预锂化材料为球形、椭球形或无规则多边形的颗粒,尺寸为50nm-5000nm。
涂层材料包括陶瓷材料、聚合物材料、压电材料、导热材料、导电材料的一种或者几种组合,具体包括Al 2O 3、BaTiO 3、聚(偏二氟乙烯-co-六氟丙烯)(PVDF-HFP)、聚偏氟乙烯(PVDF)、聚氧化乙烯(PEO)、TiO 2、聚甲基丙烯酸甲酯(PMMA)、CuO、固态电解质材料和导电炭材料等。
粘结剂为聚偏氟乙烯、丁苯乳胶、苯丙乳胶、聚乙烯醇、乙烯-醋酸乙烯、海藻酸钠、聚丙烯酰胺、聚甲基丙烯酸甲酯-丙烯酸丁脂、乙烯-醋酸乙烯共聚物、聚醋酸乙烯酯、聚氨酯、羟乙基纤维素、甲基羟乙基纤维素、羧甲基纤维素钠、聚丙烯酰胺、聚氧化乙烯以及聚四氟乙烯中的一种或者多种混合;
导电添加剂为炭黑、导电石墨、碳纤维、碳纳米管、乙炔黑、科琴碳、石墨烯、金属银、金属金、气相生长炭纤维(Vapor-grown carbon fiber,VGCF),导电石墨KS-6、炭黑SUPER-P的一种或者多种混合;
分散剂为聚丙烯酸钠、十二烷基苯磺酸钠、十二烷基硫酸钠、六偏磷酸钠、聚丙烯酸、十六烷基三甲基溴化铵、聚乙二醇、聚丙烯酸钾、辛基苯酚聚氧乙烯或磺酸盐氟分散剂中的一种或者多种;
助剂为聚二甲基硅氧烷、硅油、聚醚类、聚丙烯酸钠、聚乙烯醇、烷基聚氧乙烯醚羧酸钠、聚氧乙烯烷基酚醚、烷基苯磺酸钠、烷基酚聚氧乙烯醚、聚氧乙烯烷基胺或聚氧乙烯酰胺的一种或几种组合。
本发明的预锂化膜包括基膜、涂布在其表面的预锂化材料、粘结剂、添加剂和助剂;应用本发明材料的电池在首周运行过程中,预锂化膜释放出锂离子,用于补充首周电极材料锂离子的损耗,预锂化膜同时兼具陶瓷隔膜的优点,提高了隔膜的使用温度、吸液性等性能。本发明所提供的预锂化膜可以应用于液态锂离子电池、准固态锂离子电池、全固态电池以及锂金属电池中。
下面对本发明实施例提供的预锂化膜的制备方法进行介绍。
本实施例提供的预锂化膜的制备方法,其步骤如图2所示,包括:
步骤210,将分散剂、粘结剂、导电添加剂以及助剂和溶剂按所需比例加入到预搅拌罐中,溶解完全得到第一混合物;
溶剂为极性溶剂,包括去离子水、N-甲基吡咯烷酮NMP、酒精或二甲基甲酰胺DMF;所述粘结剂为聚偏氟乙烯、丁苯乳胶、苯丙乳胶、聚乙烯醇、乙烯-醋酸乙烯、海藻酸钠、聚丙烯酰胺、聚甲基丙烯酸甲酯-丙烯酸丁脂、乙烯-醋酸乙烯共聚物、聚醋酸乙烯酯、聚氨酯、羟乙基纤维素、甲基羟乙基纤维素、羧甲基纤维素钠、聚丙烯酰胺、聚氧化乙烯以及聚四氟乙烯中的一种或者多种混合;所述导电添加剂为炭黑、导电石墨、碳纤维、碳纳米管、乙炔黑、科琴碳、石墨烯、金属银、金属金、VGCF、KS-6、SUPER-P的一种或者多种混合;所述水溶性分散剂为聚丙烯酸钠、十二烷基苯磺酸钠、十二烷基硫酸钠、六偏磷酸钠、聚丙烯酸、十六烷基三甲基溴化铵、聚乙二醇、聚丙烯酸钾、辛基苯酚聚氧乙烯或磺酸盐氟分散剂中的一种或者多种;所述助剂为聚二甲基硅氧烷、硅油、聚醚类、聚丙烯酸钠、聚乙烯醇、烷基聚氧乙烯醚羧酸钠、聚氧乙烯烷基酚醚、烷基苯磺酸钠、烷基酚聚氧乙烯醚、聚氧乙烯烷基胺或聚氧乙烯酰胺的一种或几种组合.
步骤220,按所需比例将预锂化材料和涂层材料逐步加入到所述第一混合物中,进行高速搅拌分散,搅拌速度为10-5000rpm,得到第二混合物;
其中,预锂化材料具体为在电压控制下可以发生电化学反应释放出锂离子的材料,包括:Li xM1 yO z、Li xM2 y(PO 4) z、Li xM2 y(SiO 4) z、Li 2S或Li xM1 yS z;其中x,y,z为整数或非整数且满足化学式的电价平衡;M1为金属元素、过渡金属元素、稀土元素、碱金属元素、IVA族元素的一种或者一种以上的组合;M2为金属元素、过渡金属元素、IVA族元素的一种或者一种以上的组合;其中所述涂层材料包括陶瓷材料、聚合物材料、压电材料、导热材料、导电材料的一种或者几种组合。此外,预锂化材料还可以包括Li xM1 yA z; A为F、Cl、S、N元素中的一种或者为O、F、Cl、S、N的任意几种的组合。
步骤230,将第二混合物用筛网过滤得到涂覆浆料;
步骤240,将涂覆浆料以1m/min-100m/min的速度涂布于基膜的一面或者两面,在40℃-100℃下干燥后得到预锂化膜。
其中,基膜包括PP膜、PE膜、无纺布膜或纤维膜中的任一种。
优选的,在本步骤之前还可以对基膜进行电晕处理。
本发明预锂化膜的制备方法简单、对环境要求低、原材料丰富、工艺简单,易于大规模生产。
将本发明的预锂化膜装配成电池并进行预锂化处理,将预锂化膜作为隔膜材料装配锂电池,其中,将涂覆有预锂化层的一侧靠近正极极片进行装配;然后将装配得到的锂电池进行充电化成。
装配的锂电池按照结构组成划分,包括液态锂电池、准固态锂电池、固态锂电池的一种或者多种;
或者,按照外形结构划分,包括圆柱锂电池、方形锂电池、软包锂电池、叠片锂电池、扣式锂电池的一种或者多种。
应用本发明材料的电池在首周运行过程中,预锂化膜释放出锂离子,用于补充首周电极材料锂离子的损耗,预锂化膜同时兼具陶瓷隔膜的优点,提高了隔膜的使用温度、吸液性等性能。
下面通过具体的实例,对本发明的技术方案进行进一步详细说明。
实施例1
本实施例提供了一种预锂化膜,包括基膜和涂布于基膜一侧的锂化浆料构成的预锂化层,其中基膜为聚丙烯多孔膜,厚度为16um,采用单面涂布方式,涂布厚度在2um,形成预锂化层。涂布浆料按照质量比为:锂化组合物20%,NMP 80%;其中,锂化组合物的制备按照质量比为:锂化材料Li 2CuO 2粉体为50%,粒径D50为1um,粘结剂PVDF为50%。
在本实施例中的预锂化膜采用如下方法制备得到,具体包括步骤:
(1)将粘结剂PVDF和去离子水按照上述比例加入到预搅拌罐中,溶解完全,得到混合物I;
(2)将锂化材料Li 2CuO 2粉体逐步加入到混合物I中,进行高速搅拌分散,搅拌转速为50rpm,分散转速1700rpm,得到混合物Ⅱ;
(3)将上述混合物Ⅱ用400目筛网过滤得到涂覆浆料;
(4)将上述涂覆浆料涂布分于经过电晕处理的基膜的一面,涂布速度为5m/min,在50℃干燥,干燥后得到预锂化膜。
本发明实施例1提供的预锂化膜的SEM图如图3所示,从图3中可以看出,锂化材料分布均匀。
将本发明实施例1提供的预锂化膜与涂覆有钴酸锂正极材料的正极极片、金属锂、电解液装成半电池,并进行电池性能测试,结果见图4。
实施例2
本实施例提供了一种预锂化膜,包括基膜和涂布于基膜一侧的锂化浆料构成的预锂化层,其中基膜为聚丙烯多孔膜,厚度为16um,采用单面涂布方式,涂布厚度在10um,形成预锂化层。涂布浆料按照质量比为:锂化组合物20%,NMP 80%;其中,锂化组合物的制备按照质量比为:锂化材料Li 2CuO 2粉体为50%,粒径D50为1um,粘结剂PVDF为50%。
制备预锂化膜的方法同实施例1。
将本实施例提供的预锂化膜与涂覆有钴酸锂正极材料的正极极片、金属锂、电解液装成半电池,并进行电池性能测试,结果见图5。
将本实施例提供的预锂化膜与涂覆有NCM正极材料的正极极片、涂覆有SC400负极材料的负极极片、电解液装成半电池,并进行电池性能测试,结果见图6。
实施例3
本实施例提供了一种预锂化膜,包括基膜和涂布于基膜一侧的锂化浆料构成的预锂化层,其中基膜为聚丙烯多孔膜,厚度为16um,采用单面涂 布方式,涂布厚度在10um,形成预锂化层。涂布浆料按照质量比为:锂化组合物20%,NMP 80%;其中,锂化组合物的制备按照质量比为:锂化材料Li 2CuO 2粉体为20%,粒径D50为1um,氧化铝粉体为20%,粒径D50为200nm粘结剂PVDF为50%。
制备预锂化膜的方法同实施例1。
将本实施例提供的预锂化膜与涂覆有钴酸锂正极材料的正极极片、金属锂、电解液装成半电池,并进行电池性能测试,结果见表1。
实施例4
本实施例提供了一种预锂化膜,包括基膜和涂布于基膜一侧的锂化浆料构成的预锂化层,其中基膜为聚丙烯多孔膜,厚度为16um,采用单面涂布方式,涂布厚度在10um,形成预锂化层。涂布浆料按照质量比为:锂化组合物20%,去离子水80%;其中,锂化组合物的制备按照质量比为:锂化材料Li 2CuO 2粉体为96%,粒径D50为1um,粘结剂羧甲基纤维素钠为1%,粘结剂丁苯乳胶为1%、分散剂聚乙二醇为1%、助剂辛基苯酚聚氧乙烯为1%。
制备预锂化膜的方法同实施例1。
将本实施例提供的预锂化膜与涂覆有钴酸锂正极材料的正极极片、金属锂、电解液装成半电池,并进行电池性能测试,结果见表1。
实施例5
本实施例提供了一种预锂化膜,包括基膜和涂布于基膜一侧的锂化浆料构成的预锂化层,其中基膜为聚丙烯多孔膜,厚度为16um,采用单面涂布方式,涂布厚度在10um,形成预锂化层。涂布浆料按照质量比为:锂化组合物20%,NMP 80%;其中,锂化组合物的制备按照质量比为:锂化材料Li 5FeO 4粉体为50%,粒径D50为200um,粘结剂PVDF为50%。
制备预锂化膜的方法同实施例1。
实施例6
本实施例提供了一种预锂化膜,包括基膜和涂布于基膜一侧的锂化浆料构成的预锂化层,其中基膜为陶瓷隔膜,厚度为12um,采用单面涂布方式,涂布厚度在10um,形成预锂化层。涂布浆料按照质量比为:锂化组合物20%,NMP 80%;其中,锂化组合物的制备按照质量比为:锂化材料Li 2CuO 2粉体为60%,粒径D50为200um,粘结剂PVDF为40%。
制备预锂化膜的方法同实施例1。
实施例7
本实施例提供了一种预锂化膜,包括基膜和涂布于基膜一侧的锂化浆料构成的预锂化层,其中基膜为聚丙烯多孔膜,厚度为10um,采用单面涂布方式,涂布厚度在5um,形成预锂化层。涂布浆料按照质量比为:锂化组合物20%,NMP 80%;其中,锂化组合物的制备按照质量比为:锂化材料Li 1.8CuO 1.8F 0.2粉体为50%,粒径D50为2um,粘结剂PVDF为50%。
制备预锂化膜的方法同实施例1。
将本实施例提供的预锂化膜与铝箔、金属锂、电解液装成半电池,并进行电池性能测试,结果见图7。
实施例8
本实施例提供了一种预锂化膜,包括基膜和涂布于基膜一侧的锂化浆料构成的预锂化层,其中基膜为聚丙烯多孔膜,厚度为10um,采用单面涂布方式,涂布厚度在3um,形成预锂化层。涂布浆料按照质量比为:锂化组合物20%,NMP 80%;其中,锂化组合物的制备按照质量比为:锂化材料Li 4.8FeO 3.8F 0.2粉体为50%,粒径D50为2um,粘结剂PVDF为50%。
制备预锂化膜的方法同实施例1。
将本实施例提供的预锂化膜与铝箔、金属锂、电解液装成半电池,并进行电池性能测试,结果见图8。
实施例9
本实施例提供了一种预锂化膜,包括基膜和涂布于基膜一侧的锂化浆 料构成的预锂化层,其中基膜为聚丙烯多孔膜,厚度为16um,采用单面涂布方式,涂布厚度在3um,形成预锂化层。涂布浆料按照质量比为:锂化组合物20%,NMP 80%;其中,锂化组合物的制备按照质量比为:锂化材料Li 5FeO 3.8S 0.2粉体为50%,粒径D50为1um,粘结剂PVDF为50%。
制备预锂化膜的方法同实施例1。
将本实施例提供的预锂化膜与铝箔、金属锂、电解液装成半电池,并进行电池性能测试,结果见图9。
实施例10
本实施例提供了一种预锂化膜,包括基膜和涂布于基膜一侧的锂化浆料构成的预锂化层,其中基膜为聚丙烯多孔膜,厚度为16um,采用单面涂布方式,涂布厚度在3um,形成预锂化层。涂布浆料按照质量比为:锂化组合物20%,NMP 80%;其中,锂化组合物的制备按照质量比为:锂化材料Li 1.9CuO 1.9Cl 0.1粉体为50%,粒径D50为2um,粘结剂PVDF为50%。
制备预锂化膜的方法同实施例1。
实施例11
本实施例提供了一种预锂化膜,包括基膜和涂布于基膜一侧的锂化浆料构成的预锂化层,其中基膜为聚丙烯多孔膜,厚度为16um,采用单面涂布方式,涂布厚度在5um,形成预锂化层。涂布浆料按照质量比为:锂化组合物20%,NMP 80%;其中,锂化组合物的制备按照质量比为:锂化材料Li 5FeS 4粉体为50%,粒径D50为2um,粘结剂PVDF为50%。
制备预锂化膜的方法同实施例1。
将本实施例1-11提供的预锂化膜与涂覆有钴酸锂正极材料的正极极片、金属锂、电解液装成半电池,并进行电池性能测试,结果见表1。
对比例1
将陶瓷Al 2O 3隔膜与涂覆有钴酸锂正极材料的正极极片、金属锂、电解液装成半电池,并进行电池性能测试,结果见表1。
对比例2
将PP隔膜与涂覆有钴酸锂正极材料的正极极片、金属锂、电解液装成半电池,并进行电池性能测试,结果见表1。
对比例3
本对比例提供了一种氧化铜陶瓷隔膜,包括基膜和涂布于基膜一侧的氧化铜层,其中基膜为聚丙烯多孔膜,厚度为16um。
将氧化铜陶瓷隔膜与涂覆有NCM正极材料的正极极片、涂覆有SC400负极材料的负极极片、电解液装成半电池,并进行电池性能测试,结果见图6。
制备预锂化膜的方法同实施例1。
Figure PCTCN2019077117-appb-000001
表1
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而 已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种预锂化膜,其特征在于,所述预锂化膜包括:1um-50um的基膜和涂布在所述基膜之上的0.02um-100um的预锂化层;
    所述预锂化层包括:1wt%-99.99wt%的预锂化材料,0wt%-98.99wt%的涂层材料,0.01wt%-10wt%的粘结剂,0%-10wt%的导电添加剂材料和0wt%-2wt%的分散剂和0wt%-2wt%的助剂;
    其中,所述预锂化材料为:在电压控制下可以发生电化学反应释放出锂离子的材料;所述预锂化材料具体包括:Li xM1 yA z、Li xM2 y(PO 4) z或Li xM2 y(SiO 4) z、Li 2S或Li xM1 yS z
    x,y,z为整数或非整数且满足化学式的电价平衡;M1为金属元素、过渡金属元素、稀土元素、碱金属元素、IVA族元素的一种或者一种以上的组合;M2为金属元素、过渡金属元素、IVA族元素的一种或者一种以上的组合;A为O、F、Cl、S、N元素中的一种或者一种以上的组合;其中,所述预锂化材料在充电化成后,转化为含锂源材料或不含锂源材料;
    所述含锂源材料具体包括:Li aM1 bA c、Li aM2 b(PO 4) c或Li aM2 b(SiO 4) c、Li 2S或Li aM1 bS c;其中a,b,c为整数或非整数且满足化学式的电价平衡;
    所述不含锂源材料包括:S、CuO、Cu 2O、Fe 2O 3、Fe 3O 4、FeO、Al 2O 3、Co 3O 4、Co 2O 3、V 2O 5、MnO、Mn 2O 3、NiO、MgO、TiO 2、AlPO 4、TiPO 4、CoPO 4、MnPO 4、Ni 3(PO4) 2、Mg 3(PO 4) 2、Co 2(PO 4) 3中的一种或多种组合。
  2. 根据权利要求1所述的预锂化膜,其特征在于,所述预锂化材料具体包括:Li 2S、Li xCu yO z、Li xFe yO z、Li xAl yO z、Li xV yO z、Li xCo yO z、Li xMn yO z、Li xNi yO z、Li 2C 2O 4、Li xMg yO z、Li xTi yO z、Li xCu y(PO4) z、Li xFe y(PO 4) z、Li xAl y(PO 4) z、Li xV y(PO 4) z、Li xMn y(PO 4) z、Li xNi y(PO 4) z、Li xCu y(O c1S c2) z、Li xCu y(O c1F c2) z、Li x(FeZn) yO z、Li xFe y(O c1Cl c2) z、Li xMg y(PO 4) z或Li xTi y(PO 4) z的一种或多种的组合;其中,x,y,c1、c2、z为整数或非整数且满足化学式的电价平衡。
  3. 根据权利要求1所述的预锂化膜,其特征在于,所述基膜包括聚丙烯PP膜、聚乙烯PE膜、无纺布隔膜、纤维隔膜、陶瓷隔膜、固态电解质隔膜中的一种或多种复合。
  4. 根据权利要求1所述的预锂化膜,其特征在于,所述预锂化材料为球形、椭球形或无规则多边形的颗粒,尺寸为50nm-5000nm。
  5. 根据权利要求1所述的预锂化膜,其特征在于,
    所述涂层材料包括陶瓷材料、聚合物材料、压电材料、导热材料、导电材料的一种或者几种组合;
    所述粘结剂为聚偏氟乙烯、丁苯乳胶、苯丙乳胶、聚乙烯醇、乙烯-醋酸乙烯、海藻酸钠、聚丙烯酰胺、聚甲基丙烯酸甲酯-丙烯酸丁脂、乙烯-醋酸乙烯共聚物、聚醋酸乙烯酯、聚氨酯、羟乙基纤维素、甲基羟乙基纤维素、羧甲基纤维素钠、聚丙烯酰胺、聚氧化乙烯以及聚四氟乙烯中的一种或者多种混合;
    所述导电添加剂为炭黑、导电石墨、碳纤维、碳纳米管、乙炔黑、科琴碳、石墨烯、金属银、金属金、气相生长炭纤维VGCF、导电石墨KS-6、炭黑SUPER-P的一种或者多种混合;
    所述分散剂为聚丙烯酸钠、十二烷基苯磺酸钠、十二烷基硫酸钠、六偏磷酸钠、聚丙烯酸、十六烷基三甲基溴化铵、聚乙二醇、聚丙烯酸钾、辛基苯酚聚氧乙烯或磺酸盐氟分散剂中的一种或者多种;
    所述助剂为聚二甲基硅氧烷、硅油、聚醚类、聚丙烯酸钠、聚乙烯醇、烷基聚氧乙烯醚羧酸钠、聚氧乙烯烷基酚醚、烷基苯磺酸钠、烷基酚聚氧乙烯醚、聚氧乙烯烷基胺或聚氧乙烯酰胺的一种或几种组合。
  6. 一种制备上述权利要求1-5任一所述的预锂化膜的制备方法,其特征在于,所述制备方法包括:
    将分散剂、粘结剂、导电添加剂以及助剂和溶剂按所需比例加入到预搅拌罐中,溶解完全得到第一混合物;其中,所述的溶剂为极性溶剂,包括 去离子水、N-甲基吡咯烷酮NMP、酒精或二甲基甲酰胺DMF;所述粘结剂为聚偏氟乙烯、丁苯乳胶、苯丙乳胶、聚乙烯醇、乙烯-醋酸乙烯、海藻酸钠、聚丙烯酰胺、聚甲基丙烯酸甲酯-丙烯酸丁脂、乙烯-醋酸乙烯共聚物、聚醋酸乙烯酯、聚氨酯、羟乙基纤维素、甲基羟乙基纤维素、羧甲基纤维素钠、聚丙烯酰胺、聚氧化乙烯以及聚四氟乙烯中的一种或者多种混合;所述导电添加剂为炭黑、导电石墨、碳纤维、碳纳米管、乙炔黑、科琴碳、石墨烯、金属银、金属金、VGCF、KS-6、SUPER-P的一种或者多种混合;所述水溶性分散剂为聚丙烯酸钠、十二烷基苯磺酸钠、十二烷基硫酸钠、六偏磷酸钠、聚丙烯酸、十六烷基三甲基溴化铵、聚乙二醇、聚丙烯酸钾、辛基苯酚聚氧乙烯或磺酸盐氟分散剂中的一种或者多种;所述助剂为聚二甲基硅氧烷、硅油、聚醚类、聚丙烯酸钠、聚乙烯醇、烷基聚氧乙烯醚羧酸钠、聚氧乙烯烷基酚醚、烷基苯磺酸钠、烷基酚聚氧乙烯醚、聚氧乙烯烷基胺或聚氧乙烯酰胺的一种或几种组合;
    按所需比例将预锂化材料和涂层材料逐步加入到所述第一混合物中,进行高速搅拌分散,搅拌速度为10-5000rpm,得到第二混合物;其中所述预锂化材料具体为在电压控制下可以发生电化学反应释放出锂离子的材料,包括:、Li xM1 yA z、Li xM2 y(PO 4) z、Li xM2 y(SiO 4) z、Li 2S或Li xM1 yS z;其中x,y,z为整数或非整数且满足化学式的电价平衡;M1为金属元素、过渡金属元素、稀土元素、碱金属元素、IVA族元素的一种或者一种以上的组合;M2为金属元素、过渡金属元素、IVA族元素的一种或者一种以上的组合;A为O、F、Cl、S、N元素中的一种或者一种以上的组合;其中所述涂层材料包括陶瓷材料、聚合物材料、压电材料、导热材料、导电材料的一种或者几种组合;
    将所述第二混合物用筛网过滤得到涂覆浆料;
    将所述涂覆浆料以1m/min-100m/min的速度涂布于基膜的一面或者两面,在40℃-100℃下干燥后得到预锂化膜;其中,所述基膜包括PP膜、 PE膜、无纺布膜或纤维膜中的任一种。
  7. 根据权利要求6所述的制备方法,其特征在于,所述将所述涂覆浆料以1m/min-100m/min的速度涂布于基膜的一面或者两面之前,所述方法还包括:
    对所述基膜进行电晕处理。
  8. 一种对上述权利要求1-5任一所述的预锂化膜进行预锂化处理的方法,其特征在于,所述方法包括:
    将预锂化膜作为隔膜材料装配锂电池,其中,将涂覆有预锂化层的一侧靠近正极极片进行装配;
    将装配得到的锂电池进行充电化成;
    其中,所述锂电池按照结构组成划分,包括液态锂电池、准固态锂电池、固态锂电池的一种或者多种;
    或者,所述锂电池按照外形结构划分,包括圆柱锂电池、方形锂电池、软包锂电池、叠片锂电池、扣式锂电池的一种或者多种。
  9. 一种包括上述权利要求1-5任一所述的预锂化膜的锂电池。
PCT/CN2019/077117 2018-05-29 2019-03-06 一种预锂化膜及其制备方法和应用 WO2019228003A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/058,988 US20210230441A1 (en) 2018-05-29 2019-03-06 Pre-lithiated film and preparation method therefor and application thereof
KR1020207034313A KR102577440B1 (ko) 2018-05-29 2019-03-06 전리튬화 필름 및 그 제조방법과 응용
JP2020567074A JP2021528808A (ja) 2018-05-29 2019-03-06 プレリチオ化フィルム及びその製造方法と応用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810529006.6A CN108565396A (zh) 2018-05-29 2018-05-29 一种预锂化膜及其制备方法和应用
CN201810529006.6 2018-05-29

Publications (1)

Publication Number Publication Date
WO2019228003A1 true WO2019228003A1 (zh) 2019-12-05

Family

ID=63540198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077117 WO2019228003A1 (zh) 2018-05-29 2019-03-06 一种预锂化膜及其制备方法和应用

Country Status (5)

Country Link
US (1) US20210230441A1 (zh)
JP (1) JP2021528808A (zh)
KR (1) KR102577440B1 (zh)
CN (1) CN108565396A (zh)
WO (1) WO2019228003A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111792633A (zh) * 2020-06-18 2020-10-20 中国科学院化学研究所 一种磷酸铁锂废旧电池中磷酸铁锂的直接回收再利用的方法
CN113471553A (zh) * 2021-07-06 2021-10-01 湖北亿纬动力有限公司 一种补锂正极极片及其制备方法和应用
WO2022125442A1 (en) * 2020-12-08 2022-06-16 Applied Materials, Inc. Pre-lithiation and lithium metal-free anode coatings
CN116285559A (zh) * 2023-04-17 2023-06-23 安徽万磁电子股份有限公司 一种应用于钕铁硼倒角防腐的水性防腐剂及其制备方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108565396A (zh) * 2018-05-29 2018-09-21 溧阳天目先导电池材料科技有限公司 一种预锂化膜及其制备方法和应用
CN112042014B (zh) * 2018-09-27 2024-01-05 株式会社Lg新能源 全固态电池用负极及其制造方法
CN109473668A (zh) * 2018-10-26 2019-03-15 溧阳天目先导电池材料科技有限公司 一种改性预锂化材料及其制备方法和锂电池
CN109616603B (zh) * 2018-12-05 2022-03-15 清华大学深圳研究生院 隔膜、隔膜的制备方法及应用隔膜的装置
CN109728228A (zh) * 2018-12-11 2019-05-07 溧阳天目先导电池材料科技有限公司 一种薄膜及其制备方法和二次电池
CN109755448A (zh) * 2018-12-28 2019-05-14 北京中能东道绿驰科技有限公司 一种带有补锂涂层的锂电池隔膜及其制备方法
CN109817926A (zh) * 2019-01-25 2019-05-28 溧阳天目先导电池材料科技有限公司 一种预锂化材料及其制备方法和锂电池
CN110380022B (zh) * 2019-06-26 2022-06-10 荆门市格林美新材料有限公司 一种高电压单晶镍钴锰三元正极材料及制备方法
JP7340024B2 (ja) * 2019-08-09 2023-09-06 テイカ株式会社 蓄電デバイス用プリドープ剤及びその製造方法
CN110957456A (zh) * 2019-12-16 2020-04-03 国联汽车动力电池研究院有限责任公司 一种无金属集流体复合电极及其制备方法和锂离子电池
CN110970588A (zh) * 2019-12-18 2020-04-07 江苏厚生新能源科技有限公司 钠离子电池用涂覆隔膜及其制备方法、钠离子电池
CN111613771B (zh) * 2020-06-29 2022-03-22 蜂巢能源科技有限公司 电池负极及其制备方法和应用
CN111900315B (zh) * 2020-08-04 2021-10-22 中国科学院物理研究所 具有双面涂覆材料涂层的陶瓷隔膜及其制备方法和应用
CN111900314B (zh) * 2020-08-04 2022-02-22 中国科学院物理研究所 一种金属复合氧化物涂覆的电池隔膜及其制备方法和应用
CN111900308A (zh) * 2020-08-04 2020-11-06 中国科学院物理研究所 一种具有新型纳米材料涂层的电池隔膜及其制备方法和应用
CN112164796B (zh) * 2020-09-16 2022-05-06 合肥国轩高科动力能源有限公司 一种锂离子电池正极材料的预锂化添加剂及其制备方法和应用
CN112885985B (zh) * 2021-02-01 2022-08-30 中南大学 一种正极极片及其制备方法、电化学储能装置及电化学储能装置的预金属化方法
CN113381056A (zh) * 2021-05-28 2021-09-10 万向一二三股份公司 一种长循环寿命锂离子电池及提高锂离子电池循环寿命的方法
CN113851786A (zh) * 2021-06-03 2021-12-28 中材锂膜有限公司 一种预锂化复合隔膜及其制备方法
CN114497549B (zh) * 2022-04-13 2022-08-12 华中科技大学 电化学制备正极补锂材料的方法和补锂材料及补锂浆料
CN114464909B (zh) * 2022-04-14 2022-07-26 华中科技大学 一种纳米化复合正极补锂浆料以及正极
CN114552125B (zh) * 2022-04-26 2022-08-16 华中科技大学 一种无损补锂复合隔膜及其制备方法和应用
CN114914439B (zh) * 2022-07-14 2022-10-25 溧阳天目先导电池材料科技有限公司 一种锰基预锂化材料及其制备方法和应用
CN115117558A (zh) * 2022-08-01 2022-09-27 湖南钠方新能源科技有限责任公司 一种补钠组合物及钠离子电池
WO2024035201A1 (ko) * 2022-08-12 2024-02-15 주식회사 엘지에너지솔루션 양극, 양극의 제조 방법 및 상기 양극을 포함하는 리튬 이차전지
KR20240023003A (ko) * 2022-08-12 2024-02-20 주식회사 엘지에너지솔루션 양극, 이의 제조 방법 및 상기 양극을 포함하는 리튬이차전지
CN115332725B (zh) * 2022-08-22 2024-06-21 珠海冠宇动力电池有限公司 一种隔膜和电池
CN116230944B (zh) * 2023-05-05 2023-09-01 四川新能源汽车创新中心有限公司 一种隔热绝缘预锂化功能层及其锂离子电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105098188A (zh) * 2014-04-28 2015-11-25 比亚迪股份有限公司 一种锂离子电池正极材料添加剂及其制备方法、含有该添加剂的正极材料和锂离子电池
CN105702913A (zh) * 2014-11-27 2016-06-22 比亚迪股份有限公司 一种正极及其制备方法和一种锂二次电池
CN106684291A (zh) * 2016-12-29 2017-05-17 深圳天珑无线科技有限公司 一种锂离子电池及其制备方法
CN106910860A (zh) * 2017-03-28 2017-06-30 欣旺达电子股份有限公司 锂电池隔膜涂层、隔膜及隔膜制备方法
CN108565396A (zh) * 2018-05-29 2018-09-21 溧阳天目先导电池材料科技有限公司 一种预锂化膜及其制备方法和应用

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10238945B4 (de) * 2002-08-24 2013-01-03 Evonik Degussa Gmbh Elektrischer Separator mit Abschaltmechanismus, Verfahren zu dessen Herstellung, Verwendung des Separators in Lithium-Batterien und Batterie mit dem Separator
KR100889453B1 (ko) * 2005-04-01 2009-03-24 주식회사 엘지화학 전극 첨가제를 포함하는 리튬 이차 전지용 전극 및 상기전극을 포함하는 리튬 이차 전지
KR100947181B1 (ko) * 2007-11-19 2010-03-15 주식회사 엘지화학 다공성 코팅층이 형성된 세퍼레이터 및 이를 구비한전기화학소자
CN101434708B (zh) * 2008-12-19 2012-01-11 成都中科来方能源科技有限公司 水性聚合物改性微孔聚烯烃隔膜及其制备方法和用途
JP2014017089A (ja) * 2012-07-06 2014-01-30 Hitachi Ltd リチウムイオン二次電池
CN103700860B (zh) * 2012-09-27 2016-04-06 比亚迪股份有限公司 一种锂离子电池
JP2014170661A (ja) * 2013-03-04 2014-09-18 Hitachi Maxell Ltd 非水電解質二次電池用セパレータ、および非水電解質二次電池
CN105229066B (zh) * 2013-03-15 2018-04-03 阿姆泰克研究国际公司 独立式、尺寸稳定的微孔网
JP6136765B2 (ja) * 2013-08-28 2017-05-31 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質の製造方法、非水系電解質二次電池用正極活物質および非水系電解質二次電池
KR101858729B1 (ko) * 2015-04-28 2018-05-16 주식회사 엘지화학 리튬 금속 황 화합물을 포함하는 양극 합제 및 그로부터 제조된 양극
JP2016213006A (ja) * 2015-05-01 2016-12-15 出光興産株式会社 多硫化物複合体及び硫化リチウム複合体の製造方法、正極合材、並びに全固体電池
CN106299214A (zh) * 2015-06-05 2017-01-04 东莞市亿顺新材料有限公司 一种锂离子电池及其陶瓷隔膜
CN105206780A (zh) * 2015-08-21 2015-12-30 惠州市恒泰科技有限公司 一种含活性锂源隔膜及制作方法及锂离子电池
JP2017204368A (ja) * 2016-05-11 2017-11-16 日立マクセル株式会社 電気化学素子用セパレータ、電気化学素子、樹脂粒子層形成用組成物および電気化学素子用セパレータの製造方法
CN105932206B (zh) * 2016-07-13 2020-08-28 洛阳力容新能源科技有限公司 补锂复合隔膜、制备方法及应用
CN106450433A (zh) * 2016-11-10 2017-02-22 厦门日臻动力电源科技有限公司 一种高倍率、高安全性软包装锂离子电池及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105098188A (zh) * 2014-04-28 2015-11-25 比亚迪股份有限公司 一种锂离子电池正极材料添加剂及其制备方法、含有该添加剂的正极材料和锂离子电池
CN105702913A (zh) * 2014-11-27 2016-06-22 比亚迪股份有限公司 一种正极及其制备方法和一种锂二次电池
CN106684291A (zh) * 2016-12-29 2017-05-17 深圳天珑无线科技有限公司 一种锂离子电池及其制备方法
CN106910860A (zh) * 2017-03-28 2017-06-30 欣旺达电子股份有限公司 锂电池隔膜涂层、隔膜及隔膜制备方法
CN108565396A (zh) * 2018-05-29 2018-09-21 溧阳天目先导电池材料科技有限公司 一种预锂化膜及其制备方法和应用

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111792633A (zh) * 2020-06-18 2020-10-20 中国科学院化学研究所 一种磷酸铁锂废旧电池中磷酸铁锂的直接回收再利用的方法
CN111792633B (zh) * 2020-06-18 2022-03-01 中国科学院化学研究所 一种磷酸铁锂废旧电池中磷酸铁锂的直接回收再利用的方法
WO2022125442A1 (en) * 2020-12-08 2022-06-16 Applied Materials, Inc. Pre-lithiation and lithium metal-free anode coatings
CN113471553A (zh) * 2021-07-06 2021-10-01 湖北亿纬动力有限公司 一种补锂正极极片及其制备方法和应用
CN116285559A (zh) * 2023-04-17 2023-06-23 安徽万磁电子股份有限公司 一种应用于钕铁硼倒角防腐的水性防腐剂及其制备方法
CN116285559B (zh) * 2023-04-17 2024-04-02 安徽万磁电子股份有限公司 一种应用于钕铁硼倒角防腐的水性防腐剂及其制备方法

Also Published As

Publication number Publication date
US20210230441A1 (en) 2021-07-29
JP2021528808A (ja) 2021-10-21
KR102577440B1 (ko) 2023-09-12
CN108565396A (zh) 2018-09-21
KR20210003239A (ko) 2021-01-11

Similar Documents

Publication Publication Date Title
WO2019228003A1 (zh) 一种预锂化膜及其制备方法和应用
WO2020087873A1 (zh) 一种改性固态电解质膜及其制备方法和锂电池
JP5070686B2 (ja) 非水電解質リチウムイオン電池用正極材料およびこれを用いた電池
JP6409794B2 (ja) 正極合剤の製造方法、正極の製造方法、及び全固体リチウムイオン二次電池の製造方法
US10164259B2 (en) Binder for use in positive electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery containing said binder, lithium ion secondary battery using said positive electrode, and electrical machinery and apparatus
JP2020077611A (ja) リチウム二次電池用正極活物質およびこれを含むリチウム二次電池
JP2015502025A (ja) 負極活物質用複合体及びこの製造方法
CN112968254A (zh) 一种锂离子电池用隔膜及其制备方法和锂离子电池
KR20150128432A (ko) 실리콘-탄소 복합체, 이의 제조방법 및 이를 포함하는 음극 활물질
JP2019029317A (ja) 二次電池
CN109216635A (zh) 活化膜及其制备方法和应用
WO2024125486A1 (zh) 钠离子电池和储能设备
CN115693032A (zh) 钠-锂复合固态电解质隔膜、制备方法及钠-锂复合电池
JP6808948B2 (ja) 非水系リチウムイオン二次電池用負極、その製法及び非水系リチウムイオン二次電池
JPWO2016114321A1 (ja) 二次電池
JP2013157318A (ja) 陽極、その製造方法及びそれを含むリチウム電池
JP3582823B2 (ja) 非水系二次電池用正極および非水系二次電池
WO2015111194A1 (ja) 電気デバイス
CN114156602A (zh) 具有多涂层的固态电解质隔膜及制备方法和应用
WO2020137912A1 (ja) 二次電池
JP2022512494A (ja) 全固体電池の正極合剤の製造方法及びこれによって製造された全固体電池の正極合剤
JP5766009B2 (ja) 負極活物質、その製造方法及びこれを採用した負極とリチウム電池
JP5593169B2 (ja) 金属空気二次電池
JP2020109735A (ja) 二次電池
KR20150045833A (ko) 바인더 수지가 흡착된 양극 활물질의 제조 방법, 상기 방법에 의해 제조된 양극 활물질 및 이를 포함하는 이차전지용 양극

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19812518

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020567074

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207034313

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19812518

Country of ref document: EP

Kind code of ref document: A1