WO2019225528A1 - 重ねレーザ溶接継手、重ねレーザ溶接継手の製造方法および自動車用骨格部品 - Google Patents

重ねレーザ溶接継手、重ねレーザ溶接継手の製造方法および自動車用骨格部品 Download PDF

Info

Publication number
WO2019225528A1
WO2019225528A1 PCT/JP2019/019838 JP2019019838W WO2019225528A1 WO 2019225528 A1 WO2019225528 A1 WO 2019225528A1 JP 2019019838 W JP2019019838 W JP 2019019838W WO 2019225528 A1 WO2019225528 A1 WO 2019225528A1
Authority
WO
WIPO (PCT)
Prior art keywords
weld
welding
laser
steel plates
less
Prior art date
Application number
PCT/JP2019/019838
Other languages
English (en)
French (fr)
Inventor
亜怜 原
木谷 靖
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to MX2020012334A priority Critical patent/MX2020012334A/es
Priority to EP19808127.5A priority patent/EP3797921A4/en
Priority to CN201980032297.0A priority patent/CN112118932B/zh
Priority to KR1020207033332A priority patent/KR102407608B1/ko
Priority to JP2019543130A priority patent/JP6852797B2/ja
Priority to US17/055,734 priority patent/US11638969B2/en
Publication of WO2019225528A1 publication Critical patent/WO2019225528A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0626Energy control of the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/244Overlap seam welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/28Seam welding of curved planar seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/006Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels
    • B23K2101/185Tailored blanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Definitions

  • the present invention relates to a lap laser welded joint, a method for manufacturing a lap laser welded joint, and an automotive framework component having the lap laser welded joint.
  • resistance spot welding is used for welding structural members of automobiles having flange portions.
  • resistance spot welding has a problem that it takes time for welding, a problem that the pitch cannot be narrowed due to a decrease in the amount of heat generated by the diversion, and a spatial restriction due to a gun provided in the welding machine. There's a problem.
  • lap laser welding refers to a welding method in which the surfaces of a plurality of stacked steel plates are irradiated with a laser beam to join the steel plates.
  • a laser beam is irradiated in a linear shape onto the surface of a plurality of stacked steel plates, and a portion of the steel plate irradiated with the laser beam is melted and solidified to form a molten portion (welded portion).
  • the at the same time the superposed steel plates are joined to obtain a superposed laser welded joint.
  • Patent Document 1 discloses a technique for preventing weld cracking by projecting the lower steel plate of lap welding and making the welding start position away from the flange end.
  • Patent Document 2 discloses a technique for preventing welding cracks by irradiating an end portion of an overlapping surface with a laser beam obliquely.
  • Patent Documents 3 and 4 disclose techniques for preventing weld cracking by reheating or welding a portion that has been once welded or the periphery of the welded portion.
  • Patent Document 5 discloses a technique for preventing the occurrence of weld cracking by welding overlapping surfaces into an elliptical shape.
  • Patent Document 5 welds the overlapped surface to an ellipse, and cannot be applied to weld cracks in a linear weld.
  • the present invention can suppress the occurrence of cracks at the end of a melted portion and the propagation of cracks, a lap laser welded joint with good joint strength, a method for manufacturing the lap laser welded joint, and the It is an object of the present invention to provide an automotive framework component having a lap laser weld joint.
  • the present inventors have studied to solve the above problems, and as a result, obtained the following knowledge.
  • the fusion zone and the weld heat affected zone are collectively referred to as a weld zone.
  • L is the total length (unit: mm) of the weld
  • R is the radius (unit: mm) of the weld end of the weld
  • is the angle (unit: rad) of the weld end of the weld.
  • a lap laser welding joint having a welded portion in which a plurality of steel plates are overlapped and joined by laser welding, wherein the welded portion includes a main welded portion having a straight weld line shape,
  • the weld line shape formed at one end part is a J-shape consisting of a welding terminal part having an arc or a circle, and the length L 1 (mm) of the main weld part is represented by the formula (1).
  • At least one of the plurality of steel plates is in mass%, C: 0.07% to 0.25% or less, P + S: less than 0.03%, Mn: 1.8% to 3.0%,
  • At least one steel plate among the plurality of steel plates The lap laser welded joint according to any one of [1] to [3], wherein is a high-tensile steel plate having a tensile strength of 980 MPa or more.
  • At least one of the plurality of steel plates has a substantially hat-shaped or L-shaped cross-section, and has a vertical wall portion and a flange portion extending outward from a tip of the vertical wall portion, and the flange
  • the flange of the joint surface where the portion and another steel plate are overlapped is set to 0, the vertical wall portion side is set to (+), and the flange is opposite to the vertical wall portion side.
  • the lap laser welding joint according to one.
  • t is the thickness (unit: mm) of the thickest steel plate among the plurality of steel plates.
  • a method for manufacturing a lap laser weld joint according to any one of [1] to [5], wherein a plurality of steel plates are overlapped in the vertical direction, and the upper side of the plurality of steel plates stacked A method for manufacturing a lap laser weld joint, in which a weld is formed by irradiating the surface of a steel plate with laser.
  • the length L 1 (mm) of the main welded portion is 2/3 or more and 4/5 or less with respect to the total length L (mm) of the welded portion represented by the formula (1), and the welding end point.
  • the laser output, the focal position, the welding speed, and the radius R (mm) of the portion satisfy the equation (2) and the angle ⁇ (rad) of the welding end portion satisfies the equation (3).
  • the present invention it is possible to suppress the occurrence and propagation of cracks at the end portion of the melted portion, and thus it is possible to manufacture a lap laser welded joint with good joint strength.
  • the lap laser welded joint of the present invention is excellent in appearance, it is suitable for a structural member of an automobile and can be used as a framework part for an automobile.
  • FIG. 1 is a perspective view showing an example of a lap laser welding joint of the present invention.
  • FIG. 2A is a schematic diagram for explaining a welding end portion of a conventional lap laser welding joint
  • FIG. 2B is a schematic diagram for explaining a welding end portion of the lap laser welding joint of the present invention.
  • FIG. 3 is a top view illustrating the configuration of the welded portion (melted portion) of the lap laser weld joint of the present invention.
  • FIG. 4 is a top view illustrating the configuration of the welded portion (melted portion) of the lap laser weld joint of the present invention.
  • FIG. 5 is a cross-sectional view taken along line AA of the lap laser weld joint in FIG. FIG.
  • FIG. 6 is a perspective view for explaining the welding method of the lap laser welding joint of the present invention.
  • FIG. 7 (A) is a top view for explaining the position of the welded portion (melted portion) of the lap laser weld joint of the present invention, and
  • FIG. 7 (B) is a cross-sectional view taken along line BB in FIG. 7 (A).
  • FIG. 8 is a view showing an example of a lap laser weld joint in an embodiment of the present invention.
  • FIG. 9A is a diagram for explaining the total size of the gaps between the steel plates when two steel plates are overlapped, and FIG. 9B is a case where three steel plates are stacked. It is a figure explaining the sum total of the magnitude
  • the lap laser welding joint of the present invention has a welded portion in which a plurality of steel plates are overlapped and joined by laser welding.
  • the welded portion is composed of a main welded portion having a straight weld line shape and a welding end portion having an arc of the weld line shape formed at one end of the main welded portion, and the welded portion has a J-shape. It is formed.
  • the length L 1 (mm) of the main weld is 2/3 or more and 4/5 or less with respect to the total length L (mm) of the weld represented by the following formula (1).
  • R (mm) satisfies the following formula (2)
  • the angle ⁇ (rad) of the welding end portion satisfies the following formula (3).
  • 10.0 ⁇ L (1) 0.5 ⁇ R ⁇ 1.5 (2) 5 / 6 ⁇ ⁇ ⁇ ⁇ 2 ⁇ (3)
  • L is the total length (unit: mm) of the weld
  • R is the radius (unit: mm) of the weld end of the weld
  • is the angle (unit: rad) of the weld end of the weld.
  • FIG. 1 is a perspective view showing an example of a lap laser welding joint 1 of the present invention.
  • FIG. 2A is a schematic view showing a welding end portion of a conventional lap laser welding joint
  • FIG. 2B is a schematic view showing a welding end portion of the lap laser welding joint of the present invention.
  • 3 and 4 are top views illustrating the configuration of the welded portion 4 of the lap laser weld joint of the present invention.
  • FIG. 5 is a cross-sectional view taken along line AA shown in FIG.
  • the lap laser welding joint 1 of the present invention at least two steel plates are overlapped.
  • the steel plate 2 and the steel plate 3 are overlapped so as to face each other, and a region of the flange portion 2b of the steel plate 2 becomes a joint surface.
  • the two superposed steel plates 2 and 3 are joined by overlapping laser welding at the flange portion 2b.
  • lap laser welding at least one steel plate among the steel plates 2 and 3 is penetrated, and a melted portion that joins the steel plates 2 and 3 is formed. The melted part and the welding heat affected zone become the welded part 4.
  • the overlap laser welding is performed by intermittently irradiating the laser beam 7 while moving the flange portion 2b in the longitudinal direction along the vertical wall portion 2a.
  • a plurality of welds 4 whose surfaces are substantially J-shaped are formed on the joint surfaces of the steel plates 2 and 3.
  • three or more steel plates may be overlapped.
  • FIG. 2A shows the end 15 of the welded portion 14 in the conventional lap laser welded joint
  • FIG. 2B shows the end 5 of the welded portion 4 in the lap laser welded joint of the present invention.
  • the welding state is not stable in the initial stage of welding.
  • the welding direction changes such as an arc shape
  • more spatter is generated, and therefore the shape of the end 15 of the welded portion 14 is generally formed in a straight line.
  • FIG. 2 (A) it was found that when the shape of the end 15 of the welded portion 14 of the lap laser weld joint is formed in a straight line, tensile stress concentrates at the end 15 of the welded portion.
  • the tensile stress (force in the direction of the arrow Fa shown in FIG. 2A) from the outer peripheral portion of the melted portion 14 is concentrated on the central portion that is the final solidified portion of the terminal end 15, thereby Solidification cracks 16 are likely to occur. If a solidification crack occurs, it leads to a weld crack, and thus a weld defect may occur in the lap laser weld joint.
  • the shape of the end 5 of the welded portion 4 of the lap laser welded joint is formed in a specific shape, specifically an arc or a circle, the end 5 of the welded portion.
  • the tensile stress can be dispersed in the portion. That is, the tensile stress (force in the direction of arrow Fb shown in FIG. 2 (B)) outward from the outer peripheral portion of the melted portion 4 is dispersed in the central portion 6 of the final solidified portion at the end 5 without being concentrated in one place. Can be made.
  • production of a solidification crack is suppressed, it becomes possible to prevent generation
  • the lap laser weld joint 1 of the present invention it is important to adjust the surface dimension of the welded portion 4 formed in a substantially J shape within a predetermined range.
  • the welded portion 4 includes a main welded portion 4 a having a straight weld line shape and the end of the welded portion formed continuously from one end of the main welded portion 4 a. It is comprised from the welding termination
  • the length L 1 (mm) of the main weld 4a is 2/3 or more and 4/5 or less with respect to the total length L (mm) of the weld 4 represented by the above formula (1).
  • the radius R (mm) of the welding end portion 4b satisfies the above formula (2), and the angle ⁇ (rad) of the welding end portion 4b satisfies the above formula (3).
  • radius R and the angle ⁇ described above are both measured at the center line of the welded portion 4.
  • the length L 1 of the weld 4a is measured in the center line Z of the weld 4a.
  • the total length L of the welded portion 4 is 10.0 mm or more (the above formula (1)). Preferably it is 15.0 mm or more.
  • the upper limit of the total length L of the welded part 4 is not specified, it is preferably 40.0 mm or less from the viewpoint of the welding time of the parts. More preferably, it is 30.0 mm or less.
  • the overall length L of the weld 4 is the sum of the length L 1 of the welded portion 4a, the length of the center line of the welded end portion 4b.
  • the length L 1 of the main weld 4a is set to L ⁇ 2/3 ⁇ L 1 ⁇ L ⁇ 4/5.
  • it is 15.0 mm or more.
  • it is 40.0 mm or less.
  • the radius R of the welding end portion 4b is set to 0.5 mm ⁇ R ⁇ 1.5 mm (the above formula (2)).
  • it is 0.7 mm or more.
  • it is 1.3 mm or less.
  • FIG. 5 is a cross-sectional view taken along the line AA shown in FIG.
  • the end side of the welded portion 4 has a recessed shape, which is generally called a crater.
  • the radius R of the welding end portion 4b is less than 0.5 mm, the dent d of the crater portion becomes large and a weld crack is likely to occur.
  • the angle ⁇ of the welding end portion 4b is set to 5 / 6 ⁇ rad ⁇ ⁇ ⁇ 2 ⁇ rad (the above formula (3)).
  • ⁇ rad ⁇ Preferably, ⁇ ⁇ 3 / 2 ⁇ rad or less.
  • the welded portion 4 of the present invention is formed so that the main welded portion 4a and the weld end portion 4b are within the above-described predetermined range, the tensile stress generated in the central portion of the final solidified portion at the end of the welded portion. (The force in the direction of the arrow Fb described above) can be effectively dispersed. As a result, it is possible to prevent the occurrence of weld cracks on the molten part end side. Thereby, as shown in FIG. 3, even if the minimum value of the total length L of the melted part 4 is as short as 10.0 mm, it is possible to prevent the occurrence of welding defects at the end of the welded part.
  • Total size of gaps (mm) between steel plates relative to the total thickness (mm) of multiple steel plates 0% or more and 15% or less
  • the sum of the sizes of the gaps between the steel plates (in the example shown in FIG. 5, the gaps between the steel plates 2 and 3) in the overlapping portion where the plurality of steel plates are overlapped is set to a plurality.
  • the total thickness (mm) of the steel plate is 0% or more and 15% or less.
  • FIG. 9A shows a cross-sectional view when two steel plates 2 and 3 are overlapped as the lap laser welding joint 1, and FIG.
  • FIG. 9B shows three steel plates as the lap laser welding joint 1. Sectional drawing in case 2 , 3, 1 and 3 2 are overlapped is shown. As shown in FIG. 9A, when the two steel plates 2 and 3 are overlapped, the gap between the steel plate 2 and the steel plate 3 is the total G of the size of the gap between the steel plates. On the other hand, FIG. 9 when the three steel plates are superimposed (B), the steel plate 2 and the steel plate 3 1 of the gap size G 1 and the steel plate 3 1 and the steel plate 3 of the second gap size G 2 Is the total G of the size of the gaps between the steel plates. In addition, in FIG. 9, although the case where two or three steel plates were piled up as the overlap laser welding joint 1 was illustrated, four or more steel pipes may be piled up.
  • the total (total plate gap) G of the gaps (mm) between the steel plates relative to the total plate thickness T (mm) of the plurality of steel plates is 0% or more and 15% or less, the stress on the melted portion of the overlapping surface Concentration is suppressed, and peeling strength can be improved while suppressing occurrence of weld cracks.
  • the total gap exceeds 15%, weld cracks occur, and the strength is lower than when no gap is present.
  • the total size of the gaps (mm) between the steel plates with respect to the total thickness (mm) of the plurality of steel plates is 5% or more. More preferably, it is 10% or less.
  • the lap laser welding joint 1 of the present invention can obtain the target characteristics of the present invention by the above configuration, but the following configuration can be added as necessary in addition to the above configuration.
  • component composition of steel sheet is not particularly limited, for example, in mass%, C: more than 0.07% and less than 0.25%, P + S: less than 0.03%, Mn: It contains 1.8% or more and 3.0% or less, Si: more than 1.2% and 1.8% or less, and may have a component composition composed of the remaining Fe and inevitable impurities.
  • % in each component composition refers to mass%.
  • the C content is preferably 0.07% to 0.25% or less. More preferably, it is 0.10% or more and 0.20% or less.
  • the total amount (P + S: less than 0.03%) of the P content and the S content is less than 0.03%, the ductility is not lowered, and desired high strength and workability can be ensured. Therefore, the total amount (P + S) of the P content and the S content is preferably less than 0.03%.
  • the Mn content is preferably 1.8% or more and 3.0% or less. More preferably, the Mn content is 2.5% or less.
  • the Si content exceeds 1.2%, the effect of increasing the strength of the steel by solid solution can be sufficiently obtained.
  • the Si content is 1.8% or less, hardening of the heat affected zone is difficult to increase, and the toughness and low temperature crack resistance of the weld heat affected zone are difficult to deteriorate.
  • the Si content is preferably 1.2% to 1.8%. More preferably, the Si content is 1.5% or less.
  • the balance other than the above component composition is Fe and inevitable impurities.
  • Inevitable impurities include Al: 0.015 to 0.050%, N: 0.002 to 0.005%, and the like.
  • one or two selected from the following group A and group B can be further contained as required.
  • Ti and Nb precipitate as carbides or nitrides, and have an action of suppressing austenite coarsening during annealing. Therefore, when Ti and Nb are contained, it is preferable to contain at least one kind. When Ti and Nb are contained to obtain this effect, Ti is 0.005% or more and Nb is 0.005% or more, respectively. However, even if it contains excessively, the effect by the said effect
  • the recrystallization temperature at the time of annealing rises, the metal structure after annealing becomes non-uniform, and the stretch flangeability may be impaired. Furthermore, the precipitation amount of carbide or nitride increases, the yield ratio increases, and the shape freezing property may deteriorate. Therefore, when Ti and Nb are contained, the Ti content is 0.01% or less and the Nb content is less than 0.050%, respectively. Preferably, the Ti content is less than 0.0080%. More preferably, the Nb content is less than 0.040%.
  • Cr, Mo, and B are elements having an effect of improving the hardenability of steel. Therefore, you may contain 1 or more types of these elements. However, even if these elements are contained excessively, the effects described above may be saturated and uneconomical. Therefore, when Cr, Mo and B are contained, the Cr content is 1.0% or less, the Mo content is 0.50% or less, and the B content is 0.10% or less, respectively.
  • the Cr content is 0.01% or more.
  • the Mo content is 0.004% or more.
  • the B content is 0.0001% or more.
  • the Cr content is 0.50% or less.
  • the Mo content is 0.10% or less.
  • the B content is 0.0030% or less.
  • At least one steel plate can be a high strength steel plate having a tensile strength TS of 980 MPa or more. Even if at least one steel plate is the above-described high-tensile steel plate, the laser welded joint 1 can obtain high joint strength and can prevent the occurrence of welding defects.
  • at least one steel plate among the plurality of steel plates preferably has the above-described component composition and has a tensile strength TS of 980 MPa or more.
  • the plurality of steel plates may be the same type and the same shape, or different types and different shapes.
  • the thickness t ′ of each of the plurality of steel plates to be laser welded is not particularly limited, but is preferably in the range of 0.5 mm ⁇ t ′ ⁇ 2.5 mm, for example.
  • a steel plate having a thickness within this range can be suitably used as an outer plate for automobiles and a framework member for automobiles.
  • the board thickness of a some steel plate may be the same, and may differ.
  • the upper steel plate 2 satisfies the thickness t′2: 0.6 mm ⁇ t′2 ⁇ 1.2 mm, and the lower steel plate 3
  • the plate thickness t′3 is preferably 1.0 mm ⁇ t′3 ⁇ 2.5 mm.
  • the plate thickness t′2 of the upper steel plate 2 and the plate thickness t′3 of the lower steel plate 3 are both 0.5 mm ⁇ t′2 ⁇ 2.5 mm and 0.5 mm ⁇ t′3 ⁇ 2. 5 mm is preferable.
  • the “weld crack” in the present invention refers to a low temperature crack that occurs at the weld end portion of the weld portion 4 and propagates from the weld end portion to the weld start end portion.
  • the presence or absence of the occurrence of weld cracks can be determined by cutting the welded portion 4 after welding and confirming the presence or absence of cracks. The presence or absence of cracks can be confirmed visually, but from the viewpoint of more clearly discriminating, for example, the cut surface may be magnified by about 10 times with an optical microscope.
  • the weld crack has penetrated from the surface of the welding part 4 to the back surface.
  • FIG. 6 is a view for explaining an example of a welding method for the lap laser welding joint 1 of the present invention.
  • FIG. 7 is a view for explaining an example of the position of a suitable welded portion (melted portion) 4 in the lap laser weld joint 1 of the present invention.
  • FIG. 7A is a top view showing a combination of two steel plates 2 and 3
  • FIG. 7B is a cross-sectional view taken along the line BB in FIG. 7A.
  • the manufacturing method of the lap laser welding joint 1 of the present invention is the manufacturing method of the lap laser welding joint 1 described above. First, a plurality of steel plates are superposed in the vertical direction, and then, among the superposed steel plates, The weld 4 is formed by irradiating the upper steel plate surface with laser.
  • one-side welding is performed on a plurality of stacked steel plates. Space saving can be realized by performing one-side welding.
  • it is preferable to perform lap laser welding from the side of the steel plate having the larger thickness among the plurality of the stacked steel plates. Thereby, melting-down can be prevented.
  • the steel plates have the same thickness, it is only necessary to perform laser welding from one side.
  • the lap laser welding joint 1 of the present invention has a straight line portion on the surface of the outermost steel plate 2 such that a plurality of steel plates 2 and 3 are overlapped to form a welded portion 4 on the steel plates 2 and 3. And it can obtain by performing the overlap laser welding which irradiates the laser beam 7 so that it may have a semicircle part.
  • the laser beam 7 is continuously irradiated while scanning so as to have a straight portion and a curved portion.
  • the welded portion 4 having a straight portion and a semicircular portion is formed as the main welded portion 4 a and the welding end portion 4 b.
  • continuously irradiating the laser beam 7 toward the semicircular portion causes excessive stress concentration on the end of the welded portion 4 (see FIG. 2B). Since it can prevent and generation
  • the length L 1 (mm) of the main weld 4a of the weld is 2/3 or more and 4/5 or less with respect to the total length L (mm) of the weld 4 represented by the above formula (1).
  • the radius R (mm) of the welding end portion 4b of the weld portion 4 satisfies the expression (2) and the angle ⁇ (rad) of the welding end portion 4b becomes a J-shape that satisfies the expression (3). It is preferable to control at least one of laser output, focal position, welding speed, and beam diameter.
  • a fiber laser, a disk laser, or the like can be used as the laser beam.
  • beam diameter 0.4 to 1.0 mm
  • laser output 2.0 to 5.0 kW
  • focal point position on the surface of the outermost layer of the steel plate to 30 mm above the surface of the outermost layer of the steel plate
  • welding speed 2.0 to 5. It is preferable to set it to 0 m / min. More preferably, in forming the main weld 4a, the beam diameter is 0.5 to 0.8 mm, the laser output is 2.5 to 4.5 kW, the focal position is on the outermost surface of the steel plate to 20 mm above the outermost surface of the steel plate.
  • the welding speed is preferably controlled in the range of 2.5 to 4.5 m / min.
  • the beam diameter 0.4 to 1.0 mm
  • the laser output 2.0 to 4.0 kW
  • the focal point position on the outermost surface of the steel plate to 30 mm above the outermost surface of the steel plate
  • welding Speed It is preferable to control in the range of 2.0 to 4.0 m / min.
  • the steel plates 2 and 3 for example, steel plates having the above-described component composition and a tensile strength TS of 980 MPa or more can be used. Further, the plate thicknesses t′2 and t′3 of the plurality of steel plates 2 and 3 are set to 0.5 mm ⁇ t′2 ⁇ 2.5 mm and 0.5 mm ⁇ t′3 ⁇ 2.5 mm, respectively, and the plate gap is the plate. The total thickness can be 0% or more and 15% or less.
  • the steel plate 2 is also referred to as a flange portion 2b, and the steel plate 3 is also referred to as another frame component or panel component.
  • the welded portion 4 is preferably formed such that the center line Z of the main welded portion 4 a is substantially parallel to the longitudinal direction of the flange portion 2 b of the steel plate 2.
  • At least one steel plate has a substantially hat-shaped or L-shaped cross section, and has a vertical wall portion and a flange portion extending outward from the front end of the vertical wall portion.
  • the coordinate of the end portion on the vertical wall portion side of the joint surface where the flange portion and another steel plate are overlapped is set to 0, the vertical wall portion side is set to (+), and the flange portion is opposite to the vertical wall portion side.
  • the outer end side is represented by a coordinate system with ( ⁇ )
  • the welded portion is preferably at a welding position X (mm) represented by the following equation (4).
  • the end portion (hereinafter referred to as the vertical wall portion 2a side) of the contact position between the flange portion 2b of the upper steel plate 2 and the frame component of the lower steel plate 3 is used.
  • the coordinates of the contact end may be 0).
  • the outer end side of the flange portion 2b is represented by a coordinate system with ( ⁇ ) and the vertical wall portion 2a side in a substantially hat shape (only a part of the shape is shown in FIG. 7) is represented by (+).
  • the thickness of the thickest steel plate is t (mm).
  • the welding position X is closer to the contact end of the flange portion 2b than -2t, the weld metal portion is more likely to break during the tensile test, and the peel strength may be lowered.
  • the welding position X is farther from the contact end of the flange portion 2b than -4t, the moment applied to the welded portion 4 tends to increase, and the peel strength may decrease. Therefore, it is preferable to set the welding position X as in the above equation (4).
  • the welding position X is a distance from the coordinate 0 to the center line Z of the main weld 4a.
  • ⁇ Automobile framework parts> As an example of a part that can suitably use the lap laser welded joint 1 of the present invention, there is a car frame part.
  • the steel plate 2 that is a frame component having a substantially hat-shaped cross section and the steel plate 3 that is a panel component are used.
  • the flange part 2b of the frame part (steel plate 2 shown in FIG. 1) and the panel part (steel plate 3 shown in FIG. 1) arranged opposite to the flange part 2b are welded by the above-described welding method and described above.
  • a closed cross section is formed.
  • the automobile frame part of the present invention is preferably applied to, for example, a center pillar and a roof rail. In these parts, it is important to ensure the peel strength from the viewpoint of collision safety. As described above, the center pillar to which the automobile frame component of the present invention is applied has sufficient peel strength.
  • a plurality of steel plates including at least one high-strength steel plate are overlapped, and a weld defect is formed on the front and back surfaces of the steel plate by forming the welded portion 4 and welding.
  • the lap laser welding joint 1 which does not generate
  • the lap laser welded joint 1 having high joint strength and excellent durability can be manufactured.
  • the lap laser welding joint 1 of the present invention is excellent in appearance, it can be suitably used for automobile structural members. For example, by using a high-strength steel plate as a steel plate to be joined, it is possible to obtain a car frame part. By using such a lap laser welded joint 1, it is possible to obtain a framework component for automobiles having high joint strength.
  • steel plates having the composition shown in Table 1 were used as test materials.
  • the plate thickness of the steel plate is any of 1.2 mm, 1.6 mm and 2.0 mm, and the plate width is 50 mm.
  • the L-shaped cross-sectional shape was bent.
  • the L-shaped steel plate 8 has a long side 8a and a short side 8b.
  • the long side 8a corresponds to the vertical wall portion 2a of the steel plate 2 of the laser welded joint 1 shown in FIG. 1, and the short side 8b corresponds to the flange portion 2b.
  • test piece 4 an L-shaped test piece (hereinafter referred to as a test piece) was produced.
  • the test piece size is: long side 8a (horizontal wall length): 120 mm, short side 8b (test piece width): 50 mm, overlapped portion (flange width): 30 mm, and the gap between the upper and lower steel plates 8 is 0.2 mm.
  • Tables 2-1, 2-2, and 2-3 show the conditions of the welded portion 4 formed by laser welding.
  • the welding position coordinates are 0 for the contact position end of the part where the two steel plates 8 of the test piece are overlapped, ( ⁇ ) for the outer end side of the overlapped part of the test piece, and the vertical wall side of the test piece. Expressed in the coordinate system (+).
  • the welding position X, the total length of the melted portion 4: L, the arc of the end of the welded portion 4 (weld end portion 4b) or the circular radius: R, the arc of the end of the welded portion 4 (weld end portion 4b) or
  • the test was performed with the angle of the circle: ⁇ and various values varied.
  • a fiber laser was used for laser welding.
  • the laser output was 4.5 kW
  • the beam diameter at the focal position was constant at 0.6 mm ⁇
  • the welding speed and the processing point distance were adjusted, and the penetration of the weld bead was adjusted.
  • the welding was performed in the atmosphere.
  • the focal position of laser welding was the steel plate surface with the short side 8b.
  • the tensile test was performed at a speed of 10 mm / min based on JIS Z3136. The determination of cracking was made by visual inspection and penetration testing.
  • the peel strength was measured by an L-shaped tensile test in which steel plates 8 bent in an L-shape were overlapped as shown in FIG. 8 and laser welding was performed, and a tensile load was applied from both sides.
  • the tensile method was based on JIS Z3136. When the peel strength was 1.2 kN or more, it was judged as having passed the test as having high bonding strength.
  • test pieces of the present invention had a peel strength of 1.2 kN or more, and no weld cracks occurred.
  • No. 6, no. 13, no. 20, no. 27, no. 34, no. 41 has a small radius R at the end of the welded portion 4 (welded end portion 4b), so that a weld crack occurred.
  • No. 7, no. 14, no. 21, no. 28, no. 35, no. No. 42 has a weld crack due to the small angle ⁇ at the end of the weld 4 (weld end 4b).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laser Beam Processing (AREA)

Abstract

重ねレーザ溶接継手、重ねレーザ溶接継手の製造方法およびその重ねレーザ溶接継手を有する自動車用骨格部品を提供することを目的とする。 本発明の重ねレーザ溶接継手は、複数の鋼板を重ね合わせてレーザ溶接により接合された溶接部を有する重ねレーザ溶接継手であって、溶接部は、溶接線形状を直線とする本溶接部と、該本溶接部の一端部に形成された溶接線形状を円弧または円とする溶接終端部とからなるJ字形状であり、本溶接部の長さL(mm)は、(1)式で表される溶接部の全長L(mm)に対して2/3以上4/5以下であり、溶接終端部の半径R(mm)は(2)式を満たすとともに、溶接終端部の角度θ(rad)は(3)式を満たし、前記複数の鋼板を重ね合わせた重ね合わせ部における、前記複数の鋼板間の隙間の大きさの合計が、前記複数の鋼板の総板厚に対して0%以上15%以下である。 10.0≦L ・・・(1) 0.5≦R≦1.5 ・・・(2) 5/6π≦θ≦2π ・・・(3)

Description

重ねレーザ溶接継手、重ねレーザ溶接継手の製造方法および自動車用骨格部品
 本発明は、重ねレーザ溶接継手、重ねレーザ溶接継手の製造方法およびその重ねレーザ溶接継手を有する自動車用骨格部品に関する。
 従来より、フランジ部分を有する自動車の構造部材の溶接には、抵抗スポット溶接が用いられている。しかし、抵抗スポット溶接には、溶接に時間がかかるという問題、分流により発熱量が低下するためピッチを狭くすることができないという問題、さらには溶接機に設けたガンによる空間的な制約があるという問題がある。これらの問題を解決するため、近年では、従来の抵抗スポット溶接に加えて、重ねレーザ溶接を用いることが検討されている。ここで、重ねレーザ溶接とは、重ね合わせた複数枚の鋼板の表面にレーザビームを照射して、鋼板を接合する溶接方法をさす。
 重ねレーザ溶接では、重ね合わせた複数枚の鋼板の表面に直線形状にレーザビームを照射し、レーザビームが照射された鋼板の部位を溶融および凝固させることにより、溶融部(溶接部)が形成される。これと共に、重ね合わせた鋼板が接合されて重ねレーザ溶接継手を得ることができる。しかし、重ねレーザ溶接の場合には、直線の溶融部の終端側で割れが発生し易く、割れが発生すると溶融部の全長に亘って伝播するという問題がある。溶接金属に割れが発生・伝播すると、重ね溶接継手部のせん断および剥離強さといった静的強度が低下することに加え、割れからのき裂進展により疲労強度が著しく低下することが懸念される。自動車車体部品、特に骨格部品では、近年車体強度・剛性向上のためにより高強度の高張力鋼板が使用されるようになっており、溶接部の割れによる継手の静的強度および疲労強度の低下は重大な問題となる。
 そこで、重ね合わせた鋼板を重ねレーザ溶接した場合に生じる、重ねレーザ溶接割れの発生および伝播を抑制する方法として、種々の技術が開示されている。
 例えば、特許文献1には、重ね溶接の下側の鋼板を突出させ、かつ溶接開始位置をフランジ端部から離れた位置にすることで、溶接割れを防止する技術が開示されている。特許文献2には、重ね面の端部に斜めからレーザ照射して、溶接割れを防止する技術が開示されている。特許文献3、4には、一度溶接した部分もしくはその溶接した部分の周囲を、再加熱もしくは溶接することで、溶接割れを防止する技術が開示されている。特許文献5には、重ね面を楕円形に溶接して溶接割れの発生を防止する技術が開示されている。
特開2009-154194号公報 特開2008-296236号公報 特開2012-240083号公報 特開2012-240086号公報 特開2017-113781号公報
 しかしながら、特許文献1に記載の方法では、重ね溶接の下側の鋼板を突出させるため、突出させる部分が余分となり、部品設計が制約される問題がある。
 特許文献2に記載の方法では、重ね合わせた板に隙間が空いている場合には、重ね面で溶融部がうまく形成されない溶込み不足の状態となり、強度を確保することが難しい問題がある。
 特許文献3、4に記載の方法では、一度溶接した部分もしくはその溶接した部分の周囲を、再加熱もしくは溶接するため、再加熱もしくは溶接をすることによりさらに溶接時間が必要となる問題がある。
 特許文献5に記載の方法は、重ね面を楕円形に溶接するものであり、直線形状の溶接部の溶接割れには適用することができない。
 本発明は係る問題を鑑み、溶融部の終端部で割れが発生することおよび割れが伝播することを抑制できる、継手強度の良好な重ねレーザ溶接継手、この重ねレーザ溶接継手の製造方法、およびこの重ねレーザ溶接継手を有する自動車用骨格部品を提供することを目的とする。
 本発明者らは、上記課題を解決するために検討した結果、以下の知見を得た。
 本発明では、溶融部の全長、溶接線形状、重ねた複数枚の鋼板の板厚の合計、重ねた複数枚の鋼板の間の隙間の大きさの合計について、それぞれ注目した。そして、溶融部の終端側での割れ発生を防止するためには、溶融部の全長および溶接線形状を制御することが有効であることがわかった。すなわち溶接線形状を、下記の(1)式から(3)を満たすJ字形状とすることにより、溶融部の終端側での割れの発生および伝播が抑制できることを知見した。なお、本発明では、溶融部と溶接熱影響部をあわせて、溶接部と称する。
10mm≦L    (1)
0.5≦R≦1.5 (2)
5/6π≦θ≦2π (3)
ここで、Lは溶接部の全長(単位:mm)、Rは溶接部の溶接終端部の半径(単位:mm)、θは溶接部の溶接終端部の角度(単位:rad)である。
 さらに、重ねた複数枚の鋼板の板厚の合計および重ねた複数枚の鋼板の間の隙間の大きさの合計の少なくとも1つを制御することで、重ね面の溶融部への応力集中を抑えることとなり、はく離強度をより向上できることが分かった。
 本発明は、上述の知見に基づいて完成されたものであり、以下を要旨とするものである。
[1] 複数の鋼板を重ね合わせてレーザ溶接により接合された溶接部を有する重ねレーザ溶接継手であって、前記溶接部は、溶接線形状を直線とする本溶接部と、該本溶接部の一端部に形成された溶接線形状を円弧または円とする溶接終端部とからなるJ字形状であり、前記本溶接部の長さL(mm)は、(1)式で表される前記溶接部の全長L(mm)に対して2/3以上4/5以下であり、前記溶接終端部の半径R(mm)は(2)式を満たすとともに、前記溶接終端部の角度θ(rad)は(3)式を満たし、前記複数の鋼板を重ね合わせた重ね合わせ部における、前記複数の鋼板間の隙間の大きさの合計が、前記複数の鋼板の総板厚に対して0%以上15%以下である、重ねレーザ溶接継手。
10.0≦L     ・・・(1)
0.5≦R≦1.5  ・・・(2)
5/6π≦θ≦2π  ・・・(3)
ここで、Lは溶接部の全長(単位:mm)、Rは溶接部の溶接終端部の半径(単位:mm)、θは溶接部の溶接終端部の角度(単位:rad)である。
[2] 前記複数の鋼板のうち少なくとも1つの鋼板は、質量%で、
C:0.07%超え0.25%以下、
P+S:0.03%未満、
Mn:1.8%以上3.0%以下、
Si:1.2%超え1.8%以下
を含有し、残部Feおよび不可避的不純物からなる成分組成を有する、[1]に記載の重ねレーザ溶接継手。
[3] 前記成分組成に加えて、さらに、以下のA群およびB群から選択される1つまたは2つを含有する、[1]または[2]に記載の重ねレーザ溶接継手。
A群:質量%で、Ti:0.005%以上0.01%以下、およびNb:0.005%以上0.050%未満のうちから選択される1種または2種
B群:質量%で、Cr:1.0%以下、Mo:0.50%以下、およびB:0.10%以下のうちから選択される1種または2種以上
[4] 前記複数の鋼板のうち少なくとも1つの鋼板が、引張強さ980MPa以上の高張力鋼板である、[1]~[3]のいずれか1つに記載の重ねレーザ溶接継手。
[5] 前記複数の鋼板のうち少なくとも1つの鋼板は、断面形状が略ハット形状またはL字形状であり、縦壁部および該縦壁部の先端から外側へ延びるフランジ部を有し、前記フランジ部と他の鋼板とが重ね合わされた接合面の前記縦壁部側の端部の座標を0とし、前記縦壁部側を(+)とし、前記縦壁部側とは反対の、前記フランジ部の外端側を(-)とした座標系で表したときに、前記溶接部が式(4)で表される溶接位置X(mm)にある、[1]~[4]のいずれか1つに記載の重ねレーザ溶接継手。
-2t≧X≧-4t ・・・(4)
ここで、tは前記複数の鋼板のうち最も板厚の厚い鋼板の板厚(単位:mm)である。
[6] [1]~[5]のいずれか1つに記載の重ねレーザ溶接継手の製造方法であって、複数の鋼板を上下方向に重ね合わせ、重ね合わせた前記複数の鋼板のうち、上側の鋼板表面にレーザを照射して溶接部を形成する、重ねレーザ溶接継手の製造方法。
[7] 前記本溶接部の長さL(mm)が、(1)式で表される前記溶接部の全長L(mm)に対して2/3以上4/5以下、かつ前記溶接終端部の半径R(mm)が(2)式を満たすとともに該溶接終端部の角度θ(rad)が(3)式を満たすJ字形状となるように、レーザ出力、焦点位置、溶接速度、およびビーム径のうち少なくとも1つを制御する、[6]に記載の重ねレーザ溶接継手の製造方法。
[8] [1]~[5]のいずれか1つに記載の重ねレーザ溶接継手を有する自動車用骨格部品。
 本発明によれば、溶融部の終端部における割れの発生および伝播を抑制できるため、継手強度の良好な重ねレーザ溶接継手を製造できる。また、本発明の重ねレーザ溶接継手は外観にも優れるため、自動車の構造部材に好適であり、自動車用骨格部品とすることができる。
図1は、本発明の重ねレーザ溶接継手の一例を示す斜視図である。 図2(A)は従来の重ねレーザ溶接継手の溶接終端部を説明する概略図であり、図2(B)は本発明の重ねレーザ溶接継手の溶接終端部を説明する概略図である。 図3は、本発明の重ねレーザ溶接継手の溶接部(溶融部)の構成を説明する上面図である。 図4は、本発明の重ねレーザ溶接継手の溶接部(溶融部)の構成を説明する上面図である。 図5は、図4における重ねレーザ溶接継手のA-A線断面図である。 図6は、本発明の重ねレーザ溶接継手の溶接方法を説明する斜視図である。 図7(A)は本発明の重ねレーザ溶接継手の溶接部(溶融部)の位置を説明する上面図であり、図7(B)は図7(A)におけるB-B線断面図である。 図8は、本発明の実施例における重ねレーザ溶接継手の一例を示す図である。 図9(A)は、2枚の鋼板が重ね合わされた場合の鋼板間の隙間の大きさの合計を説明する図であり、図9(B)は、3枚の鋼板が重ね合わされた場合の鋼板間の隙間の大きさの合計を説明する図である。
 以下、各図を参照して、本発明の重ねレーザ溶接継手、重ねレーザ溶接継手の製造方法、および自動車用骨格部品について説明する。なお、本発明はこの実施形態に限定されない。
 <重ねレーザ溶接継手>
 本発明の重ねレーザ溶接継手は、複数の鋼板を重ね合わせてレーザ溶接により接合された溶接部を有する。溶接部は、溶接線形状を直線とする本溶接部と、この本溶接部の一端部に形成された溶接線形状を円弧とする溶接終端部とからなり、溶接部の形状はJ字形状に形成される。本溶接部の長さL(mm)は、下記の(1)式で表される溶接部の全長L(mm)に対して2/3以上4/5以下であり、溶接終端部の半径R(mm)は下記の(2)式を満たすとともに、溶接終端部の角度θ(rad)は下記の(3)式を満たす。
10.0≦L     ・・・(1)
0.5≦R≦1.5  ・・・(2)
5/6π≦θ≦2π  ・・・(3)
 ここで、Lは溶接部の全長(単位:mm)、Rは溶接部の溶接終端部の半径(単位:mm)、θは溶接部の溶接終端部の角度(単位:rad)である。
 このような本発明の重ねレーザ溶接継手1の一実施形態について、図1~図5を用いて説明する。図1は、本発明の重ねレーザ溶接継手1の一例を示す斜視図である。図2(A)は従来の重ねレーザ溶接継手の溶接終端部を示す概略図であり、図2(B)は本発明の重ねレーザ溶接継手の溶接終端部を示す概略図である。図3、図4は、本発明の重ねレーザ溶接継手の溶接部4の構成を説明する上面図である。図5は、図4に示したA-A線の断面図である。
 まず、図1を参照して、本発明の重ねレーザ溶接継手1について説明する。
 本発明の重ねレーザ溶接継手1では、少なくとも二つの鋼板を重ね合わせる。図1に示した例では、縦壁部2aおよび縦壁部2aの先端から外側へ延びるフランジ部2bを有する断面形状が略ハット形状の鋼板2と、平らなパネル形状の鋼板3との2枚の鋼板を用いる。鋼板2と鋼板3は対向するように重ね合わせられ、鋼板2のフランジ部2bの領域が接合面となる。重ね合わせた2枚の鋼板2、3は、フランジ部2bで重ねレーザ溶接されることにより接合される。重ねレーザ溶接では、鋼板2、3のうち少なくとも1枚の鋼板を貫通し、鋼板2、3を接合する溶融部が形成される。この溶融部および溶接熱影響部が、溶接部4となる。
 なお、重ねレーザ溶接は、縦壁部2aに沿って、フランジ部2bを長手方向に移動しながら、断続的にレーザビーム7を照射して行なわれる。これにより、鋼板2、3の接合面には、図1に示すように、表面が略J字形状の複数の溶接部4が形成される。ここでは、本発明の重ねレーザ溶接継手1として、2枚の鋼板2、3が重ね合される場合を例に説明するが、3枚以上の鋼板が重ね合されていてもよい。
 次に、図2~図5を参照して、本発明の技術思想および溶接部4の構成について説明する。
 図2(A)には、従来の重ねレーザ溶接継手における溶接部14の終端15を、図2(B)には、本発明の重ねレーザ溶接継手における溶接部4の終端5を、それぞれ示す。
従来のレーザ溶接機を用いた溶接の場合、溶接初期において溶接状態が安定しない。その状態で円弧状などのように溶接方向が変化するような溶接を行うと、スパッタがより多く発生するため、溶接部14の終端15の形状を直線に形成することが一般的である。しかし、図2(A)に示すように、重ねレーザ溶接継手の溶接部14の終端15の形状が直線に形成された場合、溶接部の終端15部分では引張応力が集中することが分かった。
 具体的には、終端15の最終凝固部となる中心部に、溶融部14の外周部分から外側に向かう引張応力(図2(A)に示した矢印Fa方向の力)が集中し、これにより凝固割れ16が発生し易くなる。凝固割れが発生すると溶接割れに繋がるため、重ねレーザ溶接継手に溶接欠陥が発生することがある。
 これに対し、図2(B)に示すように、重ねレーザ溶接継手の溶接部4の終端5の形状が特定の形状、具体的には円弧もしくは円形に形成される場合、溶接部の終端5部分では引張応力を分散させることができる。すなわち、終端5の最終凝固部の中心部6に、溶融部4の外周部分から外側に向かう引張応力(図2(B)に示した矢印Fb方向の力)を一箇所に集中させずに分散させることができる。これにより、凝固割れの発生が抑制されるため、重ねレーザ溶接継手における溶接欠陥の発生を防止することが可能になる。
 上記した技術思想に基づき、本発明の重ねレーザ溶接継手1では、略J字形状に形成される溶接部4の表面の寸法を、所定の範囲に調整することが重要である。
 具体的には、図3に示すように、溶接部4は、溶接線形状を直線とする本溶接部4aと、この本溶接部4aの一端部より続けて形成された、溶接部終端までの溶接線形状を円弧または円形とする溶接終端部4bとから構成される。本溶接部4aの長さL(mm)は、上記の(1)式で表される溶接部4の全長L(mm)に対して2/3以上4/5以下である。溶接終端部4bの半径R(mm)は、上記の(2)式を満たすとともに、溶接終端部4bの角度θ(rad)は、上記の(3)式を満たす。
 なお、上記した半径Rおよび角度θは、いずれも溶接部4の中心線で測定する。また、本溶接部4aの長さLは、本溶接部4aの中心線Zで測定する。
 (溶接部4の全長L(mm):10.0mm≦L)
 溶接部4の全長Lが10.0mmより短い場合、十分な接合面積を得られず、継手強度が低下する。また、溶融金属が少ないため割れの発生が抑えられず、はく離強度が低下する。そのため、溶接部4の全長Lは10.0mm以上(上記(1)式)とする。好ましくは15.0mm以上とする。なお、特に溶接部4の全長Lの上限は規定しないが、部品の溶接時間の観点より、40.0mm以下とすることが好ましい。より好ましくは30.0mm以下である。なお、図3に示すように、溶接部4の全長Lは、本溶接部4aの長さLと、溶接終端部4bの中心線の長さとの合計である。
 (本溶接部4aの長さL(mm):L×2/3≦L≦L×4/5)
 本溶接部4aの長さLが「L×2/3」(mm)より短い場合、十分な直線部分を確保できず、短い直線部分で荷重を受け持つこととなるため、十分なはく離強度を得られず不適当である。一方、本溶接部4aの長さLが「L×4/5」(mm)より長い場合、十分な曲線部分を確保できず、応力集中を起こすため、十分なはく離強度を得られず不適当である。そのため、本溶接部4aの長さLは、L×2/3≦L≦L×4/5とする。好ましくは15.0mm以上とする。好ましくは40.0mm以下とする。
 (溶接終端部4bの半径R(mm):0.5mm≦R≦1.5mm)
 円弧または円形に形成される溶接終端部4bの半径Rが0.5mm未満の場合、溶接部4の終端5に対するクレータ部分の割合が大きくなり、溶接割れの発生を抑えることができない。一方、溶接終端部4bの半径Rが1.5mmより大きい場合、上記した引張応力の分散効果を十分に得ることができず、溶接割れの発生を抑えることができない。そのため、溶接終端部4bの半径Rは、0.5mm≦R≦1.5mm(上記(2)式)とする。好ましくは0.7mm以上とする。好ましくは1.3mm以下とする。
 ここで、図4および図5を用いて、本発明の溶接部4の終端5の断面について説明する。図5は、図4に示したA-A線断面図である。図5に示すように、溶接部4の終端側は凹んだ形状をしており、これを一般的にクレータと称する。上述のように、溶接終端部4bの半径Rが0.5mm未満の場合、このクレータ部の凹みdが大きくなり、溶接割れが発生しやすくなる。
 (溶接終端部4bの角度θ(rad):5/6πrad≦θ≦2πrad)
 円弧または円形に形成される溶接終端部4bの角度θが5/6πradより小さい場合、上記した引張応力の分散効果を十分に得ることができず、溶接割れの発生を抑えることができない。一方、溶接終端部4bの角度θが2πradよりも大きい場合、溶接割れの発生は抑えられるものの、溶接時間の増加や熱影響部の増加などの新たな問題が発生する。そのため、溶接終端部4bの角度θは、5/6πrad≦θ≦2πrad(上記(3)式)とする。好ましくはπrad<θとする。好ましくはθ≦3/2πrad以下とする。
 以上のように、本発明の溶接部4は、本溶接部4aおよび溶接終端部4bを上記した所定の範囲となるように形成するため、溶接部終端の最終凝固部の中心部に生じる引張応力(上記した矢印Fb方向の力)を効果的に分散可能となる。その結果、溶融部終端側の溶接割れの発生を防止することができる。これにより、図3に示すように、溶融部4の全長Lの最小値が10.0mmと短い場合であっても溶接部終端での溶接欠陥の発生を防止することができる。
 (複数の鋼板の総板厚(mm)に対する鋼板の間の隙間(mm)の大きさの合計:0%以上15%以下)
 本発明では、複数の鋼板を重ね合わせた重ね合わせ部における、鋼板の間の隙間(図5に示した例では、鋼板2、3の間の隙間とする。)の大きさの合計を、複数の鋼板の総板厚(mm)に対して0%以上15%以下とする。図9を参照して、複数の鋼板を重ね合わせた重ね合わせ部における、鋼板間の隙間の大きさの合計Gについて説明する。図9(A)には、重ねレーザ溶接継手1として2枚の鋼板2、3が重ね合わされる場合の断面図を示し、図9(B)には、重ねレーザ溶接継手1として3枚の鋼板2、3、3が重ね合わされる場合の断面図を示す。図9(A)に示すように2枚の鋼板2、3が重ね合わされる場合、鋼板2と鋼板3との隙間が鋼板間の隙間の大きさの合計Gである。一方で、図9(B)に示すように3枚の鋼板が重ね合わされる場合、鋼板2および鋼板3の隙間の大きさGと鋼板3および鋼板3の隙間の大きさGとの合計が、鋼板間の隙間の大きさの合計Gである。なお、図9では、重ねレーザ溶接継手1として2枚または3枚の鋼板が重ね合わされる場合を例示したが、4枚以上の鋼管が重ね合わされてもよい。具体的には、鋼板2とN枚の鋼板3~3(Nは2以上の整数)とが重ね合わされる場合、鋼板2および鋼板3の隙間の大きさGと、鋼板3および鋼板3の隙間の大きさGと、鋼板3と鋼板3n+1(nは、2≦n<Nを満たす整数)等の各隙間の大きさとの合計が、鋼板間の隙間の大きさの合計Gである。すなわち、鋼板間の隙間の大きさの合計Gは、隣り合って重なる鋼板同士の隙間の合計(G=G+G+…+GN-1+G)とも換言できる。複数の鋼板の総板厚T(mm)に対する鋼板の間の隙間(mm)の大きさの合計(総板隙)Gが0%以上15%以下であれば、重ね面の溶融部への応力集中を抑えることとなり、溶接割れの発生を抑えつつ、はく離強度向上が可能となる。ただし、総板隙が15%を超えた場合は溶接割れが発生し、強度も板隙なしの場合よりも低くなる。好ましくは、複数の鋼板の総板厚(mm)に対する鋼板の間の隙間(mm)の大きさの合計は、5%以上とする。より好ましくは10%以下とする。
 なお、本発明の重ねレーザ溶接継手1は、以上の構成により本発明で目的とする特性を得ることができるが、上記の構成に加えて、必要に応じて下記の構成を加えることができる。
 (鋼板の成分組成)
 本発明の重ねレーザ溶接継手1に用いる鋼板の成分組成は、特に限定されないが、例えば、質量%で、C:0.07%超え0.25%以下、P+S:0.03%未満、Mn:1.8%以上3.0%以下、Si:1.2%超え1.8%以下を含有し、残部Feおよび不可避的不純物からなる成分組成を有するものとすることができる。以下、各成分組成における%とは、質量%のことを指す。
 (C:0.07%超え0.25%以下)
 C含有量が0.07%を超える場合、析出強化の効果を得ることが可能となる。一方、C含有量が0.25%以下の場合、粗大な炭化物の析出を招くことがなく、所望の高強度、および加工性を確保することが可能となる。そのため、C含有量は0.07%超え0.25%以下とすることが好ましい。より好ましくは0.10%以上であり、0.20%以下である。
 (P+S:0.03%未満)
 P含有量とS含有量の合計量(P+S)が0.03%未満の場合、延靱性が低下せず、所望の高強度および加工性を確保することが可能となる。そのため、P含有量とS含有量の合計量(P+S)は0.03%未満とすることが好ましい。
 (Mn:1.8%以上3.0%以下)
 Mn含有量が1.8%以上の場合、十分な焼入れ性が確保可能となるため、粗大な炭化物が析出し難くなる。一方、Mn含有量が3.0%以下の場合、粒界脆化感受性が低下し、靱性および耐低温割れ性が劣化し難くなる。そのため、Mn含有量は1.8%以上3.0%以下とすることが好ましい。より好ましくは、Mn含有量は2.5%以下とする。
 (Si:1.2%超え1.8%以下)
 Si含有量が1.2%超えの場合、固溶して鋼の強度を増加させる効果を十分に得ることが可能となる。一方、Si含有量が1.8%以下の場合、溶接熱影響部の硬化が大きくなり難く、溶接熱影響部の靱性および耐低温割れ性が劣化し難い。そのため、Si含有量は1.2%超え1.8%以下とすることが好ましい。より好ましくは、Si含有量は1.5%以下とする。
 (残部Feおよび不可避的不純物)
 上記成分組成以外の残部は、Feおよび不可避的不純物である。不可避的不純物としては、Al:0.015~0.050%、N:0.002~0.005%等が挙げられる。
 その他、鋼板強度や継手強度をより向上させるため、上記した成分組成に加えて、さらに、必要に応じて以下のA群およびB群から選択される1つまたは2つを含有することができる。
 (A群:質量%で、Ti:0.005%以上0.01%以下、およびNb:0.005%以上0.050%未満のうちから選択される1種または2種)
 TiやNbは、炭化物または窒化物として析出し、焼鈍中のオーステナイトの粗大化を抑制する作用を有する。したがって、Ti、Nbを含有させる場合には、少なくとも1種を含有させることが好ましい。この効果を得るためにTi、Nbを含有させる場合には、それぞれ、Tiは0.005%以上、Nbは0.005%以上とする。しかし、過剰に含有させても上記作用による効果が飽和して不経済となる恐れがある。また、焼鈍時の再結晶温度が上昇し、焼鈍後の金属組織が不均一となり、伸びフランジ性も損なわれる恐れがある。さらには、炭化物または窒化物の析出量が増し、降伏比が上昇し、形状凍結性も劣化する恐れがある。したがって、Ti、Nbを含有させる場合には、それぞれ、Ti含有量は0.01%以下、Nb含有量は0.050%未満とする。好ましくは、Ti含有量は0.0080%未満とする。より好ましくは、Nb含有量は0.040%未満とする。
 (B群:質量%で、Cr:1.0%以下、Mo:0.50%以下、およびB:0.10%以下のうちから選択される1種または2種以上)
 Cr、MoおよびBは、鋼の焼入性を向上させる作用を有する元素である。したがってこれらの元素の1種類以上を含有させてもよい。しかしながら、これらの元素を過剰に含有させても上記した効果が飽和して不経済となる恐れがある。したがって、Cr、MoおよびBを含有させる場合には、それぞれ、Cr含有量は1.0%以下、Mo含有量は0.50%以下、B含有量は0.10%以下とする。また、好ましくは、Cr含有量は0.01%以上とする。好ましくは、Mo含有量は0.004%以上とする。好ましくは、B含有量は、0.0001%以上とする。好ましくは、Cr含有量は0.50%以下とする。好ましくは、Mo含有量は0.10%以下とする。好ましくは、B含有量は0.0030%以下とする。
 (鋼板の引張強さ)
 本発明の重ねレーザ溶接継手1に用いる複数の鋼板のうち、少なくとも1つの鋼板の引張強さTSが、980MPa以上の高張力鋼板とすることができる。少なくとも1つの鋼板が上記した高張力鋼板であっても、レーザ溶接継手1は、高接合強度を得ることができると共に、溶接欠陥の発生を防止することができる。例えば、複数の鋼板のうち少なくとも1つの鋼板は、上記した成分組成を有し、引張強さTSが980MPa以上とすることが好ましい。なお、複数の鋼板は、同種、同形状の鋼板であってもよいし、異種、異形状の鋼板であってもよい。
 (鋼板の板厚)
 本発明では、レーザ溶接する対象である複数枚の鋼板のそれぞれの板厚t´は、特に限定されないが、例えば0.5mm≦t´≦2.5mmの範囲内であることが好ましい。板厚がこの範囲内である鋼板は、自動車用外板および自動車用骨格部材として好適に使用することができる。なお、複数の鋼板の板厚は、全て同じであってもよいし、異なっていてもよい。
 具体的には、図1等に示したレーザ溶接継手1の場合には、上側の鋼板2の板厚t´2:0.6mm≦t´2≦1.2mmを満たし、下側の鋼板3の板厚t´3:1.0mm≦t´3≦2.5mmとすることが好ましい。あるいは、上側の鋼板2の板厚t´2および下側の鋼板3の板厚t´3は、いずれも0.5mm≦t´2≦2.5mm、0.5mm≦t´3≦2.5mmとすることが好ましい。
 なお、本発明における「溶接割れ」とは、溶接部4の溶接終端部で発生し、溶接終端部から溶接始端部まで伝播する低温割れをさす。溶接割れの発生の有無は、溶接後の溶接部4を切断し、割れの有無を確認することで判別できる。割れの有無の確認は、目視で確認することも可能であるが、より明瞭に判別する観点から、例えば切断面を光学顕微鏡で10倍程度に拡大して確認するとよい。なお、溶接割れは、溶接部4の表面から裏面まで貫通している。
 <重ねレーザ溶接継手の製造方法>
 次に、図6および図7を用いて、上述した本発明の重ねレーザ溶接継手1の製造方法について説明する。図6は、本発明の重ねレーザ溶接継手1の溶接方法の一例を説明するための図である。図7は、本発明の重ねレーザ溶接継手1における好適な溶接部(溶融部)4の位置の一例を説明する図である。図7(A)は、2つの鋼板2、3の組み合わせを示す上面図であり、図7(B)は、図7(A)のB-B線断面図である。
 本発明の重ねレーザ溶接継手1の製造方法は、上記した重ねレーザ溶接継手1の製造方法であって、まず、複数の鋼板を上下方向に重ね合わせ、その後、重ね合わせた複数の鋼板のうち、上側の鋼板表面にレーザを照射して溶接部4を形成する。
 なお、本発明では、重ね合わせた複数の鋼板に対して片側溶接を行う。片側溶接を行うことにより、省スペース化を実現できる。片側溶接は、重ね合わせた複数の鋼板のうち、板厚がより大きい方の鋼板側から重ねレーザ溶接を行うことが好ましい。これにより、溶落ちを防ぐことができる。鋼板の板厚が同一の場合には、いずれか一方側から重ねレーザ溶接を行なえばよい。
 図6に示す例では、本発明の重ねレーザ溶接継手1は、複数の鋼板2、3を重ね合わせ、鋼板2、3に溶接部4を形成するように、最外層の鋼板2表面に直線部および半円部を有するようにレーザビーム7を照射する重ねレーザ溶接を行うことで得ることができる。
 上記した重ねレーザ溶接は、レーザビーム7を、直線部および曲線部を有するように走査しながら連続照射する。図6に示したように、本溶接部4aおよび溶接終端部4bとして、直線部および半円部を有する溶接部4を形成する。この場合、直線部を溶接してから、連続して半円部に向けてレーザビーム7を照射することが、溶接部4の終端(図2(B)を参照)への過剰な応力集中を防ぎ、割れ発生を防止することができるため、好ましい。
 本発明では、溶接部の本溶接部4aの長さL(mm)が、上記(1)式で表される溶接部4の全長L(mm)に対して2/3以上4/5以下、かつ溶接部4の溶接終端部4bの半径R(mm)が(2)式を満たすとともに該溶接終端部4bの角度θ(rad)が(3)式を満たすJ字形状となるように、レーザ出力、焦点位置、溶接速度、およびビーム径のうち少なくとも1つを制御することが好ましい。
 例えば、レーザビームとしては、ファイバーレーザ、ディスクレーザ等を用いることができる。また、ビーム径:0.4~1.0mm、レーザ出力:2.0~5.0kW、焦点位置:鋼板最外層表面上~鋼板最外層表面から30mm上方、溶接速度:2.0~5.0m/minとすることが好ましい。
さらに好ましくは、本溶接部4aの形成にあたり、ビーム径:0.5~0.8mm、レーザ出力:2.5~4.5kW、焦点位置:鋼板最外層表面上~鋼板最外層表面から20mm上方、溶接速度:2.5~4.5m/minの範囲で制御することが好ましい。
また、溶接終端部4bの形成にあたり、ビーム径:0.4~1.0mm、レーザ出力:2.0~4.0kW、焦点位置:鋼板最外層表面上~鋼板最外層表面から30mm上方、溶接速度:2.0~4.0m/minの範囲で制御することが好ましい。
 本発明では、鋼板2、3として、例えば上記した成分組成を有し、引張強さTSが980MPa以上の鋼板を用いることができる。また、複数の鋼板2、3の板厚t´2、t´3を、それぞれ0.5mm≦t´2≦2.5mm、0.5mm≦t´3≦2.5mmとし、板隙が板厚の合計の0%以上15%以下とすることができる。
 図6に示した例では、溶接部4として直線部および半円部を形成する場合のみを示したが、溶接終端部4bの線形形状については半円部に替えて円形としても同様に上記した発明の効果は得られる。
 次に、図7を用いて、本発明の重ねレーザ溶接継手1における好適な溶接位置の一例について説明する。なお、図7の説明では、鋼板2をフランジ部2b、鋼板3を他のフレーム部品あるいはパネル部品とも記す。図7に示すように、好ましくは、溶接部4は、本溶接部4aの中心線Zが鋼板2のフランジ部2bの長手方向に略平行になるように形成される。
 本発明において、重ね合わせた複数の鋼板のうち、少なくとも1つの鋼板は、断面形状が略ハット形状またはL字形状であり、縦壁部および縦壁部の先端から外側へ延びるフランジ部を有してよい。フランジ部と他の鋼板とが重ね合わされた接合面の縦壁部側の端部の座標を0とし、前記縦壁部側を(+)とし、縦壁部側とは反対の、フランジ部の外端側を(-)とした座標系で表したときに、溶接部が下記の(4)式で表される溶接位置X(mm)にあることが好ましい。以下、図7を参照して具体的に説明する。
 図7(A)および図7(B)に示した例では、上側の鋼板2のフランジ部2bと下側の鋼板3のフレーム部品との接触位置の縦壁部2a側の端部(以下、接触端部と称する場合がある。)の座標を0とする。また、フランジ部2bの外端側を(-)、略ハット形状(図7では、一部の形状のみを示す。)における縦壁部2a側を(+)とした座標系で表す。略ハット形状のフレーム部品において、最も板厚の厚い鋼板の板厚をt(mm)とする。このとき、下記(4)式で表される溶接位置X(mm)で片側溶接方法を適用し、溶接を行うことが好ましい。これにより、図8に示したような、総板厚が2~5mmであり、二枚重ねでフランジ長さ50mmのL字引張試験片のはく離強度を1.2kN以上にすることができる。
-2t≧X≧-4t ・・・(4)
 ここで、Xを上記(4)式のように設定した理由を説明する。
 溶接位置Xが-2tよりもフランジ部2bの接触端部に近いと、引張試験の際に溶接金属部より破断しやすくなり、はく離強度も低くなる場合がある。一方、溶接位置Xが-4tよりもフランジ部2bの接触端部から遠いと、溶接部4にかかるモーメントが大きくなりやすく、はく離強度が低くなる場合がある。そのため、溶接位置Xは、上記(4)式のように設定することが好ましい。なお、溶接位置Xは、座標0から本溶接部4aの中心線Zまでの距離とする。
 <自動車用骨格部品>
 本発明の重ねレーザ溶接継手1を好適に用いることができる部品の一例として、自動車用骨格部品がある。上記の図1に示した自動車用骨格部品の場合には、断面形状が略ハット形状のフレーム部品である鋼板2と、パネル部品の鋼板3とが用いられる。フレーム部品(図1に示す鋼板2)のフランジ部2bと、このフランジ部2bに対向して配置されるパネル部品(図1に示す鋼板3)とが上記した溶接方法により溶接されて上記した溶接部4を形成することにより、閉断面を構成する。
 本発明の自動車用骨格部品は、例えば、センターピラー、ルーフレールなどに適用することが好ましい。これらの部品では、衝突安全性の観点からはく離強度を確保することが重要である。本発明の自動車骨格部品を適用したセンターピラーは、上述のように、十分なはく離強度を有する。
 以上説明したとおり、本発明によれば、少なくとも1枚の高張力鋼板を含む複数枚の鋼板を重ね合わせ、溶接部4を形成して溶接接合することにより、この鋼板の表裏面に溶接欠陥が発生することのない重ねレーザ溶接継手1を得ることができる。
 本発明によれば、溶接部4の終端側での割れの発生および伝播が抑制できるため、継手強度が高く耐久性に優れる重ねレーザ溶接継手1を製造することができる。
 また、従来のレーザ溶接に比べて短い溶融部長であっても、溶接割れを抑制できる。これにより、部材設計の自由度の向上や、よりはく離強度が必要な部分に数多く溶接することによる強度向上も期待できる。
 さらに、本発明の重ねレーザ溶接継手1は、外観に優れているため、自動車の構造部材に好適に用いることができる。例えば、接合する鋼板として高強度鋼板を用いることにより自動車用骨格部品とすることができる。このような重ねレーザ溶接継手1を用いることにより、継手強度の高い自動車用骨格部品等を得ることができる。
 以下、本発明の作用および効果について、実施例を用いて説明する。なお、本発明は以下の実施例に限定されない。
 本実施例では、供試材として表1に示す成分組成の鋼板を用いた。
 鋼板の板厚は、1.2mm、1.6mmおよび2.0mmのいずれかであり、板幅は50mmである。これらの鋼板を用いて、図8に示すように、L字の断面形状に曲げ加工を施した。L字鋼板8は、長辺8aと短辺8bを有する。なお、長辺8aが、上記した図1に示したレーザ溶接継手1の鋼板2の縦壁部2aに相当し、短辺8bがフランジ部2bに相当する。
 そして、同じ鋼種および同じ板厚のL字の鋼板8を2枚用い、各短辺8b同士を重ね合わせた後、重ね合わせた部分を長手方向に複数箇所断続的にレーザ溶接を行って溶接ビード(溶接部4)を形成し、L字試験片(以下、試験片と称する)を作製した。ここでは、試験片サイズは、長辺8a(横壁長さ):120mm、短辺8b(試験片幅):50mm、重ね合わせた部分(フランジ幅):30mm、上下の鋼板8間の板隙は0.2mmとした。
 レーザ溶接により形成する溶接部4の条件を、表2-1、表2-2および表2-3に示す。
溶接位置座標は、試験片の2つの鋼板8を重ね合わせた部分の接触位置の端部を0とし、試験片の重ね合わせた部分の外端側を(-)、試験片における縦壁側を(+)とした座標系で表す。この時の溶接位置:X、溶融部4の全長:L、溶接部4の終端(溶接終端部4b)の円弧もしくは円形の半径:R、溶接部4の終端(溶接終端部4b)の円弧もしくは円形の角度:θとし、それぞれの値を種々変えて試験を行った。
 レーザ溶接にはファイバーレーザを用いた。重ねレーザ溶接は、レーザ出力4.5kW、焦点位置のビーム直径を0.6mmφの一定とし、溶接速度、加工点距離を調節し、溶接ビードの溶け込みを調整した。なお、溶接は大気中で行った。レーザ溶接の焦点位置は、短辺8bの鋼板表面とした。
 なお、引張試験はJIS Z3136に基づき、10mm/minの速度で行った。割れ発生の判定は、目視および浸透探傷試験により判定した。
 また、はく離強度は、L字に曲げた鋼板8同士を図8のように重ね合わせてレーザ溶接を行い、両側から引張荷重を負荷するL字引張試験で測定した。なお、引張方法はJIS Z3136に基づいて行った。はく離強度が1.2kN以上の場合に、高接合強度を有するものとして、合格とした。
 得られた、溶接割れおよびはく離強度の判定結果を表2-1、表2-2および表2-3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表2-1、表2-2および表2-3に示すように、本発明例の試験片は、はく離強度が1.2kN以上であり、溶接割れは発生しなかった。
 一方、比較例の試験片のうち、No.2、No.9、No.16、No.23、No.30、No.37、は、総板隙Gが総板厚Tの15%より大きいため、溶接割れが発生した。
 また、No.4、No.11、No.18、No.25、No.32、No.39は、溶接部4の全長Lが短いため、溶接割れが発生した。
 また、No.5、No.12、No.19、No.26、No.33、No.40、No.67~78は、溶接部4の終端(溶接終端部4b)の半径Rが大きいため、溶接割れが発生した。
 また、No.6、No.13、No.20、No.27、No.34、No.41は、溶接部4の終端(溶接終端部4b)の半径Rが小さいため、溶接割れが発生した。
 また、No.7、No.14、No.21、No.28、No.35、No.42は、溶接部4の終端(溶接終端部4b)の角度θが小さいため、溶接割れが発生した。
 以上のとおり、上記した本発明に従いレーザ溶接を行った本発明例では、良好な重ねレーザ溶接継手が得られた。これに対し、本発明の上記した溶接条件を外れる比較例では、良好な重ねレーザ溶接継手が得られなかったことが分かる。
 1   重ねレーザ溶接継手
 2   鋼板
 3   鋼板
 4   溶接部
 4a  本溶接部
 4b  溶接終端部
 5   溶接部の終端
 6   最終凝固部となる中心部
 7   レーザビーム
 14  溶接部
 15  溶接部の終端
 16  割れ

Claims (8)

  1.  複数の鋼板を重ね合わせてレーザ溶接により接合された溶接部を有する重ねレーザ溶接継手であって、
     前記溶接部は、溶接線形状を直線とする本溶接部と、該本溶接部の一端部に形成された溶接線形状を円弧または円とする溶接終端部とからなるJ字形状であり、
     前記本溶接部の長さL(mm)は、(1)式で表される前記溶接部の全長L(mm)に対して2/3以上4/5以下であり、
     前記溶接終端部の半径R(mm)は(2)式を満たすとともに、前記溶接終端部の角度θ(rad)は(3)式を満たし、
     前記複数の鋼板を重ね合わせた重ね合わせ部における、前記複数の鋼板間の隙間の大きさの合計が、前記複数の鋼板の総板厚に対して0%以上15%以下である、重ねレーザ溶接継手。
    10.0≦L     ・・・(1)
    0.5≦R≦1.5  ・・・(2)
    5/6π≦θ≦2π  ・・・(3)
    ここで、Lは溶接部の全長(単位:mm)、Rは溶接部の溶接終端部の半径(単位:mm)、θは溶接部の溶接終端部の角度(単位:rad)である。
  2.  前記複数の鋼板のうち少なくとも1つの鋼板は、質量%で、
    C:0.07%超え0.25%以下、
    P+S:0.03%未満、
    Mn:1.8%以上3.0%以下、
    Si:1.2%超え1.8%以下
    を含有し、残部Feおよび不可避的不純物からなる成分組成を有する、請求項1に記載の重ねレーザ溶接継手。
  3.  前記成分組成に加えて、さらに、以下のA群およびB群から選択される1つまたは2つを含有する、請求項1または2に記載の重ねレーザ溶接継手。
    A群:質量%で、
    Ti:0.005%以上0.01%以下、および
    Nb:0.005%以上0.050%未満
    のうちから選択される1種または2種
    B群:質量%で、
    Cr:1.0%以下、
    Mo:0.50%以下、および
    B:0.10%以下
    のうちから選択される1種または2種以上
  4.  前記複数の鋼板のうち少なくとも1つの鋼板が、引張強さ980MPa以上の高張力鋼板である、請求項1~3のいずれか1項に記載の重ねレーザ溶接継手。
  5.  前記複数の鋼板のうち少なくとも1つの鋼板は、断面形状が略ハット形状またはL字形状であり、縦壁部および該縦壁部の先端から外側へ延びるフランジ部を有し、
     前記フランジ部と他の鋼板とが重ね合わされた接合面の前記縦壁部側の端部の座標を0とし、前記縦壁部側を(+)とし、前記縦壁部側とは反対の、前記フランジ部の外端側を(-)とした座標系で表したときに、前記溶接部が式(4)で表される溶接位置X(mm)にある、請求項1~4のいずれか1項に記載の重ねレーザ溶接継手。
    -2t≧X≧-4t ・・・(4)
    ここで、tは前記複数の鋼板のうち最も板厚の厚い鋼板の板厚(単位:mm)である。
  6.  請求項1~5のいずれか1項に記載の重ねレーザ溶接継手の製造方法であって、
     複数の鋼板を上下方向に重ね合わせ、
     重ね合わせた前記複数の鋼板のうち、上側の鋼板表面にレーザを照射して溶接部を形成する、重ねレーザ溶接継手の製造方法。
  7.  前記本溶接部の長さL(mm)が、(1)式で表される前記溶接部の全長L(mm)に対して2/3以上4/5以下、かつ前記溶接終端部の半径R(mm)が(2)式を満たすとともに該溶接終端部の角度θ(rad)が(3)式を満たすJ字形状となるように、
    レーザ出力、焦点位置、溶接速度、およびビーム径のうち少なくとも1つを制御する、請求項6に記載の重ねレーザ溶接継手の製造方法。
  8.  請求項1~5のいずれか1項に記載の重ねレーザ溶接継手を有する自動車用骨格部品。
PCT/JP2019/019838 2018-05-21 2019-05-20 重ねレーザ溶接継手、重ねレーザ溶接継手の製造方法および自動車用骨格部品 WO2019225528A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MX2020012334A MX2020012334A (es) 2018-05-21 2019-05-20 Junta superpuesta soldada con laser, metodo para producir la junta superpuesta soldada con laser y componente de bastidor de automovil.
EP19808127.5A EP3797921A4 (en) 2018-05-21 2019-05-20 LASER WELDED OVERLAP JOINT, PROCESS FOR PRODUCING A LASER WELDED OVERLAP JOINT AND STRUCTURAL COMPONENT FOR VEHICLES
CN201980032297.0A CN112118932B (zh) 2018-05-21 2019-05-20 搭接激光焊接接头、搭接激光焊接接头的制造方法和汽车用骨架部件
KR1020207033332A KR102407608B1 (ko) 2018-05-21 2019-05-20 겹침 레이저 용접 조인트, 겹침 레이저 용접 조인트의 제조 방법 및 자동차용 골격 부품
JP2019543130A JP6852797B2 (ja) 2018-05-21 2019-05-20 重ねレーザ溶接継手、重ねレーザ溶接継手の製造方法および自動車用骨格部品
US17/055,734 US11638969B2 (en) 2018-05-21 2019-05-20 Laser-welded lap joint, method for producing laser-welded lap joint, and automobile frame component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-096824 2018-05-21
JP2018096824 2018-05-21

Publications (1)

Publication Number Publication Date
WO2019225528A1 true WO2019225528A1 (ja) 2019-11-28

Family

ID=68616140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019838 WO2019225528A1 (ja) 2018-05-21 2019-05-20 重ねレーザ溶接継手、重ねレーザ溶接継手の製造方法および自動車用骨格部品

Country Status (7)

Country Link
US (1) US11638969B2 (ja)
EP (1) EP3797921A4 (ja)
JP (1) JP6852797B2 (ja)
KR (1) KR102407608B1 (ja)
CN (1) CN112118932B (ja)
MX (1) MX2020012334A (ja)
WO (1) WO2019225528A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008296236A (ja) 2007-05-30 2008-12-11 Toyota Motor Corp 重ねレーザ溶接方法
JP2009154194A (ja) 2007-12-27 2009-07-16 Kinki Sharyo Co Ltd 鉄道車両構体の重ねレーザ溶接方法、重ねレーザ溶接継手、鉄道車両の構体構造
JP2012240086A (ja) 2011-05-19 2012-12-10 Nippon Steel Corp 継手強度に優れたレーザ溶接継手及びその製造方法
JP2012240083A (ja) 2011-05-19 2012-12-10 Nippon Steel Corp 耐遅れ破壊特性に優れた鋼板溶接部の製造方法およびその溶接部を有する鋼構造物
JP2017030647A (ja) * 2015-08-05 2017-02-09 Jfeスチール株式会社 自動車用骨格部品および自動車用骨格部品の製造方法
JP2017113781A (ja) 2015-12-24 2017-06-29 Jfeスチール株式会社 重ねレーザスポット溶接継手および該溶接継手の製造方法
WO2017159425A1 (ja) * 2016-03-15 2017-09-21 Jfeスチール株式会社 重ねレーザ溶接継手、該溶接継手の製造方法および自動車用骨格部品

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5992189A (ja) * 1982-11-18 1984-05-28 Toshiba Corp 鋼板枠の製造方法
DE19627913B4 (de) * 1995-08-05 2015-08-06 Volkswagen Ag Strahlgeschweißtes Karosseriebauteil zur Aufnahme einer Crash-Belastung
JP2003145285A (ja) * 2001-11-12 2003-05-20 Futaba Industrial Co Ltd レーザー溶接方法
US7300534B2 (en) 2002-01-15 2007-11-27 Boston Scientific Scimed, Inc. Bonds between metals and polymers for medical devices
JP2004098122A (ja) * 2002-09-09 2004-04-02 Futaba Industrial Co Ltd レーザー溶接方法
JP2006296236A (ja) 2005-04-18 2006-11-02 Cosmo Libra:Kk 粉末食品及びその製造方法
DE102009016220A1 (de) * 2009-04-03 2010-10-07 GM Global Technology Operations, Inc., Detroit Verfahren zur Herstellung eines Karosseriebauteils eines Fahrzeugs und Kraosseriebauteil eines Fahrzeugs
CN101870031B (zh) * 2010-07-12 2014-11-19 中国化学工程第四建设公司 炉管与异种钢焊接施工方法
CN103111724B (zh) * 2012-12-07 2015-02-25 无锡透平叶片有限公司 一种汽轮机叶片激光熔覆区域裂纹补焊方法
EP2957379B1 (en) * 2013-02-15 2019-04-10 Nissan Motor Co., Ltd Laser welding method and laser welding device
JP6094395B2 (ja) * 2013-06-17 2017-03-15 株式会社デンソー 回転電機の回転子
CN203385696U (zh) * 2013-08-15 2014-01-08 广东中泽重工有限公司 叠焊焊缝检测系统
CN103934544A (zh) * 2014-04-18 2014-07-23 沈阳大学 一种防止堆焊密封面产生裂纹的方法
KR102412797B1 (ko) * 2016-09-29 2022-06-23 제이에프이 스틸 가부시키가이샤 레이저 용접 이음매 및 자동차용 골격 부품

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008296236A (ja) 2007-05-30 2008-12-11 Toyota Motor Corp 重ねレーザ溶接方法
JP2009154194A (ja) 2007-12-27 2009-07-16 Kinki Sharyo Co Ltd 鉄道車両構体の重ねレーザ溶接方法、重ねレーザ溶接継手、鉄道車両の構体構造
JP2012240086A (ja) 2011-05-19 2012-12-10 Nippon Steel Corp 継手強度に優れたレーザ溶接継手及びその製造方法
JP2012240083A (ja) 2011-05-19 2012-12-10 Nippon Steel Corp 耐遅れ破壊特性に優れた鋼板溶接部の製造方法およびその溶接部を有する鋼構造物
JP2017030647A (ja) * 2015-08-05 2017-02-09 Jfeスチール株式会社 自動車用骨格部品および自動車用骨格部品の製造方法
JP2017113781A (ja) 2015-12-24 2017-06-29 Jfeスチール株式会社 重ねレーザスポット溶接継手および該溶接継手の製造方法
WO2017159425A1 (ja) * 2016-03-15 2017-09-21 Jfeスチール株式会社 重ねレーザ溶接継手、該溶接継手の製造方法および自動車用骨格部品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3797921A4

Also Published As

Publication number Publication date
JPWO2019225528A1 (ja) 2020-05-28
CN112118932A (zh) 2020-12-22
MX2020012334A (es) 2021-01-29
US20210205924A1 (en) 2021-07-08
KR102407608B1 (ko) 2022-06-10
EP3797921A4 (en) 2021-11-10
EP3797921A1 (en) 2021-03-31
CN112118932B (zh) 2022-08-30
KR20200140910A (ko) 2020-12-16
US11638969B2 (en) 2023-05-02
JP6852797B2 (ja) 2021-03-31

Similar Documents

Publication Publication Date Title
JP5967266B2 (ja) 重ね合せ部の溶接方法、重ね溶接部材の製造方法、重ね溶接部材及び自動車用部品
JP6443319B2 (ja) 重ねレーザスポット溶接継手および該溶接継手の製造方法
WO2017159425A1 (ja) 重ねレーザ溶接継手、該溶接継手の製造方法および自動車用骨格部品
JP6662396B2 (ja) レーザ溶接継手の製造方法
JP5693279B2 (ja) 高張力鋼板のレーザ・アークハイブリッド溶接方法及びこれにより得られる高張力鋼板溶接金属
JP6635235B1 (ja) 重ねレーザ溶接継手、重ねレーザ溶接継手の製造方法および自動車用骨格部品
JP6299702B2 (ja) 自動車用骨格部品および自動車用骨格部品の製造方法
JP2016032834A (ja) 重ね溶接部材、重ね溶接部材の重ね抵抗シーム溶接方法及び重ね溶接部を備える自動車用重ね溶接部材
JP7211491B2 (ja) 重ねレーザスポット溶接継手とその製造方法および自動車車体用構造部材
JP6859105B2 (ja) 重ねレーザスポット溶接継手および該溶接継手の製造方法
WO2019225528A1 (ja) 重ねレーザ溶接継手、重ねレーザ溶接継手の製造方法および自動車用骨格部品
CN113573838B (zh) 搭接激光焊接接头及其制造方法以及汽车车身用结构部件
JP7151762B2 (ja) スポット溶接継手、スポット溶接継手を備える自動車骨格部品、及びスポット溶接継手の製造方法
JPWO2017159425A1 (ja) 重ねレーザ溶接継手、該溶接継手の製造方法および自動車用骨格部品

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019543130

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19808127

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207033332

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019808127

Country of ref document: EP

Effective date: 20201221