US11638969B2 - Laser-welded lap joint, method for producing laser-welded lap joint, and automobile frame component - Google Patents
Laser-welded lap joint, method for producing laser-welded lap joint, and automobile frame component Download PDFInfo
- Publication number
- US11638969B2 US11638969B2 US17/055,734 US201917055734A US11638969B2 US 11638969 B2 US11638969 B2 US 11638969B2 US 201917055734 A US201917055734 A US 201917055734A US 11638969 B2 US11638969 B2 US 11638969B2
- Authority
- US
- United States
- Prior art keywords
- weld
- laser
- steel sheets
- zone
- vertical wall
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/20—Bonding
- B23K26/21—Bonding by welding
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/062—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
- B23K26/0626—Energy control of the laser beam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/20—Bonding
- B23K26/21—Bonding by welding
- B23K26/24—Seam welding
- B23K26/244—Overlap seam welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/20—Bonding
- B23K26/21—Bonding by welding
- B23K26/24—Seam welding
- B23K26/28—Seam welding of curved planar seams
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/20—Bonding
- B23K26/32—Bonding taking account of the properties of the material involved
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/006—Vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/18—Sheet panels
- B23K2101/185—Tailored blanks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/02—Iron or ferrous alloys
- B23K2103/04—Steel or steel alloys
Definitions
- the present invention relates to a laser-welded lap joint, to a method for producing the laser-welded lap joint, and an automobile frame component including the laser-welded lap joint.
- Resistance spot welding has conventionally been used for welding of automobile structural members having flange portions.
- resistance spot welding has the following problems: the welding is time consuming; a pitch cannot be reduced because the amount of heat generated decreases due to shunt current; and there are spatial limitations due to a gun of the welder.
- laser lap welding is a welding method in which a surface of a plurality of lapped steel sheets is irradiated with a laser beam to join the steel sheets together.
- a surface of a plurality of lapped steel sheets is irradiated linearly with a laser beam.
- the portion of the steel sheets irradiated with the laser beam is fused and solidified, and a fusion zone (weld zone) is thereby formed.
- a fusion zone welding zone
- the lapped steel sheets are joined together, and a laser-welded lap joint can be obtained.
- one problem with the laser lap welding is that cracking is likely to occur at the terminal end side of the linear fusion zone. Once a crack occurs, the crack propagates over the entire length of the fusion zone.
- Patent Literature 1 discloses a technique for preventing weld cracking by disposing a lower steel sheet to be lap-welded so as to protrude and setting a welding start position to be spaced apart from an edge of a flange.
- Patent Literature 2 discloses a technique for preventing weld cracking by irradiating an edge portion of lapped surfaces with a laser beam obliquely.
- Patent Literature 3 and Patent Literature 4 disclose techniques for preventing weld cracking by reheating or welding an already welded portion or a peripheral portion of the welded portion.
- Patent Literature 5 discloses a technique for preventing the occurrence of weld cracking by welding lapped surfaces elliptically.
- Patent Literature 1 since the lower steel sheet to be lap-welded is disposed so as to protrude, the protruding portion is redundant, and the design of components is disadvantageously restricted.
- Patent Literature 2 when a gap is present between lapped sheets, a fusion zone is not well formed on the lapped surfaces, and this results in incomplete penetration. Therefore, disadvantageously, it is difficult to obtain sufficient strength.
- the present inventors have conducted studies to solve the foregoing problems and obtained the following findings.
- the present inventors have found that, to prevent the occurrence of cracking on the terminal end side of the fusion zone, controlling the full length of the fusion zone and controlling the shape of the weld line are effective. Specifically, the inventors have found that, when the weld line has a J shape satisfying formulas (1) to (3) below, the occurrence of a crack on the terminal end side of the fusion zone and the propagation of the crack can be prevented.
- the fusion zone and a heat-affected zone are collectively referred to as a weld zone. 10 mm ⁇ L (1) 0.5 ⁇ R ⁇ 1.5 (2) 5 ⁇ 6 ⁇ 2 ⁇ (3)
- L is the full length (unit: mm) of the weld zone
- R is the radius (unit: mm) of a weld terminal end zone in the weld zone
- ⁇ is the angle (unit: rad) of the weld terminal end zone in the weld zone.
- the inventors have found that, by controlling at least one of the total thickness of the plurality of lapped steel sheets and the total size of gaps between the plurality of lapped steel sheets, stress concentration on the fusion zone on the lapped surfaces can be reduced and the peeling strength can be further improved.
- a laser-welded lap joint including a weld zone formed by joining a plurality of steel sheets lapped one over another together by laser welding, wherein the weld zone has a J shape and includes a main weld zone having a linear weld line shape and a weld terminal end zone formed at one end of the main weld zone and having an arcuate or circular weld line shape, wherein the length L 1 (mm) of the main weld zone is 2 ⁇ 3 or more and 4 ⁇ 5 or less of the full length L (mm) of the weld zone that is represented by formula (1), wherein the radius R (mm) of the weld terminal end zone satisfies formula (2), wherein the angle ⁇ (rad) of the weld terminal end zone satisfies formula (3), and wherein the total size of a gap or gaps between the plurality of steel sheets in a lapped portion including the plurality of steel sheets lapped one over another is 0% or more and 15% or less of the total thickness of the plurality of steel sheets
- group A in mass %, one or two selected from Ti: 0.005% or more and 0.01% or less and Nb: 0.005% or more and less than 0.050%, and
- group B in mass %, one or two or more selected from Cr: 1.0% or less, Mo: 0.50% or less, and B: 0.10% or less.
- the occurrence of cracking in a terminal end portion of the fusion zone and propagation of the cracking can be prevented, and therefore the laser-welded lap joint produced can have good joint strength. Since the laser-welded lap joint according to aspects of the present invention has excellent appearance, the laser-welded lap joint is preferable for structural components of automobiles and allows an automobile frame component to be produced.
- FIG. 1 is a perspective view showing an example of the laser-welded lap joint according to aspects of the present invention.
- FIG. 2 (A) is a schematic illustration showing a weld terminal end portion of a conventional laser-welded lap joint
- FIG. 2 (B) is a schematic illustration showing a weld terminal end portion in the laser-welded lap joint according to aspects of the present invention.
- FIG. 3 is a top view showing the structure of a weld zone (fusion zone) of the laser-welded lap joint according to aspects of the present invention.
- FIG. 4 is a top view showing the structure of the weld zone (fusion zone) of the laser-welded lap joint according to aspects of the present invention.
- FIG. 5 is a cross-sectional view of the laser-welded lap joint taken along line A-A in FIG. 4 .
- FIG. 6 is a perspective view illustrating a welding method for the laser-welded lap joint according to aspects of the present invention.
- FIG. 7 (A) is a top view illustrating the position of the weld zone (fusion zone) in the laser-welded lap joint according to aspects of the present invention
- FIG. 7 (B) is a cross-sectional view taken along line B-B in FIG. 7 (A) .
- FIG. 8 is an illustration showing an example of a laser-welded lap joint in an Example of the present invention.
- FIG. 9 (A) is an illustration showing the total size of gaps between steel sheets when two steel sheets are lapped
- FIG. 9 (B) is an illustration showing the total size of gaps between steel sheets when three steel sheets are lapped.
- the laser-welded lap joint includes a weld zone formed by joining a plurality of lapped steel sheets together by laser welding.
- the weld zone includes a main weld zone having a linear weld line shape and a weld terminal end zone formed at one end of the main weld zone and having an arcuate weld line shape.
- the weld zone is formed into a J shape.
- the length L 1 (mm) of the main weld zone is 2 ⁇ 3 or more and 4 ⁇ 5 or less of the full length L (mm) of the weld zone represented by formula (1) below, and the radius R (mm) of the weld terminal end zone satisfies formula (2) below.
- the angle ⁇ (rad) of the weld terminal end zone satisfies formula (3) below. 10.0 ⁇ L (1) 0.5 ⁇ R ⁇ 1.5 (2) 5 ⁇ 6 ⁇ 2 ⁇ (3)
- L is the full length (unit: mm) of the weld zone
- R is the radius (unit: mm) of the weld terminal end zone in the weld zone
- ⁇ is the angle (unit: rad) of the weld terminal end zone in the weld zone.
- FIG. 1 is a perspective view showing an example of the laser-welded lap joint 1 according to aspects of the present invention.
- FIG. 2 (A) is a schematic illustration showing a weld terminal end portion of a conventional laser-welded lap joint
- FIG. 2 (B) is a schematic illustration showing a weld terminal end portion of the laser-welded lap joint according to aspects of the present invention.
- FIGS. 3 and 4 are top views showing the structure of a weld zone 4 in the laser-welded lap joint according to aspects of the present invention.
- FIG. 5 is a cross-sectional view taken along line A-A shown in FIG. 4 .
- FIG. 1 the laser-welded lap joint 1 according to aspects of the present invention will be described.
- the laser-welded lap joint 1 at least two steel sheets are lapped one over another.
- two steel sheets i.e., a steel sheet 2 having a substantially hat-shaped cross-sectional shape and including a vertical wall portion 2 a and a flange portion 2 b extending outward from an end of the vertical wall portion 2 a and a flat panel-shaped steel sheet 3 .
- the steel sheet 2 and the steel sheet 3 are lapped so as to face each other, and a region of the flange portion 2 b of the steel sheet 2 serves as a joint surface.
- the two lapped steel sheets 2 and 3 are joined in the flange portion 2 b by laser lap-welding.
- a fusion zone that penetrates at least one of the steel sheets 2 and 3 to join the steel sheets 2 and 3 together is formed.
- the fusion zone and a heat-affected zone form a weld zone 4 .
- the laser lap welding is performed by applying a laser beam 7 intermittently along the vertical wall portion 2 a while the laser beam 7 is moved in a longitudinal direction.
- a plurality of weld zones 4 having a substantially J-shaped surface shape are formed on the joint surface of the steel sheets 2 and 3 .
- the two steel sheets 2 and 3 are lapped to form the laser-welded lap joint 1 according to aspects of the present invention.
- three or more steel sheets may be lapped.
- FIG. 2 (A) shows a terminal end portion 15 of a weld zone 14 in a conventional laser-welded lap joint
- FIG. 2 (B) shows a terminal end portion 5 of a weld zone 4 in the laser-welded lap joint according to aspects of the present invention.
- the welding state is unstable in the initial stage of the welding.
- the welding direction is changed so as to form, for example, an arcuate shape, a larger amount of spatters are generated. Therefore, the terminal end portion 15 of the weld zone 14 is generally formed so as to have a linear shape.
- FIG. 2 (A) it has been found that, when the terminal end portion 15 of the weld zone 14 in the laser-welded lap joint is formed into a linear shape as shown in FIG. 2 (A) , tensile stress is concentrated on the terminal end portion 15 of the weld zone.
- tensile stress directed from the outer circumference of the fusion zone 14 toward the outside is concentrated on a central portion, which is a final solidification zone, of the terminal end portion 15 .
- solidification cracking 16 is likely to occur.
- weld cracking may result in, and weld defects may be generated in the laser-welded lap joint.
- the tensile stress can be dispersed in the terminal end portion 5 of the weld zone.
- the tensile stress directed from the outer circumference of the fusion zone 4 toward the outside is not concentrated on one point in a central portion 6 of the final solidification zone in the terminal end portion 5 but can be dispersed. In this case, the occurrence of solidification cracking is prevented, and the occurrence of weld defects in the laser-welded lap joint can be prevented.
- the dimensions of the surface of the weld zone 4 formed into the substantially J shape be adjusted within the prescribed ranges.
- the weld zone 4 includes a main weld zone 4 a having a linear weld line shape and a weld terminal end zone 4 b formed continuously with one end of the main weld zone 4 a and having an arcuate or circular weld line shape extending to the terminal end of the weld zone.
- the length L 1 (mm) of the main weld zone 4 a is 2 ⁇ 3 or more and 4 ⁇ 5 or less of the full length L (mm) of the weld zone 4 that is represented by formula (1) above.
- the radius R (mm) of the weld terminal end zone 4 b satisfies formula (2) above, and the angle ⁇ (rad) of the weld terminal end zone 4 b satisfies formula (3) above.
- the radius R and the angle ⁇ are measured on a center line of the weld zone 4 .
- the length L 1 of the main weld zone 4 a is measured on a center line Z of the main weld zone 4 a.
- the full length L of the weld zone 4 is 10.0 mm or more (formula (1) above).
- the full length L of the weld zone 4 is 15.0 mm or more.
- the upper limit of the full length L of the weld zone 4 is not particularly specified.
- the full length L of the weld zone 4 is preferably 40.0 mm or less and more preferably 30.0 mm or less. As shown in FIG. 3 , the full length L of the weld zone 4 is the sum of the length L 1 of the main weld zone 4 a and the length of the center line of the weld terminal end zone 4 b.
- the length L 1 of the main weld zone 4 a is shorter than “L ⁇ 2 ⁇ 3” (mm), the linear portion formed is insufficient. This is unsuitable because the short linear portion receives a load and sufficient peeling strength is not obtained. If the length L 1 of the main weld zone 4 a is longer than “L ⁇ 4 ⁇ 5” (mm), the curved portion formed is not sufficient. This in unsuitable because stress concentration occurs and sufficient peeling strength is not obtained. Therefore, the length L 1 of the main weld zone 4 a is L ⁇ 2 ⁇ 3 ⁇ L 1 ⁇ L ⁇ 4 ⁇ 5.
- the length L 1 of the main weld zone 4 a is preferably 15.0 mm or more and is preferably 40.0 mm or less.
- the radius R of the weld terminal end zone 4 b formed into an arcuate or circular shape is less than 0.5 mm, the ratio of a crater portion to the terminal end portion 5 of the weld zone 4 is large, and the occurrence of weld cracking cannot be prevented. If the radius R of the weld terminal end zone 4 b is larger than 1.5 mm, the above-described effect of dispersing tensile stress cannot be obtained sufficiently, and the occurrence of weld cracking cannot be prevented. Therefore, the radius R of the weld terminal end zone 4 b is 0.5 mm R 1.5 mm (formula (2) above). The radius R of the weld terminal end zone 4 b is preferably 0.7 mm or more and is preferably 1.3 mm or less.
- FIG. 5 is a cross-sectional view taken along line A-A shown in FIG. 4 .
- a terminal end portion of the weld zone 4 has a concave shape and is generally referred to as a crater.
- the radius R of the weld terminal end zone 4 b is less than 0.5 mm, the depth d of the crater portion is large, and weld cracking is likely to occur.
- the angle ⁇ of the weld terminal end zone 4 b formed into an arcuate or circular shape is smaller than 5 ⁇ 6 ⁇ rad, the above-described effect of dispersing tensile stress cannot be obtained sufficiently, and the occurrence of weld cracking cannot be prevented. If the angle ⁇ of the weld terminal end zone 4 b is larger than 2 ⁇ rad, the occurrence of weld cracking can be prevented. However, new problems such as an increase in welding time and an increase in the size of the heat affected zone occur. Therefore, the angle ⁇ of the weld terminal end zone 4 b is 5 ⁇ 6 ⁇ rad ⁇ 2 ⁇ rad (formula (3) above). The angle ⁇ of the weld terminal end zone 4 b is preferably ⁇ rad ⁇ and is preferably ⁇ 3/2 ⁇ rad or less.
- the weld zone 4 in accordance with aspects of the present invention is formed such that the main weld zone 4 a and the weld terminal end zone 4 b fall within the above-described ranges, so that the tensile stress (the force in the direction of the arrow Fb) generated in the central portion of the final solidification zone at the terminal end of the weld zone can be effectively dispersed.
- the occurrence of weld cracking in the terminal end portion of the fusion zone can thereby be prevented. Therefore, although the minimum value of the full length L of the fusion zone 4 is short, i.e., 10.0 mm, as shown in FIG. 3 , the occurrence of weld defects in the terminal end portion of the weld zone can be prevented.
- the total size of gaps between the steel sheets (in the example shown in FIG. 5 , the gap between the steel sheets 2 and 3 ) in the lapped portion including the plurality of lapped steel sheets is 0% or more and 15% or less of the total thickness (mm) of the plurality of steel sheet.
- FIG. 9 the total size G of gaps between the steel sheets in the lapped portion including the plurality of lapped steel sheets will be described.
- FIG. 9 (A) is a cross-sectional view of a laser-welded lap joint 1 including two lapped steel sheets 2 and 3
- FIG. 9 (B) is a cross-sectional view of a laser-welded lap joint 1 including three lapped steel sheets 2 , 3 1 , and 3 2 .
- each laser-welded lap joint 1 includes 2 or 3 lapped steel sheets. However, 4 or more steel pipes may be lapped.
- the ratio of the total size (total sheet gap) G (mm) of the gaps between the steel sheets to the total thickness T (mm) of the plurality of steel sheets is 0% or more and 15% or less, the concentration of stress on the fusion zone on the lapped surfaces can be reduced, and therefore the peeling strength can be improved while the occurrence of weld cracking is prevented.
- the ratio of the total sheet gap exceeds 15%, weld cracking occurs, and the strength is lower than that when no gaps are present.
- the ratio of the total size (mm) of gaps between the steel sheets to the total thickness (mm) of the plurality of steel sheets is preferably 5% or more and more preferably 10% or less.
- the laser-welded lap joint 1 according to aspects of the present invention is configured as described above, and the target characteristics according to aspects of the invention can thereby be obtained.
- the following optional structural features may be added in addition to the above described structural features.
- the chemical composition may contain, in mass %, for example, C: more than 0.07% and 0.25% or less, P+S: less than 0.03%, Mn: 1.8% or more and 3.0% or less, and Si: more than 1.2% and 1.8% or less, with the balance being Fe and unavoidable impurities.
- % in the chemical composition means % by mass.
- the content of C exceeds 0.07%, the effect of precipitation strengthening can be obtained.
- the content of C is 0.25% or less, coarse carbide precipitates may not be formed, and desired high strength and desired workability can be obtained. Therefore, the content of C is preferably more than 0.07% and 0.25% or less. More preferably, the content of C is 0.10% or more and 0.20% or less.
- the total (P+S) of the content of P and the content of S is preferably less than 0.03%.
- the content of Mn is 1.8% or more, sufficient hardenability can be obtained, so that coarse carbide precipitates are unlikely to be formed.
- the content of Mn is 3.0% or less, susceptibility to grain boundary embrittlement decreases, and toughness and resistance to low-temperature cracking are unlikely to deteriorate. Therefore, the content of Mn is preferably 1.8% or more and 3.0% or less.
- the content of Mn is more preferably 2.5% or less.
- the content of Si is more than 1.2%, the effect of increasing the strength of the steel by solid solution strengthening can be obtained sufficiently.
- the content of Si is 1.8% or less, the heat-affected zone is less likely to be excessively hardened, and the toughness of the heat-affected zone and its resistance to low-temperature cracking are unlikely to deteriorate. Therefore, the content of Si is preferably more than 1.2% and 1.8% or less. More preferably, the content of Si is 1.5% or less.
- the balance of the chemical composition is Fe and unavoidable impurities.
- the unavoidable impurities include Al: 0.015 to 0.050% and N: 0.002 to 0.005%.
- one or two selected from the following group A and group B may be optionally contained in addition to the above-described chemical composition.
- Ti and Nb precipitate as carbides or nitrides and have the effect of preventing austenite from coarsening during annealing. Therefore, when Ti and/or Nb is contained, it is preferable to contain at least one of them. When Ti and/or Nb is contained in order to obtain the above effect, Ti is contained in an amount of 0.005% or more, and/or Nb is contained in an amount of 0.005% or more. Even though excessively large amounts of these elements are contained, the efficacy of the above effect is saturated, and this may rather be uneconomical. Moreover, the recrystallization temperature during annealing increases, and the metallographic structure after annealing may become nonuniform, so that stretch flangeability may deteriorate.
- the amount of precipitated carbides or nitrides may increase. In this case, an increase in yield ratio may occur, and deterioration in shape fixability may also occur. Therefore, when Ti and/or Nb is contained, the content of Ti is 0.01% or less, and the content of Nb is less than 0.050%. The content of Ti is preferably less than 0.0080%. The content of Nb is more preferably less than 0.040%.
- Cr, Mo, and B are elements having the effect of improving the hardenability of the steel. Therefore, at least one of these elements may be contained. However, even though excessively large amounts of these elements are contained, the above effect is saturated, and this may rather be uneconomical. Therefore, when Cr, Mo, and B are contained, the content of Cr is 1.0% or less, the content of Mo is 0.50% or less, and the content of B is 0.10% or less.
- the content of Cr is preferably 0.01% or more.
- the content of Mo is preferably 0.004% or more.
- the content of B is preferably 0.0001% or more.
- the content of Cr is preferably 0.50% or less.
- the content of Mo is preferably 0.10% or less.
- the content of B is preferably 0.0030% or less.
- At least one steel sheet of the plurality of steel sheets used for the laser-welded lap joint 1 may be a high-tensile steel sheet having a tensile strength TS of 980 MPa or more. Even when at least one steel sheet is the above high-tensile steel sheet, the laser-welded joint 1 can have high joint strength, and the occurrence of weld defects can be prevented.
- at least one steel sheet of the plurality of steel sheets has the above-described chemical composition and has a tensile strength TS of 980 MPa or more.
- the plurality of steel sheets may be of the same type and may have the same shape, but different types of steel sheets or steel sheets with different shapes may be used.
- the thicknesses t′ of the plurality of steel sheets to be subjected to laser welding are preferably within the range of, for example, 0.5 mm ⁇ t′ ⁇ 2.5 mm.
- Steel sheets with thicknesses within the above range can be used preferably for automobile exterior body panels and automobile frame components.
- the thicknesses of the plurality of steel sheets may be the same or different.
- the thickness t′2 of the upper steel sheet 2 satisfies 0.6 mm ⁇ t′ ⁇ 1.2 mm and that the thickness t′3 of the lower steel sheet 3 satisfies 1.0 mm ⁇ t′3 ⁇ 2.5 mm.
- the thickness t′2 of the upper steel sheet 2 and the thickness t′3 of the lower steel sheet 3 fall within the ranges of 0.5 mm ⁇ t′2 ⁇ 2.5 mm and 0.5 mm ⁇ t′3 ⁇ 2.5 mm.
- the “weld cracking” in accordance with aspects of the present invention is low-temperature cracking that occurs at the welding terminal end portion of the weld zone 4 and propagates from the welding terminal end point to a welding starting end portion.
- the presence or absence of the weld cracking can be determined by cutting the weld zone 4 after welding and checking the presence or absence of cracking.
- the presence or absence of cracking can be checked by visual inspection. To check the presence of cracking more clearly, it is preferable to observe the cross section, for example, under an optical microscope at a magnification of about 10 ⁇ .
- Weld cracking penetrates the weld zone 4 from the front surface to the back surface.
- FIG. 6 is an illustration showing an example of the method for producing the laser-welded lap joint 1 according to aspects of the present invention.
- FIG. 7 shows an illustration of an example of a preferred position of a weld zone (fusion zone) 4 in the laser-welded lap joint 1 according to aspects of the present invention.
- FIG. 7 (A) is a top view showing a combination of two steel sheets 2 and 3
- FIG. 7 (B) is a cross-sectional view taken along line B-B in FIG. 7 (A) .
- the method for producing the laser-welded lap joint 1 is the method for producing the above-described laser-welded lap joint 1 and includes: lapping the plurality of steel sheets vertically; and then applying a laser beam to the surface of an upper steel sheet of the plurality of lapped steel sheets to thereby form a weld zone 4 .
- one-side welding is performed on the plurality of lapped steel sheets.
- space-saving can be achieved.
- laser lap welding is performed from the side on which a thicker steel sheet among the plurality of lapped steel sheets is disposed. In this manner, the occurrence of burn through can be prevented.
- laser lap welding may be performed from any side.
- the laser-welded lap joint 1 can be obtained by laser lap welding. Specifically, the steel sheets 2 and 3 are lapped, and the laser beam 7 is applied to the surface of the outermost steel sheet 2 so as to form the weld zone 4 having a linear portion and a semicircular portion in the steel sheets 2 and 3 .
- the laser beam 7 is continuously applied while scanned so as to form the linear portion and the curve portion.
- the weld zone 4 formed has the liner portion and the semi-circular portion that serve as the main weld zone 4 a and the weld terminal end zone 4 b , respectively.
- the laser beam 7 is directed to the semi-circular portion in a continuous manner. This is because excessive stress concentration on the terminal end portion of the weld zone 4 (see FIG. 2 (B) ) can be prevented and the occurrence of cracking can be prevented.
- the J shape is formed by controlling at least one of laser power, a focal position, welding speed, and a beam diameter such that the length L 1 (mm) of the main weld zone 4 a of the weld zone is 2 ⁇ 3 or more and 4 ⁇ 5 or less of the full length L (mm) of the weld zone 4 that is represented by formula (1) above, that the radius R (mm) of the weld terminal end zone 4 b of the weld zone satisfies formula (2), and that the angle ⁇ (rad) of the weld terminal end zone 4 b satisfies formula (3).
- the laser beam examples include a fiber laser and a disk laser. It is preferable that the beam diameter is 0.4 to 1.0 mm, that the laser power is 2.0 to 5.0 kW, that the focal position is located in the range extending from the surface of the outermost steel sheet to a position 30 mm above the surface of the outermost steel sheet, and that the welding speed is 2.0 to 5.0 m/min.
- the beam diameter within the range of 0.5 to 0.8 mm, the laser power within the range of 2.5 to 4.5 kW, the focal position within the range extending from the surface of the uppermost steel sheet to a position 20 mm above the surface of the uppermost steel sheet, and the welding speed within the range of 2.5 to 4.5 m/min.
- the beam diameter within the range of 0.4 to 1.0 mm, the laser power within the range of 2.0 to 4.0 kW, the focal position within the range extending from the surface of the uppermost steel sheet to a position 30 mm above the surface of the uppermost steel sheet, and the welding speed within the range of 2.0 to 4.0 m/min.
- the steel sheets 2 and 3 used may be, for example, steel sheets having the above-described chemical composition and having a tensile strength TS of 980 MPa or more.
- TS tensile strength
- the thicknesses t′2 and t′3 of the steel sheets 2 and 3 0.5 mm ⁇ t′2 ⁇ 2.5 mm holds, and 0.5 mm ⁇ t′3 ⁇ 2.5 mm holds.
- the sheet gap may be 0% or more and 15% or less of the total thickness.
- the steel sheet 2 is referred to also as a flange portion 2 b
- the steel sheet 3 is referred to also as an additional frame component or a panel component.
- the weld zone 4 is formed such that the center line Z of the main weld zone 4 a is substantially parallel to the longitudinal direction of the flange portion 2 b of the steel sheet 2 .
- At least one steel sheet of the plurality of lapped steel sheets may have a substantially hat-shaped or L-shaped cross-sectional shape and may include a vertical wall portion and a flange portion extending outward from an end of the vertical wall portion.
- the weld zone is located at a welding position X (mm) represented by formula (4) below.
- the coordinate of the vertical wall portion 2 a -side end (hereinafter may be referred to as a contact end) of the contact portion between the flange portion 2 b that is the upper steel sheet 2 and the frame component that is the lower steel sheet 3 is set to 0.
- the outer end side of the flange portion 2 b is set to ( ⁇ )
- the vertical wall portion 2 a -side in the substantially hat shape (only part of the shape is shown in FIG. 7 ) is set to (+).
- the thickness of a thickest steel sheet is denoted by t (mm).
- an L-form tension test piece shown in FIG. 8 including two lapped sheets, having a total thickness of 2 to 5 mm, and having a flange length of 50 mm can have a peeling strength of 1.2 kN or more. ⁇ 2 t ⁇ X ⁇ 4 t (4)
- the welding position X is the distance from a coordinate of 0 to the center line Z of the main weld zone 4 a.
- One example of a component for which the laser-welded lap joint 1 according to aspects of the present invention can be preferably used is an automobile frame component.
- the steel sheet 2 that is a frame component having a hat-shaped cross-sectional shape and the steel sheet 3 that is a panel component are used.
- the flange portion 2 b of the frame component (the steel sheet 2 shown in FIG. 1 ) and the panel component (the steel sheet 3 shown in FIG. 1 ) disposed so as to face the flange portion 2 b are welded by the above-described welding method to form the weld zones 4 , and a closed cross section is thereby formed.
- the automobile frame component according to aspects of the present invention is preferably used, for example, for center pillars, roof rails, etc. It is important in terms of collision safety that these components have sufficient peeling strength.
- a center pillar to which the automobile frame component according to aspects of the present invention is applied has sufficient peeling strength as described above.
- a plurality of steel sheets including at least one high-tensile steel sheet are lapped, and a weld zone 4 is formed to weld and join the plurality of steel sheets together.
- a laser-welded lap joint 1 with no weld defects formed on the front and back surfaces of the steel sheets can be obtained.
- the occurrence of cracking in the terminal end portion of the weld zone 4 and propagation of the cracking can be prevented, and therefore the laser-welded lap joint 1 produced can have high joint strength and excellent durability.
- the laser-welded lap joint 1 since the laser-welded lap joint 1 according to aspects of the present invention has good appearance, it can be used preferably for structural members of automobiles. For example, by using high-strength steel sheets as the steel sheets to be joined, an automobile frame component can be obtained. By using such a laser-welded lap joint 1 , an automobile frame component etc. with high joint strength can be obtained.
- steel sheets having chemical compositions shown in Table 1 were used as test specimens.
- each steel sheet is 1.2 mm, 1.6 mm, or 2.0 mm, and its width is 50 mm.
- These steel sheets were used and bent into a shape with an L-shaped cross section as shown in FIG. 8 .
- the L-shaped steel sheets each have a long-side portion 8 a and a short-side portion 8 b .
- the long-side portion 8 a corresponds to the vertical wall portion 2 a of the steel sheet 2 of the laser-welded joint 1 shown in FIG. 1
- the short-side portion 8 b corresponds to the flange portion 2 b.
- test piece Two L-shaped steel sheets of the same type and having the same thickness were used, and the short-side portions 8 b of the steel sheets were lapped. Then laser welding was performed at a plurality of positions of the lapped portion intermittently in a longitudinal direction to form weld beads (weld zones 4 ), and an L-shaped-test piece (hereinafter referred to as a test piece) was thereby produced.
- the size of the long-side portion 8 a (the length of the vertical wall) was 120 mm
- the size of the short-side portion 8 b (the width of the test piece) was 50 mm
- the size of the lapped portion (the width of the flange) was 30 mm
- the gap between the upper and lower steel sheets was 0.2 mm.
- the coordinate of the welding position is represented in a coordinate system in which an end of the contact position between the two lapped steel sheets 8 of the test piece is set to 0, in which the outer end side of the lapped portion of the test piece is set to ( ⁇ ), and in which the vertical wall side of the test piece is set to (+).
- the welding position is denoted by X
- the full length of the fusion zone 4 is denoted by L
- the radius of the arcuate or circular shape in the terminal end portion (the weld terminal end zone 4 b ) of the weld zone 4 is denoted by R
- the angle of the arcuate or circular shape in the terminal end portion (the weld terminal end zone 4 b ) of the weld zone 4 is denoted by ⁇ .
- the test was performed on various test pieces with different welding positions X, different full lengths L, different radii R, and different angles ⁇ .
- a fiber laser was used for the laser welding.
- the laser power was 4.5 kW
- the beam diameter at the focal position was set to a constant value of 0.6 mm ⁇ .
- the welding speed and a work distance were controlled to adjust the penetration of the weld bead.
- the welding was performed in air.
- the focal position during laser welding was set to the steel sheet surface of the short-side portion 8 b.
- the tensile test was performed according to JIS 23136 at a speed of 10 mm/min. The occurrence of cracking was determined by visual inspection and a liquid penetrant test.
- the peeling strength was measured by an L-from tension test. Specifically, steel sheets 8 bent into an L shape were lapped as shown in FIG. 8 and laser-welded, and a tensile load was applied from opposite sides. A tensile method according to JIS 23136 was performed. When the peeling strength was 1.2 kN or more, the test piece was regarded as having high joint strength and rated pass.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Plasma & Fusion (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Laser Beam Processing (AREA)
Abstract
Description
- PTL 1: Japanese Unexamined Patent Application Publication No. 2009-154194
- PTL 2: Japanese Unexamined Patent Application Publication No. 2008-296236
- PTL 3: Japanese Unexamined Patent Application Publication No. 2012-240083
- PTL 4: Japanese Unexamined Patent Application Publication No. 2012-240086
- PTL 5: Japanese Unexamined Patent Application Publication No. 2017-113781
10 mm≤L (1)
0.5≤R≤1.5 (2)
⅚π≤θ≤2π (3)
10.0≤L; (1)
0.5≤R≤1.5; (2)
⅚π≤θ≤2π, (3)
where L is the full length (unit: mm) of the weld zone, R is the radius (unit: mm) of the weld terminal end zone in the weld zone, and θ is the angle (unit: rad) of the weld terminal end zone in the weld zone.
−2t≥X≥−4t (4)
where t is the thickness (unit: mm) of a thickest steel sheet of the plurality of steel sheets.
10.0≤L (1)
0.5≤R≤1.5 (2)
⅚π≤θ≤2π (3)
−2t≥X≥−4t (4)
TABLE 1 | |
Steel | Chemical composition (% by mass) |
type | C | Si | Mn | P | S | Nb | Ti | Cr | Mo | B | Al | N |
A | 0.13 | 1.4 | 2.2 | 0.015 | 0.002 | — | — | — | — | — | 0.032 | 0.0045 |
B | 0.12 | 1.4 | 2.0 | 0.015 | 0.002 | 0.044 | 0.005 | — | — | — | 0.031 | 0.0040 |
C | 0.13 | 1.3 | 2.0 | 0.014 | 0.002 | — | — | 0.019 | 0.010 | 0.0001 | 0.028 | 0.0050 |
D | 0.13 | 1.4 | 2.1 | 0.013 | 0.002 | 0.038 | 0.005 | 0.020 | 0.010 | 0.0001 | 0.028 | 0.0033 |
E | 0.13 | 1.4 | 2.2 | 0.012 | 0.001 | — | — | — | — | — | 0.035 | 0.0040 |
F | 0.13 | 1.4 | 2.1 | 0.013 | 0.002 | 0.002 | 0.004 | — | — | — | 0.033 | 0.0040 |
G | 0.13 | 1.3 | 2.2 | 0.013 | 0.001 | — | — | 0.021 | 0.020 | 0.0002 | 0.029 | 0.0040 |
H | 0.12 | 1.4 | 2.1 | 0.014 | 0.002 | 0.040 | 0.005 | 0.023 | 0.020 | 0.0002 | 0.030 | 0.0050 |
TABLE 2-1 | ||||||||
Thickness t | ||||||||
Thickness | Thickness | of thickest | Total | |||||
t′2 of steel | t′3 of steel | steel sheet | Total | sheet | Welding | |||
Test | Steel | TS | sheet 2 | sheet 2 | in component | thickness | gap G | position |
No. | type | (MPa) | (mm) | (mm) | (mm) | T (mm) | (mm) | X (mm) |
1 | A | 980 | 1.2 | 1.2 | 1.2 | 2.4 | 0.2 | −3.6 |
2 | A | 980 | 1.2 | 1.2 | 1.2 | 2.4 | 0.4 | −3.6 |
4 | A | 980 | 1.2 | 1.2 | 1.2 | 2.4 | 0.2 | −3.6 |
5 | A | 980 | 1.2 | 1.2 | 1.2 | 2.4 | 0.2 | −3.6 |
6 | A | 980 | 1.2 | 1.2 | 1.2 | 2.4 | 0.2 | −3.6 |
7 | A | 980 | 1.2 | 1.2 | 1.2 | 2.4 | 0.2 | −3.6 |
8 | E | 1180 | 1.2 | 1.2 | 1.2 | 2.4 | 0.2 | −3.6 |
9 | E | 1180 | 1.2 | 1.2 | 1.2 | 2.4 | 0.4 | −3.6 |
11 | E | 1180 | 1.2 | 1.2 | 1.2 | 2.4 | 0.2 | −3.6 |
12 | E | 1180 | 1.2 | 1.2 | 1.2 | 2.4 | 0.2 | −3.6 |
13 | E | 1180 | 1.2 | 1.2 | 1.2 | 2.4 | 0.2 | −3.6 |
14 | E | 1180 | 1.2 | 1.2 | 1.2 | 2.4 | 0.2 | −3.6 |
15 | B | 980 | 1.6 | 1.6 | 1.6 | 3.2 | 0.3 | −4.8 |
16 | B | 980 | 1.6 | 1.6 | 1.6 | 3.2 | 0.5 | −4.8 |
18 | B | 980 | 1.6 | 1.6 | 1.6 | 3.2 | 0.3 | −4.8 |
19 | B | 980 | 1.6 | 1.6 | 1.6 | 3.2 | 0.3 | −4.8 |
20 | B | 980 | 1.6 | 1.6 | 1.6 | 3.2 | 0.3 | −4.8 |
21 | B | 980 | 1.6 | 1.6 | 1.6 | 3.2 | 0.3 | −4.8 |
22 | F | 1180 | 1.6 | 1.6 | 1.6 | 3.2 | 0.3 | −4.8 |
23 | F | 1180 | 1.6 | 1.6 | 1.6 | 3.2 | 0.5 | −4.8 |
25 | F | 1180 | 1.6 | 1.6 | 1.6 | 3.2 | 0.3 | −4.8 |
26 | F | 1180 | 1.6 | 1.6 | 1.6 | 3.2 | 0.3 | −4.8 |
27 | F | 1180 | 1.6 | 1.6 | 1.6 | 3.2 | 0.3 | −4.8 |
28 | F | 1180 | 1.6 | 1.6 | 1.6 | 3.2 | 0.3 | −4.8 |
29 | C | 980 | 2.0 | 2.0 | 2.0 | 4.0 | 0.4 | −6.0 |
30 | C | 980 | 2.0 | 2.0 | 2.0 | 4.0 | 0.7 | −6.0 |
32 | C | 980 | 2.0 | 2.0 | 2.0 | 4.0 | 0.4 | −6.0 |
33 | C | 980 | 2.0 | 2.0 | 2.0 | 4.0 | 0.4 | −6.0 |
34 | C | 980 | 2.0 | 2.0 | 2.0 | 4.0 | 0.4 | −6.0 |
35 | C | 980 | 2.0 | 2.0 | 2.0 | 4.0 | 0.4 | −6.0 |
Full | Radius R of | Angle θ of | Main weld | |||||
length L | weld | weld | Length L1 | zone/full | ||||
of weld | terminal | terminal | of main | length of | Peeling | |||
Test | zone | end zone | end zone | weld zone | weld zone | Weld | strength | |
No. | (mm) | (mm) | (rad) | (mm) | L1/L | cracking | (kN) | Remarks |
1 | 10.0 | 1.0 | π | 6.9 | 0.69 | No | 1.5 | Inventive Example |
2 | 10.0 | 1.0 | π | 6.9 | 0.69 | Yes | 0.9 | Comparative Example |
4 | 5.0 | 1.0 | π | 1.9 | 0.37 | Yes | 0.5 | Comparative Example |
5 | 10.0 | 2.0 | π | 3.7 | 0.37 | Yes | 0.8 | Comparative Example |
6 | 10.0 | 0.3 | π | 9.1 | 0.91 | Yes | 1.0 | Comparative Example |
7 | 10.0 | 1.0 | 1/2π | 8.4 | 0.84 | Yes | 1.1 | Comparative Example |
8 | 10.0 | 1.0 | π | 6.9 | 0.69 | No | 1.3 | Inventive Example |
9 | 10.0 | 1.0 | π | 6.9 | 0.69 | Yes | 0.8 | Comparative Example |
11 | 5.0 | 1.0 | π | 1.9 | 0.37 | Yes | 0.5 | Comparative Example |
12 | 10.0 | 2.0 | π | 3.7 | 0.37 | Yes | 0.8 | Comparative Example |
13 | 10.0 | 0.3 | π | 9.1 | 0.91 | Yes | 0.8 | Comparative Example |
14 | 10.0 | 1.0 | 1/2π | 8.4 | 0.84 | Yes | 1.0 | Comparative Example |
15 | 10.0 | 1.0 | π | 6.9 | 0.69 | No | 1.5 | Inventive Example |
16 | 10.0 | 1.0 | π | 6.9 | 0.69 | Yes | 1.0 | Comparative Example |
18 | 5.0 | 1.0 | π | 1.9 | 0.37 | Yes | 0.4 | Comparative Example |
19 | 10.0 | 2.0 | π | 3.7 | 0.37 | Yes | 0.7 | Comparative Example |
20 | 10.0 | 0.3 | π | 9.1 | 0.91 | Yes | 0.8 | Comparative Example |
21 | 10.0 | 1.0 | 1/2π | 8.4 | 0.84 | Yes | 0.9 | Comparative Example |
22 | 10.0 | 1.0 | π | 6.9 | 0.69 | No | 1.3 | Inventive Example |
23 | 10.0 | 1.0 | π | 6.9 | 0.69 | Yes | 0.9 | Comparative Example |
25 | 5.0 | 1.0 | π | 1.9 | 0.37 | Yes | 0.4 | Comparative Example |
26 | 10.0 | 2.0 | π | 3.7 | 0.37 | Yes | 0.7 | Comparative Example |
27 | 10.0 | 0.3 | π | 9.1 | 0.91 | Yes | 0.7 | Comparative Example |
28 | 10.0 | 1.0 | 1/2π | 8.4 | 0.84 | Yes | 0.9 | Comparative Example |
29 | 10.0 | 1.0 | π | 6.9 | 0.69 | No | 1.2 | Inventive Example |
30 | 10.0 | 1.0 | π | 6.9 | 0.69 | Yes | 0.6 | Comparative Example |
32 | 5.0 | 1.0 | π | 1.9 | 0.37 | Yes | 0.4 | Comparative Example |
33 | 10.0 | 2.0 | π | 3.7 | 0.37 | Yes | 0.9 | Comparative Example |
34 | 10.0 | 0.3 | π | 9.1 | 0.91 | Yes | 0.8 | Comparative Example |
35 | 10.0 | 1.0 | 1/2π | 8.4 | 0.84 | Yes | 0.9 | Comparative Example |
TABLE 2-2 | ||||||||
Thickness t | ||||||||
of thickest | ||||||||
Thickness | Thickness | steel | Total | |||||
t′2 of steel | t′3 of steel | sheet in | Total | sheet | Welding | |||
Test | Steel | TS | sheet 2 | sheet 2 | component | thickness | gap G | position |
No. | type | (MPa) | (mm) | (mm) | (mm) | T (mm) | (mm) | X (mm) |
36 | G | 1180 | 2.0 | 2.0 | 2.0 | 4.0 | 0.4 | −6.0 |
37 | G | 1180 | 2.0 | 2.0 | 2.0 | 4.0 | 0.7 | −6.0 |
39 | G | 1180 | 2.0 | 2.0 | 2.0 | 4.0 | 0.4 | −6.0 |
40 | G | 1180 | 2.0 | 2.0 | 2.0 | 4.0 | 0.4 | −6.0 |
41 | G | 1180 | 2.0 | 2.0 | 2.0 | 4.0 | 0.4 | −6.0 |
42 | G | 1180 | 2.0 | 2.0 | 2.0 | 4.0 | 0.4 | −6.0 |
43 | A | 980 | 1.2 | 1.2 | 1.2 | 2.4 | 0.2 | −3.6 |
44 | A | 980 | 1.2 | 1.2 | 1.2 | 2.4 | 0.2 | −3.6 |
45 | D | 980 | 1.6 | 1.6 | 1.6 | 3.2 | 0.3 | −4.8 |
46 | D | 980 | 1.6 | 1.6 | 1.6 | 3.2 | 0.3 | −4.8 |
47 | C | 980 | 2.0 | 2.0 | 2.0 | 4.0 | 0.4 | −6.0 |
48 | C | 980 | 2.0 | 2.0 | 2.0 | 4.0 | 0.4 | −6.0 |
49 | E | 1180 | 1.2 | 1.2 | 1.2 | 2.4 | 0.2 | −3.6 |
50 | E | 1180 | 1.2 | 1.2 | 1.2 | 2.4 | 0.2 | −3.6 |
51 | H | 1180 | 1.6 | 1.6 | 1.6 | 3.2 | 0.3 | −4.8 |
52 | H | 1180 | 1.6 | 1.6 | 1.6 | 3.2 | 0.3 | −4.8 |
53 | G | 1180 | 2.0 | 2.0 | 2.0 | 4.0 | 0.4 | −6.0 |
54 | G | 1180 | 2.0 | 2.0 | 2.0 | 4.0 | 0.4 | −6.0 |
55 | A | 980 | 1.2 | 1.2 | 1.2 | 2.4 | 0 | −3.6 |
56 | D | 980 | 1.6 | 1.6 | 1.6 | 3.2 | 0 | −4.8 |
57 | C | 980 | 2.0 | 2.0 | 2.0 | 4.0 | 0 | −6.0 |
58 | E | 1180 | 1.2 | 1.2 | 1.2 | 2.4 | 0 | −3.6 |
59 | H | 1180 | 1.6 | 1.6 | 1.6 | 3.2 | 0 | −4.8 |
60 | G | 1180 | 2.0 | 2.0 | 2.0 | 4.0 | 0 | −6.0 |
61 | A | 980 | 1.2 | 1.2 | 1.2 | 2.4 | 0.2 | −3.6 |
62 | D | 980 | 1.6 | 1.6 | 1.6 | 3.2 | 0.3 | −4.8 |
63 | C | 980 | 2.0 | 2.0 | 2.0 | 4.0 | 0.4 | −6.0 |
64 | E | 1180 | 1.2 | 1.2 | 1.2 | 2.4 | 0.2 | −3.6 |
65 | H | 1180 | 1.6 | 1.6 | 1.6 | 3.2 | 0.3 | −4.8 |
66 | G | 1180 | 2.0 | 2.0 | 2.0 | 4.0 | 0.4 | −6.0 |
67 | A | 980 | 1.2 | 1.2 | 1.2 | 2.4 | 0.2 | −3.6 |
68 | D | 980 | 1.6 | 1.6 | 1.6 | 3.2 | 0.3 | −4.8 |
69 | C | 980 | 2.0 | 2.0 | 2.0 | 4.0 | 0.4 | −6.0 |
70 | E | 1180 | 1.2 | 1.2 | 1.2 | 2.4 | 0.2 | −3.6 |
Full | Radius R of | Angle θ of | Main weld | |||||
length L | weld | weld | Length L1 | zone/full | ||||
of weld | terminal | terminal | of main | length of | Peeling | |||
Test | zone | end zone | end zone | weld zone | weld zone | Weld | strength | |
No. | (mm) | (mm) | (rad) | (mm) | L1/L | cracking | (kN) | Remarks |
36 | 10.0 | 1.0 | π | 6.9 | 0.69 | No | 1.2 | Inventive Example |
37 | 10.0 | 1.0 | π | 6.9 | 0.69 | Yes | 1.0 | Comparative Example |
39 | 5.0 | 1.0 | π | 1.9 | 0.37 | Yes | 0.3 | Comparative Example |
40 | 10.0 | 2.0 | π | 3.7 | 0.37 | Yes | 0.7 | Comparative Example |
41 | 10.0 | 0.3 | π | 9.1 | 0.91 | Yes | 0.7 | Comparative Example |
42 | 10.0 | 1.0 | 1/2π | 8.4 | 0.84 | Yes | 0.8 | Comparative Example |
43 | 15.0 | 1.0 | 6/5π | 11.2 | 0.75 | No | 2.3 | Inventive Example |
44 | 20.0 | 1.0 | 5/3π | 14.8 | 0.74 | No | 2.9 | Inventive Example |
45 | 15.0 | 1.0 | 6/5π | 11.2 | 0.75 | No | 2.1 | Inventive Example |
46 | 20.0 | 1.0 | 5/3π | 14.8 | 0.74 | No | 3.0 | Inventive Example |
47 | 15.0 | 1.0 | 6/5π | 11.2 | 0.75 | No | 2.3 | Inventive Example |
48 | 20.0 | 1.0 | 5/3π | 14.8 | 0.74 | No | 2.8 | Inventive Example |
49 | 15.0 | 1.0 | 6/5π | 11.2 | 0.75 | No | 2.0 | Inventive Example |
50 | 20.0 | 1.0 | 5/3π | 14.8 | 0.74 | No | 2.7 | Inventive Example |
51 | 15.0 | 1.0 | 6/5π | 11.2 | 0.75 | No | 1.9 | Inventive Example |
52 | 20.0 | 1.0 | 5/3π | 14.8 | 0.74 | No | 3.1 | Inventive Example |
53 | 15.0 | 1.0 | 6/5π | 11.2 | 0.75 | No | 2.3 | Inventive Example |
54 | 20.0 | 1.0 | 5/3π | 14.8 | 0.74 | No | 2.9 | Inventive Example |
55 | 10.0 | 1.0 | π | 6.9 | 0.69 | No | 1.4 | Inventive Example |
56 | 10.0 | 1.0 | π | 6.9 | 0.69 | No | 1.4 | Inventive Example |
57 | 10.0 | 1.0 | π | 6.9 | 0.69 | No | 1.3 | Inventive Example |
58 | 10.0 | 1.0 | π | 6.9 | 0.69 | No | 1.2 | Inventive Example |
59 | 10.0 | 1.0 | π | 6.9 | 0.69 | No | 1.5 | Inventive Example |
60 | 10.0 | 1.0 | π | 6.9 | 0.69 | No | 1.2 | Inventive Example |
61 | 40.0 | 1.5 | 11/6π | 31.4 | 0.78 | No | 4.2 | Inventive Example |
62 | 40.0 | 1.5 | 11/6π | 31.4 | 0.78 | No | 4.1 | Inventive Example |
63 | 40.0 | 1.5 | 11/6π | 31.4 | 0.78 | No | 3.9 | Inventive Example |
64 | 40.0 | 1.5 | 11/6π | 31.4 | 0.78 | No | 4.3 | Inventive Example |
65 | 40.0 | 1.5 | 11/6π | 31.4 | 0.78 | No | 3.8 | Inventive Example |
66 | 40.0 | 1.5 | 11/6π | 31.4 | 0.78 | No | 4.5 | Inventive Example |
67 | 30.0 | 2.0 | π | 23.7 | 0.79 | Yes | 2.7 | Comparative Example |
68 | 30.0 | 2.0 | π | 23.7 | 0.79 | Yes | 3.2 | Comparative Example |
69 | 30.0 | 2.0 | π | 23.7 | 0.79 | Yes | 2.6 | Comparative Example |
70 | 30.0 | 2.0 | π | 23.7 | 0.79 | Yes | 3.3 | Comparative Example |
TABLE 2-3 | ||||||||
Thickness t | ||||||||
of thickest | ||||||||
Thickness | Thickness | steel | ||||||
t′2 of steel | t′3 of steel | sheet in | Total | Total | Welding | |||
Test | Steel | TS | sheet 2 | sheet 2 | component | thickness | sheet gap | position |
No. | type | (MPa) | (mm) | (mm) | (mm) | T (mm) | G (mm) | X (mm) |
71 | H | 1180 | 1.6 | 1.6 | 1.6 | 3.2 | 0.3 | −4.8 |
72 | G | 1180 | 2.0 | 2.0 | 2.0 | 4.0 | 0.4 | −6.0 |
73 | A | 980 | 1.2 | 1.2 | 1.2 | 2.4 | 0.2 | −3.6 |
74 | D | 980 | 1.6 | 1.6 | 1.6 | 3.2 | 0.3 | −4.8 |
75 | C | 980 | 2.0 | 2.0 | 2.0 | 4.0 | 0.4 | −6.0 |
76 | E | 1180 | 1.2 | 1.2 | 1.2 | 2.4 | 0.2 | −3.6 |
77 | H | 1180 | 1.6 | 1.6 | 1.6 | 3.2 | 0.3 | −4.8 |
78 | G | 1180 | 2.0 | 2.0 | 2.0 | 4.0 | 0.4 | −6.0 |
79 | A | 980 | 1.2 | 1.2 | 1.2 | 2.4 | 0.2 | −3.6 |
80 | D | 980 | 1.6 | 1.6 | 1.6 | 3.2 | 0.3 | −4.8 |
81 | C | 980 | 2.0 | 2.0 | 2.0 | 4.0 | 0.4 | −6.0 |
82 | E | 1180 | 1.2 | 1.2 | 1.2 | 2.4 | 0.2 | −3.6 |
83 | H | 1180 | 1.6 | 1.6 | 1.6 | 3.2 | 0.3 | −4.8 |
84 | G | 1180 | 2.0 | 2.0 | 2.0 | 4.0 | 0.4 | −6.0 |
Full | Radius R of | Angle θ of | Main weld | |||||
length L | weld | weld | Length L1 | zone/full | ||||
of weld | terminal | terminal | of main | length of | Peeling | |||
Test | zone | end zone | end zone | weld zone | weld zone | Weld | strength | |
No. | (mm) | (mm) | (rad) | (mm) | L1/L | cracking | (kN) | Remarks |
71 | 30.0 | 2.0 | π | 23.7 | 0.79 | Yes | 2.9 | Comparative |
Example | ||||||||
72 | 30.0 | 2.0 | π | 23.7 | 0.79 | Yes | 3.1 | Comparative |
Example | ||||||||
73 | 40.0 | 2.0 | 11/6π | 28.5 | 0.71 | Yes | 3.8 | Comparative |
Example | ||||||||
74 | 40.0 | 2.0 | 11/6π | 28.5 | 0.71 | Yes | 3.9 | Comparative |
Example | ||||||||
75 | 40.0 | 2.0 | 11/6π | 28.5 | 0.71 | Yes | 3.1 | Comparative |
Example | ||||||||
76 | 40.0 | 2.0 | 11/6π | 28.5 | 0.71 | Yes | 4.3 | Comparative |
Example | ||||||||
77 | 40.0 | 2.0 | 11/6π | 28.5 | 0.71 | Yes | 3.2 | Comparative |
Example | ||||||||
78 | 40.0 | 2.0 | 11/6π | 28.5 | 0.71 | Yes | 3.7 | Comparative |
Example | ||||||||
79 | 30.0 | 1.5 | 5/3π | 22.1 | 0.74 | No | 2.7 | Inventive |
Example | ||||||||
80 | 30.0 | 1.5 | 5/3π | 22.1 | 0.74 | No | 3.2 | Inventive |
Example | ||||||||
81 | 30.0 | 1.5 | 5/3π | 22.1 | 0.74 | No | 2.6 | Inventive |
Example | ||||||||
82 | 30.0 | 1.5 | 5/3π | 22.1 | 0.74 | No | 3.3 | Inventive |
Example | ||||||||
83 | 30.0 | 1.5 | 5/3π | 22.1 | 0.74 | No | 2.9 | Inventive |
Example | ||||||||
84 | 30.0 | 1.5 | 5/3π | 22.1 | 0.74 | No | 3.1 | Inventive |
Example | ||||||||
-
- 1 laser-welded lap joint
- 2 steel sheet
- 3 steel sheet
- 4 weld zone
- 4 a main weld zone
- 4 b weld terminal end zone
- 5 terminal end portion of weld zone
- 6 central portion serving as final solidification zone
- 7 laser beam
- 14 weld zone
- 15 terminal end portion of weld zone
- 16 cracking
Claims (18)
10.0≤L; (1)
0.5≤R≤1.5; (2)
π≤θ≤2π, (3)
−2t≥X≥−4t (4)
−2t≥X≥−4t (4)
−2t≥X≥−4t (4)
−2t≥X≥−4t (4)
−2t≥X≥−4t (4)
−2t≥X≥−4t (4)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPJP2018-096824 | 2018-05-21 | ||
JP2018-096824 | 2018-05-21 | ||
JP2018096824 | 2018-05-21 | ||
PCT/JP2019/019838 WO2019225528A1 (en) | 2018-05-21 | 2019-05-20 | Laser welded lap joint, method for producing laser-welded lap joint, and structural component for motor vehicle |
Publications (2)
Publication Number | Publication Date |
---|---|
US20210205924A1 US20210205924A1 (en) | 2021-07-08 |
US11638969B2 true US11638969B2 (en) | 2023-05-02 |
Family
ID=68616140
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/055,734 Active 2040-06-24 US11638969B2 (en) | 2018-05-21 | 2019-05-20 | Laser-welded lap joint, method for producing laser-welded lap joint, and automobile frame component |
Country Status (7)
Country | Link |
---|---|
US (1) | US11638969B2 (en) |
EP (1) | EP3797921A4 (en) |
JP (1) | JP6852797B2 (en) |
KR (1) | KR102407608B1 (en) |
CN (1) | CN112118932B (en) |
MX (1) | MX2020012334A (en) |
WO (1) | WO2019225528A1 (en) |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19627913A1 (en) | 1995-08-05 | 1997-02-06 | Volkswagen Ag | Laser-welded chassis component for absorbing crash loading on automobile - has seam weld running in loading direction which is thickened or widened on load-side end |
US20030135197A1 (en) | 2002-01-15 | 2003-07-17 | Scimed Life Systems, Inc. | Bonds between metals and polymers for medical devices |
US20060163221A1 (en) * | 2002-09-09 | 2006-07-27 | Toyota Jidosha Kabushiki Kaisha | Laser welding method |
JP2006296236A (en) | 2005-04-18 | 2006-11-02 | Cosmo Libra:Kk | Powdery food and method for producing the same |
JP2009154194A (en) | 2007-12-27 | 2009-07-16 | Kinki Sharyo Co Ltd | Lap laser welding method and lap laser welding joint for railway vehicle body, and railway vehicle body structure |
CN101870031A (en) | 2010-07-12 | 2010-10-27 | 中国化学工程第四建设公司 | Construction method for welding furnace tube and dissimilar steel |
JP2012240086A (en) | 2011-05-19 | 2012-12-10 | Nippon Steel Corp | Laser welding joint excellent in joint strength and method for manufacturing the same |
JP2012240083A (en) | 2011-05-19 | 2012-12-10 | Nippon Steel Corp | Method for manufacturing steel sheet welded part excellent in delayed fracture resistance and steel structure having welded part |
CN103111724A (en) | 2012-12-07 | 2013-05-22 | 无锡透平叶片有限公司 | Turbine blade laser cladding area flaw welding method |
CN203385696U (en) | 2013-08-15 | 2014-01-08 | 广东中泽重工有限公司 | Stitch welding line detection system |
CN103934544A (en) | 2014-04-18 | 2014-07-23 | 沈阳大学 | Method for preventing overlaying sealing surface from cracking |
JP2017030647A (en) | 2015-08-05 | 2017-02-09 | Jfeスチール株式会社 | Skeleton component for automobile and method for manufacturing skeleton component for automobile |
JP2017113781A (en) | 2015-12-24 | 2017-06-29 | Jfeスチール株式会社 | Lap laser spot welding joint and manufacturing method of the welding joint |
US9705384B2 (en) * | 2013-06-17 | 2017-07-11 | Denso Corporation | Rotor for rotating electric machine |
WO2017159425A1 (en) | 2016-03-15 | 2017-09-21 | Jfeスチール株式会社 | Lap laser-welded joint, method for producing same, and automobile skeleton component |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5992189A (en) * | 1982-11-18 | 1984-05-28 | Toshiba Corp | Production of steel plate frame |
JP2003145285A (en) * | 2001-11-12 | 2003-05-20 | Futaba Industrial Co Ltd | Method for laser beam welding |
JP2008296236A (en) | 2007-05-30 | 2008-12-11 | Toyota Motor Corp | Lap laser welding method |
DE102009016220A1 (en) * | 2009-04-03 | 2010-10-07 | GM Global Technology Operations, Inc., Detroit | Method for producing a body component of a vehicle and the crankset component of a vehicle |
EP2957379B1 (en) * | 2013-02-15 | 2019-04-10 | Nissan Motor Co., Ltd | Laser welding method and laser welding device |
KR102412797B1 (en) * | 2016-09-29 | 2022-06-23 | 제이에프이 스틸 가부시키가이샤 | Laser welded joint and auto-motive frame component |
-
2019
- 2019-05-20 EP EP19808127.5A patent/EP3797921A4/en active Pending
- 2019-05-20 JP JP2019543130A patent/JP6852797B2/en active Active
- 2019-05-20 KR KR1020207033332A patent/KR102407608B1/en active IP Right Grant
- 2019-05-20 US US17/055,734 patent/US11638969B2/en active Active
- 2019-05-20 CN CN201980032297.0A patent/CN112118932B/en active Active
- 2019-05-20 MX MX2020012334A patent/MX2020012334A/en unknown
- 2019-05-20 WO PCT/JP2019/019838 patent/WO2019225528A1/en unknown
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19627913A1 (en) | 1995-08-05 | 1997-02-06 | Volkswagen Ag | Laser-welded chassis component for absorbing crash loading on automobile - has seam weld running in loading direction which is thickened or widened on load-side end |
US20030135197A1 (en) | 2002-01-15 | 2003-07-17 | Scimed Life Systems, Inc. | Bonds between metals and polymers for medical devices |
US20060163221A1 (en) * | 2002-09-09 | 2006-07-27 | Toyota Jidosha Kabushiki Kaisha | Laser welding method |
JP2006296236A (en) | 2005-04-18 | 2006-11-02 | Cosmo Libra:Kk | Powdery food and method for producing the same |
JP2009154194A (en) | 2007-12-27 | 2009-07-16 | Kinki Sharyo Co Ltd | Lap laser welding method and lap laser welding joint for railway vehicle body, and railway vehicle body structure |
CN101870031A (en) | 2010-07-12 | 2010-10-27 | 中国化学工程第四建设公司 | Construction method for welding furnace tube and dissimilar steel |
JP2012240086A (en) | 2011-05-19 | 2012-12-10 | Nippon Steel Corp | Laser welding joint excellent in joint strength and method for manufacturing the same |
JP2012240083A (en) | 2011-05-19 | 2012-12-10 | Nippon Steel Corp | Method for manufacturing steel sheet welded part excellent in delayed fracture resistance and steel structure having welded part |
CN103111724A (en) | 2012-12-07 | 2013-05-22 | 无锡透平叶片有限公司 | Turbine blade laser cladding area flaw welding method |
US9705384B2 (en) * | 2013-06-17 | 2017-07-11 | Denso Corporation | Rotor for rotating electric machine |
CN203385696U (en) | 2013-08-15 | 2014-01-08 | 广东中泽重工有限公司 | Stitch welding line detection system |
CN103934544A (en) | 2014-04-18 | 2014-07-23 | 沈阳大学 | Method for preventing overlaying sealing surface from cracking |
JP2017030647A (en) | 2015-08-05 | 2017-02-09 | Jfeスチール株式会社 | Skeleton component for automobile and method for manufacturing skeleton component for automobile |
JP2017113781A (en) | 2015-12-24 | 2017-06-29 | Jfeスチール株式会社 | Lap laser spot welding joint and manufacturing method of the welding joint |
WO2017159425A1 (en) | 2016-03-15 | 2017-09-21 | Jfeスチール株式会社 | Lap laser-welded joint, method for producing same, and automobile skeleton component |
US20190076963A1 (en) | 2016-03-15 | 2019-03-14 | Jfe Steel Corporation | Laser lap-welded joint, method of manufacturing the same, and automobile framework component |
Non-Patent Citations (5)
Title |
---|
Chinese Office Action with Search Report for Chinese Application No. 201980032297.0, dated Dec. 24, 2021, 11 pages. |
Extended European Search Report for European Application No. 19 808 127.5, dated Oct. 11, 2021, 8 pages. |
International Search Report and Written Opinion for International Application No. PCT/JP2019/019838, dated Jul. 16, 2019, 5 pages. |
Japanese Office Action for Japanese Application No. 2019-543130, dated Aug. 4, 2020 with Concise Statement of Relevance of Office Action, 4 pages. |
Korean Office Action for Korean Application No. 10-2020-7033332, dated Sep. 13, 2021, with Concise Statement of Relevance of Office Action, 6 pages. |
Also Published As
Publication number | Publication date |
---|---|
MX2020012334A (en) | 2021-01-29 |
JPWO2019225528A1 (en) | 2020-05-28 |
JP6852797B2 (en) | 2021-03-31 |
US20210205924A1 (en) | 2021-07-08 |
KR20200140910A (en) | 2020-12-16 |
WO2019225528A1 (en) | 2019-11-28 |
CN112118932A (en) | 2020-12-22 |
KR102407608B1 (en) | 2022-06-10 |
CN112118932B (en) | 2022-08-30 |
EP3797921A1 (en) | 2021-03-31 |
EP3797921A4 (en) | 2021-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10919113B2 (en) | Laser lap-welded joint, method of manufacturing the same, and automobile framework component | |
CN109641321B (en) | Method for manufacturing laser welded joint and laser welded joint | |
US11505841B2 (en) | High-strength steel product and method of manufacturing the same | |
US11648626B2 (en) | Laser-welded lap joint, method for producing laser-welded lap joint, and automobile frame component | |
JP5693279B2 (en) | Laser-arc hybrid welding method for high-strength steel sheet and high-strength steel sheet weld metal obtained thereby | |
JP2016032834A (en) | Lap weld member, lap resistance seam-welding method for the same, and lap weld member for automobile comprising lap weld part | |
Casalino et al. | Fiber laser-MAG hybrid welding of DP/AISI 316 and TWIP/AISI 316 dissimilar weld | |
JP7211491B2 (en) | LAP LASER SPOT WELD JOINT, MANUFACTURING METHOD THEREOF, AND STRUCTURAL MEMBER FOR AUTOMOBILE BODY | |
US11638969B2 (en) | Laser-welded lap joint, method for producing laser-welded lap joint, and automobile frame component | |
JP6859105B2 (en) | Laminated laser spot welded joint and manufacturing method of the welded joint | |
KR102603852B1 (en) | Lap laser weld joint and method for producing same, and automotive body structural member | |
WO2020241500A1 (en) | Spot welded joint, and method for manufacturing spot welded joint | |
US20220228233A1 (en) | Resistance spot weld, resistance spot welding method, resistance spot welded joint, and method for manufacturing resistance spot welded joint | |
JP6176428B1 (en) | Lap laser welded joint, method for producing the welded joint, and automotive framework component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: JFE STEEL CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HARA, ASATO;KITANI, YASUSHI;REEL/FRAME:055328/0179 Effective date: 20200721 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |