WO2019221302A1 - 粉砕装置及び粉砕装置の制御方法 - Google Patents

粉砕装置及び粉砕装置の制御方法 Download PDF

Info

Publication number
WO2019221302A1
WO2019221302A1 PCT/JP2019/019871 JP2019019871W WO2019221302A1 WO 2019221302 A1 WO2019221302 A1 WO 2019221302A1 JP 2019019871 W JP2019019871 W JP 2019019871W WO 2019221302 A1 WO2019221302 A1 WO 2019221302A1
Authority
WO
WIPO (PCT)
Prior art keywords
performance value
unit
pulverizer
load
mill
Prior art date
Application number
PCT/JP2019/019871
Other languages
English (en)
French (fr)
Inventor
淳 鹿島
松本 慎治
豊 竹野
浩明 金本
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to JP2020519963A priority Critical patent/JP7080970B2/ja
Publication of WO2019221302A1 publication Critical patent/WO2019221302A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C15/00Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs
    • B02C15/04Mills with pressed pendularly-mounted rollers, e.g. spring pressed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C25/00Control arrangements specially adapted for crushing or disintegrating

Definitions

  • the present invention relates to a grinding apparatus and a control method for the grinding apparatus.
  • Mills that pulverize materials to be ground such as solid fuels used in thermal power generation facilities and cement raw materials used in cement manufacturing plants are known.
  • the material to be pulverized by being pulverized by the conveying gas supplied from the outer periphery of the pulverizing rotary table is blown up and screened according to the particle size by the classifier.
  • the object to be pulverized having a small particle size is discharged to the outside of the mill and is conveyed to a predetermined apparatus as a provided conveyance destination.
  • the crushing roller provided in such a mill wears by crushing the material to be crushed. Grinding roller wear may have various effects on the mill's operating conditions and performance, so the mill should be equipped with a device that diagnoses the wear state of the grind roller in order to understand the grind roller wear state. (For example, Patent Document 1).
  • Patent Document 1 an appropriate value of mill differential pressure or mill power is obtained by simulation from the detection values from various detectors provided in the mill, the mill structure (ring diameter, roller diameter, etc.), the classifier structure, and the coal type.
  • a roller wear state diagnosing device for diagnosing the wear state of a roller or the like from a deviation between the obtained value and a measured value from a mill differential pressure detector or a power detector is disclosed.
  • an alarm is generated, the mill is stopped, another mill is started, or load distribution is performed.
  • Patent Document 1 only a situation in which the mill differential pressure increases with roller wear is considered. An increase in the differential pressure of the mill indicates an increase in pressure loss in the mill, that is, a decrease in grinding performance. Therefore, in patent document 1, only the situation where a grinding
  • the present invention has been made in view of such circumstances, and provides a pulverization apparatus and a control method for the pulverization apparatus that can appropriately operate the pulverization apparatus even when the pulverization unit changes over time. Objective.
  • the pulverizing apparatus and the control method of the pulverizing apparatus of the present invention employ the following means.
  • a pulverizing apparatus is a pulverizing apparatus for pulverizing an object to be crushed, and a table unit that is driven to rotate about an axis in the vertical direction, and a roller that is disposed to face the upper surface of the table unit.
  • a pulverizing unit that pulverizes the material to be crushed by sandwiching the material to be crushed between the upper surface of the table unit and the roller unit, and a load derivation that derives the current load of the pulverizing apparatus
  • a performance value measuring unit that measures a performance value of the pulverizing apparatus at the present time, and the pulverizing apparatus when the pulverizing apparatus is operated with a load derived by the load deriving unit at a predetermined reference time.
  • the performance value of the pulverizer is affected so that the current performance value of the pulverizer measured by the performance value measurement unit approaches the performance value of the pulverizer at the reference time derived by the performance value derivation unit.
  • a control unit that changes a parameter to be applied.
  • the shape of the pulverization unit that pulverizes the object to be pulverized changes over time.
  • the secular change of the pulverization part deformation due to wear or the like of the roller part and the table part can be mentioned.
  • the performance value of the pulverizer varies.
  • the parameter that affects the performance value of the pulverizer is changed so that the current performance value of the pulverizer approaches the performance value of the pulverizer at the reference time.
  • the performance value of the pulverizer can be set to a performance value at a predetermined reference time.
  • the predetermined reference time includes, for example, the time before the pulverization unit changes over time, such as the initial operation of the pulverizer and the break-in operation of the pulverizer.
  • the crushing apparatus which concerns on 1 aspect of this invention is equipped with the load provision part which provides the pressing load to the said upper surface direction of the said table part with respect to the said roller part,
  • the said parameter is with respect to the said roller part.
  • the control unit has a pressure load to be applied, and the performance value of the pulverizer currently measured by the performance value measurement unit and the performance value of the pulverizer at the reference time derived by the performance value derivation unit
  • the load application unit is configured so that the current performance value of the pulverizer measured by the performance value measurement unit approaches the performance value of the pulverizer at the reference time derived by the performance value derivation unit. You may have a load control part which adjusts the pressing load to give.
  • the grinding capacity C of the grinding device is calculated by the following formula (1).
  • C k ⁇ M ⁇ ⁇ ⁇ D (1)
  • k is a coefficient M is a pressing load of the roller portion
  • is a rotation speed of the table portion
  • D is a diameter of the table portion.
  • the crushing capacity C By changing the pressing load and / or the rotation speed of the table portion, the crushing capacity C can be increased or decreased. By increasing or decreasing the grinding capacity C, the performance value of the grinding machine can be adjusted.
  • the product of the pressing load which is an element for determining the grinding capacity C
  • the rotational speed of the table portion is also referred to as grinding energy.
  • the pressing load applied by the load applying unit is adjusted so that the current performance value of the pulverizer approaches the performance value of the pulverizer at the reference time.
  • the pressing load is one of the parameters that affect the performance value.
  • the performance value of the pulverizer is set to a performance value at a predetermined reference time by adjusting the pressing load applied by the load applying unit. Can do.
  • the performance value can be controlled, even if the pulverization section changes with time, the pulverization apparatus can be appropriately operated according to the performance value (aging change of the pulverization section).
  • the pulverization apparatus includes a rotation driving unit that rotates the table unit so as to have a predetermined rotation number, and the parameter includes the rotation number of the table unit, and the control
  • the performance value measuring unit measures the current performance value of the grinding device measured by the performance value measuring unit and the performance value of the grinding device at the reference time derived by the performance value deriving unit.
  • a table that adjusts the number of rotations of the table unit that the drive unit rotates so that the current performance value of the crushing device approaches the performance value of the crushing device at the reference time derived by the performance value deriving unit. You may have a rotation speed control part.
  • the rotation speed of the table unit is adjusted so that the current performance value of the pulverizer approaches the performance value of the pulverizer at the reference time.
  • the rotation speed of the table unit is one of the parameters that affect the performance value.
  • the performance value of the pulverizer is set to a performance value at a predetermined reference time by adjusting the pressing load applied by the load applying unit. Can do.
  • the vibration value of a grinder can be reduced by adjusting the rotation speed of a table part compared with the case where a pressing load is adjusted.
  • the pulverization apparatus includes a frame portion that is provided inside a housing of the pulverization device and supports the roller portion, and the frame portion is swingable with respect to the table portion.
  • the roller portion is swingably supported with respect to the frame portion, and the load control portion is configured to press the load applying portion so that a pressing load applied by the load applying portion is reduced. The load may be adjusted.
  • the roller portion is configured to be movable in a plurality of directions. Yes. That is, the roller part is supported in a state where the degree of freedom with respect to the table part is relatively high. Thereby, the roller part moves to a position with the least load among the movable positions when the object to be crushed is pulverized.
  • the pulverization mode by the pulverization unit varies depending on the installation environment of the pulverizer and the material to be pulverized.
  • the roller portion having the above configuration moves to a position with the least load when pulverizing, and thus wears according to the pulverization mode in the pulverizing apparatus. Therefore, the shape of the roller portion changes so as to be a shape suitable for the pulverization mode in the pulverization apparatus due to secular change. Therefore, in the above configuration, the performance value of the pulverizer changes so as to improve the pulverization performance (pulverization efficiency) due to the aging of the pulverization unit. In the above configuration, the pressing load of the load applying unit is adjusted so that the pressing load applied by the load applying unit is reduced.
  • the grinding performance (grinding efficiency) is improved by the aging of the pulverization unit, so the pulverization amount of the material to be pulverized increases and the driving force of the pulverization unit increases. Since the pressing load to be applied is reduced and the improvement of the crushing performance is suppressed, an increase in the driving force of the crushing part can also be suppressed. Therefore, an increase in driving force of the pulverization unit due to excessive pulverization can be suppressed, and energy saving of the pulverization apparatus can be achieved.
  • the performance value of the pulverizing apparatus may include a driving force for driving the pulverizing unit.
  • the pulverization performance of the pulverization part also changes according to the aging change of the pulverization part.
  • the driving force for driving the pulverizing unit also changes.
  • the cause of the change in driving force is that the pulverization performance decreases due to the change in the shape of the pulverization part, and the pulverization performance is improved due to the situation where more driving force is required and the change in the shape of the pulverization part. A situation in which the pulverization amount of the object to be crushed increases.
  • the driving force of the pulverization unit that changes due to the secular change of the pulverization unit is used as the performance value.
  • the driving force for driving the pulverizing unit is used as the performance value of the pulverizing device, the driving force for driving the pulverizing unit even if the pulverizing unit changes over time due to the operation of the pulverizing device.
  • the driving force can be controlled, the pulverizing apparatus can be operated with an appropriate driving force even if the pulverizing section changes over time. Therefore, it is possible to accurately suppress an increase in driving force of the pulverization unit due to excessive pulverization, and to further save energy in the pulverizer.
  • a pulverization apparatus discharges a pulverized object to be conveyed by the conveying gas, and a conveying gas supply unit that supplies a conveying gas that conveys the pulverized pulverized object to the outside.
  • the performance value of the pulverizer may include a differential pressure between the pressure on the transfer gas supply unit side and the pressure on the discharge unit side.
  • the grinding performance of the grinding part also changes according to the change with time of the grinding part.
  • the pulverization performance changes, the amount of the pulverized object in the pulverizer also changes. Since the amount of the pulverized object becomes a pressure loss with respect to the transfer gas flow, the differential pressure between the transfer gas supply unit side and the discharge unit side also changes. That is, the differential pressure changes according to the secular change of the pulverization part.
  • the differential pressure that changes due to the secular change of the pulverization part is used as the performance value. Therefore, it is possible to accurately grasp the secular change of the grinding part.
  • the grinding device the learning unit for performing machine learning for deriving the adjustment degree of the pressing load applied by the load applying unit, and the learning unit, based on the machine learning,
  • the adjustment degree may be derived
  • the load control unit may adjust the pressing load applied by the load application unit so that the adjustment degree derived by the learning unit is obtained.
  • the learning unit that has performed machine learning for deriving the degree of reduction that reduces the pressing load applied by the load applying unit adjusts the pressing load with the adjustment degree derived based on the machine learning. Thereby, a pressing load can be adjusted exactly.
  • a control method for a pulverizing apparatus is a control method for a pulverizing apparatus that pulverizes an object to be crushed, the upper surface of a table unit that is driven to rotate about a vertical axis, and the table unit.
  • a pulverization step for pulverizing the object to be crushed by sandwiching the object to be crushed between a roller portion disposed opposite to the upper surface, a load deriving step for deriving a load of the pulverizing apparatus at present, and the pulverization at present A performance value measuring step for measuring the performance value of the apparatus, and a performance value for deriving a performance value of the crushing apparatus when the crushing apparatus is operated with a load derived in the load deriving step at a predetermined reference time.
  • the pulverization apparatus so that the current performance value of the pulverization apparatus measured in the performance value measurement step approaches the performance value of the pulverization apparatus at the reference time derived in the performance value derivation step. And a control step for changing a parameter that affects the performance value.
  • the pulverizing apparatus can be operated appropriately.
  • FIG. 1 shows details of the mill 1.
  • FIG. 1 shows a mill 1 that includes a mill 1 that finely pulverizes coal, which is a raw material (fuel), and a raw material supply system of the mill 1 and a finely pulverized material conveyance system.
  • the mill 1 is a vertical mill and crushes solid coal.
  • pulverizes only coal may be sufficient as the mill 1, the form which grind
  • a case where only coal is pulverized will be described.
  • the housing 31 of the mill 1 has a bowl-shaped cylindrical hollow shape, and a center chute 33 is attached to the center portion of the ceiling portion 32.
  • the center chute 33 has an upper end connected to a coal supply pipe (not shown), and supplies coal guided from a bunker (not shown) storing coal into the housing 31.
  • the center chute 33 is disposed at the center position of the housing 31 along the vertical direction (vertical direction), and the lower end portion extends into the housing 31.
  • a gantry 34 is installed on the ground below the housing 31, and a crushing rotary table 35 is rotatably disposed on the gantry 34.
  • the center chute 33 is disposed so that the lower end of the crushing rotary table 35 faces the center.
  • the center chute 33 supplies coal from above to below.
  • a cylindrical hopper 11 having an inverted conical shape is provided between the center chute 33 and the crushing rotary table 35 inside the housing 31.
  • a rotary feeder (not shown) is attached to the coal supply pipe, and the rotary feeder cuts out a predetermined amount of coal, that is, supplies coal for every predetermined amount.
  • the crushing unit 30 includes a crushing rotary table (table unit) 35, a crushing roller (roller unit) 36, and the like.
  • the crushing rotary table 35 is rotatable about the central axis in the vertical direction (vertical direction) and is driven by the driving device 20.
  • the upper surface of the crushing rotary table 35 has an inclined shape such that the center portion is high and decreases from the center portion toward the outside, and the outer peripheral portion is curved upward from the inside to the outside.
  • the drive device 20 has an inverter (not shown). The drive device 20 can adjust the rotation speed of the crushing rotary table 35 by an inverter.
  • a plurality of, for example, three crushing rollers 36 are arranged above the crushing rotary table 35 so as to face the upper surface of the crushing rotary table 35.
  • the crushing rollers 36 are arranged above the outer peripheral portion of the crushing rotary table 35 at equal intervals in the circumferential direction (in the case of three crushing rollers 36, 120 ° intervals).
  • FIG. 1 two crushing rollers 36 are illustrated symmetrically for the sake of explanation, but when the three crushing rollers 36 are arranged at intervals of 120 °, the arrangement of the crushing rollers 36 is as shown in FIG. It is different from the illustration.
  • the crushing roller 36 is swingably connected to a pressure arm (frame portion) 37 via a bracket 38.
  • the bracket 38 is coupled to the pressure arm 37 by a hinge.
  • the pressing arm 37 has a substantially hexagonal shape in plan view, and is connected to tension rods (load applying portions) 39 at three points between adjacent crushing rollers 36.
  • the tension rod 39 has a hydraulic cylinder portion 49 provided in the lower portion, and the hydraulic cylinder portion 49 can change the pressing load of the crushing roller 36 by hydraulic pressure.
  • the bracket 38 is supported by the pressure arm 37, and the crushing roller 36 can swing with respect to the pressure arm 37 by the bracket 38.
  • the pressure arm 37 is connected to a tension rod 39 housed in a tension rod box 40.
  • the pressurizing arm 37 is provided inside the housing 31, and the position in the vertical direction (vertical direction) is adjusted by the hydraulic pressure of the hydraulic cylinder portion 49. Thereby, the load (pressing load) acting on the solid matter on the crushing rotary table 35 can be changed by the crushing roller 36.
  • the pressure arm 37 is supported by a tension rod 39 so as to be swingable with respect to the crushing rotary table 35.
  • the lower end of the tension rod 39 is fixed with respect to the ground.
  • pulverized coal a pulverized product (hereinafter referred to as “pulverized coal”) on the fine powder is generated.
  • a primary air duct (conveying gas supply unit) 13 is connected to the lower part of the housing 31.
  • the primary air (conveying gas) 60 supplied by the primary air duct 13 is guided into the housing 31 and supplied to a space located below the grinding rotary table 35.
  • a rotating classifier 41 is provided at the top of the housing 31.
  • the rotary classifier 41 is arranged so as to surround the center chute 33 and rotates around the center chute 33. Along with the rotation of the rotary classifier 41, the plurality of fins 42 attached to the outer peripheral side travel in the circumferential direction.
  • the pulverized coal pulverized by the pulverizing rotary table 35 and the pulverizing roller 36 is wound upward by the flow of air rising from the lower side of the pulverizing rotary table 35 through the outer peripheral side of the pulverizing rotary table 35.
  • the pulverized coal having a relatively large diameter is knocked down by the fins 42, returned to the crushing rotary table 35, and pulverized again. Thereby, the pulverized coal is classified by the rotary classifier 41.
  • the rotating classifier 41 is rotated by the driving force of the driving unit 50.
  • a plurality of coal feeding pipes (discharge parts) 9 are connected to the ceiling 32, and the coal feeding pipe 9 discharges the pulverized coal after being classified by the rotary classifier 41, Lead to the boiler body.
  • the plurality of coal feeding pipes 9 are respectively connected to a plurality of openings provided corresponding to the ceiling portion 32.
  • the coal feeding pipe 9 varies depending on the size of the mill 1 and the crushing capacity, but it is in the range of 2 to 8 and is often 4 to 6 in many cases.
  • the coal stored in the bunker is fed to the coal supply pipe and the center chute 33.
  • the rotary feeder attached to the coal supply pipe cuts out a certain amount of coal, and the biomass fuel falls into the mill 1 (a).
  • the coal supplied into the mill 1 falls on the crushing rotary table 35 (b), moves to the outer peripheral side by centrifugal force, and is crushed between the plurality of crushing rollers 36 and the crushing rotary table 35.
  • the pulverized pulverized coal rises in the mill 1 by the primary air 60 blown into the mill 1 through the primary air duct 13 and the throat vane 44 (c). During this rise, a part of the coarse particles having a large particle size out of the pulverized coal falls due to gravity and is returned to the crushing rotary table 35.
  • a rotary classifier 41 composed of a plurality of fins (blades) 42 is rotating, and coarse and heavy pulverized coal is knocked down so as to be repelled by the centrifugal force of the fins 42. Further, the pulverized coal that has been knocked down slides down the inner peripheral surface of the hopper 11 and is returned to the crushing rotary table 35 (d). The pulverized product is repeatedly pulverized until it becomes fine. The finely divided pulverized coal passes through the rotary classifier 41 (e) and is conveyed to the outside through the coal feeding pipe 9 (f). The pulverized coal conveyed by air is sent to a burner provided in a boiler (not shown) and combusted.
  • the mill 1 is provided with a measuring instrument that measures the operation state of the mill 1. Specifically, the flow rate (primary air amount) of the primary air supplied from the coal supply meter 21 and the primary air duct 13 for measuring the amount of coal supplied to the mill 1 (coal supply amount) is measured.
  • the mill 1 has a differential pressure between a pressure measured by a pressure gauge (not shown) provided in the primary air duct 13 and a pressure measured by a pressure gauge (not shown) provided in the coal feeding pipe 9.
  • a differential pressure measuring device 26 for measuring and a driving force measuring device 27 for measuring the driving force of the crushing unit 30 are provided.
  • the driving force of the pulverizing unit 30 is, for example, electric power supplied from the driving device 20 to rotationally drive the pulverizing rotary table 35.
  • the crushing roller 36 when the crushing roller 36 is also driven by electric power, the driving power of the crushing rotary table 35 and the crushing roller 36 may be acquired as the driving force of the crushing unit 30.
  • Various results measured by these measuring instruments are output to the control device 15.
  • the control device 15 includes, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), a computer-readable storage medium, and the like.
  • a series of processes for realizing various functions is stored in a storage medium or the like in the form of a program as an example, and the CPU reads the program into a RAM or the like to execute information processing / arithmetic processing.
  • the program is preinstalled in a ROM or other storage medium, provided in a state stored in a computer-readable storage medium, or distributed via wired or wireless communication means. Etc. may be applied.
  • the computer-readable storage medium is a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.
  • the control device 15 includes a load deriving unit 16, a performance value deriving unit 17, a determining unit 18, and a load control unit 19, and performs operation control processing of the mill 1.
  • the load deriving unit 16 derives the load factor of the mill 1. Specifically, the measurement results of various measuring instruments provided in the mill 1 are acquired as information relating to the current operating state of the mill 1, and the load factor of the mill 1 is derived based on the acquired measurement results.
  • the load deriving unit 16 measures the coal supply amount measured by the coal supply amount measuring device 21, the primary air amount measured by the primary air amount measuring device 22, and the classifier rotation speed measurement as measurement results of various measuring instruments.
  • the classifier rotational speed measured by the container 23, the hydraulic pressure measured by the hydraulic pressure measuring instrument 24, and the rotational speed of the grinding rotary table 35 measured by the table rotational speed measuring instrument 25 are acquired. Further, the load deriving unit 16 acquires information on the properties of coal.
  • an index representing the difficulty of pulverizing coal is acquired.
  • the index representing the difficulty of pulverizing coal is, for example, a hard grove grindability index (HGI).
  • HGI hard grove grindability index
  • the HGI is input to the control panel 28 or the like by an operator of the power plant (Mill 1), for example, and the load deriving unit 16 acquires the HGI from the control panel 28. If the HGI can measure (or estimate) the HGI with a measuring instrument, the mill 1 may acquire the HGI from the measuring instrument.
  • any index indicating the difficulty of pulverizing the solid fuel can be used without being limited to the hard glove pulverization index. For example, total moisture or the like may be used.
  • the mill load factor ML is obtained from the measurement result of the measuring instrument described above. Below, an example of the derivation
  • coal property C1 is calculated by following formula (3).
  • C1 C0 ⁇ Fm ⁇ Ff ⁇ Fg ⁇ (other coefficients) (3)
  • C0 Standard grinding capacity in mill 1
  • Fm Mill capacity correction coefficient due to difference in water content
  • Ff Mill capacity correction coefficient due to mill fineness (for example, outlet 200 # pass rate)
  • Fg Coal grindability index (for example, Mill capacity correction factor by HGI)
  • the outlet 200 # pass rate is a table that defines the correlation between the outlet 200 # pass rate created by using data such as the trial operation of the mill 1 and the theoretical classification diameter obtained from the classifier rotational speed and the air amount. Sought by. That is, the outlet 200 # pass rate can be estimated by applying the measured classifier rotation speed and the primary air amount to the table.
  • the performance value deriving unit 17 is based on the performance value measured by the performance value measuring unit, and the performance value of the mill 1 when the mill 1 is operated at the load factor derived by the load deriving unit 16 at a predetermined reference time. Is derived.
  • the predetermined reference time is set to the trial operation of the mill 1 (that is, before the grinding roller 36 is worn).
  • a differential pressure measurement unit and a driving force measurement unit are used as the performance value measurement unit.
  • pulverization part 30 are used as a performance value.
  • the mill 1 in the trial operation state is the mill currently in operation.
  • the performance value deriving unit 17 derives the circulating coal differential pressure and the driving force when operated at the same load factor as 1.
  • the circulating coal differential pressure is a differential pressure in a state where an object to be crushed such as coal is not supplied to the mill 1 from the differential pressure measured by the differential pressure measuring device 26 (hereinafter referred to as “air differential pressure”). It is a differential pressure calculated by subtracting. That is, the circulating coal differential pressure is a differential pressure caused by a pressure loss caused by pulverized coal filling the mill 1. Note that the air differential pressure is the pressure of the primary air duct 13 and the coal feed in the state where air is supplied from the primary air duct 13 into the mill 1 before the object to be crushed is supplied into the mill 1. Calculated by the pressure in the tube 9. The calculation for calculating the circulating charcoal differential pressure may be performed by the differential pressure measuring device 26 or the control device 15. In the present embodiment, a case where calculation is performed by the control device 15 will be described.
  • the state during the trial operation is based on the circulating coal differential pressure calculated based on the differential pressure measured by the differential pressure measuring device 26 and the driving force measured by the driving force measuring device 27.
  • the performance value deriving unit 17 derives performance values (circular coal differential pressure and driving force) when the mill 1 is operated at the same load factor as the currently operating mill 1.
  • the performance value deriving unit 17 uses the graph (see the solid line in FIG. 6) and the table showing the relationship between the driving force and the load factor during the trial operation of the mill 1 and the table of the mill 1 currently in operation.
  • the driving force at the reference time of the mill 1 according to the load factor is derived.
  • FIG. 6 is a graph showing the relationship between the mill load factor and the pressure loss, where the solid line indicates before roller wear and the broken line indicates when the roller is worn.
  • the performance value deriving unit 17 uses a graph (see a solid line in FIG. 7) and a table showing a relationship between the circulating coal differential pressure and the load factor during the trial operation of the mill 1, and the load of the mill 1 during the current operation. The circulating coal differential pressure at the reference time of the mill 1 according to the rate is derived.
  • FIG. 7 is a graph showing the relationship between the mill load factor and the driving force, where the solid line indicates before roller wear and the broken line indicates when the roller is worn.
  • the determination unit 18 compares the current performance value measured by the performance value measurement unit with the performance value at the reference time derived by the performance value deriving unit 17, and is it necessary to adjust (correct) the pressing load by the tension rod 39? Determine if unnecessary.
  • the current driving force W measured by the driving force measuring instrument 27 is larger than the reference driving force Wi derived by the performance value deriving unit 17 (Wi> W), and the difference
  • the circulating coal differential pressure ⁇ Pc measured by the pressure measuring device 26 is smaller than the circulating coal differential pressure ⁇ Pci at the reference time derived by the performance value deriving unit 17 ( ⁇ Pc ⁇ Pci)
  • the determination criterion of the determination unit 18 is an example, and is not limited thereto.
  • the current driving force W measured by the driving force measuring instrument 27 is larger than the reference driving force Wi derived by the performance value deriving unit 17 by a predetermined threshold ⁇ (Wi> W + ⁇ )
  • the circulating coal differential pressure ⁇ Pc measured by the differential pressure measuring device 26 is ⁇ smaller than the reference circulating gas differential pressure ⁇ Pci derived by the performance value deriving unit 17 by a predetermined threshold value ( ⁇ Pc ⁇ Pci ⁇ ). May determine that adjustment is necessary.
  • ⁇ Pc ⁇ Pci ⁇ a predetermined threshold value
  • the load control unit 19 uses the performance value (driving force) of the mill 1 at the reference time derived by the performance value deriving unit 17 as the current performance value (driving force and circulating coal differential pressure) of the pulverizer measured by the performance value measuring unit. And the hydraulic pressure (pressing load) applied by the tension rod 39 is adjusted so as to be the same value as the circulating charcoal differential pressure). Specifically, the hydraulic pressure is adjusted using FIGS. 8 and 9 which are graphs showing the relationship between the hydraulic pressure and the performance value.
  • FIG. 8 is a graph relating to a method for adjusting the pressing load, in which the horizontal axis indicates the hydraulic pressure Op and the vertical axis indicates the driving force ratio (W / Wi).
  • a solid line indicates before roller wear, and a broken line indicates when the roller is worn. Note that data before roller wear is acquired during a trial run of the mill 1 or the like.
  • the pressing load is applied to the crushing roller 36 by the oil pressure corresponding to Opi before the roller wear, when the roller wears, the pressing load is applied by the oil pressure corresponding to Op.
  • the same driving force as before the wear that is, the driving force ratio (W / Wi) becomes 1) can be obtained. Accordingly, in this case, the load control unit 19 reduces the hydraulic pressure by the difference between Opi and Op.
  • FIG. 9 is a graph relating to the method of adjusting the pressing load, in which the horizontal axis indicates the hydraulic pressure Op and the vertical axis indicates the circulating coal differential pressure ratio ( ⁇ Pc / ⁇ Pci).
  • a solid line indicates before roller wear, and a broken line indicates when the roller is worn. Note that data before roller wear is acquired during a trial run of the mill 1 or the like.
  • the load control unit 19 reduces the hydraulic pressure by the difference between Opi and Op.
  • the control device 15 acquires data necessary for deriving the load factor of the mill 1 (S1). Specifically, the load deriving unit 16 of the control device 15 measures the coal supply amount measured by the coal supply amount measuring device 21 which is a measurement result of various measuring devices provided in the mill 1, and the primary air amount measuring device 22 measures. The primary air amount, the classifier rotational speed measured by the classifier rotational speed measuring instrument 23, the oil pressure measured by the hydraulic pressure measuring instrument 24, and the rotational speed of the grinding rotary table 35 measured by the table rotational speed measuring instrument 25 are acquired. In addition, the load deriving unit 16 acquires the HGI of coal that is pulverized symmetrically from the control panel 28.
  • the load deriving unit 16 of the control device 15 derives the mill load factor based on the data acquired in S1 (S2). After deriving the mill load factor, the control device 15 derives the driving force Wi and the circulating coal differential pressure ⁇ Pci of the mill 1 at the reference time by the performance value deriving unit 17 (S3). When the driving force Wi of the mill 1 and the circulating coal differential pressure ⁇ Pci at the reference time are derived, the control device 15 performs a performance value acquisition process and acquires the current performance value (S4). Details of the performance value acquisition process will be described later.
  • the control device 15 proceeds to S5.
  • the determination unit 18 compares the current performance value (W, ⁇ Pc) acquired in S4 with the reference performance value (Wi, ⁇ Pci) derived in S3. Specifically, the current driving force W is larger than the reference driving force Wi (Wi> W), and the current circulating coal differential pressure ⁇ Pc is smaller than the reference circulating coal differential pressure ⁇ Pci ( It is determined whether or not ⁇ Pc ⁇ Pci).
  • the process proceeds to S6.
  • the load controller 19 applies the hydraulic pressure (pressing load) applied by the tension rod 39 so that the current performance value (W, ⁇ Pc) is the same as the reference performance value (Wi, ⁇ Pci). Decide to adjust. If it is determined to adjust the hydraulic pressure in S6, the process proceeds to S7. In S7, a hydraulic pressure control signal is transmitted to the tension rod 39, and the hydraulic pressure is adjusted as determined in S6. When the hydraulic control signal is transmitted, the control device 15 ends this process.
  • S8 it is determined not to adjust the hydraulic pressure (pressing load) applied by the tension rod 39. If it is determined to adjust the hydraulic pressure in S8, the process proceeds to S7. In S7, a hydraulic pressure control signal that does not adjust the hydraulic pressure as determined in S8 is transmitted to the tension rod 39. When the hydraulic control signal is transmitted, the control device 15 ends this process.
  • the control device 15 first acquires the primary air amount measured by the primary air amount measuring device 22 (S11). Next, it transfers to S12 and acquires an air differential pressure. When the air differential pressure is acquired, the control device 15 next acquires the differential pressure from the differential pressure measuring device 26 (S13). When the differential pressure is acquired, the control device 15 calculates a circulating coal differential pressure ( ⁇ Pc) based on the differential pressure acquired in S13 and the air differential pressure acquired in S12 (S14). Specifically, the circulating coal differential pressure ( ⁇ Pc) is calculated by dividing the air differential pressure acquired in S12 from the differential pressure acquired in S13. When the circulating coal differential pressure ( ⁇ Pc) is calculated, the control device 15 acquires the driving force (W) from the driving force measuring instrument 27 (S15). When the driving force (W) is acquired, the control device 15 ends this process.
  • ⁇ Pc circulating coal differential pressure
  • the determination unit 18 may make a determination.
  • the step in which the determination unit 18 performs determination is different from the example illustrated in FIG. 3.
  • the other steps are the same as in FIG. 3, and thus detailed description thereof is omitted.
  • the example shown in FIG. 5 the example shown in FIG.
  • the grinding capacity C of the mill 1 is calculated by the following formula (4).
  • C k ⁇ M ⁇ ⁇ ⁇ D (4)
  • k coefficient M: pressing load on the crushing roller
  • rotation speed of the crushing rotary table
  • D diameter of the crushing rotary table
  • FIG. 11A to FIG. 11C show the basic concept of this embodiment.
  • the pulverization energy is constant as shown in FIG. 11A. For this reason, as shown in FIG.
  • the pressure loss (circulating coal differential pressure) of the mill 1 decreases as the pulverization time elapses, and the pulverization power (driving force of the driving device 20) increases as shown in FIG. 11C.
  • the pulverization energy is adjusted as the pulverization time elapses.
  • the grinding energy is adjusted by adjusting the pressing load.
  • the pulverizing unit 30 (the pulverizing rotary table 35 and the pulverizing roller 36) that pulverizes coal changes over time.
  • the aging of the pulverizing unit 30 includes deformation due to wear of the pulverizing roller 36 and the pulverizing rotary table 35.
  • the performance value of the mill 1 varies.
  • the pulverizing unit 30 pulverizes the coal by sandwiching the coal between the upper surface of the pulverizing rotary table 35 and the pulverizing roller 36, the performance value of the mill 1 ( In the present embodiment, the driving force of the crushing unit 30 and the circulating coal differential pressure) vary.
  • the load control unit 19 adjusts the pressing load applied by the tension rod 39 so that the current performance value of the mill 1 approaches the performance value of the mill 1 at the reference time.
  • the pressing load is one of the parameters that affect the performance value.
  • the pressure arm 37 is swingable with respect to the crushing rotary table 35 and the crushing roller 36 is supported so as to be swingable with respect to the pressure arm 37, a plurality of crushing rollers 36 are provided. It is configured to be movable in the direction. That is, the crushing roller 36 is supported in a state where the degree of freedom with respect to the crushing rotary table 35 is relatively high. Thereby, when crushing coal, crushing roller 36 moves to the position with the fewest load among the movable positions.
  • the pulverization mode by the pulverization unit 30 varies depending on the installation environment of the mill 1, the properties of coal to be pulverized, and the like.
  • the crushing roller 36 of this embodiment moves to a position with the least load when crushing, the crushing roller 36 is worn according to the crushing mode in the mill 1. Therefore, the shape of the crushing roller 36 changes so as to be a shape suitable for the crushing mode in the mill 1 due to aging. Therefore, in this embodiment, the performance value of the mill 1 changes so that the grinding performance (grinding efficiency) is improved as the grinding unit 30 changes over time.
  • the pressing load of the tension rod 39 is adjusted so that the pressing load applied by the tension rod 39 is reduced.
  • the force for sandwiching the coal between the crushing rotary table 35 and the crushing roller 36 is weakened, so that the crushing performance is suppressed.
  • pulverization part 30 can be suppressed, and the excessive grinding
  • the pulverization performance (pulverization efficiency) is improved, so that the amount of coal pulverization increases and the driving force of the pulverization unit 30 increases. Since the pressing load applied by the toner is reduced and the improvement of the crushing performance is suppressed, an increase in the driving force of the crushing unit 30 can also be suppressed. Therefore, an increase in the driving force of the pulverizing unit 30 due to excessive pulverization can be suppressed, and energy saving of the mill 1 can be achieved.
  • the pulverization performance of the pulverization unit 30 also changes according to the change of the pulverization unit 30 with time.
  • the driving force for driving the crushing unit 30 also changes.
  • the pulverization performance is lowered due to the change in the shape of the pulverization unit 30, and the pulverization performance is improved due to the situation where more driving force is required and the change in the shape of the pulverization unit 30
  • the driving force of the pulverizing unit 30 that changes due to the secular change of the pulverizing unit 30 is used as the performance value. Therefore, it is possible to accurately grasp the secular change of the crushing unit 30.
  • pulverization part 30 is used as a performance value of the mill 1, even if the grinding
  • the driving force to be driven can be a driving force at a predetermined reference time.
  • the driving force can be controlled, the mill 1 can be operated with an appropriate driving force even if the pulverizing unit 30 changes over time. Therefore, an increase in driving force of the pulverizing unit 30 due to excessive pulverization can be accurately suppressed, and further energy saving of the mill 1 can be achieved.
  • the pulverization performance of the pulverization unit 30 also changes according to the change of the pulverization unit 30 with time.
  • the amount of pulverized coal in the mill 1 also changes. Since the pulverized amount of coal becomes a pressure loss with respect to the air flow for conveyance, the circulating coal differential pressure between the primary air duct 13 and the coal feeding pipe 9 also changes. That is, the circulating coal differential pressure also changes according to the secular change of the pulverizing unit 30.
  • the circulating charcoal differential pressure that changes due to the secular change of the pulverizing unit 30 is used as the performance value. Therefore, it is possible to accurately grasp the secular change of the crushing unit 30.
  • FIGS. 10A to 10C The relationship between the passage of time and the hydraulic pressure, driving force, and circulating coal differential pressure when the control device 15 of the mill 1 according to the present embodiment performs the operation control process will be described with reference to FIGS. 10A to 10C.
  • the horizontal axis indicates the passage of time
  • the vertical axis indicates the hydraulic pressure of the tension rod 39.
  • the horizontal axis indicates the passage of time
  • the vertical axis indicates the driving force of the pulverizing unit 30.
  • FIG. 10C the horizontal axis indicates the passage of time
  • the vertical axis indicates the circulating coal differential pressure.
  • FIGS. 10A to 10C the case where the operation control process is performed is indicated by a solid line, and the case where the operation control process is not performed is indicated by a dotted line.
  • the tension rod is maintained while maintaining the state before the aging change with respect to the pulverization power and the pulverization ability (circulating coal differential pressure).
  • the hydraulic pressure of 39 can be reduced.
  • the second embodiment is different from the first embodiment in that the control device 15 includes a table rotation speed control unit 70. Further, part of the operation control process performed by the control device 15 is different from that of the first embodiment.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the control device 15 has a table rotation speed control unit 70 as shown in FIG.
  • the table rotation speed control unit 70 calculates the performance value of the mill 1 at the reference time derived by the performance value deriving unit 17 (the driving force and the circulating coal differential pressure) measured by the performance value measuring unit.
  • the rotational speed of the crushing rotary table 35 that is rotated by the driving device 20 is adjusted so as to be the same value as the driving force and the circulating charcoal differential pressure.
  • FIG. 15 and FIG. 16 which are graphs showing the relationship between the rotational speed of the crushing rotary table 35 and the performance value.
  • the details of the adjustment of the rotational speed are substantially the same as the adjustment of the hydraulic pressure in the first embodiment (see FIGS. 8 and 9), and thus the description thereof is omitted.
  • control device 15 may perform an operation control process as shown in FIG. Since S1 to S4, S8, and S25 in FIG. 14 are the same as those in the first embodiment, description thereof is omitted. Also, S26 and S27 in FIG. 14 are the same as in the example of FIG.
  • the rotational speed of the grinding rotary table 35 is adjusted so that the current performance value of the mill 1 approaches the performance value of the mill 1 at the reference time.
  • the rotation speed of the crushing rotary table 35 is one of the parameters that affect the performance value.
  • FIG. 17A to FIG. 17C show the relationship between the passage of time and the rotational speed, driving force, and circulating coal differential pressure of the grinding rotary table 35 when the control device 15 of the mill 1 according to the present embodiment performs the operation control process. It explains using.
  • the horizontal axis indicates the passage of time, and the vertical axis indicates the rotational speed of the crushing rotary table 35.
  • the horizontal axis indicates the passage of time and the circulating coal differential pressure.
  • the horizontal axis indicates the passage of time, and the vertical axis indicates the driving force of the pulverizing unit 30.
  • the case where the operation control process is performed is indicated by a solid line
  • the case where the operation control process is not performed is indicated by a dotted line.
  • the rotation speed of the crushing rotary table 35 does not change (see FIG. 17A).
  • pulverization capability improves, a circulating coal differential pressure
  • the pulverizing ability is improved by the secular change of the pulverizing unit 30.
  • pulverization part 30 increases because the amount of coal to grind
  • the operation control process since the process for reducing the rotational speed is performed, the rotational speed is reduced (see FIG. 17A).
  • the rotational speed is maintained while maintaining the state before the aging change with respect to the pulverization power and the pulverization ability (circulating coal differential pressure). Can be reduced.
  • FIG. 17D the case where the operation control process of the present embodiment is performed (when the rotation speed is adjusted) is shown by a solid line, and the case where the operation control process of the first embodiment is performed (when the pressing load is adjusted) is 1 A dotted line indicates that the operation control process is not performed.
  • the vibration value of the mill 1 measures displacement, speed, acceleration, and the like. If the vibration value becomes too large (that is, if the vibration becomes too large), the mill 1 may be damaged. When the operation control process is not performed, the vibration value increases.
  • the control apparatus 15 differs from 1st Embodiment and 2nd Embodiment by the point which has both the load control part 19 and the table rotation speed control part 70. . Further, a part of the operation control process performed by the control device 15 is different from the first embodiment and the second embodiment. The same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the determination unit 18 obtains a command value that adjusts the pressing load and the rotation speed.
  • the determination of the pressing load by the determination unit 18 is the same as in the first embodiment, and the determination of the rotational speed is the same as in the second embodiment. Note that the determination by combining the determination of the pressing load and the determination of the rotational speed is complicated, so it is desirable to use machine learning or the like.
  • the performance value can be controlled more accurately by adjusting the pressing load and the rotational speed.
  • the predetermined reference time is set to the trial operation of the mill 1, but the present invention is not limited to this.
  • it may be during the initial operation of the pulverizer or during the break-in operation of the pulverizer.
  • a period before the pulverizing unit 30 changes with time is preferable.
  • the mill 1 may include a learning unit (not shown) that performs machine learning for deriving the adjustment degree of the pressing load applied by the tension rod 39.
  • the learning unit derives the degree of adjustment based on machine learning.
  • the tension rod 39 adjusts the pressing load applied by the tension rod 39 so that the adjustment degree derived by the learning unit is obtained. According to this configuration, the pressing load of the tension rod 39 can be accurately adjusted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Crushing And Grinding (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

粉砕部が経年変化しても、粉砕装置を適切に稼働させることを目的とする。ミル(1)は、粉砕回転テーブル(35)の上面と粉砕ローラ(36)との間に石炭を挟み込むことで石炭を粉砕する粉砕部(30)と、粉砕ローラ(36)に対して、粉砕回転テーブル(35)の上面方向への押圧荷重を付与するテンションロッド(39)と、現在におけるミル(1)の負荷率を導出する負荷導出部と、現在におけるミル(1)の性能値を計測する性能値計測部と、基準時におけるミル(1)の性能値を導出する性能値導出部と、性能値計測部が計測した現在におけるミル(1)の性能値が、性能値導出部が導出した基準時におけるミル(1)の性能値に近づくように、前記粉砕装置の性能値に影響を与えるパラメータを変更する制御装置(15)と、を備えている。

Description

粉砕装置及び粉砕装置の制御方法
 本発明は、粉砕装置及び粉砕装置の制御方法に関するものである。
 火力発電設備に用いられる固体燃料や、セメント製造プラントに用いられるセメント原料等の被粉砕物を粉砕するミル(粉砕装置)が知られている。ミルは、被粉砕物供給管から粉砕回転テーブルへ投入された被粉砕物を、粉砕回転テーブルと粉砕ローラの間で挟み込むことで粉砕する。そして、粉砕回転テーブルの外周から供給される搬送用ガスによって、粉砕されて微粉状となった被粉砕物が、吹き上げられて、分級器で粒径サイズに応じてふるい分けられる。粒径サイズが小さい被粉砕物は、ミルの外部に排出され、設けられた搬送先である所定の装置へ搬送される。
 このようミルに設けられた粉砕ローラは、被粉砕物を粉砕することで摩耗していく。粉砕ローラの摩耗は、ミルの運転状態や性能に様々な影響を及ぼす可能性があるので、粉砕ローラの摩耗状態を把握するために、ミルには粉砕ローラの摩耗状態を診断する装置を設ける場合がある(例えば、特許文献1)。
 特許文献1には、ミルに設けられた各種検出器からの検出値とミル構造(リング径、ローラ径等)、分級器構造、炭種とからシミュレーションによりミル差圧またはミル動力の適正値を求め、これとミル差圧検出器または動力検出器からの実測値との偏差からローラ等の摩耗状態を診断するローラの摩耗状態診断装置が開示されている。この装置では、適正値と実測値との比較結果から異常がある場合に、警報の発生、ミルの停止、他ミルの起動あるいは負荷配分等の処置を行なう。
特公平8-206号公報
 粉砕ローラの摩耗によるミルの性能への影響は、粉砕装置における粉砕ローラの設置態様によって、異なる影響を及ぼすことがわかった。
 例えば、粉砕テーブルに対する自由度が比較的低いように、粉砕ローラが設けられている場合には、粉砕ローラが摩耗することで、粉砕性能が低下する。一方、粉砕テーブルに対する自由度が比較的高いように、粉砕ローラが設けられている場合には、ローラ部は、被粉砕物を粉砕する際に、比較的負荷の少ない位置に移動する。これにより、ローラ部の形状は、当該粉砕装置における粉砕態様に適した形状となるように摩耗することとなる。よって、このような粉砕装置では、粉砕ローラが摩耗することで、粉砕性能が向上する。
 このように、粉砕装置によって、粉砕ローラが摩耗に伴って、ミルの性能が低下するものと、向上するものとがあることがわかった。
 特許文献1では、ローラの摩耗に伴って、ミル差圧が増加する事態しか考慮されていない。ミルの差圧が増加するということは、ミル内の圧力損失の増大を示し、すなわち、粉砕性能が低下していることを意味している。よって、特許文献1では、粉砕性能が低下する事態しか想定されていない。また、特許文献1の装置では、ローラ摩耗の診断結果から、適切に稼働させることについては、考慮されていない。
 このため、粉砕部の経年変化に応じて、ミルを適切に稼働させることができない可能性があった。
 本発明は、このような事情に鑑みてなされたものであって、粉砕部が経年変化しても、粉砕装置を適切に稼働させることができる粉砕装置及び粉砕装置の制御方法を提供することを目的とする。
 上記課題を解決するために、本発明の粉砕装置及び粉砕装置の制御方法は以下の手段を採用する。
 本発明の一態様に係る粉砕装置は、被粉砕物を粉砕する粉砕装置であって、上下方向の軸を中心に回転駆動するテーブル部と、該テーブル部の上面と対向して配置されるローラ部と、を有し、前記テーブル部の前記上面と前記ローラ部との間に被粉砕物を挟み込むことで被粉砕物を粉砕する粉砕部と、現在における前記粉砕装置の負荷を導出する負荷導出部と、現在における前記粉砕装置の性能値を計測する性能値計測部と、所定の基準時において、前記負荷導出部によって導出された負荷で前記粉砕装置が運転されている場合における前記粉砕装置の性能値を導出する性能値導出部と、前記性能値計測部が計測した現在における前記粉砕装置の性能値と前記性能値導出部が導出した前記基準時における前記粉砕装置の性能値とに基づいて、前記性能値計測部が計測した現在における前記粉砕装置の性能値が、前記性能値導出部が導出した前記基準時における前記粉砕装置の性能値に近づくように、前記粉砕装置の性能値に影響を与えるパラメータを変更する制御部と、を備える。
 粉砕装置の稼働に伴って、被粉砕物を粉砕する粉砕部の形状等は、経年変化する。粉砕部の経年変化としては、ローラ部及びテーブル部の摩耗等による変形が挙げられる。粉砕部が経年変化すると、粉砕装置の性能値が変動する。
 上記構成では、現在における粉砕装置の性能値が、基準時における粉砕装置の性能値に近づくように、粉砕装置の性能値に影響を与えるパラメータを変更している。これにより、粉砕装置の稼働に伴って、粉砕部が経年変化しても、粉砕装置の性能値を所定の基準時における性能値とすることができる。このように、性能値をコントロールすることができるので、粉砕部が経年変化しても、粉砕装置を性能値(粉砕部の経年変化)に応じて適切に稼働させることができる。
 なお、所定の基準時とは、例えば、粉砕装置の初期運転時や、粉砕装置の慣らし運転時などの、粉砕部が経年変化する前等の時期が挙げられる。
 また、本発明の一態様に係る粉砕装置は、前記ローラ部に対して、前記テーブル部の前記上面方向への押圧荷重を付与する荷重付与部を備え、前記パラメータは、前記ローラ部に対して付与される押圧荷重を有し、前記制御部は、前記性能値計測部が計測した現在における前記粉砕装置の性能値と前記性能値導出部が導出した前記基準時における前記粉砕装置の性能値とに基づいて、前記性能値計測部が計測した現在における前記粉砕装置の性能値が、前記性能値導出部が導出した前記基準時における前記粉砕装置の性能値に近づくように、前記荷重付与部が付与する押圧荷重を調整する荷重制御部を有してもよい。
 粉砕機の性能値に影響を与えるパラメータとして、粉砕機の粉砕容量Cがある。粉砕装置の粉砕容量Cは、下記式(1)により計算される。
  C=k×M×ω×D・・・(1)
  但し、k:係数
     M:ローラ部の押圧荷重
     ω:テーブル部の回転数
     D:テーブル部の直径
 このように、粉砕機の粉砕容量Cを決めるパラメータとして、押圧荷重、テーブル部の回転数、及び、テーブル部の直径がある。テーブル部の直径は、一度テーブル部を据え付けた後には、容易に変更することができない。そこで、発明者らは、押圧荷重及びテーブル部の回転数に着目した。押圧荷重及び/又はテーブル部の回転数を変化させることで、粉砕容量Cを増減させることが可能となる。粉砕容量Cを増減させることで、粉砕機の性能値へ調整することができる。以下では、粉砕容量Cを決める要素である押圧荷重と、テーブル部の回転数との積を、粉砕エネルギーとも称する。
 上記構成では、現在における粉砕装置の性能値が、基準時における粉砕装置の性能値に近づくように、荷重付与部が付与する押圧荷重を調整している。上述のように、押圧荷重は、性能値に影響を与えるパラメータの一つである。これにより、粉砕装置の稼働に伴って、粉砕部が経年変化しても、荷重付与部が付与する押圧荷重を調整することで、粉砕装置の性能値を所定の基準時における性能値とすることができる。このように、性能値をコントロールすることができるので、粉砕部が経年変化しても、粉砕装置を性能値(粉砕部の経年変化)に応じて適切に稼働させることができる。
 また、本発明の一態様に係る粉砕装置は、所定の回転数となるように前記テーブル部を回転駆動する回転駆動部を備え、前記パラメータは、前記テーブル部の回転数を有し、前記制御部は、前記性能値計測部が計測した現在における前記粉砕装置の性能値と前記性能値導出部が導出した前記基準時における前記粉砕装置の性能値とに基づいて、前記性能値計測部が計測した現在における前記粉砕装置の性能値が、前記性能値導出部が導出した前記基準時における前記粉砕装置の性能値に近づくように、前記駆動部が回転させる前記テーブル部の回転数を調整するテーブル回転数制御部を有してもよい。
 上記構成では、現在における粉砕装置の性能値が、基準時における粉砕装置の性能値に近づくように、テーブル部の回転数を調整している。上述のように、テーブル部の回転数は、性能値に影響を与えるパラメータの一つである。これにより、粉砕装置の稼働に伴って、粉砕部が経年変化しても、荷重付与部が付与する押圧荷重を調整することで、粉砕装置の性能値を所定の基準時における性能値とすることができる。このように、性能値をコントロールすることができるので、粉砕部が経年変化しても、粉砕装置を性能値(粉砕部の経年変化)に応じて適切に稼働させることができる。
 また、テーブル部の回転数を調整ことで、押圧荷重を調整する場合と比較して、粉砕機の振動値を低減することができる。
 また、本発明の一態様に係る粉砕装置は、前記粉砕装置のハウジングの内部に設けられ、前記ローラ部を支持するフレーム部を備え、前記フレーム部は、前記テーブル部に対して揺動自在であって、前記ローラ部は、前記フレーム部に対して揺動自在に支持されていて、前記荷重制御部は、前記荷重付与部が付与する押圧荷重が低減するように、前記荷重付与部の押圧荷重を調整してもよい。
 上記構成では、フレーム部がテーブル部に対して揺動自在であって、ローラ部がフレーム部に対して揺動自在に支持されているので、ローラ部が複数方向に移動自在な構成となっている。すなわち、ローラ部は、テーブル部に対する自由度が比較的高い状態で、支持されている。これにより、ローラ部は、被粉砕物を粉砕する際に、移動可能な位置のうち、最も負荷の少ない位置に移動する。一般に、粉砕部による粉砕態様は、粉砕装置の設置環境や、粉砕する被粉砕物によって異なる。上記構成のローラ部は、粉砕する際に、最も負荷の少ない位置に移動するので、当該粉砕装置における粉砕態様に応じるように摩耗する。よって、経年変化によって、ローラ部の形状は、当該粉砕装置における粉砕態様に適した形状となるように変化する。したがって、上記構成では、粉砕部が経年変化することにより、粉砕性能(粉砕効率)が向上するように、粉砕装置の性能値が変化する。
 上記構成では、荷重付与部が付与する押圧荷重が低減するように、荷重付与部の押圧荷重を調整している。押圧荷重を低減すると、被粉砕物をテーブル部とローラ部と間に挟み込む力が弱まるので、粉砕性能は抑制される。これにより、粉砕部の経年変化による粉砕性能の向上を抑制し、粉砕部による過剰な被粉砕物の粉砕を抑制することができる。したがって、過剰な粉砕に起因する粉砕部の摩耗等の速度を低減し、粉砕部の製品寿命を長くすることができる。
 また、上記構成では、粉砕部が経年変化することにより、粉砕性能(粉砕効率)が向上するので、被粉砕物の粉砕量が増大し、粉砕部の駆動力が増大するが、荷重付与部が付与する押圧荷重が低減して、粉砕性能の向上を抑制しているので、粉砕部の駆動力の増大も抑制することができる。したがって、過剰な粉砕に起因する粉砕部の駆動力の増大を抑制し、粉砕装置の省エネルギー化を図ることができる。
 また、本発明の一態様に係る粉砕装置は、前記粉砕装置の性能値とは、前記粉砕部を駆動する駆動力を含んでもよい。
 粉砕部が経年変化すると、粉砕部の経年変化に応じて粉砕部の粉砕性能も変化する。これにより、粉砕部を駆動する駆動力も変化する。駆動力の変化の要因としては、粉砕部の形状の変化によって粉砕性能が低下することで、より多くの駆動力が必要となる事態や、粉砕部の形状の変化によって粉砕性能が向上することで、被粉砕物の粉砕量が増加する事態が挙げられる。上記構成では、粉砕部の経年変化に起因して変化する粉砕部の駆動力を性能値としている。したがって、的確に粉砕部の経年変化を把握することができる。
 また、上記構成では、粉砕装置の性能値として、粉砕部を駆動する駆動力を用いているので、粉砕装置の稼働に伴って、粉砕部が経年変化しても、粉砕部を駆動する駆動力を所定の基準時における駆動力とすることができる。このように、駆動力をコントロールすることができるので、粉砕部が経年変化しても、粉砕装置を適切な駆動力で稼働させることができる。したがって、過剰な粉砕に起因する粉砕部の駆動力の増大を的確に抑制し、より粉砕装置の省エネルギー化を図ることができる。
 また、本発明の一態様に係る粉砕装置は、粉砕した被粉砕物を外部へ搬送する搬送用ガスを供給する搬送用ガス供給部と、前記搬送用ガスによって搬送される被粉砕物を排出する排出部と、を備え、前記粉砕装置の性能値とは、前記搬送用ガス供給部側の圧力と前記排出部側の圧力との差圧を含んでもよい。
 粉砕部が経年変化すると、粉砕部の経年変化に応じて粉砕部の粉砕性能も変化する。粉砕性能が変化すると、粉砕装置内の粉砕された被粉砕物量も変化する。粉砕された被粉砕物量は、搬送用ガス流れに対する圧力損失となるので、搬送用ガス供給部側と排出部側との差圧も変化する。すなわち、粉砕部の経年変化応じて、差圧も変化する。上記構成では、粉砕部の経年変化に起因して変化する差圧を性能値としている。したがって、的確に粉砕部の経年変化を把握することができる。
 また、本発明の一態様に係る粉砕装置は、前記荷重付与部が付与する押圧荷重の調整度合いを導出するための機械学習を行う学習部と、前記学習部は、前記機械学習に基づいて、前記調整度合いを導出し、前記荷重制御部は、前記学習部が導出した前記調整度合いとなるように、前記荷重付与部が付与する押圧荷重を調整してもよい。
 上記構成では、荷重付与部が付与する押圧荷重を低減させる低減度合いを導出するための機械学習を行った学習部が、機械学習に基づいて導出した調整度合いで、押圧荷重を調整している。これにより、的確に押圧荷重を調整することができる。
 本発明の一態様に係る粉砕装置の制御方法は、被粉砕物を粉砕する粉砕装置の制御方法であって、上下方向の軸を中心に回転駆動するテーブル部の上面と、該テーブル部の前記上面と対向して配置されるローラ部との間に被粉砕物を挟み込むことで被粉砕物を粉砕する粉砕ステップと、現在における前記粉砕装置の負荷を導出する負荷導出ステップと、現在における前記粉砕装置の性能値を計測する性能値計測ステップと、所定の基準時において、前記負荷導出ステップで導出された負荷で前記粉砕装置が運転されている場合における前記粉砕装置の性能値を導出する性能値導出ステップと、前記性能値計測ステップで計測した現在における前記粉砕装置の性能値と前記性能値導出ステップで導出した前記基準時における前記粉砕装置の性能値とに基づいて、前記性能値計測ステップで計測した現在における前記粉砕装置の性能値が、前記性能値導出ステップで導出した前記基準時における前記粉砕装置の性能値に近づくように、前記粉砕装置の性能値に影響を与えるパラメータを変更する制御ステップと、を備えている。
 本発明によれば、粉砕部が経年変化しても、粉砕装置を適切に稼働させることができる。
本発明の第1実施形態に係るミルを示す縦断面図である。 図1のミルの制御装置を示すブロック図である。 図2の制御装置が行う運転制御処理を示すフローチャートである。 図2の制御装置が行う性能値取得処理を示すフローチャートである。 図3の変形例を示すフローチャートである。 本発明の第1実施形態に係るミルにおけるミル負荷率と圧力損失との関係を示したグラフである。 本発明の第1実施形態に係るミルにおけるミル負荷率と粉砕動力との関係を示したグラフである。 本発明の第1実施形態に係るミルにおける油圧と駆動力比との関係を示したグラフである。 本発明の第1実施形態に係るミルにおける油圧と循環炭差圧比との関係を示したグラフである。 本発明の第1実施形態に係るミルにおける時間と油圧との関係を示したグラフである。 本発明の第1実施形態に係るミルにおける時間と駆動力との関係を示したグラフである。 本発明の第1実施形態に係るミルにおける時間と循環炭差圧との関係を示したグラフである。 時間と粉砕エネルギーとの関係を示したグラフである。 時間と循環炭差圧との関係を示したグラフである。 時間と駆動力との関係を示したグラフである。 本発明の第2実施形態に係るミルの制御装置を示すブロック図である。 図12の制御装置が行う運転制御処理を示すフローチャートである。 図13の変形例を示すフローチャートである。 本発明の第2実施形態に係るミルにおける粉砕回転テーブルの回転数と駆動力比との関係を示したグラフである。 本発明の第2実施形態に係るミルにおける粉砕回転テーブルの回転数と循環炭差圧比との関係を示したグラフである。 本発明の第2実施形態に係るミルにおける時間と粉砕回転テーブルの回転数との関係を示したグラフである。 本発明の第2実施形態に係るミルにおける時間と循環炭差圧比との関係を示したグラフである。 本発明の第2実施形態に係るミルにおける時間と駆動力との関係を示したグラフである。 本発明の第2実施形態に係るミルにおける時間と振動値との関係を示したグラフである。 本発明の第3実施形態に係るミルの制御装置を示すブロック図である。
[第1実施形態]
 以下に、本発明に係る粉砕装置及び粉砕装置の制御方法の第1実施形態について、図面を参照して説明する。本実施形態では、火力発電設備に設けられ、固体燃料を粉砕する粉砕装置に、本発明を適用した例について説明する。
 図1には、ミル1の詳細が示されている。図1は、原料(燃料)である石炭を微粉砕するミル1、並びに、ミル1の原料供給系及び微粉砕物搬送系を含むミル設備を示している。
 ミル1は、竪型ミルとされており、固形物である石炭を粉砕する。なお、ミル1は、石炭のみを粉砕する形式であってもよいし、石炭と共にバイオマス燃料を粉砕する形式であってもよいし、バイオマス燃料のみを粉砕する形式であってもよい。本実施形態では、石炭のみを粉砕する場合について説明する。
 ミル1のハウジング31は、竪型の円筒中空形状をなし、天井部32の中央部にセンターシュート33が取り付けられている。センターシュート33は、上端部が給炭管(図示省略)と接続され、石炭を貯留しているバンカ(図示省略)から導かれた石炭をハウジング31内に供給する。センターシュート33は、ハウジング31の中心位置に上下方向(鉛直方向)に沿って配置され、下端部がハウジング31内まで延設されている。
 ハウジング31の下部には、架台34が地面に設置され、この架台34上に粉砕回転テーブル35が回転自在に配置されている。粉砕回転テーブル35の中央に対してセンターシュート33の下端部が対向するように配置されている。センターシュート33は、石炭を上方から下方に向けて供給する。また、ハウジング31の内部には、センターシュート33と粉砕回転テーブル35との間に、逆円錐形状であって、且つ、筒状のホッパ11が設けられている。
 給炭管には、ロータリーフィーダ(図示省略)が装着されていて、ロータリーフィーダは、定量の石炭を切り出す、すなわち、石炭を所定量ごとに供給する。
 石炭は、粉砕部30によって粉砕される。粉砕部30は、粉砕回転テーブル(テーブル部)35及び粉砕ローラ(ローラ部)36等を有している。
 粉砕回転テーブル35は、上下方向(鉛直方向)の中心軸線周りに回転自在であると共に、駆動装置20によって駆動される。粉砕回転テーブル35の上面は、中心部が高く、中心部から外側に向けて低くなるような傾斜形状をなし、外周部が内側から外側へ上方に湾曲した形状をなしている。駆動装置20は、図示しないインバータを有している。駆動装置20は、インバータによって、粉砕回転テーブル35の回転数を調整することができる。
 粉砕回転テーブル35の上方には、粉砕回転テーブル35の上面に対向して複数、例えば3台の粉砕ローラ36が配置されている。各粉砕ローラ36は、粉砕回転テーブル35の外周部の上方に、周方向に均等間隔(3台の粉砕ローラ36の場合、120°間隔)で配置されている。なお、図1では、説明上、2台の粉砕ローラ36を対称に図示しているが、3台の粉砕ローラ36が120°間隔で配置される場合、粉砕ローラ36の配置は、図1の図示とは異なる。
 粉砕ローラ36は、ブラケット38を介して加圧アーム(フレーム部)37に対して揺動可能に接続されている。ブラケット38は、加圧アーム37にヒンジによって結合されている。加圧アーム37は、平面視形状がほぼ六角形形状を有し、隣り合う粉砕ローラ36の間の3点でそれぞれテンションロッド(荷重付与部)39と接続されている。テンションロッド39は、下部に設けられた油圧シリンダ部49を有しており、油圧シリンダ部49は、油圧により、粉砕ローラ36の押圧荷重を変更させることができる。
 上記構成により、ブラケット38が加圧アーム37によって支持され、粉砕ローラ36がブラケット38によって加圧アーム37に対して揺動可能とされている。加圧アーム37は、テンションロッドボックス40に収容されたテンションロッド39と接続されている。また、加圧アーム37は、ハウジング31の内部に設けられ、油圧シリンダ部49の油圧によって上下方向(鉛直方向)の位置が調整される。これにより、粉砕ローラ36によって、粉砕回転テーブル35上の固形物に対して作用する負荷(押圧荷重)が変更可能である。また、加圧アーム37は、粉砕回転テーブル35に対して、揺動自在にテンションロッド39に支持されている。テンションロッド39の下端は、地面に対して固定されている。
 粉砕回転テーブル35が回転すると、粉砕ローラ36は、粉砕回転テーブル35や固形物から受ける力によって従動し、粉砕ローラ36の回転軸周りに転動する。石炭は、粉砕ローラ36と粉砕回転テーブル35の噛み合わせによって、両者間で押圧されて粉砕される。石炭が粉砕されることによって、微粉上の粉砕物(以下、「微粉炭」という。)が生成される。
 ハウジング31の下部には、1次空気ダクト(搬送用ガス供給部)13が接続されている。1次空気ダクト13によって供給された1次空気(搬送用ガス)60は、ハウジング31内へ導かれ、粉砕回転テーブル35の下方に位置する空間に供給される。
 ハウジング31の上部には、回転分級機41が設けられている。回転分級機41は、センターシュート33を取り囲むように配置され、センターシュート33の周りを回転する。回転分級機41の回転に伴い、その外周側に取り付けられた複数のフィン42が周方向に走行する。粉砕回転テーブル35と粉砕ローラ36によって粉砕された微粉炭は、粉砕回転テーブル35の下方から粉砕回転テーブル35の外周側を通り上昇する空気の流れによって上方へと巻き上げられる。巻き上げられた微粉炭のうち比較的大きな径の微粉炭は、フィン42によって叩き落とされ、粉砕回転テーブル35へと戻されて再び粉砕される。これにより、回転分級機41によって微粉炭が分級される。なお、回転分級機41は、駆動部50の駆動力によって回転している。
 天井部32には複数本の送炭管(排出部)9が接続されており、送炭管9は、回転分級機41によって分級された後の微粉炭を排出し、排出された微粉炭をボイラ本体へと導く。複数本の送炭管9は、天井部32に対応して設けられた複数の開口部にそれぞれ接続される。送炭管9は、ミル1のサイズや粉砕容量に応じて変化するが、2本~8本の範囲にあり、4本~6本の場合が多い。
 本実施形態に係るミル1における石炭の流れについて以下で説明する。
 バンカ内に貯蔵されている石炭は、給炭管及びセンターシュート33に送給される。なお、このとき、給炭管に装着されたロータリーフィーダは、定量の石炭を切り出し、バイオマス燃料がミル1内に向けて落下する(a)。
 ミル1内に供給された石炭は、粉砕回転テーブル35上に落下し(b)、遠心力で外周側へ移動し、複数の粉砕ローラ36と粉砕回転テーブル35との間で粉砕される。粉砕された微粉炭は、1次空気ダクト13及びスロートベーン44を通じてミル1内に吹き込まれる1次空気60によって、ミル1内を上昇する(c)。この上昇中に微粉炭のうち、粒径の大きい粗粒の一部は、重力により落下し、粉砕回転テーブル35に戻される。
 ミル1の上部では、複数のフィン(羽根)42からなる回転分級機41が回転していて、粗く重い微粉炭は、フィン42の遠心力によって、はじかれるように叩き落とされる。また、叩き落された微粉炭は、ホッパ11の内周面を滑り落ち、粉砕回転テーブル35に戻される(d)。微粉砕物は細かくなるまで再粉砕が繰り返される。
 細かくなった微粉炭は、回転分級機41を通過し(e)、送炭管9を通じて外部へ空気搬送される(f)。空気搬送された微粉炭は、ボイラ(図示省略)に設けられたバーナに送られて燃焼する。
 次に、ミル1に設けられている各種計測器について説明する。ミル1には、ミル1の運転状態を計測する計測器が備えられている。具体的には、ミル1に供給される石炭の量(給炭量)を計測する給炭量計測器21、1次空気ダクト13から供給される一次空気の流量(一次空気量)を計測する一次空気量計測器22、回転分級機41のフィン42の回転数(分級機回転数)を計測する分級機回転数計測器23、テンションロッド39の油圧(より詳細には、油圧シリンダ部49の油圧)を計測する油圧計測器24及び粉砕回転テーブル35の回転数を計測するテーブル回転数計測器25である。
 また、ミル1には、1次空気ダクト13に設けられた圧力計(図示省略)が測定した圧力と送炭管9に設けられた圧力計(図示省略)が測定した圧力との差圧を計測する差圧計測器26及び粉砕部30の駆動力を計測する駆動力計測器27が設けられている。
 なお、粉砕部30の駆動力とは、例えば、粉砕回転テーブル35を回転駆動するために駆動装置20より供給される電力である。なお、粉砕部30において、粉砕ローラ36も電力駆動される場合には、粉砕部30の駆動力として、粉砕回転テーブル35及び粉砕ローラ36の駆動電力を取得することとすればよい。これらの計測器で計測された各種結果は、制御装置15に出力される。
 制御装置15は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及びコンピュータ読み取り可能な記憶媒体等から構成されている。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記憶媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。なお、プログラムは、ROMやその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等である。
 制御装置15は、図2に示すように、負荷導出部16と、性能値導出部17と、判断部18と、荷重制御部19と、を備え、ミル1の運転制御処理を行う。
 負荷導出部16は、ミル1の負荷率を導出する。具体的には、ミル1の現在の運転状態に係る情報として、ミル1に設けられた各種計測器の計測結果を取得し、取得した計測結果に基づいてミル1の負荷率を導出する。本実施形態では、負荷導出部16は、各種計測器の計測結果として、給炭量計測器21が計測した給炭量、一次空気量計測器22が計測した一次空気量、分級機回転数計測器23が計測した分級機回転数、油圧計測器24が計測した油圧及びテーブル回転数計測器25が計測した粉砕回転テーブル35の回転数を取得する。
 また、負荷導出部16は、石炭の性状の情報を取得する。詳細には、石炭の粉砕の難易を表す指標を取得する。石炭の粉砕の難易を表す指標とは、例えば、ハードグローブ粉砕性指標(Hardgrobe Grindability Index(HGI))である。HGIは、例えば、発電プラント(ミル1)の運転員によって制御盤28等に入力され、負荷導出部16は制御盤28よりHGIを取得する。なお、ミル1においてHGIを計測器により計測(または推定)することが可能な場合には、ミル1は該計測器からHGIを取得することとしてもよい。また、固体燃料の粉砕の難易を表す指標であれば、ハードグローブ粉砕性指標に限らず使用可能であり、例えば、全水分等を使用してもよい。
 ミル負荷率MLは、上述の計測器の計測結果により求められる。以下に、本実施形態に係る負荷導出部16が行うミル負荷率MLの導出方法の一例について説明する。
 ミル負荷率MLは、例えば、下記式(2)により計算される。
  ML=C/C1・・・(2)
  但し、C:給炭量
   C1:石炭性状
 また、石炭性状C1は、下記式(3)により計算される。
  C1=C0×Fm×Ff×Fg×(その他の係数)・・・(3)
  但し、C0:ミル1における基準粉砕容量
     Fm:水分量の違いによるミル容量補正係数
     Ff:ミル微粉度(例えば、出口200#パス率)によるミル容量補正係数
   Fg:石炭の粉砕性指数(例えば、HGI)によるミル容量補正係数
 また、出口200#パス率は、ミル1の試運転時等のデータを用いて作成された出口200#パス率と、分級機回転数や空気量から求める理論分級径との相関を定めたテーブル等によって求められる。すなわち、当該テーブルに、計測された分級機回転数や一次空気量を適用することで、出口200#パス率を推定することができる。
 性能値導出部17は、性能値計測部が計測した性能値に基づいて、所定の基準時において負荷導出部16によって導出された負荷率でミル1が運転されている場合におけるミル1の性能値を導出する。本実施形態では、所定の基準時を、ミル1の試運転時(すなわち、粉砕ローラ36の摩耗前)としている。また、本実施形態では、性能値計測部として、差圧計測部及び駆動力計測部を用いている。また、本実施形態では、性能値として、1次空気ダクト13の圧力と送炭管9の圧力との循環炭差圧、及び、粉砕部30の駆動力を用いている。
 したがって、本実施形態に係るミル1では、差圧計測器26が計測した差圧及び駆動力計測器27が計測した駆動力に基づいて、試運転時の状態のミル1が、現在運転中のミル1と同じ負荷率で運転した場合における循環炭差圧及び駆動力を、性能値導出部17が導出する。
 なお、循環炭差圧とは、差圧計測器26が計測した差圧から、石炭等の被粉砕物がミル1に供給されていない状態における差圧(以下、「空気差圧」という。)を引くことで算出される差圧である。すなわち、循環炭差圧とは、ミル1内に充満する微粉炭に起因する圧力損失によって生じる差圧である。なお、空気差圧は、ミル1内に被粉砕物が供給される前であって、1次空気ダクト13からミル1内に空気を供給した状態における、1次空気ダクト13の圧力及び送炭管9の圧力によって算出される。循環炭差圧を算出する演算は、差圧計測器26で行ってもよく、制御装置15で行ってもよい。本実施形態では、制御装置15で算出する場合について説明する。
 したがって、本実施形態に係るミル1では、差圧計測器26が計測した差圧に基づいて算出された循環炭差圧及び駆動力計測器27が計測した駆動力に基づいて、試運転時の状態のミル1が、現在運転中のミル1と同じ負荷率で運転した場合における性能値(循環炭差圧及び駆動力)を、性能値導出部17によって導出している。
 具体的には、性能値導出部17は、ミル1の試運転時における駆動力と負荷率との関係を示すグラフ(図6の実線参照)やテーブルを用いて、現在の運転中のミル1の負荷率に応じたミル1の基準時における駆動力を導出する。なお、図6は、ミル負荷率と圧力損失との関係を示したグラフであって、実線はローラ摩耗前を示し、破線はローラ摩耗時を示している。
 また、性能値導出部17は、ミル1の試運転時における循環炭差圧と負荷率との関係を示すグラフ(図7の実線参照)やテーブルを用いて、現在の運転中のミル1の負荷率に応じたミル1の基準時における循環炭差圧を導出する。なお、図7は、ミル負荷率と駆動力との関係を示したグラフであって、実線はローラ摩耗前を示し、破線はローラ摩耗時を示している。
 判断部18は、性能値計測部が計測した現在の性能値と、性能値導出部17が導出した基準時の性能値とを比較し、テンションロッド39による押圧荷重の調整(補正)が必要か、不必要かを判断する。具体的には、駆動力計測器27が計測した現在の駆動力Wが、性能値導出部17が導出した基準時の駆動力Wiよりも大きい場合(Wi>W)であって、かつ、差圧計測器26が計測した循環炭差圧ΔPcが、性能値導出部17が導出した基準時の循環炭差圧ΔPciよりも小さい場合(ΔPc<ΔPci)には、調整が必要であると判断する。また、どちらかの条件が満たされていない場合には、調整が必要ないと判断する。
 なお、判断部18の判断基準は、一例であり、これに限定されない。例えば、駆動力計測器27が計測した現在の駆動力Wが、性能値導出部17が導出した基準時の駆動力Wiよりも、所定の閾値α以上大きい場合(Wi>W+α)であって、かつ、差圧計測器26が計測した循環炭差圧ΔPcが、性能値導出部17が導出した基準時の循環炭差圧ΔPciよりも所定の閾値以上β小さい場合(ΔPc<ΔPci-β)には、調整が必要であると判断してもよい。
 また、上記説明では、2つの条件を両方満たした場合に、調整が必要であると判断する例について説明したが、2つの条件のうちどちらか一方を満たした場合に、調整が必要であると判断してもよい。
 荷重制御部19は、性能値計測部が計測した現在における粉砕装置の性能値(駆動力及び循環炭差圧)が、性能値導出部17が導出した基準時におけるミル1の性能値(駆動力及び循環炭差圧)と同一の値になるように、テンションロッド39が付与する油圧(押圧荷重)を調整する。具体的には、油圧と性能値との関係を示したグラフである図8及び図9を用いて油圧を調整する。
 図8は、押圧荷重の調整方法に関するグラフであって、横軸が油圧Opを示し、縦軸が駆動力比(W/Wi)を示している。また、実線がローラ摩耗前を示し、破線がローラ摩耗時を示している。なお、ローラ摩耗前のデータは、ミル1の試運転時等に取得しておく。
 図8に示すように、ローラ摩耗前において、粉砕ローラ36に対してOpi分の油圧によって押圧荷重を作用させていた場合、ローラ摩耗時には、Op分の油圧で押圧荷重を作用させることで、ローラ摩耗前と同一の駆動力(すなわち、駆動力比(W/Wi)が1となる)とすることができる。したがって、荷重制御部19は、この場合には、OpiとOpとの差分だけ、油圧を低減する。
 また、図9は、押圧荷重の調整方法に関するグラフであって、横軸が油圧Opを示し、縦軸が循環炭差圧比(ΔPc/ΔPci)を示している。また、実線がローラ摩耗前を示し、破線がローラ摩耗時を示している。なお、ローラ摩耗前のデータは、ミル1の試運転時等に取得しておく。
 図9に示すように、ローラ摩耗前において、粉砕ローラ36に対してOpi分の油圧によって押圧荷重を作用させていた場合であっても、ローラ摩耗時には、Op分の油圧で押圧荷重を作用させれば、ローラ摩耗前と同一の循環炭差圧(すなわち、循環炭差圧比(ΔPc/ΔPci)が1となる)を得ることができる。したがって、この場合には、荷重制御部19は、OpiとOpとの差分だけ、油圧を低減する。
 次に、本実施形態に係る制御装置15が行う運転制御処理について図3及び図4を用いて説明する。
 制御装置15は、ミル1の負荷率の導出に必要なデータを取得する(S1)。具体的には、制御装置15の負荷導出部16が、ミル1に設けられた各種計測器の計測結果である給炭量計測器21が計測した給炭量、一次空気量計測器22が計測した一次空気量、分級機回転数計測器23が計測した分級機回転数、油圧計測器24が計測した油圧及びテーブル回転数計測器25が計測した粉砕回転テーブル35の回転数を取得する。また、負荷導出部16は、制御盤28より、粉砕対称である石炭のHGIを取得する。
 ミル1の負荷率の導出に必要なデータを取得すると、制御装置15の負荷導出部16は、S1で取得したデータに基づいて、ミル負荷率を導出する(S2)。ミル負荷率を導出すると、次に制御装置15は、性能値導出部17によって、基準時におけるミル1の駆動力Wi及び循環炭差圧ΔPciを導出する(S3)。基準時におけるミル1の駆動力Wi及び循環炭差圧ΔPciを導出すると、次に制御装置15は、性能値取得処理を行い、現在の性能値を取得する(S4)。性能値取得処理の詳細については後述する。
 S4で現在の性能値を取得すると、制御装置15は、S5に移行する。S5では、判断部18が、S4で取得した現在の性能値(W、ΔPc)と、S3で導出した基準時の性能値(Wi、ΔPci)とを比較する。具体的には、現在の駆動力Wが、基準時の駆動力Wiよりも大きく(Wi>W)、かつ、現在の循環炭差圧ΔPcが、基準時の循環炭差圧ΔPciよりも小さい(ΔPc<ΔPci)か否かを判断する。
 S5で、条件を満たしていると判断した場合には、S6に進む。S6では、荷重制御部19によって、現在の性能値(W、ΔPc)が基準時の性能値(Wi、ΔPci)と同一の値になるように、テンションロッド39が付与する油圧(押圧荷重)を調整することを決定する。S6で油圧を調整することを決定すると、S7に進む。S7では、油圧制御信号をテンションロッド39に送信し、S6で決定したように油圧を調整する。油圧制御信号を送信すると、制御装置15は、本処理を終了する。
 また、S5で、条件を満たしていないと判断した場合には、S8に進む。S8では、テンションロッド39が付与する油圧(押圧荷重)を調整しないことを決定する。S8で油圧を調整することを決定すると、S7に進む。S7では、S8で決定したように油圧を調整しない油圧制御信号をテンションロッド39に送信する。油圧制御信号を送信すると、制御装置15は、本処理を終了する。
 次に、運転制御処理のS4で行う性能値取得処理について図4のフローチャートを用いて説明する。
 本処理を開始すると、まず制御装置15は、一次空気量計測器22が計測した一次空気量を取得する(S11)。次に、S12に移行し、空気差圧を取得する。空気差圧を取得すると、次に制御装置15は、差圧計測器26から差圧を取得する(S13)。差圧を取得すると、制御装置15は、S13で取得した差圧と、S12で取得した空気差圧とに基づいて、循環炭差圧(ΔPc)を算出する(S14)。具体的には、S13で取得した差圧から、S12で取得した空気差圧を除することで、循環炭差圧(ΔPc)を算出する。循環炭差圧(ΔPc)を算出すると、制御装置15は、駆動力計測器27から駆動力(W)を取得する(S15)。駆動力(W)を取得すると、制御装置15は、本処理を終了する。
 なお、上記で説明した処理は一例であり、本発明はこれに限定されない。例えば、図5に示すように、判断部18が判断を行ってもよい。図5では、判断部18が、判断を行うステップが図3に示した例と相違している。その他のステップについては、図3と同様であるので、その詳細な説明は省略する。
 図5で示した例では、S25において、S4で取得した現在の性能値(W、ΔPc)と、S3で導出した基準時の性能値(Wi、ΔPci)との比率(η(η=W/Wi)、λ(λ=ΔPc/ΔPci))を導出し、それらの比率の時間変化(dη/dt、dλ/dt)を導出する。そして、駆動力の比率の時間変化(dη/dt)が0よりも大きく(dη/dt>0)、かつ、循環炭差圧(ΔPc)の比率の時間変化(dλ/dt)が0よりも小さい(dλ/dt<0)か否かを判断する。条件を満たしていると判断した場合には、S6に進み、条件を満たしていないと判断した場合には、S8に進む。
 本実施形態によれば、以下の作用効果を奏する。
 ミル1の性能値に影響を与えるパラメータとして、ミル1の粉砕容量Cがある。ミル1の粉砕容量Cは、下記式(4)により計算される。
  C=k×M×ω×D・・・(4)
  但し、k:係数
     M:粉砕ローラに対する押圧荷重
     ω:粉砕回転テーブルの回転数
     D:粉砕回転テーブルの直径
 このように、ミル1の粉砕容量Cを決めるパラメータとして、押圧荷重、粉砕回転テーブル35の回転数、及び、粉砕回転テーブル35の直径がある。粉砕回転テーブル35の直径は、一度粉砕回転テーブル35を据え付けた後には、容易に変更することができない。そこで、発明者らは、押圧荷重及び粉砕回転テーブル35の回転数に着目した。押圧荷重及び/又はテーブル部の回転数を変化させることで、粉砕容量Cを増減させることが可能となる。粉砕容量Cを増減させることで、ミル1の性能値へ調整することができる。以下では、粉砕容量Cを決める要素である押圧荷重と、粉砕回転テーブル35の回転数との積を、粉砕エネルギーとも称する。
 図11Aから図11Cは、本実施形態の基本的な概念を示したものである。ミル1への石炭の供給量が一定としたときに、従来(制御無し)の場合には、図11Aに示すように粉砕エネルギーは一定である。このため、図11Bに示すように粉砕時間の経過に伴いミル1の圧力損失(循環炭差圧)が低下し、図11Cに示すように粉砕動力(駆動装置20の駆動力)が増加する。一方、本実施形態(制御あり)の場合には、図11Aに示すように粉砕時間の経過にともない、粉砕エネルギーを調整する。本実施形態では、押圧荷重を調整することで、粉砕エネルギーを調整する。粉砕エネルギーを調整して、図11B及び図11Cに示すように、圧力損失(循環炭差圧)及び粉砕動力(駆動装置20の駆動力)を一定になるように制御することで、ミル1の経年変化に応じた適切な運用が可能となる。
 ミル1の稼働に伴って、石炭を粉砕する粉砕部30(粉砕回転テーブル35及び粉砕ローラ36)は、経年変化する。粉砕部30の経年変化としては、粉砕ローラ36及び粉砕回転テーブル35の摩耗等による変形が挙げられる。粉砕部30が経年変化すると、ミル1の性能値が変動する。
 また、粉砕部30は、粉砕回転テーブル35の上面と粉砕ローラ36との間に石炭を挟み込むことで石炭を粉砕しているので、粉砕ローラ36に対する押圧荷重に応じて、ミル1の性能値(本実施形態では、粉砕部30の駆動力及び循環炭差圧)は変動する。
 本実施形態では、現在におけるミル1の性能値が、基準時におけるミル1の性能値に近づくように、荷重制御部19が、テンションロッド39が付与する押圧荷重を調整している。上述のように、押圧荷重は、性能値に影響を与えるパラメータの一つである。これにより、ミル1の稼働に伴って、粉砕部30が経年変化しても、ミル1の性能値を基準時における性能値とすることができる。このように、性能値をコントロールすることができるので、粉砕部30が経年変化しても、ミル1を性能値(粉砕部30の経年変化)に応じて適切に稼働させることができる。
 本実施形態では、加圧アーム37が粉砕回転テーブル35に対して揺動自在であって、粉砕ローラ36が加圧アーム37に対して揺動自在に支持されているので、粉砕ローラ36が複数方向に移動自在な構成となっている。すなわち、粉砕ローラ36は、粉砕回転テーブル35に対する自由度が比較的高い状態で、支持されている。これにより、粉砕ローラ36は、石炭を粉砕する際に、移動可能な位置のうち、最も負荷の少ない位置に移動する。一般に、粉砕部30による粉砕態様は、ミル1の設置環境や、粉砕する石炭の性状等によって異なる。本実施形態の粉砕ローラ36は、粉砕する際に、最も負荷の少ない位置に移動するので、当該ミル1における粉砕態様に応じるように摩耗する。よって、経年変化によって、粉砕ローラ36の形状は、当該ミル1における粉砕態様に適した形状となるように変化する。したがって、本実施形態では、粉砕部30が経年変化することにより、粉砕性能(粉砕効率)が向上するように、ミル1の性能値が変化する。
 本実施形態では、テンションロッド39が付与する押圧荷重が低減するように、テンションロッド39の押圧荷重を調整している。押圧荷重を低減すると、石炭を粉砕回転テーブル35と粉砕ローラ36と間に挟み込む力が弱まるので、粉砕性能は抑制される。これにより、粉砕部30の経年変化による粉砕性能の向上を抑制し、粉砕部30による過剰な石炭の粉砕を抑制することができる。したがって、過剰な粉砕に起因する粉砕部30の摩耗等の速度を低減し、粉砕部30の製品寿命を長くすることができる。粉砕部30の製品寿命を長寿命化することで、粉砕部30が適用されたプラント等の稼働率を向上させることができる。
 また、本実施形態では、粉砕部30が経年変化することにより、粉砕性能(粉砕効率)が向上するので、石炭の粉砕量が増大し、粉砕部30の駆動力が増大するが、テンションロッド39が付与する押圧荷重が低減して、粉砕性能の向上を抑制しているので、粉砕部30の駆動力の増大も抑制することができる。したがって、過剰な粉砕に起因する粉砕部30の駆動力の増大を抑制し、ミル1の省エネルギー化を図ることができる。
 粉砕部30が経年変化すると、粉砕部30の経年変化に応じて粉砕部30の粉砕性能も変化する。これにより、粉砕部30を駆動する駆動力も変化する。駆動力の変化の要因としては、粉砕部30の形状の変化によって粉砕性能が低下することで、より多くの駆動力が必要となる事態や、粉砕部30の形状の変化によって粉砕性能が向上することで、石炭の粉砕量が増加する事態が挙げられる。本実施形態では、粉砕部30の経年変化に起因して変化する粉砕部30の駆動力を性能値としている。したがって、的確に粉砕部30の経年変化を把握することができる。
 また、本実施形態では、ミル1の性能値として、粉砕部30を駆動する駆動力を用いているので、ミル1の稼働に伴って、粉砕部30が経年変化しても、粉砕部30を駆動する駆動力を所定の基準時における駆動力とすることができる。このように、駆動力をコントロールすることができるので、粉砕部30が経年変化しても、ミル1を適切な駆動力で稼働させることができる。したがって、過剰な粉砕に起因する粉砕部30の駆動力の増大を的確に抑制し、よりミル1の省エネルギー化を図ることができる。
 粉砕部30が経年変化すると、粉砕部30の経年変化に応じて粉砕部30の粉砕性能も変化する。粉砕性能が変化すると、ミル1内の粉砕された石炭量も変化する。粉砕された石炭量は、搬送用空気流れに対する圧力損失となるので、1次空気ダクト13と送炭管9との循環炭差圧も変化する。すなわち、粉砕部30の経年変化応じて、循環炭差圧も変化する。本実施形態では、粉砕部30の経年変化に起因して変化する循環炭差圧を性能値としている。したがって、的確に粉砕部30の経年変化を把握することができる。
 本実施形態に係るミル1の制御装置15が運転制御処理を行った際の、時間経過と油圧、駆動力及び循環炭差圧との関係について、図10Aから図10Cを用いて説明する。図10Aは、横軸は時間経過を示し、縦軸はテンションロッド39の油圧を示している。また、図10Bは、横軸は時間経過を示し、縦軸は粉砕部30の駆動力を示している。また、図10Cは、横軸は時間経過を示し、縦軸は循環炭差圧を示している。また、図10Aから図10Cでは、運転制御処理を行った場合を実線で示し、運転制御処理を行わなかった場合を点線で示している。
 運転制御処理を行わなかった場合、本実施形態に係るミル1では、テンションロッド39の油圧は変化しない(図10A参照)。また、粉砕部30の経年変化によって、粉砕能力が向上する。このため、粉砕する石炭量が増加することで、粉砕部30の駆動力が増大する(図10B参照)。また、粉砕能力が向上するため、石炭が好適に粉砕されることで、循環炭差圧は低減する(図10C参照)。
 一方、運転制御処理を行った場合、テンションロッド39の油圧を低減させる処理を行うため、油圧は低減する(図10A参照)。また、テンションロッド39の油圧を低減させると、粉砕回転テーブル35に対する粉砕ローラ36の押圧力も低減するので、粉砕部30の駆動力の増大が抑制される(図10B参照)。テンションロッド39の油圧を低減させることで、粉砕能力の向上は抑制される(すなわち、循環炭差圧は制御を行わない場合と比較して増大する)が、粉砕部30の経年変化前の粉砕能力は維持される(図10C参照)。
 すなわち、本実施形態のミル1では、ミル1に稼働に伴って、粉砕部30が経年変化すると、粉砕動力及び粉砕能力(循環炭差圧)について経年変化前の状態を維持しつつ、テンションロッド39の油圧を低減させることができる。
[第2実施形態]
 次に、本発明に係る粉砕装置及び粉砕装置の制御方法の第2実施形態について、図12から図17Dを参照して説明する。なお、第2実施形態では、制御装置15がテーブル回転数制御部70を有する点で、第1実施形態と異なっている。また、制御装置15が行う運転制御処理の一部が第1実施形態と異なっている。第1実施形態と同様の構成については、同一の符号を付して、その詳細な説明は省略する。
 本実施形態に係る制御装置15は、図12に示すように、テーブル回転数制御部70を有している。テーブル回転数制御部70は、性能値計測部が計測した現在における粉砕装置の性能値(駆動力及び循環炭差圧)が、性能値導出部17が導出した基準時におけるミル1の性能値(駆動力及び循環炭差圧)と同一の値になるように、駆動装置20が回転させる粉砕回転テーブル35の回転数を調整する。具体的には、粉砕回転テーブル35の回転数と性能値との関係を示したグラフである図15及び図16を用いて回転数を調整する。回転数の調整の詳細については、第1実施形態における油圧の調整(図8及び図9参照)と略同一であるので、説明を省略する。
 次に、本実施形態に係る制御装置15が行う運転制御処理について図13を用いて説明する。S1からS5及びS8は、第1実施形態における運転制御処理と同様のため、説明を省略する。S5で、条件を満たしていると判断した場合には、S26に進む。S26では、テーブル回転数制御部70によって、現在の性能値(W、ΔPc)が基準時の性能値(Wi、ΔPci)と同一の値になるように、駆動装置20が回転させる粉砕回転テーブル35の回転数を調整することを決定する。S26で回転数を調整することを決定すると、S27に進む。S27では、テーブル回転数制御信号を制御装置15に送信し、S26で決定したように回転数を調整する。テーブル回転数制御信号を送信すると制御装置15は、本処理を終了する。
 なお、制御装置15は、図14に示すように、運転制御処理を行ってもよい。図14におけるS1からS4、S8及びS25は、第1実施形態と同様のため、説明を省略する。また、図14におけるS26及びS27は、図13の例と同様のため、説明を省略する。
 本実施形態によれば、以下の作用効果を奏する。
 本実施形態では、現在におけるミル1の性能値が、基準時におけるミル1の性能値に近づくように、粉砕回転テーブル35の回転数を調整している。上述のように、粉砕回転テーブル35の回転数は、性能値に影響を与えるパラメータの一つである。これにより、ミル1の稼働に伴って、粉砕部30が経年変化しても、ミル1の性能値を所定の基準時における性能値とすることができる。このように、性能値をコントロールすることができるので、粉砕部30が経年変化しても、ミル1を性能値(粉砕部30の経年変化)に応じて適切に稼働させることができる。
 本実施形態に係るミル1の制御装置15が運転制御処理を行った際の、時間経過と粉砕回転テーブル35の回転数、駆動力及び循環炭差圧との関係について、図17Aから図17Cを用いて説明する。図17Aは、横軸は時間経過を示し、縦軸は粉砕回転テーブル35の回転数を示している。また、図17Bは、横軸は時間経過を示し、循環炭差圧を示している。また、図17Cは、横軸は時間経過を示し、縦軸は粉砕部30の駆動力を示している。また、図17Aから図17Cでは、運転制御処理を行った場合を実線で示し、運転制御処理を行わなかった場合を点線で示している。
 運転制御処理を行わなかった場合、本実施形態に係るミル1では、粉砕回転テーブル35の回転数は変化しない(図17A参照)。また、粉砕能力が向上するため、石炭が好適に粉砕されることで、循環炭差圧は低減する(図17B参照)。また、粉砕部30の経年変化によって、粉砕能力が向上する。このため、粉砕する石炭量が増加することで、粉砕部30の駆動力が増大する(図17C参照)。
 一方、運転制御処理を行った場合、回転数を低減させる処理を行うため、回転数は低減する(図17A参照)。また、回転数を低減させると、粉砕部30の駆動力の増大が抑制される(図17C参照)。回転数を低減させることで、粉砕能力の向上は抑制される(すなわち、循環炭差圧は制御を行わない場合と比較して増大する)が、粉砕部30の経年変化前の粉砕能力は維持される(図17B参照)。
 すなわち、本実施形態のミル1では、ミル1に稼働に伴って、粉砕部30が経年変化すると、粉砕動力及び粉砕能力(循環炭差圧)について経年変化前の状態を維持しつつ、回転数を低減させることができる。
 本実施形態に係るミル1の制御装置15が運転制御処理を行った際の、時間経過とミル1(粉砕装置)の振動値との関係について、図17Dを用いて説明する。図17Dでは、本実施形態の運転制御処理を行った場合(回転数を調整する場合)を実線で示し、第1実施形態の運転制御処理を行った場合(押圧荷重を調整する場合)を1点鎖線で示し、運転制御処理を行わなかった場合を点線で示している。
 ここで、ミル1の振動値は、変位や速度、加速度などを計測するものである。振動値が大きくなりすぎると(すなわち、振動が大きくなりすぎると)、ミル1を損傷させる恐れがあるため、計測されるものである。運転制御処理を行わなかった場合、振動値は増加する。これは、粉砕ローラ36の摩耗進展により粉砕ローラ36の形状がいびつになり、かつ、粉砕ローラ36が粉砕回転テーブル35に対して自由度が高いため、摩耗前に粉砕回転テーブル35と点接触で安定したものが、多点接触に移行し、不安定になるためである。一方、粉砕回転テーブル35の回転数を減らす場合であっても、押圧荷重を低減させる場合であっても、運転制御処理を行わなかった場合と比較して、ミル1の振動値の増大を抑制することができる。また、粉砕回転テーブル35の回転数を減らす場合の方が、押圧荷重を低減させる場合よりも、ミル1の振動値の増大をより抑制することができる。
 ミル1の振動値の増大を抑制することで、例えば、原料として、粉体の摩擦係数が小さく振動を起こしやすい特徴を有するような石炭等も使用することが可能となる。
[第3実施形態]
 次に、本発明に係る粉砕装置及び粉砕装置の制御方法の第3実施形態について、図18を参照して説明する。なお、第3実施形態では、図18に示すように、制御装置15が荷重制御部19及びテーブル回転数制御部70の両方を有する点で、第1実施形態及び第2実施形態と異なっている。また、制御装置15が行う運転制御処理の一部が第1実施形態及び第2実施形態と異なっている。第1実施形態と同様の構成については、同一の符号を付して、その詳細な説明は省略する。本実施形態では、判断部18にて押圧荷重及び回転数を調整するような指令値を求める。判断部18での押圧荷重の判断は、第1実施形態と同様であり、回転数の判断は第2実施形態と同様である。なお、押圧荷重の判断と回転数の判断とを組み合わせることによる判断は、複雑となるため、機械学習などを活用することが望ましい。
 本実施形態のように、押圧荷重及び回転数を調整することで、より的確に性能値をコントロールすることができる。
 なお、本発明は、上記実施形態にかかる発明に限定されるものではなく、その要旨を逸脱しない範囲において、適宜変形が可能である。
 例えば、上記実施形態では、所定の基準時をミル1の試運転時としているが、本発明はこれに限定されない。例えば、粉砕機の初期運転時や、粉砕装置の慣らし運転時などでもよい。粉砕部30が経年変化する前の時期が好適である。
 なお、ミル1は、テンションロッド39が付与する押圧荷重の調整度合いを導出するための機械学習を行う学習部(図示省略)を備えていてもよい。学習部は、機械学習に基づいて、調整度合いを導出する。テンションロッド39は、学習部が導出した調整度合いとなるように、テンションロッド39が付与する押圧荷重を調整する。この構成によれば、的確にテンションロッド39の押圧荷重を調整することができる。
1    :ミル(粉砕装置)
9    :送炭管
11   :ホッパ
13   :1次空気ダクト(搬送用ガス供給部)
15   :制御装置(制御部)
16   :負荷導出部
17   :性能値導出部
18   :判断部
19   :荷重制御部
20   :駆動装置
21   :給炭量計測器
22   :一次空気量計測器
23   :分級機回転数計測器
24   :油圧計測器
25   :テーブル回転数計測器
26   :差圧計測器
27   :駆動力計測器
28   :制御盤
30   :粉砕部
31   :ハウジング
32   :天井部
33   :センターシュート
34   :架台
35   :粉砕回転テーブル(テーブル部)
36   :粉砕ローラ(ローラ部)
37   :加圧アーム(フレーム部)
38   :ブラケット
39   :テンションロッド(荷重付与部)
40   :テンションロッドボックス
41   :回転分級機
42   :フィン
44   :スロートベーン
49   :油圧シリンダ部
50   :駆動部
60   :1次空気(搬送用ガス)
ML   :ミル負荷率
Op   :油圧
W    :駆動力
Wi   :駆動力
ΔPc  :循環炭差圧
ΔPci :循環炭差圧

Claims (8)

  1.  被粉砕物を粉砕する粉砕装置であって、
     上下方向の軸を中心に回転駆動するテーブル部と、該テーブル部の上面と対向して配置されるローラ部と、を有し、前記テーブル部の前記上面と前記ローラ部との間に被粉砕物を挟み込むことで被粉砕物を粉砕する粉砕部と、
     現在における前記粉砕装置の負荷を導出する負荷導出部と、
     現在における前記粉砕装置の性能値を計測する性能値計測部と、
     所定の基準時において、前記負荷導出部によって導出された負荷で前記粉砕装置が運転されている場合における前記粉砕装置の性能値を導出する性能値導出部と、
     前記性能値計測部が計測した現在における前記粉砕装置の性能値と前記性能値導出部が導出した前記基準時における前記粉砕装置の性能値とに基づいて、前記性能値計測部が計測した現在における前記粉砕装置の性能値が、前記性能値導出部が導出した前記基準時における前記粉砕装置の性能値に近づくように、前記粉砕装置の性能値に影響を与えるパラメータを変更する制御部と、を備えた粉砕装置。
  2.  前記ローラ部に対して、前記テーブル部の前記上面方向への押圧荷重を付与する荷重付与部を備え、
     前記パラメータは、前記ローラ部に対して付与される押圧荷重を有し、
     前記制御部は、前記性能値計測部が計測した現在における前記粉砕装置の性能値と前記性能値導出部が導出した前記基準時における前記粉砕装置の性能値とに基づいて、前記性能値計測部が計測した現在における前記粉砕装置の性能値が、前記性能値導出部が導出した前記基準時における前記粉砕装置の性能値に近づくように、前記荷重付与部が付与する押圧荷重を調整する荷重制御部を有する請求項1に記載の粉砕装置。
  3.  所定の回転数となるように前記テーブル部を回転駆動する回転駆動部を備え、
     前記パラメータは、前記テーブル部の回転数を有し、
     前記制御部は、前記性能値計測部が計測した現在における前記粉砕装置の性能値と前記性能値導出部が導出した前記基準時における前記粉砕装置の性能値とに基づいて、前記性能値計測部が計測した現在における前記粉砕装置の性能値が、前記性能値導出部が導出した前記基準時における前記粉砕装置の性能値に近づくように、前記駆動部が回転させる前記テーブル部の回転数を調整するテーブル回転数制御部を有する請求項1または請求項2に記載の粉砕装置。
  4.  前記粉砕装置のハウジングの内部に設けられ、前記ローラ部を支持するフレーム部を備え、
     前記フレーム部は、前記テーブル部に対して揺動自在であって、
     前記ローラ部は、前記フレーム部に対して揺動自在に支持されていて、
     前記荷重制御部は、前記荷重付与部が付与する押圧荷重が低減するように、前記荷重付与部の押圧荷重を調整する請求項2に記載の粉砕装置。
  5.  前記粉砕装置の性能値とは、前記粉砕部を駆動する駆動力を含む請求項1から請求項4のいずれかに記載の粉砕装置。
  6.  粉砕した被粉砕物を外部へ搬送する搬送用ガスを供給する搬送用ガス供給部と、
     前記搬送用ガスによって搬送される被粉砕物を排出する排出部と、を備え、
     前記粉砕装置の性能値とは、前記搬送用ガス供給部側の圧力と前記排出部側の圧力との差圧を含む請求項1から請求項5のいずれかに記載の粉砕装置。
  7.  前記荷重付与部が付与する押圧荷重の調整度合いを導出するための機械学習を行う学習部と、
     前記学習部は、前記機械学習に基づいて、前記調整度合いを導出し、
     前記荷重制御部は、前記学習部が導出した前記調整度合いとなるように、前記荷重付与部が付与する押圧荷重を調整する請求項2に記載の粉砕装置。
  8.  被粉砕物を粉砕する粉砕装置の制御方法であって、
     上下方向の軸を中心に回転駆動するテーブル部の上面と、該テーブル部の前記上面と対向して配置されるローラ部との間に被粉砕物を挟み込むことで被粉砕物を粉砕する粉砕ステップと、
     現在における前記粉砕装置の負荷を導出する負荷導出ステップと、
     現在における前記粉砕装置の性能値を計測する性能値計測ステップと、
     所定の基準時において、前記負荷導出ステップで導出された負荷で前記粉砕装置が運転されている場合における前記粉砕装置の性能値を導出する性能値導出ステップと、
     前記性能値計測ステップで計測した現在における前記粉砕装置の性能値と前記性能値導出ステップで導出した前記基準時における前記粉砕装置の性能値とに基づいて、前記性能値計測ステップで計測した現在における前記粉砕装置の性能値が、前記性能値導出ステップで導出した前記基準時における前記粉砕装置の性能値に近づくように、前記粉砕装置の性能値に影響を与えるパラメータを変更する制御ステップと、を備えた粉砕装置の制御方法。
PCT/JP2019/019871 2018-05-18 2019-05-20 粉砕装置及び粉砕装置の制御方法 WO2019221302A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020519963A JP7080970B2 (ja) 2018-05-18 2019-05-20 粉砕装置及び粉砕装置の制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018096232 2018-05-18
JP2018-096232 2018-05-18

Publications (1)

Publication Number Publication Date
WO2019221302A1 true WO2019221302A1 (ja) 2019-11-21

Family

ID=68540312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019871 WO2019221302A1 (ja) 2018-05-18 2019-05-20 粉砕装置及び粉砕装置の制御方法

Country Status (2)

Country Link
JP (1) JP7080970B2 (ja)
WO (1) WO2019221302A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02157053A (ja) * 1988-07-29 1990-06-15 Babcock Hitachi Kk 竪型ミルの制御装置
JPH05329392A (ja) * 1992-05-29 1993-12-14 Ube Ind Ltd 竪型粉砕機の運転方法
JPH0975760A (ja) * 1995-09-13 1997-03-25 Babcock Hitachi Kk 粉砕機の制御装置
JPH09122517A (ja) * 1995-11-01 1997-05-13 Babcock Hitachi Kk 粉砕機の制御装置
JP2001347176A (ja) * 2000-06-07 2001-12-18 Babcock Hitachi Kk 竪型ミル
JP2008178833A (ja) * 2007-01-26 2008-08-07 Ube Machinery Corporation Ltd 竪型粉砕機の制御方法及び制御装置
JP2011092818A (ja) * 2009-10-27 2011-05-12 Ihi Corp 竪型ミル
JP2015530922A (ja) * 2012-08-22 2015-10-29 ゲー・ベー・エフ ゲゼルシャフト フュア ベメッスングスフォアシュング ミット ベシュレンクテル ハフツングGBF Gesellschaft fuer Bemessungsforschung mbH 粉砕方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02157053A (ja) * 1988-07-29 1990-06-15 Babcock Hitachi Kk 竪型ミルの制御装置
JPH05329392A (ja) * 1992-05-29 1993-12-14 Ube Ind Ltd 竪型粉砕機の運転方法
JPH0975760A (ja) * 1995-09-13 1997-03-25 Babcock Hitachi Kk 粉砕機の制御装置
JPH09122517A (ja) * 1995-11-01 1997-05-13 Babcock Hitachi Kk 粉砕機の制御装置
JP2001347176A (ja) * 2000-06-07 2001-12-18 Babcock Hitachi Kk 竪型ミル
JP2008178833A (ja) * 2007-01-26 2008-08-07 Ube Machinery Corporation Ltd 竪型粉砕機の制御方法及び制御装置
JP2011092818A (ja) * 2009-10-27 2011-05-12 Ihi Corp 竪型ミル
JP2015530922A (ja) * 2012-08-22 2015-10-29 ゲー・ベー・エフ ゲゼルシャフト フュア ベメッスングスフォアシュング ミット ベシュレンクテル ハフツングGBF Gesellschaft fuer Bemessungsforschung mbH 粉砕方法

Also Published As

Publication number Publication date
JP7080970B2 (ja) 2022-06-06
JPWO2019221302A1 (ja) 2021-05-13

Similar Documents

Publication Publication Date Title
JP6599259B2 (ja) 固体燃料粉砕装置およびその制御方法
JP5666434B2 (ja) 電子制御式ジャーナル負荷システム
JP2011506085A (ja) 粉砕機のための制御システム及び粉砕機を運転するための方法
JP5277967B2 (ja) 竪型粉砕機の制御方法
JP6657589B2 (ja) 竪型粉砕機及びその運転方法
CN111482242B (zh) 固体燃料粉碎装置、具备其的发电设备、以及其控制方法
JP6747213B2 (ja) 石炭粉砕方法
JP5660442B2 (ja) セメントキルンの燃料供給方法
JP6331741B2 (ja) 竪型粉砕機の運転方法及び竪型粉砕機
WO2019221302A1 (ja) 粉砕装置及び粉砕装置の制御方法
JP4771207B2 (ja) 竪型粉砕機の運転方法
JP6338098B2 (ja) 竪型粉砕機の運転方法及び竪型粉砕機
JP2673844B2 (ja) 竪型粉砕機の自動運転方法
JP5004558B2 (ja) 粉砕設備およびその制御装置並びに粉砕設備における原料供給方法
JP2013176734A (ja) 粉砕機及び粉砕システム
CN111482243B (zh) 固体燃料粉碎装置、具备其的发电设备、以及其控制方法
JP2014137196A (ja) 粉砕原料燃焼システム及びその制御方法
JP2709666B2 (ja) 竪型粉砕機
JP2007007593A (ja) 竪型粉砕機の運転方法及び竪型粉砕機
JP2876262B2 (ja) 竪型粉砕機
JP2681854B2 (ja) 粉砕設備
JP2681853B2 (ja) 粉砕設備
JP2740536B2 (ja) 堅型ローラミル
JP2016135462A (ja) 竪型粉砕機の運転方法
JPH11347432A (ja) ローラミルの運転制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19802758

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020519963

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19802758

Country of ref document: EP

Kind code of ref document: A1