WO2019220766A1 - 電流センサ - Google Patents

電流センサ Download PDF

Info

Publication number
WO2019220766A1
WO2019220766A1 PCT/JP2019/011313 JP2019011313W WO2019220766A1 WO 2019220766 A1 WO2019220766 A1 WO 2019220766A1 JP 2019011313 W JP2019011313 W JP 2019011313W WO 2019220766 A1 WO2019220766 A1 WO 2019220766A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
magnetoelectric conversion
current
bus bar
gap
Prior art date
Application number
PCT/JP2019/011313
Other languages
English (en)
French (fr)
Inventor
達明 杉戸
武 塚本
卓馬 江坂
亮輔 酒井
章人 佐々木
肇臣 磯貝
大晃 三輪
野村 浩
貴士 石川
道山 勝教
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201980027211.5A priority Critical patent/CN112005122B/zh
Publication of WO2019220766A1 publication Critical patent/WO2019220766A1/ja
Priority to US17/001,960 priority patent/US11360123B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/202Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using Hall-effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/205Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using magneto-resistance devices, e.g. field plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/207Constructional details independent of the type of device used
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only

Definitions

  • This disclosure relates to a current sensor that detects a current to be measured.
  • Patent Document 1 there is known a current measuring device in which a magnetic sensor is arranged oppositely between a center position and an end position of a flat conductor under measurement in consideration of current density deviation due to the skin effect. ing.
  • the current flows in a concentrated manner at the end position of the flat conductor to be measured.
  • the magnetic sensor is disposed oppositely between one position (end position) of the plurality of ends of the flat measured conductor and the center position. For this reason, it is difficult for a magnetic field generated from a current flowing concentrated on the other end of the conductor to be measured to pass through the magnetic sensor. Therefore, the configuration described in Patent Document 1 cannot effectively increase the density of the magnetic field transmitted through the magnetic sensor (magnetoelectric conversion unit).
  • This disclosure is intended to provide a current sensor in which the density of the magnetic field transmitted through the magnetoelectric conversion unit is effectively increased.
  • the current sensor includes a conductive member through which a current to be measured flows in a predetermined direction, and a magnetoelectric conversion unit that faces the conductive member in a crossing direction that intersects the predetermined direction.
  • the portion of the conductive member that faces the magnetoelectric conversion portion has an annular shape in which two tip surfaces face each other with a gap around the predetermined direction.
  • the magnetoelectric conversion portion is opposed to the hollow of the opposed portion forming an annular shape via the gap in the crossing direction.
  • the magnetoelectric conversion part is disposed opposite to the gap between the two tip surfaces of the conductive member.
  • the drawing It is a perspective view showing a current sensor, It is sectional drawing of a current sensor, It is a graph showing the relationship between the strength of the transmitted magnetic field and the shape of the facing portion, It is a graph showing the relationship between the amount of phase shift of the transmitted magnetic field and the shape of the facing portion, It is a chart showing the amount of phase shift of the transmitted magnetic field, It is a chart showing the relationship between the amount of phase shift of the transmitted magnetic field and the gap length, It is a graph showing the density distribution of the magnetic field to be measured, It is a chart which shows the modification of a conductive bus bar, It is a chart which shows the modification of a conductive bus bar, It is a graph which shows the state by which the magnetoelectric conversion part was opposingly arranged by the cylindrical-shaped electrically conductive bus bar.
  • the current sensor 100 detects an alternating current.
  • the current sensor 100 is provided in an energized bus bar that connects an in-vehicle inverter and a stator coil of a motor.
  • the current sensor 100 detects an alternating current (three-phase alternating current) flowing through the energized bus bar.
  • the current sensor 100 includes a magnetoelectric conversion unit 10 and a conductive bus bar 30. As shown in FIG. 2, the current sensor 100 has a wiring board 20 on which the magnetoelectric conversion unit 10 is mounted.
  • the conductive bus bar 30 is a part of the energized bus bar. Therefore, the three-phase alternating current flows through the conductive bus bar 30.
  • the conductive bus bar 30 and the energized bus bar may be separate. For example, when the current-carrying bus bar has a configuration in which the inverter bus side and the stay coil side are separated, a configuration in which the conductive bus bar 30 bridges them can be employed.
  • the magnetoelectric conversion unit 10 and the wiring board 20 are disposed opposite to the conductive bus bar 30. As a result, the magnetic field generated from the alternating current flowing through the conductive bus bar 30 is transmitted to the magnetoelectric converter 10. The magnetoelectric conversion unit 10 converts the magnetic field transmitted through the magnetoelectric conversion unit 10 into an electric signal.
  • the x direction corresponds to the horizontal direction.
  • the y direction corresponds to a predetermined direction.
  • the z direction corresponds to the intersecting direction.
  • the magnetoelectric conversion unit 10 is included in an ASIC (not shown).
  • the ASIC is mounted on the wiring board 20.
  • ASIC is an abbreviation for application specific integrated circuit.
  • the ASIC includes an amplifier circuit and the like.
  • a filter circuit or the like is mounted on the wiring board 20.
  • the signal strength of the electrical signal output from the magnetoelectric converter 10 is amplified by an amplifier circuit.
  • Noise included in the electric signal of the magnetoelectric conversion unit 10 whose signal intensity is amplified is removed by the filter circuit.
  • the electric signal of the magnetoelectric conversion unit 10 whose signal intensity is amplified and noise is removed is output to an on-vehicle electronic control device.
  • the electronic control device determines a target value (target torque) of the torque generated in the motor based on the electrical signal and the output of a rotation angle sensor (not shown).
  • the wiring board 20 has a thin flat plate shape in the z direction as shown in FIG.
  • the wiring board 20 has a first main surface 20a and a second main surface 20b facing in the z direction.
  • An ASIC magnetictoelectric conversion unit 10
  • the first main surface 20a is disposed opposite to the conductive bus bar 30 in the z direction.
  • the magnetoelectric conversion unit 10 is disposed opposite to the conductive bus bar 30 in the z direction.
  • the magnetoelectric conversion unit 10 has a plurality of magnetoresistive elements whose resistance values vary according to a magnetic field (transmission magnetic field) that passes through the magnetoelectric conversion unit 10.
  • the magnetoresistive element changes its resistance value according to the transmitted magnetic field along the first main surface 20a. That is, the resistance value of the magnetoresistive effect element changes according to the component along the x direction and the component along the y direction of the transmitted magnetic field.
  • the resistance value of the magnetoresistive element does not change due to the transmitted magnetic field along the z direction. Therefore, even if external noise along the z direction passes through the magnetoresistive element, the resistance value of the magnetoresistive element does not change.
  • the magnetoresistive effect element has a pinned layer whose magnetization direction is fixed, a free layer whose magnetization direction changes according to the transmitted magnetic field, and a nonmagnetic intermediate layer provided therebetween.
  • the magnetoresistive element is a giant magnetoresistive element.
  • the magnetoresistive element is a tunnel magnetoresistive element.
  • the magnetoresistive effect element may be an anisotropic magnetoresistive effect element (AMR).
  • the magnetoelectric conversion unit 10 may have a Hall element instead of the magnetoresistive effect element.
  • the resistance value of the magnetoresistive effect element changes depending on the angle formed by the magnetization directions of the pinned layer and the free layer.
  • the magnetization direction of the pinned layer is along the first major surface 20a.
  • the magnetization direction of the free layer is determined by the transmitted magnetic field along the first major surface 20a.
  • the resistance value of the magnetoresistive element is the smallest when the magnetization directions of the free layer and the fixed layer are parallel.
  • the resistance value of the magnetoresistive element is the largest when the magnetization directions of the free layer and the fixed layer are antiparallel.
  • the magnetoelectric conversion unit 10 has a plurality of magnetoresistive elements as described above.
  • a bridge circuit is constituted by the plurality of magnetoresistive elements. The output of the bridge circuit varies as a magnetic field passes through the magnetoresistive effect element. The output of this bridge circuit is output to the amplifier circuit.
  • the magnetoelectric conversion unit 10 may include an operational amplifier and a feedback coil for generating a canceling magnetic field in addition to a bridge circuit composed of magnetoresistive elements.
  • the output terminal of the bridge circuit is connected to the input terminal of the operational amplifier.
  • a feedback coil is connected to the output terminal of the operational amplifier.
  • the operational amplifier has an output terminal and an input terminal connected via a feedback circuit. With the configuration described above, the operational amplifier operates so that the current flowing through the input terminal and the current flowing through the output terminal become zero. As a result, a current (feedback current) corresponding to the transmitted magnetic field of the magnetoresistive effect element flows from the output terminal of the operational amplifier.
  • This feedback current flows through the feedback coil.
  • a canceling magnetic field is generated from the feedback coil.
  • This canceling magnetic field passes through the bridge circuit.
  • the magnetoelectric conversion unit 10 operates so that the measured magnetic field that passes through the magnetoelectric conversion unit 10 and the canceling magnetic field are balanced.
  • Such a magnetic balance type can be adopted as the magnetoelectric conversion unit 10.
  • the voltage applied to the feedback coil is output to the amplifier circuit as the output voltage of the magnetoelectric converter 10.
  • the conductive bus bar 30 is made of a conductive material such as copper, brass and aluminum.
  • the conductive bus bar 30 can be manufactured by, for example, the methods listed below.
  • the conductive bus bar 30 can be manufactured by pressing a flat plate.
  • the conductive bus bar 30 can be manufactured by integrally connecting a plurality of flat plates.
  • the conductive bus bar 30 can be manufactured by welding a plurality of flat plates.
  • the conductive bus bar 30 can be manufactured by pouring a molten conductive material into a mold.
  • the method for manufacturing the conductive bus bar 30 is not particularly limited.
  • the conductive bus bar 30 corresponds to a conductive member.
  • the conductive bus bar 30 extends in the y direction.
  • the conductive bus bar 30 includes a facing portion 31 that faces the magnetoelectric conversion portion 10 in the z direction, and a first connecting portion 32 and a second connecting portion 33 that are connected to the facing portion 31.
  • the first connecting part 32 and the second connecting part 33 are arranged in the y direction with the facing part 31 interposed therebetween.
  • the first connecting part 32 and the second connecting part 33 are integrally connected via the facing part 31.
  • the facing part 31 corresponds to a facing part.
  • the conductive bus bar 30 of this embodiment is manufactured by pressing a flat plate having a uniform length (thickness) between the one surface 30a and the back surface 30b. Therefore, the separation distance between the one surface 30a and the back surface 30b of each of the facing portion 31, the first connecting portion 32, and the second connecting portion 33 is the same.
  • Each of the first connecting part 32 and the second connecting part 33 has a rectangular shape in a plane facing the z direction.
  • One surface 30a and the back surface 30b of each of the first connecting portion 32 and the second connecting portion 33 face the z direction.
  • the facing portion 31 has a narrowed portion 34 extending in the y direction.
  • One surface 30a and the back surface 30b of the constricted portion 34 face the z direction.
  • One of the two end portions in the y direction of the narrowed portion 34 is integrally connected to the first connecting portion 32.
  • the other of the two end portions in the y direction of the narrowed portion 34 is integrally connected to the second connecting portion 33.
  • the narrowed portion 34 has a length in the x direction shorter than each of the first connecting portion 32 and the second connecting portion 33. For this reason, the density of the current flowing through the connection portion between the first connecting portion 32 and the second connecting portion 33 in the narrowed portion 34 is higher than the density of the current flowing through the first connecting portion 32 and the second connecting portion 33. ing.
  • the opposing portion 31 has an annular portion 35 that forms an annular shape in the circumferential direction around the y direction together with the narrowed portion 34 in addition to the narrowed portion 34 described above.
  • the annular portion 35 has two extending portions 36 that are curved and extend upward from the one surface 30a of the narrowed portion 34 from two side surfaces of the narrowed portion 34 arranged in the x direction.
  • the two extending portions 36 have a shape extending in the x direction in such a manner that the distal end surfaces 36a of the two extending portions 36 approach each other after extending in a semicircular shape along the circumferential direction from the side surface of the narrowed portion 34. ing.
  • the tip surface 36a of each of these two extension portions 36 faces the x direction.
  • the two front end surfaces 36a face each other with a separation in the x direction. Thereby, the space
  • the tip surface 36a can adopt a shape inclined with respect to the x direction. As the form of the inclination, it is possible to adopt a mode in which the tip surface 36a faces the hollow in the z direction, and a mode in which the tip surface 36a faces the wiring board 20 in the z direction. In this case, the thickness in the z direction of the distal end portion including the distal end surface 36a becomes a shape that gradually increases as the distance from the gap increases.
  • the gap 36b and the two front end surfaces 36a constituting the gap 36b are spaced apart from the one surface 30a of the narrowed portion 34 in the z direction.
  • the gap 36b communicates with the hollow formed by the narrowed portion 34 and the annular portion 35 and is aligned in the z direction.
  • the magnetoelectric conversion unit 10 is arranged to be opposed to the facing unit 31 while being spaced apart in the z direction so that the magnetoelectric converting unit 10 is indicated by a block. More specifically, the magnetoelectric conversion unit 10 is disposed opposite to the gap 36b in the z direction. The magnetoelectric conversion unit 10 is disposed opposite to the hollow formed by the narrowed portion 34 and the annular portion 35 via the gap 36b in the z direction. Accordingly, the magnetic field to be measured, which is generated mainly from the current flowing through the tip portion including the two tip surfaces 36a of the facing portion 31, is transmitted through the magnetoelectric conversion portion 10.
  • the conductive bus bar 30 extends in the y direction. Therefore, a current flows in the y direction in the conductive bus bar 30. Due to the flow of current in the y direction, a measured magnetic field is generated in the circumferential direction around the y direction according to Ampere's law.
  • the magnetic field to be measured flows in an annular shape around the conductive bus bar 30 in a plane defined by the x direction and the z direction.
  • the magnetoelectric converter 10 detects a component along the x direction of the magnetic field to be measured.
  • This AC current flows not only in the constricted portion 34 but also in the annular portion 35. Therefore, the current density of the alternating current flowing through the surface layer of the annular portion 35 is increased.
  • the current density of the alternating current flowing through the surface layer on the two end faces 36a increases. Therefore, a magnetic field generated from an alternating current flowing through the surface layer on the two tip surfaces 36a side having a high current density is transmitted to the magnetoelectric conversion portion 10 disposed to face the gap 36b between the two tip surfaces 36a.
  • the length of the narrowed portion 34 in the x direction is lc.
  • the extension portion 36 extends from each of the two side surfaces arranged in the x direction of the narrowed portion 34.
  • the extension 36 extends in the circumferential direction. That is, the extension 36 extends in the z direction, and once extends away from the constriction 34 in the x direction, then extends so as to approach the constriction 34 in the x direction.
  • the longest separation length lx in the x direction between the two extension portions 36 is longer than the length lc in the x direction of the narrowed portion 34.
  • the tip surfaces 36a of the two extension portions 36 are spaced apart from each other in the x direction.
  • the separation length lg in the x direction between the two distal end surfaces 36a is shorter than the length lc in the x direction of the narrowed portion 34.
  • the length (gap length) lg in the x direction of the gap 36b between the two tip surfaces 36a is shorter than the length lc in the x direction of the constricted portion 34.
  • the separation distance in the z direction between the gap 36b and the magnetoelectric conversion unit 10 is ld.
  • the length of the hollow z direction of the opposing part 31 is lz.
  • the separation distance ld is shorter than the length lz.
  • the separation distance ld may be shorter or longer than the separation distance (thickness) between the one surface 30a and the back surface 30b of the conductive bus bar 30.
  • the separation distance ld may be shorter or longer than the gap length lg.
  • the length of the magnetoelectric conversion unit 10 in the x direction is shorter than the gap length lg of the air gap 36b.
  • the magnetoelectric conversion unit 10 faces the center point in the x direction of the gap 36b in the z direction. Therefore, the magnetoelectric conversion unit 10 faces the gap 36b in the z direction, and the two tip surfaces 36a constituting the gap 36b are not aligned in the z direction.
  • it is possible to adopt a configuration in which the length of the magnetoelectric conversion unit 10 in the x direction is longer than the gap length lg. That is, it is possible to adopt a configuration in which the magnetoelectric conversion unit 10 is aligned with the two front end surfaces 36a in the z direction.
  • the length of the magnetoelectric conversion unit 10 in the x direction is about 1 mm.
  • the cross-sectional area (energization cross-sectional area) of the plane in which the annular portion 35 faces in the y direction is larger than the narrowed portion 34.
  • the vertical axis in FIG. 3 indicates the intensity of the transmitted magnetic field.
  • the horizontal axis indicates the length ly.
  • the unit of the vertical axis is an arbitrary unit in which the intensity of the transmitted magnetic field when the length ly is zero is standardized as 1.00 as the reference value.
  • the unit of the horizontal axis is mm.
  • the intensity of the transmitted magnetic field is 1.00.
  • the intensity of the transmitted magnetic field is 1.15.
  • the intensity of the transmitted magnetic field increases by about 15%.
  • the cross-sectional area perpendicular to the y direction of the facing portion 31 when the narrow portion 34 is not formed with the annular portion 35, and the narrow portion 35 with the annular portion 35. are equal to the cross-sectional area perpendicular to the y direction of the facing portion 31.
  • the energization cross-sectional area of the facing portion 31 is the same when there is no annular portion 35 and when there is no annular portion 35.
  • FIG. 4 shows the measurement results of the amount of phase shift of the transmitted magnetic field when the length ly in the y direction of the constricted portion 34 is changed while keeping the various lengths lc, lx, lg, ld, and lz unchanged. Based on This amount of phase shift indicates the amount of phase shift of the transmitted magnetic field when a high-frequency AC current that causes the skin effect is applied to the transmitted magnetic field when a low-frequency AC current that allows the skin effect to be ignored. ing.
  • the frequency difference of the flowing alternating current is 2000 Hz.
  • the vertical axis in FIG. 4 indicates the amount of phase shift of the transmitted magnetic field.
  • the horizontal axis indicates the length ly.
  • the unit of the vertical axis is °.
  • the unit of the horizontal axis is mm.
  • the phase shift amount of the transmitted magnetic field is 9 °.
  • the phase shift amount of the transmitted magnetic field is about 2.3 °.
  • alternating currents having different frequencies are passed through the opposing portion 31 where the annular portion 35 is not formed in the constricted portion 34 and the opposing portion 31 where the annular portion 35 is formed in the constricted portion 34, which have the same energization cross-sectional area.
  • the amount of phase shift of the transmitted magnetic field generated at the time will be described with reference to FIG.
  • the frequency difference of the flowing alternating current is 5000 Hz.
  • a solid line indicates a low-frequency alternating current, and a broken line indicates a transmitted magnetic field detected when a high-frequency alternating current is passed.
  • the column (a) of FIG. 5 shows the transmitted magnetic field when the annular portion 35 is not formed in the narrowed portion 34.
  • the column (b) of FIG. 5 shows the transmitted magnetic field when the annular portion 35 is formed in the narrowed portion 34.
  • the amount of phase shift between the transmitted magnetic field when a low-frequency alternating current flows and the transmitted magnetic field when a high-frequency alternating current flows is 9 °.
  • the amount of phase shift between the transmitted magnetic field when a low-frequency alternating current flows and the transmitted magnetic field when a high-frequency alternating current flows is 2 °. .
  • the facing portion 31 includes not only the narrowed portion 34 facing in the z direction but also the annular annular portion 35 having the gap 36b, the amount of phase shift of the transmitted magnetic field is reduced.
  • FIG. 6 shows a transmission magnetic field when the gap length lg is changed while keeping the various lengths lc, lx, ld, lz, and ly unchanged.
  • the gap length lg is changed to 0.0 mm, 0.5 mm, and 1.5 mm. Therefore, in the transmission magnetic field shown in FIG. 6, the gap length lg is longer than the magnetoelectric conversion unit 10 when the gap length lg is shorter than the magnetoelectric conversion unit 10 when the facing portion 31 has a cylindrical shape without the gap 36 b. Shows the case.
  • alternating currents of 0 Hz, 100 Hz, 500 Hz, 1000 Hz, 2000 Hz, and 5000 Hz are passed through the conductive bus bar 30. Note that 0 Hz is an approximate value, specifically 1 ⁇ 10 ⁇ 8 Hz.
  • (A) column of FIG. 6 shows the transmitted magnetic field when the gap length lg is 0.0 mm.
  • the column (b) in FIG. 6 shows the transmitted magnetic field when the gap length lg is 0.5 mm.
  • the column (c) in FIG. 6 shows the transmitted magnetic field when the gap length lg is 1.5 mm.
  • the (d) column of FIG. 6 has shown the transmission magnetic field of the area
  • the column (e) of FIG. 6 shows the transmitted magnetic field in the region surrounded by the broken line shown in the column (b) of FIG.
  • the column (f) in FIG. 6 shows the transmitted magnetic field in the region surrounded by the broken line shown in the column (c) in FIG.
  • the level of the transmission field of the low-frequency alternating current and the transmission field of the high-frequency alternating current increases as the frequency of the alternating current increases, regardless of the presence or absence of the gap length lg.
  • the phase difference increases.
  • the increase value of the phase difference depends on the gap length lg.
  • the transmitted magnetic field when the lowest frequency alternating current flows and the highest frequency alternating current are obtained.
  • the amount of phase shift from the transmitted magnetic field when flowing is 3.15 °.
  • the transmitted magnetic field when the lowest frequency alternating current flows and the highest frequency alternating current are obtained.
  • the amount of phase shift from the transmitted magnetic field when flowing is 2.60 °.
  • the gap length lg is present, that is, when the facing portion 31 is not a ring continuously connected in the circumferential direction but a ring having a gap 36b, the amount of phase shift of the transmitted magnetic field is reduced. Is done. When the gap length lg is longer than that of the magnetoelectric conversion unit 10, the amount of phase shift of the transmitted magnetic field is effectively reduced.
  • the magnetoelectric conversion unit 10 is disposed opposite to the gap 36b formed by the two tip surfaces 36a of the conductive bus bar 30 in the z direction.
  • the magnetic field to be measured generated from the current to be measured that flows in a concentrated manner on the surface layer on the two distal end surfaces 36 a side of the conductive bus bar 30 through the magnetoelectric conversion unit 10 due to the skin effect.
  • the density (strength) of the magnetic field to be measured that passes through the magnetoelectric converter 10 is effectively increased.
  • FIG. 7 shows a case where a direct current is passed through the facing portion 31 where the annular portion 35 is not formed in the constricted portion 34 and the facing portion 31 where the annular portion 35 is formed in the constricted portion 34, which have the same current cross-sectional area. The intensity distribution of the measured magnetic field is shown.
  • the horizontal axis indicates the position in the x direction when the magnetoelectric conversion unit 10 (gap 36b) is the center.
  • the unit of the vertical axis is an arbitrary unit in which the maximum intensity of the magnetic field to be measured is standardized as 1.00 as the reference value.
  • the unit of the horizontal axis is mm.
  • the measured magnetic field at a position of x 0.0 mm compared to the case where the annular portion 35 is not formed in the narrowed portion 34. (Transmission magnetic field) increases. Specifically, the transmitted magnetic field increases by approximately 31%. Thus, even if the current to be measured is a direct current, the intensity of the transmitted magnetic field is increased.
  • the separation distance ld in the z direction between the gap 36 b and the magnetoelectric conversion unit 10 is shorter than the length lz in the hollow z direction of the facing part 31.
  • the extension portion 36 extends in the circumferential direction, the longest separation length lx in the x direction between the two extension portions 36 is longer than the length lc in the x direction of the constriction portion 34.
  • the energization cross-sectional area of the extension 36 is increased as compared with the configuration in which the extension 36 simply extends in the z direction.
  • the electrical resistance of the facing portion 31 is reduced. Local heat generation at the facing portion 31 is suppressed. Fluctuation of the resistance value of the magnetoresistive effect element included in the magnetoelectric conversion unit 10 due to heat transfer from the facing unit 31 to the magnetoelectric conversion unit 10 is suppressed. A decrease in detection accuracy of the current to be measured is suppressed.
  • the energizing cross-sectional area of the annular portion 35 is larger than that of the constricted portion 34. Thereby, energization from the narrowed portion 34 to the annular portion 35 is promoted. Reduction of the current density of the current to be measured flowing through the annular portion 35 is suppressed.
  • each of the first connecting part 32 and the second connecting part 33 forms a rectangle on a plane facing in the z direction.
  • the first connecting portion 32 and the second connecting portion 33 are each formed with an inclination in which the length in the x direction gradually decreases toward the connecting portion with the constricted portion 34. It is also possible to adopt the configuration described above. As a result, it is possible to suppress rate-limiting in the flow of current from the first connecting portion 32 to the constricted portion 34 and the current flow from the second connecting portion 33 to the constricted portion 34.
  • the end surfaces 36 c in the y direction of the two extending portions 36 of the annular portion 35 face the y direction.
  • the end surface 36c may have an inclination in which the length in the z direction gradually increases as it approaches the center of the annular portion 35 in the y direction.
  • the example in which the narrowed portion 34 is shorter in the x direction than the first connecting portion 32 and the second connecting portion 33 is shown.
  • the column (c) of FIG. 8 it is possible to adopt a configuration in which the lengths in the x direction of the narrowed portion 34, the first connecting portion 32, and the second connecting portion 33 are equal.
  • the magnitude relation of the current cross-sectional areas of the first connecting portion 32 and the second connecting portion 33 and the facing portion 31 is not particularly described.
  • the facing portion 31 has a larger energization cross-sectional area than the first connecting portion 32 and the second connecting portion 33.
  • the extension part 36 showed the example extended in the circumferential direction from the constriction part 34.
  • the extended portion 36 may have a shape extending in the z direction from the narrowed portion 34.
  • the cross-sectional shape which faces a hollow y direction can also employ
  • an elliptical cross-sectional shape facing in the y direction can be adopted.
  • the example in which the current sensor 100 is applied to the detection of the current of the energized bus bar connecting the inverter and the stator coil is shown.
  • the application of the current sensor is not limited to the above example.
  • the structure applied to the detection of the electric current of the electric power line which the current sensor 100 connects a battery and a converter can also be employ
  • the current sensor 100 detects a direct current.
  • FIG. 10 shows the current sensor 100 when the conductive bus bar 30 has a cylindrical shape as a reference.
  • the magnetoelectric conversion unit 10 is disposed opposite to the cylindrical conductive bus bar 30 so as to be separated in the z direction.
  • the magnetic field to be measured passes through the magnetoelectric converter 10.
  • the depth D of the surface layer where the current flows concentratedly depends on the frequency f of the current to be measured.
  • the frequency f increases, the depth D of the surface layer through which current concentrates becomes shallower.
  • the maximum value of the frequency of the current to be measured is F
  • the shortest depth Dm of the surface layer in which the current flows is expressed as ( ⁇ F ⁇ ) ⁇ 1/2 .
  • the density distribution of the current to be measured flowing through the conductive bus bar 30 is biased between the surface layer side and the inner side. Occurs.
  • the thickness t is equal to or less than the shortest depth Dm, the density distribution of the current to be measured flowing through the conductive bus bar 30 is less likely to be biased.
  • the thickness may be set to be thicker than the shortest depth Dm.
  • a configuration in which the hollows of the first connecting part 32 and the second connecting part 33 are smaller than the hollow of the facing part 31 may be employed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

電流センサは、所定方向に被測定電流の流動する導電部材(30)と、前記所定方向に交差する交差方向で前記導電部材と離間して対向する磁電変換部(10)とを有する。前記導電部材における前記磁電変換部との対向部位(31)は、前記所定方向まわりに、2つの先端面(36a)が空隙(36b)を介して対向する環状を成す。前記磁電変換部は、環状を成す前記対向部位の備える中空と、前記交差方向において、前記空隙を介して対向している。

Description

電流センサ 関連出願の相互参照
 本出願は、2018年5月18日に出願された日本特許出願番号2018-95979号に基づくもので、ここにその記載内容を援用する。
 本開示は、被測定電流を検出する電流センサに関するものである。
 特許文献1に示されるように、表皮効果による電流密度の偏りを加味して、扁平な形状の被測定導体の中央位置と端位置の間に磁気センサの対向配置された電流測定装置が知られている。
 表皮効果によって、電流は扁平形状の被測定導体の端位置に集中して流動する。これに対して特許文献1に記載の構成では、扁平形状の被測定導体の有する複数の端のうちの1つの位置(端位置)と中央位置との間に磁気センサが対向配置される。そのために被測定導体の有する他の端に集中して流動する電流から発せられる磁界が磁気センサを透過しがたくなる。したがって特許文献1に記載の構成では、磁気センサ(磁電変換部)を透過する磁界の密度を効果的に増加することができなかった。
特許第4515855号公報
 本開示は、磁電変換部を透過する磁界の密度が効果的に増加された電流センサを提供することを目的とする。
 本開示の態様にしたがって、電流センサは、所定方向に被測定電流の流動する導電部材と、前記所定方向に交差する交差方向で前記導電部材と離間して対向する磁電変換部とを有する。前記導電部材における前記磁電変換部との対向部位は、前記所定方向まわりに、2つの先端面が空隙を介して対向する環状を成す。前記磁電変換部は、環状を成す前記対向部位の備える中空と、前記交差方向において、前記空隙を介して対向している。
 このように磁電変換部は導電部材の2つの先端面の間の空隙と対向配置される。これにより、交流の被測定電流が導電部材に流れる場合、表皮効果によって導電部材の2つの先端面側の表層に集中して流動する被測定電流から発せられる被測定磁界が磁電変換部を透過する。この結果、磁電変換部を透過する被測定磁界の密度が効果的に増加される。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
電流センサを示す斜視図であり、 電流センサの断面図であり、 透過磁界の強度と対向部の形状との関係を示すグラフであり、 透過磁界の位相ズレ量と対向部の形状との関係を示すグラフであり、 透過磁界の位相ズレ量を示す図表であり、 透過磁界の位相ズレ量とギャップ長との関係を示す図表であり、 被測定磁界の密度分布を示すグラフであり、 導電バスバーの変形例を示す図表であり、 導電バスバーの変形例を示す図表であり、 筒形状の導電バスバーに磁電変換部の対向配置された状態を示す図表である。
 以下、実施形態を図に基づいて説明する。
 (第1実施形態)
 電流センサ100は交流電流を検出するものである。例えば電流センサ100は、車載のインバータとモータのステータコイルとを接続する通電バスバーに設けられる。電流センサ100はこの通電バスバーを流れる交流電流(三相交流)を検出する。
 図1に示すように電流センサ100は磁電変換部10と導電バスバー30を有する。また図2に示すように電流センサ100は磁電変換部10を搭載する配線基板20を有する。
 導電バスバー30は上記の通電バスバーの一部である。そのために導電バスバー30には上記の三相交流が流動する。なお、導電バスバー30と通電バスバーとは別体でもよい。例えば通電バスバーがインバータ側とステーコイル側とで分断された構成の場合、これらを導電バスバー30が架橋する構成を採用することができる。
 磁電変換部10と配線基板20はこの導電バスバー30に対向配置される。これにより磁電変換部10には、導電バスバー30を流れる交流電流から発せられる磁界が透過する。磁電変換部10はこの自身を透過した磁界を電気信号に変換する。
 以下、電流センサ100の構成要素を個別に説明する。それに当たって、以下においては互いに直交の関係にある3方向をx方向、y方向、および、z方向とする。x方向は横方向に相当する。y方向は所定方向に相当する。z方向は交差方向に相当する。
 <磁電変換部>
 磁電変換部10は、図示しないASICに内包される。そしてこのASICは配線基板20に搭載される。ASICはapplication specific integrated circuitの略である。
 ASICには磁電変換部10の他に増幅回路などが内包されている。配線基板20にはフィルタ回路などが搭載されている。磁電変換部10の出力した電気信号は増幅回路で信号強度が増幅される。この信号強度の増幅された磁電変換部10の電気信号に含まれるノイズがフィルタ回路で除去される。信号強度が増幅され、ノイズの除去された磁電変換部10の電気信号が車載の電子制御装置に出力される。電子制御装置はその電気信号や図示しない回転角センサの出力などに基づいて、モータに発生するトルクの目標値(目標トルク)を決定する。
 配線基板20は図2に示すようにz方向の厚さの薄い平板形状を成している。配線基板20はz方向に面する第1主面20aと第2主面20bを有する。この第1主面20aにASIC(磁電変換部10)が搭載される。そして第1主面20aが導電バスバー30とz方向で対向配置される。これにより磁電変換部10は導電バスバー30とz方向で対向配置されている。
 磁電変換部10は自身を透過する磁界(透過磁界)に応じて抵抗値が変動する磁気抵抗効果素子を複数有する。この磁気抵抗効果素子は第1主面20aに沿う透過磁界に応じて抵抗値が変化する。すなわち磁気抵抗効果素子は透過磁界のx方向に沿う成分とy方向に沿う成分に応じて抵抗値が変化する。
 その反面、磁気抵抗効果素子はz方向に沿う透過磁界によって抵抗値が変化しない。したがってz方向に沿う外部ノイズが磁気抵抗効果素子を透過したとしても、それによって磁気抵抗効果素子の抵抗値は変化しない。
 磁気抵抗効果素子は磁化方向の固定されたピン層、磁化方向が透過磁界に応じて変化する自由層、および、両者の間に設けられた非磁性の中間層を有する。中間層が非導電性を有する場合、磁気抵抗効果素子は巨大磁気抵抗素子である。中間層が導電性を有する場合、磁気抵抗効果素子はトンネル磁気抵抗素子である。なお、磁気抵抗効果素子は異方性磁気抵抗効果素子(AMR)でもよい。さらに言えば、磁電変換部10は磁気抵抗効果素子の代わりにホール素子を有してもよい。
 磁気抵抗効果素子はピン層と自由層それぞれの磁化方向の成す角度によって抵抗値が変化する。ピン層の磁化方向は第1主面20aに沿っている。自由層の磁化方向は第1主面20aに沿う透過磁界によって定まる。磁気抵抗効果素子の抵抗値は、自由層と固定層それぞれの磁化方向が平行の場合に最も小さくなる。磁気抵抗効果素子の抵抗値は、自由層と固定層それぞれの磁化方向が反平行の場合に最も大きくなる。
 磁電変換部10は上記した磁気抵抗効果素子を複数有する。これら複数の磁気抵抗効果素子によってブリッジ回路が構成されている。ブリッジ回路の出力は、磁気抵抗効果素子を磁界が透過することで変動する。このブリッジ回路の出力が、増幅回路に出力される。
 なお、磁電変換部10は磁気抵抗効果素子から構成されるブリッジ回路の他に、相殺磁界を発生するためのオペアンプとフィードバックコイルを有してもよい。オペアンプの入力端子にブリッジ回路の出力端子が接続されている。オペアンプの出力端子にフィードバックコイルが接続されている。そしてオペアンプは帰還回路を介して出力端子と入力端子が接続されている。以上に示した構成により、オペアンプは入力端子に流れる電流と出力端子に流れる電流とがゼロとなるように動作する。この結果、オペアンプの出力端子からは、磁気抵抗効果素子の透過磁界に応じた電流(フィードバック電流)が流れる。
 このフィードバック電流がフィードバックコイルを流れる。これによりフィードバックコイルから相殺磁界が発生する。この相殺磁界がブリッジ回路を透過する。これによってブリッジ回路を透過する被測定磁界が相殺される。以上により磁電変換部10は、自身を透過する被測定磁界と相殺磁界とが平衡となるように動作する。磁電変換部10としては、このような磁気平衡型を採用することもできる。なおこの構成の場合、フィードバックコイルに印加される電圧が、磁電変換部10の出力電圧として増幅回路に出力される。
 <導電バスバー>
 導電バスバー30は銅や黄銅およびアルミニウムなどの導電材料から成る。導電バスバー30は例えば以下に列挙する方法で製造することができる。導電バスバー30は平板をプレス加工することで製造することができる。導電バスバー30は複数の平板を一体的に連結することで製造することができる。導電バスバー30は複数の平板を溶接することで製造することができる。導電バスバー30は鋳型に溶融状態の導電材料を流し込むことで製造することができる。導電バスバー30の製造方法としては特に限定されない。導電バスバー30が導電部材に相当する。
 図1および図2に示すように導電バスバー30はy方向に延びている。導電バスバー30は磁電変換部10とz方向で対向する対向部31、および、対向部31と連結される第1連結部32と第2連結部33を有する。第1連結部32と第2連結部33は対向部31を介してy方向に並んでいる。第1連結部32と第2連結部33は対向部31を介して一体的に連結されている。対向部31は対向部位に相当する。
 本実施形態の導電バスバー30は一面30aと裏面30bとの間の長さ(厚さ)の均一な平板をプレス加工することで製造される。そのために対向部31、第1連結部32、および、第2連結部33それぞれの一面30aと裏面30bとの間の離間距離は相等しくなっている。
 第1連結部32と第2連結部33それぞれはz方向に面する平面において矩形を成している。第1連結部32と第2連結部33それぞれの一面30aと裏面30bはz方向に面している。
 対向部31はy方向に延びる狭窄部34を有する。狭窄部34の一面30aと裏面30bはz方向に面している。狭窄部34のy方向の2つの端部のうちの一方が第1連結部32に一体的に連結されている。狭窄部34のy方向の2つの端部のうちの他方が第2連結部33に一体的に連結されている。これにより狭窄部34に第1連結部32と第2連結部33を流れる電流が流れる。
 狭窄部34は第1連結部32と第2連結部33それぞれよりもx方向の長さが短くなっている。このために狭窄部34における第1連結部32と第2連結部33それぞれとの連結部位を流れる電流の密度は、第1連結部32と第2連結部33を流れる電流の密度よりも濃くなっている。
 対向部31は上記の狭窄部34の他に、狭窄部34とともにy方向まわりの周方向で環状を成す環状部35を有する。環状部35は狭窄部34のx方向に並ぶ2つの側面それぞれから狭窄部34の一面30aの上方側に湾曲して延びる2つの延長部36を有する。2つの延長部36は、狭窄部34の側面から周方向に沿って半円形状に延びた後、2つの延長部36それぞれの先端面36aが互いに近づく態様でx方向に延びた形状を成している。
 これら2つの延長部36それぞれの先端面36aはx方向に面している。そして2つの先端面36aはx方向で離間して対向している。これにより2つの先端面36aの間に空隙36bが構成されている。
 なお先端面36aはx方向に対して傾斜した形状を採用することもできる。その傾斜の形態としては、先端面36aが中空とz方向で対向する態様、先端面36aが配線基板20とz方向で対向する態様を採用することができる。この場合、先端面36aを備える先端部のz方向の厚みは、空隙から離れるにしたがって徐々に厚くなる形状となる。
 空隙36b、および、この空隙36bを構成する2つの先端面36aはz方向において狭窄部34の一面30aと離間して並んでいる。空隙36bは狭窄部34と環状部35とによって構成される中空と連通するとともにz方向で並んでいる。
 図1および図2において磁電変換部10をブロックで示すように、磁電変換部10は対向部31とz方向で離間して対向配置される。より詳しく言えば、磁電変換部10は上記の空隙36bとz方向で離間して対向配置される。磁電変換部10はz方向において空隙36bを介して狭窄部34と環状部35とによって構成される中空と対向配置される。したがって磁電変換部10には、主として対向部31の2つの先端面36aを備える先端部を流れる電流から発せられる被測定磁界が透過する。
 上記したように導電バスバー30はy方向に延びている。したがって導電バスバー30ではy方向に電流が流れる。このy方向への電流の流動によって、y方向まわりの周方向に、アンペールの法則にしたがう被測定磁界が生成される。被測定磁界は、x方向とz方向とによって規定される平面において、導電バスバー30を中心として環状に流れる。磁電変換部10は被測定磁界のx方向に沿う成分を検出する。
 導電バスバー30には交流電流が流れる。この交流電流の周波数が高まると、表皮効果によって、交流電流は導電バスバー30の表層に流れようとする。この結果、導電バスバー30の表層に流れる交流電流の電流密度が高まる。
 この交流電流は狭窄部34だけではなく環状部35にも流れる。そのために環状部35の表層に流れる交流電流の電流密度が高まる。より場所を限定して言えば、2つの先端面36a側の表層を流れる交流電流の電流密度が高まる。したがって2つの先端面36aの間の空隙36bと対向配置される磁電変換部10には、この電流密度の高い、2つの先端面36a側の表層を流れる交流電流から発せられる磁界が透過する。
 <電流センサの寸法関係>
 次に、電流センサ100の寸法関係を説明する。図2に示すように狭窄部34のx方向の長さはlcとなっている。上記したように狭窄部34のx方向に並ぶ2つの側面それぞれから延長部36が延びている。この延長部36は周方向に延びる。すなわち延長部36はz方向に延びつつ、x方向において狭窄部34から一度離間した後、x方向において狭窄部34に近づくように延びる。2つの延長部36間のx方向の最長離間長さlxは、狭窄部34のx方向の長さlcよりも長くなっている。
 上記したように2つの延長部36の先端面36aはx方向で離間して対向する。この2つの先端面36aのx方向の離間長さlgは、狭窄部34のx方向の長さlcよりも短くなっている。換言すれば、2つの先端面36aの間の空隙36bのx方向の長さ(ギャップ長さ)lgは、狭窄部34のx方向の長さlcよりも短くなっている。
 空隙36bと磁電変換部10とのz方向の離間距離はldとなっている。そして対向部31の中空のz方向の長さはlzとなっている。離間距離ldは長さlzよりも短くなっている。なお、離間距離ldは導電バスバー30の一面30aと裏面30bとの離間距離(厚さ)よりも短くとも長くともよい。また離間距離ldは上記のギャップ長さlgよりも短くとも長くともよい。
 磁電変換部10のx方向の長さは、空隙36bのギャップ長さlgよりも短くなっている。そして磁電変換部10は空隙36bのx方向の中心点とz方向で対向している。したがって磁電変換部10はz方向で空隙36bと対向し、この空隙36bを構成する2つの先端面36aとはz方向で並んでいない。ただし、磁電変換部10のx方向の長さがギャップ長さlgよりも長い構成を採用することもできる。すなわち磁電変換部10がz方向において2つの先端面36aと並ぶ構成を採用することもできる。磁電変換部10のx方向の長さは、具体的には1mm程度である。
 図2に示されるように、対向部31において、狭窄部34よりも環状部35のほうがy方向に面する平面の断面積(通電断面積)が大きくなっている。これにより狭窄部34から環状部35への通電が促されている。
 <磁界強度>
 次に、上記した各種長さlc,lx,lg,ld,lzおよび磁電変換部10のサイズを不変としつつ、図1に示す狭窄部34のy方向の長さlyを変化させた場合に磁電変換部10を透過する磁界(透過磁界)の強度の計測結果を図3に基づいて説明する。
 図3の縦軸は透過磁界の強度を示している。横軸は長さlyを示している。縦軸の単位は、長さlyがゼロの場合の透過磁界の強度を基準値の1.00として規格した任意単位である。横軸の単位はmmである。
 この図3に明示されるように、長さlyがゼロの場合、すなわち、狭窄部34に環状部35が形成されていない場合、透過磁界の強度は1.00になる。これに対して、長さlyが10mm程度でもある場合、透過磁界の強度は1.15になる。このように、多少にでも狭窄部34に環状部35が形成される場合、透過磁界の強度はおよそ15%増大する。
 なお当然ではあるが、図3に示す測定結果を得るにあたって、狭窄部34に環状部35が形成させていない場合の対向部31のy方向に直交する断面積と、狭窄部34に環状部35が形成されている場合の対向部31のy方向に直交する断面積とを等しくしている。環状部35がない場合とある場合とでの対向部31の通電断面積を等しくしている。
 <位相ズレ>
 次に、上記した各種長さlc,lx,lg,ld,lzを不変としつつ、狭窄部34のy方向の長さlyを変化させた場合の透過磁界の位相ズレ量の計測結果を図4に基づいて説明する。この位相ズレ量は、表皮効果を無視できる程度の低周波の交流電流を流した際の透過磁界に対する、表皮効果の発生する高周波の交流電流を流した際の透過磁界の位相のズレ量を示している。
 流した交流電流の周波数差は2000Hzである。図4の縦軸は透過磁界の位相ズレ量を示している。横軸は長さlyを示している。縦軸の単位は°である。横軸の単位はmmである。
 この図4に明示されるように、長さlyがゼロの場合、すなわち、狭窄部34に環状部35が形成されていない場合、透過磁界の位相ズレ量は9°になる。これに対して、長さlyが10mm程度でもある場合、透過磁界の位相ズレ量はおよそ2.3°になる。このように、多少にでも狭窄部34に環状部35が形成される場合、透過磁界の位相ズレ量はおよそ6.7°低減される。すなわち位相ズレ量は74%減少される。
 次に、通電断面積の相等しい、狭窄部34に環状部35の形成されていない対向部31と、狭窄部34に環状部35の形成された対向部31とに周波数の異なる交流電流を流した際に生じる透過磁界の位相のズレ量を図5に基づいて説明する。
 流した交流電流の周波数差は5000Hzである。実線が低周波の交流電流、破線が高周波の交流電流を流した際に検出される透過磁界を示している。図5の(a)欄は狭窄部34に環状部35の形成されていない場合の透過磁界を示している。図5の(b)欄は狭窄部34に環状部35の形成されている場合の透過磁界を示している。
 狭窄部34に環状部35の形成されていない場合、低周波の交流電流を流した際の透過磁界と、高周波の交流電流を流した際の透過磁界との位相のズレ量は9°になる。狭窄部34に環状部35の形成されている場合、低周波の交流電流を流した際の透過磁界と、高周波の交流電流を流した際の透過磁界との位相のズレ量は2°になる。
 以上に示したように、対向部31がz方向に面する狭窄部34だけではなく、空隙36bを備えた環状の環状部35を有する場合、透過磁界の位相のズレ量が低減される。
 次に、上記した各種長さlc,lx,ld,lz,lyを不変としつつ、ギャップ長さlgを変化させた場合の透過磁界を図6に示す。ギャップ長さlgは、0.0mm,0.5mm,1.5mmに変化させている。したがって図6に示す透過磁界は、対向部31が空隙36bを有さない筒形状の場合、ギャップ長さlgが磁電変換部10よりも短い場合、ギャップ長さlgが磁電変換部10よりも長い場合を示している。これら各種形態において、導電バスバー30に、0Hz,100Hz,500Hz,1000Hz,2000Hz,5000Hzの交流電流を流している。なお、0Hzとは近似値であり、具体的には1×10-8Hzである。
 図6の(a)欄はギャップ長さlgが0.0mmの場合の透過磁界を示している。図6の(b)欄はギャップ長さlgが0.5mmの場合の透過磁界を示している。図6の(c)欄はギャップ長さlgが1.5mmの場合の透過磁界を示している。
 そして図6の(d)欄は図6の(a)欄に示す破線で囲った領域の透過磁界を示している。図6の(e)欄は図6の(b)欄に示す破線で囲った領域の透過磁界を示している。図6の(f)欄は図6の(c)欄に示す破線で囲った領域の透過磁界を示している。
 図6に明示されるように、ギャップ長さlgの有無および長短に関わらずに、交流電流の周波数が高まるほどに、低周波の交流電流の透過磁界と高周波の交流電流の透過磁界との位相差が大きくなる。しかしながらその位相差の増大値は、ギャップ長さlgに依存している。
 図6の(a)欄と(d)欄に示されるように、ギャップ長さlgが0.0mmの場合、最も低周波の交流電流を流した際の透過磁界と、最も高周波の交流電流を流した際の透過磁界との位相のズレ量は3.15°になる。
 図6の(b)欄と(e)欄に示されるように、ギャップ長さlgが0.5mmの場合、最も低周波の交流電流を流した際の透過磁界と、最も高周波の交流電流を流した際の透過磁界との位相のズレ量は2.60°になる。
 図6の(c)欄と(f)欄に示されるように、ギャップ長さlgが1.5mmの場合、最も低周波の交流電流を流した際の透過磁界と、最も高周波の交流電流を流した際の透過磁界との位相のズレ量は1.89°になる。
 以上に示したように、ギャップ長さlgが有る場合、すなわち、対向部31が周方向で連続的に連なった環状ではなく、空隙36bを有する環状の場合、透過磁界の位相のズレ量が低減される。また、ギャップ長さlgが磁電変換部10よりも長い場合、透過磁界の位相のズレ量が効果的に低減される。
 <電流センサの作用効果>
 <透過磁界の強度>
 以上に示したように、磁電変換部10は導電バスバー30の2つの先端面36aによって構成される空隙36bとz方向で対向配置される。これにより、表皮効果によって導電バスバー30の2つの先端面36a側の表層に集中して流動する被測定電流から発せられる被測定磁界が磁電変換部10を透過する。この結果、図3に示されるように、磁電変換部10を透過する被測定磁界の密度(強度)が効果的に増加される。
 なお、磁電変換部10を透過する被測定磁界の強度の効果的な増加は、導電バスバー30に直流が流れる場合においても生じる。図7に、通電断面積の相等しい、狭窄部34に環状部35の形成されていない対向部31と、狭窄部34に環状部35の形成された対向部31とに直流電流を流した際の被測定磁界の強度分布を示す。
 図7の縦軸は被測定磁界の強度を示している。横軸は磁電変換部10(空隙36b)を中心とした場合のx方向の位置を示している。縦軸の単位は、被測定磁界の最大強度を基準値の1.00として規格した任意単位である。横軸の単位はmmである。
 この図7に明示されるように、狭窄部34に環状部35の形成された場合、狭窄部34に環状部35の形成されていない場合と比べてx=0.0mmの位置の被測定磁界(透過磁界)が大きくなる。具体的には、透過磁界はおよそ31%増大する。このように被測定電流が直流電流の場合であっても、透過磁界の強度が高まる。
 <透過磁界の位相ズレ>
 図4および図5に基づいて説明したように、狭窄部34に環状部35が形成される場合、狭窄部34に環状部35が形成されていない場合と比べて透過磁界の位相ズレ量が低減される。また図6に基づいて説明したように、環状部35が空隙36bを有する環状の場合、環状部35が空隙36bを有さずに、対向部31が周方向で連続的に連なった環状の場合と比べて、透過磁界の位相ズレ量が低減される。さらに言えば、ギャップ長さlgが磁電変換部10よりも長い場合、透過磁界の位相ズレ量が効果的に低減される。
 これにより、電流センサ100で検出する被測定電流と、実際に導電バスバー30に流れている被測定電流とに位相差が生じることが抑制される。電流センサ100で検出される被測定電流に基づいて電子制御装置で算出される目標トルクの値にズレが生じることが抑制される。モータの駆動状態が不安定になることが抑制される。
 <電流センサの寸法>
 空隙36bと磁電変換部10とのz方向の離間距離ldは、対向部31の中空のz方向の長さlzよりも短くなっている。これにより表皮効果によって導電バスバー30から発せられる被測定磁界の磁電変換部10を透過する強度の低減が抑制される。
 延長部36は周方向に延びるため、2つの延長部36間のx方向の最長離間長さlxは、狭窄部34のx方向の長さlcよりも長くなっている。これにより単に延長部36がz方向に延びる構成と比べて、延長部36の通電断面積が大きくなる。そのために対向部31の電気抵抗が低まる。対向部31での局所的な発熱が抑制される。対向部31から磁電変換部10への伝熱によって、磁電変換部10の備える磁気抵抗効果素子の抵抗値が変動することが抑制される。被測定電流の検出精度の低下が抑制される。
 対向部31において、狭窄部34よりも環状部35のほうが、通電断面積が大きくなっている。これにより狭窄部34から環状部35への通電が促されている。環状部35を流れる被測定電流の電流密度の低減が抑制される。
 以上、本開示物の好ましい実施形態について説明したが、本開示物は上記した実施形態になんら制限されることなく、本開示物の主旨を逸脱しない範囲において、種々変形して実施することが可能である。
 (第1の変形例)
 本実施形態では導電バスバー30が通電バスバーの一部である例を示した。しかしながら導電バスバー30と通電バスバーとが別体の構成を採用することもできる。この場合、例えば図8の(a)欄と(c)欄に示すように、第1連結部32と第2連結部33それぞれに、一面30aと裏面30bとを貫通する貫通孔30cの形成された構成を採用することもできる。この貫通孔30cにボルトを通し、ボルトの先端を通電バスバーに締結する。こうすることで導電バスバー30と通電バスバーとが機械的および電気的に接続される。
 (第2の変形例)
 本実施形態では第1連結部32と第2連結部33それぞれがz方向に面する平面において矩形を成す例を示した。しかしながら図8の(b)欄に示すように、第1連結部32と第2連結部33それぞれに、狭窄部34との連結部位に向かってx方向の長さが徐々に短くなる傾斜の形成された構成を採用することもできる。これにより第1連結部32から狭窄部34への電流の流動、および、第2連結部33から狭窄部34への電流の流動に律速が生じることが抑制される。
 (第3の変形例)
 本実施形態では、図1に示すように環状部35の有する2つの延長部36それぞれのy方向の端面36cがy方向に面する例を示した。しかしながら図8の(c)欄に示すように端面36cは、y方向において環状部35の中央に近づくにしたがってz方向の長さが徐々に長くなる傾斜を有してもよい。これにより第1連結部32側から環状部35、および、第2連結部33側から環状部35へと電流が流れやすくなる。そのために環状部35に流れる被測定電流の電流量の低減が抑制される。
 本実施形態では狭窄部34が第1連結部32および第2連結部33よりもx方向の長さが短い例を示した。しかしながら図8の(c)欄に示すように、狭窄部34、第1連結部32、および、第2連結部33それぞれのx方向の長さが等しい構成を採用することもできる。
 本実施形態では特に第1連結部32および第2連結部33と対向部31との通電断面積の大小関係を述べていなかった。例えば図8の(c)欄に示すように、第1連結部32および第2連結部33それぞれよりも、対向部31のほうが通電断面積の大きい構成を採用することもできる。
 (第4の変形例)
 本実施形態では延長部36が狭窄部34から周方向に延びる例を示した。しかしながら図9の(a)欄および(b)欄に示すように、延長部36は狭窄部34からz方向に延びた形状を採用することもできる。また中空のy方向に面する断面形状が、長方形、正方形の形状を採用することもできる。図9の(c)欄に示すように、中空のy方向に面する断面形状が楕円の形状を採用することもできる。
 (その他の変形例)
 本実施形態では電流センサ100がインバータとステータコイルとを接続する通電バスバーの電流の検出に適用される例を示した。しかしながら電流センサの適用としては上記例に限定されない。例えば電流センサ100がバッテリとコンバータとを接続する電力線の電流の検出に適用された構成を採用することもできる。この場合、電流センサ100は直流電流を検出する。
 (参考例)
 図10に導電バスバー30が筒形状である場合の電流センサ100を参考として示す。図10の(a)欄に示すように筒形状の導電バスバー30に磁電変換部10がz方向で離間して対向配置される。図10の(b)欄に実線矢印で示すように、この構成の場合、磁電変換部10には、アンペールの法則にしたがって周方向に流れる被測定磁界が磁電変換部10を透過する。
 この筒形状の導電バスバー30に交流電流が流れると、表皮効果によって、この筒を構成する導電バスバー30の内壁面30d側と外壁面30e側それぞれの表層に被測定電流が集中して流れようとする。
 ただし、表皮効果によって被測定電流が集中して流れる表層の深さDは、被測定電流の周波数f、導電バスバー30の透磁率μ、導電バスバー30の透磁率σに依存する。具体的に言えば、D=(πfμσ)-1/2と表される。
 このように電流が集中して流れる表層の深さDは被測定電流の周波数fに依存する。この周波数fが高くなればなるほどに電流が集中して流れる表層の深さDは浅くなる。被測定電流の周波数の最大値をFとすると、電流が集中して流れる表層の最短深さDmは、(πFμσ)-1/2と表される。
 導電バスバー30の内壁面30dと外壁面30eとの間の厚さtが、この最短深さDmよりも長い場合、導電バスバー30を流れる被測定電流の密度分布に、表層側と内側とで偏りが生じる。反対に、厚さtが最短深さDm以下の場合、導電バスバー30を流れる被測定電流の密度分布に偏りが生じがたくなる。
 そこで、筒形状の導電バスバー30の厚さtを最短深さDm=(πFμσ)-1/2以下にする。これにより表皮効果による被測定磁界の密度分布に変化が生じることが抑制される。被測定電流の周波数の変化によって、磁電変換部10を透過する被測定磁界の位相などが変化することが抑制される。被測定電流の検出精度の低下が抑制される。
 なお、導電バスバー30における磁電変換部10と対向する対向部31の厚さを最短深さDm=(πFμσ)-1/2以下に設定し、第1連結部32と第2連結部33それぞれの厚さをこの最短深さDmよりも厚く設定してもよい。また、図10に示すように、対向部31の中空よりも、第1連結部32と第2連結部33それぞれの中空が小さい構成を採用することもできる。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (3)

  1.  所定方向に被測定電流の流動する導電部材(30)と、
     前記所定方向に交差する交差方向で前記導電部材と離間して対向する磁電変換部(10)と、を有し、
     前記導電部材における前記磁電変換部との対向部位(31)は、前記所定方向まわりに、2つの先端面(36a)が空隙(36b)を介して対向する環状を成し、
     前記磁電変換部は、環状を成す前記対向部位の備える中空と、前記交差方向において、前記空隙を介して対向している電流センサ。
  2.  前記磁電変換部と前記空隙との前記交差方向での離間距離は、前記中空の前記交差方向の長さよりも短い請求項1に記載の電流センサ。
  3.  前記空隙は前記磁電変換部よりも、前記所定方向および前記交差方向それぞれに交差する横方向の長さが長い請求項1または請求項2に記載の電流センサ。
     
     
     
     
PCT/JP2019/011313 2018-05-18 2019-03-19 電流センサ WO2019220766A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980027211.5A CN112005122B (zh) 2018-05-18 2019-03-19 电流传感器
US17/001,960 US11360123B2 (en) 2018-05-18 2020-08-25 Current sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018095979A JP6988684B2 (ja) 2018-05-18 2018-05-18 電流センサ
JP2018-095979 2018-05-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/001,960 Continuation US11360123B2 (en) 2018-05-18 2020-08-25 Current sensor

Publications (1)

Publication Number Publication Date
WO2019220766A1 true WO2019220766A1 (ja) 2019-11-21

Family

ID=68539793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011313 WO2019220766A1 (ja) 2018-05-18 2019-03-19 電流センサ

Country Status (4)

Country Link
US (1) US11360123B2 (ja)
JP (1) JP6988684B2 (ja)
CN (1) CN112005122B (ja)
WO (1) WO2019220766A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181063A1 (ja) * 2021-02-24 2022-09-01 サンコール株式会社 電流センサ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011089899A (ja) * 2009-10-22 2011-05-06 Autonetworks Technologies Ltd 電気接続箱
JP2011196709A (ja) * 2010-03-17 2011-10-06 Keihin Corp 電流センサ
JP2012042409A (ja) * 2010-08-23 2012-03-01 Auto Network Gijutsu Kenkyusho:Kk 電流検出装置
JP2017215143A (ja) * 2016-05-30 2017-12-07 株式会社ケーヒン 電流検出装置

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03146874A (ja) 1989-11-01 1991-06-21 Mitsubishi Electric Corp 電流検出装置
JP4726092B2 (ja) 2003-08-05 2011-07-20 旭化成エレクトロニクス株式会社 電流測定装置、及び、電流測定方法
JP4515855B2 (ja) 2003-08-05 2010-08-04 旭化成エレクトロニクス株式会社 電流測定装置、及び、電流測定方法
JP2005321206A (ja) * 2004-05-06 2005-11-17 Mitsubishi Electric Corp 電流検出装置
JP4385892B2 (ja) 2004-08-19 2009-12-16 トヨタ自動車株式会社 電流検出装置
EP1811311B1 (de) * 2006-01-19 2016-08-31 Melexis Technologies NV Vorrichtung zur Strommessung
JP2011185775A (ja) 2010-03-09 2011-09-22 Aisin Aw Co Ltd 電流検出装置
US8461824B2 (en) * 2010-06-07 2013-06-11 Infineon Technologies Ag Current sensor
JP5533441B2 (ja) * 2010-08-26 2014-06-25 株式会社オートネットワーク技術研究所 電流検出装置及びその製造方法
JP2012117948A (ja) 2010-12-02 2012-06-21 Aisin Seiki Co Ltd 電流検出装置および電流検出方法
CN201918253U (zh) * 2010-12-13 2011-08-03 士林电机(苏州)电力设备有限公司 一种电流互感器
CN102298131B (zh) * 2011-05-19 2013-10-30 国网电力科学研究院 电流互感器谐波特性测量方法及装置
JP2013002901A (ja) 2011-06-15 2013-01-07 Auto Network Gijutsu Kenkyusho:Kk 電流検出装置
JP2013015431A (ja) 2011-07-05 2013-01-24 Sumitomo Wiring Syst Ltd 電流検出装置
DE112012002861T5 (de) 2011-07-07 2014-04-03 Koa Corporation Shunt-Widerstand und Verfahren zur Herstellung desselben
JP2013117447A (ja) 2011-12-02 2013-06-13 Denso Corp 電流センサ
JP6372969B2 (ja) * 2012-12-03 2018-08-15 矢崎総業株式会社 電流センサ
CN203114431U (zh) * 2013-01-16 2013-08-07 株式会社电装 电子零件
JP6119296B2 (ja) * 2013-02-20 2017-04-26 アイシン精機株式会社 電流センサ
JP2014199251A (ja) * 2013-03-11 2014-10-23 株式会社デンソー 電流センサ
WO2015029736A1 (ja) 2013-08-29 2015-03-05 アルプス・グリーンデバイス株式会社 電流センサ
JP2015148470A (ja) * 2014-02-05 2015-08-20 日立金属株式会社 電流検出構造
JP6115501B2 (ja) 2014-03-19 2017-04-19 株式会社デンソー 電流センサ
CN104237623B (zh) * 2014-10-08 2017-04-12 武汉弈飞科技有限公司 一种高精度电流传感器检测电路及其检测方法
CN104820125B (zh) * 2015-04-27 2018-04-06 江苏多维科技有限公司 采用z轴磁电阻梯度计和引线框电流的集成电流传感器
CN105870880A (zh) * 2016-03-28 2016-08-17 国网天津市电力公司 电流互感器二次开路智能保护系统
JP6544338B2 (ja) * 2016-11-01 2019-07-17 トヨタ自動車株式会社 電流センサ
JP2018189504A (ja) * 2017-05-08 2018-11-29 矢崎総業株式会社 電流センサ
CN206818781U (zh) * 2017-05-25 2017-12-29 贵州电网有限责任公司 一种单芯双绕组的取能冲击大电流传感器
CN107451322A (zh) * 2017-06-01 2017-12-08 国网北京市电力公司 电流互感器的建模方法、装置、存储介质和处理器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011089899A (ja) * 2009-10-22 2011-05-06 Autonetworks Technologies Ltd 電気接続箱
JP2011196709A (ja) * 2010-03-17 2011-10-06 Keihin Corp 電流センサ
JP2012042409A (ja) * 2010-08-23 2012-03-01 Auto Network Gijutsu Kenkyusho:Kk 電流検出装置
JP2017215143A (ja) * 2016-05-30 2017-12-07 株式会社ケーヒン 電流検出装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181063A1 (ja) * 2021-02-24 2022-09-01 サンコール株式会社 電流センサ

Also Published As

Publication number Publication date
US20200386794A1 (en) 2020-12-10
JP2019200172A (ja) 2019-11-21
CN112005122B (zh) 2023-08-01
JP6988684B2 (ja) 2022-01-05
CN112005122A (zh) 2020-11-27
US11360123B2 (en) 2022-06-14

Similar Documents

Publication Publication Date Title
JP6711086B2 (ja) 電流センサ
JP5489145B1 (ja) 電流センサ
WO2013099215A1 (ja) 電流センサ
JP2013238580A (ja) 電流センサ
CN101241147B (zh) 用于测量流过导电线的电流的设备
JP2015137892A (ja) 電流検出構造
JP2017187301A (ja) 電流センサ
JP5234459B2 (ja) 電流センサ
JP2014160035A (ja) 電流センサ
JP2015175757A (ja) 電流センサ
JP5067574B2 (ja) 電流センサ
WO2014203862A2 (ja) 電流センサ
JP6311790B2 (ja) 電流センサ
WO2019220766A1 (ja) 電流センサ
JP6251967B2 (ja) 電流センサ
WO2014045559A1 (ja) 電流センサ
JP2019007935A (ja) 電流センサ
JP2010112767A (ja) 電流センサ
JP6671986B2 (ja) 電流センサおよびその製造方法
US20210063446A1 (en) Current sensor
JP2012247197A (ja) 電流検出装置及び磁性体コア
JP2005221342A (ja) コイル式電流センサ
JP6304380B2 (ja) 電流センサ
JP4028559B2 (ja) 回転センサ
WO2017199626A1 (ja) 電流検出装置及びそれを備える電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19802813

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19802813

Country of ref document: EP

Kind code of ref document: A1