WO2019214575A1 - 一种新型呋喃生物基聚醚酯共聚物及其制备方法 - Google Patents

一种新型呋喃生物基聚醚酯共聚物及其制备方法 Download PDF

Info

Publication number
WO2019214575A1
WO2019214575A1 PCT/CN2019/085664 CN2019085664W WO2019214575A1 WO 2019214575 A1 WO2019214575 A1 WO 2019214575A1 CN 2019085664 W CN2019085664 W CN 2019085664W WO 2019214575 A1 WO2019214575 A1 WO 2019214575A1
Authority
WO
WIPO (PCT)
Prior art keywords
glycol
reaction
copolyester
polycondensation reaction
polyether ester
Prior art date
Application number
PCT/CN2019/085664
Other languages
English (en)
French (fr)
Inventor
周光远
王瑞
姜敏
张强
王国强
Original Assignee
中国科学院长春应用化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810443257.2A external-priority patent/CN108623794B/zh
Priority claimed from CN201810442837.XA external-priority patent/CN108503809B/zh
Priority claimed from CN201810442533.3A external-priority patent/CN108774314B/zh
Application filed by 中国科学院长春应用化学研究所 filed Critical 中国科学院长春应用化学研究所
Publication of WO2019214575A1 publication Critical patent/WO2019214575A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/668Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/672Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/84Boron, aluminium, gallium, indium, thallium, rare-earth metals, or compounds thereof

Definitions

  • the invention belongs to the technical field of synthesis of furyl polyether esters, and relates to a furanyl polyether ester copolymer and a preparation method thereof, in particular to a furan bio-based polyether ester copolymer having a novel structure and a preparation method thereof.
  • 2,5-furandicarboxylic acid the chemical formula is C 6 H 4 O 5 , and the structural formula is As an important derivative of furan, it has a "rigid" planar structure of a bio-based polymer aromatic ring monomer, which can be polymerized with a monomer such as a diol or a diamine to prepare a novel bio-based polymer synthetic material having excellent performance. It is an important chemical raw material and organic chemical intermediate.
  • PET polyethylene terephthalate
  • ethylene glycol one of the raw materials for producing PET, can be prepared by using biomass raw materials.
  • bio-based PET beverage bottles have been successfully prepared from bio-based ethylene glycol as raw materials.
  • terephthalic acid PTA
  • PX p-xylene
  • Plant based ingredients Although the bio-based polyester raw material succinic acid, which has been vigorously studied in recent years, has the potential to partially replace petroleum-based diacids, it does not provide a rigid aromatic benzene ring structure like terephthalic acid, to a great extent. Limits the performance of the corresponding polyester product. Therefore, how to obtain a polyester raw material dibasic acid with a rigid ring structure from biomass is an important development direction in the research and development of polyester raw materials.
  • 2,5-furandicarboxylic acid is an important raw material for the development of whole bio-based polyesters as an ideal polyester raw material for replacing PTA, which not only has a similar rigid aromatic ring structure, Moreover, the carbon content is less aromatic than the benzene ring, and is more susceptible to degradation. More importantly, 2,5-furandicarboxylic acid is a bio-based monomer that can be prepared from biomass. Therefore, the corresponding polyester material of 2,5-furandicarboxylic acid, polyethylene 2,5-furfuric acid dicarboxylate (PEF), has attracted more and more attention from researchers and R&D departments.
  • PEF polyethylene 2,5-furfuric acid dicarboxylate
  • CN102453242A, CN104072954A, WO2015137804, etc. all report the preparation method of PEF homopolyester and the thermodynamic properties of the corresponding polymer products.
  • the copolymerization of FDCA and ethylene glycol by introducing other monomers is also an important method for developing and expanding the types of furan bio-based polyesters, mainly by introducing other monomers.
  • Copolymerization with FDCA and ethylene glycol such as CN102432847, reports FDCA, copolyester of ethylene glycol and terephthalic acid monomer, and the like.
  • the technical problem to be solved by the present invention is to provide a furan bio-based polyether ester copolymer and a preparation method thereof, in particular to a furan bio-based polyether ester copolymer having a novel structure, which is provided by the present invention.
  • the furan bio-based polyether ester copolymer has a high content of glycol segments in the product structure, has good thermodynamic properties, and has good color tone; at the same time, the reaction process is stable and easy to control, and is economical and environmentally friendly, suitable for scale. Preparation method for chemical industry production.
  • the present invention provides a polyetherester copolymer having the structure represented by formula (I) or (I');
  • p is selected from one or more of 1, 2, 3, 4 and 5, preferably p is selected from one or more of 1, 2, 3 and 4.
  • the percentage of the number of moles of the glycol segment to the number of moles of the polyetherester copolymer is 30% to 70%, that is, n/(n+m) is 0.3. ⁇ 0.7.
  • the percentage of the number of moles of the glycol segment in the polyether ester copolymer to the number of moles of the polyether ester copolymer is 10% to 40%, that is, n/(n+m) is 0.1 to 0.4.
  • the polyetherester copolymer has a number average molecular weight of from 20,000 to 70,000.
  • the invention also provides a preparation method of a polyether ester copolymer, comprising the steps of: esterifying 2,5-furandicarboxylic acid and a glycol monomer under a protective atmosphere and a metal complex catalyst; After the reaction, the prepolycondensation reaction and the polycondensation reaction are carried out to obtain a desired polyether ester copolymer, wherein the number of moles of the glycol segment in the polyether ester copolymer accounts for the number of moles of the polyether ester copolymer.
  • the percentage content is 30% to 70%, that is, n/(n+m) is 0.3 to 0.7.
  • the invention also provides a preparation method of a polyether ester copolymer, comprising the steps of: esterifying a 2,5-furandicarboxylic acid and a diol monomer under a protective atmosphere and an esterification catalyst; Thereafter, a prepolycondensation reaction and a polycondensation reaction are carried out in the presence of a metal complex catalyst to obtain a desired polyether ester copolymer, wherein the polyether ester copolymer has a number of moles of the glycol segment in the polyether The percentage of moles of the ester copolymer is from 10% to 40%, that is, n/(n+m) is from 0.1 to 0.4.
  • the metal complex has the general formula LnX 3 , wherein the metal element Ln of the metal complex is one or more selected from the group consisting of rare earth elements, tin, antimony, zinc, copper, alkali metals and alkaline earth metals.
  • the ligand X of the metal complex is selected from the group consisting of trifluoromethanesulfonate, pentafluoroethanesulfonate, heptafluoroisopropanesulfonate, nonafluorobutanesulfonate and trifluoromethanesulfonate.
  • One or more of the amine groups preferably selected from the group consisting of trifluoromethanesulfonate, pentafluoroethanesulfonate, heptafluoroisopropanesulfonate, nonafluorobutanesulfonate, and trifluoromethanesulfonate One or more of an amine group;
  • the rare earth element is one or more selected from the group consisting of ruthenium, osmium, iridium, osmium, iridium, osmium, iridium, osmium, iridium, osmium, iridium, osmium, iridium, osmium, iridium and osmium;
  • the molar ratio of the metal complex catalyst to the molar ratio of the 2,5-furandicarboxylic acid is 0.5 ⁇ to 4 Torr.
  • the esterification catalyst is selected from the group consisting of stannous oxide, stannous octoate, stannous chloride, stannous bromide, stannous iodide, stannous acetate, stannous oxalate, stannous sulfate and stannous hydroxide.
  • stannous oxide stannous oxide, stannous octoate, stannous chloride, stannous bromide, stannous iodide, stannous acetate, stannous oxalate, stannous sulfate and stannous hydroxide.
  • the ratio of the number of moles of the esterification catalyst to the number of moles of the 2,5-furandicarboxylic acid is 0.5 ⁇ to 4 ⁇ ;
  • the pressure of the pre-polycondensation reaction process is a pressure reduction of the pressure of the esterification reaction to a pressure of the polycondensation reaction.
  • the glycol monomer is ethylene glycol, propylene glycol, glycol or a mixture thereof;
  • the glycol is one or more selected from the group consisting of diethylene glycol, triethylene glycol, tetraethylene glycol, and pentaethylene glycol;
  • the molar ratio of the 2,5-furandicarboxylic acid to the diol monomer is 1: (1 to 8), more preferably 1: (2 to 8).
  • the temperature of the esterification reaction is 170 to 210 ° C; the time of the esterification reaction is 1 to 4 hours; and the pressure of the esterification reaction is 1 to 3 atm.
  • the pre-polycondensation reaction is a reduced pressure reaction; the time of the pre-polycondensation reaction is 10 to 60 minutes; and the temperature of the pre-polycondensation reaction is 170 to 210 ° C.
  • the pressure of the polycondensation reaction is 20 to 50 Pa; the temperature of the polycondensation reaction is 180 to 250 ° C; and the time of the polycondensation reaction is 2 to 12 h.
  • the present invention provides a polyether ester copolymer having the structure represented by formula (I) or (I'); wherein n is 10 to 200; m is 0 to 200; p is selected from 1, 2, 3, One or more of 4 and 5.
  • the present invention is directed to the existing polyethylene glycol, 2, furan dicarboxylate, especially the copolyester, which needs to be copolymerized with FDCA and ethylene glycol by introducing other monomers, and these new
  • the introduction of comonomers tends to be costly or non-biomonomers, which in turn makes the whole bio-based polyester product lose the properties of 100% bio-based materials, and the environmental significance is greatly reduced.
  • the invention creatively provides a furan bio-based polyether ester copolymer having a novel structure, and the furan bio-based polyether ester copolymer product provided by the invention has a controllable content of a glycol segment, which is better.
  • the thermodynamic properties, and the product color is better.
  • the furan-based polyetherester copolymer provided by the present invention can be copolymerized not only by ordinary oligoethylene glycol, FDCA and/or ethylene glycol, but also by oligoethylene glycol (diethylene glycol, triethylene glycol, etc.).
  • Non-biobased monomers such that products prepared by copolymerization of oligoethylene glycol with FDCA and/or ethylene glycol lose the properties of 100% biobased materials.
  • the invention is more creatively characterized by the use of a metal complex catalyst containing a strong electron-withdrawing ligand to catalyze the etherification reaction at a higher temperature under the catalysis of a metal complex catalyst and/or an esterification catalyst, using a simple synthesis.
  • FDCA and bio-based ethylene glycol to directly carry out polycondensation reaction, high-viscosity furan-based bio-based polyetherester copolymer with high structure and high molecular weight can be efficiently prepared at a relatively low temperature for a short period of time. It contains a low-glycol segment with controlled content, and the reaction process is stable, easy to control, and mild in condition. It is an economical and environmentally friendly preparation method suitable for large-scale industrial production.
  • the furan full bio-based polyether ester copolymer with novel structure provided by the invention and the preparation method thereof can not only obtain a novel whole bio-based polymer material, but also solve the problem of adding oligo-glycol in the preparation process. Problems with operations and additional costs.
  • the novel structure of furan bio-based polyether ester products promotes the development and utilization of renewable resources of furans, as well as the preparation of environmentally friendly new bio-based polyesters, gradually escaping dependence on petroleum resources, and solving the problem of polymerization in China.
  • the shortage of resources and environmental pollution faced by the industry has an important driving role and application value for the sustainable development of China's polymer materials industry.
  • the experimental results show that the glass transition temperature of the novel bio-based polyether ester prepared by the invention can be controlled at 30-85 ° C, the 5% thermal degradation temperature is 280-400, the tensile strength is 10 MPa-85 MPa, and the elongation at break is 4% to 400%.
  • Figure 1 is a nuclear magnetic resonance spectrum of a furyl polyetherester copolyester prepared in Example 1 of the present invention.
  • All the raw materials of the present invention are not particularly limited in their source, and are commercially available or prepared according to a conventional method well known to those skilled in the art.
  • the purity of all the raw materials of the present invention is not particularly limited, and the present invention preferably employs a conventional purity in the technical field of analytically pure or furyl polyetherester synthesis.
  • the present invention provides a polyetherester copolymer having the structure represented by formula (I) or (I');
  • p is selected from one or more of 1, 2, 3, 4 and 5, preferably p is selected from one or more of 1, 2, 3 and 4.
  • the polyetherester copolymer having the structure represented by the formula (I) or (I') is not particularly limited, and those skilled in the art can understand that the polyether ester copolymer may be the structural formula or may contain Fragments of the structure are not particularly limited in the present invention.
  • the polyether ester copolymer having the structure represented by the formula (I) or (I') of the present invention is a kind of polyethylene-2,5-furandicarboxylate and polyfuran a copolymer copolymerized with a formic acid and a polyol ester, the segment comprising a 2,5-furandicarboxylate fragment, and also a polyglycol 2,5-furandicarboxylate fragment; the abbreviation can be written as :PPEGF, the name can be poly(ethylene 2,5-furandicarboxylate-poly-2,5-furandicarboxylate)
  • the portion corresponding to n is a polyglycol 2,5-furandicarboxylate fragment, and thus the selection range of the n is not particularly limited.
  • a conventional range well known to those skilled in the art may be selected and adjusted by those skilled in the art according to actual application conditions, quality control, and product requirements.
  • the n of the present invention is preferably 10 to 200, more preferably 30 to 180, and more preferably It is 50 to 150, and more preferably 80 to 120.
  • the portion corresponding to m is a 2,5-furandicarboxylic acid glycol ester fragment, and thus the selection range of the m is not particularly limited.
  • the conventional range well known to those skilled in the art can be selected, and those skilled in the art can select and adjust according to actual application conditions, quality control and product requirements.
  • the m of the present invention is preferably 0-200, more preferably 10-200, more preferably. It is 30 to 180, more preferably 50 to 150, and still more preferably 80 to 120. In the present invention, both m and n are preferably in moles.
  • the portion corresponding to p is a specific number of polyglycols, and those skilled in the art can select and adjust according to actual application conditions, quality control, and product requirements.
  • the polyglycol according to the present invention may include one or more of diethylene glycol, triethylene glycol, tetraethylene glycol, and pentaethylene glycol, that is, p is preferably one or more of 1, 2, 3, and 4. More preferably, it is 1, 2, 3 or 4, more preferably 1, 1 and 2, 1 and 2 and 3, 1 and 2 and 3 and 4, or 1 and 2 and 3 and 4 and 5.
  • n/(n+m) is preferably equal to or less than 1, and may be equal to 1, that is, m is 0, may be less than or equal to 0.8, may be less than or equal to 0.6, may be less than or equal to 0.4, or less than Equal to 0.2.
  • n/(n+m) may be 0.3 to 0.7, may be 0.35 to 0.65, may be 0.4 to 0.6, or may be 0.45 to 0.55. .
  • n/(n+m) may be 0.1 to 0.4, 0.15 to 0.35, or 0.2 to 0.3 depending on the preparation method.
  • the other parameters of the polyetherester copolymer of the present invention are not particularly limited, and the conventional parameters of the polyetherester copolymer well known to those skilled in the art may be used, and those skilled in the art may, according to the actual application, quality control, and product requirements.
  • the number average molecular weight of the polyether ester copolymer of the present invention is preferably 20,000 to 70,000, more preferably 30,000 to 60,000, and still more preferably 40,000 to 50,000.
  • the preparation method of the polyether ester copolymer of the present invention is not particularly limited, and the preparation method of the conventional copolymers well known to those skilled in the art may be used, and those skilled in the art may according to actual production conditions, quality control and product requirements.
  • the polyetherester copolymer of the present invention is preferably obtained by polymerizing 2,5-furandicarboxylic acid and an alcohol monomer.
  • the alcohol monomers of the present invention specifically include glycols, propylene glycol, glycols or mixtures thereof.
  • the specific selection of the glycol in the present invention is not particularly limited, and those skilled in the art can select and adjust according to actual application conditions, quality control, and product requirements.
  • the glycol of the present invention preferably includes diethylene glycol, triethylene glycol, One or more of tetraethylene glycol and pentaethylene glycol, more preferably diethylene glycol, triethylene glycol, tetraethylene glycol or pentaethylene glycol.
  • the invention provides a technical solution for further improving the controllability of the polyether ester copolymer product, developing a furan bio-based polyether ester copolymer, perfecting and refining the preparation process, and improving a more complete technical solution for industrial application, and the invention provides three kinds of technical solutions.
  • the invention provides a preparation method of a polyether ester copolymer, comprising the following steps:
  • the percentage of the number of moles of the glycol segment to the number of moles of the polyetherester copolymer is from 30% to 70%.
  • the selection, combination and preferred range of the polyetherester copolymer in the preparation method of the polyetherester copolymer of the present invention preferably correspond to the selection, combination and preferred range in the foregoing polyetherester copolymer, and Repeat them one by one.
  • the structure of the polyether ester copolymer of the present invention is not particularly limited, and the structure of the polyether ester copolymer well known to those skilled in the art can be used, and those skilled in the art can select according to actual production conditions, quality control and product requirements. And adjusting, in the polyether ester copolymer of the present invention, the percentage of the number of moles of the glycol segment to the number of moles of the polyetherester copolymer is preferably from 30% to 70%, more preferably from 35% to 65. % is more preferably 40% to 60%, still more preferably 45% to 55%.
  • the 2,5-furandicarboxylic acid of the present invention preferably comprises a biobased 2,5-furandicarboxylic acid.
  • the protective atmosphere of the present invention is not particularly limited, and the protective atmosphere is well known to those skilled in the art, and those skilled in the art can select and adjust according to actual production conditions, quality control, and product requirements.
  • the atmosphere preferably comprises nitrogen and/or an inert gas, more preferably nitrogen or argon.
  • the specific selection of the metal complex catalyst of the present invention is not particularly limited, and a conventional metal complex catalyst well known to those skilled in the art can be used, and those skilled in the art can select and according to actual production conditions, quality control, and product requirements.
  • the metal complex of the present invention may have the formula LnX 3 .
  • the ligand of the metal complex catalyst of the present invention preferably comprises a trifluoromethanesulfonate group, a pentafluoroethanesulfonate group, a heptafluoroisopropanesulfonate group, a nonafluorobutanesulfonate group, and a trifluoromethanesulfonimide.
  • the metal element of the metal complex of the present invention preferably comprises one or more of rare earth elements, tin, antimony, zinc, copper, alkali metals and alkaline earth metals, more preferably rare earth elements, tin, antimony, zinc, copper, Alkali metal or alkaline earth metal.
  • the specific selection of the rare earth element in the present invention is not particularly limited, and the conventional rare earth element well known to those skilled in the art may be used, and those skilled in the art may select and adjust according to actual production conditions, quality control, and product requirements, and the present invention
  • the rare earth element is preferably a non-radiative rare earth element, specifically ⁇ La, ⁇ Ce, ⁇ Pr, ⁇ Eu, ⁇ Nd, ⁇ Sm, ⁇ Ga, ⁇ Dy, ⁇ Ho, ⁇ Er, ⁇ Tm, ⁇ Yb One or more of ⁇ Y and ⁇ Sc.
  • the amount of the metal complex catalyst used in the present invention is not particularly limited, and those skilled in the art can select and adjust according to actual production conditions, quality control, and product requirements.
  • the number of moles of the metal complex catalyst of the present invention accounts for the above 2
  • the ratio of the number of moles of 5-furandicarboxylic acid is preferably 0.5 ⁇ to 4 ⁇ , more preferably 1 ⁇ to 3.5 ⁇ , still more preferably 1.5 ⁇ to 3 ⁇ , still more preferably 2 ⁇ to 2.5 ⁇ .
  • the amount of the ethylene glycol used in the present invention is not particularly limited, and can be selected in accordance with actual production conditions, quality control, and product requirements by a person skilled in the art in a conventional amount known to those skilled in the art for such a reaction.
  • the molar ratio of the 2,5-furandicarboxylic acid to ethylene glycol of the present invention is preferably 1: (2-8), more preferably 1: (3-7), more preferably 1: (4-6) ).
  • the conditions of the esterification reaction in the present invention are not particularly limited, and the conditions of the conventional esterification reaction well known to those skilled in the art may be used, and those skilled in the art can select and adjust according to actual production conditions, quality control, and product requirements.
  • the temperature of the esterification reaction of the present invention is preferably from 170 to 210 ° C, more preferably from 175 to 205 ° C, still more preferably from 180 to 200 ° C, still more preferably from 185 to 195 ° C.
  • the time of the esterification reaction of the present invention is preferably from 1 to 4 h, more preferably from 1.5 to 3.5 h, still more preferably from 2 to 3 h.
  • the pressure of the esterification reaction of the present invention may be normal pressure or micro-positive pressure, and is specifically preferably 1 to 3 atm (atmospheric pressure, 0.1 MPa), more preferably 1.2 to 2.8 atm, still more preferably 1.5 to 2.5 atm.
  • the esterification product is directly subjected to a pre-polycondensation reaction without isolation.
  • the conditions and steps of the pre-polycondensation reaction of the present invention are not particularly limited, and the conditions and steps of the conventional pre-polycondensation reaction well known to those skilled in the art can be used, and those skilled in the art can carry out according to actual production conditions, quality control and product requirements.
  • the temperature of the precondensation reaction of the present invention is preferably 170 to 210 ° C, more preferably 175 to 205 ° C, still more preferably 180 to 200 ° C, still more preferably 185 to 195 ° C.
  • the time of the precondensation reaction of the present invention is preferably from 10 to 60 min, more preferably from 20 to 50 min, still more preferably from 30 to 40 min.
  • the precondensation reaction of the present invention is preferably a reduced pressure reaction, and the specific reaction mode may be a vacuum distillation reaction while removing excess diol in the system.
  • the pressure of the pre-polycondensation reaction of the present invention is preferably a change value, which may specifically be a pressure reduction of the pressure of the esterification reaction to a pressure of the polycondensation reaction.
  • the present invention is subjected to the above polycondensation reaction, and finally subjected to a polycondensation reaction under a low vacuum condition.
  • the conditions and steps of the polycondensation reaction are not particularly limited in the present invention, and the conditions and steps of the conventional polycondensation reaction well known to those skilled in the art are sufficient, and those skilled in the art can select and according to actual production conditions, quality control, and product requirements.
  • the pressure of the polycondensation reaction of the present invention is preferably 20 to 50 Pa, more preferably 25 to 45 Pa, still more preferably 30 to 40 Pa.
  • the temperature of the polycondensation reaction is preferably from 180 to 250 ° C, more preferably from 190 to 240 ° C, still more preferably from 200 to 230 ° C, still more preferably from 210 to 220 ° C.
  • the time of the polycondensation reaction of the present invention is preferably from 2 to 12 h, more preferably from 4 to 10 h, still more preferably from 6 to 8 h.
  • the above preparation method may specifically be:
  • 2,5-furandicarboxylic acid and glycol are subjected to three steps of esterification, prepolymerization and polymerization, and the ratio of esterification to etherification structure is directly prepared at 30% to 70%.
  • a novel novel furan bio-based polyetherester copolymer that can be controlled.
  • the 2,5-furandicarboxylic acid is directly esterified with the bio-based glycol to form 2,5-furandicarboxylate; then, the esterified product is not separated, and the distillation is continued.
  • Pre-polycondensation is carried out and excess diol is removed from the reaction system; finally, a polycondensation reaction is carried out under low vacuum conditions to prepare a high molecular weight polyether ester product.
  • the above steps of the present invention provide a novel preparation method of a novel furan bio-based polyether ester copolymer.
  • the structural segment of the novel whole bio-based polyether ester prepared according to the method mainly comprises a part of polyethylene glycol dicarboxylate.
  • n of the present invention is preferably 10 to 200 is more preferably 30 to 180, still more preferably 50 to 150, still more preferably 80 to 120.
  • the m of the present invention is preferably from 10 to 200, more preferably from 30 to 180, still more preferably from 50 to 150, still more preferably from 80 to 120. In the present invention, both m and n are preferably in moles.
  • the invention adopts a metal complex catalyst to directly catalyze the direct esterification polymerization of a diol with a furan dicarboxylic acid, and efficiently prepares a novel high-viscosity 100% bio-based furan polyether ester at a relatively low temperature and in a short period of time.
  • the process is stable, easy to control, and the product has good color, and the prepared product structure has a high content of glycol segments.
  • the invention can also effectively adjust the proportion of the glycol segments in the polyether ester product by adjusting the ratio of the glycol to the furan dicarboxylic acid, and the esterification time, temperature, polycondensation time and temperature during the reaction. .
  • the present invention particularly preferably satisfies a rare earth metal complex catalyst, which is low in toxicity or non-toxic, so that the prepared novel polymer material is more in line with the concept of green environmental protection, and is suitable for a preparation method for large-scale industrial production.
  • the invention also provides a preparation method of another polyether ester copolymer, comprising the following steps:
  • the percentage of the number of moles of the glycol segment to the number of moles of the polyetherester copolymer is from 10% to 40%.
  • the selection, combination and preferred range of the polyetherester copolymer in the preparation method of the polyetherester copolymer of the present invention preferably correspond to the selection, combination and preferred range in the foregoing polyetherester copolymer, and Repeat them one by one.
  • the structure of the polyether ester copolymer of the present invention is not particularly limited, and the structure of the polyether ester copolymer well known to those skilled in the art can be used, and those skilled in the art can select according to actual production conditions, quality control and product requirements. And adjusting, in the polyether ester copolymer of the present invention, the percentage of the number of moles of the glycol segment to the number of moles of the polyetherester copolymer is preferably from 10% to 40%, more preferably from 15% to 35%. % is more preferably 20% to 30%.
  • the 2,5-furandicarboxylic acid of the present invention preferably comprises a biobased 2,5-furandicarboxylic acid.
  • the protective atmosphere of the present invention is not particularly limited, and the protective atmosphere is well known to those skilled in the art, and those skilled in the art can select and adjust according to actual production conditions, quality control, and product requirements.
  • the atmosphere preferably comprises nitrogen and/or an inert gas, more preferably nitrogen or argon.
  • the esterification catalyst of the present invention is not particularly limited, and a conventional esterification catalyst for such a compound which is well known to those skilled in the art can be used, and those skilled in the art can select and according to actual production conditions, quality control, and product requirements. Adjustment, the esterification catalyst of the present invention preferably comprises stannous oxide, stannous octoate, stannous chloride, stannous bromide, stannous iodide, stannous acetate, stannous oxalate, stannous sulfate and stannous hydroxide One or more of them, more preferably stannous oxide, stannous octoate, stannous chloride, stannous bromide, stannous iodide, stannous acetate, stannous oxalate, stannous sulfate or stannous hydroxide .
  • the amount of the esterification catalyst used in the present invention is not particularly limited, and those skilled in the art can select and adjust according to actual production conditions, quality control, and product requirements.
  • the number of moles of the esterification catalyst of the present invention accounts for the 2, 5
  • the ratio of the number of moles of furan dicarboxylic acid is preferably 0.5 ⁇ to 4 ⁇ , more preferably 1 ⁇ to 3.5 ⁇ , still more preferably 1.5 ⁇ to 3 ⁇ , still more preferably 2 ⁇ to 2 ⁇ .
  • the amount of the ethylene glycol used in the present invention is not particularly limited, and can be selected in accordance with actual production conditions, quality control, and product requirements by a person skilled in the art in a conventional amount known to those skilled in the art for such a reaction.
  • the molar ratio of the 2,5-furandicarboxylic acid to ethylene glycol of the present invention is preferably 1: (2-8), more preferably 1: (3-7), more preferably 1: (4-6) ).
  • the conditions of the esterification reaction in the present invention are not particularly limited, and the conditions of the conventional esterification reaction well known to those skilled in the art may be used, and those skilled in the art can select and adjust according to actual production conditions, quality control, and product requirements.
  • the temperature of the esterification reaction of the present invention is preferably from 170 to 210 ° C, more preferably from 175 to 205 ° C, still more preferably from 180 to 200 ° C, still more preferably from 185 to 195 ° C.
  • the time of the esterification reaction of the present invention is preferably from 1 to 4 h, more preferably from 1.5 to 3.5 h, still more preferably from 2 to 3 h.
  • the pressure of the esterification reaction of the present invention may be normal pressure or micro-positive pressure, and is specifically preferably 1 to 3 atm (atmospheric pressure, 0.1 MPa), more preferably 1.2 to 2.8 atm, still more preferably 1.5 to 2.5 atm.
  • the esterification product is directly subjected to a pre-polycondensation reaction without isolation.
  • the conditions and steps of the pre-polycondensation reaction of the present invention are not particularly limited, and the conditions and steps of the conventional pre-polycondensation reaction well known to those skilled in the art can be used, and those skilled in the art can carry out according to actual production conditions, quality control and product requirements.
  • the temperature of the precondensation reaction of the present invention is preferably 170 to 210 ° C, more preferably 175 to 205 ° C, still more preferably 180 to 200 ° C, still more preferably 185 to 195 ° C.
  • the time of the precondensation reaction of the present invention is preferably from 10 to 60 min, more preferably from 20 to 50 min, still more preferably from 30 to 40 min.
  • the precondensation reaction of the present invention is preferably a reduced pressure reaction, and the specific reaction mode may be a vacuum distillation reaction while removing excess diol in the system.
  • the pressure of the pre-polycondensation reaction of the present invention is preferably a change value, which may specifically be a pressure reduction of the pressure of the esterification reaction to a pressure of the polycondensation reaction.
  • the present invention is subjected to the above polycondensation reaction, and finally subjected to a polycondensation reaction under a low vacuum condition.
  • the conditions and steps of the polycondensation reaction are not particularly limited in the present invention, and the conditions and steps of the conventional polycondensation reaction well known to those skilled in the art are sufficient, and those skilled in the art can select and according to actual production conditions, quality control, and product requirements.
  • the pressure of the polycondensation reaction of the present invention is preferably 20 to 50 Pa, more preferably 25 to 45 Pa, still more preferably 30 to 40 Pa.
  • the temperature of the polycondensation reaction is preferably from 180 to 250 ° C, more preferably from 190 to 240 ° C, still more preferably from 200 to 230 ° C, still more preferably from 210 to 220 ° C.
  • the time of the polycondensation reaction of the present invention is preferably from 2 to 12 h, more preferably from 4 to 10 h, still more preferably from 6 to 8 h.
  • the present invention adds a metal complex catalyst to the polycondensation reaction, wherein the polycondensation reaction may be during the start of the polycondensation reaction or during the polycondensation reaction.
  • the specific time for the addition of the present invention is not particularly limited, and those skilled in the art can select and adjust according to actual production conditions, quality control, and product requirements.
  • the addition time of the metal complex catalyst of the present invention is preferably at the beginning of the polycondensation reaction. Between 0 and 3 hours, that is, 0 to 3 hours of the polycondensation reaction, it may be 0.5 to 2.5 hours, or may be 1 to 2 hours.
  • the specific selection of the metal complex catalyst of the present invention is not particularly limited, and a conventional metal complex catalyst well known to those skilled in the art can be used, and those skilled in the art can select and according to actual production conditions, quality control, and product requirements.
  • the metal complex of the present invention may have the formula LnX 3 .
  • the ligand of the metal complex catalyst of the present invention preferably comprises a trifluoromethanesulfonate group, a pentafluoroethanesulfonate group, a heptafluoroisopropanesulfonate group, a nonafluorobutanesulfonate group, and a trifluoromethanesulfonimide.
  • the metal element of the metal complex of the present invention preferably comprises one or more of rare earth elements, tin, antimony, zinc, copper, alkali metals and alkaline earth metals, more preferably rare earth elements, tin, antimony, zinc, copper, Alkali metal or alkaline earth metal.
  • the specific selection of the rare earth element in the present invention is not particularly limited, and the conventional rare earth element well known to those skilled in the art may be used, and those skilled in the art may select and adjust according to actual production conditions, quality control, and product requirements, and the present invention
  • the rare earth element is preferably a non-radiative rare earth element, specifically ⁇ La, ⁇ Ce, ⁇ Pr, ⁇ Eu, ⁇ Nd, ⁇ Sm, ⁇ Ga, ⁇ Dy, ⁇ Ho, ⁇ Er, ⁇ Tm, ⁇ Yb One or more of ⁇ Y and ⁇ Sc.
  • the amount of the metal complex catalyst used in the present invention is not particularly limited, and those skilled in the art can select and adjust according to actual production conditions, quality control, and product requirements.
  • the number of moles of the metal complex catalyst of the present invention accounts for the above 2
  • the ratio of the number of moles of 5-furandicarboxylic acid is preferably 0.5 ⁇ to 4 ⁇ , more preferably 1 ⁇ to 3.5 ⁇ , still more preferably 1.5 ⁇ to 3 ⁇ , still more preferably 2 ⁇ to 2 ⁇ .
  • the above preparation method may specifically be:
  • the above steps of the present invention provide a novel preparation method of a novel furan bio-based polyether ester copolymer.
  • the structural segment of the novel whole bio-based polyether ester prepared according to the method mainly comprises a part of polyethylene glycol dicarboxylate.
  • the glycol segment in the prepared polyether ester structure accounts for 10% to 40% of the total mole percent of the polymer, that is, n/(n+m) is 0.1 to 0.4, and n of the present invention is preferably 10 to 200 is more preferably 30 to 180, still more preferably 50 to 150, still more preferably 80 to 120.
  • the m of the present invention is preferably from 10 to 200, more preferably from 30 to 180, still more preferably from 50 to 150, still more preferably from 80 to 120. In the present invention, both m and n are preferably in moles.
  • the invention adopts a metal complex catalyst to directly catalyze the direct esterification polymerization of a diol with a furan dicarboxylic acid, and efficiently prepares a novel high-viscosity 100% bio-based furan polyether ester at a relatively low temperature and in a short period of time.
  • the process is stable, easy to control, and the product has good color, and the prepared product structure has a high controllable content of the glycol segment.
  • the invention can also effectively adjust the proportion of the glycol segments in the polyether ester product by adjusting the ratio of the glycol to the furan dicarboxylic acid, and the esterification time, temperature, polycondensation time and temperature during the reaction. .
  • the present invention particularly preferably satisfies a rare earth metal complex catalyst, which is low in toxicity or non-toxic, so that the prepared novel polymer material is more in line with the concept of green environmental protection, and is suitable for a preparation method for large-scale industrial production.
  • the invention also provides a preparation method of a usual polyether ester copolymer, comprising the following steps:
  • the selection, combination and preferred range of the polyetherester copolymer in the preparation method of the polyetherester copolymer of the present invention preferably correspond to the selection, combination and preferred range in the foregoing polyetherester copolymer, and Repeat them one by one.
  • the structure of the polyether ester copolymer of the present invention is not particularly limited, and the structure of the polyether ester copolymer well known to those skilled in the art can be used, and those skilled in the art can select according to actual production conditions, quality control and product requirements. And adjusting, in the polyether ester copolymer of the present invention, the percentage of the number of moles of the glycol segment to the number of moles of the polyether ester copolymer is preferably from 0.1 to 100%, more preferably from 10% to 90%. It is more preferably 20% to 80%, still more preferably 30% to 70%, still more preferably 40% to 60%.
  • the 2,5-furandicarboxylic acid of the present invention preferably comprises a biobased 2,5-furandicarboxylic acid.
  • the protective atmosphere of the present invention is not particularly limited, and the protective atmosphere is well known to those skilled in the art, and those skilled in the art can select and adjust according to actual production conditions, quality control, and product requirements.
  • the atmosphere preferably comprises nitrogen and/or an inert gas, more preferably nitrogen or argon.
  • the esterification catalyst of the present invention is not particularly limited, and a conventional esterification catalyst for such a compound which is well known to those skilled in the art can be used, and those skilled in the art can select and according to actual production conditions, quality control, and product requirements. Adjustment, the esterification catalyst of the present invention preferably comprises stannous oxide, stannous octoate, stannous chloride, stannous bromide, stannous iodide, stannous acetate, stannous oxalate, stannous sulfate and stannous hydroxide One or more of them, more preferably stannous oxide, stannous octoate, stannous chloride, stannous bromide, stannous iodide, stannous acetate, stannous oxalate, stannous sulfate or stannous hydroxide .
  • the amount of the esterification catalyst used in the present invention is not particularly limited, and those skilled in the art can select and adjust according to actual production conditions, quality control, and product requirements.
  • the number of moles of the esterification catalyst of the present invention accounts for the 2, 5
  • the ratio of the number of moles of furan dicarboxylic acid is preferably 0.5 ⁇ to 4 ⁇ , more preferably 1 ⁇ to 3.5 ⁇ , still more preferably 1.5 ⁇ to 3 ⁇ , still more preferably 2 ⁇ to 2 ⁇ .
  • the selection of the alcohol monomer in the present invention is not particularly limited, and the conventional alcohol monomer which is well known to those skilled in the art may be used, and those skilled in the art may select and adjust according to actual production conditions, quality control and product requirements, and the present invention
  • the alcohol monomer preferably comprises a glycol or a mixture of glycol and ethylene glycol.
  • the glycol of the present invention preferably comprises one or more of diethylene glycol, triethylene glycol, tetraethylene glycol and pentaethylene glycol, more preferably diethylene glycol or triethylene glycol.
  • the final product when the above preparation method is employed, since the glycol is used, the final product can be regarded as a non-whole bio-based polyether ester copolymer before the glycol can not be bio-based (completely prepared by the biological raw material).
  • the amount of the alcohol monomer used in the present invention is not particularly limited, and may be a conventional amount known to those skilled in the art for such a reaction, and those skilled in the art can select and according to actual production conditions, quality control, and product requirements.
  • the molar ratio of the 2,5-furandicarboxylic acid to the alcohol monomer in the present invention is preferably 1: (2-8), more preferably 1: (3-7), more preferably 1: (4-6) ).
  • the conditions of the esterification reaction in the present invention are not particularly limited, and the conditions of the conventional esterification reaction well known to those skilled in the art may be used, and those skilled in the art can select and adjust according to actual production conditions, quality control, and product requirements.
  • the temperature of the esterification reaction of the present invention is preferably from 170 to 210 ° C, more preferably from 175 to 205 ° C, still more preferably from 180 to 200 ° C, still more preferably from 185 to 195 ° C.
  • the time of the esterification reaction of the present invention is preferably from 1 to 4 h, more preferably from 1.5 to 3.5 h, still more preferably from 2 to 3 h.
  • the pressure of the esterification reaction of the present invention may be normal pressure or micro-positive pressure, and is specifically preferably 1 to 3 atm (atmospheric pressure, 0.1 MPa), more preferably 1.2 to 2.8 atm, still more preferably 1.5 to 2.5 atm.
  • the esterification product is directly subjected to a pre-polycondensation reaction without isolation.
  • the conditions and steps of the pre-polycondensation reaction of the present invention are not particularly limited, and the conditions and steps of the conventional pre-polycondensation reaction well known to those skilled in the art can be used, and those skilled in the art can carry out according to actual production conditions, quality control and product requirements.
  • the temperature of the precondensation reaction of the present invention is preferably 170 to 210 ° C, more preferably 175 to 205 ° C, still more preferably 180 to 200 ° C, still more preferably 185 to 195 ° C.
  • the time of the precondensation reaction of the present invention is preferably from 10 to 60 min, more preferably from 20 to 50 min, still more preferably from 30 to 40 min.
  • the precondensation reaction of the present invention is preferably a reduced pressure reaction, and the specific reaction mode may be a vacuum distillation reaction while removing excess diol in the system.
  • the pressure of the pre-polycondensation reaction of the present invention is preferably a change value, which may specifically be a pressure reduction of the pressure of the esterification reaction to a pressure of the polycondensation reaction.
  • the present invention is subjected to the above polycondensation reaction, and finally subjected to a polycondensation reaction under a low vacuum condition.
  • the conditions and steps of the polycondensation reaction are not particularly limited in the present invention, and the conditions and steps of the conventional polycondensation reaction well known to those skilled in the art are sufficient, and those skilled in the art can select and according to actual production conditions, quality control, and product requirements.
  • the pressure of the polycondensation reaction of the present invention is preferably 20 to 50 Pa, more preferably 25 to 45 Pa, still more preferably 30 to 40 Pa.
  • the temperature of the polycondensation reaction is preferably from 180 to 250 ° C, more preferably from 190 to 240 ° C, still more preferably from 200 to 230 ° C, still more preferably from 210 to 220 ° C.
  • the time of the polycondensation reaction of the present invention is preferably from 2 to 12 h, more preferably from 4 to 10 h, still more preferably from 6 to 8 h.
  • the above preparation method may specifically be:
  • the 2,5-furandicarboxylic acid and alcohol monomer are subjected to three steps of esterification, prepolymerization and polymerization to directly prepare a controllable novel furan with a ratio of esterification to etherification structure of 0.1% to 100%.
  • Polyetherester copolymer Using melt polycondensation method, the 2,5-furandicarboxylic acid and alcohol monomer are subjected to three steps of esterification, prepolymerization and polymerization to directly prepare a controllable novel furan with a ratio of esterification to etherification structure of 0.1% to 100%. Polyetherester copolymer.
  • 2,5-furandicarboxylic acid is first esterified directly with an alcohol monomer to form 2,5-furandicarboxylate and 2,5-furandicarboxylic acid Glycol ester; then, the esterified product is not separated, and the polycondensation is continued by vacuum distillation to remove excess alcohol monomer in the reaction system; then, the polycondensation reaction is carried out under low vacuum conditions to prepare a high molecular weight polyether ester product.
  • PEF esterification catalyst esterification catalyst
  • the above steps of the present invention provide a preparation method of a novel furan polyetherester copolymer, and the structural segment of the novel whole bio-based polyether ester prepared according to the method mainly comprises a part of polyethylene furan dicarboxylate unit ( PEF), and some or all of the glycol ester segments, wherein the glycol segment comprises diethylene glycol and triethylene glycol, and may also have a portion of tetraethylene glycol and/or pentaethylene glycol.
  • PEF polyethylene furan dicarboxylate unit
  • the glycol segment in the prepared polyether ester structure accounts for 0.1% to 100% of the total mole percent of the polymer, that is, n/(n+m) may be less than or equal to 1, and n of the present invention is preferably 10%.
  • the 200 is more preferably 30 to 180, still more preferably 50 to 150, still more preferably 80 to 120.
  • the m of the present invention is preferably 0 to 200, more preferably 10 to 200, still more preferably 30 to 180, still more preferably 50 to 150, still more preferably 80 to 120.
  • both m and n are preferably in moles.
  • the invention adopts an esterification catalyst to catalyze the direct esterification polymerization of an alcohol monomer with furan dicarboxylic acid, and efficiently prepares a novel high-viscosity furan polyether ester copolymer at a relatively low temperature and in a relatively short period of time, and the reaction process is stable. It is easy to control, the product has good color, and the prepared product structure has a high controllable content of the glycol segment.
  • the invention can also effectively adjust the proportion of the glycol segment in the polyether ester product by adjusting the ratio of the alcohol monomer to the furan dicarboxylic acid, and the esterification time, temperature, polycondensation time and temperature during the reaction. .
  • the above steps of the present invention provide a polyetherester copolymer which is a furan full bio-based polyetherester copolymer having a novel structure, and a plurality of preparation methods thereof, and the furan bio-based provided by the present invention
  • the polyether ester copolymer product structure has a high content of glycol segments, has good thermodynamic properties, and has good color.
  • the furan-based polyetherester copolymer provided by the present invention can be copolymerized not only by ordinary oligoethylene glycol, FDCA and ethylene glycol, but also by considering oligoethylene glycol (diethylene glycol, triethylene glycol, etc.) as a non-biological
  • the base monomer such that the product prepared by copolymerization of oligoethylene glycol with FDCA and ethylene glycol, loses the properties of the 100% biobased material.
  • the invention further utilizes a metal complex catalyst, which utilizes a metal catalyst containing a strong electron-withdrawing ligand to catalyze the etherification reaction at a relatively high temperature, in particular, a simple synthesis method under the catalytic action of a rare earth metal complex catalyst.
  • a metal complex catalyst which utilizes a metal catalyst containing a strong electron-withdrawing ligand to catalyze the etherification reaction at a relatively high temperature, in particular, a simple synthesis method under the catalytic action of a rare earth metal complex catalyst.
  • the furan full bio-based polyether ester copolymer with novel structure provided by the invention and the preparation method thereof can not only obtain a novel whole bio-based polymer material, but also solve the problem of adding oligo-glycol in the preparation process. Problems with operations and additional costs.
  • the novel structure of furan bio-based polyether ester products promotes the development and utilization of renewable resources of furans, as well as the preparation of environmentally friendly new bio-based polyesters, gradually escaping dependence on petroleum resources, and solving the problem of polymerization in China.
  • the shortage of resources and environmental pollution faced by the industry has an important driving role and application value for the sustainable development of China's polymer materials industry.
  • the experimental results show that the glass transition temperature of the novel bio-based polyether ester prepared by the invention can be controlled at 30-85 ° C, the 5% thermal degradation temperature is 280-400, the tensile strength is 10 MPa-85 MPa, and the elongation at break is 4% to 400%.
  • the furanyl polyetherester copolymer prepared in Example 1 of the present invention was characterized, and the PPEGF copolyester was subjected to nuclear magnetic resonance analysis using deuterated trifluoroacetic acid as a solvent.
  • Fig. 1 there is shown a nuclear magnetic resonance spectrum of a furfuryl polyetherester copolyester prepared in Example 1 of the present invention.
  • the PPEGF copolyester has a structure represented by the formula (II), wherein the ratio of the ethylene glycol segment to the glycol segment is 1:1, and the glycol segment in the structure includes diethylene glycol and Triethylene glycol.
  • the PPEGF copolyester prepared above was dissolved in a mixed solvent of phenol and tetrachloroethane in a mass ratio of 1:1 at 25 ° C to determine its intrinsic viscosity, and its intrinsic viscosity was 0.91 dL/g.
  • Table 1 shows the properties of a typical structure furyl polyetherester prepared in accordance with an embodiment of the present invention.
  • the PPEGF copolyester was subjected to nuclear magnetic resonance analysis using deuterated trifluoroacetic acid as a solvent.
  • the ratio of the ethylene glycol segment to the glycol segment in the PPEGF copolyester structure was 1:1, and the structure was sweet.
  • the alcohol segment includes diethylene glycol and triethylene glycol.
  • the PPEGF copolyester was dissolved in a mixed solvent of phenol and tetrachloroethane at a mass ratio of 1:1 at 25 ° C to determine its intrinsic viscosity, and its intrinsic viscosity was 1.01 dL/g.
  • the PPEGF copolyester was subjected to nuclear magnetic resonance analysis using deuterated trifluoroacetic acid as a solvent.
  • the ratio of the ethylene glycol segment to the glycol segment in the PPEGF copolyester structure was 1:1, and the structure was sweet.
  • the alcohol segment includes diethylene glycol and triethylene glycol.
  • the PPEGF copolyester was dissolved in a mixed solvent of phenol and tetrachloroethane in a mass ratio of 1:1 at 25 ° C to determine its intrinsic viscosity, and its intrinsic viscosity was 0.83 dL/g.
  • the PPEGF copolyester was subjected to nuclear magnetic resonance analysis using deuterated trifluoroacetic acid as a solvent.
  • the ratio of the ethylene glycol segment to the glycol segment in the PPEGF copolyester structure was 1:1, and the structure was sweet.
  • the alcohol segment includes diethylene glycol and triethylene glycol.
  • the PPEGF copolyester was dissolved in a mixed solvent of phenol and tetrachloroethane in a mass ratio of 1:1 at 25 ° C to determine its intrinsic viscosity, and its intrinsic viscosity was 0.96 dL/g.
  • the PPEGF copolyester was subjected to nuclear magnetic resonance analysis using deuterated trifluoroacetic acid as a solvent.
  • the ratio of the ethylene glycol segment to the glycol segment in the PPEGF copolyester structure was 1:1, and the structure was sweet.
  • the alcohol segment includes diethylene glycol and triethylene glycol.
  • the PPEGF copolyester was dissolved in a mixed solvent of phenol and tetrachloroethane in a mass ratio of 1:1 at 25 ° C to determine its intrinsic viscosity, and its intrinsic viscosity was 0.69 dL/g.
  • the PPEGF copolyester was subjected to nuclear magnetic resonance analysis using deuterated trifluoroacetic acid as a solvent.
  • the ratio of the ethylene glycol segment to the glycol segment in the PPEGF copolyester structure was 1:1, and the structure was sweet.
  • the alcohol segment includes diethylene glycol and triethylene glycol.
  • the PPEGF copolyester was dissolved in a mixed solvent of phenol and tetrachloroethane in a mass ratio of 1:1 at 25 ° C to determine its intrinsic viscosity, and its intrinsic viscosity was 0.94 dL/g.
  • the PPEGF copolyester was subjected to nuclear magnetic resonance analysis using deuterated trifluoroacetic acid as a solvent.
  • the ratio of the ethylene glycol segment to the glycol segment in the PPEGF copolyester structure was 1:1, and the structure was sweet.
  • the alcohol segment includes diethylene glycol and triethylene glycol.
  • the PPEGF copolyester was dissolved in a mixed solvent of phenol and tetrachloroethane in a mass ratio of 1:1 at 25 ° C to determine its intrinsic viscosity, and its intrinsic viscosity was 1.00 dL/g.
  • the PPEGF copolyester was subjected to nuclear magnetic resonance analysis using deuterated trifluoroacetic acid as a solvent.
  • the ratio of the ethylene glycol segment to the glycol segment in the PPEGF copolyester structure was 1:1, and the structure was sweet.
  • the alcohol segment includes diethylene glycol and triethylene glycol.
  • the PPEGF copolyester was dissolved in a mixed solvent of phenol and tetrachloroethane in a mass ratio of 1:1 at 25 ° C to determine its intrinsic viscosity, and its intrinsic viscosity was 0.95 dL/g.
  • the PPEGF copolyester was subjected to nuclear magnetic resonance analysis using deuterated trifluoroacetic acid as a solvent.
  • the ratio of the ethylene glycol segment to the glycol segment in the PPEGF copolyester structure was 1:1, and the structure was sweet.
  • the alcohol segment includes diethylene glycol and triethylene glycol.
  • the PPEGF copolyester was dissolved in a mixed solvent of phenol and tetrachloroethane at a mass ratio of 1:1 at 25 ° C to determine its intrinsic viscosity, and its intrinsic viscosity was 1.01 dL/g.
  • the PPEGF copolyester was subjected to nuclear magnetic resonance analysis using deuterated trifluoroacetic acid as a solvent.
  • the ratio of the ethylene glycol segment to the glycol segment in the PPEGF copolyester structure was 1:1, and the structure was sweet.
  • the alcohol segment includes diethylene glycol and triethylene glycol.
  • the PPEGF copolyester was dissolved in a mixed solvent of phenol and tetrachloroethane at a mass ratio of 1:1 at 25 ° C to determine its intrinsic viscosity, and its intrinsic viscosity was 1.05 dL/g.
  • the PPEGF copolyester was subjected to nuclear magnetic resonance analysis using deuterated trifluoroacetic acid as a solvent.
  • the ratio of the ethylene glycol segment to the glycol segment in the PPEGF copolyester structure was 1:1, and the structure was sweet.
  • the alcohol segment includes diethylene glycol and triethylene glycol.
  • the PPEGF copolyester was dissolved in a mixed solvent of phenol and tetrachloroethane in a mass ratio of 1:1 at 25 ° C to determine its intrinsic viscosity, and its intrinsic viscosity was 0.96 dL/g.
  • the PPEGF copolyester was subjected to nuclear magnetic resonance analysis using deuterated trifluoroacetic acid as a solvent.
  • the ratio of the ethylene glycol segment to the glycol segment in the PPEGF copolyester structure was 65:35.
  • the alcohol segment includes diethylene glycol and triethylene glycol.
  • the PPEGF copolyester was dissolved in a mixed solvent of phenol and tetrachloroethane at a mass ratio of 1:1 at 25 ° C to determine its intrinsic viscosity, and its intrinsic viscosity was 0.92 dL/g.
  • the PPEGF copolyester was subjected to nuclear magnetic resonance analysis using deuterated trifluoroacetic acid as a solvent.
  • the ratio of the ethylene glycol segment to the glycol segment in the PPEGF copolyester structure was 60:40, and the structure was sweet.
  • the alcohol segment includes diethylene glycol and triethylene glycol.
  • the PPEGF copolyester was dissolved in a mixed solvent of phenol and tetrachloroethane in a mass ratio of 1:1 at 25 ° C to determine its intrinsic viscosity, and its intrinsic viscosity was 0.82 dL/g.
  • the PPEGF copolyester was subjected to nuclear magnetic resonance analysis using deuterated trifluoroacetic acid as a solvent.
  • the ratio of the ethylene glycol segment to the glycol segment in the PPEGF copolyester structure was 45:55.
  • the alcohol segment includes diethylene glycol and triethylene glycol.
  • the PPEGF copolyester was dissolved in a mixed solvent of phenol and tetrachloroethane at a mass ratio of 1:1 at 25 ° C to determine its intrinsic viscosity, and its intrinsic viscosity was 0.98 dL/g.
  • the PPEGF copolyester was subjected to nuclear magnetic resonance analysis using deuterated trifluoroacetic acid as a solvent.
  • the ratio of the ethylene glycol segment to the glycol segment in the PPEGF copolyester structure was 43:57.
  • the alcohol segment includes diethylene glycol and triethylene glycol.
  • the PPEGF copolyester was dissolved in a mixed solvent of phenol and tetrachloroethane in a mass ratio of 1:1 at 25 ° C to determine its intrinsic viscosity, and its intrinsic viscosity was 0.71 dL/g.
  • the PPEGF copolyester was subjected to nuclear magnetic resonance analysis using deuterated trifluoroacetic acid as a solvent.
  • the ratio of the ethylene glycol segment to the glycol segment in the PPEGF copolyester structure was 60:40, and the structure was sweet.
  • the alcohol segment includes diethylene glycol and triethylene glycol.
  • the PPEGF copolyester was dissolved in a mixed solvent of phenol and tetrachloroethane in a mass ratio of 1:1 at 25 ° C to determine its intrinsic viscosity, and its intrinsic viscosity was 0.90 dL/g.
  • the PPEGF copolyester was subjected to nuclear magnetic resonance analysis using deuterated trifluoroacetic acid as a solvent.
  • the ratio of the ethylene glycol segment to the glycol segment in the PPEGF copolyester structure was 44:56.
  • the alcohol segment includes diethylene glycol and triethylene glycol.
  • the PPEGF copolyester was dissolved in a mixed solvent of phenol and tetrachloroethane at a mass ratio of 1:1 at 25 ° C to determine its intrinsic viscosity, and its intrinsic viscosity was 0.98 dL/g.
  • the PPEGF copolyester was subjected to nuclear magnetic resonance analysis using deuterated trifluoroacetic acid as a solvent.
  • the ratio of the ethylene glycol segment to the glycol segment in the PPEGF copolyester structure was 37:63, and the structure was sweet.
  • the alcohol segment includes diethylene glycol and triethylene glycol, tetraethylene glycol.
  • the PPEGF copolyester was dissolved in a mixed solvent of phenol and tetrachloroethane in a mass ratio of 1:1 at 25 ° C to determine its intrinsic viscosity, and its intrinsic viscosity was 0.81 dL/g.
  • the PPEGF copolyester was subjected to nuclear magnetic resonance analysis using deuterated trifluoroacetic acid as a solvent.
  • the ratio of the ethylene glycol segment to the glycol segment in the PPEGF copolyester structure was 30:70, and the structure was sweet.
  • the alcohol segment includes diethylene glycol, triethylene glycol, tetraethylene glycol, and pentaethylene glycol.
  • the PPEGF copolyester was dissolved in a mixed solvent of phenol and tetrachloroethane at a mass ratio of 1:1 at 25 ° C to determine its intrinsic viscosity, and its intrinsic viscosity was 0.65 dL/g.
  • the PPEGF copolyester was subjected to nuclear magnetic resonance analysis using deuterated trifluoroacetic acid as a solvent.
  • the ratio of the ethylene glycol segment to the glycol segment in the PPEGF copolyester structure was 68:32.
  • the alcohol segment includes diethylene glycol and triethylene glycol.
  • the PPEGF copolyester was dissolved in a mixed solvent of phenol and tetrachloroethane in a mass ratio of 1:1 at 25 ° C to determine its intrinsic viscosity, and its intrinsic viscosity was 0.81 dL/g.
  • the PPEGF copolyester was subjected to nuclear magnetic resonance analysis using deuterated trifluoroacetic acid as a solvent.
  • the ratio of the ethylene glycol segment to the glycol segment in the PPEGF copolyester structure was 55:45.
  • the alcohol segment includes diethylene glycol and triethylene glycol.
  • the PPEGF copolyester was dissolved in a mixed solvent of phenol and tetrachloroethane at a mass ratio of 1:1 at 25 ° C to determine its intrinsic viscosity, and its intrinsic viscosity was 0.86 dL/g.
  • the PPEGF copolyester was subjected to nuclear magnetic resonance analysis using deuterated trifluoroacetic acid as a solvent.
  • the ratio of the ethylene glycol segment to the glycol segment in the PPEGF copolyester structure was 45:55.
  • the alcohol segment includes diethylene glycol and triethylene glycol.
  • the PPEGF copolyester was dissolved in a mixed solvent of phenol and tetrachloroethane in a mass ratio of 1:1 at 25 ° C to determine its intrinsic viscosity, and its intrinsic viscosity was 0.75 dL/g.
  • the PPEGF copolyester was subjected to nuclear magnetic resonance analysis using deuterated trifluoroacetic acid as a solvent.
  • the ratio of the ethylene glycol segment to the glycol segment in the PPEGF copolyester structure was 42:58.
  • the alcohol segment includes diethylene glycol and triethylene glycol.
  • the PPEGF copolyester was dissolved in a mixed solvent of phenol and tetrachloroethane in a mass ratio of 1:1 at 25 ° C to determine its intrinsic viscosity, and its intrinsic viscosity was 0.57 dL/g.
  • the PPEGF copolyester was subjected to nuclear magnetic resonance analysis using deuterated trifluoroacetic acid as a solvent.
  • the ratio of the ethylene glycol segment to the glycol segment in the PPEGF copolyester structure was 42:58.
  • the alcohol segment includes diethylene glycol and triethylene glycol.
  • the PPEGF copolyester was dissolved in a mixed solvent of phenol and tetrachloroethane in a mass ratio of 1:1 at 25 ° C to determine its intrinsic viscosity, and its intrinsic viscosity was 0.45 dL/g.
  • the PPEGF copolyester was subjected to nuclear magnetic resonance analysis using deuterated trifluoroacetic acid as a solvent.
  • the ratio of the ethylene glycol segment to the glycol segment in the PPEGF copolyester structure was 44:56.
  • the alcohol segment includes diethylene glycol and triethylene glycol.
  • the PPEGF copolyester was dissolved in a mixed solvent of phenol and tetrachloroethane at a mass ratio of 1:1 at 25 ° C to determine its intrinsic viscosity, and its intrinsic viscosity was 0.50 dL/g.
  • the PPEGF copolyester was subjected to nuclear magnetic resonance analysis using deuterated trifluoroacetic acid as a solvent.
  • the ratio of the ethylene glycol segment to the glycol segment in the PPEGF copolyester structure was 47:53.
  • the alcohol segment includes diethylene glycol and triethylene glycol.
  • the PPEGF copolyester was dissolved in a mixed solvent of phenol and tetrachloroethane in a mass ratio of 1:1 at 25 ° C to determine its intrinsic viscosity, and its intrinsic viscosity was 0.85 dL/g.
  • the PPEGF copolyester was subjected to nuclear magnetic resonance analysis using deuterated trifluoroacetic acid as a solvent.
  • the ratio of the ethylene glycol segment to the glycol segment in the PPEGF copolyester structure was 56:44.
  • the alcohol segment includes diethylene glycol and triethylene glycol.
  • the PPEGF copolyester was dissolved in a mixed solvent of phenol and tetrachloroethane at a mass ratio of 1:1 at 25 ° C to determine its intrinsic viscosity, and its intrinsic viscosity was 1.08 dL/g.
  • the PPEGF copolyester was subjected to nuclear magnetic resonance analysis using deuterated trifluoroacetic acid as a solvent.
  • the ratio of the ethylene glycol segment to the glycol segment in the PPEGF copolyester structure was 46:54.
  • the alcohol segment includes diethylene glycol and triethylene glycol.
  • the PPEGF copolyester was dissolved in a mixed solvent of phenol and tetrachloroethane at a mass ratio of 1:1 at 25 ° C to determine its intrinsic viscosity, and its intrinsic viscosity was 0.65 dL/g.
  • the PPEGF copolyester was subjected to nuclear magnetic resonance analysis using deuterated trifluoroacetic acid as a solvent.
  • the ratio of the ethylene glycol segment to the glycol segment in the PPEGF copolyester structure was 46:54.
  • the alcohol segment includes diethylene glycol and triethylene glycol.
  • the PPEGF copolyester was dissolved in a mixed solvent of phenol and tetrachloroethane in a mass ratio of 1:1 at 25 ° C to determine its intrinsic viscosity, and its intrinsic viscosity was 0.70 dL/g.
  • the PPEGF copolyester was subjected to nuclear magnetic resonance analysis using deuterated trifluoroacetic acid as a solvent.
  • the ratio of the ethylene glycol segment to the glycol segment in the PPEGF copolyester structure was 49:51.
  • the alcohol segment includes diethylene glycol and triethylene glycol.
  • the PPEGF copolyester was dissolved in a mixed solvent of phenol and tetrachloroethane in a mass ratio of 1:1 at 25 ° C to determine its intrinsic viscosity, and its intrinsic viscosity was 0.80 dL/g.
  • the PPEGF copolyester was subjected to nuclear magnetic resonance analysis using deuterated trifluoroacetic acid as a solvent.
  • the ratio of the ethylene glycol segment to the glycol segment in the PPEGF copolyester structure was 50:50.
  • the alcohol segment includes diethylene glycol and triethylene glycol.
  • the PPEGF copolyester was dissolved in a mixed solvent of phenol and tetrachloroethane at a mass ratio of 1:1 at 25 ° C to determine its intrinsic viscosity, and its intrinsic viscosity was 0.87 dL/g.
  • the PPEGF copolyester was subjected to nuclear magnetic resonance analysis using deuterated trifluoroacetic acid as a solvent.
  • the ratio of the ethylene glycol segment to the glycol segment in the PPEGF copolyester structure was 78:22.
  • the alcohol segment includes diethylene glycol and triethylene glycol.
  • the PPEGF copolyester was dissolved in a mixed solvent of phenol and tetrachloroethane in a mass ratio of 1:1 at 25 ° C to determine its intrinsic viscosity, and its intrinsic viscosity was 0.70 dL/g.
  • the PPEGF copolyester was subjected to nuclear magnetic resonance analysis using deuterated trifluoroacetic acid as a solvent.
  • the ratio of the ethylene glycol segment to the glycol segment in the PPEGF copolyester structure was 90:10, and the structure was sweet.
  • the alcohol segment includes diethylene glycol and triethylene glycol.
  • the PPEGF copolyester was dissolved in a mixed solvent of phenol and tetrachloroethane in a mass ratio of 1:1 at 25 ° C to determine its intrinsic viscosity, and its intrinsic viscosity was 0.78 dL/g.
  • the PPEGF copolyester was subjected to nuclear magnetic resonance analysis using deuterated trifluoroacetic acid as a solvent, and the ratio of the ethylene glycol segment to the diethylene glycol segment in the PPEGF copolyester structure was 1:1.4.
  • the PPEGF copolyester was dissolved in a mixed solvent of phenol and tetrachloroethane at a mass ratio of 1:1 at 25 ° C to determine its intrinsic viscosity, and its intrinsic viscosity was 0.63 dL/g.
  • the PPEGF copolyester was subjected to nuclear magnetic resonance analysis using deuterated trifluoroacetic acid as a solvent, and the ratio of the ethylene glycol segment to the triethylene glycol segment in the PPEGF copolyester structure was 1:3.
  • the PPEGF copolyester was dissolved in a mixed solvent of phenol and tetrachloroethane at a mass ratio of 1:1 at 25 ° C to determine its intrinsic viscosity, and its intrinsic viscosity was 0.65 dL/g.
  • the PPEGF copolyester was subjected to nuclear magnetic resonance analysis using deuterated trifluoroacetic acid as a solvent, and the ratio of the ethylene glycol segment to the triethylene glycol segment in the PPEGF copolyester structure was 1:2.
  • the PPEGF copolyester was dissolved in a mixed solvent of phenol and tetrachloroethane at a mass ratio of 1:1 at 25 ° C to determine its intrinsic viscosity, and its intrinsic viscosity was 0.60 dL/g.
  • the PPTGF copolyester was subjected to nuclear magnetic resonance analysis using deuterated trifluoroacetic acid as a solvent.
  • the ratio of the propylene glycol segment to the propylene glycol segment in the PPTGF copolyester structure was 58:42, and the glycol in the structure
  • the segment includes propylene glycol and propylene glycol.
  • the PPTGF copolyester was dissolved in a mixed solvent of phenol and tetrachloroethane at a mass ratio of 1:1 at 25 ° C to determine its intrinsic viscosity, and its intrinsic viscosity was 0.84 dL/g.
  • the PPTGF copolyester was subjected to nuclear magnetic resonance analysis using deuterated trifluoroacetic acid as a solvent.
  • the ratio of the propylene glycol segment to the propylene glycol segment in the PPTGF copolyester structure was 1:1, and the glycol in the structure
  • the segment includes propylene glycol and propylene glycol.
  • the PPTGF copolyester was dissolved in a mixed solvent of phenol and tetrachloroethane at a mass ratio of 1:1 at 25 ° C to determine its intrinsic viscosity, and its intrinsic viscosity was 0.86 dL/g.
  • the PPTGF copolyester was subjected to nuclear magnetic resonance analysis using deuterated trifluoroacetic acid as a solvent.
  • the ratio of the propylene glycol segment to the propylene glycol segment in the PPTGF copolyester structure was 46:54, and the glycol in the structure
  • the segment includes propylene glycol and propylene glycol.
  • the PPTGF copolyester was dissolved in a mixed solvent of phenol and tetrachloroethane at a mass ratio of 1:1 at 25 ° C to determine its intrinsic viscosity, and its intrinsic viscosity was 0.80 dL/g.
  • the PPTGF copolyester was subjected to nuclear magnetic resonance analysis using deuterated trifluoroacetic acid as a solvent.
  • the ratio of the propylene glycol segment to the propylene glycol segment in the PPTGF copolyester structure was 57:43, and the glycol in the structure
  • the segment includes propylene glycol and propylene glycol.
  • the PPTGF copolyester was dissolved in a mixed solvent of phenol and tetrachloroethane at a mass ratio of 1:1 at 25 ° C to determine its intrinsic viscosity, and its intrinsic viscosity was 0.78 dL/g.
  • the PPTGF copolyester was subjected to nuclear magnetic resonance analysis using deuterated trifluoroacetic acid as a solvent.
  • the ratio of the propylene glycol segment to the propylene glycol segment in the PPTGF copolyester structure was 53:47, and the glycol in the structure
  • the segment includes propylene glycol and propylene glycol.
  • the PPTGF copolyester was dissolved in a mixed solvent of phenol and tetrachloroethane at a mass ratio of 1:1 at 25 ° C to determine its intrinsic viscosity, and its intrinsic viscosity was 0.84 dL/g.
  • the nuclear magnetic resonance analysis of the PPTGF copolyester was carried out by using deuterated trifluoroacetic acid as a solvent.
  • the ratio of the propylene glycol segment to the propylene glycol segment in the PPTGF copolyester structure was 45:55, and the glycol in the structure
  • the segment includes propylene glycol and propylene glycol.
  • the PPTGF copolyester was dissolved in a mixed solvent of phenol and tetrachloroethane in a mass ratio of 1:1 at 25 ° C to determine its intrinsic viscosity, and its intrinsic viscosity was 0.69 dL/g.
  • the PPTGF copolyester was subjected to nuclear magnetic resonance analysis using deuterated trifluoroacetic acid as a solvent.
  • the ratio of the propylene glycol segment to the propylene glycol segment in the PPTGF copolyester structure was 43:57, and the glycol in the structure
  • the segment includes propylene glycol and propylene glycol.
  • the PPTGF copolyester was dissolved in a mixed solvent of phenol and tetrachloroethane in a mass ratio of 1:1 at 25 ° C to determine its intrinsic viscosity, and its intrinsic viscosity was 0.75 dL/g.
  • the PPTGF copolyester was subjected to nuclear magnetic resonance analysis using deuterated trifluoroacetic acid as a solvent.
  • the ratio of the propylene glycol segment to the propylene glycol segment in the PPTGF copolyester structure was 47:53, and the glycol in the structure
  • the segment includes propylene glycol and propylene glycol.
  • the PPTGF copolyester was dissolved in a mixed solvent of phenol and tetrachloroethane in a mass ratio of 1:1 at 25 ° C to determine its intrinsic viscosity, and its intrinsic viscosity was 0.91 dL/g.
  • the PPTGF copolyester was subjected to nuclear magnetic resonance analysis using deuterated trifluoroacetic acid as a solvent.
  • the ratio of the propylene glycol segment to the propylene glycol segment in the PPTGF copolyester structure was 63:37, and the glycol in the structure
  • the segment includes propylene glycol and propylene glycol.
  • the PPTGF copolyester was dissolved in a mixed solvent of phenol and tetrachloroethane at a mass ratio of 1:1 at 25 ° C to determine its intrinsic viscosity, and its intrinsic viscosity was 0.80 dL/g.
  • the PPTGF copolyester was subjected to nuclear magnetic resonance analysis using deuterated trifluoroacetic acid as a solvent, and the ratio of the propylene glycol segment to the propylene glycol segment in the PPTGF copolyester structure was 40:60, and the glycol in the structure
  • the segment includes propylene glycol and propylene glycol.
  • the PPTGF copolyester was dissolved in a mixed solvent of phenol and tetrachloroethane at a mass ratio of 1:1 at 25 ° C to determine its intrinsic viscosity, and its intrinsic viscosity was 0.89 dL/g.
  • the PPTGF copolyester was subjected to nuclear magnetic resonance analysis using deuterated trifluoroacetic acid as a solvent.
  • the ratio of the propylene glycol segment to the propylene glycol segment in the PPTGF copolyester structure was 57:43, and the glycol in the structure
  • the segment includes propylene glycol and propylene glycol.
  • the PPTGF copolyester was dissolved in a mixed solvent of phenol and tetrachloroethane in a mass ratio of 1:1 at 25 ° C to determine its intrinsic viscosity, and its intrinsic viscosity was 0.90 dL/g.
  • the nuclear magnetic resonance analysis of the PPTGF copolyester was carried out by using deuterated trifluoroacetic acid as a solvent.
  • the ratio of the propylene glycol segment to the propylene glycol segment in the PPTGF copolyester structure was 61:39, and the glycol in the structure
  • the segment includes propylene glycol and propylene glycol.
  • the PPTGF copolyester was dissolved in a mixed solvent of phenol and tetrachloroethane at a mass ratio of 1:1 at 25 ° C to determine its intrinsic viscosity, and its intrinsic viscosity was 0.82 dL/g.
  • the PPTGF copolyester was subjected to nuclear magnetic resonance analysis using deuterated trifluoroacetic acid as a solvent.
  • the ratio of the ethylene glycol segment to the glycol segment in the PPTGF copolyester structure was 80:20, and the structure was sweet.
  • the alcohol segment includes propylene glycol and propylene glycol.
  • the PPTGF copolyester was dissolved in a mixed solvent of phenol and tetrachloroethane at a mass ratio of 1:1 at 25 ° C to determine its intrinsic viscosity, and its intrinsic viscosity was 0.70 dL / g.
  • the PPTGF copolyester was subjected to nuclear magnetic resonance analysis using deuterated trifluoroacetic acid as a solvent.
  • the ratio of the ethylene glycol segment to the glycol segment in the PPTGF copolyester structure was 70:30, and the structure was sweet.
  • the alcohol segment includes propylene glycol and propylene glycol.
  • the PPTGF copolyester was dissolved in a mixed solvent of phenol and tetrachloroethane at a mass ratio of 1:1 at 25 ° C to determine its intrinsic viscosity, and its intrinsic viscosity was 0.79 dL / g.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

本发明提供了一种聚醚酯共聚物,具有式(I)或(I')所示的结构;其中,n为10~200;m为0~200;p选自1、2、3、4和5中的一个或多个。本发明提供的呋喃生物基聚醚酯共聚物结构中具有可控含量的甘醇链段,这样的聚醚酯共聚物具有较好的热力学性能,而且产品色泽较好。而且本发明能够在金属配合物催化剂和/或酯化催化剂的催化作用下,采用简单的合成手段,利用FDCA与二元醇单体进行酯化、预缩聚和缩聚反应,在较低的温度下,较短的时间内,高效地制备高粘度的具有新型结构的呋喃全生物基聚醚酯共聚物,其分子中含有含量可控的低聚甘醇链段,而且反应过程平稳,易于控制,条件温和,是一种经济环保,适合规模化工业生产的制备方法。

Description

一种新型呋喃生物基聚醚酯共聚物及其制备方法 技术领域
本发明属于呋喃基聚醚酯合成技术领域,涉及一种呋喃基聚醚酯共聚物及其制备方法,尤其涉及一种具有新型结构的呋喃生物基聚醚酯共聚物及其制备方法。
背景技术
2,5-呋喃二甲酸(FDCA),化学式为C 6H 4O 5,结构式为
Figure PCTCN2019085664-appb-000001
作为呋喃的重要衍生物,其具有“刚性”平面结构的生物基高分子芳环单体,可与二醇、二胺等单体进行聚合,制备出性能优异的新型生物基高分子合成材料,是一种重要化工原料和有机化工中间体。
目前,随着聚酯产品广泛的应用,带动了聚酯原料工业的高速发展。其中,开发用于取代石油基原料的生物基聚酯单体已成为当前聚酯领域研究的热点之一。芳香族聚酯,聚对苯二甲酸乙二醇酯(PET)作为一种重要的热塑性聚酯,具有优良的耐热性、耐化学药品性以及回收率高等优点,广泛地用于包装领域。目前,生产PET的原料之一乙二醇已经可以利用生物质原料进行制备,如现有技术已经成功地以生物基乙二醇为原料制备出了可完全回收的生物基PET饮料瓶。但是,用于生产PET的另一原料对苯二甲酸(PTA)是从石油基工业原料对二甲苯(PX)的催化氧化制备而来的,致使所得到的PET塑料产品中仅含有30%的植物基成分。虽然,近些年来大力研究的生物基聚酯原料单体丁二酸具有部分替代石油基二酸的潜能,但由于它不能提供像对苯二甲酸一样的刚性芳香苯环结构,极大程度地限制了相应聚酯产品的性能。因此,如何从生物质中获得具有刚性环结构的聚酯原料二元酸是聚酯原料研发领域的一个重要发展方向。
近些年的研究发现,2,5-呋喃二甲酸(FDCA)作为一种用于替代PTA的理想的聚酯原料研发全生物基聚酯的重要原料,其不仅具有类似的刚性芳香环结构,而且含碳数目,芳香性弱于苯环,更易于降解,更重要的是2,5-呋喃二甲酸是一种可以由生物质制备而来的生物基单体。因而,2,5- 呋喃二甲酸相应的聚酯材料,聚2,5呋喃二甲酸乙二醇酯(PEF)越来越多地受到了科研人员和企业研发部门的关注。如CN102453242A,CN104072954A,WO2015137804等均报道了PEF均聚酯的制备方法及相应高分子产品的热力学性能。目前,除制备PEF均聚酯外,通过引入其它的单体与FDCA和乙二醇进行共聚,也是开发、拓展呋喃生物基聚酯的种类的一种重要方法,主要是通过引入其它的单体与FDCA和乙二醇进行共聚,如CN102432847报道了FDCA、乙二醇与对苯二甲酸单体的共聚酯等。
但是这些新引入的共聚单体往往存在成本较高,或是非生物基单体,如对苯二甲酸,这就使得全生物基聚酯产品失去了100%生物基材料的属性,环保意义大大降低。
因此,如何能够得到一种新型的全生物基呋喃生物基聚醚酯高分子材料,不仅具有100%生物基材料的属性,而且能够避免由于加入单体所带来的操作与附加成本等问题,已成为领域内诸多具有前瞻性的研究人员广为关注的焦点之一。
发明内容
有鉴于此,本发明要解决的技术问题在于提供一种呋喃生物基聚醚酯共聚物及其制备方法,特别是一种具有新型结构的呋喃全生物基聚醚酯共聚物,本发明提供的呋喃生物基聚醚酯共聚物产品结构中具有高含量甘醇链段,具有较好的热力学性能,而且产品色泽较好;同时制备过程反应过程平稳,易于控制,是一种经济环保,适合规模化工业生产的制备方法。
本发明提供了一种聚醚酯共聚物,具有式(I)或(I’)所示的结构;
Figure PCTCN2019085664-appb-000002
其中,n为10~200;m为0~200;
p选自1、2、3、4和5中的一个或多个,优选地p选自1、2、3和4中的一个或多个。
优选地,所述聚醚酯共聚物中,甘醇链段的摩尔数占所述聚醚酯共聚物的摩尔数的百分比含量为30%~70%,即n/(n+m)为0.3~0.7。
优选地,所述聚醚酯共聚物中,所述聚醚酯共聚物中,甘醇链段的摩尔数占所述聚醚酯共聚物的摩尔数的百分比含量为10%~40%,即n/(n+m)为0.1~0.4。
优选地,所述聚醚酯共聚物的数均分子量为20000~70000。
本发明还提供了一种聚醚酯共聚物的制备方法,包括以下步骤:在保护性气氛和金属配合物催化剂的条件下,将2,5-呋喃二甲酸和二元醇单体经过酯化反应后,再经过预缩聚反应和缩聚反应,得到所需的聚醚酯共聚物,其中所述聚醚酯共聚物中,甘醇链段的摩尔数占所述聚醚酯共聚物的摩尔数的百分比含量为30%~70%,即n/(n+m)为0.3~0.7。
本发明还提供了一种聚醚酯共聚物的制备方法,包括以下步骤:在保护性气氛和酯化催化剂的条件下,将2,5-呋喃二甲酸和二元醇单体经过酯化反应后,再在金属配合物催化剂存在下经过预缩聚反应和缩聚反应,得到所需的聚醚酯共聚物,其中所述聚醚酯共聚物中,甘醇链段的摩尔数占所述聚醚酯共聚物的摩尔数的百分比含量为10%~40%,即n/(n+m)为0.1~0.4。
优选地,所述金属配合物的通式为LnX 3,其中所述金属配合物的金属元素Ln是选自稀土元素、锡、铋、锌、铜、碱金属和碱土金属中的一种或多种,所述金属配合物的配体X是选自三氟甲磺酸基、五氟乙磺酸基、七氟异丙烷磺酸基、九氟丁烷磺酸基和三氟甲烷磺酰亚胺基中的一种或多种,优选地选自三氟甲磺酸基、五氟乙磺酸基、七氟异丙烷磺酸基、九氟丁烷磺酸基和三氟甲烷磺酰亚胺基中的一种或多种;
优选地,所述稀土元素是选自镧、铈、镨、铕、钕、钐、钆、镝、钬、铒、铥、镱、钇和钪中的一种或多种;
优选地,所述金属配合物催化剂的摩尔数占所述2,5-呋喃二甲酸的摩 尔数的比值为0.5‰~4‰。
优选地,所述酯化催化剂是选自氧化亚锡、辛酸亚锡、氯化亚锡、溴化亚锡、碘化亚锡、乙酸亚锡、草酸亚锡、硫酸亚锡和氢氧化亚锡中的一种或多种;
优选地,所述酯化催化剂的摩尔数占所述2,5-呋喃二甲酸的摩尔数的比值为0.5‰~4‰;
优选地,所述预缩聚反应过程的压力为所述酯化反应的压力减压至所述缩聚反应的压力。
优选地,所述二元醇单体是乙二醇、丙二醇、甘醇或它们的混合物;
优选地,所述甘醇是选自二甘醇、三甘醇、四甘醇和五甘醇中的一种或多种;
优选地,所述2,5-呋喃二甲酸与二元醇单体的摩尔比为1∶(1~8),更优选为1∶(2~8)。
优选地,所述酯化反应的温度为170~210℃;所述酯化反应的时间为1~4h;所述酯化反应的压力为1~3atm。
优选地,所述预缩聚反应为减压反应;所述预缩聚反应的时间为10~60min;所述预缩聚反应的温度为170~210℃。
优选地,所述缩聚反应的压力为20~50Pa;所述缩聚反应的温度为180~250℃;所述缩聚反应的时间为2~12h。
本发明提供了一种聚醚酯共聚物,具有式(I)或(I’)所示的结构;其中,n为10~200;m为0~200;p选自1、2、3、4和5中的一个或多个。与现有技术相比,本发明针对现有的聚2,5呋喃二甲酸乙二醇酯,特别是共聚酯,需要通过引入其它的单体与FDCA和乙二醇进行共聚,而这些新引入的共聚单体往往存在成本较高,或是非生物基单体,进而就使得全生物基聚酯产品失去了100%生物基材料的属性,环保意义大大降低的缺陷。
本发明创造性地提供了一种具有新型结构的呋喃全生物基聚醚酯共聚物,本发明提供的呋喃生物基聚醚酯共聚物产品结构中具有可控含量的甘醇链段,具有较好的热力学性能,而且产品色泽较好。而且本发明提供的呋喃基聚醚酯共聚物不仅能够通过普通的低聚甘醇、FDCA和/或乙二醇进行共聚,更考虑到低聚甘醇(二甘醇、三甘醇等)为非生物基单体,使得由低聚甘醇与FDCA和/或乙二醇进行共聚所制备的产品失去了 100%生物基材料的属性。本发明更创造性的在金属配合物催化剂和/或酯化催化剂的催化作用下,利用含强吸电子配体的金属配合物催化剂在较高温度下能够催化醚化反应的特点,采用简单的合成手段,利用FDCA与生物基乙二醇直接进行缩聚反应,在较低的温度下,较短的时间内,高效地制备高粘度的具有新型结构的呋喃全生物基聚醚酯共聚物,其分子中含有含量可控的低聚甘醇链段,而且反应过程平稳,易于控制,条件温和,是一种经济环保,适合规模化工业生产的制备方法。
本发明提供的具有新型结构的呋喃全生物基聚醚酯共聚物及其制备方法,既可以得到一种新型的全生物基高分子材料,又可以解决制备过程中由于加入低聚甘醇所带来的操作与附加成本等问题。该新型结构的呋喃生物基聚醚酯产品,推动实现对呋喃类可再生资源的开发和利用,以及对环境友好的新型生物基聚酯的制备,逐步摆脱对石油资源的依赖,对解决我国聚合物工业面临的资源短缺和环境污染等问题,实现我国高分子材料产业的可持续发展具有重要的推动作用及应用价值。
实验结果表明,本发明制备的新型生物基聚醚酯的玻璃化转变温度可以控制在30~85℃,5%热降解温度在280~400,拉伸强度在10MPa~85MPa,断裂伸长率在4%~400%。
附图说明
图1为本发明实施例1制备的提供的呋喃基聚醚酯共聚酯的核磁共振氢谱图。
具体实施方式
为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为了进一步说明本发明的特征和优点,而不是对发明权利要求的限制。
本发明所有原料,对其来源没有特别限制,在市场上购买的或按照本领域技术人员熟知的常规方法制备的即可。
本发明所有原料,对其纯度没有特别限制,本发明优选采用分析纯或呋喃基聚醚酯合成技术领域的常规纯度。
本发明所有名词表达和简称均属于本领域常规的名词表达和简称,每个名词表达和简称在其相关应用领域内均是清楚明确的,本领域技术人员根据该名词表达和简称,能够清楚准确唯一的进行理解。
本发明提供了一种聚醚酯共聚物,具有式(I)或(I’)所示的结构;
Figure PCTCN2019085664-appb-000003
其中,n为10~200;m为0~200;
p选自1、2、3、4和5中的一个或多个,优选地p选自1、2、3和4中的一个或多个。
本发明对所述具有式(I)或(I’)所示结构的聚醚酯共聚物没有其他特别限制,本领域技术人员能够理解,该聚醚酯共聚物可以为该结构式,也可以含有该结构的片段,本发明不做特别限制。本发明所述具有式(I)或(I’)所示结构的聚醚酯共聚物,其结构的核心在于,是一种含有聚2,5-呋喃二甲酸乙二醇酯与聚呋喃二甲酸与多醇酯共聚合的共聚物,其链段中含有2,5-呋喃二甲酸乙二醇酯片段,也含有2,5-呋喃二甲酸多甘醇酯片段;其简称可以为写为:PPEGF,名称可以为聚(2,5-呋喃二甲酸乙二醇酯-共-2,5-呋喃二甲酸多甘醇酯)
本发明式(I)或(I’)所示结构中,n所对应的部分,是2,5-呋喃二甲酸多甘醇酯片段,因而对所述n的选择范围没有特别限制,以本领域技术人员熟知的常规范围即可,本领域技术人员可以根据实际应用情况、质量控制以及产品要求进行选择和调整,本发明所述n优选为10~200,更优选为30~180,更优选为50~150,更优选为80~120。本发明式(I)或(I’)所示结构中,m所对应的部分,是2,5-呋喃二甲酸二元醇酯片段,因而对所述m的选择范围没有特别限制,以本领域技术人员熟知的常规范围即可,本领域技术人员可以根据实际应用情况、质量控制以及产品要求进行选择和调整,本发明所述m优选为0~200,更优选为10~200,更优选为30~180,更优选为50~150,更优选为80~120。在本发明中,所述m和n均优选为摩尔数。
本发明式(I)或(I’)所示结构中,p所对应的部分,是多甘醇的具体元数,本领域技术人员可以根据实际应用情况、质量控制以及产品要求 进行选择和调整,本发明所述多甘醇可以包括为二甘醇、三甘醇、四甘醇和五甘醇中的一种或多种,即p优选自1、2、3和4中的一个或多个,更优选为1、2、3或4,更优选为1、1和2、1和2和3、1和2和3和4,或者,1和2和3和4和5。
本发明对所述n与m的具体比例没有特别限制,以本领域技术人员熟知的常规摩尔比即可,本领域技术人员可以根据实际应用情况、质量控制以及产品要求进行选择和调整,本发明所述聚醚酯共聚物中,n/(n+m)优选小于等于1,可以等于1,即m为0,也可以小于等于0.8,也可以小于等于0.6,也可以小于等于0.4,或者小于等于0.2。本发明所述聚醚酯共聚物中,依据制备方法的不同,n/(n+m)可以为0.3~0.7,也可以为0.35~0.65,也可以为0.4~0.6,也可以为0.45~0.55。本发明所述聚醚酯共聚物中,依据制备方法的不同,n/(n+m)可以为0.1~0.4,也可以为0.15~0.35,也可以为0.2~0.3。
本发明对所述聚醚酯共聚物的其他参数没有特别限制,以本领域技术人员熟知的聚醚酯共聚物的常规参数即可,本领域技术人员可以根据实际应用情况、质量控制以及产品要求进行选择和调整,本发明所述聚醚酯共聚物的数均分子量优选为20000~70000,更优选为30000~60000,更优选为40000~50000。
本发明对所述聚醚酯共聚物的制备方法没有特别限制,以本领域技术人员熟知的常规此类共聚物的制备方法即可,本领域技术人员可以根据实际生产情况、质量控制以及产品要求进行选择和调整,本发明所述聚醚酯共聚物优选由2,5-呋喃二甲酸和醇单体聚合后得到。
本发明所述醇单体特别包括甘醇、丙二醇、甘醇或它们的混合物。
本发明对所述甘醇的具体选择没有特别限制,本领域技术人员可以根据实际应用情况、质量控制以及产品要求进行选择和调整,本发明所述甘醇优选包括二甘醇、三甘醇、四甘醇和五甘醇中的一种或多种,更优选为二甘醇、三甘醇、四甘醇或五甘醇。
本发明对所述聚合的具体方式和步骤没有特别限制,以本领域技术人员熟知的常规的聚合和方式即可,本领域技术人员可以根据实际生产情况、质量控制以及产品要求进行选择和调整。
本发明为进一步提高聚醚酯共聚物产品的可控性,开发呋喃全生物基聚醚酯共聚物,完善和细化制备过程,为工业化应用提高更完整的技术方案,本发明提供了三种独立的呋喃基聚醚酯共聚物的制备方法。
本发明提供了一种聚醚酯共聚物的制备方法,包括以下步骤:
1)在保护性气氛和金属配合物催化剂条件下,将2,5-呋喃二甲酸和 乙二醇经过酯化反应后,再经过预缩聚反应和缩聚反应后,得到聚醚酯共聚物;
所述聚醚酯共聚物中,甘醇链段的摩尔数占所述聚醚酯共聚物的摩尔数的百分比含量为30%~70%。
本发明对所述聚醚酯共聚物的制备方法中的聚醚酯共聚物的选择、组合和优选范围,优选与前述聚醚酯共聚物中的选择、组合和优选范围能够对应,在此不再一一赘述。
本发明对所述聚醚酯共聚物的结构没有特别限制,以本领域技术人员熟知的聚醚酯共聚物的结构即可,本领域技术人员可以根据实际生产情况、质量控制以及产品要求进行选择和调整,本发明所述聚醚酯共聚物中,甘醇链段的摩尔数占所述聚醚酯共聚物的摩尔数的百分比含量优选为30%~70%,更优选为35%~65%,更优选为40%~60%,更优选为45%~55%。本发明所述2,5-呋喃二甲酸优选包括生物基2,5-呋喃二甲酸。
本发明对所述保护性气氛没有特别限制,以本领域技术人员熟知的保护性气氛即可,本领域技术人员可以根据实际生产情况、质量控制以及产品要求进行选择和调整,本发明所述保护性气氛优选包括氮气和/或惰性气体,更优选为氮气或氩气。
本发明对所述金属配合物催化剂的具体选择没有特别限制,以本领域技术人员熟知的常规的金属配合物催化剂即可,本领域技术人员可以根据实际生产情况、质量控制以及产品要求进行选择和调整,本发明所述金属配合物的通式可以为LnX 3。本发明所述金属配合物催化剂的配体优选包括三氟甲磺酸基、五氟乙磺酸基、七氟异丙烷磺酸基、九氟丁烷磺酸基和三氟甲烷磺酰亚胺基中的一种或多种,更优选为三氟甲磺酸基、五氟乙磺酸基、七氟异丙烷磺酸基、九氟丁烷磺酸基或三氟甲烷磺酰亚胺基。本发明所述金属配合物的金属元素优选包括稀土元素、锡、铋、锌、铜、碱金属和碱土金属中的一种或多种,更优选为稀土元素、锡、铋、锌、铜、碱金属或碱土金属。
本发明对所述稀土元素的具体选择没有特别限制,以本领域技术人员熟知的常用的稀土元素即可,本领域技术人员可以根据实际生产情况、质量控制以及产品要求进行选择和调整,本发明所述稀土元素优选为无辐射的稀土元素,具体可以为镧La、铈Ce、镨Pr、铕Eu、钕Nd、钐Sm、钆Ga、镝Dy、钬Ho、铒Er、铥Tm、镱Yb、钇Y和钪Sc中的一种或多种。
本发明对所述金属配合物催化剂的用量没有特别限制,本领域技术人员可以根据实际生产情况、质量控制以及产品要求进行选择和调整,本发 明所述金属配合物催化剂的摩尔数占所述2,5-呋喃二甲酸的摩尔数的比值优选为0.5‰~4‰,更优选为1‰~3.5‰,更优选为1.5‰~3‰,更优选为2‰~2.5‰。
本发明对所述乙二醇的用量没有特别限制,以本领域技术人员熟知的用于此类反应的常规用量即可,本领域技术人员可以根据实际生产情况、质量控制以及产品要求进行选择和调整,本发明所述2,5-呋喃二甲酸与乙二醇的摩尔比优选为1∶(2~8),更优选为1∶(3~7),更优选为1∶(4~6)。
本发明对所述酯化反应的条件没有特别限制,以本领域技术人员熟知的常规酯化反应的条件即可,本领域技术人员可以根据实际生产情况、质量控制以及产品要求进行选择和调整,本发明所述酯化反应的温度优选为170~210℃,更优选为175~205℃,更优选为180~200℃,更优选为185~195℃。本发明所述酯化反应的时间优选为1~4h,更优选为1.5~3.5h,更优选为2~3h。本发明所述酯化反应的压力可以为常压或微正压,具体优选为1~3atm(大气压,可以为0.1MPa),更优选为1.2~2.8atm,更优选为1.5~2.5atm。
本发明进行酯化反应后,酯化产物无需分离,直接进行预缩聚反应。本发明对所述预缩聚反应的条件和步骤没有特别限制,以本领域技术人员熟知的常规预缩聚反应的条件和步骤即可,本领域技术人员可以根据实际生产情况、质量控制以及产品要求进行选择和调整,本发明所述预缩聚反应的温度优选为170~210℃,更优选为175~205℃,更优选为180~200℃,更优选为185~195℃。本发明所述预缩聚反应的时间优选为10~60min,更优选为20~50min,更优选为30~40min。
本发明所述预缩聚反应,优选为减压反应,具体反应方式可以为减压蒸馏反应,同时还能除去体系中过量的二元醇。本发明所述预缩聚反应的压力优选为一个变化值,其变化范围具体可以为所述酯化反应的压力减压至所述缩聚反应的压力。
本发明经过上述预缩聚反应后,最后在低真空条件下进行缩聚反应。本发明对所述缩聚反应的条件和步骤没有特别限制,以本领域技术人员熟知的常规缩聚反应的条件和步骤即可,本领域技术人员可以根据实际生产情况、质量控制以及产品要求进行选择和调整,本发明所述缩聚反应的压力优选为20~50Pa,更优选为25~45Pa,更优选为30~40Pa。所述缩聚反应的温度优选为180~250℃,更优选为190~240℃,更优选为200~230℃,更优选为210~220℃。本发明所述缩聚反应的时间优选为2~12h,更优选为4~10h,更优选为6~8h。
本发明为进一步保证最终产品的性能,完整和细化制备过程,上述制 备方法具体可以为:
采用熔融缩聚法,使2,5-呋喃二甲酸与二元醇(例如乙二醇)经过酯化、预聚合和聚合三步过程,直接制备酯化与醚化结构比例在30%~70%可控的新型呋喃全生物基聚醚酯共聚物。在金属配合物催化剂作用下,2,5-呋喃二甲酸先与生物基二元醇直接酯化生成2,5-呋喃二甲酸二醇酯;而后,酯化产物无需分离,继续利用减压蒸馏进行预缩聚并除去反应体系中过量的二元醇;最终,在低真空条件下进行缩聚反应制备高分子量聚醚酯产品。
本发明上述制备过程具体可以如反应式(1)或(1’)所示:
Figure PCTCN2019085664-appb-000004
本发明上述步骤提供了一种新型呋喃全生物基聚醚酯共聚物的制备方法,按照该方法制备的新型全生物基聚醚酯的结构链段中,主要包含部分聚呋喃二甲酸乙二醇酯单元(PEF)及部分甘醇酯链段,其中,甘醇链段包括二甘醇及三甘醇,也可以还有部分四甘醇和/或五甘醇。所制备的聚醚酯结构中的甘醇链段占聚合物总体摩尔百分含量为30%~70%,即n/(n+m)为0.3~0.7,本发明所述n优选为10~200,更优选为30~180,更优选为50~150,更优选为80~120。本发明所述m优选为10~200,更优选为30~180,更优选为50~150,更优选为80~120。在本发明中,所述m和n均优选为摩尔数。
本发明采用金属配合物催化剂催化二醇与呋喃二甲酸直接酯化聚合,在较低的温度下,较短的时间内,高效地制备高粘度的新型的100%生物基呋喃聚醚酯,反应过程平稳,易于控制,产品色泽较好,所制备的产品结构中具有高含量甘醇链段。而本发明还能够通过调整二元醇与呋喃二甲酸的投料比例,以及反应过程中的酯化时间、温度,缩聚时间、温度等条件可以有效的调控聚醚酯产品中甘醇链段的比例。更进一步的,本发明特别优选了稀土金属配合物催化剂,其低度或无毒,使得所制备的新型高分子材料更加符合绿色环保的理念,适合规模化工业生产的制备方法。
本发明还提供了另一种聚醚酯共聚物的制备方法,包括以下步骤:
1`)在保护性气氛和酯化催化剂的条件下,将2,5-呋喃二甲酸和乙二醇经过酯化反应后,再经过预缩聚反应后,进行缩聚反应,在缩聚反应过程中加入金属配合物催化剂后,得到聚醚酯共聚物;
所述聚醚酯共聚物中,甘醇链段的摩尔数占所述聚醚酯共聚物的摩尔数的百分比含量为10%~40%。
本发明对所述聚醚酯共聚物的制备方法中的聚醚酯共聚物的选择、组合和优选范围,优选与前述聚醚酯共聚物中的选择、组合和优选范围能够对应,在此不再一一赘述。
本发明对所述聚醚酯共聚物的结构没有特别限制,以本领域技术人员熟知的聚醚酯共聚物的结构即可,本领域技术人员可以根据实际生产情况、质量控制以及产品要求进行选择和调整,本发明所述聚醚酯共聚物中,甘醇链段的摩尔数占所述聚醚酯共聚物的摩尔数的百分比含量优选为10%~40%,更优选为15%~35%,更优选为20%~30%。本发明所述2,5-呋喃二甲酸优选包括生物基2,5-呋喃二甲酸。
本发明对所述保护性气氛没有特别限制,以本领域技术人员熟知的保护性气氛即可,本领域技术人员可以根据实际生产情况、质量控制以及产品要求进行选择和调整,本发明所述保护性气氛优选包括氮气和/或惰性气体,更优选为氮气或氩气。
本发明对所述酯化催化剂没有特别限制,以本领域技术人员熟知的用于此类化合物常规的酯化催化剂即可,本领域技术人员可以根据实际生产情况、质量控制以及产品要求进行选择和调整,本发明所述酯化催化剂优选包括氧化亚锡、辛酸亚锡、氯化亚锡、溴化亚锡、碘化亚锡、乙酸亚锡、草酸亚锡、硫酸亚锡和氢氧化亚锡中的一种或多种,更优选为氧化亚锡、辛酸亚锡、氯化亚锡、溴化亚锡、碘化亚锡、乙酸亚锡、草酸亚锡、硫酸亚锡或氢氧化亚锡。本发明对所述酯化催化剂的用量没有特别限制,本领域技术人员可以根据实际生产情况、质量控制以及产品要求进行选择和调整,本发明所述酯化催化剂的摩尔数占所述2,5-呋喃二甲酸的摩尔数的比值优选为0.5‰~4‰,更优选为1‰~3.5‰,更优选为1.5‰~3‰,更优选为2‰~2‰。
本发明对所述乙二醇的用量没有特别限制,以本领域技术人员熟知的用于此类反应的常规用量即可,本领域技术人员可以根据实际生产情况、质量控制以及产品要求进行选择和调整,本发明所述2,5-呋喃二甲酸与乙二醇的摩尔比优选为1∶(2~8),更优选为1∶(3~7),更优选为1∶(4~6)。
本发明对所述酯化反应的条件没有特别限制,以本领域技术人员熟知 的常规酯化反应的条件即可,本领域技术人员可以根据实际生产情况、质量控制以及产品要求进行选择和调整,本发明所述酯化反应的温度优选为170~210℃,更优选为175~205℃,更优选为180~200℃,更优选为185~195℃。本发明所述酯化反应的时间优选为1~4h,更优选为1.5~3.5h,更优选为2~3h。本发明所述酯化反应的压力可以为常压或微正压,具体优选为1~3atm(大气压,可以为0.1MPa),更优选为1.2~2.8atm,更优选为1.5~2.5atm。
本发明进行酯化反应后,酯化产物无需分离,直接进行预缩聚反应。本发明对所述预缩聚反应的条件和步骤没有特别限制,以本领域技术人员熟知的常规预缩聚反应的条件和步骤即可,本领域技术人员可以根据实际生产情况、质量控制以及产品要求进行选择和调整,本发明所述预缩聚反应的温度优选为170~210℃,更优选为175~205℃,更优选为180~200℃,更优选为185~195℃。本发明所述预缩聚反应的时间优选为10~60min,更优选为20~50min,更优选为30~40min。
本发明所述预缩聚反应,优选为减压反应,具体反应方式可以为减压蒸馏反应,同时还能除去体系中过量的二元醇。本发明所述预缩聚反应的压力优选为一个变化值,其变化范围具体可以为所述酯化反应的压力减压至所述缩聚反应的压力。
本发明经过上述预缩聚反应后,最后在低真空条件下进行缩聚反应。本发明对所述缩聚反应的条件和步骤没有特别限制,以本领域技术人员熟知的常规缩聚反应的条件和步骤即可,本领域技术人员可以根据实际生产情况、质量控制以及产品要求进行选择和调整,本发明所述缩聚反应的压力优选为20~50Pa,更优选为25~45Pa,更优选为30~40Pa。所述缩聚反应的温度优选为180~250℃,更优选为190~240℃,更优选为200~230℃,更优选为210~220℃。本发明所述缩聚反应的时间优选为2~12h,更优选为4~10h,更优选为6~8h。
本发明特别在缩聚反应中加入金属配合物催化剂,其中所述缩聚反应中可以为缩聚反应开始或缩聚反应过程中。本发明对所述加入的具体时间没有特别限制,本领域技术人员可以根据实际生产情况、质量控制以及产品要求进行选择和调整,本发明所述金属配合物催化剂的加入时间优选为缩聚反应开始时的0~3小时之间,即缩聚反应的0~3小时,也可以为0.5~2.5小时,也可以为1~2小时。
本发明对所述金属配合物催化剂的具体选择没有特别限制,以本领域技术人员熟知的常规的金属配合物催化剂即可,本领域技术人员可以根据实际生产情况、质量控制以及产品要求进行选择和调整,本发明所述金属 配合物的通式可以为LnX 3。本发明所述金属配合物催化剂的配体优选包括三氟甲磺酸基、五氟乙磺酸基、七氟异丙烷磺酸基、九氟丁烷磺酸基和三氟甲烷磺酰亚胺基中的一种或多种,更优选为三氟甲磺酸基、五氟乙磺酸基、七氟异丙烷磺酸基、九氟丁烷磺酸基或三氟甲烷磺酰亚胺基。本发明所述金属配合物的金属元素优选包括稀土元素、锡、铋、锌、铜、碱金属和碱土金属中的一种或多种,更优选为稀土元素、锡、铋、锌、铜、碱金属或碱土金属。
本发明对所述稀土元素的具体选择没有特别限制,以本领域技术人员熟知的常用的稀土元素即可,本领域技术人员可以根据实际生产情况、质量控制以及产品要求进行选择和调整,本发明所述稀土元素优选为无辐射的稀土元素,具体可以为镧La、铈Ce、镨Pr、铕Eu、钕Nd、钐Sm、钆Ga、镝Dy、钬Ho、铒Er、铥Tm、镱Yb、钇Y和钪Sc中的一种或多种。
本发明对所述金属配合物催化剂的用量没有特别限制,本领域技术人员可以根据实际生产情况、质量控制以及产品要求进行选择和调整,本发明所述金属配合物催化剂的摩尔数占所述2,5-呋喃二甲酸的摩尔数的比值优选为0.5‰~4‰,更优选为1‰~3.5‰,更优选为1.5‰~3‰,更优选为2‰~2‰。
本发明为进一步保证最终产品的性能,完整和细化制备过程,上述制备方法具体可以为:
采用熔融缩聚法,使2,5-呋喃二甲酸与二元醇(乙二醇)经过酯化、预聚合和聚合三步过程,直接制备酯化与醚化结构比例在10%~40%的可控的新型呋喃全生物基聚醚酯共聚物。先在常规酯化催化剂(PEF酯化催化剂)的作用下,2,5-呋喃二甲酸先与生物基二元醇直接酯化生成2,5-呋喃二甲酸二醇酯;而后,酯化产物无需分离,继续利用减压蒸馏进行预缩聚并除去反应体系中过量的二元醇;而后,可以在不同时间内,加入催化剂LnX3,并在低真空条件下进行缩聚反应制备高分子量聚醚酯产品。
本发明上述制备过程具体可以如反应式(2)或(2’)所示:
Figure PCTCN2019085664-appb-000005
Figure PCTCN2019085664-appb-000006
本发明上述步骤提供了一种新型呋喃全生物基聚醚酯共聚物的制备方法,按照该方法制备的新型全生物基聚醚酯的结构链段中,主要包含部分聚呋喃二甲酸乙二醇酯单元(PEF)及部分甘醇酯链段,其中,甘醇链段包括二甘醇及三甘醇,也可以还有部分四甘醇和/或五甘醇。所制备的聚醚酯结构中的甘醇链段占聚合物总体摩尔百分含量为10%~40%,即n/(n+m)为0.1~0.4,本发明所述n优选为10~200,更优选为30~180,更优选为50~150,更优选为80~120。本发明所述m优选为10~200,更优选为30~180,更优选为50~150,更优选为80~120。在本发明中,所述m和n均优选为摩尔数。
本发明采用金属配合物催化剂催化二醇与呋喃二甲酸直接酯化聚合,在较低的温度下,较短的时间内,高效地制备高粘度的新型的100%生物基呋喃聚醚酯,反应过程平稳,易于控制,产品色泽较好,所制备的产品结构中具有较高的可控含量的甘醇链段。而本发明还能够通过调整二元醇与呋喃二甲酸的投料比例,以及反应过程中的酯化时间、温度,缩聚时间、温度等条件可以有效的调控聚醚酯产品中甘醇链段的比例。更进一步的,本发明特别优选了稀土金属配合物催化剂,其低度或无毒,使得所制备的新型高分子材料更加符合绿色环保的理念,适合规模化工业生产的制备方法。
本发明还提供了一种通常聚醚酯共聚物的制备方法,包括以下步骤:
1``)在保护性气氛和酯化催化剂的条件下,将2,5-呋喃二甲酸、醇单体经过酯化反应后,再经过预缩聚反应和缩聚反应,得到聚醚酯共聚物。
本发明对所述聚醚酯共聚物的制备方法中的聚醚酯共聚物的选择、组合和优选范围,优选与前述聚醚酯共聚物中的选择、组合和优选范围能够对应,在此不再一一赘述。
本发明对所述聚醚酯共聚物的结构没有特别限制,以本领域技术人员熟知的聚醚酯共聚物的结构即可,本领域技术人员可以根据实际生产情况、质量控制以及产品要求进行选择和调整,本发明所述聚醚酯共聚物中,甘醇链段的摩尔数占所述聚醚酯共聚物的摩尔数的百分比含量优选为0.1~100%,更优选为10%~90%,更优选为20%~80%,更优选为30%~70%,更优选为40%~60%。本发明所述2,5-呋喃二甲酸优选包括生物基2,5-呋喃二甲酸。
本发明对所述保护性气氛没有特别限制,以本领域技术人员熟知的保 护性气氛即可,本领域技术人员可以根据实际生产情况、质量控制以及产品要求进行选择和调整,本发明所述保护性气氛优选包括氮气和/或惰性气体,更优选为氮气或氩气。
本发明对所述酯化催化剂没有特别限制,以本领域技术人员熟知的用于此类化合物常规的酯化催化剂即可,本领域技术人员可以根据实际生产情况、质量控制以及产品要求进行选择和调整,本发明所述酯化催化剂优选包括氧化亚锡、辛酸亚锡、氯化亚锡、溴化亚锡、碘化亚锡、乙酸亚锡、草酸亚锡、硫酸亚锡和氢氧化亚锡中的一种或多种,更优选为氧化亚锡、辛酸亚锡、氯化亚锡、溴化亚锡、碘化亚锡、乙酸亚锡、草酸亚锡、硫酸亚锡或氢氧化亚锡。本发明对所述酯化催化剂的用量没有特别限制,本领域技术人员可以根据实际生产情况、质量控制以及产品要求进行选择和调整,本发明所述酯化催化剂的摩尔数占所述2,5-呋喃二甲酸的摩尔数的比值优选为0.5‰~4‰,更优选为1‰~3.5‰,更优选为1.5‰~3‰,更优选为2‰~2‰。
本发明对所述醇单体的选择没有特别限制,以本领域技术人员熟知的常规醇单体即可,本领域技术人员可以根据实际生产情况、质量控制以及产品要求进行选择和调整,本发明所述醇单体优选包括甘醇,或甘醇与乙二醇的混合物。本发明所述甘醇优选包括二甘醇、三甘醇、四甘醇和五甘醇中的一种或多种,更优选为二甘醇或三甘醇。
在本发明中,当醇单体为甘醇时,所述聚醚酯共聚物的式(I)或(I’)结构中,n=1;所述醇单体为甘醇与乙二醇的混合物时,所述聚醚酯共聚物的式(I)或(I’)结构中,n/(n+m)小于1。在本发明中,当采用上述制备方式时,由于使用了甘醇,在甘醇不能生物基化(通过生物原料完全制备)之前,其最终产品可以认为是非全生物基聚醚酯共聚物。
本发明对所述醇单体的用量没有特别限制,以本领域技术人员熟知的用于此类反应的常规用量即可,本领域技术人员可以根据实际生产情况、质量控制以及产品要求进行选择和调整,本发明所述2,5-呋喃二甲酸与醇单体的摩尔比优选为1∶(2~8),更优选为1∶(3~7),更优选为1∶(4~6)。
本发明对所述酯化反应的条件没有特别限制,以本领域技术人员熟知的常规酯化反应的条件即可,本领域技术人员可以根据实际生产情况、质量控制以及产品要求进行选择和调整,本发明所述酯化反应的温度优选为170~210℃,更优选为175~205℃,更优选为180~200℃,更优选为185~195℃。本发明所述酯化反应的时间优选为1~4h,更优选为1.5~3.5h,更优选为2~3h。本发明所述酯化反应的压力可以为常压或微正压,具体优选为1~3atm(大气压,可以为0.1MPa),更优选为1.2~2.8atm,更优 选为1.5~2.5atm。
本发明进行酯化反应后,酯化产物无需分离,直接进行预缩聚反应。本发明对所述预缩聚反应的条件和步骤没有特别限制,以本领域技术人员熟知的常规预缩聚反应的条件和步骤即可,本领域技术人员可以根据实际生产情况、质量控制以及产品要求进行选择和调整,本发明所述预缩聚反应的温度优选为170~210℃,更优选为175~205℃,更优选为180~200℃,更优选为185~195℃。本发明所述预缩聚反应的时间优选为10~60min,更优选为20~50min,更优选为30~40min。
本发明所述预缩聚反应,优选为减压反应,具体反应方式可以为减压蒸馏反应,同时还能除去体系中过量的二元醇。本发明所述预缩聚反应的压力优选为一个变化值,其变化范围具体可以为所述酯化反应的压力减压至所述缩聚反应的压力。
本发明经过上述预缩聚反应后,最后在低真空条件下进行缩聚反应。本发明对所述缩聚反应的条件和步骤没有特别限制,以本领域技术人员熟知的常规缩聚反应的条件和步骤即可,本领域技术人员可以根据实际生产情况、质量控制以及产品要求进行选择和调整,本发明所述缩聚反应的压力优选为20~50Pa,更优选为25~45Pa,更优选为30~40Pa。所述缩聚反应的温度优选为180~250℃,更优选为190~240℃,更优选为200~230℃,更优选为210~220℃。本发明所述缩聚反应的时间优选为2~12h,更优选为4~10h,更优选为6~8h。
本发明为进一步保证最终产品的性能,完整和细化制备过程,上述制备方法具体可以为:
采用熔融缩聚法,使2,5-呋喃二甲酸与醇单体经过酯化、预聚合和聚合三步过程,直接制备酯化与醚化结构比例在0.1%~100%的可控的新型呋喃聚醚酯共聚物。在常规酯化催化剂(PEF酯化催化剂)的作用下,2,5-呋喃二甲酸先与醇单体直接酯化生成2,5-呋喃二甲酸二醇酯和2,5-呋喃二甲酸二甘醇酯;而后,酯化产物无需分离,继续利用减压蒸馏进行预缩聚并除去反应体系中过量的醇单体;而后,在低真空条件下进行缩聚反应制备高分子量聚醚酯产品。
本发明上述步骤提供了一种新型呋喃聚醚酯共聚物的制备方法,按照该方法制备的新型全生物基聚醚酯的结构链段中,主要包含部分聚呋喃二甲酸乙二醇酯单元(PEF),及部分或全部甘醇酯链段,其中,甘醇链段包括二甘醇及三甘醇,也可以还有部分四甘醇和/或五甘醇。所制备的聚醚酯结构中的甘醇链段占聚合物总体摩尔百分含量为0.1%~100%,即n/(n+m)可以小于等于1,本发明所述n优选为10~200,更优选为30~180, 更优选为50~150,更优选为80~120。本发明所述m优选为0~200,更优选为10~200,更优选为30~180,更优选为50~150,更优选为80~120。在本发明中,所述m和n均优选为摩尔数。
本发明采用酯化催化剂催化醇单体与呋喃二甲酸直接酯化聚合,在较低的温度下,较短的时间内,高效地制备高粘度的新型的呋喃聚醚酯共聚物,反应过程平稳,易于控制,产品色泽较好,所制备的产品结构中具有较高的可控含量的甘醇链段。而本发明还能够通过调整醇单体与呋喃二甲酸的投料比例,以及反应过程中的酯化时间、温度,缩聚时间、温度等条件可以有效的调控聚醚酯产品中甘醇链段的比例。
本发明上述步骤提供了一种聚醚酯共聚物及其多种制备方法,该聚醚酯共聚物是一种具有新型结构的呋喃全生物基聚醚酯共聚物,本发明提供的呋喃生物基聚醚酯共聚物产品结构中具有高含量甘醇链段,具有较好的热力学性能,而且产品色泽较好。而且本发明提供的呋喃基聚醚酯共聚物不仅能够通过普通的低聚甘醇、FDCA和乙二醇进行共聚,更考虑到低聚甘醇(二甘醇、三甘醇等)为非生物基单体,使得由低聚甘醇与FDCA和乙二醇进行共聚所制备的产品失去了100%生物基材料的属性。本发明更在金属配合物催化剂,利用含强吸电子配体的金属催化剂在较高温度下能够催化醚化反应的特点,特别是稀土金属配合物催化剂的催化作用下,采用简单的合成手段,利用FDCA与生物基乙二醇直接进行缩聚反应,在较低的温度下,较短的时间内,高效地制备高粘度的具有新型结构的呋喃全生物基聚醚酯共聚物,其分子中含有含量可控的低聚甘醇链段,而且反应过程平稳,易于控制,条件温和,是一种经济环保,适合规模化工业生产的制备方法。
本发明提供的具有新型结构的呋喃全生物基聚醚酯共聚物及其制备方法,既可以得到一种新型的全生物基高分子材料,又可以解决制备过程中由于加入低聚甘醇所带来的操作与附加成本等问题。该新型结构的呋喃生物基聚醚酯产品,推动实现对呋喃类可再生资源的开发和利用,以及对环境友好的新型生物基聚酯的制备,逐步摆脱对石油资源的依赖,对解决我国聚合物工业面临的资源短缺和环境污染等问题,实现我国高分子材料产业的可持续发展具有重要的推动作用及应用价值。
实验结果表明,本发明制备的新型生物基聚醚酯的玻璃化转变温度可以控制在30~85℃,5%热降解温度在280~400,拉伸强度在10MPa~85MPa,断裂伸长率在4%~400%。
为了进一步理解本发明,下面结合实施例对本发明提供的一种呋喃基 聚醚酯共聚物及其制备方法进行说明,但是应当理解,这些实施例是在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制,本发明的保护范围也不限于下述的实施例。
实施例1
于反应器中,分别加入2,5-呋喃二甲酸15.6克(0.1mol)、乙二醇18.0克(0.3mol),加入三氟甲磺酸钐87毫克(占二元羧酸单体总量的0.15%),氮气氛围下,在180℃条件下酯化105分钟,得到酯化产物;酯化反应结束后,升温至210℃,25分钟内将压力将至20~50Pa,熔融缩聚反应4小时,制得黄色的聚(2,5-呋喃二甲酸乙二醇酯-共-2,5-呋喃二甲酸二甘醇酯-共-2,5-呋喃二甲酸三甘醇酯),记为PPEGF。
对本发明实施例1制备的呋喃基聚醚酯共聚物进行表征,以氘代三氟醋酸为溶剂对所述PPEGF共聚酯进行核磁共振分析。
参见图1,图1为本发明实施例1制备的提供的呋喃基聚醚酯共聚酯的核磁共振氢谱图。由图1可知,该PPEGF共聚酯具有式(II)所示的结构,其中乙二醇链段与甘醇链段的比例为1∶1,结构中的甘醇链段包括二甘醇与三甘醇。
Figure PCTCN2019085664-appb-000007
将上述制备的PPEGF共聚酯,溶解于25℃质量比为1∶1的苯酚和四氯乙烷混合溶剂中测定其特性粘度,其特性粘度为0.91dL/g。
对本发明实施例制备的呋喃基聚醚酯共聚物进行性能检测。
参见表1,表1为本发明实施例制备的典型结构呋喃基聚醚酯的性能。
表1
Figure PCTCN2019085664-appb-000008
Figure PCTCN2019085664-appb-000009
实施例2
于反应器中,分别加入2,5-呋喃二甲酸15.6克(0.1mol)、乙二醇18.0克(0.3mol),加入三氟甲磺酸钪72毫克(占二元羧酸单体总量的0.15%),氮气氛围下,在180℃条件下酯化105分钟,得到酯化产物;酯化反应结束后,升温至210℃,25分钟内将压力将至20~50Pa,熔融缩聚反应4小时,制得黄色的PPEGF共聚物。
以氘代三氟醋酸为溶剂对所述PPEGF共聚酯进行核磁共振分析,所述PPEGF共聚酯结构中的乙二醇链段与甘醇链段的比例为1∶1,结构中的甘醇链段包括二甘醇与三甘醇。
将所述PPEGF共聚酯溶解于25℃质量比为1∶1的苯酚和四氯乙烷混合溶剂中测定其特性粘度,其特性粘度为1.01dL/g。
实施例3
于反应器中,分别加入2,5-呋喃二甲酸15.6克(0.1mol)、乙二醇18.0克(0.3mol),加入三氟甲磺酸钕85毫克(占二元羧酸单体总量的0.15%),氮气氛围下,在180℃条件下酯化105分钟,得到酯化产物;酯化反应结束后,升温至210℃,25分钟内将压力将至20~50Pa,熔融缩聚反应4小时,制得黄色的PPEGF共聚物。
以氘代三氟醋酸为溶剂对所述PPEGF共聚酯进行核磁共振分析,所述PPEGF共聚酯结构中的乙二醇链段与甘醇链段的比例为1∶1,结构中的甘醇链段包括二甘醇与三甘醇。
将所述PPEGF共聚酯溶解于25℃质量比为1∶1的苯酚和四氯乙烷混合溶剂中测定其特性粘度,其特性粘度为0.83dL/g。
实施例4
于反应器中,分别加入2,5-呋喃二甲酸15.6克(0.1mol)、乙二醇18.0克(0.3mol),加入三氟甲磺酸镧85毫克(占二元羧酸单体总量的0.15%),氮气氛围下,在180℃条件下酯化105分钟,得到酯化产物;酯化反应结束后,升温至210℃,25分钟内将压力将至20~50Pa,熔融缩聚反应4小时,制得黄色的PPEGF共聚物。
以氘代三氟醋酸为溶剂对所述PPEGF共聚酯进行核磁共振分析,所述PPEGF共聚酯结构中的乙二醇链段与甘醇链段的比例为1∶1,结构中的甘醇链段包括二甘醇与三甘醇。
将所述PPEGF共聚酯溶解于25℃质量比为1∶1的苯酚和四氯乙烷混合溶剂中测定其特性粘度,其特性粘度为0.96dL/g。
实施例5
于反应器中,分别加入2,5-呋喃二甲酸15.6克(0.1mol)、乙二醇18.0克(0.3mol),加入三氟甲磺酸铈85毫克(占二元羧酸单体总量的0.15%),氮气氛围下,在180℃条件下酯化105分钟,得到酯化产物;酯化反应结束后,升温至210℃,25分钟内将压力将至20~50Pa,熔融缩聚反应4小时,制得黄色的PPEGF共聚物。
以氘代三氟醋酸为溶剂对所述PPEGF共聚酯进行核磁共振分析,所述PPEGF共聚酯结构中的乙二醇链段与甘醇链段的比例为1∶1,结构中的甘醇链段包括二甘醇与三甘醇。
将所述PPEGF共聚酯溶解于25℃质量比为1∶1的苯酚和四氯乙烷混合溶剂中测定其特性粘度,其特性粘度为0.69dL/g。
实施例6
于反应器中,分别加入2,5-呋喃二甲酸15.6克(0.1mol)、乙二醇18.0克(0.3mol),加入三氟甲磺酸铥85毫克(占二元羧酸单体总量的0.15%),氮气氛围下,在180℃条件下酯化105分钟,得到酯化产物;酯化反应结束后,升温至210℃,25分钟内将压力将至20~50Pa,熔融缩聚反应4小时,制得黄色的PPEGF共聚物。
以氘代三氟醋酸为溶剂对所述PPEGF共聚酯进行核磁共振分析,所述PPEGF共聚酯结构中的乙二醇链段与甘醇链段的比例为1∶1,结构中的甘醇链段包括二甘醇与三甘醇。
将所述PPEGF共聚酯溶解于25℃质量比为1∶1的苯酚和四氯乙烷混合溶剂中测定其特性粘度,其特性粘度为0.94dL/g。
实施例7
于反应器中,分别加入2,5-呋喃二甲酸15.6克(0.1mol)、乙二醇18.0克(0.3mol),加入五氟乙磺酸基钪72毫克(占二元羧酸单体总量的0.15%),氮气氛围下,在180℃条件下酯化105分钟,得到酯化产物;酯化反应结束后,升温至210℃,25分钟内将压力将至20~50Pa,熔融缩聚反应4小时,制得深棕色的PPEGF共聚物。
以氘代三氟醋酸为溶剂对所述PPEGF共聚酯进行核磁共振分析,所述PPEGF共聚酯结构中的乙二醇链段与甘醇链段的比例为1∶1,结构中 的甘醇链段包括二甘醇与三甘醇。
将所述PPEGF共聚酯溶解于25℃质量比为1∶1的苯酚和四氯乙烷混合溶剂中测定其特性粘度,其特性粘度为1.00dL/g。
实施例8
于反应器中,分别加入2,5-呋喃二甲酸15.6克(0.1mol)、乙二醇18.0克(0.3mol),加入七氟异丙基钪72毫克(占二元羧酸单体总量的0.15%),氮气氛围下,在180℃条件下酯化105分钟,得到酯化产物;酯化反应结束后,升温至210℃,25分钟内将压力将至20~50Pa,熔融缩聚反应4小时,制得深棕色的PPEGF共聚物。
以氘代三氟醋酸为溶剂对所述PPEGF共聚酯进行核磁共振分析,所述PPEGF共聚酯结构中的乙二醇链段与甘醇链段的比例为1∶1,结构中的甘醇链段包括二甘醇与三甘醇。
将所述PPEGF共聚酯溶解于25℃质量比为1∶1的苯酚和四氯乙烷混合溶剂中测定其特性粘度,其特性粘度为0.95dL/g。
实施例9
于反应器中,分别加入2,5-呋喃二甲酸15.6克(0.1mol)、乙二醇18.0克(0.3mol),加入三氟甲烷磺酰亚胺基钪72毫克(占二元羧酸单体总量的0.15%),氮气氛围下,在180℃条件下酯化105分钟,得到酯化产物;酯化反应结束后,升温至210℃,25分钟内将压力将至20~50Pa,熔融缩聚反应4小时,制得深棕色的PPEGF共聚物。
以氘代三氟醋酸为溶剂对所述PPEGF共聚酯进行核磁共振分析,所述PPEGF共聚酯结构中的乙二醇链段与甘醇链段的比例为1∶1,结构中的甘醇链段包括二甘醇与三甘醇。
将所述PPEGF共聚酯溶解于25℃质量比为1∶1的苯酚和四氯乙烷混合溶剂中测定其特性粘度,其特性粘度为1.01dL/g。
实施例10
于反应器中,分别加入2,5-呋喃二甲酸15.6克(0.1mol)、乙二醇18.0克(0.3mol),加入三氟甲烷磺酸铋92毫克(占二元羧酸单体总量的0.15%),氮气氛围下,在180℃条件下酯化105分钟,得到酯化产物;酯化反应结束后,升温至210℃,25分钟内将压力将至20~50Pa,熔融缩聚反应4小时,制得深棕色的PPEGF共聚物。
以氘代三氟醋酸为溶剂对所述PPEGF共聚酯进行核磁共振分析,所述PPEGF共聚酯结构中的乙二醇链段与甘醇链段的比例为1∶1,结构中的甘醇链段包括二甘醇与三甘醇。
将所述PPEGF共聚酯溶解于25℃质量比为1∶1的苯酚和四氯乙烷混 合溶剂中测定其特性粘度,其特性粘度为1.05dL/g。
实施例11
于反应器中,分别加入2,5-呋喃二甲酸15.6克(0.1mol)、乙二醇18.0克(0.3mol),加入三氟甲烷磺酸钪58毫克(占二元羧酸单体总量的0.12%),氮气氛围下,在180℃条件下酯化105分钟,得到酯化产物;酯化反应结束后,升温至210℃,25分钟内将压力将至20~50Pa,熔融缩聚反应4小时,制得黄色的PPEGF共聚物。
以氘代三氟醋酸为溶剂对所述PPEGF共聚酯进行核磁共振分析,所述PPEGF共聚酯结构中的乙二醇链段与甘醇链段的比例为1∶1,结构中的甘醇链段包括二甘醇与三甘醇。
将所述PPEGF共聚酯溶解于25℃质量比为1∶1的苯酚和四氯乙烷混合溶剂中测定其特性粘度,其特性粘度为0.96dL/g。
实施例12
于反应器中,分别加入2,5-呋喃二甲酸15.6克(0.1mol)、乙二醇12.0克(0.2mol),加入三氟甲烷磺酸钪72毫克(占二元羧酸单体总量的0.15%),氮气氛围下,在180℃条件下酯化2小时,得到酯化产物;酯化反应结束后,升温至210℃,25分钟内将压力将至20~50Pa,熔融缩聚反应4小时,制得黄色的PPEGF共聚物。
以氘代三氟醋酸为溶剂对所述PPEGF共聚酯进行核磁共振分析,所述PPEGF共聚酯结构中的乙二醇链段与甘醇链段的比例为65∶35,结构中的甘醇链段包括二甘醇与三甘醇。
将所述PPEGF共聚酯溶解于25℃质量比为1∶1的苯酚和四氯乙烷混合溶剂中测定其特性粘度,其特性粘度为0.92dL/g。
实施例13
于反应器中,分别加入2,5-呋喃二甲酸15.6克(1mol)、乙二醇15.0克(0.25mol),加入三氟甲烷磺酸钪72毫克(占二元羧酸单体总量的0.15%),氮气氛围下,在180℃条件下酯化105分钟,得到酯化产物;酯化反应结束后,升温至210℃,25分钟内将压力将至20~50Pa,熔融缩聚反应4小时,制得黄色的PPEGF共聚物。
以氘代三氟醋酸为溶剂对所述PPEGF共聚酯进行核磁共振分析,所述PPEGF共聚酯结构中的乙二醇链段与甘醇链段的比例为60∶40,结构中的甘醇链段包括二甘醇与三甘醇。
将所述PPEGF共聚酯溶解于25℃质量比为1∶1的苯酚和四氯乙烷混合溶剂中测定其特性粘度,其特性粘度为0.82dL/g。
实施例14
于反应器中,分别加入2,5-呋喃二甲酸15.6克(0.1mol)、乙二醇24.0克(0.4mol),加入三氟甲烷磺酸钪72毫克(占二元羧酸单体总量的0.15%),氮气氛围下,在180℃条件下酯化105分钟,得到酯化产物;酯化反应结束后,升温至210℃,25分钟内将压力将至20~50Pa,熔融缩聚反应4小时,制得黄色的PPEGF共聚物。
以氘代三氟醋酸为溶剂对所述PPEGF共聚酯进行核磁共振分析,所述PPEGF共聚酯结构中的乙二醇链段与甘醇链段的比例为45∶55,结构中的甘醇链段包括二甘醇与三甘醇。
将所述PPEGF共聚酯溶解于25℃质量比为1∶1的苯酚和四氯乙烷混合溶剂中测定其特性粘度,其特性粘度为0.98dL/g。
实施例15
于反应器中,分别加入2,5-呋喃二甲酸15.6克(0.1mol)、乙二醇30.0克(0.5mol),加入三氟甲烷磺酸钪72毫克(占二元羧酸单体总量的0.15%),氮气氛围下,在180℃条件下酯化105分钟,得到酯化产物;酯化反应结束后,升温至210℃,25分钟内将压力将至20~50Pa,熔融缩聚反应4小时,制得黄色的PPEGF共聚物。
以氘代三氟醋酸为溶剂对所述PPEGF共聚酯进行核磁共振分析,所述PPEGF共聚酯结构中的乙二醇链段与甘醇链段的比例为43∶57,结构中的甘醇链段包括二甘醇与三甘醇。
将所述PPEGF共聚酯溶解于25℃质量比为1∶1的苯酚和四氯乙烷混合溶剂中测定其特性粘度,其特性粘度为0.71dL/g。
实施例16
于反应器中,分别加入2,5-呋喃二甲酸15.6克(0.1mol)、乙二醇18.0克(0.3mol),加入三氟甲烷磺酸钪72毫克(占二元羧酸单体总量的0.15%),氮气氛围下,在170℃条件下酯化105分钟,得到酯化产物;酯化反应结束后,升温至210℃,25分钟内将压力将至20~50Pa,熔融缩聚反应4小时,制得黄色的PPEGF共聚物。
以氘代三氟醋酸为溶剂对所述PPEGF共聚酯进行核磁共振分析,所述PPEGF共聚酯结构中的乙二醇链段与甘醇链段的比例为60∶40,结构中的甘醇链段包括二甘醇与三甘醇。
将所述PPEGF共聚酯溶解于25℃质量比为1∶1的苯酚和四氯乙烷混合溶剂中测定其特性粘度,其特性粘度为0.90dL/g。
实施例17
于反应器中,分别加入2,5-呋喃二甲酸15.6克(0.1mol)、乙二醇18.0克(0.3mol),加入三氟甲烷磺酸钪72毫克(占二元羧酸单体总量的 0.15%),氮气氛围下,在190℃条件下酯化105分钟,得到酯化产物;酯化反应结束后,升温至210℃,25分钟内将压力将至20~50Pa,熔融缩聚反应4小时,制得黄色的PPEGF共聚物。
以氘代三氟醋酸为溶剂对所述PPEGF共聚酯进行核磁共振分析,所述PPEGF共聚酯结构中的乙二醇链段与甘醇链段的比例为44∶56,结构中的甘醇链段包括二甘醇与三甘醇。
将所述PPEGF共聚酯溶解于25℃质量比为1∶1的苯酚和四氯乙烷混合溶剂中测定其特性粘度,其特性粘度为0.98dL/g。
实施例18
于反应器中,分别加入2,5-呋喃二甲酸15.6克(0.1mol)、乙二醇18.0克(0.3mol),加入三氟甲烷磺酸钪72毫克(占二元羧酸单体总量的0.15%),氮气氛围下,在200℃条件下酯化105分钟,得到酯化产物;酯化反应结束后,升温至210℃,25分钟内将压力将至20~50Pa,熔融缩聚反应4小时,制得黄色的PPEGF共聚物。
以氘代三氟醋酸为溶剂对所述PPEGF共聚酯进行核磁共振分析,所述PPEGF共聚酯结构中的乙二醇链段与甘醇链段的比例为37∶63,结构中的甘醇链段包括二甘醇与三甘醇、四甘醇。
将所述PPEGF共聚酯溶解于25℃质量比为1∶1的苯酚和四氯乙烷混合溶剂中测定其特性粘度,其特性粘度为0.81dL/g。
实施例19
于反应器中,分别加入2,5-呋喃二甲酸15.6克(0.1mol)、乙二醇18.0克(0.3mol),加入三氟甲烷磺酸钪72毫克(占二元羧酸单体总量的0.15%),氮气氛围下,在210℃条件下酯化105分钟,得到酯化产物;酯化反应结束后,升温至210℃,25分钟内将压力将至20~50Pa,熔融缩聚反应4小时,制得黄色的PPEGF共聚物。
以氘代三氟醋酸为溶剂对所述PPEGF共聚酯进行核磁共振分析,所述PPEGF共聚酯结构中的乙二醇链段与甘醇链段的比例为30∶70,结构中的甘醇链段包括二甘醇、三甘醇、四甘醇、五甘醇。
将所述PPEGF共聚酯溶解于25℃质量比为1∶1的苯酚和四氯乙烷混合溶剂中测定其特性粘度,其特性粘度为0.65dL/g。
实施例20
于反应器中,分别加入2,5-呋喃二甲酸15.6克(0.1mol)、乙二醇18.0克(0.3mol),加入三氟甲烷磺酸钪72毫克(占二元羧酸单体总量的0.15%),氮气氛围下,在180℃条件下酯化60分钟,得到酯化产物;酯化反应结束后,升温至210℃,25分钟内将压力将至20~50Pa,熔融缩聚 反应4小时,制得黄色的PPEGF共聚物。
以氘代三氟醋酸为溶剂对所述PPEGF共聚酯进行核磁共振分析,所述PPEGF共聚酯结构中的乙二醇链段与甘醇链段的比例为68∶32,结构中的甘醇链段包括二甘醇与三甘醇。
将所述PPEGF共聚酯溶解于25℃质量比为1∶1的苯酚和四氯乙烷混合溶剂中测定其特性粘度,其特性粘度为0.81dL/g。
实施例21
于反应器中,分别加入2,5-呋喃二甲酸15.6克(0.1mol)、乙二醇18.0克(0.3mol),加入三氟甲烷磺酸钪72毫克(占二元羧酸单体总量的0.15%),氮气氛围下,在180℃条件下酯化90分钟,得到酯化产物;酯化反应结束后,升温至210℃,25分钟内将压力将至20~50Pa,熔融缩聚反应4小时,制得黄色的PPEGF共聚物。
以氘代三氟醋酸为溶剂对所述PPEGF共聚酯进行核磁共振分析,所述PPEGF共聚酯结构中的乙二醇链段与甘醇链段的比例为55∶45,结构中的甘醇链段包括二甘醇与三甘醇。
将所述PPEGF共聚酯溶解于25℃质量比为1∶1的苯酚和四氯乙烷混合溶剂中测定其特性粘度,其特性粘度为0.86dL/g。
实施例22
于反应器中,分别加入2,5-呋喃二甲酸15.6克(0.1mol)、乙二醇18.0克(0.3mol),加入三氟甲烷磺酸钪72毫克(占二元羧酸单体总量的0.15%),氮气氛围下,在180℃条件下酯化150分钟,得到酯化产物;酯化反应结束后,升温至210℃,25分钟内将压力将至20~50Pa,熔融缩聚反应4小时,制得黄色的PPEGF共聚物。
以氘代三氟醋酸为溶剂对所述PPEGF共聚酯进行核磁共振分析,所述PPEGF共聚酯结构中的乙二醇链段与甘醇链段的比例为45∶55,结构中的甘醇链段包括二甘醇与三甘醇。
将所述PPEGF共聚酯溶解于25℃质量比为1∶1的苯酚和四氯乙烷混合溶剂中测定其特性粘度,其特性粘度为0.75dL/g。
实施例23
于反应器中,分别加入2,5-呋喃二甲酸15.6克(0.1mol)、乙二醇18.0克(0.3mol),加入三氟甲烷磺酸钪72毫克(占二元羧酸单体总量的0.15%),氮气氛围下,在180℃条件下酯化210分钟,得到酯化产物;酯化反应结束后,升温至210℃,25分钟内将压力将至20~50Pa,熔融缩聚反应4小时,制得黄色的PPEGF共聚物。
以氘代三氟醋酸为溶剂对所述PPEGF共聚酯进行核磁共振分析,所 述PPEGF共聚酯结构中的乙二醇链段与甘醇链段的比例为42∶58,结构中的甘醇链段包括二甘醇与三甘醇。
将所述PPEGF共聚酯溶解于25℃质量比为1∶1的苯酚和四氯乙烷混合溶剂中测定其特性粘度,其特性粘度为0.57dL/g。
实施例24
于反应器中,分别加入2,5-呋喃二甲酸15.6克(0.1mol)、乙二醇18.0克(0.3mol),加入三氟甲烷磺酸钪72毫克(占二元羧酸单体总量的0.15%),氮气氛围下,在180℃条件下酯化105分钟,得到酯化产物;酯化反应结束后,升温至180℃,25分钟内将压力将至20~50Pa,熔融缩聚反应4小时,制得黄色的PPEGF共聚物。
以氘代三氟醋酸为溶剂对所述PPEGF共聚酯进行核磁共振分析,所述PPEGF共聚酯结构中的乙二醇链段与甘醇链段的比例为42∶58,结构中的甘醇链段包括二甘醇与三甘醇。
将所述PPEGF共聚酯溶解于25℃质量比为1∶1的苯酚和四氯乙烷混合溶剂中测定其特性粘度,其特性粘度为0.45dL/g。
实施例25
于反应器中,分别加入2,5-呋喃二甲酸15.6克(0.1mol)、乙二醇18.0克(0.3mol),加入三氟甲烷磺酸钪72毫克(占二元羧酸单体总量的0.15%),氮气氛围下,在180℃条件下酯化105分钟,得到酯化产物;酯化反应结束后,升温至190℃,25分钟内将压力将至20~50Pa,熔融缩聚反应4小时,制得黄色的PPEGF共聚物。
以氘代三氟醋酸为溶剂对所述PPEGF共聚酯进行核磁共振分析,所述PPEGF共聚酯结构中的乙二醇链段与甘醇链段的比例为44∶56,结构中的甘醇链段包括二甘醇与三甘醇。
将所述PPEGF共聚酯溶解于25℃质量比为1∶1的苯酚和四氯乙烷混合溶剂中测定其特性粘度,其特性粘度为0.50dL/g。
实施例26
于反应器中,分别加入2,5-呋喃二甲酸15.6克(0.1mol)、乙二醇18.0克(0.3mol),加入三氟甲烷磺酸钪72毫克(占二元羧酸单体总量的0.15%),氮气氛围下,在180℃条件下酯化105分钟,得到酯化产物;酯化反应结束后,升温至200℃,25分钟内将压力将至20~50Pa,熔融缩聚反应4小时,制得黄色的PPEGF共聚物。
以氘代三氟醋酸为溶剂对所述PPEGF共聚酯进行核磁共振分析,所述PPEGF共聚酯结构中的乙二醇链段与甘醇链段的比例为47∶53,结构中的甘醇链段包括二甘醇与三甘醇。
将所述PPEGF共聚酯溶解于25℃质量比为1∶1的苯酚和四氯乙烷混合溶剂中测定其特性粘度,其特性粘度为0.85dL/g。
实施例27
于反应器中,分别加入2,5-呋喃二甲酸15.6克(0.1mol)、乙二醇18.0克(0.3mol),加入三氟甲烷磺酸钪72毫克(占二元羧酸单体总量的0.15%),氮气氛围下,在180℃条件下酯化105分钟,得到酯化产物;酯化反应结束后,升温至220℃,25分钟内将压力将至20~50Pa,熔融缩聚反应4小时,制得黄色的PPEGF共聚物。
以氘代三氟醋酸为溶剂对所述PPEGF共聚酯进行核磁共振分析,所述PPEGF共聚酯结构中的乙二醇链段与甘醇链段的比例为56∶44,结构中的甘醇链段包括二甘醇与三甘醇。
将所述PPEGF共聚酯溶解于25℃质量比为1∶1的苯酚和四氯乙烷混合溶剂中测定其特性粘度,其特性粘度为1.08dL/g。
实施例28
于反应器中,分别加入2,5-呋喃二甲酸15.6克(0.1mol)、乙二醇18.0克(0.3mol),加入三氟甲烷磺酸钪72毫克(占二元羧酸单体总量的0.15%),氮气氛围下,在180℃条件下酯化105分钟,得到酯化产物;酯化反应结束后,升温至210℃,25分钟内将压力将至20~50Pa,熔融缩聚反应1小时,制得黄色的PPEGF共聚物。
以氘代三氟醋酸为溶剂对所述PPEGF共聚酯进行核磁共振分析,所述PPEGF共聚酯结构中的乙二醇链段与甘醇链段的比例为46∶54,结构中的甘醇链段包括二甘醇与三甘醇。
将所述PPEGF共聚酯溶解于25℃质量比为1∶1的苯酚和四氯乙烷混合溶剂中测定其特性粘度,其特性粘度为0.65dL/g。
实施例29
于反应器中,分别加入2,5-呋喃二甲酸15.6克(0.1mol)、乙二醇18.0克(0.3mol),加入三氟甲烷磺酸钪72毫克(占二元羧酸单体总量的0.15%),氮气氛围下,在180℃条件下酯化105分钟,得到酯化产物;酯化反应结束后,升温至210℃,25分钟内将压力将至20~50Pa,熔融缩聚反应2小时,制得黄色的PPEGF共聚物。
以氘代三氟醋酸为溶剂对所述PPEGF共聚酯进行核磁共振分析,所述PPEGF共聚酯结构中的乙二醇链段与甘醇链段的比例为46∶54,结构中的甘醇链段包括二甘醇与三甘醇。
将所述PPEGF共聚酯溶解于25℃质量比为1∶1的苯酚和四氯乙烷混合溶剂中测定其特性粘度,其特性粘度为0.70dL/g。
实施例30
于反应器中,分别加入2,5-呋喃二甲酸15.6克(0.1mol)、乙二醇18.0克(0.3mol),加入三氟甲烷磺酸钪72毫克(占二元羧酸单体总量的0.15%),氮气氛围下,在180℃条件下酯化105分钟,得到酯化产物;酯化反应结束后,升温至210℃,25分钟内将压力将至20~50Pa,熔融缩聚反应2.5小时,制得黄色的PPEGF共聚物。
以氘代三氟醋酸为溶剂对所述PPEGF共聚酯进行核磁共振分析,所述PPEGF共聚酯结构中的乙二醇链段与甘醇链段的比例为49∶51,结构中的甘醇链段包括二甘醇与三甘醇。
将所述PPEGF共聚酯溶解于25℃质量比为1∶1的苯酚和四氯乙烷混合溶剂中测定其特性粘度,其特性粘度为0.80dL/g。
实施例31
于反应器中,分别加入2,5-呋喃二甲酸15.6克(0.1mol)、乙二醇18.0克(0.3mol),加入三氟甲烷磺酸钪72毫克(占二元羧酸单体总量的0.15%),氮气氛围下,在180℃条件下酯化105分钟,得到酯化产物;酯化反应结束后,升温至210℃,25分钟内将压力将至20~50Pa,熔融缩聚反应3小时,制得黄色的PPEGF共聚物。
以氘代三氟醋酸为溶剂对所述PPEGF共聚酯进行核磁共振分析,所述PPEGF共聚酯结构中的乙二醇链段与甘醇链段的比例为50∶50,结构中的甘醇链段包括二甘醇与三甘醇。
将所述PPEGF共聚酯溶解于25℃质量比为1∶1的苯酚和四氯乙烷混合溶剂中测定其特性粘度,其特性粘度为0.87dL/g。
实施例32
于反应器中,分别加入2,5-呋喃二甲酸15.6克(0.1mol)、乙二醇18.0克(0.3mol),加入草酸亚锡24毫克(占二元羧酸单体总量的0.15%),氮气氛围下,在210℃条件下酯化105分钟,得到酯化产物;酯化反应结束后,在210℃,25分钟内将压力将至20~50Pa,熔融缩聚反应0.5小时,加入三氟甲磺酸钪72毫克,继续缩聚3.5小时,制得黄色的PPEGF共聚物。
以氘代三氟醋酸为溶剂对所述PPEGF共聚酯进行核磁共振分析,所述PPEGF共聚酯结构中的乙二醇链段与甘醇链段的比例为78∶22,结构中的甘醇链段包括二甘醇与三甘醇。
将所述PPEGF共聚酯溶解于25℃质量比为1∶1的苯酚和四氯乙烷混合溶剂中测定其特性粘度,其特性粘度为0.70dL/g。
实施例33
于反应器中,分别加入2,5-呋喃二甲酸15.6克(0.1mol)、乙二醇18.0克(0.3mol),加入草酸亚锡24毫克(占二元羧酸单体总量的0.15%),氮气氛围下,在210℃条件下酯化105分钟,得到酯化产物;酯化反应结束后,在210℃,25分钟内将压力将至20~50Pa,熔融缩聚反应3小时,加入三氟甲磺酸钪72毫克,继续缩聚1小时,制得黄色的PPEGF共聚物。
以氘代三氟醋酸为溶剂对所述PPEGF共聚酯进行核磁共振分析,所述PPEGF共聚酯结构中的乙二醇链段与甘醇链段的比例为90∶10,结构中的甘醇链段包括二甘醇与三甘醇。
将所述PPEGF共聚酯溶解于25℃质量比为1∶1的苯酚和四氯乙烷混合溶剂中测定其特性粘度,其特性粘度为0.78dL/g。
实施例34
于反应器中,分别加入2,5-呋喃二甲酸15.6克(0.1mol)、乙二醇6.0克(0.1mol),二甘醇10.6克(0.1mol),加入草酸亚锡24毫克(占二元羧酸单体总量的0.15%),氮气氛围下,在210℃条件下酯化105分钟,得到酯化产物;酯化反应结束后,在230℃,25分钟内将压力将至20~50Pa,熔融缩聚反应4小时。制得结构含有二甘醇和乙二醇链段的黄色的PPEGF共聚物。
以氘代三氟醋酸为溶剂对所述PPEGF共聚酯进行核磁共振分析,所述PPEGF共聚酯结构中的乙二醇链段与二甘醇链段的比例为1∶1.4。
将所述PPEGF共聚酯溶解于25℃质量比为1∶1的苯酚和四氯乙烷混合溶剂中测定其特性粘度,其特性粘度为0.63dL/g。
实施例35
于反应器中,分别加入2,5-呋喃二甲酸15.6克(0.1mol)、乙二醇6.0克(0.1mol),三甘醇15克(0.1mol),加入草酸亚锡24毫克(占二元羧酸单体总量的0.15%),氮气氛围下,在210℃条件下酯化105分钟,得到酯化产物;酯化反应结束后,在230℃,25分钟内将压力将至20~50Pa,熔融缩聚反应4小时。制得结构含有三甘醇和乙二醇链段的黄色的PPEGF共聚物。
以氘代三氟醋酸为溶剂对所述PPEGF共聚酯进行核磁共振分析,所述PPEGF共聚酯结构中的乙二醇链段与三甘醇链段的比例为1∶3。
将所述PPEGF共聚酯溶解于25℃质量比为1∶1的苯酚和四氯乙烷混合溶剂中测定其特性粘度,其特性粘度为0.65dL/g。
实施例36
于反应器中,分别加入2,5-呋喃二甲酸15.6克(0.1mol)、二甘醇10.6克(0.1mol),三甘醇15克(0.1mol),加入草酸亚锡24毫克(占二元羧酸 单体总量的0.15%),氮气氛围下,在210℃条件下酯化105分钟,得到酯化产物;酯化反应结束后,在230℃,25分钟内将压力将至20~50Pa,熔融缩聚反应4小时。制得结构含有三甘醇和二甘醇链段的黄色的PPEGF共聚物。
以氘代三氟醋酸为溶剂对所述PPEGF共聚酯进行核磁共振分析,所述PPEGF共聚酯结构中的乙二醇链段与三甘醇链段的比例为1∶2。
将所述PPEGF共聚酯溶解于25℃质量比为1∶1的苯酚和四氯乙烷混合溶剂中测定其特性粘度,其特性粘度为0.60dL/g。
实施例37
于反应器中,分别加入2,5-呋喃二甲酸15.6克(0.1mol)、丙二醇22.8克(0.3mol),加入五氟乙磺酸基钪72毫克(占二元羧酸单体总量的0.15%),氮气氛围下,在180℃条件下酯化60分钟,得到酯化产物;酯化反应结束后,于180℃,25分钟内将压力将至20~50Pa,熔融缩聚反应4小时,制得棕色的聚(2,5-呋喃二甲酸丙二醇酯-共-2,5-呋喃二甲酸丙二甘醇酯-共-2,5-呋喃二甲酸丙三甘醇酯),记为PPTGF共聚物。
以氘代三氟醋酸为溶剂对所述PPTGF共聚酯进行核磁共振分析,所述PPTGF共聚酯结构中的丙二醇链段与丙甘醇链段的比例为58∶42,结构中的甘醇链段包括丙二甘醇与丙三甘醇。
将所述PPTGF共聚酯溶解于25℃质量比为1∶1的苯酚和四氯乙烷混合溶剂中测定其特性粘度,其特性粘度为0.84dL/g。
实施例38
于反应器中,分别加入2,5-呋喃二甲酸15.6克(0.1mol)、丙二醇22.8克(0.3mol),加入五氟乙磺酸基钪72毫克(占二元羧酸单体总量的0.15%),氮气氛围下,在180℃条件下酯化105分钟,得到酯化产物;酯化反应结束后,于180℃,25分钟内将压力将至20~50Pa,熔融缩聚反应4小时,制得棕色的PPTGF共聚物。
以氘代三氟醋酸为溶剂对所述PPTGF共聚酯进行核磁共振分析,所述PPTGF共聚酯结构中的丙二醇链段与丙甘醇链段的比例为1∶1,结构中的甘醇链段包括丙二甘醇与丙三甘醇。
将所述PPTGF共聚酯溶解于25℃质量比为1∶1的苯酚和四氯乙烷混合溶剂中测定其特性粘度,其特性粘度为0.86dL/g。
实施例39
于反应器中,分别加入2,5-呋喃二甲酸15.6克(0.1mol)、丙二醇22.8克(0.3mol),加入五氟乙磺酸基钪72毫克(占二元羧酸单体总量的0.15%),氮气氛围下,在180℃条件下酯化150分钟,得到酯化产物;酯 化反应结束后,于180℃,25分钟内将压力将至20~50Pa,熔融缩聚反应4小时,制得棕色的PPTGF共聚物。
以氘代三氟醋酸为溶剂对所述PPTGF共聚酯进行核磁共振分析,所述PPTGF共聚酯结构中的丙二醇链段与丙甘醇链段的比例为46∶54,结构中的甘醇链段包括丙二甘醇与丙三甘醇。
将所述PPTGF共聚酯溶解于25℃质量比为1∶1的苯酚和四氯乙烷混合溶剂中测定其特性粘度,其特性粘度为0.80dL/g。
实施例40
于反应器中,分别加入2,5-呋喃二甲酸15.6克(0.1mol)、丙二醇22.8克(0.3mol),加入五氟乙磺酸基钪72毫克(占二元羧酸单体总量的0.15%),氮气氛围下,在180℃条件下酯化100分钟,得到酯化产物;酯化反应结束后,于190℃,25分钟内将压力将至20~50Pa,熔融缩聚反应4小时,制得棕色的PPTGF共聚物。
以氘代三氟醋酸为溶剂对所述PPTGF共聚酯进行核磁共振分析,所述PPTGF共聚酯结构中的丙二醇链段与丙甘醇链段的比例为57∶43,结构中的甘醇链段包括丙二甘醇与丙三甘醇。
将所述PPTGF共聚酯溶解于25℃质量比为1∶1的苯酚和四氯乙烷混合溶剂中测定其特性粘度,其特性粘度为0.78dL/g。
实施例41
于反应器中,分别加入2,5-呋喃二甲酸15.6克(0.1mol)、丙二醇22.8克(0.3mol),加入五氟乙磺酸基钪72毫克(占二元羧酸单体总量的0.15%),氮气氛围下,在180℃条件下酯化100分钟,得到酯化产物;酯化反应结束后,于200℃,25分钟内将压力将至20~50Pa,熔融缩聚反应4小时,制得棕色的PPTGF共聚物。
以氘代三氟醋酸为溶剂对所述PPTGF共聚酯进行核磁共振分析,所述PPTGF共聚酯结构中的丙二醇链段与丙甘醇链段的比例为53∶47,结构中的甘醇链段包括丙二甘醇与丙三甘醇。
将所述PPTGF共聚酯溶解于25℃质量比为1∶1的苯酚和四氯乙烷混合溶剂中测定其特性粘度,其特性粘度为0.84dL/g。
实施例42
于反应器中,分别加入2,5-呋喃二甲酸15.6克(0.1mol)、丙二醇22.8克(0.3mol),加入五氟乙磺酸基钪72毫克(占二元羧酸单体总量的0.15%),氮气氛围下,在180℃条件下酯化100分钟,得到酯化产物;酯化反应结束后,于220℃,25分钟内将压力将至20~50Pa,熔融缩聚反应4小时,制得棕色的PPTGF共聚物。
以氘代三氟醋酸为溶剂对所述PPTGF共聚酯进行核磁共振分析,所述PPTGF共聚酯结构中的丙二醇链段与丙甘醇链段的比例为45∶55,结构中的甘醇链段包括丙二甘醇与丙三甘醇。
将所述PPTGF共聚酯溶解于25℃质量比为1∶1的苯酚和四氯乙烷混合溶剂中测定其特性粘度,其特性粘度为0.69dL/g。
实施例43
于反应器中,分别加入2,5-呋喃二甲酸15.6克(0.1mol)、丙二醇22.8克(0.3mol),加入五氟乙磺酸基钪72毫克(占二元羧酸单体总量的0.15%),氮气氛围下,在160℃条件下酯化100分钟,得到酯化产物;酯化反应结束后,于180℃,25分钟内将压力将至20~50Pa,熔融缩聚反应4小时,制得棕色的PPTGF共聚物。
以氘代三氟醋酸为溶剂对所述PPTGF共聚酯进行核磁共振分析,所述PPTGF共聚酯结构中的丙二醇链段与丙甘醇链段的比例为43∶57,结构中的甘醇链段包括丙二甘醇与丙三甘醇。
将所述PPTGF共聚酯溶解于25℃质量比为1∶1的苯酚和四氯乙烷混合溶剂中测定其特性粘度,其特性粘度为0.75dL/g。
实施例44
于反应器中,分别加入2,5-呋喃二甲酸15.6克(0.1mol)、丙二醇22.8克(0.3mol),加入五氟乙磺酸基钪72毫克(占二元羧酸单体总量的0.15%),氮气氛围下,在170℃条件下酯化100分钟,得到酯化产物;酯化反应结束后,于1800℃,25分钟内将压力将至20~50Pa,熔融缩聚反应4小时,制得棕色的PPTGF共聚物。
以氘代三氟醋酸为溶剂对所述PPTGF共聚酯进行核磁共振分析,所述PPTGF共聚酯结构中的丙二醇链段与丙甘醇链段的比例为47∶53,结构中的甘醇链段包括丙二甘醇与丙三甘醇。
将所述PPTGF共聚酯溶解于25℃质量比为1∶1的苯酚和四氯乙烷混合溶剂中测定其特性粘度,其特性粘度为0.91dL/g。
实施例45
于反应器中,分别加入2,5-呋喃二甲酸15.6克(0.1mol)、丙二醇22.8克(0.3mol),加入五氟乙磺酸基钪72毫克(占二元羧酸单体总量的0.15%),氮气氛围下,在200℃条件下酯化100分钟,得到酯化产物;酯化反应结束后,于180℃,25分钟内将压力将至20~50Pa,熔融缩聚反应4小时,制得棕色的PPTGF共聚物。
以氘代三氟醋酸为溶剂对所述PPTGF共聚酯进行核磁共振分析,所述PPTGF共聚酯结构中的丙二醇链段与丙甘醇链段的比例为63∶37,结 构中的甘醇链段包括丙二甘醇与丙三甘醇。
将所述PPTGF共聚酯溶解于25℃质量比为1∶1的苯酚和四氯乙烷混合溶剂中测定其特性粘度,其特性粘度为0.80dL/g。
实施例46
于反应器中,分别加入2,5-呋喃二甲酸15.6克(0.1mol)、丙二醇15.2克(0.2mol),加入五氟乙磺酸基钪72毫克(占二元羧酸单体总量的0.15%),氮气氛围下,在180℃条件下酯化100分钟,得到酯化产物;酯化反应结束后,于180℃,25分钟内将压力将至20~50Pa,熔融缩聚反应4小时,制得棕色的PPTGF共聚物。
以氘代三氟醋酸为溶剂对所述PPTGF共聚酯进行核磁共振分析,所述PPTGF共聚酯结构中的丙二醇链段与丙甘醇链段的比例为40∶60,结构中的甘醇链段包括丙二甘醇与丙三甘醇。
将所述PPTGF共聚酯溶解于25℃质量比为1∶1的苯酚和四氯乙烷混合溶剂中测定其特性粘度,其特性粘度为0.89dL/g。
实施例47
于反应器中,分别加入2,5-呋喃二甲酸15.6克(0.1mol)、丙二醇30.4克(0.4mol),加入五氟乙磺酸基钪72毫克(占二元羧酸单体总量的0.15%),氮气氛围下,在180℃条件下酯化100分钟,得到酯化产物;酯化反应结束后,于180℃,25分钟内将压力将至20~50Pa,熔融缩聚反应4小时,制得棕色的PPTGF共聚物。
以氘代三氟醋酸为溶剂对所述PPTGF共聚酯进行核磁共振分析,所述PPTGF共聚酯结构中的丙二醇链段与丙甘醇链段的比例为57∶43,结构中的甘醇链段包括丙二甘醇与丙三甘醇。
将所述PPTGF共聚酯溶解于25℃质量比为1∶1的苯酚和四氯乙烷混合溶剂中测定其特性粘度,其特性粘度为0.90dL/g。
实施例48
于反应器中,分别加入2,5-呋喃二甲酸15.6克(0.1mol)、丙二醇38.0克(0.5mol),加入五氟乙磺酸基钪72毫克(占二元羧酸单体总量的0.15%),氮气氛围下,在180℃条件下酯化100分钟,得到酯化产物;酯化反应结束后,于180℃,25分钟内将压力将至20~50Pa,熔融缩聚反应4小时,制得淡黄色的PPTGF共聚物。
以氘代三氟醋酸为溶剂对所述PPTGF共聚酯进行核磁共振分析,所述PPTGF共聚酯结构中的丙二醇链段与丙甘醇链段的比例为61∶39,结构中的甘醇链段包括丙二甘醇与丙三甘醇。
将所述PPTGF共聚酯溶解于25℃质量比为1∶1的苯酚和四氯乙烷混 合溶剂中测定其特性粘度,其特性粘度为0.82dL/g。
实施例49
于反应器中,分别加入2,5-呋喃二甲酸15.6克(0.1mol)、丙二醇22.8克(0.3mol),加入草酸亚锡24毫克(占二元羧酸单体总量的0.15%),氮气氛围下,在180℃条件下酯化100分钟,得到酯化产物;酯化反应结束后,在180℃,25分钟内将压力将至20~50Pa,熔融缩聚反应0.5小时,加入三氟甲磺酸钪72毫克,继续缩聚3.5小时,制得黄色的PPTGF共聚物。
以氘代三氟醋酸为溶剂对所述PPTGF共聚酯进行核磁共振分析,所述PPTGF共聚酯结构中的乙二醇链段与甘醇链段的比例为80∶20,结构中的甘醇链段包括丙二甘醇与丙三甘醇。
将所述PPTGF共聚酯溶解于25℃质量比为1∶1的苯酚和四氯乙烷混合溶剂中测定其特性粘度,其特性粘度为0.70dL/g.
实施例50
于反应器中,分别加入2,5-呋喃二甲酸15.6克(0.1mol)、丙二醇22.8克(0.3mol),加入草酸亚锡24毫克(占二元羧酸单体总量的0.15%),氮气氛围下,在180℃条件下酯化100分钟,得到酯化产物;酯化反应结束后,在180℃,25分钟内将压力将至20~50Pa,熔融缩聚反应0.2小时,加入三氟甲磺酸钪72毫克,继续缩聚3.8小时,制得黄色的PPTGF共聚物。
以氘代三氟醋酸为溶剂对所述PPTGF共聚酯进行核磁共振分析,所述PPTGF共聚酯结构中的乙二醇链段与甘醇链段的比例为70∶30,结构中的甘醇链段包括丙二甘醇与丙三甘醇。
将所述PPTGF共聚酯溶解于25℃质量比为1∶1的苯酚和四氯乙烷混合溶剂中测定其特性粘度,其特性粘度为0.79dL/g.
以上对本发明提供的一种具有新型结构的呋喃生物基聚醚酯共聚物及其制备方法进行了详细的介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想,包括最佳方式,并且也使得本领域的任何技术人员都能够实践本发明,包括制造和使用任何装置或系统,和实施任何结合的方法。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。本发明专利保护的范围通过权利要求来限定,并可包括本领域技术人员能够想到的其他实施例。如果这些其他实施 例具有不是不同于权利要求文字表述的结构要素,或者如果它们包括与权利要求的文字表述无实质差异的等同结构要素,那么这些其他实施例也应包含在权利要求的范围内。

Claims (12)

  1. 一种聚醚酯共聚物,其特征在于,具有式(I)或(I’)所示的结构,
    Figure PCTCN2019085664-appb-100001
    其中,n为10~200;m为0~200;
    p选自1、2、3、4和5中的一个或多个,优选地p选自1、2、3和4中的一个或多个。
  2. 根据权利要求1所述的聚醚酯共聚物,其特征在于,所述聚醚酯共聚物中,甘醇链段的摩尔数占所述聚醚酯共聚物的摩尔数的百分比含量为30%~70%,即n/(n+m)为0.3~0.7。
  3. 根据权利要求1所述的聚醚酯共聚物,其特征在于,所述聚醚酯共聚物中,所述聚醚酯共聚物中,甘醇链段的摩尔数占所述聚醚酯共聚物的摩尔数的百分比含量为10%~40%,即n/(n+m)为0.1~0.4。
  4. 根据权利要求1-3中任一项所述的聚醚酯共聚物,其特征在于,所述聚醚酯共聚物的数均分子量为20000~70000。
  5. 一种根据权利要求2所述的聚醚酯共聚物的制备方法,其特征在于,包括以下步骤:
    在保护性气氛和金属配合物催化剂的条件下,将2,5-呋喃二甲酸和二元醇单体经过酯化反应后,再经过预缩聚反应和缩聚反应,得到所需的聚醚酯共聚物。
  6. 一种根据权利要求3所述的聚醚酯共聚物的制备方法,其特征在 于,包括以下步骤:
    在保护性气氛和酯化催化剂的条件下,将2,5-呋喃二甲酸和二元醇单体经过酯化反应后,再在金属配合物催化剂存在下经过预缩聚反应和缩聚反应,得到所需的聚醚酯共聚物。
  7. 根据权利要求5或6所述的制备方法,其特征在于,所述金属配合物的通式为LnX 3,其中所述金属配合物的金属元素Ln是选自稀土元素、锡、铋、锌、铜、碱金属和碱土金属中的一种或多种,所述金属配合物的配体X是选自三氟甲磺酸基、五氟乙磺酸基、七氟异丙烷磺酸基、九氟丁烷磺酸基和三氟甲烷磺酰亚胺基中的一种或多种,优选地选自三氟甲磺酸基、五氟乙磺酸基、七氟异丙烷磺酸基、九氟丁烷磺酸基和三氟甲烷磺酰亚胺基中的一种或多种;
    优选地,所述稀土元素是选自镧、铈、镨、铕、钕、钐、钆、镝、钬、铒、铥、镱、钇和钪中的一种或多种;
    优选地,所述金属配合物催化剂的摩尔数占所述2,5-呋喃二甲酸的摩尔数的比值为0.5‰~4‰。
  8. 根据权利要求6所述的制备方法,其特征在于,所述酯化催化剂是选自氧化亚锡、辛酸亚锡、氯化亚锡、溴化亚锡、碘化亚锡、乙酸亚锡、草酸亚锡、硫酸亚锡和氢氧化亚锡中的一种或多种;
    优选地,所述酯化催化剂的摩尔数占所述2,5-呋喃二甲酸的摩尔数的比值为0.5‰~4‰;
    优选地,所述预缩聚反应过程的压力为所述酯化反应的压力减压至所述缩聚反应的压力。
  9. 根据权利要求5或6所述的制备方法,其特征在于,所述二元醇单体是乙二醇、丙二醇、甘醇或它们的混合物;
    优选地,所述甘醇是选自二甘醇、三甘醇、四甘醇和五甘醇中的一种或多种;
    优选地,所述2,5-呋喃二甲酸与二元醇单体的摩尔比为1∶(2~8)。
  10. 根据权利要求5或6所述的制备方法,其特征在于,所述酯化反应的温度为170~210℃;所述酯化反应的时间为1~4h;所述酯化反应的压力为1~3atm。
  11. 根据权利要求5或6所述的制备方法,其特征在于,所述预缩聚反应为减压反应;所述预缩聚反应的时间为10~60min;所述预缩聚反应的温度为170~210℃。
  12. 根据权利要求5或6所述的制备方法,其特征在于,所述缩聚反应的压力为20~50Pa;所述缩聚反应的温度为180~250℃;所述缩聚反应的时间为2~12h。
PCT/CN2019/085664 2018-05-10 2019-05-06 一种新型呋喃生物基聚醚酯共聚物及其制备方法 WO2019214575A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201810442837.X 2018-05-10
CN201810443257.2A CN108623794B (zh) 2018-05-10 2018-05-10 一种呋喃生物基聚醚酯共聚物的制备方法、新型呋喃生物基聚醚酯共聚物
CN201810442837.XA CN108503809B (zh) 2018-05-10 2018-05-10 一种呋喃生物基聚醚酯共聚物及其制备方法
CN201810443257.2 2018-05-10
CN201810442533.3 2018-05-10
CN201810442533.3A CN108774314B (zh) 2018-05-10 2018-05-10 一种呋喃生物基聚醚酯共聚物的制备方法、新型呋喃生物基聚醚酯共聚物

Publications (1)

Publication Number Publication Date
WO2019214575A1 true WO2019214575A1 (zh) 2019-11-14

Family

ID=68467756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/085664 WO2019214575A1 (zh) 2018-05-10 2019-05-06 一种新型呋喃生物基聚醚酯共聚物及其制备方法

Country Status (1)

Country Link
WO (1) WO2019214575A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114752050A (zh) * 2022-05-31 2022-07-15 云锡鼎承(南京)科技有限公司 一种聚酯树脂合成用复合环保催化剂及其制备方法和应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008308578A (ja) * 2007-06-14 2008-12-25 Canon Inc フラン環を含有するポリアリレート樹脂の製造方法
WO2009104780A1 (en) * 2008-02-20 2009-08-27 Canon Kabushiki Kaisha Polyester resin, method of producing the same, composition for molded article and molded article
CN104379631A (zh) * 2012-01-04 2015-02-25 百事可乐公司 由生物质制备得到的2,5-呋喃二羧酸基聚酯
EP2628761B1 (en) * 2012-02-17 2015-04-15 Sociedad Anónima Minera Catalano-Aragonesa Biodegradable polyesteretheramide
CN105085884A (zh) * 2015-09-02 2015-11-25 浙江大学 低二甘醇链节含量的聚呋喃二甲酸乙二醇酯及其制备方法
CN105566618A (zh) * 2014-10-13 2016-05-11 中国石油化工股份有限公司 一种改性聚丁二酸丁二醇酯及其制备方法
CN105585704A (zh) * 2014-10-23 2016-05-18 中国石油化工股份有限公司 一种生物基聚醚酯弹性体及其制备方法
CN107973904A (zh) * 2017-12-15 2018-05-01 中国科学院长春应用化学研究所 一种多嵌段呋喃基聚醚酯形状记忆材料及其制备方法
CN108503809A (zh) * 2018-05-10 2018-09-07 中国科学院长春应用化学研究所 一种新型呋喃生物基聚醚酯共聚物及其制备方法
CN108623794A (zh) * 2018-05-10 2018-10-09 中国科学院长春应用化学研究所 一种呋喃生物基聚醚酯共聚物的制备方法、新型呋喃生物基聚醚酯共聚物
CN108774314A (zh) * 2018-05-10 2018-11-09 中国科学院长春应用化学研究所 一种呋喃生物基聚醚酯共聚物的制备方法、新型呋喃生物基聚醚酯共聚物

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008308578A (ja) * 2007-06-14 2008-12-25 Canon Inc フラン環を含有するポリアリレート樹脂の製造方法
WO2009104780A1 (en) * 2008-02-20 2009-08-27 Canon Kabushiki Kaisha Polyester resin, method of producing the same, composition for molded article and molded article
CN104379631A (zh) * 2012-01-04 2015-02-25 百事可乐公司 由生物质制备得到的2,5-呋喃二羧酸基聚酯
EP2628761B1 (en) * 2012-02-17 2015-04-15 Sociedad Anónima Minera Catalano-Aragonesa Biodegradable polyesteretheramide
CN105566618A (zh) * 2014-10-13 2016-05-11 中国石油化工股份有限公司 一种改性聚丁二酸丁二醇酯及其制备方法
CN105585704A (zh) * 2014-10-23 2016-05-18 中国石油化工股份有限公司 一种生物基聚醚酯弹性体及其制备方法
CN105085884A (zh) * 2015-09-02 2015-11-25 浙江大学 低二甘醇链节含量的聚呋喃二甲酸乙二醇酯及其制备方法
CN107973904A (zh) * 2017-12-15 2018-05-01 中国科学院长春应用化学研究所 一种多嵌段呋喃基聚醚酯形状记忆材料及其制备方法
CN108503809A (zh) * 2018-05-10 2018-09-07 中国科学院长春应用化学研究所 一种新型呋喃生物基聚醚酯共聚物及其制备方法
CN108623794A (zh) * 2018-05-10 2018-10-09 中国科学院长春应用化学研究所 一种呋喃生物基聚醚酯共聚物的制备方法、新型呋喃生物基聚醚酯共聚物
CN108774314A (zh) * 2018-05-10 2018-11-09 中国科学院长春应用化学研究所 一种呋喃生物基聚醚酯共聚物的制备方法、新型呋喃生物基聚醚酯共聚物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114752050A (zh) * 2022-05-31 2022-07-15 云锡鼎承(南京)科技有限公司 一种聚酯树脂合成用复合环保催化剂及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN106800643B (zh) 一种高耐热性异山梨醇型无规共聚酯的制备方法
CN108503809B (zh) 一种呋喃生物基聚醚酯共聚物及其制备方法
CN108774314B (zh) 一种呋喃生物基聚醚酯共聚物的制备方法、新型呋喃生物基聚醚酯共聚物
CN108264634B (zh) 一种2,5-呋喃二甲酸共聚酯及其制备方法
CN104341585B (zh) 以呋喃二甲酸柔性无规共聚酯为软段的三嵌段共聚物及其制备方法
Wang et al. Biobased copolyesters: Synthesis, structure, thermal and mechanical properties of poly (ethylene 2, 5-furandicarboxylate-co-ethylene 1, 4-cyclohexanedicarboxylate)
CN101314637A (zh) 聚对苯二甲酸1,2-丙二醇酯及其共聚酯和制备方法
CN110183633B (zh) 1,4;3,6-二缩水己六醇改性的呋喃二甲酸基无规共聚物及其制法与应用
CN104311805B (zh) 含环状糖醇结构的可完全生物降解脂肪族共聚酯及制备方法
CN108623794B (zh) 一种呋喃生物基聚醚酯共聚物的制备方法、新型呋喃生物基聚醚酯共聚物
CN112920385B (zh) 一种聚丁二酸丁二醇酯及其共聚物的制备方法
CN111100276A (zh) 一种可生物降解聚酯弹性体及其制备方法
CN102229702A (zh) 可完全生物降解的脂肪族聚酯的生产方法
CN113698585A (zh) 一种可生物降解的乙交酯-(脂环族-co-芳香族)-乙交酯嵌段共聚酯的制备方法
WO2019214575A1 (zh) 一种新型呋喃生物基聚醚酯共聚物及其制备方法
CN113980252B (zh) 一种改性聚丁二酸丁二醇酯的连续生产方法
CN113896874A (zh) 一种生物基共聚酯及其制备方法和应用
CN103881072A (zh) 可生物降解脂肪族—芳香族嵌段混合聚酯的制备方法
CN108409949B (zh) 一种2,5-呋喃二甲酸基共聚酯材料及其制备方法
CN115322350B (zh) 一种可降解生物基聚酯及其制备方法和应用
CN111116883B (zh) 一种生物可降解共聚酯及其制备方法
CN111100275B (zh) 一种全生物降解增粘剂及其制备方法
CN103724599B (zh) 一种聚丁二酸丁二醇酯的合成方法
CN103910858A (zh) 一种生物可降解共聚酯的合成方法
CN114479036A (zh) 一种新型改性聚酯及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19800355

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19800355

Country of ref document: EP

Kind code of ref document: A1