WO2019214075A1 - 一种冷喷涂制备y2o3陶瓷涂层的改进方法 - Google Patents

一种冷喷涂制备y2o3陶瓷涂层的改进方法 Download PDF

Info

Publication number
WO2019214075A1
WO2019214075A1 PCT/CN2018/096364 CN2018096364W WO2019214075A1 WO 2019214075 A1 WO2019214075 A1 WO 2019214075A1 CN 2018096364 W CN2018096364 W CN 2018096364W WO 2019214075 A1 WO2019214075 A1 WO 2019214075A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
ceramic coating
coating
micron
sized
Prior art date
Application number
PCT/CN2018/096364
Other languages
English (en)
French (fr)
Inventor
郑广文
熊天英
沈艳芳
王吉强
杨阳
吴杰
崔新宇
杜昊
李万峰
丛雪
Original Assignee
沈阳富创精密设备有限公司
中国科学院金属研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 沈阳富创精密设备有限公司, 中国科学院金属研究所 filed Critical 沈阳富创精密设备有限公司
Publication of WO2019214075A1 publication Critical patent/WO2019214075A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/12Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles

Definitions

  • the present invention relates to the technical field prepared Y 2 O 3 ceramic coating, in particular an improved method 2 O 3 ceramic coating as a cold spray Y is produced.
  • the chemically active plasma is usually generated by the discharge of Cl 2 or CF 4 gas, which contains not only electrons and ions but also a large amount of active radicals (such as Cl*, C1 2 *, F*, CF*, etc.).
  • active radicals are corrosive and have a strong corrosive effect on the inner surface of the etching chamber, causing contamination to the chamber, affecting the etching effect, and even directly causing the etching chamber to fail.
  • the aluminum substrate layer plus the Al 2 O 3 coating can block the etching damage of the plasma to the etching chamber.
  • the Y 2 O 3 ceramic coating is usually prepared by plasma spraying.
  • the existing invention patents mainly include: CN201110396423.6, CN201110328346.0, CN201110394635.0, CN201110328389.9, CN201110328468.X, CN201110396482.3, CN201110328539. 6, CN201110396196.7, CN201310134038.3, CN201610091244.4 and other Chinese patent application numbers.
  • the Y 2 O 3 ceramic coating prepared by the plasma method contains a small amount of monoclinic phase. The presence of a monoclinic phase reduces the mechanical properties of the Y 2 O 3 coating (mainly composed of cubic phases) because the monoclinic phase changes to a cubic phase at high temperatures, resulting in volume expansion.
  • Plasma spraying is a thermal spraying technique, which requires high-temperature heating of the powder to a molten state to form a coating, which inevitably causes a phase change problem, resulting in a decrease in the performance of the Y 2 O 3 coating.
  • the Y 2 O 3 coating prepared by the plasma spraying method sometimes appears black instead of white (for example, CN201110396482.3, CN201110396196.7 and other Chinese patent application numbers), which affects the appearance of the coating. Even to some extent affect the performance of the coating, such as black powder may cause pollution to the etching chamber.
  • an object of the present invention is to provide an improved method for preparing a Y 2 O 3 ceramic coating by cold spraying, which solves the existence of a cold-sprayed Y 2 O 3 ceramic coating and an aluminum alloy metal substrate.
  • An improved method for preparing a Y 2 O 3 ceramic coating by cold spraying comprising the steps of:
  • the first step preparing a micron-sized Y 2 O 3 ceramic powder agglomerated by the nano powder
  • the Al powder and the micron-sized Y 2 O 3 powder are uniformly mixed, and the volume ratio is 1:1 to 1:4;
  • the mixed powder of the Al powder obtained in the second step and the micron-sized Y 2 O 3 powder is deposited on the surface of the aluminum alloy substrate by cold spraying, and the preheating temperature of the aluminum alloy substrate is 100 to 300 ° C;
  • the cold spraying process conditions are as follows: the accelerating gas and the powder feeding gas used are compressed air, the gas temperature is 100-300 ° C, the gas pressure is 1.5-2.5 MPa, the spraying distance is 10-30 mm, and the Al+Y 2 O 3 metal is obtained. Ceramic coating
  • the micron-sized Y 2 O 3 powder obtained in the first step is sprayed onto the surface of the Al+Y 2 O 3 cermet coating by cold spraying to obtain a Y 2 O 3 ceramic coating, an aluminum alloy matrix and Al+Y 2 .
  • the preheating temperature of the O 3 cermet coating is 150 to 600 ° C;
  • the cold spraying process conditions are as follows: the accelerating gas and the powder feeding gas used are compressed air, the gas temperature is 150-600 ° C, the gas pressure is 1.5-2.5 MPa, the spraying distance is 10-30 mm, and the Y 2 O 3 ceramic coating is obtained. .
  • the coating acts as the bottom layer.
  • the Y 2 O 3 ceramic coating finally obtained an Al+Y 2 O 3 /Y 2 O 3 composite ceramic coating.
  • the improved method for preparing a Y 2 O 3 ceramic coating by cold spraying wherein the Y 2 O 3 ceramic coating has a porosity of less than 2%, an interfacial bonding strength of 20 to 50 MPa, and a coating thickness of 10 to 400 ⁇ m.
  • the improved method for preparing a Y 2 O 3 ceramic coating by cold spraying, the micron-sized Y 2 O 3 ceramic powder agglomerated by the nano powder, the specific preparation process is as follows: Y 2 O 3 nano powder, ammonium sulfate powder and deionization
  • the water is hydrothermally treated according to the mass ratio of 20 to 50:1 to 3:50 to 100, the hydrothermal treatment temperature is 110-170 ° C, the treatment time is 1 to 5 h, the sulfate particle ions are washed and removed, and the nano powder is agglomerated after drying.
  • the micron-sized Y 2 O 3 ceramic powder has a primary particle diameter of 50 to 200 nm and a secondary particle diameter after agglomeration of 20 to 50 ⁇ m.
  • the present invention first obtains micron-sized Y 2 O 3 powder agglomerated by nano powder by means of hydrothermal treatment technology, and then uniformly mixes Al powder with micron-sized Y 2 O 3 powder, and then separately sprays Al+Y 2 O by cold spraying. 3
  • the mixed powder and the Y 2 O 3 powder are deposited on the aluminum alloy substrate, and the Al+Y 2 O 3 /Y 2 O 3 composite ceramic coating having a thickness of 10 to 400 ⁇ m can be prepared using only low-cost compressed air.
  • the method can effectively solve the problem that the thermal expansion coefficient of the cold sprayed Y 2 O 3 ceramic coating and the metal matrix is large and the bonding force is not high, and the deposition efficiency is high, and the thickness of the Y 2 O 3 composite ceramic coating can be adjusted according to actual use conditions.
  • the invention has simple process and is suitable for industrial production.
  • 1(a)-(b) are scanning electron micrographs of Y 2 O 3 ceramic powder obtained under different preparation conditions.
  • 1(a) is a nano-Y 2 O 3 ceramic powder
  • FIG. 1(b) is a micron-sized Y 2 O 3 ceramic powder obtained by hydrothermal treatment; the amount of Y 2 O 3 nano-powder is 20 g, deionized water The amount used was 300 g, and the amount of ammonium sulfate powder was 2 g.
  • the present invention uses a hydrothermally treated micron-sized Y 2 O 3 ceramic powder as a precursor.
  • the specific process is as follows: a first step is to prepare a micron-sized Y 2 O 3 ceramic powder agglomerated by the nano powder; Al powder is mixed with micron-sized Y 2 O 3 powder uniformly, and the volume ratio is 1:1 to 1:4; in the third step, the mixed powder of Al powder and micron-sized Y 2 O 3 powder is sprayed to aluminum by cold spraying.
  • a fourth step the cold spray coating using micron sized powder to Y 2 O 3 Al + 2 O 3 cermet coating surface obtained Y Y 2 O 3 ceramic coating Layer; Finally, a two-layer composite Y 2 O 3 ceramic coating with an underlayer of Al+Y 2 O 3 cermet coating and an upper layer of Y 2 O 3 ceramic coating is obtained.
  • the conditions for cold spraying are: using compressed air as the working gas, the gas temperature is 150-600 ° C, the gas pressure is 1.5-2.5 MPa, and the spraying distance is 10-30 mm.
  • the invention firstly obtains the micron-sized Y 2 O 3 powder agglomerated by the nano powder by means of the hydrothermal treatment technology, and then uniformly mixes the Al powder with the micron-sized Y 2 O 3 powder, and prepares the Al+Y 2 O 3 cermet by cold spraying.
  • the layer (bottom layer), the thickness of the Al+Y 2 O 3 cermet coating is 5 to 200 ⁇ m; then the pure Y 2 O 3 ceramic coating is prepared on the outermost layer, and the thickness of the pure Y 2 O 3 ceramic coating is 5 ⁇ 200 ⁇ m.
  • the micron-sized Y 2 O 3 ceramic powder agglomerated by the nano powder is prepared as follows: the Y 2 O 3 nano powder, the ammonium sulfate powder and the deionized water are in a mass ratio of 20 to 50:1 to 3:50 to 100.
  • the mixture is hydrothermally treated, the hydrothermal treatment temperature is 110-170 ° C, the treatment time is 1 to 5 h, the sulfate ion particles are washed and removed, and the micron-sized Y 2 O 3 ceramic powder agglomerated by the nano powder is obtained after drying, and the primary particle diameter is 50 to 200 nm, the secondary particle diameter after agglomeration is 20 to 50 ⁇ m.
  • an improved method for preparing a Y 2 O 3 ceramic coating by cold spraying includes the following experimental steps:
  • a micron-sized Y 2 O 3 ceramic powder agglomerated by the nano powder (1) preparing a micron-sized Y 2 O 3 ceramic powder agglomerated by the nano powder, mixing Y 2 O 3 nano powder, ammonium sulfate powder and deionized water at a mass ratio of 50:3:100, and performing water at 150 ° C After heat treatment for 2h, the sulfate particles are washed and removed, and the micron-sized Y 2 O 3 ceramic powder agglomerated by the nano powder is obtained after drying; the Y 2 O 3 ceramic powder is a micron-sized powder agglomerated by the nano powder, and the primary particle diameter is 100 ⁇ 150nm, the secondary particle size after agglomeration is 30 ⁇ 40 ⁇ m;
  • the cold spraying process conditions were as follows: compressed air was used as the accelerating gas and the powder feeding gas, the gas temperature was 220 ° C, the gas pressure was 2.0 MPa, the spraying distance was 15 mm, and the thickness of the Al + Y 2 O 3 cermet coating was 200 ⁇ m.
  • the cold spraying process conditions are as follows: the accelerating gas and the powder feeding gas used are compressed air, the gas temperature is 600 ° C, the gas pressure is 2.5 MPa, the spraying distance is 20 mm, and the thickness of the pure Y 2 O 3 ceramic coating is 100 ⁇ m.
  • the Y 2 O 3 ceramic coating has a porosity of 0.5%, an interfacial bonding strength of 45 MPa, and a coating thickness of 300 ⁇ m.
  • an improved method for preparing a Y 2 O 3 ceramic coating by cold spraying includes the following experimental steps:
  • a micron-sized Y 2 O 3 ceramic powder agglomerated by the nano powder (1) preparing a micron-sized Y 2 O 3 ceramic powder agglomerated by the nano powder, mixing Y 2 O 3 nano powder, ammonium sulfate powder and deionized water at a mass ratio of 30:1:90, and performing water at 120 ° C After heat treatment for 3h, the sulfate particles are washed and removed, and the micron-sized Y 2 O 3 ceramic powder agglomerated by the nano powder is obtained after drying; the Y 2 O 3 ceramic powder is a micron-sized powder agglomerated by the nano powder, and the primary particle diameter is 50 ⁇ 80nm, the secondary particle size after agglomeration is 20 ⁇ 30 ⁇ m;
  • the cold spray process conditions were as follows: compressed air was used as the accelerating gas and the powder feeding gas, the gas temperature was 200 ° C, the gas pressure was 2.0 MPa, the spraying distance was 20 mm, and the thickness of the Al + Y 2 O 3 cermet coating was 160 ⁇ m.
  • the cold spraying process conditions are as follows: the accelerating gas and the powder feeding gas used are compressed air, the gas temperature is 550 ° C, the gas pressure is 2.2 MPa, the spraying distance is 20 mm, and the thickness of the pure Y 2 O 3 ceramic coating is 120 ⁇ m.
  • the Y 2 O 3 ceramic coating has a porosity of 0.8%, an interfacial bonding strength of 40 MPa, and a coating thickness of 280 ⁇ m.
  • an improved method for preparing a Y 2 O 3 ceramic coating by cold spraying includes the following experimental steps:
  • micron-sized Y 2 O 3 ceramic powder agglomerated by nano powder (1) preparing micron-sized Y 2 O 3 ceramic powder agglomerated by nano powder, mixing Y 2 O 3 nano powder, ammonium sulfate powder and deionized water in a mass ratio of 40:2:80, and performing water at 160 ° C After heat treatment for 4h, the sulfate particles are washed and removed, and the micron-sized Y 2 O 3 ceramic powder agglomerated by the nano powder is obtained after drying; the Y 2 O 3 ceramic powder is a micron-sized powder agglomerated by the nano powder, and the primary particle diameter is 160 ⁇ 200nm, the secondary particle size after agglomeration is 40 ⁇ 50 ⁇ m;
  • the cold spraying process conditions are: using compressed air as the accelerating gas and the powder feeding gas, the gas temperature is 180 ° C, the gas pressure is 1.8 MPa, the spraying distance is 15 mm, and the thickness of the Al + Y 2 O 3 cermet coating is 100 ⁇ m.
  • the cold spraying process conditions are as follows: the accelerating gas and the powder feeding gas used are compressed air, the gas temperature is 600 ° C, the gas pressure is 2.3 MPa, the spraying distance is 25 mm, and the thickness of the pure Y 2 O 3 ceramic coating is 150 ⁇ m.
  • the Y 2 O 3 ceramic coating has a porosity of 1.0%, an interfacial bonding strength of 38 MPa, and a coating thickness of 250 ⁇ m.
  • the nano Y 2 O 3 ceramic powder is agglomerated into micron ceramic powder after pretreatment, but retains the characteristics of the nano powder, and the particle size is about 10 ⁇ m.
  • the thickness of the coating is about: (a) 300 ⁇ m, (b) 280 ⁇ m. , (c) 250 ⁇ m.
  • the results of the examples show that the present invention can prepare a composite Y 2 O 3 ceramic coating having a thickness of 10 to 400 ⁇ m on the aluminum alloy substrate by using only low-cost compressed air as a carrier gas, and solve the cold sprayed Y 2 O 3 ceramic coating.
  • the problem that the layer has a large difference in thermal expansion coefficient from the aluminum alloy metal substrate improves the bonding force of the coating.
  • the method is simple, high deposition efficiency, the actual working conditions may be selected thickness Y 2 O 3 based ceramic coating, it can be used to prepare a thick coating of Y 2 O 3 ceramic.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

一种冷喷涂制备Y2O3陶瓷涂层的改进方法,步骤如下:第一步,制备由纳米粉团聚的微米级Y2O3陶瓷粉末;第二步,将Al粉与微米级Y2O3粉混合均匀,体积比为1:1~1:4;第三步,使用冷喷涂将Al粉与微米级Y2O3粉的混合粉末喷涂到铝合金基体表面得到Al+ Y2O3金属陶瓷涂层;第四步,使用冷喷涂将微米级Y2O3粉喷涂到Al+ Y2O3金属陶瓷涂层表面得到Y2O3陶瓷涂层;最终,得到底层为Al+ Y2O3金属陶瓷涂层、上层为Y2O3陶瓷涂层的双层复合Y2O3陶瓷涂层。使用压缩空气为载气就能在铝合金基体上制备出厚度为10~400μm的复合Y2O3陶瓷涂层,解决冷喷涂Y2O3陶瓷涂层存在的与铝合金金属基体之间热膨胀系数差别大的问题,提高涂层的结合力。

Description

一种冷喷涂制备Y 2O 3陶瓷涂层的改进方法 技术领域
本发明涉及Y 2O 3陶瓷涂层的制备技术领域,具体为一种冷喷涂制备Y 2O 3陶瓷涂层的改进方法。
背景技术
在等离子体刻蚀工艺中,具有化学活性的等离子体通常是由Cl 2或CF 4气体放电产生的,它不仅含有电子和离子,还含有大量的活性自由基(如Cl*,C1 2*,F*,CF*等)。这些活性自由基具有腐蚀性,会对刻蚀腔内表面产生强腐蚀作用,给腔室带来污染,影响刻蚀效果,甚至直接导致刻蚀腔失效。20世纪90年代的等离子刻蚀设备,由于功率较小和使用单一等离子体发生源,铝基体层加上Al 2O 3涂层就可以阻挡等离子体对刻蚀腔的蚀刻损伤。随着等离子功率越来越大,等离子体对刻蚀腔内壁损伤也越来越大,所以需要寻找新途径对刻蚀腔内表面进行改性,满足刻蚀工艺的需要。目前,高纯Al 2O 3和Y 2O 3作为抗等离子侵蚀材料已得到广泛应用。研究表明,高纯Y 2O 3涂层较高纯Al 2O 3涂层及Al 2O 3烧结块体表现出更为优异的抗等离子侵蚀性能,而Y 2O 3涂层的性能略低于Y 2O 3烧结块材。随着等离子体刻蚀能量在工况下不断提高,Y 2O 3涂层将会得到更广泛的应用。
Y 2O 3陶瓷涂层通常是用等离子喷涂法制备的,目前已有发明专利主要包括:CN201110396423.6,CN201110328346.0,CN201110394635.0,CN201110328389.9,CN201110328468.X,CN201110396482.3,CN201110328539.6,CN201110396196.7,CN201310134038.3,CN201610091244.4等中国专利申请号。等离子体法制备的Y 2O 3陶瓷涂层含有少量的单斜相。单斜相的存在会降低Y 2O 3涂层(主要由立方相组成)的机械性能,其原因是高温时单斜相会转变为立方相,产生体积膨胀。而等离子喷涂属于热喷涂技术,需要高温加热粉末至熔融状态沉积形成涂层,这样就不可避免出现相变的问题,导致Y 2O 3涂层性能降低。与此同时,有报道称等离子喷涂法制备的Y 2O 3涂层有时会出现黑色而不是白色(如:CN201110396482.3、CN201110396196.7等中国专利申请号),这就影响的涂层的外观,甚至在一定程度上影响涂层的使用性能,比如黑色粉末可能对刻蚀腔产生污染。
考虑到等离子喷涂法在制备Y 2O 3陶瓷涂层时存在的问题,科技工作者已开始研究冷喷涂技术沉积Y 2O 3陶瓷涂层的工艺,已申请中国发明专利(如:CN 201310134038.3和CN201510676326.0等专利申请号)。在后续工作中,他们改进冷喷涂Y 2O 3涂层的制备工艺,引入Al+Y 2O 3金属陶瓷中间层缓解Y 2O 3陶瓷涂层与金属基体之间热膨胀系数的较大差异,从而增加后续纯Y 2O 3陶瓷涂层的结合能力,有助于获得厚涂层。
发明内容
针对现有技术中存在的上述不足,本发明的目的是提供一种冷喷涂制备Y 2O 3陶瓷涂层的改进方法,解决冷喷涂Y 2O 3陶瓷涂层存在的与铝合金金属基体之间热膨胀系数高的问题,提高涂层的结合力,开辟一种制备Y 2O 3陶瓷涂层的新方法。
本发明技术方案如下:
一种冷喷涂制备Y 2O 3陶瓷涂层的改进方法,包括下述步骤:
第一步,制备由纳米粉团聚的微米级Y 2O 3陶瓷粉末;
第二步,将Al粉与微米级Y 2O 3粉混合均匀,体积比为1:1~1:4;
第三步,使用冷喷涂将第二步得到的Al粉与微米级Y 2O 3粉的混合粉末沉积到铝合金基体表面,铝合金基体的预热温度为100~300℃;
冷喷涂工艺条件为:使用的加速气体和送粉气体均为压缩空气,气体温度为100~300℃,气体压力为1.5~2.5MPa,喷涂距离为10~30mm,得到Al+Y 2O 3金属陶瓷涂层;
第四步,使用冷喷涂将第一步得到的微米级Y 2O 3粉喷涂到Al+Y 2O 3金属陶瓷涂层表面得到Y 2O 3陶瓷涂层,铝合金基体以及Al+Y 2O 3金属陶瓷涂层的预热温度为150~600℃;
冷喷涂工艺条件为:使用的加速气体和送粉气体均为压缩空气,气体温度为150~600℃,气体压力为1.5~2.5MPa,喷涂距离为10~30mm,得到Y 2O 3陶瓷涂层。
所述的冷喷涂制备Y 2O 3陶瓷涂层的改进方法,采用冷喷涂将Al粉与微米级Y 2O 3粉的混合粉末喷涂到铝合金基体上,得到Al+Y 2O 3金属陶瓷涂层作为底层。
所述的冷喷涂制备Y 2O 3陶瓷涂层的改进方法,采用冷喷涂将微米级Y 2O 3粉喷涂到已制得的Al+Y 2O 3金属陶瓷涂层上,制备出纯的Y 2O 3陶瓷涂层,最终得到Al+Y 2O 3/Y 2O 3复合陶瓷涂层。
所述的冷喷涂制备Y 2O 3陶瓷涂层的改进方法,Y 2O 3陶瓷涂层孔隙率低于2%,界面结合强度为20~50MPa,涂层厚度为10~400μm。
所述的冷喷涂制备Y 2O 3陶瓷涂层的改进方法,由纳米粉团聚的微米级Y 2O 3陶瓷粉末,具体制备过程如下:将Y 2O 3纳米粉末、硫酸铵粉末与去离子水按质量比20~50:1~3:50~100混料进行水热处理,水热处理温度为110~170℃,处理时间为1~5h,清洗去除硫酸根粒离子,干燥后得到由纳米粉团聚的微米级Y 2O 3陶瓷粉末,其一次粒径为50~200nm,团聚后的二次粒径为20~50μm。
本发明的优点及有益效果是:
1、本发明先借助水热处理技术得到经纳米粉团聚的微米级Y 2O 3粉体,再将Al粉与微米级Y 2O 3粉混合均匀,然后采用冷喷涂分别将Al+Y 2O 3混合粉和Y 2O 3粉末沉积到铝合金基体上,仅使用低成本的压缩空气就能制备厚度为10~400μm的Al+Y 2O 3/Y 2O 3复合陶瓷涂层。该方法能有效解决冷喷涂Y 2O 3陶瓷涂层与金属基体热膨胀系数差异大、结合力不高的问题,沉积效率高,可根据实际使用情况调节Y 2O 3复合陶瓷涂层的厚度。
2、本发明工艺简单,适合工业化生产。
附图说明
图1(a)-(b)为不同制备工艺条件下获得的Y 2O 3陶瓷粉末的扫描电镜照片。其中,图1(a)为纳米Y 2O 3陶瓷粉,图1(b)为水热处理获得的微米级Y 2O 3陶瓷粉;Y 2O 3纳米粉的用量为20g, 去离子水的用量为300g,硫酸铵粉末的用量为2g。
图2(a)-(c)为不同制备工艺条件下获得的Al+Y 2O 3/Y 2O 3陶瓷涂层的截面扫描电镜图片。其中,图2(a)Al:Y 2O 3=1:1,图2(b)Al:Y 2O 3=1:2,图2(c)Al:Y 2O 3=1:3;冷喷涂工艺参数为:①制备Al+Y 2O 3金属陶瓷涂层时:温度200℃,载气压力2.0MPa,喷涂距离20mm,载气为压缩空气;②制备Y 2O 3陶瓷涂层时:载气温度600℃,载气压力2.2MPa,喷涂距离20mm,载气为压缩空气。
具体实施方式
在具体实施过程中,本发明使用水热处理的微米级Y 2O 3陶瓷粉末作为前躯体,具体工艺为:第一步,制备由纳米粉团聚的微米级Y 2O 3陶瓷粉末;第二步,将Al粉与微米级Y 2O 3粉混合均匀,体积比为1:1~1:4;第三步,使用冷喷涂将Al粉与微米级Y 2O 3粉的混合粉末喷涂到铝合金基体表面得到Al+Y 2O 3金属陶瓷涂层;第四步,使用冷喷涂将微米级Y 2O 3粉喷涂到Al+Y 2O 3金属陶瓷涂层表面得到Y 2O 3陶瓷涂层;最终,得到底层为Al+Y 2O 3金属陶瓷涂层、上层为Y 2O 3陶瓷涂层的双层复合Y 2O 3陶瓷涂层。冷喷涂的条件为:使用压缩空气为工作气体,气体温度为150~600℃,气体压力为1.5~2.5MPa,喷涂距离为10~30mm。本发明先借助水热处理技术得到由纳米粉团聚的微米级Y 2O 3粉体,然后将Al粉与微米级Y 2O 3粉混合均匀,使用冷喷涂制备Al+Y 2O 3金属陶瓷中间层(底层),Al+Y 2O 3金属陶瓷涂层的厚度为5~200μm;之后在最外层制备纯Y 2O 3陶瓷涂层,纯Y 2O 3陶瓷涂层的厚度为5~200μm。
其中,由纳米粉团聚的微米级Y 2O 3陶瓷粉末,具体制备过程如下:将Y 2O 3纳米粉末、硫酸铵粉末与去离子水按质量比20~50:1~3:50~100混料进行水热处理,水热处理温度为110~170℃,处理时间为1~5h,清洗去除硫酸根粒离子,干燥后得到由纳米粉团聚的微米级Y 2O 3陶瓷粉末,其一次粒径为50~200nm,团聚后的二次粒径为20~50μm。
下面结合附图及实施例详述本发明,以发明技术方案为前提进行实施,给出详细的实施方式和具体操作过程,但本发明的保护范围不仅限于下面的实施例。
实施例1
本实施例中,冷喷涂制备Y 2O 3陶瓷涂层的改进方法,包括下述实验步骤:
(1)制备由纳米粉团聚的微米级Y 2O 3陶瓷粉末,将Y 2O 3纳米粉末、硫酸铵粉末与去离子水按照质量比50:3:100混料,在150℃下进行水热处理2h,清洗去除硫酸根粒离子,干燥后得到由纳米粉团聚的微米级Y 2O 3陶瓷粉末;Y 2O 3陶瓷粉末是由纳米粉团聚成的微米级粉末,其一次粒径为100~150nm,团聚后的二次粒径为30~40μm;
(2)将Al粉与上述微米级Y 2O 3粉混合均匀,体积比为1:1;
(3)使用冷喷涂将(2)中得到的Al+Y 2O 3混合粉末沉积到6061铝合金基体表面得到Al+Y 2O 3金属陶瓷涂层;
冷喷涂工艺条件为:使用压缩空气为加速气体和送粉气体,气体温度为220℃,气体压 力为2.0MPa,喷涂距离为15mm,Al+Y 2O 3金属陶瓷涂层的厚度为200μm。
(4)使用冷喷涂在(3)中得到的Al+Y 2O 3金属陶瓷涂层上直接沉积Y 2O 3陶瓷涂层,得到Y 2O 3陶瓷涂层;
冷喷涂工艺条件为:使用的加速气体和送粉气体均为压缩空气,气体温度为600℃,气体压力为2.5MPa,喷涂距离为20mm,纯Y 2O 3陶瓷涂层的厚度为100μm。
本实施例中,Y 2O 3陶瓷涂层孔隙率0.5%,界面结合强度为45MPa,涂层厚度为300μm。
实施例2
本实施例中,冷喷涂制备Y 2O 3陶瓷涂层的改进方法,包括下述实验步骤:
(1)制备由纳米粉团聚的微米级Y 2O 3陶瓷粉末,将Y 2O 3纳米粉末、硫酸铵粉末与去离子水按照质量比30:1:90混料,在120℃下进行水热处理3h,清洗去除硫酸根粒离子,干燥后得到由纳米粉团聚的微米级Y 2O 3陶瓷粉末;Y 2O 3陶瓷粉末是由纳米粉团聚成的微米级粉末,其一次粒径为50~80nm,团聚后的二次粒径为20~30μm;
(2)将Al粉与上述微米级Y 2O 3粉混合均匀,体积比为1:2;
(3)使用冷喷涂将(2)中得到的Al+Y 2O 3混合粉末沉积到6061铝合金基体表面得到Al+Y 2O 3金属陶瓷涂层;
冷喷涂工艺条件为:使用压缩空气为加速气体和送粉气体,气体温度为200℃,气体压力为2.0MPa,喷涂距离为20mm,Al+Y 2O 3金属陶瓷涂层的厚度为160μm。
(4)使用冷喷涂在(3)中得到的Al+Y 2O 3金属陶瓷涂层上直接沉积Y 2O 3陶瓷涂层,得到Y 2O 3陶瓷涂层;
冷喷涂工艺条件为:使用的加速气体和送粉气体均为压缩空气,气体温度为550℃,气体压力为2.2MPa,喷涂距离为20mm,纯Y 2O 3陶瓷涂层的厚度为120μm。
本实施例中,Y 2O 3陶瓷涂层孔隙率0.8%,界面结合强度为40MPa,涂层厚度为280μm。
实施例3
本实施例中,冷喷涂制备Y 2O 3陶瓷涂层的改进方法,包括下述实验步骤:
(1)制备由纳米粉团聚的微米级Y 2O 3陶瓷粉末,将Y 2O 3纳米粉末、硫酸铵粉末与去离子水按照质量比40:2:80混料,在160℃下进行水热处理4h,清洗去除硫酸根粒离子,干燥后得到由纳米粉团聚的微米级Y 2O 3陶瓷粉末;Y 2O 3陶瓷粉末是由纳米粉团聚成的微米级粉末,其一次粒径为160~200nm,团聚后的二次粒径为40~50μm;
(2)将Al粉与上述微米级Y 2O 3粉混合均匀,体积比为1:2;
(3)使用冷喷涂将(2)中得到的Al+Y 2O 3混合粉末沉积到6061铝合金基体表面得到Al+Y 2O 3金属陶瓷涂层;
冷喷涂工艺条件为:使用压缩空气为加速气体和送粉气体,气体温度为180℃,气体压力为1.8MPa,喷涂距离为15mm,Al+Y 2O 3金属陶瓷涂层的厚度为100μm。
(4)使用冷喷涂在(3)中得到的Al+Y 2O 3金属陶瓷涂层上直接沉积Y 2O 3陶瓷涂层,得到 Y 2O 3陶瓷涂层;
冷喷涂工艺条件为:使用的加速气体和送粉气体均为压缩空气,气体温度为600℃,气体压力为2.3MPa,喷涂距离为25mm,纯Y 2O 3陶瓷涂层的厚度为150μm。
本实施例中,Y 2O 3陶瓷涂层孔隙率1.0%,界面结合强度为38MPa,涂层厚度为250μm。
从图1(a)-(b)可以看到,纳米Y 2O 3陶瓷粉末经前处理后团聚为微米陶瓷粉末,但仍保留纳米粉体的特性,颗粒尺寸在10μm左右。
从图2(a)-(c)可以看到,相同的基体和喷涂条件下、使用不同的喷涂工艺得到不同厚度的涂层,涂层的厚度约为:(a)300μm,(b)280μm,(c)250μm。
实施例结果表明,本发明仅使用低成本的压缩空气为载气就能在铝合金基体上制备出厚度为10~400μm的复合Y 2O 3陶瓷涂层,解决冷喷涂Y 2O 3陶瓷涂层存在的与铝合金金属基体之间热膨胀系数差别大的问题,提高涂层的结合力。本发明方法简单、沉积效率高,可根据实际工况选取Y 2O 3陶瓷涂层的厚度,可以用来制备厚的Y 2O 3陶瓷涂层。

Claims (5)

  1. 一种冷喷涂制备Y 2O 3陶瓷涂层的改进方法,其特征在于,包括下述步骤:
    第一步,制备由纳米粉团聚的微米级Y 2O 3陶瓷粉末;
    第二步,将Al粉与微米级Y 2O 3粉混合均匀,体积比为1:1~1:4;
    第三步,使用冷喷涂将第二步得到的Al粉与微米级Y 2O 3粉的混合粉末沉积到铝合金基体表面,铝合金基体的预热温度为100~300℃;
    冷喷涂工艺条件为:使用的加速气体和送粉气体均为压缩空气,气体温度为100~300℃,气体压力为1.5~2.5MPa,喷涂距离为10~30mm,得到Al+Y 2O 3金属陶瓷涂层;
    第四步,使用冷喷涂将第一步得到的微米级Y 2O 3粉喷涂到Al+Y 2O 3金属陶瓷涂层表面得到Y 2O 3陶瓷涂层,铝合金基体以及Al+Y 2O 3金属陶瓷涂层的预热温度为150~600℃;
    冷喷涂工艺条件为:使用的加速气体和送粉气体均为压缩空气,气体温度为150~600℃,气体压力为1.5~2.5MPa,喷涂距离为10~30mm,得到Y 2O 3陶瓷涂层。
  2. 根据权利要求1所述的冷喷涂制备Y 2O 3陶瓷涂层的改进方法,其特征在于:采用冷喷涂将Al粉与微米级Y 2O 3粉的混合粉末喷涂到铝合金基体上,得到Al+Y 2O 3金属陶瓷涂层作为底层。
  3. 根据权利要求1所述的冷喷涂制备Y 2O 3陶瓷涂层的改进方法,其特征在于:采用冷喷涂将微米级Y 2O 3粉喷涂到已制得的Al+Y 2O 3金属陶瓷涂层上,制备出纯的Y 2O 3陶瓷涂层,最终得到Al+Y 2O 3/Y 2O 3复合陶瓷涂层。
  4. 根据权利要求1所述的冷喷涂制备Y 2O 3陶瓷涂层的改进方法,其特征在于:Y 2O 3陶瓷涂层孔隙率低于2%,界面结合强度为20~50MPa,涂层厚度为10~400μm。
  5. 根据权利要求1所述的冷喷涂制备Y 2O 3陶瓷涂层的改进方法,其特征在于:由纳米粉团聚的微米级Y 2O 3陶瓷粉末,具体制备过程如下:将Y 2O 3纳米粉末、硫酸铵粉末与去离子水按质量比20~50:1~3:50~100混料进行水热处理,水热处理温度为110~170℃,处理时间为1~5h,清洗去除硫酸根粒离子,干燥后得到由纳米粉团聚的微米级Y 2O 3陶瓷粉末,其一次粒径为50~200nm,团聚后的二次粒径为20~50μm。
PCT/CN2018/096364 2018-05-11 2018-07-20 一种冷喷涂制备y2o3陶瓷涂层的改进方法 WO2019214075A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810448662.3A CN110468402A (zh) 2018-05-11 2018-05-11 一种冷喷涂制备y2o3陶瓷涂层的改进方法
CN201810448662.3 2018-05-11

Publications (1)

Publication Number Publication Date
WO2019214075A1 true WO2019214075A1 (zh) 2019-11-14

Family

ID=68467730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/096364 WO2019214075A1 (zh) 2018-05-11 2018-07-20 一种冷喷涂制备y2o3陶瓷涂层的改进方法

Country Status (2)

Country Link
CN (1) CN110468402A (zh)
WO (1) WO2019214075A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112680728A (zh) * 2020-12-09 2021-04-20 东莞仁海科技股份有限公司 一种金属表面陶瓷化工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110039024A1 (en) * 2005-09-23 2011-02-17 Rene Jabado Cold Gas Spraying Method
CN102272344A (zh) * 2008-11-04 2011-12-07 普莱克斯技术有限公司 用于半导体应用的热喷涂层
CN103215535A (zh) * 2013-04-16 2013-07-24 中国科学院金属研究所 一种等离子刻蚀腔体表面防护涂层的制备方法
US20140295670A1 (en) * 2013-03-27 2014-10-02 Lam Research Corporation Dense oxide coated component of a plasma processing chamber and method of manufacture thereof
CN106591820A (zh) * 2015-10-15 2017-04-26 沈阳富创精密设备有限公司 一种ic装备关键零部件用高纯氧化钇涂层的制备方法
CN106995919A (zh) * 2016-01-22 2017-08-01 中国科学院金属研究所 一种冷喷涂制备光催化二氧化钛陶瓷涂层的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103074566A (zh) * 2011-10-26 2013-05-01 中国科学院微电子研究所 一种超音速等离子体喷涂技术制备y2o3涂层的方法
CN102352509B (zh) * 2011-11-17 2013-06-26 铜陵学院 一种激光多层熔覆制备纳米厚陶瓷涂层的方法
CN103132003B (zh) * 2011-12-02 2015-07-29 中国科学院微电子研究所 一种半导体设备中黑色y2o3陶瓷涂层制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110039024A1 (en) * 2005-09-23 2011-02-17 Rene Jabado Cold Gas Spraying Method
CN102272344A (zh) * 2008-11-04 2011-12-07 普莱克斯技术有限公司 用于半导体应用的热喷涂层
US20140295670A1 (en) * 2013-03-27 2014-10-02 Lam Research Corporation Dense oxide coated component of a plasma processing chamber and method of manufacture thereof
CN103215535A (zh) * 2013-04-16 2013-07-24 中国科学院金属研究所 一种等离子刻蚀腔体表面防护涂层的制备方法
CN106591820A (zh) * 2015-10-15 2017-04-26 沈阳富创精密设备有限公司 一种ic装备关键零部件用高纯氧化钇涂层的制备方法
CN106995919A (zh) * 2016-01-22 2017-08-01 中国科学院金属研究所 一种冷喷涂制备光催化二氧化钛陶瓷涂层的方法

Also Published As

Publication number Publication date
CN110468402A (zh) 2019-11-19

Similar Documents

Publication Publication Date Title
WO2021022791A1 (zh) 基于等离子喷涂和冷喷涂技术的ic装备关键零部件表面防护涂层的制备方法
CN106591820B (zh) 一种ic装备关键零部件用高纯氧化钇涂层的制备方法
CN106048502B (zh) 纳米yag涂层、其制备方法及应用
CN105990081A (zh) 等离子体处理装置及其制作方法
CN105198501B (zh) 一种碳/碳复合材料表面金属钨梯度涂层的制备方法
CN109825827A (zh) 一种ic装备等离子体刻蚀腔防护涂层的制备方法
CN104357840A (zh) 一种金属结构材料表面纯铝或铝合金涂层的制备方法
CN107630184B (zh) 一种在铌或铌合金表面制备硅化铌涂层的方法
WO2019214075A1 (zh) 一种冷喷涂制备y2o3陶瓷涂层的改进方法
CN104451518B (zh) 一种低导热抗烧结热障涂层及其制备方法
CN102500912A (zh) 利用超声纳米焊接方法对金属进行表面改性的方法
CN109161839A (zh) 一种刻蚀机台铝阳极氧化部件再生制备工艺
CN112063956A (zh) 一种悬浮液等离子喷涂高纯y2o3耐侵蚀涂层及其制备方法与应用
CN109957748A (zh) 一种ic装备关键零部件表面防护涂层的制备方法
CN114752881B (zh) 一种抗cmas腐蚀热障涂层的制备方法以及由此得到的热障涂层
CN110318050A (zh) 一种铝基/阳极氧化膜复合涂层及其制备方法和应用
CN106995919A (zh) 一种冷喷涂制备光催化二氧化钛陶瓷涂层的方法
CN110158032A (zh) 一种耐腐蚀涂层及其制备方法
WO2015083485A1 (ja) ドライエッチング用チャンバー内部材の製造方法
CN103132002B (zh) 一种黑色y2o3陶瓷涂层的制备方法
CN105624602A (zh) 一种应用于铝基基材的Y3Al5O12涂层的制备方法
WO2011135786A1 (ja) 金属基材の絶縁被膜方法、絶縁被膜金属基材、および、これを用いた半導体製造装置
CN108754399B (zh) 一种耐高温氟化熔盐腐蚀的二硼化钛涂层及其制备方法
TWI791410B (zh) 抗電漿塗布膜、其製造方法及由其製造的抗電漿構件
CN113584417B (zh) 一种稀土金属盐类陶瓷复合涂层及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18918053

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18918053

Country of ref document: EP

Kind code of ref document: A1