WO2021022791A1 - 基于等离子喷涂和冷喷涂技术的ic装备关键零部件表面防护涂层的制备方法 - Google Patents

基于等离子喷涂和冷喷涂技术的ic装备关键零部件表面防护涂层的制备方法 Download PDF

Info

Publication number
WO2021022791A1
WO2021022791A1 PCT/CN2020/071775 CN2020071775W WO2021022791A1 WO 2021022791 A1 WO2021022791 A1 WO 2021022791A1 CN 2020071775 W CN2020071775 W CN 2020071775W WO 2021022791 A1 WO2021022791 A1 WO 2021022791A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
powder
spraying
metal
plasma
Prior art date
Application number
PCT/CN2020/071775
Other languages
English (en)
French (fr)
Inventor
郑广文
熊天英
沈艳芳
崔新宇
王吉强
唐俊榕
李宁
祁建中
陶永山
Original Assignee
沈阳富创精密设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 沈阳富创精密设备有限公司 filed Critical 沈阳富创精密设备有限公司
Priority to JP2022502908A priority Critical patent/JP7288548B2/ja
Priority to KR1020227003112A priority patent/KR102656880B1/ko
Priority to US17/631,810 priority patent/US11834748B2/en
Publication of WO2021022791A1 publication Critical patent/WO2021022791A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/067Metallic material containing free particles of non-metal elements, e.g. carbon, silicon, boron, phosphorus or arsenic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/082Coating starting from inorganic powder by application of heat or pressure and heat without intermediate formation of a liquid in the layer
    • C23C24/085Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/36Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including layers graded in composition or physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32477Vessel characterised by the means for protecting vessels or internal parts, e.g. coatings
    • H01J37/32495Means for protecting the vessel against plasma

Definitions

  • the invention relates to a preparation technology of a ceramic coating, in particular to a preparation method of a protective coating on the surface of key components of IC equipment based on plasma spraying and cold spraying technology, and belongs to the field of plasma etching of semiconductor integrated circuit chips (wafers).
  • etching manufacturing equipment of IC equipment such as equipment for manufacturing semiconductor materials and liquid crystal display screens
  • the base material cannot meet the protection requirements, it can be prepared on the surface of the base material Protective coating to extend the service life of the material.
  • High-purity alumina and high-purity yttrium oxide have been widely used as anti-plasma erosion materials because of their excellent resistance to plasma erosion. Research on the relative performance of the coating under different plasma energies shows that the high-purity yttria coating and the higher-purity alumina coating show more excellent plasma erosion resistance.
  • yttrium oxide coating is slightly lower than that of yttrium oxide sintered block, but with the increase of plasma energy, the difference in performance between the two is gradually reduced. Therefore, as the plasma energy continues to increase under actual working conditions, yttrium oxide coatings have also been more widely used.
  • the preparation of high-purity yttrium oxide coating by thermal spraying technology has many advantages.
  • the yttrium oxide ceramic powder can be heated to a temperature above 2000°C in a molten state, and then highly deposited on the base material to form a ceramic coating.
  • the conditions are harsh and expensive.
  • the outermost layer of the coating has transverse cracks, which is not dense enough, and the quality needs to be improved.
  • Plasma spraying is a relatively mature technology in thermal spraying. It injects metal or non-metal powder into a high-temperature plasma jet, so that it is sprayed at a high speed in a molten or semi-melted state under the action of a high-speed jet to the pre-treated On the surface of the workpiece, layer by layer is deposited to form a processing technology with a certain performance and functional coating.
  • Plasma sprayed ceramic coating has both technical and commercial advantages in solving the problem of plasma erosion resistance of IC equipment, which are mainly reflected in: 1the coating processing has no restriction on the size of the equipment, 2has relatively high resistance to plasma erosion, 3 Can prepare coatings up to several hundred microns thick.
  • plasma spray coatings also have certain defects, for example: high porosity, if used directly as a protective coating will affect its service life. Therefore, it is considered to deposit a layer of high-purity Y 2 O 3 protective coating with higher density on the outside of the plasma sprayed ceramic coating.
  • the high-purity Y 2 O 3 coating deposited by cold spraying at high speed can be combined with the high-purity Y 2 O 3 coating of plasma spraying and the metal/Y 2 O 3 composite coating as a new type of protective coating against plasma erosion.
  • the basic principle of the cold spray technology is that the supersonic airflow carries the sprayed powder at a very high speed (usually 400 to 1200m/s) to hit the surface of the substrate material and cause strong plastic deformation and deposit on the surface of the substrate to form a coating. Due to the high deposition rate, the microstructure of the cold spray coating is different from that of the plasma spray coating, and the coating density is higher.
  • the nature of the ceramic powder used is critical. Ordinary nano-powders are not suitable for cold spraying to prepare coatings, because the high-pressure and high-speed airflow of cold spraying will form a bow shock wave on the surface of the substrate to hinder the deposition of nano-powders. When the spray particle size is too large, the substrate will be eroded and it is difficult to form a coating.
  • Adopt atmospheric plasma spraying The method for preparing several corrosion resistant coatings, such as Al 2 O 3 coating, Y 2 O 3 coating, Y 2 O 3 -ZrO 2 coating with different yttrium oxide content, Y 2 O 3 -ZrO 2 -A1 2 O 3 coatings, etc., and tested their etching rate, and concluded that: Y 2 O 3 -ZrO: The etching rate of the coating is basically lower than that of the yttrium oxide coating, and when Y 2 O 3 :ZrO 2 is 70 : At 30, the etching rate of the coating is the smallest, about 5nm/min, that is, the plasma etching resistance is the best.
  • the thermal expansion coefficient of the ceramic coating and the metal substrate is quite different, which will cause their matching and bonding strength to decrease, and affect the mechanical properties and corrosion resistance of the coating. Therefore, it is considered to use a metal/ceramic composite coating as the bottom layer and transition layer to reduce the difference in thermal expansion coefficient between the ceramic coating and the metal substrate, and to improve the overall mechanical properties and corrosion resistance of the coating.
  • the purpose of the present invention is to provide a method for preparing a protective coating on the surface of key components of IC equipment based on plasma spraying and cold spraying technology, which solves the current plasma etching chamber for IC equipment
  • the protective coating is prone to failure in the high-power etching process. Try a new effective way to prepare the protective coating of the plasma etching chamber for IC equipment in order to achieve practical application as soon as possible.
  • a method for preparing protective coatings on the surface of key components of IC equipment based on plasma spraying and cold spraying technologies Using plasma spraying and cold spraying high-speed deposition technology, a uniformly distributed protective coating is formed on the surface of the plasma etching cavity; the protection The coating has a two-layer composite structure: the bottom layer is a metal/Y 2 O 3 coating deposited by plasma spraying as a transition layer; the outermost layer is a high-purity Y 2 O 3 ceramic coating, and the Y 2 O 3 is deposited at high speed by cold spraying.
  • Ceramic powder is deposited on the metal/Y 2 O 3 transition layer at high speed; first, the metal powder and Y 2 O 3 powder are dried; secondly, the metal powder and Y 2 O 3 powder are deposited on the substrate at a high speed using supersonic plasma spray technology Surface; Then, Y 2 O 3 powder is deposited on the surface of supersonic plasma sprayed metal/Y 2 O 3 coating by cold spraying high flux deposition technology, and Y 2 O 3 ceramic composite coating is obtained by controlling the process parameters.
  • the dried metal powder and Y 2 O 3 powder are placed in the powder feeder of the plasma spraying device, and the metal and Y 2 O 3 mixed powder is melted and deposited on the inner surface of the plasma etching chamber material using plasma spraying technology to form metal /Y 2 O 3 transition layer;
  • the cold spray high-speed deposition technology is further used to deposit Y 2 O 3 coating on the metal/Y 2 O 3 transition layer to obtain high purity , Dense Y 2 O 3 coating, and finally obtain (metal + Y 2 O 3 )/Y 2 O 3 composite protective coating.
  • the metal powder is one or two of aluminum powder or yttrium powder.
  • the particle size of the metal powder and Y 2 O 3 powder is 1-50 ⁇ m.
  • the method for preparing the protective coating on the surface of key components of IC equipment based on plasma spraying and cold spraying technology uses supersonic plasma spraying technology to deposit metal powder and Y 2 O 3 powder on the surface of the substrate at a high speed, and plasma spraying Metal powder and Y 2 O 3 powder are sprayed directly on the inner surface of the plasma etching cavity material, and the spraying parameters are controlled: the main gas used in plasma spraying is argon, the secondary gas is hydrogen, and the powder feeding gas is nitrogen, the gas flow rate It is 10 ⁇ 80mL/min, 5 ⁇ 220mL/min and 5 ⁇ 80mL/min, respectively, and the spraying distance is 10 ⁇ 100mm, so that the mixed powder is deposited on the inner surface of the plasma etching chamber to form a uniformly distributed metal/Y 2 O 3 Protective coating.
  • the Y 2 O 3 powder is deposited on the supersonic plasma sprayed metal/Y 2 O 3 through the cold spraying high flux deposition technology
  • control the spraying parameters use compressed air as the working gas, the working gas temperature is 200 ⁇ 700°C, the working gas pressure is 1.5 ⁇ 3.0MPa, the spraying distance is 10 ⁇ 60mm, and the Y 2 O 3 powder is deposited on the plasma Spray the metal/Y 2 O 3 coating on the surface to form a uniformly distributed high-purity Y 2 O 3 coating.
  • the porosity of the protective coating is less than 2%, and the interface bonding strength between the ceramic coating and the base material is 20-100 MPa,
  • the coating thickness is 10-400 ⁇ m.
  • the design idea of the present invention is:
  • Plasma spraying technology is used to prepare metal/Y 2 O 3 composite ceramic coatings on key components of IC equipment to reduce the huge difference in expansion coefficient between Y 2 O 3 ceramic coatings and metal substrates, and to enhance Y 2 O 3 ceramic coatings The bonding force between the layer and the metal substrate. Finally, using cold spray technology to deposit a high-purity Y 2 O 3 ceramic coating on the metal/Y 2 O 3 composite ceramic coating can fully maintain the crystal form and excellent performance of Y 2 O 3 .
  • the invention adopts plasma spraying and cold spraying high-speed deposition technology to form evenly distributed protective coating on the surface of the plasma etching cavity.
  • the protective coating has a double-layer composite structure: the bottom layer is a metal/Y 2 O 3 coating deposited by plasma spraying as a transition layer, which can reduce the difference in thermal expansion coefficient between the ceramic coating and the metal substrate and improve the combination of the coating and the substrate Strength; the outermost layer is a high-purity Y 2 O 3 ceramic coating, and Y 2 O 3 ceramic powder is deposited on the metal/Y 2 O 3 transition layer at high speed by cold spray high-speed deposition.
  • the present invention uses plasma spraying technology to prepare metal/ceramic composite coating as a transition layer on the IC equipment etching cavity material, and then uses cold spraying technology to deposit high-purity and dense yttrium oxide coating on the metal/ceramic composite coating transition layer Layer to obtain a (metal + Y 2 O 3 )/Y 2 O 3 composite coating in order to achieve better plasma erosion resistance and protective effects.
  • the present invention uses plasma spray technology to prepare a metal/ceramic composite coating as a transition layer on the IC equipment etching cavity material, and then uses cold spray technology to deposit high-purity and dense oxidation on the metal/ceramic composite coating transition layer Yttrium coating to obtain (metal/yttrium oxide)/yttrium oxide composite coating in order to achieve better plasma erosion resistance and protective effects.
  • the present invention uses plasma spraying technology and cold spraying high-speed deposition technology to prepare a (metal + Y 2 O 3 )/Y 2 O 3 composite coating with a thickness of 100-400 ⁇ m as protection for the inner surface of the plasma etching chamber for IC equipment coating.
  • the method has high deposition efficiency, and the thickness of the (metal + Y 2 O 3 )/Y 2 O 3 composite coating can be designed according to actual use conditions, and can be used to prepare thick IC equipment plasma etching chamber protective coatings.
  • Figure 1 is a schematic diagram of the (metal/Y 2 O 3 )/Y 2 O 3 composite coating structure.
  • 1 substrate 2 metal/Y 2 O 3 transition layer, 3 high purity Y 2 O 3 coating.
  • the metal powder and Y 2 O 3 powder according to the pure metallic powder and a Y 2 O 3 weight ratio of the powder is (0.1-1): 1 mixing ratio, the metal + Y 2 O 3 powder ,
  • the weight ratio of the metal powder to the Y 2 O 3 powder is (3-5):1, and the micron-level mixed powder is obtained after drying, and the powder particle size is 1-50 ⁇ m.
  • the above mixed powder is preheated by heated compressed air and then deposited on the inner surface of the etching chamber material at a high speed to obtain a protective coating on the inner surface of the plasma etching chamber.
  • the described plasma spraying technical scheme when the main gas is argon, the secondary gas is hydrogen, and the powder feeding gas is nitrogen, the gas flow rates are respectively 10 ⁇ 80mL/min, 5 ⁇ 220mL/min and 5 ⁇ 80mL/min, spraying The distance is 10-100mm.
  • the cold spray high-speed deposition technical solution using compressed air as the working gas, the working gas temperature is 200-700°C, the working gas pressure is 1.5-3.0 MPa, and the spraying distance is 10-60 mm.
  • a protective coating on the inner surface of an IC equipment plasma etching chamber is prepared on a 6061 aluminum alloy substrate.
  • the specific method steps are as follows:
  • step (2) Using the micron-sized Al+Y 2 O 3 powder mixed in step (1) as the spraying raw material, the plasma spraying technology is used to prepare an Al+Y 2 O 3 composite coating on the 6061 aluminum alloy substrate as the transition layer. It is 150 ⁇ m.
  • the thickness is about 180 ⁇ m.
  • the main gas used in plasma spraying is argon
  • the secondary gas is hydrogen
  • the gas flow rates are 30mL/min, 220mL/min and 30mL/min, respectively.
  • the spraying distance is 80mm.
  • the cold spraying process conditions are: compressed air is used as the working gas, the gas temperature is 500 °C, the gas pressure is 2.0 MPa, and the spraying distance is 20 mm.
  • the substrate 1 by plasma spraying metal / transition layer 2 Y 2 O 3, metal / Y 2 O 3 buffer layer cold spray coating of high purity Y 2 O 3 3 2.
  • the (Al+Y 2 O 3 )/Y 2 O 3 composite coating prepared in this implementation has a porosity of 2.0%, and the interface bonding strength between the ceramic coating and the base material is 45 MPa.
  • a protective coating on the inner surface of an IC equipment plasma etching chamber is prepared on a 6061 aluminum alloy substrate.
  • the specific method steps are as follows:
  • step (2) Using the micron-sized Al+Y 2 O 3 powder mixed in step (1) as the spraying raw material, the plasma spraying technology is used to prepare an Al+Y 2 O 3 composite coating on the 6061 aluminum alloy substrate as the transition layer. It is 120 ⁇ m.
  • a high-purity Y 2 O 3 coating is deposited on the Al+Y 2 O 3 transition layer obtained in step (2) by cold spray high-throughput deposition technology, with a thickness of about 170 ⁇ m.
  • the main gas used in plasma spraying is argon
  • the secondary gas is hydrogen
  • the gas flow rates are 25mL/min, 200mL/min and 30mL/min, respectively.
  • the spraying distance is 90mm.
  • the cold spraying process conditions are: compressed air is used as the working gas, the gas temperature is 550 °C, the gas pressure is 2.2 MPa, and the spraying distance is 20 mm.
  • the substrate 1 by plasma spraying metal / transition layer 2 Y 2 O 3, metal / Y 2 O 3 buffer layer cold spray coating of high purity Y 2 O 3 3 2.
  • the (Al+Y 2 O 3 )/Y 2 O 3 composite coating prepared in this implementation has a porosity of 1.8%, and the interface bonding strength between the ceramic coating and the base material is 60 MPa.
  • a protective coating on the inner surface of an IC equipment plasma etching chamber is prepared on a 6061 aluminum alloy substrate.
  • the specific method steps are as follows:
  • step (2) Using the micron-sized Al+Y 2 O 3 powder mixed in step (1) as the spraying raw material, the plasma spraying technology is used to prepare an Al+Y 2 O 3 composite coating on the 6061 aluminum alloy substrate as the transition layer. It is 160 ⁇ m.
  • the thickness is about 180 ⁇ m.
  • the main gas used in supersonic plasma spraying is argon
  • the secondary gas is hydrogen
  • the gas flow rates are 30mL/min, 180mL/min and 25mL/min. min, spraying distance is 100mm.
  • the cold spraying process conditions are: compressed air is used as the working gas, the gas temperature is 600 °C, the gas pressure is 2.3 MPa, and the spraying distance is 20 mm.
  • the substrate 1 by plasma spraying metal / transition layer 2 Y 2 O 3, metal / Y 2 O 3 buffer layer cold spray coating of high purity Y 2 O 3 3 2.
  • the (Al+Y 2 O 3 )/Y 2 O 3 composite coating prepared in this implementation has a porosity of 1.7%, and the interface bonding strength between the ceramic coating and the base material is 55 MPa.
  • a protective coating on the inner surface of an IC equipment plasma etching chamber is prepared on a 6061 aluminum alloy substrate.
  • the specific method steps are as follows:
  • the Y/Y 2 O 3 composite coating is prepared on the 6061 aluminum alloy substrate by plasma spraying technology as the transition layer, and the thickness is It is 120 ⁇ m.
  • step (3) Using cold spray high-speed deposition technology to deposit a high-purity Y 2 O 3 coating on the Y/Y 2 O 3 transition layer obtained in step (2), with a thickness of about 180 ⁇ m.
  • the main gas used in supersonic plasma spraying is argon
  • the secondary gas is hydrogen
  • the gas flow rates are 30mL/min, 180mL/min and 25mL/min. min, spraying distance is 100mm.
  • the cold spraying process conditions are: compressed air is used as the working gas, the gas temperature is 650° C., the gas pressure is 2.3 MPa, and the spraying distance is 20 mm.
  • the substrate 1 by plasma spraying metal / transition layer 2 Y 2 O 3, metal / Y 2 O 3 buffer layer cold spray coating of high purity Y 2 O 3 3 2.
  • the (Al+Y 2 O 3 )/Y 2 O 3 composite coating prepared in this implementation has a porosity of 1.5%, and the interface bonding strength between the ceramic coating and the base material is 35 MPa.
  • the protective coating on the inner surface of the plasma etching chamber of an IC equipment prepared by the present invention is prepared by plasma spraying technology and cold spraying high-speed deposition technology (metall+Y 2 O 3 )/Y 2 O 3 Composite protective coating.
  • the coating is well combined with the substrate, the porosity of the coating is less than 2%, the interface bonding strength is 30-80 MPa, and the coating thickness is 100-400 ⁇ m.
  • the coating can reduce the corrosion of corrosive gas to the etching cavity and the pollution of the plasma to the chip, and improve the service life of the plasma etching cavity in the process of producing the chip.

Abstract

本发明涉及陶瓷涂层的制备技术,具体为一种基于等离子喷涂和冷喷涂技术的IC装备关键零部件表面防护涂层的制备方法,属于半导体集成电路芯片(晶圆)等离子体刻蚀领域。采用等离子喷涂和冷喷涂高速沉积技术,在等离子体刻蚀腔表面形成均匀分布的防护涂层。该防护涂层具有双层复合结构:底层等离子喷涂沉积的金属/Y 2O 3涂层作为过渡层,能够减少陶瓷涂层与金属基体之间热膨胀系数的差别并提高涂层与基体的结合强度;最外层为高纯Y 2O 3陶瓷涂层,采用冷喷涂高速沉积将Y 2O 3陶瓷粉末高速沉积在金属/Y 2O 3过渡层上。本发明得到(金属/氧化钇)/氧化钇复合涂层,以期达到更优异的抗等离子体侵蚀性能和防护效果。

Description

基于等离子喷涂和冷喷涂技术的IC装备关键零部件表面防护涂层的制备方法 技术领域
本发明涉及陶瓷涂层的制备技术,具体为一种基于等离子喷涂和冷喷涂技术的IC装备关键零部件表面防护涂层的制备方法,属于半导体集成电路芯片(晶圆)等离子体刻蚀领域。
背景技术
在IC装备的刻蚀制造装备中(例如:制造半导体材料及液晶显示屏的装备),需要抵抗高能等离子体的刻蚀作用,在基体材料不能满足防护需求的情况下,可以在基体材料表面制备防护涂层以延长材料的服役寿命。高纯氧化铝和高纯氧化钇由于具有较为优异的抗等离子体侵蚀的作用,作为抗等离子冲蚀材料已得到广泛应用。对不同等离子能量下涂层相关性能的研究显示,高纯氧化钇涂层较高纯氧化铝涂层表现出更为优异的抗等离子冲蚀性能。氧化钇涂层的性能略低于氧化钇烧结块材,但随着等离子能量的提高,两者性能的差异也逐渐减小。因此,随着等离子能量在实际工况下不断提高,氧化钇涂层也得到更为广泛的应用。
热喷涂技术制备高纯氧化钇涂层具有很多优势,可以将氧化钇陶瓷粉末加热到2000℃以上呈熔融状态,然后高度沉积在基体材料上形成陶瓷涂层。条件苛刻,而且费用昂贵。涂层最外层有横向裂纹,不够致密,质量有待提高。
等离子喷涂是热喷涂中一种相对成熟的技术,它是将金属或非金属粉末注入到高温的等离子射流中,使其在高速射流的作用下以熔化或半熔化状态高速加速喷射到预先处理的工件表面上,逐层沉积形成具有一定性能和功能涂层的一种加工工艺。等离子喷涂的陶瓷涂层在解决IC装备抗等离子体侵蚀问题上具有技术和商业的双重优势,主要体现在:①涂层加工对设备尺寸没有限制,②具有相对较高的抗等离子侵蚀性能,③可制备厚达几百微米的涂层。然而,等离子喷涂涂层也存在一定缺陷,例如:孔隙率较高,如果直接使用作为防护涂层会影响其使役寿命。故考虑在等离子喷涂陶瓷涂层的外面沉积一层致密性更高的高纯Y 2O 3防护涂层。冷喷涂高速沉积的高纯Y 2O 3涂层就可以配合等离子喷涂的高纯Y 2O 3涂层及金属/Y 2O 3复合涂层作为新型抗等离子体侵蚀的防护涂层。
冷喷涂技术的基本原理是超音速气流携带喷涂粉末以极高的速度(通常在400~1200m/s)撞击基体材料表面发生强烈的塑性变形沉积在基体表面形成涂层。由于沉积速度高,冷喷涂涂层的微观结构不同于等离子喷涂涂层,而且涂层的致密性要更高一些。使用冷喷涂技术制备陶瓷涂层时,使用的陶瓷粉末的性质是至关重要的。普通的纳米粉末不适合用于冷喷涂制备涂层,这是由于冷喷涂的高压高速气流会在基体表面形成弓激波阻碍纳米粉体的沉积。而喷涂颗粒度偏大时,又会对基体形成冲蚀,很难形成涂层。
目前,IC装备等离子体刻蚀腔防护涂层的主流研究方是以氧化钇为主的陶瓷涂层和复合涂层。Seok等(Seok H W,Kim Y C,Chol E Y,et a1.Multi-component thermal spray coating material and production method and coating method thereof:US,13/915976[P].2013-06-12.)采用大气等离子喷涂的方法制备几种耐刻蚀涂层,例如Al 2O 3涂层、Y 2O 3涂层、不同氧化钇含量的Y 2O 3-ZrO 2涂层、Y 2O 3-ZrO 2-A1 2O 3涂层等,并测试它们的刻蚀速率,得出结论: Y 2O 3-ZrO:涂层的刻蚀速率基本小于氧化钇涂层,且当Y 2O 3:ZrO 2为70:30时,涂层的刻蚀速率最小,约为5nm/min,即耐等离子刻蚀性能最好。然而,陶瓷涂层与金属基体的热膨胀系数存在较大差异,这会导致它们的匹配性及结合强度降低,影响到涂层的力学性能和抗蚀性能。因此,考虑采用金属/陶瓷复合涂层作为底层和过渡层以减小陶瓷涂层与金属基体之间热膨胀系数的差异,提高涂层整体的力学性能和抗蚀效果。
发明内容
针对现有技术中存在的上述不足之处,本发明的目的是提供一种基于等离子喷涂和冷喷涂技术的IC装备关键零部件表面防护涂层的制备方法,解决当前IC装备等离子体刻蚀腔防护涂层在高功率刻蚀过程中容易失效的问题,尝试一种新的制备IC装备等离子体刻蚀腔防护涂层的有效途径,以期早日获得实际应用。
为了实现上述目的,本发明所采用的技术方案如下:
一种基于等离子喷涂和冷喷涂技术的IC装备关键零部件表面防护涂层的制备方法,采用等离子喷涂和冷喷涂高速沉积技术,在等离子体刻蚀腔表面形成均匀分布的防护涂层;该防护涂层具有双层复合结构:底层为等离子喷涂沉积的金属/Y 2O 3涂层作为过渡层;最外层为高纯Y 2O 3陶瓷涂层,采用冷喷涂高速沉积将Y 2O 3陶瓷粉末高速沉积在金属/Y 2O 3过渡层上;先将金属粉末和Y 2O 3粉末进行干燥处理;其次,使用超音速等离子喷涂技术将金属粉末和Y 2O 3粉末高速沉积在基体表面;然后,再通过冷喷涂高通量沉积技术将Y 2O 3粉末沉积到超音速等离子喷涂金属/Y 2O 3涂层表面,通过控制工艺过程参数得到Y 2O 3陶瓷复合涂层。
所述的基于等离子喷涂和冷喷涂技术的IC装备关键零部件表面防护涂层的制备方法,具体步骤如下:
(1)将喷涂用的金属粉末和Y 2O 3粉末干燥待用,金属粉末和Y 2O 3粉末的纯度在99.9wt以上;
(2)采用等离子喷涂技术在基体材料表面制备金属/Y 2O 3过渡层:
将干燥后的金属粉末和Y 2O 3粉末置于等离子喷涂装置的送粉器中,使用等离子喷涂技术将金属和Y 2O 3混合粉末熔融并沉积在等离子体刻蚀腔材料内表面形成金属/Y 2O 3过渡层;
(3)冷喷涂高速沉积高纯Y 2O 3涂层:
在步骤(2)得到的等离子喷涂金属/Y 2O 3过渡层的基础上,进一步使用冷喷涂高速沉积技术在金属/Y 2O 3过渡层上面继续沉积Y 2O 3涂层,获得高纯、致密的Y 2O 3涂层,最终获得(金属+Y 2O 3)/Y 2O 3复合防护涂层。
所述的基于等离子喷涂和冷喷涂技术的IC装备关键零部件表面防护涂层的制备方法,金属粉末是铝粉或钇粉中的一种或两种。
所述的基于等离子喷涂和冷喷涂技术的IC装备关键零部件表面防护涂层的制备方法,金属粉末和Y 2O 3粉末的粒度为1~50μm。
所述的基于等离子喷涂和冷喷涂技术的IC装备关键零部件表面防护涂层的制备方法,使用超音速等离子喷涂技术将金属粉末和Y 2O 3粉末高速沉积在基体表面时,利用等离子喷 涂将金属粉末和Y 2O 3粉末直接喷涂于等离子刻蚀腔体材料内表面,并控制喷涂参数:等离子喷涂使用所用主气为氩气,次气为氢气,送粉气为氮气时,其气体流量分别为10~80mL/min、5~220mL/min和5~80mL/min,喷涂距离为10~100mm,使混合粉末沉积在等离子体刻蚀腔的内表面,形成均匀分布的金属/Y 2O 3防护涂层。
所述的基于等离子喷涂和冷喷涂技术的IC装备关键零部件表面防护涂层的制备方法,通过冷喷涂高通量沉积技术将Y 2O 3粉末沉积到超音速等离子喷涂金属/Y 2O 3涂层表面时,控制喷涂参数:使用压缩空气作为工作气体,工作气体温度为200~700℃,工作气体压力为1.5~3.0MPa,喷涂距离为10~60mm,将Y 2O 3粉末沉积在等离子喷涂金属/Y 2O 3涂层表面上,形成均匀分布的高纯Y 2O 3涂层。
所述的基于等离子喷涂和冷喷涂技术的IC装备关键零部件表面防护涂层的制备方法,防护涂层的孔隙率为2%以下,陶瓷涂层与基体材料的界面结合强度为20~100MPa,涂层厚度为10~400μm。
本发明的设计思想是:
采用等离子喷涂技术在IC装备关键零部件上制备金属/Y 2O 3复合陶瓷涂层以减小Y 2O 3陶瓷涂层与金属基体之间膨胀系数的巨大差异,增强Y 2O 3陶瓷涂层与金属基体之间的结合力。最后,采用冷喷涂技术在金属/Y 2O 3复合陶瓷涂层上沉积高纯Y 2O 3陶瓷涂层,可以充分保持Y 2O 3的晶型和优异性能。
本发明采用等离子喷涂和冷喷涂高速沉积技术,在等离子体刻蚀腔表面形成均匀分布的防护涂层。该防护涂层具有双层复合结构:底层为等离子喷涂沉积的金属/Y 2O 3涂层作为过渡层,能够减少陶瓷涂层与金属基体之间热膨胀系数的差别并提高涂层与基体的结合强度;最外层为高纯Y 2O 3陶瓷涂层,采用冷喷涂高速沉积将Y 2O 3陶瓷粉末高速沉积在金属/Y 2O 3过渡层上。本发明采用等离子喷涂技术在IC装备刻蚀腔体材料上制备金属/陶瓷复合涂层作为过渡层,然后采用冷喷涂技术在金属/陶瓷复合涂层过渡层上沉积高纯、致密的氧化钇涂层,得到(金属+Y 2O 3)/Y 2O 3复合涂层以期达到更优异的抗等离子体侵蚀性能和防护效果。
本发明的优点及有益效果如下:
1、本发明采用等离子喷涂技术在IC装备刻蚀腔体材料上制备金属/陶瓷复合涂层作为过渡层,然后采用冷喷涂技术在金属/陶瓷复合涂层过渡层上沉积高纯、致密的氧化钇涂层,得到(金属/氧化钇)/氧化钇复合涂层以期达到更优异的抗等离子体侵蚀性能和防护效果。
2、本发明则借助等离子喷涂技术和冷喷涂高速沉积技术,制备厚度为100~400μm的(金属+Y 2O 3)/Y 2O 3复合涂层作为IC装备等离子体刻蚀腔内表面防护涂层。该方法沉积效率高,可根据实际使用情况设计(金属+Y 2O 3)/Y 2O 3复合涂层的厚度,可以用来制备厚的IC装备等离子体刻蚀腔防护涂层。
附图说明
图1为(金属/Y 2O 3)/Y 2O 3复合涂层结构示意图。图中,1基体,2金属/Y 2O 3过渡层,3高纯Y 2O 3涂层。
具体实施方式
在具体实施过程中,本发明将金属粉末和Y 2O 3粉末按照纯金属粉末和Y 2O 3粉末的重量比例为(0.1~1):1比例混合,在金属+Y 2O 3粉末中,金属粉与Y 2O 3粉末的重量比为(3~5):1,经干燥得到微米级混合粉末,粉末粒度1~50μm。将上述混合粉末经加热的压缩空气预热后高速沉积在刻蚀腔材料内表面,获得等离子体刻蚀腔内表面防护涂层。所述的等离子喷涂技术方案:主气为氩气,次气为氢气,送粉气为氮气时,其气体流量分别为10~80mL/min,5~220mL/min和5~80mL/min,喷涂距离为10~100mm。所述冷喷涂高速沉积技术方案:使用压缩空气作为工作气体,工作气体温度为200~700℃,工作气体压力为1.5~3.0MPa,喷涂距离为10~60mm。
以下,进一步结合实施例详述本发明。
实施例1
本实施例是在6061铝合金基体上制备IC装备等离子体刻蚀腔防护内表面防护涂层,具体方法步骤如下:
(1)称量20g纯Al粉,160g的Y 2O 3粉末,混合后干燥备用;称量300g高纯(纯度99.99wt%)Y 2O 3粉末,干燥备用。
(2)以步骤(1)中混合好的微米级Al+Y 2O 3粉末为喷涂原料,采用等离子喷涂技术在6061铝合金基体上制备Al+Y 2O 3复合涂层作为过渡层,厚度为150μm。
(3)采用冷喷涂高速沉积技术在步骤(2)得到的Al+Y 2O 3过渡层上沉积高纯Y 2O 3涂层,厚约180μm。
制备Al+Y 2O 3过渡层时,等离子喷涂使用的主气为氩气,次气为氢气,送粉气为氮气时,其气体流量分别为30mL/min,220mL/min和30mL/min,喷涂距离为80mm。
制备高纯Y 2O 3涂层时,冷喷涂工艺条件为:使用压缩空气为工作气体,气体温度为500℃,气体压力为2.0MPa,喷涂距离为20mm。
如图1所示,基体1上等离子喷涂金属/Y 2O 3过渡层2,金属/Y 2O 3过渡层2上冷喷涂高纯Y 2O 3涂层3。本实施制备的(Al+Y 2O 3)/Y 2O 3复合涂层,孔隙率为2.0%,陶瓷涂层与基体材料的界面结合强度为45MPa。
实施例2
本实施例是在6061铝合金基体上制备IC装备等离子体刻蚀腔防护内表面防护涂层,具体方法步骤如下:
(1)称量70g纯Al粉,150g的Y 2O 3粉末,混合后干燥备用;称量200g高纯(纯度99.99wt%)Y 2O 3粉末,干燥备用。
(2)以步骤(1)中混合好的微米级Al+Y 2O 3粉末为喷涂原料,采用等离子喷涂技术在6061铝合金基体上制备Al+Y 2O 3复合涂层作为过渡层,厚度为120μm。
(3)采用冷喷涂高通量沉积技术在步骤(2)得到的Al+Y 2O 3过渡层上沉积高纯Y 2O 3涂层,厚约170μm。
制备Al+Y 2O 3过渡层时,等离子喷涂使用的主气为氩气,次气为氢气,送粉气为氮气时,其气体流量分别为25mL/min,200mL/min和30mL/min,喷涂距离为90mm。
制备高纯Y 2O 3涂层时,冷喷涂工艺条件为:使用压缩空气为工作气体,气体温度为550℃,气体压力为2.2MPa,喷涂距离为20mm。
如图1所示,基体1上等离子喷涂金属/Y 2O 3过渡层2,金属/Y 2O 3过渡层2上冷喷涂高纯Y 2O 3涂层3。本实施制备的(Al+Y 2O 3)/Y 2O 3复合涂层,孔隙率为1.8%,陶瓷涂层与基体材料的界面结合强度为60MPa。
实施例3
本实施例是在6061铝合金基体上制备IC装备等离子体刻蚀腔防护内表面防护涂层,具体方法步骤如下:
(1)称量40g纯Al粉,120g的Y 2O 3粉末,混合后干燥备用;称量400g高纯(纯度99.99wt%)Y 2O 3粉末,干燥备用。
(2)以步骤(1)中混合好的微米级Al+Y 2O 3粉末为喷涂原料,采用等离子喷涂技术在6061铝合金基体上制备Al+Y 2O 3复合涂层作为过渡层,厚度为160μm。
(3)采用冷喷涂高速沉积技术在步骤(2)得到的Al+Y 2O 3过渡层上沉积高纯Y 2O 3涂层,厚约180μm。
制备Al+Y 2O 3过渡层时,超音速等离子喷涂使用的主气为氩气,次气为氢气,送粉气为氮气时,其气体流量分别为30mL/min,180mL/min和25mL/min,喷涂距离为100mm。
制备高纯Y 2O 3涂层时,冷喷涂工艺条件为:使用压缩空气为工作气体,气体温度为600℃,气体压力为2.3MPa,喷涂距离为20mm。
如图1所示,基体1上等离子喷涂金属/Y 2O 3过渡层2,金属/Y 2O 3过渡层2上冷喷涂高纯Y 2O 3涂层3。本实施制备的(Al+Y 2O 3)/Y 2O 3复合涂层,孔隙率为1.7%,陶瓷涂层与基体材料的界面结合强度为55MPa。
实施例4
本实施例是在6061铝合金基体上制备IC装备等离子体刻蚀腔防护内表面防护涂层,具体方法步骤如下:
(1)称量40g纯Y粉,120g的Y 2O 3粉末,混合后干燥备用;称量400g高纯(纯度99.99wt%)Y 2O 3粉末,干燥备用。
(2)以步骤(1)中混合好的微米级Y+Y 2O 3粉末为喷涂原料,采用等离子喷涂技术在6061铝合金基体上制备Y/Y 2O 3复合涂层作为过渡层,厚度为120μm。
(3)采用冷喷涂高速沉积技术在步骤(2)得到的Y/Y 2O 3过渡层上沉积高纯Y 2O 3涂层,厚约180μm。
制备Al+Y 2O 3过渡层时,超音速等离子喷涂使用的主气为氩气,次气为氢气,送粉气为氮气时,其气体流量分别为30mL/min,180mL/min和25mL/min,喷涂距离为100mm。
制备高纯Y 2O 3涂层时,冷喷涂工艺条件为:使用压缩空气为工作气体,气体温度为650℃, 气体压力为2.3MPa,喷涂距离为20mm。
如图1所示,基体1上等离子喷涂金属/Y 2O 3过渡层2,金属/Y 2O 3过渡层2上冷喷涂高纯Y 2O 3涂层3。本实施制备的(Al+Y 2O 3)/Y 2O 3复合涂层,孔隙率为1.5%,陶瓷涂层与基体材料的界面结合强度为35MPa。
以上实施例结果表明,本发明制备的一种IC装备等离子体刻蚀腔内表面防护涂层,采用等离子喷涂技术和冷喷涂高速沉积技术制备(金属l+Y 2O 3)/Y 2O 3复合防护涂层。该涂层与基体结合良好,涂层孔隙率为2%以下,界面结合强度为30~80MPa,涂层厚度为100~400μm。该涂层能减少腐蚀性气体对刻蚀腔体的腐蚀和等离子体对芯片的污染,提高等离子体刻蚀腔在生产芯片过程中的使用寿命。
以上是以发明技术方案为前提下给出详细的实施方式和具体操作过程,但本发明的保护范围不限于上面的实施例。

Claims (7)

  1. 一种基于等离子喷涂和冷喷涂技术的IC装备关键零部件表面防护涂层的制备方法,其特征在于,采用等离子喷涂和冷喷涂高速沉积技术,在等离子体刻蚀腔表面形成均匀分布的防护涂层;该防护涂层具有双层复合结构:底层为等离子喷涂沉积的金属/Y 2O 3涂层作为过渡层;最外层为高纯Y 2O 3陶瓷涂层,采用冷喷涂高速沉积将Y 2O 3陶瓷粉末高速沉积在金属/Y 2O 3过渡层上;先将金属粉末和Y 2O 3粉末进行干燥处理;其次,使用超音速等离子喷涂技术将金属粉末和Y 2O 3粉末高速沉积在基体表面;然后,再通过冷喷涂高通量沉积技术将Y 2O 3粉末沉积到超音速等离子喷涂金属/Y 2O 3涂层表面,通过控制工艺过程参数得到Y 2O 3陶瓷复合涂层。
  2. 根据权利要求1所述的基于等离子喷涂和冷喷涂技术的IC装备关键零部件表面防护涂层的制备方法,其特征在于,具体步骤如下:
    (1)将喷涂用的金属粉末和Y 2O 3粉末干燥待用,金属粉末和Y 2O 3粉末的纯度在99.9wt以上;
    (2)采用等离子喷涂技术在基体材料表面制备金属/Y 2O 3过渡层:
    将干燥后的金属粉末和Y 2O 3粉末置于等离子喷涂装置的送粉器中,使用等离子喷涂技术将金属和Y 2O 3混合粉末熔融并沉积在等离子体刻蚀腔材料内表面形成金属/Y 2O 3过渡层;
    (3)冷喷涂高速沉积高纯Y 2O 3涂层:
    在步骤(2)得到的等离子喷涂金属/Y 2O 3过渡层的基础上,进一步使用冷喷涂高速沉积技术在金属/Y 2O 3过渡层上面继续沉积Y 2O 3涂层,获得高纯、致密的Y 2O 3涂层,最终获得(金属+Y 2O 3)/Y 2O 3复合防护涂层。
  3. 根据权利要求1或2所述的基于等离子喷涂和冷喷涂技术的IC装备关键零部件表面防护涂层的制备方法,其特征在于,金属粉末是铝粉或钇粉中的一种或两种。
  4. 根据权利要求1或2所述的基于等离子喷涂和冷喷涂技术的IC装备关键零部件表面防护涂层的制备方法,其特征在于,金属粉末和Y 2O 3粉末的粒度为1~50μm。
  5. 根据权利要求1或2所述的基于等离子喷涂和冷喷涂技术的IC装备关键零部件表面防护涂层的制备方法,其特征在于,使用超音速等离子喷涂技术将金属粉末和Y 2O 3粉末高速沉积在基体表面时,利用等离子喷涂将金属粉末和Y 2O 3粉末直接喷涂于等离子刻蚀腔体材料内表面,并控制喷涂参数:等离子喷涂使用所用主气为氩气,次气为氢气,送粉气为氮气时,其气体流量分别为10~80mL/min、5~220mL/min和5~80mL/min,喷涂距离为10~100mm,使混合粉末沉积在等离子体刻蚀腔的内表面,形成均匀分布的金属/Y 2O 3防护涂层。
  6. 根据权利要求1或2所述的基于等离子喷涂和冷喷涂技术的IC装备关键零部件表面防护涂层的制备方法,其特征在于,通过冷喷涂高通量沉积技术将Y 2O 3粉末沉积到超音速等离子喷涂金属/Y 2O 3涂层表面时,控制喷涂参数:使用压缩空气作为工作气体,工作气体温度为200~700℃,工作气体压力为1.5~3.0MPa,喷涂距离为10~60mm,将Y 2O 3粉末沉积在等离子喷涂金属/Y 2O 3涂层表面上,形成均匀分布的高纯Y 2O 3涂层。
  7. 根据权利要求1所述的基于等离子喷涂和冷喷涂技术的IC装备关键零部件表面防护涂层的制备方法,其特征在于,防护涂层的孔隙率为2%以下,陶瓷涂层与基体材料的界面结合强度为20~100MPa,涂层厚度为10~400μm。
PCT/CN2020/071775 2019-08-05 2020-01-13 基于等离子喷涂和冷喷涂技术的ic装备关键零部件表面防护涂层的制备方法 WO2021022791A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022502908A JP7288548B2 (ja) 2019-08-05 2020-01-13 プラズマ溶射と低温溶射技術に基づくプラズマエッチングチャンバの表面保護コーティングの製造方法
KR1020227003112A KR102656880B1 (ko) 2019-08-05 2020-01-13 플라즈마 용사 및 냉간 용사 기술 기반의 ic 장비 핵심 부품 표면 보호 코팅층의 제조 방법
US17/631,810 US11834748B2 (en) 2019-08-05 2020-01-13 Method for preparing a protective coating on a surface of key components and parts of IC devices based on plasma spraying technology and cold spraying technology

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910716325.2A CN110468367A (zh) 2019-08-05 2019-08-05 基于等离子喷涂和冷喷涂技术的ic装备关键零部件表面防护涂层的制备方法
CN201910716325.2 2019-08-05

Publications (1)

Publication Number Publication Date
WO2021022791A1 true WO2021022791A1 (zh) 2021-02-11

Family

ID=68509952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071775 WO2021022791A1 (zh) 2019-08-05 2020-01-13 基于等离子喷涂和冷喷涂技术的ic装备关键零部件表面防护涂层的制备方法

Country Status (5)

Country Link
US (1) US11834748B2 (zh)
JP (1) JP7288548B2 (zh)
KR (1) KR102656880B1 (zh)
CN (1) CN110468367A (zh)
WO (1) WO2021022791A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113718253A (zh) * 2021-09-08 2021-11-30 洛阳嘉德节能科技有限公司 一种复合结构的耐高温防腐蚀防结焦涂层及喷涂方法
CN115180930A (zh) * 2022-07-05 2022-10-14 洛阳科威钨钼有限公司 过渡层用粉体、制备方法及耐高温难熔金属基体保护层
CN115305434A (zh) * 2022-08-11 2022-11-08 福建阿石创新材料股份有限公司 一种在薄壁防护罩表面制备陶瓷涂层的方法和带有涂层的防护罩

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110468367A (zh) * 2019-08-05 2019-11-19 中国科学院金属研究所 基于等离子喷涂和冷喷涂技术的ic装备关键零部件表面防护涂层的制备方法
CN113046695A (zh) * 2019-12-27 2021-06-29 有研工程技术研究院有限公司 一种钇/氧化钇复合阻氢涂层
CN111424273A (zh) * 2020-03-30 2020-07-17 沈阳富创精密设备有限公司 一种制备高洁净度涂层的方法
CN114592162A (zh) * 2020-11-30 2022-06-07 中国科学院金属研究所 一种超音速火焰喷涂技术制备钇涂层的方法
CN112779535B (zh) * 2020-12-07 2022-08-02 上海航天设备制造总厂有限公司 一种用于基材表面抗激光烧蚀涂层及制备方法
CN114147436A (zh) * 2022-01-04 2022-03-08 中国兵器工业第五九研究所 一种具有周期性梯度渐变结构复合构件的制备方法
CN114959546A (zh) * 2022-06-09 2022-08-30 昆明理工大学 一种单路送粉的连续过渡涂层的制备方法
CN115828574B (zh) * 2022-11-28 2023-09-26 江苏凯威特斯半导体科技有限公司 一种等离子喷涂参数确定方法
CN116065116A (zh) * 2023-02-09 2023-05-05 哈尔滨工业大学 一种等离子-冷喷涂的复合喷涂装置及复合涂层的喷涂方法
CN116162884A (zh) * 2023-03-09 2023-05-26 昆明理工大学 一种水轮机用抗空蚀复合陶瓷涂层及其制备方法
CN117362030B (zh) * 2023-11-14 2024-05-03 南京工程学院 一种强蓄热、抗热冲蚀微纳米复相陶瓷粉末及其涂层、涂层制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106591820A (zh) * 2015-10-15 2017-04-26 沈阳富创精密设备有限公司 一种ic装备关键零部件用高纯氧化钇涂层的制备方法
CN109825827A (zh) * 2019-02-22 2019-05-31 沈阳富创精密设备有限公司 一种ic装备等离子体刻蚀腔防护涂层的制备方法
CN109957748A (zh) * 2019-04-02 2019-07-02 沈阳富创精密设备有限公司 一种ic装备关键零部件表面防护涂层的制备方法
CN110468367A (zh) * 2019-08-05 2019-11-19 中国科学院金属研究所 基于等离子喷涂和冷喷涂技术的ic装备关键零部件表面防护涂层的制备方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060031136A (ko) * 2004-10-07 2006-04-12 한국과학기술연구원 진공 플라즈마 챔버용 열용사 코팅막 및 그 제조방법
FR2959244B1 (fr) * 2010-04-23 2012-06-29 Commissariat Energie Atomique Procede de preparation d'un revetement multicouche sur une surface d'un substrat par projection thermique.
FI123710B (fi) * 2011-03-28 2013-09-30 Teknologian Tutkimuskeskus Vtt Termisesti ruiskutettu pinnoite
CN103074566A (zh) * 2011-10-26 2013-05-01 中国科学院微电子研究所 一种超音速等离子体喷涂技术制备y2o3涂层的方法
US9394615B2 (en) * 2012-04-27 2016-07-19 Applied Materials, Inc. Plasma resistant ceramic coated conductive article
KR101932429B1 (ko) * 2012-05-04 2018-12-26 (주)코미코 내 플라즈마 코팅막, 이의 제조 방법 및 내 플라즈마성 부품
KR101249951B1 (ko) * 2012-10-24 2013-04-03 아이원스 주식회사 공정 장비의 코팅 방법 및 이를 이용한 코팅 구조
US9790581B2 (en) * 2014-06-25 2017-10-17 Fm Industries, Inc. Emissivity controlled coatings for semiconductor chamber components
KR102182690B1 (ko) * 2014-11-11 2020-11-25 (주) 코미코 플라즈마 처리 장치용 내부재 및 이의 제조 방법
CN105132908A (zh) * 2015-10-16 2015-12-09 广东电网有限责任公司电力科学研究院 燃气轮机叶片热障涂层粘结层及其制备方法
DE102016002630A1 (de) * 2016-03-07 2017-09-07 Forschungszentrum Jülich GmbH Haftvermittlerschicht zur Anbindung einer Hochtemperaturschutzschicht auf einem Substrat, sowie Verfahren zur Herstellung derselben
CN107190260B (zh) * 2017-05-24 2019-05-10 中国船舶重工集团公司第七二五研究所 一种耐蚀隔热涂层体系及其制备方法
CN110004393A (zh) * 2019-04-08 2019-07-12 中国科学院金属研究所 一种超音速火焰喷涂技术制备y2o3陶瓷涂层的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106591820A (zh) * 2015-10-15 2017-04-26 沈阳富创精密设备有限公司 一种ic装备关键零部件用高纯氧化钇涂层的制备方法
CN109825827A (zh) * 2019-02-22 2019-05-31 沈阳富创精密设备有限公司 一种ic装备等离子体刻蚀腔防护涂层的制备方法
CN109957748A (zh) * 2019-04-02 2019-07-02 沈阳富创精密设备有限公司 一种ic装备关键零部件表面防护涂层的制备方法
CN110468367A (zh) * 2019-08-05 2019-11-19 中国科学院金属研究所 基于等离子喷涂和冷喷涂技术的ic装备关键零部件表面防护涂层的制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113718253A (zh) * 2021-09-08 2021-11-30 洛阳嘉德节能科技有限公司 一种复合结构的耐高温防腐蚀防结焦涂层及喷涂方法
CN115180930A (zh) * 2022-07-05 2022-10-14 洛阳科威钨钼有限公司 过渡层用粉体、制备方法及耐高温难熔金属基体保护层
CN115180930B (zh) * 2022-07-05 2023-07-04 洛阳科威钨钼有限公司 过渡层用粉体、制备方法及耐高温难熔金属基体保护层
CN115305434A (zh) * 2022-08-11 2022-11-08 福建阿石创新材料股份有限公司 一种在薄壁防护罩表面制备陶瓷涂层的方法和带有涂层的防护罩

Also Published As

Publication number Publication date
KR20220061090A (ko) 2022-05-12
CN110468367A (zh) 2019-11-19
US20220275518A1 (en) 2022-09-01
KR102656880B1 (ko) 2024-04-16
JP7288548B2 (ja) 2023-06-07
JP2022542655A (ja) 2022-10-06
US11834748B2 (en) 2023-12-05

Similar Documents

Publication Publication Date Title
WO2021022791A1 (zh) 基于等离子喷涂和冷喷涂技术的ic装备关键零部件表面防护涂层的制备方法
AU2019101816A4 (en) Method for preparing protective coating for plasma etching chamber of IC equipment
CN103009704A (zh) 一种纳米/类柱状晶混合结构热障涂层及其制备方法
CN113151768B (zh) 一种喷气式发动机叶片用热障涂层及其制备方法
KR101961411B1 (ko) 대면적 oled 패널 제조용 챔버의 코팅재 및 그 제조 방법
CN106591820B (zh) 一种ic装备关键零部件用高纯氧化钇涂层的制备方法
CN113151772A (zh) 一种新型高温耐蚀的双陶瓷层结构热障涂层及其制备方法
CN108218476A (zh) 一种稀土镥硅酸盐复合环境障涂层及其制备方法
CN111018568A (zh) 一种陶瓷基复合材料表面打底层的制备方法
CN113860920B (zh) 一种耐cmas腐蚀性能优的环境障涂层及其制备方法
CN112592207A (zh) 一种自愈合ZrB2-SiC-Y2O3涂层及其在SiC包埋碳碳复合材料上的应用
CN108411242B (zh) 一种具有抗粒子冲刷表面层的热障涂层及其制备方法
CN109957748B (zh) 一种ic装备关键零部件表面防护涂层的制备方法
CN112831747A (zh) 一种热防护涂层及其制备方法
WO2020207089A1 (zh) 一种超音速火焰喷涂技术制备y2o3陶瓷涂层的方法
CN110578143B (zh) 利用大气等离子喷涂制备Al-ZrO2/Y2O3复合涂层材料的方法
CN114000090A (zh) 一种氧化物/氧化物复合材料表面环境障涂层的制备方法
CN113106374A (zh) 一种耐高温高热流冲刷的复合涂层及其制备方法
CN113584421A (zh) 一种增强氧化钇涂层与基材表面结合强度的方法
CN113684439A (zh) 一种氧化钇热障涂层的制备方法
CN110408880A (zh) 一种大气等离子喷涂技术制备y+y2o3/y2o3复合涂层的方法
CN114774834B (zh) 一种高熵稀土铝酸盐热防护涂层的制备方法
CN114752881B (zh) 一种抗cmas腐蚀热障涂层的制备方法以及由此得到的热障涂层
CN113584417B (zh) 一种稀土金属盐类陶瓷复合涂层及其制备方法与应用
Lyu et al. Study on Thermal Shock Resistance of Nano-CeO2–Y2O3 Co-Stabilized ZrO2 (CYSZ) Ceramic Powders Thermal Barrier Coating of Aircraft Engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20850321

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022502908

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20850321

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20850321

Country of ref document: EP

Kind code of ref document: A1