WO2020207089A1 - 一种超音速火焰喷涂技术制备y2o3陶瓷涂层的方法 - Google Patents

一种超音速火焰喷涂技术制备y2o3陶瓷涂层的方法 Download PDF

Info

Publication number
WO2020207089A1
WO2020207089A1 PCT/CN2020/071769 CN2020071769W WO2020207089A1 WO 2020207089 A1 WO2020207089 A1 WO 2020207089A1 CN 2020071769 W CN2020071769 W CN 2020071769W WO 2020207089 A1 WO2020207089 A1 WO 2020207089A1
Authority
WO
WIPO (PCT)
Prior art keywords
flame spraying
supersonic flame
ceramic coating
preparing
spraying technology
Prior art date
Application number
PCT/CN2020/071769
Other languages
English (en)
French (fr)
Inventor
郑广文
熊天英
沈艳芳
崔新宇
王吉强
吴杰
罗婧
冯博
Original Assignee
沈阳富创精密设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 沈阳富创精密设备有限公司 filed Critical 沈阳富创精密设备有限公司
Publication of WO2020207089A1 publication Critical patent/WO2020207089A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying

Definitions

  • the invention relates to the technical field of thermal spraying, in particular to a method for preparing Y 2 O 3 ceramic coatings by supersonic flame spraying technology.
  • yttrium oxide coating has better plasma erosion resistance than alumina and has a longer service life, so it has become a new type of coating for IC equipment parts protection. In addition to etching machines, yttrium oxide ceramic coatings also have great application value in other IC equipment parts.
  • Yttrium oxide is a ceramic material, and the yttrium oxide ceramic coating can be prepared by thermal spraying technology.
  • the supersonic flame spraying technology uses propane, propylene and other hydrocarbon gas or aviation kerosene, alcohol and other liquid fuels and high-pressure oxygen to burn in the combustion chamber or special nozzles to produce high-temperature and high-pressure flame streams.
  • the temperature can reach 3200°C and the speed can reach Above 1500m/s, the powder is sent into the flame in the axial or radial direction to produce molten or semi-melted particles, which impact on the surface of the substrate at high speed to form a coating.
  • the purpose of the present invention is to provide a method for preparing Y 2 O 3 ceramic coating by supersonic flame spraying technology, which can prepare Y 2 O 3 protective coating on the inner surface of key components of IC equipment.
  • a method for preparing Y 2 O 3 ceramic coating by supersonic flame spraying technology includes the following steps:
  • the thickness of the Y 2 O 3 ceramic coating is 20-500 ⁇ m.
  • the particle size of the Y 2 O 3 powder is 5-60 ⁇ m.
  • step (2) In the method for preparing Y 2 O 3 ceramic coating by supersonic flame spraying technology, in step (2), firstly, acetone and alcohol are used to clean the surface to remove oil stains, and then sandblasting is performed after drying.
  • the sandblasting medium used is white corundum with a particle size range of 50-100 ⁇ m.
  • step (3) the supersonic flame spraying equipment is used, the fuel used is propane, the supporting gas is oxygen, and the powder feeding gas is nitrogen.
  • the gas flow rates are respectively: propane 20-80 mL/min, oxygen 100-400 mL/min and nitrogen 20-80 mL/min.
  • the supersonic flame spraying equipment used has a spraying distance of 40-120 mm and a nozzle length of 60-200 mm.
  • the design idea of the present invention is:
  • the Y 2 O 3 ceramic coating prepared by the present invention has a compact structure, and the porosity of the coating is very low, reaching 0.5% to 2%; the bonding force between the coating and the substrate can reach 60 to 120 MPa, which is better than ordinary plasma spraying and cold spraying preparations.
  • the ceramic coating has high bonding force. Therefore, the Y 2 O 3 ceramic coating prepared by the supersonic flame spraying technology has better mechanical properties.
  • Figure 1 is a process flow diagram of the present invention.
  • the process flow of the present invention is as follows: (1) Select Y 2 O 3 powder with a purity greater than 99.9 wt% for drying treatment; (2) Pretreat the surface of the sprayed substrate (3) Using supersonic flame spraying technology to spray on the surface of the substrate to prepare Y 2 O 3 ceramic coating, the thickness of the Y 2 O 3 ceramic coating ranges from 20 to 500 ⁇ m.
  • the method for preparing Y 2 O 3 ceramic coating by supersonic flame spraying technology specifically includes the following steps:
  • the fuel gas used is propane, the gas flow rate is 40mL/min; the supporting gas is oxygen, the gas flow rate is 200mL/min; the powder feeding gas is nitrogen, the gas flow rate is 50mL/min ;
  • the spraying distance is 90mm, and the nozzle length is 60mm.
  • the thickness of the Y 2 O 3 ceramic coating is 160 ⁇ m, the porosity of the coating is 1%, and the bonding force between the coating and the substrate is 60 MPa.
  • the method for preparing Y 2 O 3 ceramic coating by supersonic flame spraying technology specifically includes the following steps:
  • the supersonic flame spraying technology is used to implement the technical plan.
  • the fuel gas used is propane and the gas flow rate is 60mL/min; the supporting gas is oxygen and the gas flow rate is 180mL/min; the powder feeding gas is nitrogen and the gas flow rate is 70mL/min. min;
  • the spraying distance is 100mm, and the nozzle length is 60mm.
  • the thickness of the Y 2 O 3 ceramic coating is 220 ⁇ m, the porosity of the coating is 1.2%, and the bonding force between the coating and the substrate is 65 MPa.
  • the method for preparing Y 2 O 3 ceramic coating by supersonic flame spraying technology specifically includes the following steps:
  • the supersonic flame spraying technology is used to implement the technical plan.
  • the fuel gas used is propane and the gas flow rate is 35mL/min; the supporting gas is oxygen and the gas flow rate is 150mL/min; the powder feeding gas is nitrogen and the gas flow rate is 40mL/min. min;
  • the spraying distance is 80mm, and the nozzle length is 60mm.
  • the thickness of the Y 2 O 3 ceramic coating is 180 ⁇ m, the porosity of the coating is 0.5%, and the bonding force between the coating and the substrate is 70 MPa.
  • the results of the examples show that the Y 2 O 3 coating prepared by the present invention has a compact structure, low porosity, between 0.5% and 2%, and the bonding strength of the coating (the bonding strength between the coating and the substrate) reaches 60 to 60 80MPa.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

本发明涉及热喷涂技术领域,具体涉及一种超音速火焰喷涂技术制备Y2O3陶瓷涂层的方法。该方法包括如下步骤:(1)选择纯度大于99.9%的Y2O3粉末进行干燥处理,(2)对喷涂基材的表面进行预处理,(3)通过超音速火焰喷涂技术在基体表面进行喷涂,制备Y2O3陶瓷涂层。本发明制备的Y2O3涂层结构致密,孔隙率低,在0.5%~2%之间,涂层的结合强度(涂层与基体之间的结合强度)达到60~80MPa。

Description

一种超音速火焰喷涂技术制备Y 2O 3陶瓷涂层的方法 技术领域
本发明涉及热喷涂技术领域,具体涉及一种超音速火焰喷涂技术制备Y 2O 3陶瓷涂层的方法。
背景技术
随着22nm技术逐步用于芯片量产,集成电路线宽研发已经进入14nm以至7nm的设备和工艺攻关。此时IC装备关键零部件面临着许多新的挑战,以刻蚀机反应腔为例,一方面对刻蚀腔室内的洁净度要求越来越高,另一方面,刻蚀用强腐蚀性气体和越来越高的等离子体轰击能量,产生出高强的腐蚀环境,处于其中的金属零件会遭受严重的腐蚀,释放出金属离子或粒子污染腔体,导致芯片电路短路。
传统的IC装备零部件多采用阳极氧化铝涂层进行防护。由于零部件处于强的腐蚀性环境和离子轰击交互作用状态,一旦因腐蚀而产生金属离子溶出造成系统污染,损失将无法估量。研究表明,氧化钇涂层比氧化铝具有更好的抗等离子体冲蚀性能,且具有更长的使用寿命,因此成为IC装备零部件防护用的新型涂层。除了刻蚀机以外,氧化钇陶瓷涂层在其它IC装备零部件中也有巨大的应用价值。
氧化钇属于陶瓷材料,氧化钇陶瓷涂层可以使用热喷涂技术进行制备。超音速火焰喷涂技术是利用丙烷、丙烯等碳氢系燃气或航空煤油、酒精等液体燃料与高压氧气在燃烧室或特殊喷嘴中燃烧产生高温高压焰流,其温度可达3200℃,速度可达1500m/s以上,将粉末沿轴向或径向送入火焰中,产生熔化或半熔化粒子,其高速撞击在基体表面上形成涂层。由于喷涂颗粒以超音速飞行撞击到基体表面,所喷涂涂层的结合强度、密度和硬度都非常高。目前,国内还没有超音速火焰喷涂制备Y 2O 3陶瓷涂层的研究报道,该工作对于高纯度、高致密性Y 2O 3陶瓷涂层的研制具有重要意义。
发明内容
本发明的目的在于提供一种超音速火焰喷涂技术制备Y 2O 3陶瓷涂层的方法,可在IC装备关键零部件内表面制备Y 2O 3防护涂层。
为了达到上述方案,本发明所用的技术方案为:
一种超音速火焰喷涂技术制备Y 2O 3陶瓷涂层的方法,包括如下步骤:
(1)选择纯度大于99.9wt%的Y 2O 3粉末并进行干燥;
(2)对喷涂基材表面进行预处理;
(3)通过超音速喷涂技术在基体表面进行喷涂,制备Y 2O 3陶瓷涂层。
所述的超音速火焰喷涂技术制备Y 2O 3陶瓷涂层的方法,Y 2O 3陶瓷涂层的厚度为20~500μm。
所述的超音速火焰喷涂技术制备Y 2O 3陶瓷涂层的方法,步骤(1)中,Y 2O 3粉末的粒度为5~60μm。
所述的超音速火焰喷涂技术制备Y 2O 3陶瓷涂层的方法,步骤(2)中,先用丙酮和酒精 进行清洗去除表面油污,干燥后进行喷砂处理。
所述的超音速火焰喷涂技术制备Y 2O 3陶瓷涂层的方法,所用的喷砂介质为白刚玉,粒度范围为50~100μm。
所述的超音速火焰喷涂技术制备Y 2O 3陶瓷涂层的方法,步骤(3)中,使用的超音速火焰喷涂设备,其所用燃气为丙烷,助燃气为氧气,送粉气为氮气,其气体流量分别为:丙烷20~80mL/min,氧气100~400mL/min和氮气20~80mL/min。
所述的超音速火焰喷涂技术制备Y 2O 3陶瓷涂层的方法,所用的超音速火焰喷涂设备,其喷涂距离为40~120mm,喷管长度为60~200mm。
本发明的设计思想是:
采用超音速火焰喷涂技术将Y 2O 3陶瓷粉体喷涂到IC装备关键零部件内表面,沉积形成具有一定厚度、致密性高的高纯Y 2O 3陶瓷涂层,涂层与基体形成冶金结合,具有较高的结合强度,以延长涂层耐等离子体腐蚀的性能。
与现有的技术方案相比,本发明的优点及有益效果如下:
使用本发明制备的Y 2O 3陶瓷涂层结构致密,涂层孔隙率很低,达到0.5%~2%;涂层与基体的结合力达到60~120MPa,比普通的等离子喷涂及冷喷涂制备的陶瓷涂层结合力高。因此,采用超音速火焰喷涂技术制备的Y 2O 3陶瓷涂层具有更优异的力学性能。
附图说明
图1为本发明的工艺流程图。
具体实施方式
如图1所示,在具体实施过程中,本发明的工艺流程如下:(1)选择纯度大于99.9wt%的Y 2O 3粉末进行干燥处理;(2)对喷涂基材的表面进行预处理;(3)采用超音速火焰喷涂技术在基体表面进行喷涂,制备Y 2O 3陶瓷涂层,Y 2O 3陶瓷涂层的厚度范围为20~500μm。
下面,通过实施例对本发明的技术方案进行详细的描述。
实施例1
本实施例中,超音速火焰喷涂技术制备Y 2O 3陶瓷涂层的方法,具体包括下列步骤:
(1)选择Y 2O 3陶瓷粉末,其纯度为99.9wt%以上,粒度范围在5~60μm之间,对粉末进行干燥处理;
(2)对IC装备关键零部件内表面进行除油污和喷砂处理,使用丙酮和酒精去除油污,喷砂材料为白刚玉,粒度范围为50~80μm;
(3)采用超音速火焰喷涂进行技术方案的实施,所用燃气为丙烷,气体流量为40mL/min;助燃气为氧气,气体流量为200mL/min;送粉气为氮气,气体流量为50mL/min;喷涂距离为90mm,喷管长度为60mm。
(4)Y 2O 3陶瓷涂层的厚度为160μm,涂层的孔隙率为1%,涂层与基体的结合力为60MPa。
实施例2
本实施例中,超音速火焰喷涂技术制备Y 2O 3陶瓷涂层的方法,具体包括下列步骤:
(1)选择纯度为99.9wt%以上的Y 2O 3粉末,其粒度范围在20~40μm,粉末具有单一立方结构,进行干燥处理;
(2)对IC装备关键铝合金零部件内表面进行除油污和喷砂处理,具体的,使用丙酮和酒精去除油污,使用白刚玉进行喷砂处理,其粒度范围为80~100μm;
(3)采用超音速火焰喷涂技术进行技术方案的实施,所用燃气为丙烷,气体流量为60mL/min;助燃气为氧气,气体流量为180mL/min;送粉气为氮气,气体流量为70mL/min;喷涂距离为100mm,喷管长度为60mm。
(4)Y 2O 3陶瓷涂层的厚度为220μm,涂层的孔隙率为1.2%,涂层与基体的结合力为65MPa。
实施例3
本实施例中,超音速火焰喷涂技术制备Y 2O 3陶瓷涂层的方法,具体包括下列步骤:
(1)选择纯度为99.9wt%以上的Y 2O 3粉末,其粒度范围在40~60μm,粉末具有单一立方结构,进行干燥处理;
(2)对喷涂基材表面进行除油污和喷砂处理,具体的,使用丙酮和酒精去除油污,使用白刚玉进行喷砂处理,其粒度范围为60~90μm;
(3)采用超音速火焰喷涂技术进行技术方案的实施,所用燃气为丙烷,气体流量为35mL/min;助燃气为氧气,气体流量为150mL/min;送粉气为氮气,气体流量为40mL/min;喷涂距离为80mm,喷管长度为60mm。
(4)Y 2O 3陶瓷涂层的厚度为180μm,涂层的孔隙率为0.5%,涂层与基体的结合力为70MPa。
实施例结果表明,本发明制备的Y 2O 3涂层结构致密,孔隙率低,在0.5%~2%之间,涂层的结合强度(涂层与基体之间的结合强度)达到60~80MPa。

Claims (7)

  1. 一种超音速火焰喷涂技术制备Y 2O 3陶瓷涂层的方法,其特征在于,包括如下步骤:
    (1)选择纯度大于99.9wt%的Y 2O 3粉末并进行干燥;
    (2)对喷涂基材表面进行预处理;
    (3)通过超音速喷涂技术在基体表面进行喷涂,制备Y 2O 3陶瓷涂层。
  2. 如权利要求1所述的超音速火焰喷涂技术制备Y 2O 3陶瓷涂层的方法,其特征在于,Y 2O 3陶瓷涂层的厚度为20~500μm。
  3. 如权利要求1所述的超音速火焰喷涂技术制备Y 2O 3陶瓷涂层的方法,其特征在于,步骤(1)中,Y 2O 3粉末的粒度为5~60μm。
  4. 如权利要求1所述的超音速火焰喷涂技术制备Y 2O 3陶瓷涂层的方法,其特征在于,步骤(2)中,先用丙酮和酒精进行清洗去除表面油污,干燥后进行喷砂处理。
  5. 如权利要求4所述的超音速火焰喷涂技术制备Y 2O 3陶瓷涂层的方法,其特征在于,所用的喷砂介质为白刚玉,粒度范围为50~100μm。
  6. 如权利要求1所述的超音速火焰喷涂技术制备Y 2O 3陶瓷涂层的方法,其特征在于,步骤(3)中,使用的超音速火焰喷涂设备,其所用燃气为丙烷,助燃气为氧气,送粉气为氮气,其气体流量分别为:丙烷20~80mL/min,氧气100~400mL/min和氮气20~80mL/min。
  7. 如权利要求6所述的超音速火焰喷涂技术制备Y 2O 3陶瓷涂层的方法,其特征在于,所用的超音速火焰喷涂设备,其喷涂距离为40~120mm,喷管长度为60~200mm。
PCT/CN2020/071769 2019-04-08 2020-01-13 一种超音速火焰喷涂技术制备y2o3陶瓷涂层的方法 WO2020207089A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910276736.4 2019-04-08
CN201910276736.4A CN110004393A (zh) 2019-04-08 2019-04-08 一种超音速火焰喷涂技术制备y2o3陶瓷涂层的方法

Publications (1)

Publication Number Publication Date
WO2020207089A1 true WO2020207089A1 (zh) 2020-10-15

Family

ID=67170277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071769 WO2020207089A1 (zh) 2019-04-08 2020-01-13 一种超音速火焰喷涂技术制备y2o3陶瓷涂层的方法

Country Status (2)

Country Link
CN (1) CN110004393A (zh)
WO (1) WO2020207089A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110004393A (zh) * 2019-04-08 2019-07-12 中国科学院金属研究所 一种超音速火焰喷涂技术制备y2o3陶瓷涂层的方法
CN110468367A (zh) * 2019-08-05 2019-11-19 中国科学院金属研究所 基于等离子喷涂和冷喷涂技术的ic装备关键零部件表面防护涂层的制备方法
CN110578143B (zh) * 2019-09-30 2021-10-22 中国科学院金属研究所 利用大气等离子喷涂制备Al-ZrO2/Y2O3复合涂层材料的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101782106A (zh) * 2010-03-18 2010-07-21 苏州至顺表面科技有限公司 陶瓷涂层绝缘轴承及其制备方法
CN104233178A (zh) * 2014-09-21 2014-12-24 北京金轮坤天科技发展有限公司 一种燃机热端部件导向叶片表面长寿命类柱状晶结构热障涂层自动化制备方法
CN107267907A (zh) * 2017-06-02 2017-10-20 中国航发北京航空材料研究院 一种超音速火焰喷涂薄板形零件的变形补偿方法
CN110004393A (zh) * 2019-04-08 2019-07-12 中国科学院金属研究所 一种超音速火焰喷涂技术制备y2o3陶瓷涂层的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080213496A1 (en) * 2002-02-14 2008-09-04 Applied Materials, Inc. Method of coating semiconductor processing apparatus with protective yttrium-containing coatings
CN103074566A (zh) * 2011-10-26 2013-05-01 中国科学院微电子研究所 一种超音速等离子体喷涂技术制备y2o3涂层的方法
WO2013099890A1 (ja) * 2011-12-28 2013-07-04 株式会社 フジミインコーポレーテッド 酸化イットリウム皮膜
CN103628018A (zh) * 2012-08-24 2014-03-12 西门子公司 高速氧燃料喷涂系统及由其制备的金属陶瓷涂层
CN104357785A (zh) * 2014-11-14 2015-02-18 北京矿冶研究总院 一种快速制备等离子刻蚀机用高纯氧化钇涂层的方法
US10538845B2 (en) * 2016-06-22 2020-01-21 Ngk Spark Plug Co., Ltd. Yttrium oxyfluoride sprayed coating and method for producing the same, and sprayed member
CN106756723A (zh) * 2016-12-13 2017-05-31 江西省科学院应用物理研究所 一种利用高频爆炸喷涂技术制备高致密度陶瓷涂层的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101782106A (zh) * 2010-03-18 2010-07-21 苏州至顺表面科技有限公司 陶瓷涂层绝缘轴承及其制备方法
CN104233178A (zh) * 2014-09-21 2014-12-24 北京金轮坤天科技发展有限公司 一种燃机热端部件导向叶片表面长寿命类柱状晶结构热障涂层自动化制备方法
CN107267907A (zh) * 2017-06-02 2017-10-20 中国航发北京航空材料研究院 一种超音速火焰喷涂薄板形零件的变形补偿方法
CN110004393A (zh) * 2019-04-08 2019-07-12 中国科学院金属研究所 一种超音速火焰喷涂技术制备y2o3陶瓷涂层的方法

Also Published As

Publication number Publication date
CN110004393A (zh) 2019-07-12

Similar Documents

Publication Publication Date Title
WO2020207089A1 (zh) 一种超音速火焰喷涂技术制备y2o3陶瓷涂层的方法
RU2266978C2 (ru) Способ нанесения покрытия и коллектор ракетного двигателя с таким покрытием
CN101768714B (zh) 热障涂层激光复合等离子喷涂制备方法
JP5660748B2 (ja) 低温エアロゾル堆積方法及び物品
Aghasibeig et al. A review on suspension thermal spray patented technology evolution
WO2015151857A1 (ja) 耐プラズマ部品及び耐プラズマ部品の製造方法及び耐プラズマ部品の製造に用いる膜堆積装置
TWI385277B (zh) Preparation method of black yttrium oxide sputtering film and black yttrium oxide sputtering film coating material
JP2019533090A (ja) セラミック化合物を含む層を有する固体基材の表面をコーティングする方法、及び該方法で得られたコーティング基材
CN106148874A (zh) 一种抗cmas熔融沉积物侵蚀的热障涂层及其制备方法
CN106906437B (zh) 一种烟气轮机叶片用高耐蚀耐磨防垢涂层及其制备工艺
JP2009161789A (ja) セラミックス溶射皮膜とその製造法
JP2013514461A (ja) 大気圧でのレーザ補助プラズマコーティング方法及びそれを用いて施されたコーティングを有する超合金基板
CN108642435B (zh) 一种涡轮外环内壁大厚度高温防护涂层及其制备方法
Bhuyan et al. Sensitivity of process parameters in atmospheric plasma spray coating
CN103074566A (zh) 一种超音速等离子体喷涂技术制备y2o3涂层的方法
CN110578143B (zh) 利用大气等离子喷涂制备Al-ZrO2/Y2O3复合涂层材料的方法
CN105624604B (zh) 在零件内表面热喷涂可控成分与结构涂层的致密化制备方法
CN110616397A (zh) 一种大气等离子喷涂制备Al/(Y2O3-ZrO2)复合涂层的方法
CN103194714B (zh) 一种等离子喷涂制备碳化硼涂层的方法
JP2011256462A (ja) 保護コーティングを施工するための組成及び方法
CN103074563A (zh) 一种y2o3耐侵蚀陶瓷涂层的改进方法
Pavan et al. Review of ceramic coating on mild steel methods, applications and opportunities
CN109957748A (zh) 一种ic装备关键零部件表面防护涂层的制备方法
CN113584421A (zh) 一种增强氧化钇涂层与基材表面结合强度的方法
CN113862598A (zh) 一种用于TBCs或EBCs的抗CMAS防护层及其制备方法以及由此得到的防护结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20786686

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20786686

Country of ref document: EP

Kind code of ref document: A1