WO2019211891A1 - 繊維状カーボンナノホーン集合体の精製 - Google Patents

繊維状カーボンナノホーン集合体の精製 Download PDF

Info

Publication number
WO2019211891A1
WO2019211891A1 PCT/JP2018/017414 JP2018017414W WO2019211891A1 WO 2019211891 A1 WO2019211891 A1 WO 2019211891A1 JP 2018017414 W JP2018017414 W JP 2018017414W WO 2019211891 A1 WO2019211891 A1 WO 2019211891A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanohorn
carbon
mixture
fibrous
fibrous carbon
Prior art date
Application number
PCT/JP2018/017414
Other languages
English (en)
French (fr)
Inventor
眞由美 小坂
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US17/044,069 priority Critical patent/US20210214230A1/en
Priority to JP2020516984A priority patent/JPWO2019211891A1/ja
Priority to PCT/JP2018/017414 priority patent/WO2019211891A1/ja
Publication of WO2019211891A1 publication Critical patent/WO2019211891A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/18Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/215Purification; Recovery or purification of graphite formed in iron making, e.g. kish graphite
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/40Particle morphology extending in three dimensions prism-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the present invention relates to a carbon mixture containing fibrous carbon nanohorn aggregates and a method for separating and purifying fibrous carbon nanohorn aggregates.
  • the single-walled carbon nanohorn is a carbon structure having a conical shape in which the tip of the structure on which the graphene sheet is wound is pointed in a horn shape with a tip angle of about 20 °.
  • Patent Document 1 describes a single-walled carbon nanohorn. As described in Patent Document 1, single-walled carbon nanohorns are usually gathered radially with a conical tip portion on the outside to form a spherical carbon nanohorn aggregate having a diameter of about 100 nm.
  • FIG. 3 of Patent Document 1 shows a TEM photograph of the spherical carbon nanohorn aggregate, and its structure can be confirmed.
  • Single-walled carbon nanohorns are formed with a single graphene sheet and are considered to have high conductivity.
  • single-walled carbon nanohorns are partially chemically bonded, and similarly, it is considered to have high conductivity.
  • the contact resistance between the spherical carbon nanohorn aggregates is large, and sufficient electrical conductivity cannot be obtained with the spherical carbon nanohorn aggregates.
  • a carbon material such as a carbon nanotube having a needle-like structure can form a conductive path of about several ⁇ m, so that the effect of imparting conductivity is high, but the dispersibility is poor and it is difficult to use as a material. Moreover, when it disperse
  • Patent Document 2 describes a fibrous carbon nanohorn aggregate.
  • the fibrous carbon nanohorn aggregate is a fibrous carbon structure having a diameter of 30 nm to 200 nm and a length of 1 ⁇ m to 100 ⁇ m.
  • the surface of the fibrous carbon nanohorn aggregate has projections of single-walled carbon nanohorns having a diameter of 1 nm to 5 nm and a length of 30 nm to 100 nm.
  • the fibrous carbon nanohorn aggregate Since the single-walled carbon nanohorn having high conductivity is connected in a fibrous form and has a structure having a long conductive path, the fibrous carbon nanohorn aggregate has high conductivity. Furthermore, the fibrous carbon nanohorn aggregate also has high dispersibility, and the effect of imparting conductivity as a material is high.
  • JP 2001-64004 A Japanese Patent No. 6179678
  • the fibrous carbon nanohorn aggregate is prepared by evaporating the catalyst-containing carbon target by laser ablation while rotating the catalyst-containing carbon target in an inert gas or nitrogen gas.
  • This product is a carbon mixture containing fibrous carbon nanohorn aggregates, spherical carbon nanohorn aggregates, and graphite.
  • the long conductive path of the fibrous carbon nanohorn aggregates decreases. That is, if there are few fibrous carbon nanohorn aggregates, the conductivity of the carbon mixture will be low, and if there are many fibrous carbon nanohorn aggregates, the conductivity of the carbon mixture will be high. If the content of the fibrous carbon nanohorn aggregate can be adjusted, desired conductivity can be obtained.
  • An object of the present invention is to provide a carbon mixture having high conductivity in view of the above-described problems.
  • the first carbon material of the present invention includes fibrous carbon nanohorn aggregates having a length of 1 ⁇ m or more in an amount of 20% by weight or more.
  • a carbon mixture having high conductivity can be provided.
  • the term “carbon mixture” represents a mixture mainly composed of carbon materials such as fibrous carbon nanohorn aggregates, spherical carbon nanohorn aggregates, and graphite.
  • a carbon mixture is obtained by evaporating by laser ablation while rotating the catalyst-containing carbon target, and may contain other components such as a catalyst.
  • the total amount of fibrous carbon nanohorn aggregates, spherical carbon nanohorn aggregates, and graphite in the carbon mixture is preferably 50% by weight or more, more preferably 70% by weight or more, and may be 100% by weight.
  • the carbon mixture can be purified, and the content of the fibrous carbon nanohorn aggregate in the carbon mixture can be increased.
  • an unpurified carbon mixture a carbon mixture that has not been specially treated
  • a carbon mixture purified by the method according to the present embodiment is referred to as a “purified carbon mixture”.
  • the fibrous carbon nanohorn aggregate is formed by connecting a plurality of single-walled carbon nanohorns in a fibrous form.
  • the single-walled carbon nanohorn has a conical shape in which the tip portion of the tubular single-walled carbon nanotube is sharpened like a horn, and is composed mainly of a carbon atom surface of a graphite structure like the carbon nanotube.
  • assembly is the same as the single layer carbon nanohorn which comprises a spherical carbon nanohorn aggregate
  • each of the single-walled carbon nanohorns is connected to the fiber in a one-dimensional direction while gathering the tips radially outward.
  • the fibrous carbon nanohorn aggregate is composed of a seed type aggregate structure, a bud type aggregate structure, a dahlia type aggregate structure, a petal type (several graphene sheet structure) aggregate structure, a petal dahlia type (petal type). And at least one type of carbon nanohorn aggregate among the aggregated structure).
  • the seed mold is a shape with little or no angular protrusions on the spherical surface.
  • the bud type is a shape in which some angular protrusions are seen on the spherical surface.
  • the dahlia type is a shape in which a lot of angular protrusions are seen on a spherical surface.
  • the petal type is a shape in which petal-like protrusions are seen on a spherical surface.
  • the petal dahlia type is an intermediate structure between the dahlia type and the petal type.
  • the fibrous carbon nanohorn aggregate has a diameter of about 30 nm to 200 nm and a length of about 1 ⁇ m to 100 ⁇ m.
  • the fibrous carbon nanohorn aggregate has a length of 1 ⁇ m or more.
  • the spherical carbon nanohorn aggregates frequently observed in FIG. 2 have a diameter of about 30 nm to 200 nm and a substantially uniform size.
  • the spherical carbon nanohorn aggregate has a length of less than 1 ⁇ m.
  • the unrefined carbon mixture contains graphite and has a size of 1 ⁇ m to several tens of ⁇ m (for example, 50 ⁇ m or less).
  • a carbon mixture (purified carbon mixture) containing a fibrous carbon nanohorn aggregate at a high concentration can be obtained from a carbon mixture, particularly an unpurified carbon mixture.
  • the method according to this embodiment includes steps 1 to 3. Step 2 and step 3 are performed continuously, but step 1 may be performed before step 2 or after step 3. The method according to this embodiment may further include at least one of steps 4 to 6.
  • Step 1 removes graphite from the carbon mixture. Specifically, the carbon mixture is dispersed in an organic solvent, and the graphite is precipitated and separated. When the carbon mixture is dispersed in an organic solvent, the graphite precipitates. On the other hand, fibrous carbon nanohorn aggregates and spherical carbon nanohorn aggregates float because of low density. By collecting the supernatant of the dispersion together with the suspended solids, graphite and carbon nanohorn aggregates (fibrous carbon nanohorn aggregates and spherical carbon nanohorn aggregates) can be separated. Preferably, the solvent is removed from the recovered supernatant for further processing in other steps.
  • the method for removing the solvent is not particularly limited, and for example, the solvent may be removed by heat.
  • the organic solvent preferably has a lower density than graphite.
  • the density of the organic solvent is preferably less than 1 g / cm 3 , more preferably less than 0.8 g / cm 3 .
  • Examples of such an organic solvent include ethanol and 2-propanol. It is difficult to separate graphite with a solvent having a relatively high density such as an aqueous solvent.
  • graphite has a size of 1 ⁇ m to 100 ⁇ m and is about the same size as the fibrous carbon nanohorn aggregate, so that they cannot be separated by a filter.
  • the dispersion can be prepared, for example, by ultrasonic dispersion. When the obtained dispersion liquid is allowed to stand or is centrifuged, only the graphite is precipitated, and the solid content floating in the dispersion liquid is recovered to obtain a carbon mixture from which the graphite has been removed.
  • Step 2 a carbon mixture is dispersed in a surfactant solution to prepare a dispersion.
  • the surfactant adheres around the monodispersed fibrous carbon nanohorn aggregates and spherical carbon nanohorn aggregates to form micelles.
  • Spherical carbon nanohorn aggregates and fibrous carbon nanohorn aggregates are dispersed in a surfactant solution, and there is almost no precipitation.
  • the surfactant may be any one that spreads in a film shape on the carbon nanohorn aggregate in order to prevent aggregation of the carbon nanohorn aggregate.
  • the surfactant include nonionic surfactants such as Polyoxyethylene stearyl ether (Brij), sodium dodecyl sulfate (SDS), sodium dodecylbenzene sulfate (SDBS), sodium cholate (SC), and sodium deoxycholate.
  • nonionic surfactants such as Polyoxyethylene stearyl ether (Brij), sodium dodecyl sulfate (SDS), sodium dodecylbenzene sulfate (SDBS), sodium cholate (SC), and sodium deoxycholate.
  • ionic surfactants such as (DOC).
  • the solvent is not particularly limited, but water or a mixed solvent containing water is preferable.
  • step 3 the fibrous carbon nanohorn aggregate is separated from the dispersion prepared in step 2 with a filter. That is, the spherical carbon nanohorn aggregate and the fibrous carbon nanohorn aggregate dispersed in the dispersion are separated by a filter. A spherical carbon nanohorn aggregate having a diameter of about 100 nm passes through the filter, and a fibrous carbon nanohorn aggregate or graphite having a length of 1 ⁇ m or more does not pass through the filter. This makes it possible to separate the spherical carbon nanohorn aggregate from the fibrous carbon nanohorn aggregate and graphite if present.
  • the filter separation in step 3 is effective for the carbon mixture covered with the surfactant formed in step 2. However, when not treated with a surfactant, the carbon mixture aggregates on the filter, and the spherical carbon nanohorn aggregate does not pass through the filter and cannot be separated.
  • the filter examples include a membrane filter and filter paper.
  • a filter may be incorporated in the module and used in the form of a cross filter, a syringe filter, or the like.
  • the pore size of the filter is preferably 0.1 ⁇ m to 1 ⁇ m, more preferably 0.2 ⁇ m to 0.7 ⁇ m.
  • a filter having such a pore size is suitable for separating spherical carbon nanohorn aggregates from fibrous carbon nanohorn aggregates.
  • a filter may be used individually by 1 type and may be used in combination of 2 or more type. A combination of filters having different pore sizes may be used.
  • the residue on the filter is a carbon mixture containing a high concentration of fibrous carbon nanohorn aggregates, but may also contain spherical carbon nanohorn aggregates.
  • the residue may be filtered again to further increase the proportion of fibrous carbon nanohorn aggregates.
  • the residue By ultrasonically irradiating the residue together with the filter in the surfactant solution, the residue can be dispersed again in the solution from above the filter. The dispersion is filtered again.
  • the ratio of fibrous carbon nanohorn aggregates can be increased by performing filter separation a plurality of times.
  • the ratio of fibrous carbon nanohorn aggregates in the purified carbon mixture finally obtained can be adjusted according to the purpose of use.
  • the ratio of the fibrous carbon nanohorn aggregate in the purified carbon mixture can be controlled by the filter separation time, the number of filter separations, the filter pore size, and the like.
  • assembly in a refined carbon mixture can be raised.
  • the weight ratio or volume ratio (fibrous carbon nanohorn aggregate / spherical carbon nanohorn aggregate) of the fibrous carbon nanohorn aggregate and the spherical carbon nanohorn aggregate in the purified carbon mixture is preferably 1/5 or more, more preferably 1 / 4 or more, more preferably 1/2 or more.
  • the method according to the present embodiment may further include a step 4 of removing the surfactant from the fibrous carbon nanohorn aggregate obtained in the step 3.
  • Step 4 is performed after step 3, preferably immediately after step 3.
  • the refined carbon mixture containing the fibrous carbon nanohorn aggregate obtained in the step 3 at a high concentration is covered with a surfactant, and this is removed in order to utilize the conductivity of the fibrous carbon nanohorn aggregate. It is preferable.
  • Examples of the method for removing the surfactant include washing with an organic solvent and thermal decomposition. Examples of the organic solvent include 2-propanol.
  • the purified carbon mixture may be redispersed in a solvent such as ethanol, depending on the application.
  • the method according to this embodiment may further include a step 5 of removing the catalyst from the carbon mixture, in particular, the fibrous carbon nanohorn aggregate.
  • the timing which implements process 5 is not specifically limited, For example, you may implement prior to all processes, and may implement after all processes are completed.
  • a purified carbon mixture from which the catalyst (for example, metal such as Fe, Ni, Co, etc.) has been removed can be obtained.
  • an acid such as nitric acid, sulfuric acid, hydrochloric acid or the like can be used, and among these, hydrochloric acid which is easy to handle is particularly suitable.
  • the method according to the present embodiment may further include a step 6 of opening the fibrous carbon nanohorn aggregate.
  • the timing at which Step 6 is performed is not particularly limited.
  • the step 6 may be performed before all the steps, or may be performed after all the steps are completed.
  • a plurality of defects such as a defect having a dangling bond and a defect having a functional group can be formed on the surface of the fibrous carbon nanohorn aggregate by heating in an acid or oxygen. These defects have effects such as making the fibrous carbon nanohorn aggregate hydrophilic, or facilitating loading of other substances.
  • the acid include hydrogen peroxide and nitric acid.
  • the heating temperature is preferably within the range of room temperature to 100 ° C.
  • the content of fibrous carbon nanohorn aggregates is remarkably increased, and the contents of spherical carbon nanohorn aggregates and graphite are greatly reduced.
  • the content of the fibrous carbon nanohorn aggregate in the purified carbon mixture is 20% by volume or more or 20% by weight or more.
  • the content of the fibrous carbon nanohorn aggregate in the purified carbon mixture is preferably 50% by volume or more or 50% by weight or more, more preferably 70% by volume or more or 70% by weight or more, and 100% by volume (100% by weight). ).
  • the content of the spherical carbon nanohorn aggregate in the purified carbon mixture is preferably 50% by volume or less or 50% by weight or less, more preferably 30% by volume or less or 30% by weight or less, and further preferably 10% by volume. % Or less or 10% by weight or less, and may be 0% by volume (0% by weight).
  • the graphite content in the purified carbon mixture is preferably 10% by weight or less, more preferably 5% by weight or less, still more preferably 1% by weight or less, and may be 0% by weight.
  • the content of the catalyst in the purified carbon mixture is preferably 10% by weight or less, more preferably 5% by weight or less, still more preferably 1% by weight or less, and may be 0% by weight.
  • the content may be expressed in volume%.
  • the volume ratio can be converted to a weight ratio based on the density of the constituent components.
  • the fibrous carbon nanohorn aggregate and the spherical carbon nanohorn aggregate have substantially the same density.
  • the density of the catalyst is about 6 times that of both carbon nanohorn aggregates.
  • the density of graphite is about 1.6 times that of both carbon nanohorn aggregates.
  • the graphite content can be analyzed, for example, by thermogravimetric analysis or SEM observation.
  • thermogravimetric analysis graphite has a higher combustion temperature than fibrous and spherical carbon nanohorn aggregates.
  • the content ratio of the fibrous carbon nanohorn aggregate and the spherical carbon nanohorn aggregate can be analyzed by particle size distribution measurement by a dynamic light scattering method.
  • the spherical carbon nanohorn aggregate has a particle size distribution in the region of 100 nm to 600 nm.
  • the fibrous carbon nanohorn aggregate has a particle size distribution in the region of 1 to 10 ⁇ m.
  • Graphite is also detected in the region of 1 to 10 ⁇ m in the particle size distribution measurement.
  • a dispersion of a carbon mixture is used as a measurement sample. When the concentration of the dispersion liquid is high, fibrous carbon nanohorn aggregates may not be detected, and the solid content concentration of the dispersion liquid is preferably 0.01 mg / ml or less.
  • the fibrous carbon nanohorn aggregate is highly dispersible even at a high concentration.
  • a long conductive path increases, and the conductivity imparting effect can be dramatically increased.
  • the method according to the present embodiment is effective for any fibrous carbon nanohorn aggregate or spherical carbon nanohorn aggregate of seed type, bud type, dahlia type, and petal type, and can be separated and purified by the same method. .
  • Example 1 Preparation of unrefined carbon mixture> An unrefined carbon mixture was prepared by CO 2 laser ablation of a carbon target containing iron in a chamber under a nitrogen atmosphere. Specifically, a graphite target containing 1% by weight of iron was rotated at 2 rpm, and this was continuously irradiated with a CO 2 laser. The energy density of the CO 2 laser was 50 kW / cm 2 . The temperature in the chamber was set to room temperature, and the flow rate of nitrogen supplied into the chamber was adjusted to 10 L / min. The pressure in the chamber was controlled to 933.254 to 1266.559 hPa (700 to 950 Torr).
  • FIG. 2 is an SEM photograph of an unpurified carbon mixture produced by laser ablation.
  • the fibrous substance fibrous carbon nanohorn aggregate
  • the fibrous substance had a diameter of about 30 to 100 nm and a length of several ⁇ m to several tens of ⁇ m.
  • Most of the spherical substances (spherical carbon nanohorn aggregates) have a substantially uniform size in a diameter range of about 30 to 200 nm. From the SEM photograph, although the fibrous carbon nanohorn aggregates existed, it was observed that most of them were spherical carbon nanohorn aggregates. As shown in FIG. 3, this unrefined carbon mixture contained graphite, and the size thereof was 1 ⁇ m to several tens of ⁇ m.
  • thermogravimetric analysis of the obtained crude carbon mixture was performed. Fibrous carbon nanohorn aggregates and spherical carbon nanohorn aggregates burned at about 560 ° C., and graphite burned at about 640 ° C. As a result of thermogravimetric analysis, it was found that the amount of graphite in the crude carbon mixture was about 20% by weight.
  • Step 1> The crude carbon mixture was ultrasonically dispersed in ethanol, and the dispersion was allowed to stand for 1 day, and about 50% of the supernatant was recovered. The supernatant was dried in an oven at 150 ° C. to obtain a solvent-free carbon mixture from which graphite was removed. Table 1 shows the results of thermogravimetric analysis of the unpurified carbon mixture and the carbon mixture from which the graphite was removed. By collecting the supernatant liquid, it was confirmed that graphite was removed from the unpurified carbon mixture. When SEM observation of the carbon mixture from which graphite was removed, graphite was not observed, but a large amount of spherical carbon nanohorn aggregates and a small amount of fibrous carbon nanohorn aggregates were observed.
  • FIG. 4 shows the result of measuring the particle size distribution of the supernatant liquid by the dynamic light scattering method.
  • the supernatant was diluted to a concentration of 0.01 mg / ml and measured using this.
  • size distributions in the region of 100 nm to 600 nm and the region of 8 ⁇ m to 10 ⁇ m were detected. From this SEM photograph, only spherical carbon nanohorn aggregates and fibrous carbon nanohorn aggregates are observed in this sample, so the area of 100 to 600 nm is spherical carbon nanohorn aggregates, and the area of 8 to 10 ⁇ m is fibrous carbon nanohorn aggregates. It turns out that.
  • the carbon mixture after the removal of graphite contained 94% by volume of spherical carbon nanohorn aggregates and 6% by volume of fibrous carbon nanohorn aggregates.
  • Step 2> The carbon mixture from which the graphite had been removed was ultrasonically dispersed in an aqueous solution containing 1% by weight of polyoxyethylene stearyl ether (Brij). Both spherical carbon nanohorn aggregates and fibrous carbon nanohorn aggregates were dispersed in the surfactant solution and did not precipitate.
  • Brij polyoxyethylene stearyl ether
  • Step 3> The dispersion was filtered using a membrane filter (hydrophilic durapo membrane, material polyvinylidene fluoride (PVDF)) having a pore size of 0.2 ⁇ m to 0.65 ⁇ m.
  • PVDF material polyvinylidene fluoride
  • Step 4> The residue was washed on the filter with 2-propanol, pure water, and ethanol to remove the surfactant. Ultrasonic was irradiated to the residue from which the surfactant was removed together with the filter in ethanol, and the residue was dispersed in ethanol.
  • FIG. 5 shows the particle size distribution measurement results of the ethanol dispersion. Size distributions in the 100 nm to 600 nm region and the 8 ⁇ m to 10 ⁇ m region were confirmed. It was found that the ratio of fibrous carbon nanohorn aggregates increased to 90% by volume or more, and the ratio of spherical carbon nanohorn aggregates decreased to several volume%.
  • FIG. 6 is an SEM photograph of the purified carbon mixture. Fibrous carbon nanohorn aggregates were mainly observed, and it was observed that the amount of spherical carbon nanohorn aggregates was significantly reduced as compared with FIG.
  • An ethanol dispersion was dropped onto a silicon substrate and dried to prepare a purified carbon mixture thin film having a thickness of about 0.5 ⁇ m.
  • the resistivity of the thin film was measured by four-probe measurement.
  • a thin film of the unpurified carbon mixture used in this example was also prepared and the resistivity was measured.
  • the resistivity was 3.5 ⁇ cm for the unrefined carbon mixture and 0.3 ⁇ cm for the purified carbon mixture. From this result, it was confirmed that the carbon mixture having high conductivity can be obtained by increasing the ratio of the fibrous carbon nanohorn aggregate without impairing the conductivity of the fibrous carbon nanohorn aggregate.
  • Example 2 Except having changed the frequency
  • Example 1 The crude carbon mixture of Example 1 was ultrasonically dispersed in ethanol, and the dispersion was allowed to stand for 1 day, and about 50% of the supernatant was recovered. The supernatant was filtered using a membrane filter (hydrophilic durapo membrane, material PVDF) having a pore diameter of 0.65 ⁇ m. Only ethanol passed through the filter, leaving all solids on the filter.
  • a membrane filter hydrophilic durapo membrane, material PVDF
  • Example 2 The crude carbon mixture of Example 1 was ultrasonically dispersed in an aqueous solution containing 1% by weight of polyoxyethylene stearyl ether (Brij), and the dispersion was allowed to stand for 1 day. About 50% of the supernatant of the dispersion was recovered. When the particle size distribution measurement is performed on the dispersion immediately after ultrasonic dispersion and the supernatant collected after standing by dynamic light scattering, the size distribution is detected in the region of 100 to 600 nm and in the region of 8 to 10 ⁇ m. It was found that the graphite was not separated.
  • Brij polyoxyethylene stearyl ether
  • the surfactant was removed by washing the dispersion with 2-propanol, pure water, and ethanol on the membrane filter.
  • the obtained carbon mixture was observed by SEM, a large amount of graphite was observed as in FIG. 3, and it was found that the graphite was not removed.
  • Example 3 The crude carbon mixture of Example 1 was ultrasonically dispersed in ethanol, and the dispersion was centrifuged at about 100 g for 10 minutes, and about 50% of the supernatant was recovered. Next, the supernatant was dried in an oven at 150 ° C., and the obtained carbon mixture was ultrasonically dispersed in an aqueous solution containing 1% by weight of sodium dodecylbenzene sulfate (SDBS). Both spherical carbon nanohorn aggregates and fibrous carbon nanohorn aggregates were dispersed in the surfactant solution, and none of them precipitated.
  • SDBS sodium dodecylbenzene sulfate
  • This dispersion was repeatedly circulated through a cross filter using a hollow fiber filter (Spectrum Laboratories, Inc., mPES hollow fiber filter module) having a pore diameter of 0.2 to 0.65 ⁇ m, and passed through the hole of the hollow fiber filter. A dispersion and a dispersion that did not pass were obtained.
  • a hollow fiber filter Spectrum Laboratories, Inc., mPES hollow fiber filter module
  • the surfactant was removed by washing the dispersion that did not pass through the pores of the hollow fiber filter with 2-propanol, pure water, and ethanol on the membrane filter.
  • the residue on the filter from which the surfactant was removed was irradiated with ultrasonic waves in ethanol to disperse the residue in ethanol.
  • FIG. 7 shows the particle size distribution measurement results of this ethanol dispersion. It was found that the ratio of fibrous carbon nanohorn aggregates increased to 90% by volume or more, and the ratio of spherical carbon nanohorn aggregates decreased to several volume%.
  • the ethanol dispersion was dried in an oven at 150 ° C., and the obtained purified carbon mixture was observed by SEM. Fibrous carbon nanohorn aggregates were mainly observed, and it was observed that the amount of spherical carbon nanohorn aggregates was greatly reduced.
  • the ratio of the fibrous carbon nanohorn aggregates could be changed by changing the number and time of cross filter circulation.
  • Example 4 10 mg of the crude carbon mixture of Example 1 was dispersed in 200 ml of aqueous hydrogen peroxide (30%), and heated with a water bath at 70 ° C. for 3 hours while stirring at 300 rpm with a stirrer. After heating, the dispersion was filtered through a filter having a pore size of 0.2 ⁇ m, and the residue on the filter was washed twice with pure water. The residue was then dried in an oven at 100 ° C. for 48 hours. By this treatment, small pores and defects could be formed on the surfaces of the fibrous carbon nanohorn aggregate and the spherical carbon nanonanohorn aggregate contained in the unpurified carbon mixture.
  • the graphite was removed in the same manner as in Example 1 from the carbon mixture containing the fibrous carbon nanohorn aggregate from which this defect was produced. Thereafter, the obtained carbon mixture was ultrasonically dispersed in an aqueous solution containing 1% by weight of sodium dodecyl sulfate (SDS) and separated by filtration. The ratio of fibrous carbon nanohorn aggregates in the carbon mixture could be greatly increased.
  • SDS sodium dodecyl sulfate
  • Example 5 After heating 10 mg of the crude carbon mixture of Example 1 in air at 400 ° C., the mixture was stirred twice in 200 ml of hydrochloric acid heated to 70 ° C. for 1 hour to remove the contained iron catalyst.
  • Graphite was removed from the carbon mixture from which the catalyst had been removed in the same manner as in Example 1. Thereafter, the obtained carbon mixture was ultrasonically dispersed in an aqueous solution containing 1% by weight of sodium cholate (SC) and separated by filtration. The ratio of fibrous carbon nanohorn aggregates in the carbon mixture could be greatly increased.
  • SC sodium cholate
  • Example 3 The crude carbon mixture of Example 1 was ultrasonically dispersed in ethanol, and about 50% of the supernatant was recovered in the same manner as in Example 1. Next, the supernatant was divided into two, and centrifuged at about 500 g and about 1000 g, respectively, for 30 minutes to collect the precipitate. When the carbon mixture obtained by drying the precipitate was observed by SEM, fibrous carbon nanohorn aggregates and spherical carbon nanohorn aggregates were observed in both samples as before the centrifugation. It was found that centrifugal carbon nanohorn aggregates and spherical carbon nanohorn aggregates cannot be separated efficiently by centrifugation.
  • Example 4 The crude carbon mixture of Example 1 was ultrasonically dispersed in ethanol, and about 50% of the supernatant was recovered in the same manner as in Example 1. Next, the supernatant was separated into three, and gel filtration chromatography was performed using three types of gels (Sephaacryl S-300, S-500, S-1000). The dispersion was hardly separated by any gel filtration chromatography and dropped at the same time. When the gel-filtered dispersion was dried and the obtained carbon mixture was observed by SEM, fibrous carbon nanohorn aggregates and spherical carbon nanohorn aggregates were observed in the same manner as before gel filtration chromatography. It was found that gel filtration chromatography cannot efficiently separate fibrous carbon nanohorn aggregates from spherical carbon nanohorn aggregates.
  • Example 6 The unrefined carbon mixture of Example 1 was ultrasonically dispersed in an aqueous solution containing 1% by weight of Polyoxyethylene stearyl ether (Brij). Filtration and dispersion of this dispersion liquid were repeated several times using a membrane filter having a pore size of 0.2 ⁇ m to 0.65 ⁇ m as in Example 1. By repeating filtration and dispersion, the ratio of fibrous carbon nanohorn aggregates increased. Since not only fibrous carbon nanohorn aggregates but also graphite remains on the filter, the filter is easily clogged, and in order to make the ratio of fibrous carbon nanohorn aggregates the same, the number of times of filtration is higher than in Example 1. Increased.
  • Brij Polyoxyethylene stearyl ether
  • the surfactant was removed by washing the residue on the filter with 2-propanol, pure water, and ethanol.
  • the residue on the filter from which the surfactant was removed was irradiated with ultrasonic waves in ethanol to disperse the residue in ethanol.
  • Example 1 The dispersion was allowed to stand for 1 day, and about 50% of the supernatant was recovered.
  • the particle size distribution was measured in the same manner as in Example 1.
  • the supernatant liquid was dried to obtain a purified carbon mixture. This was observed by SEM.
  • the results of particle size distribution measurement and SEM observation were the same as in Example 1.
  • Appendix 8 A method for separating and purifying a fibrous carbon nanohorn aggregate having a length of 1 ⁇ m or more from a carbon mixture, Removing graphite from the carbon mixture; Step 2 of dispersing the carbon mixture in a surfactant solution to prepare a dispersion; Step 3 of separating the fibrous carbon nanohorn aggregate from the dispersion with a filter; Including methods.
  • Appendix 12 The method according to any one of appendices 8 to 11, wherein the pore size of the filter is 0.1 ⁇ m to 1 ⁇ m.
  • Appendix 16 The method according to any one of appendices 8 to 15, further comprising a step 6 of opening the fibrous carbon nanohorn aggregate.
  • the carbon mixture according to the present embodiment is a material having high conductivity and high dispersibility, adsorptivity, and specific surface area.
  • the carbon mixture according to this embodiment can be mixed with conductive particles, a curable resin, a curing agent, and the like to produce a conductive paste.
  • the carbon mixture according to this embodiment can be used as an electrode material, a composite material, a conductive film material, an actuator, a capacitor, and a support material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本発明の目的は、高い導電性を有する炭素混合物を提供することにある。本発明の炭素混合物は、長さが1μm以上の繊維状カーボンナノホーン集合体を20重量%以上の量で含むことを特徴とする。

Description

繊維状カーボンナノホーン集合体の精製
 本発明は、繊維状カーボンナノホーン集合体を含む炭素混合物および繊維状カーボンナノホーン集合体の分離精製方法に関する。
 単層カーボンナノホーンはグラフェンシートが巻かれた構造の先端が先端角約20°の角(ホーン)状に尖った、円錐型の形状の炭素構造体である。特許文献1は、単層カーボンナノホーンについて記載している。特許文献1に記載される通り、通常、単層カーボンナノホーンは円錐状の先端部を外側にして放射状に集合し、直径約100nm程度の球状カーボンナノホーン集合体を形成している。特許文献1の図3には、球状カーボンナノホーン集合体のTEM写真が示されており、その構造を確認できる。
 単層カーボンナノホーンは、グラフェンシート1つで形成され、導電性が高いと考えられる。球状カーボンナノホーン集合体は単層カーボンナノホーンが部分的に化学的に結合しており、同様に、導電性が高いと考えられる。しかし、球状カーボンナノホーン集合体同士の接触抵抗が大きく、球状カーボンナノホーン集合体では十分な導電性を得ることができない。
 針状構造を持つカーボンナノチューブ等の炭素材料は、数μm程度の導電パスを形成できることから導電性付与の効果が高いが、分散性が悪く、材料として使用しにくい。また、使用する場合に強い超音波等で分散させると、欠陥が増加し導電性が落ちる課題がある。
 近年、球状のカーボンナノホーン集合体とは異なり、単層カーボンナノホーンが放射状に集合し、且つ、繊維状に伸びた構造を有する繊維状カーボンナノホーン集合体が発見された。特許文献2は、繊維状カーボンナノホーン集合体について記載している。繊維状カーボンナノホーン集合体は、直径が30nm~200nmであり、長さが1μm~100μmである繊維状の炭素構造体である。繊維状カーボンナノホーン集合体の表面には、直径1nm~5nm、長さが30nm~100nmの単層カーボンナノホーンの突起を有している。導電性が高い単層カーボンナノホーンが繊維状に繋がり、長い導電性パスを持つ構造を特徴とするため、繊維状カーボンナノホーン集合体は高い導電性を有する。更に、繊維状カーボンナノホーン集合体は、高い分散性を併せ持っており、材料としての導電性付与の効果が高い。
特開2001-64004号公報 特許第6179678号公報
 繊維状カーボンナノホーン集合体は、特許文献2に記載される通り、不活性ガスまたは窒素ガス中で触媒含有炭素ターゲットを回転させながら、触媒含有炭素ターゲットをレーザーアブレーションにより蒸発させることによって調製される。この生成物は、繊維状カーボンナノホーン集合体、球状カーボンナノホーン集合体、グラファイトを含む炭素混合物である。
 炭素混合物中、繊維状カーボンナノホーン集合体が少なく、球状カーボンナノホーン集合体やグラファイトが多いと、繊維状カーボンナノホーン集合体の長い導電性パスが少なくなる。即ち、繊維状カーボンナノホーン集合体が少ないと炭素混合物の導電性が低くなり、繊維状カーボンナノホーン集合体が多いと炭素混合物の導電性は高くなる。繊維状カーボンナノホーン集合体の含有量を調整することができれば、所望の導電性を得ることができる。
 しかし、特許文献2に記載される方法により得られる炭素混合物における繊維状カーボンナノホーン集合体の含有量は数重量%と少なかった。更に、これまでに炭素混合物における繊維状カーボンナノホーン集合体の含有量を高める方法は開示されていなかった。このため、高い導電性を有する炭素混合物を得ることができなかった。
 本発明の目的は、上述した課題を鑑み、高い導電性を有する炭素混合物を提供することにある。
 本発明の第1の炭素材料は、長さが1μm以上の繊維状カーボンナノホーン集合体を20重量%以上の量で含むことを特徴とする。
 本発明によれば、高い導電性を有する炭素混合物を提供できる。
本実施形態に係る方法の工程フロー図である。 レーザーアブレーションで得られた未精製炭素混合物のSEM写真である。 レーザーアブレーションで得られた未精製炭素混合物のSEM写真である。 グラファイト除去後の炭素混合物の動的光散乱法による粒度分布測定結果である。 精製炭素混合物の動的光散乱法による粒度分布測定結果である。 精製炭素混合物のSEM写真である。 精製炭素混合物の動的光散乱法による粒度分布測定結果である。
 以下に本発明の実施形態について説明する。但し、以下に述べる実施形態には本発明を実施するために技術的に好ましい限定がされているが、発明の範囲を以下に限定するものではない。
<炭素混合物>
 本明細書において、用語「炭素混合物」は、繊維状カーボンナノホーン集合体、球状カーボンナノホーン集合体、グラファイト等の炭素材料を主成分とする混合物を表す。通常、このような炭素混合物は、触媒含有炭素ターゲットを回転させながらレーザーアブレーションにより蒸発させることによって得られ、例えば、触媒等その他の成分を含んでもよい。炭素混合物における繊維状カーボンナノホーン集合体、球状カーボンナノホーン集合体、およびグラファイトの総量は、好ましくは50重量%以上、より好ましくは70重量%以上であり、100重量%であってもよい。本実施形態に係る方法によれば、炭素混合物を精製し、炭素混合物における繊維状カーボンナノホーン集合体の含有量を高めることができる。本明細書において、レーザーアブレーション後、特段の処理をしていない炭素混合物を「未精製炭素混合物」と呼び、本実施形態に係る方法により精製された炭素混合物を「精製炭素混合物」と呼ぶ。
 繊維状カーボンナノホーン集合体は、複数の単層カーボンナノホーンが繊維状に繋がって形成される。ここで、単層カーボンナノホーンは、管状の単層カーボンナノチューブの先端部が角(ホーン)状に尖った円錐形状を有し、カーボンナノチューブと同様に主にグラファイト構造の炭素原子面から構成されている。なお、繊維状カーボンナノホーン集合体を構成している各単層カーボンナノホーンは、球状カーボンナノホーン集合体を構成する単層カーボンナノホーンと同じである。球状カーボンナノホーン集合体および繊維状カーボンナノホーン集合体は、ともに単層カーボンナノホーンの各々が角(ホーン)を外側に放射状に集合している。また、とくに、繊維状カーボンナノホーン集合体では、単層カーボンナノホーンの各々が先端を外側に放射状に集合しながら一次元方向に繊維状につながっている。また、この際、繊維状カーボンナノホーン集合体は、種型の集合構造、つぼみ型の集合構造、ダリア型の集合構造、ペタル型(数枚のグラフェンシート構造)の集合構造、ペタルダリア型(ペタル型とダリア型が混在した状態)の集合構造のうち少なくとも1種類のカーボンナノホーン集合体で形成される。種型は、球状の表面に角状の突起がほとんどみられないか、あるいは全くみられない形状である。また、つぼみ型は、球状の表面に角状の突起が多少みられる形状である。ダリア型は、球状の表面に角状の突起が多数みられる形状である。ペタル型は、球状の表面に花びら状の突起がみられる形状である。ペタルダリア型は、ダリア型とペタル型の中間的な構造である。
 図2と図3は、レーザーアブレーションによって生成された繊維状カーボンナノホーン集合体を含む未精製炭素混合物のSEM写真である。図2のように、繊維状カーボンナノホーン集合体は、直径が30nm~200nm程度で、長さが1μm~100μm程度である。このように、繊維状カーボンナノホーン集合体は、1μm以上の長さを有する。図2に多く観察される球状カーボンナノホーン集合体は直径30nm~200nm程度でほぼ均一なサイズである。このように、球状カーボンナノホーン集合体は、1μm未満の長さを有する。図3に示すように、未精製炭素混合物にはグラファイトが含まれており、その大きさは1μm~数十μm(例えば、50μm以下)である。
<繊維状カーボンナノホーンの分離精製方法>
 本実施形態に係る方法によれば、炭素混合物、特には未精製炭素混合物、から繊維状カーボンナノホーン集合体を高濃度で含む炭素混合物(精製炭素混合物)を得ることができる。本実施形態に係る方法は、工程1~工程3を含む。工程2および工程3は、連続して行われるが、工程1は工程2の前に実施しても、工程3の後に実施してもよい。本実施形態に係る方法は、更に工程4~工程6の少なくとも1つの工程を含んでもよい。
<工程1>
 工程1では、炭素混合物からグラファイトを取り除く。具体的には、炭素混合物を有機溶媒に分散させ、グラファイトを沈降分離する。有機溶媒に炭素混合物を分散させると、グラファイトは沈降する。その一方で、繊維状カーボンナノホーン集合体や球状カーボンナノホーン集合体は密度が低いため浮遊する。浮遊している固形分とともに分散液の上澄み液を回収することにより、グラファイトとカーボンナノホーン集合体(繊維状カーボンナノホーン集合体および球状カーボンナノホーン集合体)とを分離することができる。他の工程での更なる処理のため、好ましくは、回収した上澄み液から溶媒を除去する。溶媒の除去方法は、特に限定されず、例えば、熱により溶媒を除去してよい。
 有機溶媒は、グラファイトより密度の低いものが好ましい。有機溶媒の密度は、好ましくは1g/cm未満、より好ましくは0.8g/cm未満である。このような有機溶媒としては、例えば、エタノールや2-プロパノール等が挙げられる。水系溶媒のように密度が比較的高い溶媒ではグラファイトを分離することが困難となる。また、グラファイトは1μm~100μmの大きさで、繊維状カーボンナノホーン集合体と同程度の大きさであることから、これらをフィルターでは分離することができない。分散液は、例えば、超音波分散により調製できる。得られた分散液を静置または遠心分離することによってグラファイトのみを沈降させ、分散液に浮遊している固形分を回収すると、グラファイトが取り除かれた炭素混合物が得られる。
<工程2>
 工程2では、界面活性剤溶液に炭素混合物を分散させ、分散液を調製する。炭素混合物を界面活性剤溶液に分散させると、単分散した繊維状カーボンナノホーン集合体や球状カーボンナノホーン集合体の周囲に界面活性剤が付着し、ミセルを形成する。球状カーボンナノホーン集合体と繊維状カーボンナノホーン集合体は界面活性剤溶液に分散され、沈殿するものはほぼない。
 界面活性剤は、カーボンナノホーン集合体の凝集を防止するためにカーボンナノホーン集合体上に膜状に広がるものであればよい。界面活性剤としては、例えば、Polyoxyethylene stearyl ether(Brij)等の非イオン性界面活性剤、およびドデシル硫酸ナトリウム(SDS)、ドデシルベンゼン硫酸ナトリウム(SDBS)、コール酸ナトリウム(SC)、デオキシコール酸ナトリウム(DOC)等のイオン性界面活性剤等が挙げられる。溶媒は特には限定されないが、水または水を含む混合溶媒が好ましい。
<工程3>
 工程3では、工程2で作製した分散液から繊維状カーボンナノホーン集合体をフィルターで分離する。即ち、分散液に分散している球状カーボンナノホーン集合体および繊維状カーボンナノホーン集合体をフィルターで分離する。直径100nm程度の球状カーボンナノホーン集合体はフィルターを通り抜け、1μm以上の長さを有する繊維状カーボンナノホーン集合体やグラファイトはフィルターを通り抜けない。これにより、球状カーボンナノホーン集合体と、繊維状カーボンナノホーン集合体および存在する場合グラファイトとを分離できる。工程3のフィルター分離は工程2で形成した界面活性剤で覆われた炭素混合物に対しては有効である。しかしながら、界面活性剤で処理しない場合、フィルター上で炭素混合物が凝集し、球状カーボンナノホーン集合体がフィルターを通過せず、これを分離することができない。
 フィルターとしては、例えば、メンブレンフィルター、濾紙等が挙げられる。フィルターをモジュールに組み込み、クロスフィルターやシリンジフィルター等の形態で使用してもよい。フィルターの孔径は、好ましくは0.1μm~1μm、より好ましくは0.2μm~0.7μmである。このような孔径を有するフィルターは、球状カーボンナノホーン集合体と繊維状カーボンナノホーン集合体との分離に好適である。フィルターは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。異なる孔径のフィルターを組み合わせて用いてもよい。
 フィルター上の残留物は、繊維状カーボンナノホーン集合体を高濃度で含む炭素混合物であるが、球状カーボンナノホーン集合体も含み得る。繊維状カーボンナノホーン集合体の比率を更に高めるために残留物を再度フィルター分離してもよい。フィルターとともに残留物を界面活性剤溶液中で超音波照射することにより、フィルター上から残留物を溶液中に再度分散できる。分散液は再度フィルター分離される。このように、複数回フィルター分離を行うことによって繊維状カーボンナノホーン集合体の比率を上げることができる。
 工程3では最終的に得られる精製炭素混合物中の繊維状カーボンナノホーン集合体の比率を使用目的に応じて調整できる。例えば、フィルター分離の時間、フィルター分離の回数、およびフィルター孔径等によって、精製炭素混合物中の繊維状カーボンナノホーン集合体の比率を制御することができる。これにより、精製炭素混合物中の繊維状カーボンナノホーン集合体と球状カーボンナノホーン集合体の重量比または体積比を上げることができる。精製炭素混合物中の繊維状カーボンナノホーン集合体と球状カーボンナノホーン集合体の重量比または体積比(繊維状カーボンナノホーン集合体/球状カーボンナノホーン集合体)は、好ましくは1/5以上、より好ましくは1/4以上、更に好ましくは1/2以上である。
<工程4>
 本実施形態に係る方法は、工程3で得られた繊維状カーボンナノホーン集合体から界面活性剤を除去する工程4を更に含んでよい。工程4は、工程3の後に実施され、好ましくは工程3の直後に実施される。工程3で得られる繊維状カーボンナノホーン集合体を高濃度で含む精製炭素混合物は、界面活性剤で覆われており、繊維状カーボンナノホーン集合体の導電性を活用するためには、これを除去することが好ましい。界面活性剤を除去する方法としては、例えば、有機溶媒による洗浄や熱分解が挙げられる。有機溶媒としては、例えば、2-プロパノール等が挙げられる。工程4を経ることにより、界面活性剤に覆われていない繊維状カーボンナノホーン集合体を高濃度で含む精製炭素混合物を得ることができる。精製炭素混合物は、用途に応じて、エタノール等の溶媒に再分散してもよい。
<工程5>
 本実施形態に係る方法は、炭素混合物、特には繊維状カーボンナノホーン集合体、から触媒を除去する工程5を更に含んでよい。工程5を実施するタイミングは特に限定されず、例えば、全ての工程に先立って実施してもよく、また、全ての工程が完了した後に実施してもよい。工程5を行うことで、触媒(例えば、Fe、Ni、Co等の金属)を除去した精製炭素混合物を得ることができる。触媒除去には、硝酸、硫酸、塩酸等の酸を用いることができ、これらの中で扱いが容易な塩酸が特に適している。触媒を十分に除去するためには70℃以上に加熱して行うことが望ましい。触媒が炭素被膜で覆われている場合には、例えば250℃~450℃程度の空気中で炭素混合物を加熱する前処理を行うことが望ましい。
<工程6>
 本実施形態に係る方法は、繊維状カーボンナノホーン集合体を開孔する工程6を更に含んでよい。工程6を実施するタイミングは特に限定されず、例えば、全ての工程に先立って実施してもよく、また、全ての工程が完了した後に実施してもよい。酸もしくは酸素中での加熱等で、繊維状カーボンナノホーン集合体の表面にダングリングボンドを持つ欠陥や官能基がついた欠陥等の複数の欠陥をつけることができる。これらの欠陥は、繊維状カーボンナノホーン集合体を親水性にする、あるいはその他の物質の担持を容易にする等の効果がある。酸としては、例えば、過酸化水素や硝酸等が挙げられる。加熱温度は、室温~100℃の範囲内が好ましい。
 カーボンナノチューブに欠陥を生じさせると、カーボンナノチューブの導電性が低下する問題が起こる。一方、繊維状カーボンナノホーン集合体では、ナノホーン部分に傷をつけることによってそのグラフェンシートに欠陥が生じても、放射状の構造からナノホーン部分の表面積が大きいため、全体の導電性への影響は小さい。
<精製炭素混合物>
 本実施形態に係る方法により得られる精製炭素混合物では、繊維状カーボンナノホーン集合体の含有量が著しく増加し、球状カーボンナノホーン集合体とグラファイトの含有量が大幅に減少している。本実施形態において、精製炭素混合物中の繊維状カーボンナノホーン集合体の含有量は20体積%以上または20重量%以上である。繊維状カーボンナノホーン集合体の含有量を20体積%以上または20重量%以上とすることで、導電性効果を大きく改善できる。精製炭素混合物中の繊維状カーボンナノホーン集合体の含有量は、好ましくは50体積%以上または50重量%以上、より好ましくは70体積%以上または70重量%以上であり、100体積%(100重量%)であってもよい。本実施形態において、精製炭素混合物中の球状カーボンナノホーン集合体の含有量は、好ましくは50体積%以下または50重量%以下、より好ましくは30体積%以下または30重量%以下、更に好ましくは10体積%以下または10重量%以下であり、0体積%(0重量%)であってもよい。本実施形態において、精製炭素混合物中のグラファイトの含有量は、好ましくは10重量%以下、より好ましくは5重量%以下、更に好ましくは1重量%以下であり、0重量%であってもよい。工程5を実施した場合、触媒の含有量を低減できる。本実施形態において、精製炭素混合物中の触媒の含有量は、好ましくは10重量%以下、より好ましくは5重量%以下、更に好ましくは1重量%以下であり、0重量%であってもよい。分析方法によっては含有量を体積%で表す場合がある。体積比率は構成成分の密度を基に重量比率に換算できる。繊維状カーボンナノホーン集合体と球状カーボンナノホーン集合体は密度がほぼ同じである。触媒の密度は両カーボンナノホーン集合体の6倍程度である。グラファイトの密度は両カーボンナノホーン集合体の1.6倍程度である。
 グラファイトの含有量は、例えば、熱重量分析やSEM観察で分析することができる。熱重量分析において、グラファイトは、繊維状および球状カーボンナノホーン集合体よりも燃焼温度が高い。
 繊維状カーボンナノホーン集合体と球状カーボンナノホーン集合体の含有比率は、動的光散乱法による粒度分布測定により分析することができる。球状カーボンナノホーン集合体は100nm~600nmの領域に粒度分布を有する。繊維状カーボンナノホーン集合体は1~10μmの領域に粒度分布を有する。グラファイトも粒度分布測定では1~10μmの領域に検出される。粒度分布測定では、炭素混合物の分散液を測定試料とする。分散液の濃度が濃いと、繊維状カーボンナノホーン集合体が検出されないことがあり、分散液の固形分濃度は0.01mg/ml以下が好ましい。
 繊維状カーボンナノホーン集合体は高濃度であっても分散性が高い。繊維状カーボンナノホーン集合体を高濃度で含む炭素混合物では、長い導電パスが増加し、導電性付与効果を劇的に高めることができる。
 本実施形態に係る方法は、種型、つぼみ型、ダリア型、ペタル型の、いずれの繊維状カーボンナノホーン集合体や球状カーボンナノホーン集合体に有効であり、同様の方法で分離精製が可能である。
 以下に実施例を示し、更に具体的に本発明について説明する。ただし、以下の例によって発明が限定されることはない。
(実施例1)
<未精製炭素混合物の調製>
 窒素雰囲気下のチャンバー内で、鉄を含有した炭素ターゲットをCOレーザーアブレーションすることで未精製炭素混合物を作製した。詳細には、鉄を1重量%含有するグラファイトターゲットを、2rpmで回転させて、これにCOレーザーを連続的に照射した。COレーザーのエネルギー密度は、50kW/cmであった。チャンバー内の温度は室温とし、チャンバー内に供給する窒素の流量を10L/minになるように調整した。チャンバー内の圧力は933.254~1266.559hPa(700~950Torr)に制御した。
 図2はレーザーアブレーションで生成された未精製炭素混合物のSEM写真である。繊維状の物質(繊維状カーボンナノホーン集合体)は、直径が30~100nm程度で、長さが数μm~数10μmであった。球状の物質(球状カーボンナノホーン集合体)は、直径が30~200nm程度の範囲でほぼ均一なサイズのものが多くを占めていた。SEM写真から、繊維状カーボンナノホーン集合体は存在するものの、大部分が球状カーボンナノホーン集合体であることが観察された。この未精製炭素混合物には、図3に示すように、グラファイトが含まれており、その大きさは1μm~数十μmであった。
 得られた未精製炭素混合物の熱重量分析を行った。繊維状カーボンナノホーン集合体と球状カーボンナノホーン集合体は約560℃で燃焼し、グラファイトは約640℃で燃焼した。熱重量分析の結果、未精製炭素混合物中のグラファイトの量は20重量%程度であることが分かった。
<工程1>
 未精製炭素混合物をエタノールに超音波分散し、その分散液を1日静置し、上澄み液約50%を回収した。上澄み液を150℃のオーブンで乾燥し、グラファイトを除去した溶媒不含の炭素混合物を得た。表1に、未精製炭素混合物およびグラファイトを除去した炭素混合物の熱重量分析結果を示す。上澄み液を回収することで、未精製炭素混合物からグラファイトが除去されていることを確認できた。グラファイトを除去した炭素混合物をSEM観察すると、グラファイトは観察されず、多量の球状カーボンナノホーン集合体と少量の繊維状カーボンナノホーン集合体が観察された。
Figure JPOXMLDOC01-appb-T000001
 図4は、上澄み液を動的光散乱法による粒度分布測定した結果である。上澄み液を0.01mg/mlの濃度に薄め、これを用いて測定した。その結果、100nm~600nmの領域と8μm~10μmの領域のサイズ分布が検出された。SEM写真からこのサンプルには球状カーボンナノホーン集合体と繊維状カーボンナノホーン集合体しか観察されていないため、100nm~600nmの領域が球状カーボンナノホーン集合体、8~10μmの領域が繊維状カーボンナノホーン集合体であることが分かった。
 このサイズ分布領域から、球状カーボンナノホーン集合体と繊維状カーボンナノホーン集合体はエタノール中でほぼ単分散あるいは数個程度の凝集体で分散している状態であることが分かった。
 また、この粒度分布測定結果から、グラファイト除去後の炭素混合物には、球状カーボンナノホーン集合体が94体積%、繊維状カーボンナノホーン集合体が6体積%の比率で含まれていることが分かった。
<工程2>
 グラファイトを除去した炭素混合物をPolyoxyethylene stearyl ether(Brij)を1重量%含む水溶液に超音波分散した。球状カーボンナノホーン集合体と繊維状カーボンナノホーン集合体は共に界面活性剤溶液に分散され、沈殿しなかった。
<工程3>
 分散液を、孔径0.2μm~0.65μmのメンブレンフィルター(親水性デュラポメンブレン、材質ポリフッ化ビニリデン(PVDF))を用いて濾過した。フィルター上の残留物を再分散し、再度同様に濾過する操作を数回繰り返し行った。再分散は界面活性剤溶液中でフィルターとともに残留物に超音波を照射する方法で行った。濾過と分散を繰り返すことによって、繊維状カーボンナノホーン集合体の含有比率が大きくなった。濾過と分散の回数によって繊維状カーボンナノホーン集合体の比率を自由に制御することができた。
<工程4>
 残留物をフィルター上で2-プロパノール、純水、エタノールを用いて洗浄することにより、界面活性剤を除去した。エタノール中でフィルターとともに界面活性剤を除去した残留物に超音波を照射し、エタノールに残留物を分散させた。
 図5は、エタノール分散液の粒度分布測定結果である。100nm~600nmの領域と8μm~10μmの領域のサイズ分布が確認された。繊維状カーボンナノホーン集合体の比率が90体積%以上に増加し、球状カーボンナノホーン集合体の比率が数体積%に減少したことが分かった。
 エタノール分散液を150℃オーブンで乾燥し、精製炭素混合物を得た。図6は、精製炭素混合物のSEM写真である。繊維状カーボンナノホーン集合体が主に観察され、球状カーボンナノホーン集合体の量が図2よりも大幅に減少していることが観察された。
 エタノール分散液をシリコン基板上に滴下し、乾燥させて、膜厚約0.5μmの精製炭素混合物の薄膜を作製した。四探針測定により薄膜の抵抗率測定を行った。比較のために、本実施例で用いた未精製炭素混合物の薄膜も作製し、抵抗率測定を行った。抵抗率は、未精製炭素混合物は3.5Ωcm、精製炭素混合物は0.3Ωcmであった。この結果から、繊維状カーボンナノホーン集合体の導電性を損なわずに繊維状カーボンナノホーン集合体の比率を上げ、高い導電性を有する炭素混合物を得られることが確認された。
(実施例2)
 工程2におけるメンブレンフィルターでの濾過の回数を変更した以外は実施例1と同様にして、繊維状カーボンナノホーン集合体の含有比率が異なる、様々な精製炭素混合物を作製した。実施例1と同様に、粒度分布測定と抵抗率測定を行った。表2に測定結果を示す。この結果から、繊維状カーボンナノホーン集合体は含有比率が20体積%以上で導電性に大きな効果があり、20体積%未満では効果が小さいことが確認された。
Figure JPOXMLDOC01-appb-T000002
(比較例1)
 実施例1の未精製炭素混合物をエタノールに超音波分散し、その分散液を1日静置し、上澄み液約50%を回収した。上澄み液を孔径0.65μmのメンブレンフィルター(親水性デュラポメンブレン、材質PVDF)を用いて濾過した。エタノールのみがフィルターを通過し、フィルター上に固形分が全て残留した。
(比較例2)
 実施例1の未精製炭素混合物を、Polyoxyethylene stearyl ether (Brij)を1重量%含む水溶液に超音波分散し、その分散液を1日静置した。分散液の上澄み液約50%を回収した。超音波分散直後の分散液と、静置後に採取した上澄み液について動的光散乱法による粒度分布測定を行うと、両方共同様に100nm~600nmの領域と8~10μmの領域にサイズ分布が検出され、グラファイトの分離はされていないことが分かった。
 分散液をメンブレンフィルター上で2-プロパノール、純水、エタノールを用いて洗浄することにより界面活性剤を除去した。得られた炭素混合物をSEM観察すると、図3と同様にグラファイトが多く観察され、グラファイトは除去されていないことが分かった。
(実施例3)
 実施例1の未精製炭素混合物をエタノールに超音波分散し、分散液を約100gで10分間遠心分離し、上澄み液約50%を回収した。次に、上澄み液を150℃のオーブンで乾燥し、得られた炭素混合物をドデシルベンゼン硫酸ナトリウム(SDBS)を1重量%含む水溶液に超音波分散した。球状カーボンナノホーン集合体と繊維状カーボンナノホーン集合体は共に界面活性剤溶液に分散され、沈殿するものはなかった。
 この分散液を、0.2~0.65μmの孔径を持つ中空糸フィルター(Spectrum Laboratories, Inc.製、mPES中空糸フィルターモジュール)を用いて繰り返しクロスフィルター循環させ、中空糸フィルターの孔を通過した分散液と、通過しなかった分散液とを得た。
 中空糸フィルターの孔を通過しなかった分散液をメンブレンフィルター上で2-プロパノール、純水、エタノールを用いて洗浄することにより、界面活性剤を除去した。界面活性剤を除去したフィルター上の残留物にエタノール中で超音波を照射し、エタノールに残留物を分散させた。
 図7は、このエタノール分散液の粒度分布測定結果である。繊維状カーボンナノホーン集合体の比率が90体積%以上に増加し、球状カーボンナノホーン集合体の比率が数体積%に減少したことが分かった。
 このエタノール分散液を150℃のオーブンで乾燥し、得られた精製炭素混合物をSEM観察した。繊維状カーボンナノホーン集合体が主に観察され、球状カーボンナノホーン集合体の量が大幅に減少していることが観察された。
 また、クロスフィルター循環の回数や時間を変更すると、繊維状カーボンナノホーン集合体の比率を変えることができた。
(実施例4)
 実施例1の未精製炭素混合物10mgを過酸化水素水(30%)200mlに分散させ、スターラーで300rpmで撹拌しながら、ウォーターバスで70℃、3時間加熱した。加熱後、分散液を孔径0.2μmのフィルターでろ過し、フィルター上の残留物を純水で2回洗った。その後残留物を100℃のオーブンで48時間乾燥した。この処理により、未精製炭素混合物に含まれる繊維状カーボンナノホーン集合体および球状カーボンナノナノホーン集合体の表面に小さな孔や欠陥をつけることができた。
 この欠陥を作製した繊維状カーボンナノホーン集合体を含む炭素混合物から実施例1と同様にグラファイトを除去した。その後、ドデシル硫酸ナトリウム(SDS)を1重量%含む水溶液に、得られた炭素混合物を超音波分散し、フィルター分離した。炭素混合物中の繊維状カーボンナノホーン集合体の比率を大幅に上げることができた。
(実施例5)
 実施例1の未精製炭素混合物10mgを空気中400℃で加熱した後、70℃に加熱した塩酸200ml中で1時間の撹拌を2回行い、含有する鉄触媒を除去した。
 触媒を除去した炭素混合物から実施例1と同様にグラファイトを除去した。その後、コール酸ナトリウム(SC)を1重量%含む水溶液に、得られた炭素混合物を超音波分散し、フィルター分離した。炭素混合物中の繊維状カーボンナノホーン集合体の比率を大幅に上げることができた。
(比較例3)
 実施例1の未精製炭素混合物をエタノールに超音波分散し、実施例1と同様に上澄み液約50%を回収した。次に、上澄み液を2つに別け、それぞれ約500g、約1000gでの遠心分離を30分間行い、沈殿物を回収した。沈殿物を乾燥して得られた炭素混合物をSEM観察すると、両サンプル共に繊維状カーボンナノホーン集合体と球状カーボンナノホーン集合体が遠心分離前と同様に観察された。遠心分離では、繊維状カーボンナノホーン集合体と球状カーボンナノホーン集合体とを効率よく分離できないことが分かった。
(比較例4)
 実施例1の未精製炭素混合物をエタノールに超音波分散し、実施例1と同様に上澄み液約50%を回収した。次に、上澄み液を3つに別け、3種類のゲル(Sephacryl S-300、S-500、S-1000)を用いてゲル濾過クロマトグラフィーを行った。分散液はいずれのゲル濾過クロマトグラフィーによってもほとんど分離されず、同時に落下した。ゲル濾過された分散液を乾燥して、得られた炭素混合物をSEM観察すると、いずれも繊維状カーボンナノホーン集合体と球状カーボンナノホーン集合体がゲル濾過クロマトグラフィー前と同様に観察された。ゲル濾過クロマトグラフィーでは、繊維状カーボンナノホーン集合体と球状カーボンナノホーン集合体とを効率よく分離できないことが分かった。
(実施例6)
 実施例1の未精製炭素混合物を、Polyoxyethylene stearyl ether(Brij)を1重量%含む水溶液に超音波分散した。この分散液を、実施例1と同様に孔径0.2μm~0.65μmのメンブレンフィルターを用い、濾過と分散を数回繰り返した。濾過と分散を繰り返すことによって、繊維状カーボンナノホーン集合体の比率が大きくなった。フィルター上に繊維状カーボンナノホーン集合体だけでなく、グラファイトも残るため、フィルターが目詰まりし易く、繊維状カーボンナノホーン集合体の比率を同程度にするためには実施例1よりも濾過の回数が増加した。
 残留物をフィルター上で2-プロパノール、純水、エタノールを用いて洗浄することにより、界面活性剤を除去した。界面活性剤を除去したフィルター上の残留物にエタノール中で超音波を照射し、エタノールに残留物を分散させた。
 この分散液を1日静置し、上澄み液約50%を回収した。実施例1と同様に、粒度分布測定を行った。また、上澄み液を乾燥し、精製炭素混合物を得た。これをSEM観察した。粒度分布測定およびSEM観察の結果は実施例1と同様であった。
 以上、実施形態および実施例を参照して本発明を説明したが、本発明は上記実施形態および実施例に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 本実施形態の一部または全部は、以下の付記のようにも記載されうるが、以下に限られない。
 (付記1)
 長さが1μm以上の繊維状カーボンナノホーン集合体を20重量%以上の量で含む炭素混合物。
 (付記2)
 長さが1μm以上の繊維状カーボンナノホーン集合体を20体積%以上の量で含む炭素混合物。
 (付記3)
 長さが1μm以上の繊維状カーボンナノホーン集合体と長さが1μm未満の球状カーボンナノホーン集合体とを含み、前記繊維状カーボンナノホーン集合体と前記球状カーボンナノホーン集合体の重量比が1/5以上である炭素混合物。
 (付記4)
 グラファイトの量が10重量%以下である、付記1~3のいずれか1項に記載の炭素混合物。
 (付記5)
 触媒を含まない、付記1~4のいずれか1項に記載の炭素混合物。
 (付記6)
 前記繊維状カーボンナノホーン集合体が開孔している、付記1~5のいずれか1項に記載の炭素混合物。
 (付記7)
 付記1~6のいずれか1項に記載の炭素混合物を含む電極。
 (付記8)
 炭素混合物から長さが1μm以上の繊維状カーボンナノホーン集合体を分離精製する方法であって、
 前記炭素混合物からグラファイトを取り除く工程1と、
 界面活性剤溶液に前記炭素混合物を分散させ、分散液を調製する工程2と、
 前記分散液から前記繊維状カーボンナノホーン集合体をフィルターで分離する工程3と、
を含む方法。
 (付記9)
 前記工程1が、前記炭素混合物を有機溶媒に分散し、前記グラファイトを沈降分離する工程である、付記8に記載の方法。
 (付記10)
 前記有機溶媒が、前記グラファイトより密度の低い有機溶媒である、付記9に記載の方法。
 (付記11)
 前記工程1が、前記有機溶媒を除去する工程を含む、付記9または10に記載の方法。
 (付記12)
 前記フィルターの孔径が、0.1μm~1μmである、付記8~11のいずれか1項に記載の方法。
 (付記13)
 前記工程3で分離した前記繊維状カーボンナノホーン集合体から前記界面活性剤を除去する工程4を更に含む、付記8~12のいずれか1項に記載の方法。
 (付記14)
 前記工程4が、有機溶媒または熱により前記界面活性剤を除去する工程である、付記13に記載の方法。
 (付記15)
 前記繊維状カーボンナノホーン集合体から触媒を除去する工程5を更に含む、付記8~14のいずれか1項に記載の方法。
 (付記16)
 前記繊維状カーボンナノホーン集合体を開孔する工程6を更に含む、付記8~15のいずれか1項に記載の方法。
 本実施形態に係る炭素混合物は導電性が高く、且つ分散性、吸着性、比表面積が高い材料である。本実施形態に係る炭素混合物を、導電性粒子、硬化性樹脂、硬化剤等と混合して、導電性ペーストを作製できる。また、本実施形態に係る炭素混合物は、電極材料、複合材料、導電膜材料、アクチュエータ、キャパシタ、担持材料として用いることができる。

Claims (10)

  1.  長さが1μm以上の繊維状カーボンナノホーン集合体を20重量%以上の量で含む炭素混合物。
  2.  長さが1μm以上の繊維状カーボンナノホーン集合体を20体積%以上の量で含む炭素混合物。
  3.  グラファイトの量が10重量%以下である、請求項1または2に記載の炭素混合物。
  4.  触媒を含まない、請求項1~3のいずれか1項に記載の炭素混合物。
  5.  請求項1~4のいずれか1項に記載の炭素混合物を含む電極。
  6.  炭素混合物から長さが1μm以上の繊維状カーボンナノホーン集合体を分離精製する方法であって、
     前記炭素混合物からグラファイトを取り除く工程1と、
     界面活性剤溶液に前記炭素混合物を分散させ、分散液を調製する工程2と、
     前記分散液から前記繊維状カーボンナノホーン集合体をフィルターで分離する工程3と、
    を含む方法。
  7.  前記工程1が、前記炭素混合物を有機溶媒に分散し、前記グラファイトを沈降分離する工程である、請求項6に記載の方法。
  8.  前記工程3で分離した前記繊維状カーボンナノホーン集合体から前記界面活性剤を除去する工程4を更に含む、請求項6または7に記載の方法。
  9.  前記繊維状カーボンナノホーン集合体から触媒を除去する工程5を更に含む、請求項6~8のいずれか1項に記載の方法。
  10.  前記繊維状カーボンナノホーン集合体を開孔する工程6を更に含む、請求項6~9のいずれか1項に記載の方法。
     
PCT/JP2018/017414 2018-05-01 2018-05-01 繊維状カーボンナノホーン集合体の精製 WO2019211891A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/044,069 US20210214230A1 (en) 2018-05-01 2018-05-01 Purification of fibrous carbon nanohorn aggregate
JP2020516984A JPWO2019211891A1 (ja) 2018-05-01 2018-05-01 繊維状カーボンナノホーン集合体の精製
PCT/JP2018/017414 WO2019211891A1 (ja) 2018-05-01 2018-05-01 繊維状カーボンナノホーン集合体の精製

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/017414 WO2019211891A1 (ja) 2018-05-01 2018-05-01 繊維状カーボンナノホーン集合体の精製

Publications (1)

Publication Number Publication Date
WO2019211891A1 true WO2019211891A1 (ja) 2019-11-07

Family

ID=68386413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017414 WO2019211891A1 (ja) 2018-05-01 2018-05-01 繊維状カーボンナノホーン集合体の精製

Country Status (3)

Country Link
US (1) US20210214230A1 (ja)
JP (1) JPWO2019211891A1 (ja)
WO (1) WO2019211891A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006208759A (ja) * 2005-01-28 2006-08-10 Canon Inc 吸着材
JP2012020884A (ja) * 2010-07-12 2012-02-02 Environment Energy Nanotech Research Institute Co Ltd カーボンナノ材料及びその利用
WO2016208170A1 (ja) * 2015-06-22 2016-12-29 日本電気株式会社 ナノ炭素複合材料およびその製造方法
WO2018037881A1 (ja) * 2016-08-25 2018-03-01 日本電気株式会社 フレキシブル電極及びセンサー素子

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4738611B2 (ja) * 2001-03-12 2011-08-03 和幸 田路 カーボンナノチューブの精製方法
US7135160B2 (en) * 2002-04-02 2006-11-14 Carbon Nanotechnologies, Inc. Spheroidal aggregates comprising single-wall carbon nanotubes and method for making the same
US7781635B1 (en) * 2006-08-07 2010-08-24 The United States Of America As Represented By The Secretary Of The Navy Surfactant-based purification of nanotubes
WO2011020035A2 (en) * 2009-08-14 2011-02-17 Northwestern University Sorting two-dimensional nanomaterials by thickness
US8465647B2 (en) * 2009-12-11 2013-06-18 International Business Machines Corporation Isolation of single-walled carbon nanotubes from double and multi-walled carbon nanotubes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006208759A (ja) * 2005-01-28 2006-08-10 Canon Inc 吸着材
JP2012020884A (ja) * 2010-07-12 2012-02-02 Environment Energy Nanotech Research Institute Co Ltd カーボンナノ材料及びその利用
WO2016208170A1 (ja) * 2015-06-22 2016-12-29 日本電気株式会社 ナノ炭素複合材料およびその製造方法
WO2018037881A1 (ja) * 2016-08-25 2018-03-01 日本電気株式会社 フレキシブル電極及びセンサー素子

Also Published As

Publication number Publication date
JPWO2019211891A1 (ja) 2021-05-13
US20210214230A1 (en) 2021-07-15

Similar Documents

Publication Publication Date Title
TWI543931B (zh) 石墨烯之製備方法及石墨烯之分散組成物
JP7260141B2 (ja) 繊維状カーボンナノホーン集合体を含んだ平面構造体
CN100427388C (zh) 一种大面积的超薄碳纳米管膜及其制备工艺
JP4900376B2 (ja) カーボンナノチューブを処理する方法
CN102179182A (zh) 碳纳米纤维膜的制备方法
JP2009001481A (ja) 金属前駆体を含むカーボンナノチューブ組成物、カーボンナノチューブ薄膜およびその製造方法
WO2017022229A1 (ja) 複合樹脂材料、スラリー、複合樹脂材料成形体、及びスラリーの製造方法
CN105967172B (zh) 一种大面积可折叠石墨烯薄膜的制备方法
RU2662484C2 (ru) Способ получения электропроводящего гидрофильного аэрогеля на основе композита из графена и углеродных нанотрубок
JP7283704B2 (ja) 多孔質炭素粒子、多孔質炭素粒子分散体及びこれらの製造方法
CN102910624A (zh) 一种高产量无缺陷石墨烯的制备方法
KR100863273B1 (ko) 수직 정렬되는 탄소나노튜브 필름 제조 방법
CN106457100B (zh) 重金属回收过程以及有利于这过程的物料
KR20160100268A (ko) 비반복적이고 불규칙적인 3차원 기공을 포함하는 그래핀 및 이의 제조 방법
WO2014094180A1 (en) Method for producing few-layer graphene
JP2003089510A (ja) カーボンナノチューブの精製方法
JP2020075828A (ja) 銀/酸化グラフェン複合体およびその製造方法
JP2003246613A (ja) 金属添加炭素材料の製造方法及びこの方法により製造された金属添加炭素材料を用いた燃料電池用電極材料、化学反応用触媒担体、ガス貯蔵材
CN110215851B (zh) 一种具有碳纳米管保护层的石墨烯中空纤维膜及其制备方法
WO2017159350A1 (ja) 吸着材
WO2019211891A1 (ja) 繊維状カーボンナノホーン集合体の精製
JP2017031323A (ja) スラリーの製造方法及び複合樹脂材料の製造方法
KR100790839B1 (ko) 탄소나노튜브의 비파괴적 정제 방법
CN110449574B (zh) 一种低缺陷石墨烯包覆铝粉微粒的制备方法
JP2006069850A (ja) カーボンナノチューブの精製方法、およびその精製方法により得られたカーボンナノチューブ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18917054

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020516984

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18917054

Country of ref document: EP

Kind code of ref document: A1