WO2019208221A1 - キャパシタ集合体 - Google Patents
キャパシタ集合体 Download PDFInfo
- Publication number
- WO2019208221A1 WO2019208221A1 PCT/JP2019/015622 JP2019015622W WO2019208221A1 WO 2019208221 A1 WO2019208221 A1 WO 2019208221A1 JP 2019015622 W JP2019015622 W JP 2019015622W WO 2019208221 A1 WO2019208221 A1 WO 2019208221A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- capacitor
- electrode layer
- region
- electrode
- layer
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 270
- 239000000758 substrate Substances 0.000 claims abstract description 72
- 239000004065 semiconductor Substances 0.000 claims abstract description 69
- 239000010410 layer Substances 0.000 description 185
- 230000004048 modification Effects 0.000 description 20
- 238000012986 modification Methods 0.000 description 20
- 239000011241 protective layer Substances 0.000 description 18
- 239000000463 material Substances 0.000 description 14
- 238000009826 distribution Methods 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 12
- 238000000034 method Methods 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 230000002093 peripheral effect Effects 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 238000005240 physical vapour deposition Methods 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- ZVWKZXLXHLZXLS-UHFFFAOYSA-N zirconium nitride Chemical compound [Zr]#N ZVWKZXLXHLZXLS-UHFFFAOYSA-N 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/38—Multiple capacitors, i.e. structural combinations of fixed capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/33—Thin- or thick-film capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L28/00—Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
- H01L28/40—Capacitors
Definitions
- the present invention relates to a capacitor assembly.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2011-44613 is a prior art document that discloses a configuration of a capacitor included in a multiple capacitor housing.
- a capacitor which is an electronic component described in Patent Document 1 includes a circuit element formed on a substrate, an electrode layer connected to the circuit element, a protective layer covering the electrode layer, and a via conductor penetrating the protective layer.
- the terminal electrode is connected to the electrode layer and provided on the protective layer, and one end of the terminal electrode is located on the side wall surface of the protective layer.
- a plurality of capacitors are manufactured by forming a film on a semiconductor substrate in a wafer state. Due to variations in film thickness during film formation, stress distribution may occur in the plane of the semiconductor substrate in the wafer state. Specifically, the thicker the electrode layer, the greater the amount of shrinkage during film formation, and the higher the stress. When high stress is applied to the electrode layer, cracks or peeling may occur. A capacitor having a crack or peeling in the electrode layer is a defective product, and the yield of capacitors that can be manufactured from a semiconductor substrate in a wafer state is low. As a result, there has been a problem that cost reduction of the capacitor is hindered.
- the present invention has been made in view of the above problems, and an object thereof is to provide a capacitor assembly that can reduce the cost of the capacitor.
- the capacitor assembly according to the present invention includes a plurality of capacitors and a holding body that holds the plurality of capacitors.
- Each of the plurality of capacitors includes a semiconductor substrate, a first electrode layer, a dielectric layer, a second electrode layer, and an external electrode.
- the semiconductor substrate has one main surface.
- the first electrode layer is located on one main surface side of the semiconductor substrate.
- the dielectric layer is laminated on the first electrode layer.
- the second electrode layer is laminated on the dielectric layer.
- the external electrode is connected corresponding to each of the first electrode layer and the second electrode layer.
- the plurality of capacitors include a first capacitor and a second capacitor.
- the second capacitor has a shape different from that of the first capacitor in at least one of the first electrode layer, the second electrode layer, and the external electrode.
- the cost of the capacitor can be reduced.
- FIG. 2 is a cross-sectional view of the capacitor of FIG. 1 as viewed from the direction of arrows II-II.
- FIG. 2 is a cross-sectional view showing a state in which an insulating layer is provided on one main surface of a semiconductor substrate in the capacitor manufacturing method of FIG. 1.
- FIG. 2 is a cross-sectional view showing a state where a first electrode layer is provided on an insulating layer in the method for manufacturing the capacitor of FIG. 1.
- FIG. 2 is a cross-sectional view showing a state in which a dielectric layer is provided on a first electrode layer in the capacitor manufacturing method of FIG.
- FIG. 2 is a cross-sectional view showing a state in which a second electrode layer is provided on a dielectric layer in the capacitor manufacturing method of FIG. 1.
- FIG. 2 is a cross-sectional view showing a state where a protective layer is provided in the method for manufacturing the capacitor of FIG. 1. It is the top view which looked at the 1st capacitor of a plurality of capacitors with which the capacitor aggregate concerning Embodiment 1 of the present invention is provided from the external electrode side.
- FIG. 1 It is a figure which shows an example of the stress distribution in the surface of the semiconductor substrate of a wafer state at the time of forming into a film on the semiconductor substrate of a wafer state.
- FIG. 1 It is a perspective view which shows the structure of the capacitor aggregate
- FIG. 1 It is a top view which shows the capacitor assembly whose holding body is a dicing tape as another example of the capacitor assembly which concerns on this embodiment.
- FIG. 1 is a plan view of an example of a plurality of capacitors included in a capacitor assembly according to Embodiment 1 of the present invention, as viewed from the external electrode side.
- FIG. 2 is a cross-sectional view of the capacitor of FIG.
- each of the plurality of capacitors 100 included in the capacitor assembly according to the first embodiment of the present invention includes a semiconductor substrate 110, a first electrode layer 120, a dielectric layer 130, a first layer A two-electrode layer 140 and an external electrode 160 are included.
- the structures and shapes of the first electrode layer 120, the second electrode layer 140, and the external electrode 160 are not limited to the structures and shapes shown in FIGS.
- the semiconductor substrate 110 has one main surface 111. As shown in FIG. 1, the semiconductor substrate 110 has a rectangular outer shape having long sides in the direction in which the two external electrodes 160 are arranged as viewed from the external electrode 160 side. The rectangular shape has, for example, a long side of 200 ⁇ m to 600 ⁇ m and a short side of 100 ⁇ m to 300 ⁇ m.
- the semiconductor substrate 110 is made of a semiconductor material such as silicon.
- an insulating substrate made of an insulating material such as glass or alumina may be used.
- each of the plurality of capacitors 100 further includes an insulating layer 115.
- the insulating layer 115 is stacked over the entire surface of one main surface 111 of the semiconductor substrate 110.
- the insulating layer 115 may have a plurality of layers each made of a different material.
- the thickness of the insulating layer 115 is not particularly limited as long as the semiconductor substrate 110 is electrically insulated from other constituent members by the insulating layer 115.
- the thickness of the insulating layer is preferably 0.5 ⁇ m or more and 3 ⁇ m or less.
- the material of the insulating layer 115 is not particularly limited, but is preferably formed of silicon oxide, silicon nitride, aluminum oxide, or the like.
- the capacitor 100 may not include the insulating layer 115.
- the capacitor 100 does not include the insulating layer 115, a member that is stacked on the insulating layer 115 when the capacitor 100 includes the insulating layer 115 is directly stacked on the insulating substrate.
- the first electrode layer 120 is located on one main surface 111 side of the semiconductor substrate 110.
- the first electrode layer 120 is stacked on a part of the insulating layer 115 stacked on the semiconductor substrate 110.
- the periphery of the first electrode layer 120 is located along the inner side of the periphery of the semiconductor substrate 110 when the capacitor 100 is viewed from the external electrode side.
- the first electrode layer 120 may have a plurality of layers each made of a different material.
- the thickness of the first electrode layer 120 is not particularly limited, but is preferably 0.3 ⁇ m or more and 10 ⁇ m or less, and more preferably 0.5 ⁇ m or more and 5 ⁇ m or less. If the thickness of the first electrode layer 120 is relatively thick, the series resistance of the capacitor 100 can be reduced.
- the material of the first electrode layer 120 is not particularly limited as long as it is a conductive material, but the first electrode layer 120 is a metal such as copper, silver, gold, aluminum, nickel, chromium, or titanium, or at least one of these. It is preferable that it is comprised with the alloy containing these metals.
- the dielectric layer 130 is stacked on the first electrode layer 120. As shown in FIG. 2, the dielectric layer 130 is laminated so as to extend to a portion of the insulating layer 115 where the first electrode layer 120 is not laminated.
- the thickness of the dielectric layer 130 is adjusted according to the capacitance required for the plurality of capacitors 100 and is not particularly limited, but is preferably 0.02 ⁇ m or more and 2 ⁇ m or less.
- the material of the dielectric layer 130 is not particularly limited, but the dielectric layer 130 is made of a dielectric material such as silicon oxide, silicon nitride, aluminum oxide, hafnium oxide, tantalum oxide or zirconium oxide, or nitride. It is preferable to be made of an insulating material.
- the second electrode layer 140 is laminated on a part of the dielectric layer 130 so as to face the first electrode layer 120 with the dielectric layer 130 interposed therebetween.
- FIG. 1 shows that the shape of the second electrode layer 140 is a cross shape when the capacitor 100 is viewed from the external electrode 160 side.
- the shape of the second electrode layer 140 in this embodiment is shown in FIG. Is not limited to this. Details of the shape of the second electrode layer 140 in this embodiment will be described later.
- the thickness of the second electrode layer 140 is not particularly limited, but is preferably 0.3 ⁇ m or more and 10 ⁇ m or less, and more preferably 0.5 ⁇ m or more and 5 ⁇ m or less. If the thickness of the second electrode layer 140 is relatively thick, the series resistance of the capacitor 100 can be reduced.
- the material of the second electrode layer 140 is not particularly limited as long as it is a conductive material, but the second electrode layer 140 may be a metal such as copper, silver, gold, aluminum, nickel, chromium, or titanium, or at least one of these. It is preferable that it is comprised with the alloy containing these metals.
- each of the plurality of capacitors 100 further includes a protective layer 150.
- the peripheral edge of the protective layer 150 is between the peripheral edge of the semiconductor substrate 110 and the peripheral edge of the first electrode layer 120. positioned.
- the protective layer 150 is laminated on a part of the dielectric layer 130 opposite to the semiconductor substrate side and a part of the second electrode layer 140.
- the thickness of the protective layer 150 is not particularly limited, but is preferably 1 ⁇ m or more and 20 ⁇ m or less.
- the material of the protective layer 150 is not specifically limited, It is preferable that the protective layer 150 is comprised with resin materials, such as a polyimide, or insulating materials, such as a silicon oxide.
- the external electrode 160 is connected corresponding to each of the first electrode layer 120 and the second electrode layer 140. As shown in FIG. 2, the external electrode 160 connected to the first electrode layer 120 is laminated on a portion of the first electrode layer 120 where the dielectric layer 130 is not laminated. The external electrode 160 connected to the second electrode layer 140 is laminated on a portion of the second electrode layer 140 where the protective layer 150 is not laminated. Note that another electrode layer made of a material different from the material of the second electrode layer 140 is located between the second electrode layer 140 and the external electrode 160 laminated on the second electrode layer 140. May be.
- the external electrode 160 is also laminated on a part of the protective layer 150. As shown in FIG. 1, when the capacitor 100 is viewed from the external electrode side, the external electrode 160 stacked on the first electrode layer 120 is surrounded by the external electrode 160 stacked on a part of the protective layer 150. The external electrode 160 laminated on the second electrode layer 140 is surrounded by the external electrode 160 laminated on a part of the protective layer 150.
- the thickness of the external electrode 160 is not particularly limited, but is preferably 1 ⁇ m or more and 10 ⁇ m or less.
- the material of the external electrode 160 is not particularly limited as long as it is a conductive material, but the external electrode 160 is preferably composed of a metal such as copper or aluminum or an alloy containing at least one of these metals.
- the material constituting the external electrode 160 is preferably a material having a lower electrical resistivity than the first electrode layer 120 and the second electrode layer 140. Further, from the viewpoint that the capacitor 100 can be mounted by soldering, it is preferable that at least a part of the surface of the external electrode 160 opposite to the semiconductor substrate side is made of gold or tin.
- FIG. 3 is a cross-sectional view showing a state in which an insulating layer is provided on one main surface of the semiconductor substrate in the method for manufacturing the capacitor of FIG.
- an insulating layer 115 is provided on one main surface 111 of the semiconductor substrate 110 by a CVD (chemical vapor deposition) method or a PVD (physical vapor deposition) method.
- CVD chemical vapor deposition
- PVD physical vapor deposition
- FIG. 4 is a cross-sectional view showing a state in which the first electrode layer is provided on the insulating layer in the capacitor manufacturing method of FIG.
- the first electrode layer 120 is provided on the opposite side of the insulating layer 115 from the semiconductor substrate side by an etching method or the like. That is, the first electrode layer 120 is provided on one main surface side of the semiconductor substrate 110.
- FIG. 5 is a cross-sectional view showing a state in which a dielectric layer is provided on the first electrode layer in the method for manufacturing the capacitor of FIG.
- the entire surface of the first electrode layer 120 opposite to the semiconductor substrate side, the peripheral edge of the first electrode layer 120, and the semiconductor substrate side of the insulating layer 115 are formed by CVD or PVD.
- a through-hole 131 is formed in the dielectric layer 130 by providing the dielectric layer 130 on the surface on the opposite side where the first electrode layer 120 is not provided and then etching a part of the dielectric layer 130. .
- FIG. 6 is a cross-sectional view showing a state in which the second electrode layer is provided on the dielectric layer in the capacitor manufacturing method of FIG. As shown in FIG. 6, the second electrode layer 140 is provided on a part of the dielectric layer 130 on the side opposite to the semiconductor substrate side by an etching method or the like.
- FIG. 7 is a cross-sectional view showing a state in which a protective layer is provided in the method for manufacturing the capacitor of FIG.
- a part of the first electrode layer 120 and each of the second electrode layers 140 are formed by photolithography using a protective layer 150 provided so as to cover one main surface 111 side of the semiconductor substrate 110. Pattern it so that it is exposed.
- an external electrode is provided so as to be connected to each of the first electrode layer 120 and the second electrode layer 140 by sputtering, plating, etching, or the like.
- the capacitor 100 as shown in FIGS. 1 and 2 is manufactured.
- FIG. 8 is a plan view of the first capacitor of the plurality of capacitors provided in the capacitor assembly according to the first embodiment of the present invention as viewed from the external electrode side. In FIG. 8, only the shapes of the first electrode layer 120 and the second electrode layer 140 are shown.
- the second electrode layer 140 includes a first region 191 having a rectangular shape occupying the maximum area, as viewed from the external electrode 160 side, and a first region.
- One second region 192 projecting from 191 is included.
- the first region 191 has two long sides and two short sides.
- the second region 192 is provided so as to protrude from a part of one of the two long sides of the first region 191. Note that the second region may protrude from any position on the long side of the first region 191. Alternatively, the second region 192 may be provided so as to protrude from a part of one of the two short sides of the 191st. In the present embodiment, the second region 192 has a rectangular shape, but is not limited thereto. The second region 192 may be triangular or fan-shaped.
- the length of the side parallel to the direction in which the second region 192 protrudes from the first region is X, and the length of the other side perpendicular to this side is Y.
- the second capacitor is different from the first capacitor in at least one of the length X and the length Y, and the other configurations are the same. It is. That is, the first capacitor and the second capacitor are different from each other in the shape of the second region 192.
- the second capacitor has a different shape in the second electrode layer 140 from the first capacitor.
- the first capacitor and the second capacitor have different areas in the second electrode layer 140 when viewed from the external electrode 160 side.
- the plurality of capacitors included in the capacitor assembly according to the first embodiment of the present invention includes the first capacitor and the second capacitor will be described.
- FIG. 9 is a diagram illustrating an example of stress distribution in the plane of the wafer-state semiconductor substrate when the film is formed on the wafer-state semiconductor substrate.
- the semiconductor substrate 210 in a wafer state has a substantially circular outer shape.
- Each layer constituting the capacitor 100 is formed on the semiconductor substrate 210 in a wafer state. Stress distribution may occur in the plane of the semiconductor substrate 210 in a wafer state due to variations in film thickness during film formation. In particular, when the film thickness of at least one of the first electrode layer 120, the second electrode layer 140, and the external electrode 160 having a large thermal expansion coefficient varies, a stress distribution is generated in the plane of the semiconductor substrate 210 in the wafer state. To do.
- the film thickness of the second electrode layer 140 is relatively thin in the region A located at the outer peripheral portion of the semiconductor substrate 210 in the wafer state, and relatively thick in the region B located in the central portion of the semiconductor substrate 210 in the wafer state.
- the stress in the surface of the semiconductor substrate 210 in the wafer state decreases as it goes to the radially outer side R.
- the film thickness of the second electrode layer 140 is relatively thick in the region A located at the outer peripheral portion of the semiconductor substrate 210 in the wafer state, and relatively thin in the region B located in the central portion of the semiconductor substrate 210 in the wafer state. In this case, the stress in the surface of the semiconductor substrate 210 in the wafer state becomes higher as it goes to the radially outer side R.
- the region A has an annular outer shape
- the region B has a circular outer shape.
- each of the region A and the region B is located concentrically with the semiconductor substrate 210 in the wafer state. Note that each of the regions A and B is not necessarily located concentrically with the semiconductor substrate 210 in a wafer state.
- the shape of the second region 192 is varied in accordance with the in-plane stress distribution of the semiconductor substrate 210 in the wafer state. For example, when the first capacitor is cut out from the high stress portion in the plane of the semiconductor substrate 210 in the wafer state and the second capacitor is cut out from the low stress portion in the plane of the semiconductor substrate 210 in the wafer state, the first capacitor The shape of the second region 192 of the first capacitor and the shape of the second region 192 of the second capacitor are different from each other so that the area of the second region 192 of the second capacitor 192 is smaller than the area of the second region 192 of the second capacitor. Make it.
- the stress acting on the electrode layer of the first capacitor cut out from the high stress portion in the surface of the semiconductor substrate 210 in the wafer state can be relieved, so that the crack or peeling occurs in the first capacitor. Can be suppressed.
- the in-plane stress distribution of the semiconductor substrate 210 in the wafer state illustrated in FIG. 9 is a stress distribution when the plurality of capacitors are formed so as to have the same structure.
- each of the shape and area of the second region 192 is set based on the tendency of the stress distribution grasped in advance.
- the present invention is not limited to the case where the shape of one second region 192 is different, and by appropriately changing the number and arrangement of the second regions 192 corresponding to the stress distribution in the surface of the semiconductor substrate 210 in the wafer state, The stress acting on the electrode layer of the capacitor can be relaxed.
- the size of the second electrode layer 140 is appropriately changed.
- the capacitor including the thick dielectric layer 130 among the first capacitor and the second capacitor has an area of the second electrode layer 140 when viewed from the external electrode 160 side as compared with the capacitor including the thin dielectric layer 130. So that the shape of the second region 192 of the first capacitor and the shape of the second region 192 of the second capacitor are different from each other. As a result, the difference between the capacitance of the first capacitor and the capacitance of the second capacitor due to variations in the thickness of the dielectric layer 130 can be reduced.
- FIG. 10 is a perspective view showing the configuration of the capacitor assembly according to Embodiment 1 of the present invention.
- the capacitor assembly 500 according to the first embodiment of the present invention includes a plurality of capacitors 100 and a holding body that holds the plurality of capacitors 100.
- the plurality of capacitors 100 include a first capacitor 100F and a second capacitor 100S.
- the plurality of capacitors 100 further include other capacitors having different shapes in at least one of the first electrode layer 120, the second electrode layer 140, and the external electrode 160 from the first capacitor 100F and the second capacitor. Also good.
- the holding body includes a tape reel 300a.
- the tape reel 300a includes a plurality of pockets 310a.
- a plurality of capacitors 100 including a first capacitor 100F and a second capacitor 100S are accommodated in each of the plurality of pockets 310a.
- the holding body is not limited to the tape reel 300a.
- another aspect of the capacitor assembly in which only the holding body is different will be described.
- FIG. 11 is a plan view showing a capacitor assembly in which the holding body is a dicing tape as another example of the capacitor assembly according to the present embodiment.
- a dicing tape 300 b that is attached to a semiconductor substrate 210 in a wafer state when the semiconductor substrate 210 in a wafer state is diced may be used as a holding body that holds a plurality of capacitors 100.
- the capacitor assembly 500 further includes a dicing ring 320b that is disposed on the outer periphery of the semiconductor substrate 210 in a wafer state and has a dicing tape 300b attached thereto. The dicing tape 300b is not cut even after dicing, and can hold the plurality of capacitors 100.
- FIG. 12 is a perspective view showing a capacitor assembly in which the holding body is a chip tray as still another example of the capacitor assembly according to the present embodiment.
- a chip tray 300 c may be used as a holding body that holds a plurality of capacitors 100.
- the chip tray 300c includes a plurality of pockets 310c.
- a plurality of capacitors 100 including the first capacitor 100F and the second capacitor 100S are accommodated in each of the plurality of pockets 310c.
- the first capacitor 100F and the first capacitor 100F differ from each other in shape of the second electrode layer 140 corresponding to the stress distribution in the surface of the semiconductor substrate 210 in the wafer state.
- a plurality of capacitors 100 including two capacitors 100S are provided. As a result, it is possible to suppress the occurrence of cracking or peeling in the capacitor cut out from the high stress portion in the surface of the semiconductor substrate 210 in the wafer state. The yield of capacitors that can be improved can be improved. As a result, the cost of the capacitor can be reduced.
- FIG. 13 is a plan view of the capacitor provided in the capacitor assembly according to the first modification of the first embodiment of the present invention as viewed from the external electrode side. In FIG. 13, only the shapes of the first electrode layer 120 and the second electrode layer 140 are shown.
- the second electrode layer 140 has a first region 191 having a rectangular shape occupying the maximum area when viewed from the external electrode 160 side, and the first region 191. And two second regions 192 projecting from the same. The second region 192 protrudes in the direction along the short side of the first electrode layer 120.
- FIG. 14 is a plan view of the capacitor provided in the capacitor assembly according to the second modification of the first embodiment of the present invention when viewed from the external electrode side. In FIG. 14, only the shapes of the first electrode layer 120 and the second electrode layer 140 are shown.
- the second electrode layer 140 has a first region 191 having a rectangular shape occupying the maximum area when viewed from the external electrode 160 side, and the first region 191.
- Four second regions 192 projecting from the second region 192.
- the second region 192 is provided so as to protrude two from the two long sides of the first region 191.
- the two second regions 192 protruding from one long side of the first region 191 are provided so as to face each other with the other two second regions 192 across the first region 191. That is, in the present modification, the second electrode layer 140 has a shape such as the alphabet H. Note that the four second regions 192 may be provided at different positions in the direction parallel to the long side of the first region 191.
- the first capacitor and the second capacitor have different shapes of the second region, but the shapes of the first region may be different from each other.
- FIG. 15 is a plan view of a capacitor included in the capacitor assembly according to the second embodiment of the present invention as viewed from the external electrode side. In FIG. 15, only the shapes of the first electrode layer 120 and the second electrode layer 140 are shown.
- the first electrode layer 120 includes a first region 191a having a rectangular shape occupying the maximum area when viewed from the external electrode 160 side, and the first region 191a. And a second region 192a protruding from the region 191.
- the shape of each of the first region 191a and the second region 192a in the present embodiment can be set similarly to the shape of each of the first region 191 and the second region 192 in the first embodiment.
- the second electrode layer 140 is located inside the first electrode layer 120 when viewed from the external electrode 160 side, parasitic capacitance generated between the external electrode 160 and the first electrode layer 120 is reduced. Can be reduced.
- the first capacitor 100 ⁇ / b> F and the second capacitor 100 ⁇ / b> S are different from each other in the shape of the first electrode layer 120, and thus the first electrode layer among the layers constituting each of the plurality of capacitors 100.
- the 120 stress can be selectively relaxed. Therefore, it is possible to increase the yield of capacitors manufactured from a semiconductor substrate in the same wafer state more effectively, and to reduce the cost of the capacitors constituting the capacitor assembly.
- two or more second regions 192a may protrude from one first region 191a in the first electrode layer 120.
- the first capacitor 100F and the second capacitor 100S may further have different shapes of the second electrode layer 140.
- the capacitor assembly 500 according to each modification of the second embodiment of the present invention will be described.
- FIG. 16 is a plan view of a capacitor provided in a capacitor assembly according to a first modification of Embodiment 2 of the present invention, as viewed from the external electrode side. In FIG. 16, only the shapes of the first electrode layer 120 and the second electrode layer 140 are shown.
- the first electrode layer 120 has a first region having a rectangular shape that occupies the maximum area when viewed from the external electrode 160 side. 191a and two second regions 192a protruding from the first region 191a.
- the second region 192a is provided so as to protrude from a part of each of the two long sides of the first region 191a.
- each of the first region 191a and the second region 192a in the present modification can be set similarly to the shape of each of the first region 191 and the second region 192 in the first modification of the first embodiment.
- FIG. 17 is a plan view of a capacitor provided in a capacitor assembly according to a second modification of the second embodiment of the present invention as viewed from the external electrode side. In FIG. 17, only the shapes of the first electrode layer 120 and the second electrode layer 140 are shown.
- the second electrode layer 140 has a first region having a rectangular shape that occupies the maximum area when viewed from the external electrode 160 side. 191 and two second regions 192 projecting from the first region 191.
- the second region 192 is provided so as to protrude from a part of each of the two long sides of the first region 191.
- the first region 191 of the second electrode layer 140 may be provided across the first region 191a of the first electrode layer 120 as shown in FIG.
- the electrode layer 120 may be provided so as to be located inside the first region 191a.
- each of the first region 191 and the second region 192 in the present modification can be set similarly to the shape of each of the first region 191 and the second region 192 in the second modification of the first embodiment.
- the first capacitor 100F and the second capacitor 100S differ from the capacitor assembly 500 according to Embodiment 1 of the present invention in that the shape of the external electrode 160 is different from each other. . Therefore, description is not repeated about the structure similar to the capacitor assembly 500 which concerns on Embodiment 1 of this invention.
- FIG. 18 is a plan view of the capacitors provided in the capacitor assembly according to the third embodiment of the present invention as viewed from the external electrode side. In FIG. 18, the internal structure of the capacitor is not shown.
- each external electrode 160 has a first region 191b having a rectangular shape occupying the maximum area when viewed from the external electrode 160 side, One second region 192b protruding from one region 191b.
- each external electrode 160 has a first region 191b and a second region 192b.
- each of the first region 191b and the second region 192b in the present embodiment can be set similarly to the shape of each of the first region 191 and the second region 192 in the first embodiment.
- the first capacitor 100F and the second capacitor 100S are different from each other in the shape of the external electrode 160, so that the stress of the external electrode 160 among the layers constituting each of the plurality of capacitors 100 is reduced. Can be selectively relaxed. Therefore, it is possible to increase the yield of capacitors manufactured from a semiconductor substrate in the same wafer state more effectively, and to reduce the cost of the capacitors constituting the capacitor assembly.
- first capacitor 100F and the second capacitor 100S may have different shapes in at least one of the first electrode layer 120, the second electrode layer 140, and the external electrode 160. That's fine.
- the first capacitor 100F and the second capacitor 100S have different areas in at least one of the first electrode layer 120, the second electrode layer 140, and the external electrode 160 when viewed from the external electrode 160 side. Just do it.
- the thickness of the dielectric layer 130 may be different between the first capacitor 100F and the second capacitor 100S.
- the thickness of the dielectric layer 130 of the first capacitor 100F in the stacking direction is larger than the thickness of the dielectric layer 130 of the second capacitor 100S, the first electrode layer 120, the second electrode layer 140, and the external electrode of the first capacitor 100F It is sufficient that at least one area of 160 is larger than at least one area of the first electrode layer 120, the second electrode layer 140, and the external electrode 160 of the corresponding second capacitor 100S.
- the area of the first electrode layer 120 of the first capacitor 100F may be larger than the area of the first electrode layer 120 of the second capacitor 100S, and the area of the second electrode layer 140 of the first capacitor 100F is the second. The area may be larger than the area of the second electrode layer 140 of the capacitor 100S.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Semiconductor Integrated Circuits (AREA)
- Ceramic Capacitors (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Abstract
複数のキャパシタ(100)と、複数のキャパシタ(100)を保持する保持体(300)とを備える。複数のキャパシタ(100)の各々は、半導体基板と、第1電極層と、誘電体層と、第2電極層と、外部電極とを含む。複数のキャパシタ(100)は、第1キャパシタ(100F)と第2キャパシタ(100S)とを含む。第2キャパシタ(100S)は、第1キャパシタ(100F)とは、第1電極層、第2電極層および外部電極の少なくとも1つにおいて異なる形状を有している。
Description
本発明は、キャパシタ集合体に関する。
複数キャパシタ収納体が備えるキャパシタの構成を開示した先行文献として、特開2011-44613号公報(特許文献1)がある。特許文献1に記載された電子部品であるキャパシタは、基板上に形成された回路素子と、回路素子と接続する電極層と、電極層を覆う保護層と、保護層を貫通するビア導体を介して電極層と接続され、かつ、保護層の上部に設けられた端子電極とを備え、端子電極の一方端は保護層の側壁面上に位置している。
ウェハ状態の半導体基板に成膜されることにより、複数のキャパシタが製造される。成膜時の膜厚のばらつきにより、ウェハ状態の半導体基板の面内において応力分布が発生することがある。具体的には、電極層の膜厚が厚い部分ほど成膜時の収縮量が大きく、高い応力が発生する。電極層に高い応力が作用している場合、クラックまたは剥離が生じることがある。電極層にクラックまたは剥離が生じたキャパシタは、不良品となるため、ウェハ状態の半導体基板から製造できるキャパシタの歩留まりが低くなる。その結果、キャパシタの低コスト化が阻害されるという問題があった。
本発明は、上記問題点に鑑みてなされたものであって、キャパシタを低コスト化できる、キャパシタ集合体を提供することを目的とする。
本発明に基づくキャパシタ集合体は、複数のキャパシタと、複数のキャパシタを保持する保持体とを備える。複数のキャパシタの各々は、半導体基板と、第1電極層と、誘電体層と、第2電極層と、外部電極とを含む。半導体基板は、一方の主面を有している。第1電極層は、半導体基板の一方の主面側に位置している。誘電体層は、第1電極層に積層されている。第2電極層は、誘電体層に積層されている。外部電極は、第1電極層および第2電極層の各々に対応して接続されている。複数のキャパシタは、第1キャパシタと、第2キャパシタとを含んでいる。第2キャパシタは、第1キャパシタとは、第1電極層、第2電極層および外部電極の少なくとも1つにおいて異なる形状を有している。
本発明によれば、キャパシタを低コスト化することができる。
以下、本発明の各実施形態に係るキャパシタ集合体について図面を参照して説明する。以下の実施形態の説明においては、図中の同一または相当部分には同一符号を付して、その説明は繰り返さない。
(実施形態1)
図1は、本発明の実施形態1に係るキャパシタ集合体が備える複数のキャパシタのうちの一例のキャパシタを外部電極側から見た平面図である。図2は、図1のキャパシタをII-II線矢印方向から見た断面図である。
図1は、本発明の実施形態1に係るキャパシタ集合体が備える複数のキャパシタのうちの一例のキャパシタを外部電極側から見た平面図である。図2は、図1のキャパシタをII-II線矢印方向から見た断面図である。
図1および図2に示すように、本発明の実施形態1に係るキャパシタ集合体が備える複数のキャパシタ100の各々は、半導体基板110と、第1電極層120と、誘電体層130と、第2電極層140と、外部電極160とを含んでいる。なお、第1電極層120、第2電極層140および外部電極160の各々の構造および形状は、図1および図2に示した構造および形状に限られない。
半導体基板110は、一方の主面111を有している。図1に示すように、半導体基板110は、外部電極160側から見て、2つの外部電極160が並んでいる方向に長辺を有する矩形形状の外形を有している。上記矩形形状は、たとえば、200μm以上600μm以下の長辺と、100μm以上300μm以下の短辺とを有している。本実施形態において、半導体基板110は、シリコンなどの半導体材料で構成されている。なお、半導体基板110に代えて、ガラス若しくはアルミナなどの絶縁性材料で構成される絶縁性基板が用いられていてもよい。
本実施形態においては、図2に示すように、複数のキャパシタ100の各々が、さらに絶縁層115を含んでいる。絶縁層115は、半導体基板110の一方の主面111の全面に亘って積層されている。絶縁層115は、それぞれ異なる材料から構成された複数の層を有していてもよい。
絶縁層115の厚さは、半導体基板110が絶縁層115によって他の構成部材と電気的に絶縁される厚さであれば、特に限定されない。絶縁層の厚さは、0.5μm以上3μm以下であることが好ましい。絶縁層115の材料は特に限定されないが、酸化シリコン、窒化シリコン、または、酸化アルミニウムなどで構成されていることが好ましい。
なお、半導体基板110に代えて絶縁性基板が用いられる場合、キャパシタ100は、絶縁層115を含んでいなくてもよい。キャパシタ100が絶縁層115を含んでいない場合、キャパシタ100が絶縁層115を含んでいときに絶縁層115に積層される部材は、絶縁性基板に直接積層される。
第1電極層120は、半導体基板110の一方の主面111側に位置している。本実施形態においては、半導体基板110に積層された絶縁層115の一部に第1電極層120が積層されている。図1に示すように、キャパシタ100を外部電極側から見て、第1電極層120の周縁は、半導体基板110の周縁の内側に沿うように位置している。第1電極層120は、それぞれ異なる材料から構成された複数の層を有していてもよい。
第1電極層120の厚さは、特に限定されないが、0.3μm以上10μm以下が好ましく、0.5μm以上5μm以下であることがより好ましい。第1電極層120の厚さが比較的厚いものであれば、キャパシタ100の直列抵抗を低減することができる。
第1電極層120の材料は、導電性材料であれば特に限定されないが、第1電極層120は、銅、銀、金、アルミニウム、ニッケル、クロムもしくはチタンなどの金属、または、これらの少なくとも一種の金属を含む合金で構成されることが好ましい。
誘電体層130は、第1電極層120に積層されている。図2に示すように、誘電体層130は、絶縁層115において第1電極層120が積層されていない部分にも延在するように積層されている。
誘電体層130の厚さは、複数のキャパシタ100に要求される静電容量に従って調節され、特に限定されないが、0.02μm以上2μm以下であることが好ましい。
誘電体層130の材料は特に限定されないが、誘電体層130は、酸化シリコン、窒化シリコン、酸化アルミニウム、酸化ハフニウム、酸化タンタル若しくは酸化ジルコニウムなどの酸化物、または、窒化物などの、誘電性および絶縁性を有する材料で構成されることが好ましい。
図2に示すように、第2電極層140は、誘電体層130を間に挟んで第1電極層120と対向するように、誘電体層130の一部に積層されている。なお、図1には、キャパシタ100を外部電極160側から見たときの第2電極層140の形状が十字型であることが示されているが、本実施形態における第2電極層140の形状はこれに限られない。本実施形態における第2電極層140の形状の詳細については後述する。
第2電極層140の厚さは特に限定されないが、0.3μm以上10μm以下が好ましく、0.5μm以上5μm以下がより好ましい。第2電極層140の厚さが比較的厚いものであれば、キャパシタ100の直列抵抗を低減することができる。
第2電極層140の材料は、導電性材料であれば特に限定されないが、第2電極層140は、銅、銀、金、アルミニウム、ニッケル、クロム若しくはチタンなどの金属、または、これらの少なくとも一種の金属を含む合金で構成されることが好ましい。
本実施形態においては、複数のキャパシタ100の各々が保護層150をさらに備えている。図1に示すように、キャパシタ100を外部電極160側から見て、保護層150の周縁は、半導体基板110の周縁と第1電極層120の周縁との間において、各々の周縁に沿うように位置している。また、図2に示すように、保護層150は、誘電体層130の半導体基板側とは反対側の一部、および、第2電極層140の一部に積層されている。
保護層150の厚さは特に限定されないが、1μm以上20μm以下が好ましい。保護層150の材料は特に限定されないが、保護層150は、ポリイミドなどの樹脂材料、または、酸化シリコンなどの絶縁性材料で構成されることが好ましい。
外部電極160は、第1電極層120および第2電極層140の各々に対応して接続されている。図2に示すように、第1電極層120に接続された外部電極160は、第1電極層120において誘電体層130が積層されていない部分に積層されている。第2電極層140に接続された外部電極160は、第2電極層140において保護層150が積層されていない部分に積層されている。なお、第2電極層140と、第2電極層140に積層された外部電極160との間には、第2電極層140の材料とは異なる材料で構成されたほかの電極層が位置していてもよい。
また、外部電極160は保護層150の一部にも積層されている。図1に示すように、キャパシタ100を外部電極側から見て、第1電極層120に積層された外部電極160は、保護層150の一部に積層された外部電極160に取り囲まれており、第2電極層140に積層された外部電極160は、保護層150の一部に積層された外部電極160に取り囲まれている。
外部電極160の厚さは特に限定されないが、1μm以上10μm以下が好ましい。外部電極160の材料は、導電性材料であれば特に限定されないが、外部電極160は、銅若しくはアルミニウムなどの金属、または、これらの少なくとも一種の金属を含む合金で構成されることが好ましい。外部電極160を構成する材料は、第1電極層120および第2電極層140よりも電気抵抗率の低い材料であることが好ましい。また、キャパシタ100がはんだ付けで実装され得るという観点から、外部電極160は、半導体基板側とは反対側の面の少なくとも一部が金またはスズで構成されていることが好ましい。
以下、図1および図2に示すキャパシタ100の製造方法について説明する。
図3は、図1のキャパシタの製造方法において、半導体基板の一方の主面上に絶縁層を設けた状態を示す断面図である。図3に示すように、CVD(chemical vapor deposition)法またはPVD(physical vapor deposition)法などによって半導体基板110の一方の主面111に絶縁層115を設ける。
図3は、図1のキャパシタの製造方法において、半導体基板の一方の主面上に絶縁層を設けた状態を示す断面図である。図3に示すように、CVD(chemical vapor deposition)法またはPVD(physical vapor deposition)法などによって半導体基板110の一方の主面111に絶縁層115を設ける。
図4は、図1のキャパシタの製造方法において、絶縁層上に第1電極層を設けた状態を示す断面図である。図4に示すように、エッチング法などにより絶縁層115の半導体基板側とは反対側に第1電極層120を設ける。すなわち、半導体基板110の一方の主面側に、第1電極層120を設ける。
図5は、図1のキャパシタの製造方法において、第1電極層上に誘電体層を設けた状態を示す断面図である。図5に示すように、CVD法またはPVD法などにより、第1電極層120の半導体基板側とは反対側の全面、第1電極層120の周縁部、および、絶縁層115の半導体基板側とは反対側において第1電極層120が設けられていない面に、誘電体層130を設けた後、誘電体層130の一部をエッチングすることにより、誘電体層130に貫通孔131を形成する。
図6は、図1のキャパシタの製造方法において、誘電体層上に第2電極層を設けた状態を示す断面図である。図6に示すように、エッチング法などにより、誘電体層130の半導体基板側とは反対側の一部に第2電極層140を設ける。
図7は、図1のキャパシタの製造方法において、保護層を設けた状態を示す断面図である。図7に示すように、半導体基板110の一方の主面111側を覆うように設けた保護層150を、フォトリソグラフィ法により、第1電極層120の一部および第2電極層140の各々が露出するようにパターニングする。
次に、スパッタリング法、めっき法またはエッチング法などにより、第1電極層120および第2電極層140の各々に対応して接続されるように、外部電極を設ける。上記の工程により、図1および図2に示すようなキャパシタ100が製造される。
以下、本発明の実施形態1に係るキャパシタ集合体が備える複数のキャパシタに含まれる、第1キャパシタおよび第2キャパシタについて説明する。なお、以下の図8の説明では、説明を簡易にするため、後述する第2領域を2つ有するキャパシタ100に代えて、第2領域を1つ有するキャパシタについて説明する。
図8は、本発明の実施形態1に係るキャパシタ集合体が備える複数のキャパシタのうちの第1キャパシタを外部電極側から見た平面図である。図8においては、第1電極層120および第2電極層140の各々の形状のみ図示している。
図8に示すように、本実施形態に係る第1キャパシタにおいては、外部電極160側から見て、第2電極層140は、最大面積を占める矩形形状を有する第1領域191と、第1領域191から突出した1つの第2領域192とを有している。第1領域191は、2つの長辺および2つの短辺を有している。
第2領域192は、第1領域191の2つの長辺のうちの一辺の一部から突出するように設けられている。なお、第2領域は、第1領域191の上記長辺のいずれの位置から突出していてもよい。または、第2領域192は、第191の2つの短辺のうちの一辺の一部から、突出するように設けられていてもよい。本実施形態においては、第2領域192は矩形形状を有しているが、これに限定されない。第2領域192は、三角形状または扇形状などであってもよい。
第2領域192の矩形形状においては、第2領域192が第1領域から突出する方向と平行な辺の長さがX、この辺に垂直な他方の辺の長さがYである。
本発明の実施形態1に係るキャパシタ集合体が備える複数のキャパシタのうちの第2キャパシタは、第1キャパシタとは、上記の長さXおよび長さYの少なくとも一方が異なり、他の構成は同一である。すなわち、第1キャパシタと第2キャパシタとは、第2領域192の形状が互いに異なる。
本実施形態においては、第2キャパシタは、第1キャパシタとは、第2電極層140において異なる形状を有している。また、本実施形態において、第1キャパシタと第2キャパシタとは、外部電極160側から見て、第2電極層140において、互いに異なる面積を有している。
ここで、本発明の実施形態1に係るキャパシタ集合体が備える複数のキャパシタが、第1キャパシタおよび第2キャパシタを含む理由について説明する。
複数のキャパシタは、ウェハ状態の半導体基板に成膜されることにより製造される。図9は、ウェハ状態の半導体基板に成膜した際のウェハ状態の半導体基板の面内における応力分布の一例を示す図である。
図9に示すように、ウェハ状態の半導体基板210は、略円形状の外形を有している。ウェハ状態の半導体基板210上に、キャパシタ100を構成する各層が成膜される。成膜時の膜厚のばらつきにより、ウェハ状態の半導体基板210の面内において応力分布が発生することがある。特に、熱膨張率の大きい、第1電極層120、第2電極層140および外部電極160の少なくとも1つの膜厚がばらついた際には、ウェハ状態の半導体基板210の面内において応力分布が発生する。
たとえば、第2電極層140の膜厚が、ウェハ状態の半導体基板210の外周部に位置する領域Aにおいて比較的薄く、ウェハ状態の半導体基板210の中央部に位置する領域Bにおいて比較的厚くなった場合、ウェハ状態の半導体基板210の面内における応力は、径方向外側Rに行くにしたがって低くなる。
また、第2電極層140の膜厚が、ウェハ状態の半導体基板210の外周部に位置する領域Aにおいて比較的厚く、ウェハ状態の半導体基板210の中央部に位置する領域Bにおいて比較的薄くなった場合には、ウェハ状態の半導体基板210の面内における応力は、径方向外側Rに行くにしたがって高くなる。
なお、図9に示したウェハ状態の半導体基板210においては、領域Aは円環状の外形を有しており、領域Bは円形状の外形を有している。また、ウェハ状態の半導体基板210上においては、領域Aおよび領域Bの各々がウェハ状態の半導体基板210と同心円状に位置している。なお、領域Aおよび領域Bの各々は、必ずしもウェハ状態の半導体基板210と同心円状に位置するとは限らない。
このように応力分布が発生した状態のウェハ状態の半導体基板210から複数のキャパシタを製造した場合、ウェハ状態の半導体基板210の面内の応力の高い部分から切り出されたキャパシタの電極層に高い応力が作用し、クラックまたは剥離が生じることがある。
そこで、本実施形態においては、ウェハ状態の半導体基板210の面内の応力分布に対応して、第2領域192の形状を異ならせている。たとえば、ウェハ状態の半導体基板210の面内の応力の高い部分から第1キャパシタが切り出され、ウェハ状態の半導体基板210の面内の応力の低い部分から第2キャパシタが切り出される場合、第1キャパシタの第2領域192の面積が、第2キャパシタの第2領域192の面積より小さくなるように、第1キャパシタの第2領域192の形状と第2キャパシタの第2領域192の形状とを互いに異ならせる。
これにより、ウェハ状態の半導体基板210の面内の応力の高い部分から切り出された第1キャパシタの電極層に作用する応力を緩和することができるため、第1キャパシタにおいてクラックまたは剥離が生じることを抑制できる。
なお、図9に例示したウェハ状態の半導体基板210の面内の応力分布は、複数のキャパシタの全てが同一の構造を有するように成膜したときの応力分布である。本実施形態に係る複数のキャパシタ100を製造する際には、事前に把握された上記応力分布の傾向に基づき、第2領域192の形状および面積の各々が設定される。
また、1つの第2領域192の形状を異ならせる場合に限られず、ウェハ状態の半導体基板210の面内の応力分布に対応して、第2領域192の数および配置を適宜変更することにより、キャパシタの電極層に作用する応力を緩和することができる。
さらに、本実施形態においては、第1キャパシタと第2キャパシタとにおいて、誘電体層130の厚さが互いに異なる場合においては、第2電極層140の大きさを適宜変更する。たとえば、第1キャパシタおよび第2キャパシタのうち厚い誘電体層130を含むキャパシタは、薄い誘電体層130を含むキャパシタと比較して、外部電極160側から見たときの第2電極層140の面積が大きくなるように、第1キャパシタの第2領域192の形状と第2キャパシタの第2領域192との形状とを互いに異ならせる。これにより、誘電体層130の膜厚のばらつきによる第1キャパシタの静電容量と第2キャパシタの静電容量との差を、小さくすることができる。
図10は、本発明の実施形態1に係るキャパシタ集合体の構成を示す斜視図である。図10に示すように、本発明の実施形態1に係るキャパシタ集合体500は、複数のキャパシタ100と、複数のキャパシタ100を保持する保持体とを備えている。複数のキャパシタ100には、第1キャパシタ100Fおよび第2キャパシタ100Sが含まれている。
複数のキャパシタ100は、第1キャパシタ100Fおよび第2キャパシタ各々とは、第1電極層120、第2電極層140および外部電極160の少なくとも1つにおいて異なる形状を有する他のキャパシタをさらに含んでいてもよい。
本実施形態に係る保持体は、テープリール300aで構成されている。テープリール300aは、複数のポケット310aを備えている。複数のポケット310aの各々に、第1キャパシタ100Fと第2キャパシタ100Sとを含む複数のキャパシタ100が収納されている。
なお、保持体は、テープリール300aに限られない。ここで、保持体のみ異なるキャパシタ集合体の他の態様について説明する。
図11は、本実施形態に係るキャパシタ集合体の他の一例として、保持体がダイシングテープであるキャパシタ集合体を示す平面図である。図11に示すように、複数のキャパシタ100を保持する保持体として、ウェハ状態の半導体基板210をダイシングする際にウェハ状態の半導体基板210に貼り付けられるダイシングテープ300bを用いてもよい。この場合、キャパシタ集合体500は、ウェハ状態の半導体基板210の外周に配置され、ダイシングテープ300bが貼り付けられたダイシングリング320bをさらに備えている。ダイシングテープ300bは、ダイシング後においても切断されず、複数のキャパシタ100を保持することができる。
図12は、本実施形態に係るキャパシタ集合体のさらに他の一例として、保持体がチップトレイであるキャパシタ集合体を示す斜視図である。図12に示すように、複数のキャパシタ100を保持する保持体として、チップトレイ300cを用いてもよい。チップトレイ300cは、複数のポケット310cを備えている。複数のポケット310cの各々に、第1キャパシタ100Fと第2キャパシタ100Sとを含む複数のキャパシタ100が収納される。
上記のように、本実施形態に係るキャパシタ集合体500においては、ウェハ状態の半導体基板210の面内の応力分布に対応して第2電極層140の形状が互いに異なる、第1キャパシタ100Fと第2キャパシタ100Sとを含む複数のキャパシタ100を備えている。これにより、ウェハ状態の半導体基板210の面内の応力の高い部分から切り出されたキャパシタにおいてクラックまたは剥離が生じることを抑制できるため、キャパシタの不良率を低減して、ウェハ状態の半導体基板から製造できるキャパシタの歩留まりを向上することができる。その結果、キャパシタを低コスト化できる。
ここで、第2領域の配置または数が異なる、本発明の実施形態1の各変形例に係るキャパシタ集合体について説明する。
図13は、本発明の実施形態1の第1変形例に係るキャパシタ集合体が備えるキャパシタを外部電極側から見た平面図である。図13においては、第1電極層120および第2電極層140の各々の形状のみ図示している。
図13に示すように、第1変形例に係るキャパシタにおいては、第2電極層140が、外部電極160側から見て、最大面積を占める矩形形状を有する第1領域191と、第1領域191から突出した2つの第2領域192とを有している。第2領域192は、第1電極層120の短辺に沿う方向に突出している。
図14は、本発明の実施形態1の第2変形例に係るキャパシタ集合体が備えるキャパシタを外部電極側から見た平面図である。図14においては、第1電極層120および第2電極層140の各々の形状のみ図示している。
図14に示すように、第2変形例に係るキャパシタにおいては、第2電極層140が、外部電極160側から見て、最大面積を占める矩形形状を有する第1領域191と、第1領域191から突出した4つの第2領域192とを有している。第2領域192は、第1領域191の2つの長辺から2つずつ突出するように設けられている。
また、第1領域191の一方の長辺から突出する2つの第2領域192は、それぞれ、第1領域191を挟んで他の2つの第2領域192と互いに対向するように設けられている。すなわち、本変形例において、第2電極層140は、アルファベットのHのような形状を有している。なお、4つの第2領域192は、第1領域191の長辺に平行な方向において、互いに異なる位置に設けられてもよい。
本実施形態においては、第1キャパシタと第2キャパシタとにおいて、第2領域の形状を互いに異ならせたが、第1領域の形状を互いに異ならせるようにしてもよい。
(実施形態2)
以下、本発明の実施形態2に係るキャパシタ集合体について説明する。本発明の実施形態2に係るキャパシタ集合体において、第1キャパシタ100Fと第2キャパシタ100Sとは、第1電極層120の形状が互いに異なる点で、本発明の実施形態1に係るキャパシタ集合体500と異なる。よって、本発明の実施形態1に係るキャパシタ集合体500と同様である構成については説明を繰り返さない。
以下、本発明の実施形態2に係るキャパシタ集合体について説明する。本発明の実施形態2に係るキャパシタ集合体において、第1キャパシタ100Fと第2キャパシタ100Sとは、第1電極層120の形状が互いに異なる点で、本発明の実施形態1に係るキャパシタ集合体500と異なる。よって、本発明の実施形態1に係るキャパシタ集合体500と同様である構成については説明を繰り返さない。
図15は、本発明の実施形態2に係るキャパシタ集合体が備えるキャパシタを外部電極側から見た平面図である。図15においては、第1電極層120および第2電極層140の各々の形状のみ図示している。
図15に示すように、本発明の実施形態2に係るキャパシタにおいては、第1電極層120が、外部電極160側から見て、最大面積を占める矩形形状を有する第1領域191aと、第1領域191から突出した1つの第2領域192aとを有している。本実施形態における第1領域191aおよび第2領域192aの各々の形状は、実施形態1における第1領域191および第2領域192の各々の形状と同様に設定することができる。
また、外部電極160側から見て、第2電極層140が第1電極層120の内側に位置していることにより、外部電極160と、第1電極層120との間で発生する寄生容量を低減させることができる。
本実施形態においては、第1キャパシタ100Fと第2キャパシタ100Sとは、第1電極層120の形状が互いに異なっていることにより、複数のキャパシタ100の各々を構成する各層のうち、第1電極層120の応力を選択的に緩和することができる。そのため、より効果的に同一のウェハ状態の半導体基板から製造されるキャパシタの歩留まりを高めることができ、キャパシタ集合体を構成するキャパシタを低コスト化することができる。
本実施形態においては、第1電極層120における1つの第1領域191aに対して、2つ以上の第2領域192aが突出していてもよい。また、第1キャパシタ100Fと第2キャパシタ100Sとは、さらに、第2電極層140の形状も互いに異なっていてもよい。ここで、本発明の実施形態2の各変形例に係るキャパシタ集合体500について説明する。
図16は、本発明の実施形態2の第1変形例に係るキャパシタ集合体が備えるキャパシタを外部電極側から見た平面図である。図16においては、第1電極層120および第2電極層140の各々の形状のみ図示している。
図16に示すように、本発明の実施形態2の第1変形例に係るキャパシタにおいては、第1電極層120が、外部電極160側から見て、最大面積を占める矩形形状を有する第1領域191aと、第1領域191aから突出した2つの第2領域192aとを有している。第2領域192aは、第1領域191aの2つの長辺のそれぞれの一部から突出するように設けられている。
本変形例における第1領域191aおよび第2領域192aの各々の形状は、実施形態1の第1変形例における第1領域191および第2領域192の各々の形状と同様に設定することができる。
図17は、本発明の実施形態2の第2変形例に係るキャパシタ集合体が備えるキャパシタを外部電極側から見た平面図である。図17においては、第1電極層120および第2電極層140の各々の形状のみ図示している。
図17に示すように、本発明の実施形態2の第2変形例に係るキャパシタにおいては、第2電極層140が、外部電極160側から見て、最大面積を占める矩形形状を有する第1領域191と、第1領域191から突出した2つの第2領域192とを有している。第2領域192は、第1領域191の2つの長辺のそれぞれの一部から突出するように設けられている。
また、外部電極160側から見て、第2電極層140の第1領域191は、図17に示すように第1電極層120の第1領域191aに亘って設けられていてもよく、第1電極層120の第1領域191aの内側に位置するように設けられていてもよい。
本変形例における第1領域191および第2領域192の各々の形状は、実施形態1の第2変形例における第1領域191および第2領域192の各々の形状と同様に設定することができる。
(実施形態3)
以下、本発明の実施形態3に係るキャパシタ集合体について説明する。本発明の実施形態3に係るキャパシタ集合体において、第1キャパシタ100Fと第2キャパシタ100Sとは、外部電極160の形状が互いに異なる点で、本発明の実施形態1に係るキャパシタ集合体500と異なる。よって、本発明の実施形態1に係るキャパシタ集合体500と同様である構成については説明を繰り返さない。
以下、本発明の実施形態3に係るキャパシタ集合体について説明する。本発明の実施形態3に係るキャパシタ集合体において、第1キャパシタ100Fと第2キャパシタ100Sとは、外部電極160の形状が互いに異なる点で、本発明の実施形態1に係るキャパシタ集合体500と異なる。よって、本発明の実施形態1に係るキャパシタ集合体500と同様である構成については説明を繰り返さない。
図18は、本発明の実施形態3に係るキャパシタ集合体が備えるキャパシタを外部電極側から見た平面図である。図18においては、キャパシタの内部の構造は図示していない。
図18に示すように、本発明の実施形態3に係るキャパシタにおいては、外部電極160の少なくとも1つが、外部電極160側から見て、最大面積を占める矩形形状を有する第1領域191bと、第1領域191bから突出した1つの第2領域192bとを有している。なお、本実施形態においては、すべての外部電極160の各々が、第1領域191bと第2領域192bを有している。
本実施形態における第1領域191bおよび第2領域192bの各々の形状は、実施形態1における第1領域191および第2領域192の各々の形状と同様に設定することができる。
本実施形態においては、第1キャパシタ100Fと第2キャパシタ100Sとは、外部電極160の形状が互いに異なっていることにより、複数のキャパシタ100の各々を構成する各層のうち、外部電極160の応力を選択的に緩和することができる。そのため、より効果的に同一のウェハ状態の半導体基板から製造されるキャパシタの歩留まりを高めることができ、キャパシタ集合体を構成するキャパシタを低コスト化することができる。
上述した実施形態の説明において、組み合わせ可能な構成を相互に組み合わせてもよい。すなわち、キャパシタ集合体500においては、第1キャパシタ100Fと第2キャパシタ100Sとが、第1電極層120、第2電極層140および、外部電極160の少なくとも1つにおいて互いに異なる形状を有していればよい。
また、第1キャパシタ100Fと第2キャパシタ100Sとは、外部電極160側から見て、第1電極層120、第2電極層140および外部電極160の少なくとも1つにおいて、互いに異なる面積を有していればよい。
また、第1キャパシタ100Fと第2キャパシタ100Sとは、誘電体層130の厚みが互いに異なっていてもよい。積層方向における第1キャパシタ100Fの誘電体層130の厚みが、第2キャパシタ100Sの誘電体層130の厚みより厚い場合、第1キャパシタ100Fの第1電極層120、第2電極層140および外部電極160の少なくとも1つの面積が、対応する第2キャパシタ100Sの第1電極層120、第2電極層140および外部電極160の少なくとも1つの面積よりも大きくなっていればよい。
この場合、第1キャパシタ100Fの第1電極層120の面積が第2キャパシタ100Sの第1電極層120の面積よりも大きくてもよく、第1キャパシタ100Fの第2電極層140の面積が第2キャパシタ100Sの第2電極層140の面積よりも大きくてもよい。
今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
100 キャパシタ、100F 第1キャパシタ、100S 第2キャパシタ、110 半導体基板、111 主面、115 絶縁層、120 第1電極層、130 誘電体層、131 貫通孔、140 第2電極層、150 保護層、160 外部電極、191,191a,191b 第1領域、192,192a,192b 第2領域、210 ウェハ状態の半導体基板、300a テープリール、300b ダイシングテープ、300c チップトレイ、310a,310c ポケット、320b ダイシングリング、500 キャパシタ集合体。
Claims (7)
- 複数のキャパシタと、
前記複数のキャパシタを保持する保持体とを備え、
前記複数のキャパシタの各々は、
一方の主面を有する半導体基板と、
前記半導体基板の一方の主面側に位置する第1電極層と、
前記第1電極層に積層された誘電体層と、
前記誘電体層に積層された第2電極層と、
前記第1電極層および前記第2電極層の各々に対応して接続された外部電極とを含み、
前記複数のキャパシタは、
第1キャパシタと、
前記第1キャパシタとは、前記第1電極層、前記第2電極層および前記外部電極の少なくとも1つにおいて異なる形状を有する、第2キャパシタとを含む、キャパシタ集合体。 - 前記第1キャパシタおよび前記第2キャパシタの各々においては、外部電極側から見て、前記第1電極層、前記第2電極層および前記外部電極の少なくとも1つが、最大面積を占める矩形形状を有する第1領域と、前記第1領域から突出した少なくとも1つの第2領域とを有し、
前記第1キャパシタと前記第2キャパシタとは、前記第2領域の形状が互いに異なる、請求項1に記載のキャパシタ集合体。 - 前記第1キャパシタと前記第2キャパシタとは、前記第1電極層の形状が互いに異なる、請求項1または請求項2に記載のキャパシタ集合体。
- 前記第1キャパシタと前記第2キャパシタとは、前記第2電極層の形状が互いに異なる、請求項1から請求項3のいずれか1項に記載のキャパシタ集合体。
- 前記第1キャパシタと前記第2キャパシタとは、前記外部電極の形状が互いに異なる、請求項1から請求項4のいずれか1項に記載のキャパシタ集合体。
- 前記第1キャパシタと前記第2キャパシタとは、外部電極側から見て、前記第1電極層、前記第2電極層および前記外部電極の少なくとも1つにおいて、互いに異なる面積を有する、請求項1から請求項5のいずれか1項に記載のキャパシタ集合体。
- 前記第1キャパシタと前記第2キャパシタとは、前記誘電体層の厚さが互いに異なっており、
前記第1キャパシタおよび前記第2キャパシタのうち厚い前記誘電体層を含むキャパシタは、薄い前記誘電体層を含むキャパシタと比較して、外部電極側から見たときの前記第2電極層の面積が大きい、請求項6に記載のキャパシタ集合体。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980028595.2A CN112041954B (zh) | 2018-04-27 | 2019-04-10 | 电容器集合体 |
JP2020516202A JP7156369B2 (ja) | 2018-04-27 | 2019-04-10 | キャパシタ集合体 |
US17/069,547 US11545304B2 (en) | 2018-04-27 | 2020-10-13 | Capacitor cluster having capacitors with different shapes |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-087212 | 2018-04-27 | ||
JP2018087212 | 2018-04-27 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/069,547 Continuation US11545304B2 (en) | 2018-04-27 | 2020-10-13 | Capacitor cluster having capacitors with different shapes |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019208221A1 true WO2019208221A1 (ja) | 2019-10-31 |
Family
ID=68295372
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/015622 WO2019208221A1 (ja) | 2018-04-27 | 2019-04-10 | キャパシタ集合体 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11545304B2 (ja) |
JP (1) | JP7156369B2 (ja) |
CN (1) | CN112041954B (ja) |
WO (1) | WO2019208221A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0536828U (ja) * | 1991-10-11 | 1993-05-18 | 株式会社村田製作所 | コンデンサネツトワーク |
JPH09321227A (ja) * | 1996-05-31 | 1997-12-12 | Nec Corp | 誘電体膜の製造方法 |
JP2012015326A (ja) * | 2010-06-30 | 2012-01-19 | Tdk Corp | 薄膜コンデンサ及びその製造方法 |
JP2015023245A (ja) * | 2013-07-23 | 2015-02-02 | 株式会社村田製作所 | 電子部品の製造方法 |
JP2015133392A (ja) * | 2014-01-10 | 2015-07-23 | 富士通セミコンダクター株式会社 | 半導体装置及びその製造方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1179236A (ja) * | 1997-09-10 | 1999-03-23 | Yayoi Kk | 部品包装体 |
SG99939A1 (en) * | 2000-08-11 | 2003-11-27 | Casio Computer Co Ltd | Semiconductor device |
JP4755410B2 (ja) * | 2003-11-18 | 2011-08-24 | ルネサスエレクトロニクス株式会社 | テープ状部品包装体 |
CN1925720B (zh) * | 2005-09-01 | 2010-04-14 | 日本特殊陶业株式会社 | 布线基板、电容器 |
JP5234521B2 (ja) | 2009-08-21 | 2013-07-10 | Tdk株式会社 | 電子部品及びその製造方法 |
JP2014239207A (ja) * | 2013-05-10 | 2014-12-18 | 株式会社村田製作所 | コンデンサ素子の実装構造体およびコンデンサ素子の実装方法 |
JPWO2018003445A1 (ja) | 2016-06-28 | 2019-03-07 | 株式会社村田製作所 | キャパシタ |
-
2019
- 2019-04-10 JP JP2020516202A patent/JP7156369B2/ja active Active
- 2019-04-10 WO PCT/JP2019/015622 patent/WO2019208221A1/ja active Application Filing
- 2019-04-10 CN CN201980028595.2A patent/CN112041954B/zh active Active
-
2020
- 2020-10-13 US US17/069,547 patent/US11545304B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0536828U (ja) * | 1991-10-11 | 1993-05-18 | 株式会社村田製作所 | コンデンサネツトワーク |
JPH09321227A (ja) * | 1996-05-31 | 1997-12-12 | Nec Corp | 誘電体膜の製造方法 |
JP2012015326A (ja) * | 2010-06-30 | 2012-01-19 | Tdk Corp | 薄膜コンデンサ及びその製造方法 |
JP2015023245A (ja) * | 2013-07-23 | 2015-02-02 | 株式会社村田製作所 | 電子部品の製造方法 |
JP2015133392A (ja) * | 2014-01-10 | 2015-07-23 | 富士通セミコンダクター株式会社 | 半導体装置及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP7156369B2 (ja) | 2022-10-19 |
US20210027951A1 (en) | 2021-01-28 |
CN112041954B (zh) | 2022-08-02 |
US11545304B2 (en) | 2023-01-03 |
JPWO2019208221A1 (ja) | 2021-03-18 |
CN112041954A (zh) | 2020-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220384113A1 (en) | Capacitor | |
JP6579502B2 (ja) | キャパシタ | |
US20200137889A1 (en) | Capacitor having through hole structure and manufacturing method therefor | |
JP7505629B2 (ja) | キャパシタ | |
US11521800B2 (en) | Capacitor | |
US11476055B2 (en) | Thin film capacitor and method of manufacturing the same | |
JP2017195321A (ja) | チップコンデンサ | |
CN110098054B (zh) | 电容器组件 | |
WO2020230414A1 (ja) | キャパシタ | |
JP2017195322A (ja) | チップコンデンサ | |
CN114981904A (zh) | 半导体装置以及电容装置 | |
US11158456B2 (en) | Trench capacitor | |
WO2019208221A1 (ja) | キャパシタ集合体 | |
US10950389B2 (en) | Thin-film capacitor | |
US20240071691A1 (en) | Semiconductor device | |
US11271074B2 (en) | Capacitor and method for manufacturing the same | |
WO2018088265A1 (ja) | 電子部品 | |
US11017923B1 (en) | Resistor component | |
US20180019296A1 (en) | Passive Chip Device and Method of Making the Same | |
US11315708B1 (en) | Chip resistor | |
WO2022239717A1 (ja) | 半導体装置 | |
JP4206293B2 (ja) | 薄膜コンデンサおよびそれを用いたコンデンサ基板 | |
US20230098377A1 (en) | Chip parts | |
JP7042967B2 (ja) | 半導体装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19792147 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020516202 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19792147 Country of ref document: EP Kind code of ref document: A1 |