CN1925720B - 布线基板、电容器 - Google Patents

布线基板、电容器 Download PDF

Info

Publication number
CN1925720B
CN1925720B CN 200610126614 CN200610126614A CN1925720B CN 1925720 B CN1925720 B CN 1925720B CN 200610126614 CN200610126614 CN 200610126614 CN 200610126614 A CN200610126614 A CN 200610126614A CN 1925720 B CN1925720 B CN 1925720B
Authority
CN
China
Prior art keywords
capacitor
layer
inductor
mentioned
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN 200610126614
Other languages
English (en)
Other versions
CN1925720A (zh
Inventor
浦岛和浩
由利伸治
佐藤学
小川幸树
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006168172A external-priority patent/JP5160052B2/ja
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Publication of CN1925720A publication Critical patent/CN1925720A/zh
Application granted granted Critical
Publication of CN1925720B publication Critical patent/CN1925720B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16235Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a via metallisation of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19042Component type being an inductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Abstract

易达成多功能化且适于小型化及低成本化的布线基板及适于该布线基板的电容器。布线基板(10)具备:具有芯核主面(12)及芯核背面(13)的基板芯核(11);具有电容器主面(102)及电容器背面(103)且具有夹介电介质层(105)交替积层配置第1内部电极层(141)和第2内部电极层(142)而成的构造,在使所述芯核主面(12)和所述电容器主面(102)向着相同侧的状态下被收纳在所述基板芯核(11)内的电容器(101);以及具有在所述芯核主面(12)及所述电容器主面(102)上交替积层层间绝缘层(33、35)及导体层(42)而成的构造的布线积层部(31),所述电容器(101)上形成电感器(251)。

Description

布线基板、电容器
技术领域
本发明涉及在基板芯核中埋入以陶瓷等为主体的电容器(capacitor)而再在其表面上积层形成布线积层部的构造的、其上搭载半导体集成电路元件的布线基板及该布线基板使用的电容器。
背景技术
计算机的微处理器、芯片组等使用的半导体集成电路元件(集成电路芯片)近几年越来越高速化、高功能化,与此相伴,出现了端子数增加,端子间间距也变窄的倾向。一般而言,在集成电路芯片的底面有很多端子密集配置成阵列状,这样的端子群与母板侧的端子群以倒装芯片的形态连接。可是,在集成电路芯片侧的端子群和母板侧的端子群中,端子间间距存在大的差,所以把集成电路芯片直接连接到母板上很困难。为此,通常采用制作在集成电路芯片搭载用布线基板上搭载集成电路芯片而成的封装件,在母板上搭载该封装件的手法。
然而,一直以来对这种封装件都有小型化、多功能化及低成本化的要求。对此,作为构成封装件的集成电路芯片搭载用布线基板,例如,已经提出了在高分子材料制的芯核基板内埋入芯片状的陶瓷电容器来构成芯核部,在该芯核部的表面及背面形成了构建(buildup)层的东西(例如,参照JP-A-2005-39243)。该构成的优点在于,通过内置在现有封装件上被表面实装了的电容(condenser)来提高芯核部表面的自由度,缩减空闲空间,实现小型化。或者在于,通过在空闲空间表面实装除了电感器、电阻体等以外的电子部件来实现多功能化。另外,作为多功能化封装件的具体例子,可以列举具有以无线通讯进行多个集成电路芯片间的数据交换的功能东西等。并且,为实现这种封装件,需要用多个电子部件在封装件上构成无线通讯所必要的电路(例如调谐电路等)。作为现有技术,公知的是JP-A-2002-43754。
从文献JP-A-07086754中可得知一种用于安装半导体IC部件的积层构造的陶瓷多层基板。根据该文献,在陶瓷多层基板的积层构造中设置适当形状的电极层,就能陶瓷多层基板中埋入电感器和电容器。
发明内容
发明打算解决的课题
然而,在采用在空闲空间表面实装电感器、电阻体等封装件构造的场合,在封装件的表层部还需要用于此的部件实装空间。因而,即使能达成多功能化,再达成小型化也很困难。还有,在这样的封装件的制作中,不能省略实装电感器、电阻体等的工序,这已成为低成本化的障碍。
本发明是鉴于上述课题而提出的,其目的在于提供容易达成多功能化并且适于小型化及低成本化的布线基板。还有,本发明另外的目的在于提供适于上述出色的布线基板使用的电容器。
这依靠独立权利要求的特征来实现。具体实施方式受从属权利要求的支配。
用于解决课题的技术方案
为了解决上述课题,技术方案1(第一方面)的发明的要旨在于一种布线基板,其特征在于,具备:具有芯核主面及芯核背面的基板芯核;具有电容器主面及电容器背面,并且具有夹介电介质层而交替积层配置第1内部电极层和第2内部电极层而成的构造,在使上述芯核主面和上述电容器主面向着相同侧的状态下被收纳在上述基板芯核内的电容器;以及具有在上述芯核主面及上述电容器主面上交替积层层间绝缘层及导体层而成的构造的布线积层部,在上述电容器上形成了电感器或电阻体。
从而,根据技术方案1的布线基板,在电容器自身上形成了电感器的场合,例如在电容器内构成各种电路的一部分或全部等就成为可能。
因而,与在布线基板表层部实装了电感器的现有构造相比,容易达成多功能化。还有,不需要在布线基板表层部新设定电感器用的部件实装空间,因而进一步小型化不易受制约,适于整体的小型化。再有,电感器实装工序可省略,因而适于低成本化。
在这里,技术方案1的布线基板是用于搭载作为被搭载物的半导体集成电路元件的装置。作为「半导体集成电路元件」的例子,有作为计算机的微处理器等来使用,具有1个或多个处理器芯核的半导体集成电路元件。该半导体集成电路元件,例如按倒装芯片方式实装在半导体集成电路元件搭载区域。另外,处理器芯核的数量可以是2个,也可以是3个及以上。作为半导体集成电路元件的别的例子,可以列举作为进行高速数据处理的控制器用途来使用的东西。作为控制器的功能的具体例子,例如可以列举存储器控制器、多重处理控制器、总线控制器、视频控制器等,图像处理芯片、芯片组属于此列。在这里作为芯片组的一个例子,有完成母板的中心作用的东西,即由诺思桥和索斯桥构成的具有作为各种控制器的功能东西。还有,「半导体集成电路元件搭载区域」是指在布线积层部表面上配置了端子垫群的区域。
构成上述布线基板的基板芯核是构成布线基板上的芯核部的一部分的东西,例如形成为具有芯核主面及位于其相反侧的芯核背面的板状。这种基板芯核可以具有用于收纳电容器的收纳孔部。该收纳孔部可以是只在芯核主面开口的非贯通孔,或是在芯核主面及芯核背面两方开口的贯通孔。另外,电容器可以完全填埋在收纳孔部内,也可以在使其一部分突出的状态下填埋。
形成基板芯核的材料没有特别限定,不过,优选的是,基板芯核以高分子材料为主体来形成。作为用于形成基板芯核的高分子材料的具体例子,例如,有EP树脂(环氧树脂)、PI树脂(聚酰亚胺树脂)、BT树脂(双马来酰亚胺三嗪树脂)、PPE树脂(聚酰胺表氯醇树脂)等。除此以外,也可以使用这些树脂和玻璃纤维(玻璃纺织布、玻璃无纺布)、聚酰胺纤维等有机纤维的复合材料。
构成上述布线基板的电容器具有电容器主面及电容器背面,并且具有夹介电介质层而交替积层配置第1内部电极层和第2内部电极层而成的构造。作为形成电介质层的材料,可选择树脂、陶瓷等,不过,特别优选的是采用陶瓷烧结体。作为更适宜的电容器,可以列举具有电容器主面及电容器背面,并且具有夹介陶瓷电介质层而交替积层配置第1内部电极层和第2内部电极层而成的构造的陶瓷电容器。这里说的陶瓷电容器中也包含在基板(不只限于陶瓷基板)上由陶瓷材料形成薄膜而成的电容器。
电容器在使芯核主面和电容器主面向着同一侧的状态下被收纳在基板芯核内。即,电容器以内置于基板芯核内的状态来使用。另外,电容器在上述芯核基板上配置在与上述半导体集成电路元件搭载区域对应的区域。电容器在基板芯核内被收纳了的状态下,例如由高分子材料制的填充剂来固定。
还有,作为适宜的电容器的例子,可以列举通路阵列型(ビアアレイタイプ)电容器。即,电容器优选的是,具备:使上述第1内部电极层彼此导通的多个电源用通路导体;使上述第2内部电极层彼此导通的多个接地用通路导体;位于上述多个电源用通路导体的端部的电源用电极端子;以及位于上述多个接地用通路导体的端部的接地用电极端子,上述多个电源用通路导体及上述多个接地用通路导体配置成阵列状。具体而言,优选的是,多个电源用通路导体及上述多个接地用通路导体从电容器厚度方向看时作为整体配置成阵列状。如果这样来构成,电容器整体的小型化就容易实现,进而布线基板整体的小型化也就容易实现。而且,高静电容量比较容易达成,更加稳定的电源供给成为可能。
上述电容器具有1个或多个电容器功能部。电容器功能部是指包含第1内部电极层及上述第2内部电极层而构成的区域。优选的是,多个电容器功能部彼此至少电源系统互相独立。电容器功能部可以有2个,也可以有3个及以上,不过优选的是与处理器芯核同数存在。这样来构成,就能对全部的处理器芯核分别电连接全部的电容器功能部。
另外,邻接的多个电容器功能部间的距离(具体是分别构成邻接的多个电容器功能部的电源用内部电极层间的距离)没有特别限定。不过,上述距离优选的是电容器功能部互相不发生静电干涉的程度,具体最好为50μm以上。特别是要确保电容器的通路间距(接地通路-电源通路间间距)以上的距离。
在构成电容器的电介质层为陶瓷电介质层的场合,例如氧化铝、氮化铝、氮化硼、炭化硅、氮化硅等高温烧成陶瓷的烧结体适于使用,此外,在硼硅酸系玻璃、硼硅酸铅系玻璃中添加氧化铝等无机陶瓷填充物而成的玻璃陶瓷这样的低温烧成陶瓷的烧结体也适于使用。在该场合,优选的是按照用途,使用钛酸钡、钛酸铅、钛酸锶等电介质陶瓷的烧结体。在使用了电介质陶瓷的烧结体的场合,容易实现静电容量大的陶瓷电容器。
形成第1内部电极层及第2内部电极层的材料没有特别限定,不过,适于使用能与陶瓷同时烧结的金属,例如镍、钼、钨、钛等。另外,在选择了低温烧成陶瓷的烧结体的场合,作为形成第1内部电极层及第2内部电极层的材料,还可使用铜、银等。
在上述电容器中为了实现多功能化而形成了1个或2个及以上电感器或电阻体。这样的电感器或电阻体不是指与电容器分开构成的电感器,而是与电容器一体形成的东西。
例如,这种电感器在电容器的电容器主面及电容器背面中的至少任意一个上形成。在这样的位置形成的电感器在电容器的外表面露出。所以,能在形成后实施修剪等,对形状进行微调整,进而能对电感进行微调整,这是有利之处。还有,在构成无线通讯用电路的场合,包含在电容器的外表面露出了的电感器的电路与包含非露出的电感器的电路相比,灵敏度高、输出高。
另外,电感器可以只在电容器主面上形成,也可以只在电容器背面上形成,也可以在电容器主面及电容器背面两方上形成。在两方上形成了电感器的构成的优点如下。即,在电感器与电容器功能部电独立的场合,根据该构成,与把电感器表面实装在布线基板表层部的现有构造相比,能搭载多达2倍的程度。还有,电路形成的自由度也变大了。
例如,电阻体在电容器的电容器主面及电容器背面中的至少任意一个上形成。在这样的位置形成的电阻体在电容器的外表面露出,所以,能在形成后实施修剪等,对电阻体进行微调整,这是有利之处。另外,电阻体可以只在电容器主面上形成,也可以只在电容器背面上形成,也可以在电容器主面及电容器背面两方上形成。在两方上形成了电阻体的构成的优点如下。即,在电阻体与电容器功能部电独立的场合,根据该构成,与把电阻体表面实装在布线基板表层部的现有构造相比,能搭载多达2倍的程度。还有,电路形成的自由度也变大了。
在电容器主面上形成的电感器(表面侧电感器图形)或电阻体(表面侧电阻体图形)可由具有导电性的任意材料来形成,不过,特别优选的是由与电容器主面上的上述电源用电极端子及上述接地用电极端子相同的材料来形成。其理由是,可在形成电源用电极端子及接地用电极端子的工序时一并形成,从而能防止工数的增加。
还有,在电容器背面上形成的电感器(背面侧电感器图形)或电阻体(背面侧电阻体图形)可由具有导电性的任意材料来形成,不过,特别优选的是由与电容器背面上的上述电源用电极端子及上述接地用电极端子相同的材料来形成。其理由是,可在形成电源用电极端子及接地用电极端子的工序时一并形成,从而能防止工数的增加。
另外,如果不在电容器表面上而是只在电容器背面上形成背面侧电感器,就能有效利用电容器表面侧的空间来形成用于电源供给的导体。还有,上述布线基板上的电感器通常不是在芯核基板的芯核主面侧(即半导体集成电路元件搭载侧)而是在芯核背面侧配置。因而,在采用了表面侧电感器图形的场合就不必变更设计规则,所以电路设计的负担少。在采用这样的构造的场合,设置贯通芯核基板侧的通孔导体,使背面侧电感器图形与其连接,通过该通孔导体及布线积层部内的导体层来实现与半导体集成电路元件侧的电连接即可。
表面侧电感器图形、背面侧电感器图形的形状没有特别限定,不过,在有限的窄的空间内可实现所希望的电感的圈状图形是合适的。圈状图形的线宽及图形间空间没有限定,例如小于电源用通路导体及接地用通路导体的直径来形成即可。因此,例如如果电源用通路导体及接地用通路导体的直径是100μm-200μm的程度,圈状图形的线宽图形间空间最好设定为10μm-100μm的程度。根据该设定,以比较小的面积就能实现比较高的电感的电感器,因而不需要电感器形成用的大空间。在电容器的小型化,进而实现布线基板整体的小型化方面也是优选的。圈状图形的圈数可以按照目的任意设定,不过,通常按1圈以上,优选的是2圈及以上来设定。
电感器可配置在电容器上的任意位置,优选的是配置在包含第1内部电极层及第2内部电极层而构成的电容器功能部的外侧的区域。其理由是,这样的位置容易确保电感器形成用的空间。还有,与在电容器功能部内部的区域配置了电感器的场合相比,对电容器带来电影响的风险,或从电容器受到电影响的风险小。
或是,上述电阻体可以是在电容器内部形成的内层电阻图形。内层电阻图形可由具有导电性的任意材料来形成,不过,优选的是由与上述第1内部电极层及上述第2内部电极层相同的材料来形成。其理由是,可在形成第1内部电极层及第2内部电极层的工序时一并形成,从而能防止工数的增加。而且,第1内部电极层及第2内部电极层比电源用电极端子及接地用电极端子薄,因而具有容易形成小的高电阻的电阻体这样的优点。
此外,上述电阻体可以是在电容器内部形成的通路电阻。即,电阻体不限于在电容器平面方向延伸的东西,而是也可以是在电容器的厚度方向延伸的东西。有这样的通路电阻的话,例如就可联结夹介电介质层而配置了的多个电阻体彼此作为1个电阻体起作用。通路电阻优选的是由与多个电源用通路导体及多个接地用通路导体相同的材料来形成。其理由是,可在形成多个电源用通路导体及多个接地用通路导体的工序时一并形成,从而能防止工数的增加。
表面侧电阻体图形、背面侧电阻体图形、内层电阻体图形的形状没有特别限定,不过,在有限的窄的空间内要实现所希望的电阻值的场合取为线状图形是有利的。即,如果是这样的形状,单位长度的电阻值高,因而比较小的面积的图形即可,不需要大空间。即,线状图形的采用,在电容器的小型化,进而实现布线基板整体的小型化方面也是优选的。线状图形可以是直线也可以是曲线的,例如蜿蜒的更合适。线状图形的线宽尽可能形成得窄些,最好小于电源用通路导体及接地用通路导体的直径来形成。因此,例如如果电源用通路导体及接地用通路导体的直径是100μm-200μm的程度,线状图形的线宽最好设定为10μm-100μm的程度。
电阻体可配置在电容器上的任意位置,优选的是配置在包含第1内部电极层及第2内部电极层而构成的电容器功能部的外侧的区域。其理由是,这样的位置容易确保电阻体形成用的空间。还有,与在电容器功能部的内部的区域配置了电阻体的场合相比,对电容器带来电影响的风险小。
在上述形成了电感器的电容器上,为了实现多功能化,也可以形成电感器以外的无源元件,例如1个或2个及以上的电容。作为这样的电容,不是指与电容器分开构成的电容,而是与电容器一体形成的东西。另外,这种电容优选的是以对于构成了电容器功能部的第1内部电极层及第2内部电极层不受静电影响的状态来配置。
例如,上述电容可以在电容器主面及电容器背面中的至少任意一个上形成。在这样的位置上形成的电容在电容器的外表面露出,所以,能在形成后实施修剪等,对容量值进行微调整等,这是有利之处。
或是,上述电容也可以在电容器的内部形成。这样的电容器可以由具有导电性的任意材料来形成,不过,优选的是由与上述第1内部电极层及上述第2内部电极层相同的材料来形成。其理由是,可在形成第1内部电极层及第2内部电极层的工序时一并形成,从而能防止工数的增加。
在上述形成了电感器的电容器上,为了实现多功能化,也可以形成其他无源元件,例如1个或2个及以上的电阻体。作为这样的电阻体,不是指与电容器分开构成的电阻体,而是与电容器一体形成的东西。
例如,电阻体可以在电容器的电容器主面及电容器背面中的至少任意一个上形成。在这样的位置上形成的电阻体在电容器的外表面露出,所以,能在形成后实施修剪等,对电阻值进行微调整,这是有利之处。
在电容器主面上形成的电阻体(表面侧电阻图形)可由具有导电性的任意材料来形成,不过,特别优选的是由与电容器主面上的上述电源用电极端子及上述接地用电极端子相同的材料来形成。其理由是,可在形成电源用电极端子及接地用电极端子的工序时一并形成,从而能防止工数的增加。
还有,在电容器背面上形成的电阻体(表面侧电阻图形)可由具有导电性的任意材料来形成,不过,特别优选的是由与电容器背面上的上述电源用电极端子及上述接地用电极端子相同的材料来形成。其理由是,可在形成电源用电极端子及接地用电极端子的工序时一并形成,从而能防止工数的增加。
或是,上述电阻体也可以是在电容器内部形成的内层电阻图形。这样的内层电阻图形可以由具有导电性的任意材料来形成,不过,优选的是由与上述第1内部电极层及上述第2内部电极层相同的材料来形成。其理由是,可在形成第1内部电极层及第2内部电极层的工序时一并形成,从而能防止工数的增加。而且,第1内部电极层及第2内部电极层比电源用电极端子及接地用电极端子薄,因而具有容易形成小的高电阻的电阻体这样的优点。
电阻体可配置在电容器上的任意位置,优选的是配置在包含第1内部电极层及第2内部电极层而构成的电容器功能部的外侧的区域。其理由是,这样的位置容易确保电阻体形成用的空间。还有,与在电容器功能部的内部的区域配置了电阻体的场合相比,对电容器带来电影响的风险小。
并且,把电阻体及电容中的至少任意一个与电感器电连接来构成电路部即可。即,可以通过组合电容、电阻体、电感器来给予给定的功能,实现多功能化。作为合适的电路部的例子,例如有串联或并列连接电阻体和电感器而成的滤波器电路。具体可以列举高通滤波器电路、低通滤波器电路、中通滤波器电路等这样的只容许给定的频带通过的带通滤波器电路。作为别的合适的电路部,有串联连接电阻体、电感器及电容而成的调谐电路(RCL串联电路)。并且,在具有这些电路部的电容器的场合,容易给予以无线通讯进行多个IC芯片间的数据交换的功能,能确实实现高功能化。
在上述电容器中,除了滤波器电路、调谐电路以外,还可以构成例如开关电路、放大电路等电路部。此处,对于开关电路、放大电路等,大多需要晶体管等有源元件。所以,可以不在电容器侧形成构成这样的电路部的全部元件,可以在布线基板侧形成其一部分元件(主要是有源元件)。
另外,上述电容器可以具备1个或2个及以上信号线用路径,在该场合能达成更高功能化。作为信号线用路径的具体例子,可以列举信号线用通路导体。信号线用通路导体可以配置在电容器上的任意位置,不过,优选的是配置在包含第1内部电极层及第2内部电极层而构成的电容器功能部的外侧的区域。其理由是,这样的位置容易确保通路导体形成用的空间。还有,与在电容器功能部的内部的区域配置了信号线用通路导体的场合相比,从电容器受到电影响的风险小,并且噪声能确实降低。还有,这样的信号线用通路导体,为了便于互相电连接,最好配置在电容器上的各种电路部(滤波器电路、调谐电路、开关电路、放大电路等)的近旁。
在上述形成了电阻体的电容器上,为了实现多功能化,也可以形成电阻体以外的无源元件,例如1个或2个及以上的电容。作为这样的电容,不是指与电容器分开构成的电容,而是与电容器一体形成的东西。另外,这种电容优选的是以对于构成了电容器功能部的第1内部电极层及第2内部电极层不受静电影响的状态来配置。
例如,上述电容可以在电容器主面及电容器背面中的至少任意一个上形成。在这样的位置上形成的电容在电容器的外表面露出,所以,能在形成后实施修剪等,对容量值进行微调整等,这是有利之处。
或是,上述电容也可以在电容器内部形成。这样的电容器可以由具有导电性的任意材料来形成,不过,优选的是由与上述第1内部电极层及上述第2内部电极层相同的材料来形成。其理由是,可在形成第1内部电极层及第2内部电极层的工序时一并形成,从而能防止工数的增加。
并且,把上述电容与电阻体电连接来构成电路部即可。即,可以通过组合电容和电阻体来给予给定的功能,实现多功能化。作为合适的电路部的例子,例如有滤波器电路。具体可以列举高通滤波器电路、低通滤波器电路、中通滤波器电路等这样的只容许给定的频带通过的带通滤波器电路。
上述构成布线基板的布线积层部具有交替连接以高分子材料为主体的层间绝缘层及导体层而成的构造。优选的是,上述布线积层部具有互相电独立的多个电源用导体部,上述多个电容器功能部通过上述多个电源用导体部而分别与上述多个处理器芯核电连接。另外,半导体集成电路元件侧的端子群和电容器侧的端子群中端子间间距存在大的差,不过,设置布线积层部,就能通过多个电源用导体部而个别地且容易地连接处理器芯核和电容器功能部。还有,布线积层部(第1布线积层部)只在芯核主面及上述电容器主面上形成,不过,也可以再形成具有在芯核背面及上述电容器背面上交替积层了层间绝缘层及导体层而成的构造的第2布线积层部。这样来构成,不只是在第1布线积层部,而且在第2布线积层部也能形成电路,所以能实现布线基板的进一步多功能化。
另外,对于在芯核主面及上述电容器主面上形成的布线积层部(第1布线积层部),在其表面上可以设定可搭载具有1个或多个处理器芯核的半导体集成电路元件的半导体集成电路元件搭载区域。这样的半导体集成电路元件搭载区域上可搭载半导体集成电路元件。另外,优选的是,上述半导体集成电路元件搭载区域的面积按等于或小于上述电容器的上述电容器主面的面积来设定,上述半导体集成电路元件搭载区域从上述电容器的厚度方向看时位于上述电容器的上述电容器主面内。如果这样来构成,半导体集成电路元件搭载区域就位于电容器正上方的区域内,因而搭载在半导体集成电路元件搭载区域的半导体集成电路元件由电容器来支承。在该场合,优选的是采用高刚性、热膨胀率小的陶瓷电容器。因而,在上述半导体集成电路元件搭载区域,因为布线积层部不易变形,所以能更稳定地支承搭载在半导体集成电路元件搭载区域的半导体集成电路元件。另外,上述半导体集成电路元件搭载区域的面积设定得比上述电容器的上述电容器主面的面积大。不过,为了稳定地支承半导体集成电路元件,优选的是,电容器主面的面积按半导体集成电路元件搭载区域的50%以上来设定。
还有,用于解决本发明的课题的别的技术方案(技术方案2)是一种电感器,其特征在于,具有电容器主面及电容器背面,并且具有夹介电介质层而交替积层配置第1内部电极层和第2内部电极层而成的构造,形成了电感器或电阻体。
在技术方案2的电容器上形成了电感器的场合,例如在电容器内构成各种电路的一部分或全部等就成为可能。因而,与在布线基板表层部实装了电感器的现有构造相比,容易达成多功能化。还有,不需要在布线基板表层部新设定电感器用的部件实装空间,因而进一步小型化不易受制约,适合整体的小型化。再有,电感器实装工序可省略,因而适合低成本化。
上述电容器优选的是,具备:使上述第1内部电极层彼此导通的多个电源用通路导体;使上述第2内部电极层彼此导通的多个接地用通路导体;位于上述多个电源用通路导体的端部的电源用电极端子;以及位于上述多个接地用通路导体的端部的接地用电极端子,上述多个电源用通路导体及上述多个接地用通路导体配置成阵列状。
上述电感器可以在上述电容器主面及上述电容器背面中的至少任意一个上形成。上述电容器主面上的电感器最好是由与上述电源用电极端子及上述接地用电极端子相同的材料形成的表面侧电感器图形。上述电容器背面上的电感器最好是由与上述电源用电极端子及上述接地用电极端子相同的材料形成的背面侧电感器图形。上述表面侧电感器图形或上述内层电感器图形可以是圈状图形。还有,从容易确保电感器形成用空间的观点来看,上述电感器最好配置在包含上述第1内部电极层及上述第2内部电极层而构成的电容器功能部的外侧的区域。
还有,也可以形成电阻体及电容中的至少任意一个,由上述电阻体及上述电容中的至少任意一个和上述电感器来构成电路部。该场合的电路部可以是连接上述电阻体、上述电感器及上述电容而成的调谐电路,也可以是连接上述电阻体和上述电感器而成的滤波器电路。
在电容器上形成了电阻体的场合,例如在同一电容器内中设定不同的电位等就成为可能。因而,与在布线基板表层部实装了电阻体的现有构造相比,容易达成多功能化。还有,不需要在布线基板表层部新设定电阻体用的部件实装空间,因而进一步小型化不易受制约,适合整体的小型化。再有,电阻体实装工序可省略,因而适合低成本化。
上述形成了电阻体的电容器优选的是,具备:使上述第1内部电极层彼此导通的多个电源用通路导体;使上述第2内部电极层彼此导通的多个接地用通路导体;位于上述多个电源用通路导体的端部的电源用电极端子;以及位于上述多个接地用通路导体的端部的接地用电极端子,上述多个电源用通路导体及上述多个接地用通路导体配置成阵列状。
上述电阻体可以在上述电容器主面及上述电容器背面中的至少任意一个上形成。上述电容器主面上的电阻体最好是由与上述电源用电极端子及上述接地用电极端子相同的材料形成的表面侧电阻体图形。上述电容器背面上的电阻体最好是由与上述电源用电极端子及上述接地用电极端子相同的材料形成的背面侧电阻体图形。电容器内部的电阻体最好是在电容器内部由与上述第1内部电极层及上述第2内部电极层相同的材料形成的内层电阻体图形。还有,上述电阻体可以是在电容器内部由与上述多个电源用通路导体及上述多个接地用通路导体相同的材料形成的通路电阻。
从图形的小面积化的观点来看,上述表面侧电阻图形、上述背面侧电阻图形或上述内层电阻图形最好是线状图形,特别是蜿蜒线状图形。还有,从容易确保电阻体形成用空间的观点来看,上述电阻体最好配置在包含上述第1内部电极层及上述第2内部电极层而构成的电容器功能部的外侧的区域。
在电容器上也可以形成与电阻体电连接的电容。还有,也可以由该电容及电阻体构成滤波器电路等电路部。再有,也可以形成电容器、电阻以外线圈等电感器。另外,也可以互相连接电容器、电阻以外及电感器来构成发送电路等电路部。
附图说明
图1是表示把本发明具体化了的第1实施方式的布线基板的概略断面图。
图2是表示第1实施方式的陶瓷电容器的概略断面图。
图3是用于说明第1实施方式的陶瓷电容器的内层上的连接的概略说明图。
图4是用于说明第1实施方式的陶瓷电容器的内层上的连接的概略说明图。
图5是用于说明第1实施方式的陶瓷电容器的上面的样子的概略平面图。
图6是第1实施方式的布线基板的制作方法的说明图。
图7是第1实施方式的布线基板的制作方法的说明图。
图8是第1实施方式的布线基板的制作方法的说明图。
图9是表示第2实施方式的陶瓷电容器的概略断面图。
图10是用于说明第2实施方式的陶瓷电容器的上面的样子的概略平面图。
图11是用于说明在第2实施方式的陶瓷电容器内构成的电路部的概略图。
图12是用于说明在第2实施方式的陶瓷电容器内构成的电路部的概略图。
图13是表示第3实施方式的陶瓷电容器的概略断面图。
图14是表示第4实施方式的陶瓷电容器的概略断面图。
图15是用于说明第4实施方式的陶瓷电容器的上面的样子的概略平面图。
图16是用于说明在第4实施方式的陶瓷电容器内构成的电路部的概略图。
图17是表示别的实施方式的陶瓷电容器的概略断面图。
图18是表示别的实施方式的陶瓷电容器的概略断面图。
图19是表示别的实施方式的陶瓷电容器的概略断面图。
图20是表示别的实施方式的陶瓷电容器的概略断面图。
图21是表示别的实施方式的陶瓷电容器的概略断面图。
图22是表示别的实施方式的陶瓷电容器的概略断面图。
图23是表示把本发明具体化了的第1实施方式的布线基板的概略断面图。
图24是表示第1实施方式的陶瓷电容器的概略断面图。
图25是用于说明第1实施方式的陶瓷电容器的内层上的连接的概略说明图。
图26是用于说明第1实施方式的陶瓷电容器的内层上的连接的概略说明图。
图27是用于说明第1实施方式的陶瓷电容器的上面的样子的概略平面图。
图28是用于说明第1实施方式的变更例中的陶瓷电容器的上面的样子的概略平面图。
图29是第1实施方式的布线基板的制作方法的说明图。
图30是第1实施方式的布线基板的制作方法的说明图。
图31是用于说明第1实施方式的变更例中的陶瓷电容器的下面的样子的概略平面图。
图32是用于同陶瓷电容器的下面的样子的概略平面图。
图33是表示第5实施方式的陶瓷电容器的概略断面图。
图34是用于说明第5实施方式的陶瓷电容器的内层上的连接的概略说明图。
图35是用于说明第5实施方式的陶瓷电容器的内层上的连接的概略说明图。
图36是用于第5实施方式的陶瓷电容器构成的电路部的概略图。
图37是用于第5实施方式的陶瓷电容器构成的电路部的概略图。
图38是表示第6实施方式的陶瓷电容器的概略断面图。
图39是用于说明第6实施方式的陶瓷电容器的内层上的连接的概略说明图。
图40是表示第7实施方式的陶瓷电容器的概略断面图。
图41是表示第8实施方式的陶瓷电容器的概略断面图。
图42是用于说明其他实施方式的陶瓷电容器上的电阻体附近的样子的概略平面图。
图43是用于说明同电阻体附近的样子的概略断面图。
图44是用于说明同电阻体附近的样子的概略断面图。
标号说明
10、110布线基板
11基板芯核
12作为芯核主面的上面
13作为芯核背面的下面
21作为半导体集成电路元件的IC芯片
23作为半导体集成电路元件搭载区域的IC芯片搭载区域
24、25处理器芯核
31作为(第1)布线积层部的第1构建层
32作为(第2)布线积层部的第2构建层
33、34、35、36作为层间绝缘层的树脂绝缘层
42导体层
51、52作为半导体集成电路元件搭载区域的IC芯片搭载区域
101、101A、101B、101C、101D、101E、101F、101G、101H、101J、1101、1101′、1101″、1101′″、1101″″、1101″″′作为电容器的陶瓷电容器
102作为电容器主面的上面
103作为电容器背面的下面
105作为电介质层的陶瓷电介质层
107、108电容器功能部
141第1内部电极层
142第2内部电极层
161作为电阻体的烧成电阻图形
171作为电源用导体部的第1电源用导体部
173作为电源用导体部的第2电源用导体部
251作为电感器的表面侧电感器图形
252作为电感器的背面侧电感器图形
253作为电感器的内层电感器图形
254电感器连接通路导体
261作为电阻体的表面侧电阻图形
262作为电阻体的背面侧电阻图形
263作为电阻体的内层电阻图形
271电容
300、300A、300B、310电路部
301、302作为电阻体的表面侧电阻图形
311、312作为电阻体的背面侧电阻图形
321、322作为电阻体的内层电阻图形
323作为电阻体的通路电阻
400电容
405电路部
具体实施方式
[第1实施方式]
以下,基于附图来详细说明把本发明的布线基板具体化了的第1实施方式。
如图1和图23所示,本实施方式的布线基板10、110是IC芯片搭载用的布线基板,包括由环氧玻璃构成的大致矩形板状的基板芯核11、在基板芯核11的上面12(芯核主面)上形成的第1构建层31(布线积层部)以及在基板芯核11的下面13(芯核背面)上形成的第2构建层32。在基板芯核11上的多个部位形成了通孔导体16。这种通孔导体16连接导通了基板芯核11的上面12侧和下面13侧。另外,通孔导体16的内部例如用环氧树脂等闭塞体17来填埋。还有,在基板芯核11的上面12及下面13上,使由铜构成的导体层41形成图形,各导体层41与通孔导体16电连接。
在基板芯核11的上面12上形成了的第1构建层31具有交替积层由环氧树脂构成的2层的树脂绝缘层33、35(所谓层间绝缘层)和由铜构成的导体层42而成的构造。在本实施方式中,第1构建层31的热膨胀系数是30~40ppm/℃的程度,具体为35ppm/℃的程度。另外,第1构建层31的热膨胀系数是指30℃~玻璃转移温度(Tg)间的测量值的平均值。还有,处于第1层树脂绝缘层33的表面上的导体层42的一部分与通孔导体16的上端电连接。在第2层树脂绝缘层35的表面上的多个部位,端子垫44按阵列状形成。还有,树脂绝缘层35的表面由阻焊剂37大致整体地覆盖。在阻焊剂37的给定部位形成了使端子垫44露出的开口部46。在端子垫44的表面上配设了多个焊盘45。各焊盘45与IC芯片21(半导体集成电路元件)的面连接端子22电连接。IC芯片21呈矩形平板状,具有2个处理器芯核24、25。本实施方式的IC芯片21由热膨胀系数为3.5ppm/℃的程度的硅构成。另外,各端子垫44及各焊盘45在第1构建层31中位于陶瓷电容器101、1101的正上方的区域内,该区域成为IC芯片搭载区域23(半导体集成电路元件搭载区域)。IC芯片搭载区域23设定在第1构建层31的表面39上。还有,在树脂绝缘层33、35内分别设置了通路导体43、47。这些通路导体43、47基本配置在同轴上,并且导体层41、42通过它们而与端子垫44互相电连接。
如图1、图23所示,在基板芯核11的下面13上形成了的第2构建层32具有与上述第1构建层31大致相同的构造。即,第2构建层32,其热膨胀系数为30~40ppm/℃的程度,具有交替积层由环氧树脂构成的2层的树脂绝缘层34、36(所谓层间绝缘层)和导体层42而成的构造。处于第1层树脂绝缘层34的下面上的导体层42的一部分与通孔导体16的下端电连接。在第2层树脂绝缘层36的下面上的多个部位,通过通路导体43而与导体层42电连接的BGA用垫48按格子状形成。还有,树脂绝缘层36的下面由阻焊剂38大致整体覆盖。在阻焊剂38的给定部位形成了使BGA用垫48露出的开口部40。在BGA用垫48的表面上配设了用于与未图示的母板电连接的多个焊盘49。并且,借助于各焊盘49,把图1、图23所示的布线基板10、110实装在未图示的母板上。
上述基板芯核11在平面方向(XY方向)的热膨胀系数为10~15ppm/℃的程度。另外,基板芯核11的热膨胀系数是指0℃~玻璃转移温度(Tg)间的测量值的平均值。基板芯核11具有1个在上面12的中央部及下面13的中央部开口的俯视为矩形状的收纳孔部90。即,收纳孔部90是贯通孔部。在收纳孔部90内,图2~图5、图24~图27等表示的陶瓷电容器101、1101以被填埋入的状态被收纳。另外,陶瓷电容器101、1101在上面102(电容器主面)与基板芯核11的上面12向着相同的侧的状态被收纳。本实施方式的陶瓷电容器101、1101是纵6.0mm×横12.0mm×厚0.8mm的矩形平板状。另外,陶瓷电容器101、1101的厚度优选的是0.2mm~1.0mm。如果不到0.2mm,在IC芯片搭载区域23上使IC芯片21接合时的应力就不能通过陶瓷电容器101、1101来降低,作为支承体就不充分。另一方面,如果大于1.0mm的话,就成为布线基板10、110的壁厚。更加优选的是,陶瓷电容器101、1101的厚度为0.4mm~0.8mm。陶瓷电容器101、1101在基板芯核11上配置在上述IC芯片搭载区域23的正下方的区域。另外,IC芯片搭载区域23的面积(第1构建层31中形成端子垫44的区域的面积)设定得比陶瓷电容器101、1101的上面102的面积小。在从陶瓷电容器101、1101的厚度方向看去的场合,IC芯片搭载区域23位于陶瓷电容器101、1101的上面102内。
如图1、图23所示,收纳孔部90和陶瓷电容器101、1101的侧面的间隙以由高分子材料(本实施方式中是环氧等热固化性树脂)构成的填充剂92来填埋。该填充剂92具有在基板芯核11上固定陶瓷电容器101、1101,并且靠自身的弹性变形来吸收向陶瓷电容器101、1101及基板芯核11的面方向、厚度方向的变形的功能。另外,陶瓷电容器101、1101俯视呈大致正方形状,在四角具有半径0.60mm以上的倒角(ア一ル)(或C0.60以上的锥度)。借助于此,在伴随温度变化的填充剂92的变形时,能缓和向陶瓷电容器101、1101的角部的应力集中,因而能防止填充剂92的开裂的发生。
如图1~图5、图23~图27所示,本实施方式的陶瓷电容器101、1101是所谓的通路阵列型的陶瓷电容器。构成陶瓷电容器101、1101的陶瓷烧结体104,其热膨胀系数优选的是IC芯片21的热膨胀系数和构建层31、32的热膨胀系数的中间值,更优选的是与IC芯片21的热膨胀系数接近的值。在本实施方式中,陶瓷烧结体104的热膨胀系数是8~12ppm/℃的程度,具体为9.5ppm/℃的程度。另外,陶瓷烧结体104的热膨胀系数是指30℃~250℃间的测量值的平均值。还有,陶瓷烧结体104是具有上面102及下面103(电容器背面)的板状物。另外,在陶瓷烧结体104的上面102上形成了构成第1构建层31的树脂绝缘层33,在陶瓷烧结体104的下面103上形成了构成第2构建层32的树脂绝缘层34。陶瓷烧结体104具有夹介陶瓷电介质层105而交替积层配置第1内部电极层141和第2内部电极层142而成的构造。陶瓷电介质层105由作为高介电系数陶瓷的一种的钛酸钡的烧结体构成,作为第1内部电极层141及第2内部电极层142间的电介质(绝缘体)起作用。第1内部电极层141及第2内部电极层142都是以镍为主要成分而形成的层,在陶瓷烧结体104的内部每隔一层而配置。
如图2~图5、图24~图27所示,陶瓷电容器101、1101具有作为互相电独立的功能单位的2个电容器功能部107、108。另外,电容器功能部107、108两方使用了共用的陶瓷电介质层105。还有,在从陶瓷电容器101、1101的厚度方向看去的场合,IC芯片21的处理器芯核24位于电容器功能部107的上面内,IC芯片21的处理器芯核25位于电容器功能部108的上面内。
在电容器功能部107上形成了很多通路孔130。这些通路孔130在其厚度方向贯通电容器功能部107并且跨电容器功能部107的整面而按格子状(阵列状)配置。在各通路孔130内,以镍为主材料而形成了在电容器功能部107上的陶瓷烧结体104的上面102及下面103间连通的多个通路导体131、132。各第1电源用通路导体131贯通了各第1内部电极层141,使它们互相电连接。各第1接地用通路导体132贯通了各第2内部电极层142,使它们互相电连接。在这里,如图3所示在第1内部电极层141上在第1接地用通路导体132贯通的区域形成了排屑孔141a,第1内部电极层141和第1接地用通路导体132电绝缘。还有,同样如图4所示在第2内部电极层142上在第1电源用通路导体131贯通的区域形成了排屑孔142a,第2内部电极层142和第1电源用通路导体131电绝缘。
各第1电源用通路导体131及各第1接地用通路导体132整体配置成阵列状。另外,为便于说明,按3列×3列(或5列×5列)图示了通路导体131、132,不过,实际上有更多的列存在。
并且如图2~图5、图24~图27所示,在电容器功能部107上的陶瓷烧结体104的上面102上,突设了多个第1电源用电极端子111及多个第1接地用电极端子112。还有,在电容器功能部107上的陶瓷烧结体104的下面103上,突设了多个第1电源用电极端子121及多个第1接地用电极端子122。处于上面102侧的电极端子111、112与上述通路导体47电连接。另一方面,处于下面103侧的电极端子121、122与未图示的母板具有的电极(接触子)通过通路导体47、导体层42、通路导体43、BGA用垫48及焊盘49而电连接。还有,电极端子111、112的底面大致中央部与通路导体131、132上的上面102侧的端面直接连接,电极端子121、122的底面大致中央部与通路导体131、132上的下面103侧的端面直接连接。因而,电源用电极端子111、121与第1电源用通路导体131及第1内部电极层141导通,接地用电极端子112、122与第1接地用通路导体132及第2内部电极层142导通。
同样,在图2~图5、图24~图27所示的电容器功能部108上也形成了很多通路孔130。在各通路孔130内,以镍为主材料而形成了在电容器功能部108上的陶瓷烧结体104的上面102及下面103间连通的多个通路导体133、134。各第2电源用通路导体133贯通了各第1内部电极层141,使它们互相电连接。各第2接地用通路导体134贯通了各第2内部电极层142,使它们互相电连接。各第2电源用通路导体133及各第2接地用通路导体134整体配置成阵列状。另外,为便于说明,按3列×3列(或5列×5列)图示了通路导体133、134,不过,实际上有更多的列存在。
并且,在电容器功能部108上的陶瓷烧结体104的上面102上,突设了多个第2电源用电极端子113及多个第2接地用电极端子114。还有,在电容器功能部108上的陶瓷烧结体104的下面103上,突设了多个第2电源用电极端子123及多个第2接地用电极端子124。处于上面102侧的电极端子113、114与上述通路导体47电连接。另一方面,处于下面103侧的电极端子123、124与未图示的母板具有的电极(接触子)通过通路导体47、导体层42、通路导体43、BGA用垫48及焊盘49而电连接。还有,电极端子113、114的底面大致中央部与通路导体133、134上的上面102侧的端面直接连接,电极端子123、124的底面大致中央部与通路导体133、134上的下面103侧的端面直接连接。因而,电源用电极端子113、123与第2电源用通路导体133及第1内部电极层141导通,接地用电极端子114、124与第2接地用通路导体134及第2内部电极层142导通。
如图2、图24所示,电极端子111、112、113、114以镍为主材料而形成,表面由未图示的镀铜层整体覆盖。同样,电极端子121、122、123、124也以镍为主材料而形成,表面由未图示的镀铜层整体覆盖。另外,在本实施方式中,电极端子111~114、121~124的直径按约500μm来设定,间距的最小长度按约580μm来设定。
从母板侧通过电极端子121、122(或电极端子123、124)进行通电,在第1内部电极层141-第2内部电极层142间加上电压的话,在第1内部电极层141上例如正的电荷积蓄,在第2内部电极层142上例如负的电荷积蓄。结果,陶瓷电容器101、1101就作为电容器起作用。还有,在电容器功能部107,第1电源用通路导体131及第1接地用通路导体132分别交替邻接而配置,且第1电源用通路导体131及第1接地用通路导体132中流过的电流的方向互相反向而设定。同样,在电容器功能部108,第2电源用通路导体133及第2接地用通路导体134分别交替邻接而配置,且第2电源用通路导体133及第2接地用通路导体134中流过的电流的方向互相反向而设定。由此实现电感成分的降低。
如图1、图23所示,各第1电源用通路导体131的一部分通过第1电源用电极端子111、第1构建层31具有的第1电源用导体部171(电源用导体部)和IC芯片21的面连接端子22而与IC芯片21的处理器芯核24电连接。各第1接地用通路导体132的一部分通过第1接地用电极端子112、第1构建层31具有的第1接地用导体部172和面连接端子22而与处理器芯核24电连接。借助于此,从电容器功能部107向处理器芯核24的电源供给就成为可能。另外,第1电源用导体部171及第1接地用导体部172是由通路导体47、导体层42、通路导体43、端子垫44及焊盘45构成的导体部。
同样,各第2电源用通路导体133的一部分通过第2电源用电极端子113、第1构建层31具有的第2电源用导体部173(电源用导体部)和IC芯片21的面连接端子22而与IC芯片21的处理器芯核25电连接。各第2接地用通路导体134的一部分通过第2接地用电极端子114、第1构建层31具有的第2接地用导体部174和面连接端子22而与处理器芯核25电连接。借助于此,从电容器功能部108向处理器芯核25的电源供给就成为可能。另外,第2电源用导体部173及第2接地用导体部174是由通路导体47、导体层42、通路导体43、端子垫44及焊盘45构成的导体部。第2电源用导体部173与第1电源用导体部171电独立,第2接地用导体部174与第1接地用导体部172电独立。
因此,在本实施方式的布线基板10、110中按处理器芯核24、25逐一设定了独立的电源系统。所以,各电容器功能部107、108互相电独立。因而,陶瓷电容器101、1101内的电路径分离成连接电容器功能部107-处理器芯核24间的第1电路径和连接电容器功能部108-处理器芯核25间的第2电路径。还有,各电容器功能部107、108的绝缘部分(陶瓷电介质层105)互相物理地形成一体,而各电容器功能部107、108的导体部分区分彼此的设置区域而物理地独立。
再有,如图1、图5等所示,构成本实施方式的布线基板10的陶瓷电容器101具备作为电感器的表面侧电感器图形251。在这里,表面侧电感器图形251在陶瓷电容器101的上面102(电容器主面)上配置在电容器功能部107、108的外侧的区域。还有,该表面侧电感器图形251是圈状图形,其圈数(卷数)约3圈。该表面侧电感器图形251按线宽及图形间空间小于各通路导体131~134的直径(约150μm)来设定(具体为50μm~60μm)。如图1所示,本实施方式中表面侧电感器图形251的内端与布线基板10侧的通路导体50电连接,外端与同布线基板10侧的别的通路导体(图示省略)电连接。
表面侧电感器图形251以镍为主材料而形成,表面由未图示的镀铜层覆盖。即,本实施方式的表面侧电感器图形251由与上面102(电容器主面)上的电极端子111~114相同的材料形成。
再有,如图23、图27等所示,构成本实施方式的布线基板110的陶瓷电容器1101具备作为电阻体的表面侧电阻体图形301。在这里,表面侧电阻体图形301在陶瓷电容器1101的上面102(电容器主面)上配置在电容器功能部107、108的外侧的区域。还有,该表面侧电阻体图形301是直线状图形,按其线宽小于各通路导体131~134的直径(约150μm)来设定(具体为50μm~60μm)。在本实施方式中表面侧电阻体图形301的一端与第2电源用通路导体133的端部连接,不过,根据用途的不同,也可以与别的通路导体131、132、134连接,或是与这些通路导体131~134全不连接。表面侧电阻图形301以镍为主材料而形成,表面由未图示的镀铜层覆盖。即,本实施方式的表面侧电阻图形301由与上面102(电容器主面)上的电极端子111~114相同的材料形成。
另外,如图28表示的变更例那样,也可以是由把作为电阻体的表面侧电阻图形302弯曲而成的线状图形构成的东西。
以下叙述本实施方式的布线基板10的制造方法。
在准备工序中,分别采用以前周知的手法制作、准备基板芯核11和陶瓷电容器101。
基板芯核11按以下方式制作。首先,准备好在纵400mm×横400mm×厚0.8mm的基材的两面上粘贴铜箔而成的覆铜积层板。另外,基材的厚度优选的是0.2mm以上1.0mm以下。其次,对覆铜积层板用凿孔机进行开孔加工,在给定位置预先形成成为收纳孔部90的贯通孔(参照图6)。另外,成为收纳孔部90的贯通孔是纵14.0mm×横30.0mm,四角有半径0.1~0.2mm的程度的倒角(ア一ル)的断面大致长方形状的孔。然后,进行覆铜积层板的两面的铜箔的蚀刻,例如采用减法使导体层41形成图形。具体而言,在非电解镀铜后,把该非电解镀铜层作为共用电极而实施电解镀铜。再层压干膜,对该干膜进行曝光及显影,从而按给定图形形成干膜。在该状态下,通过蚀刻除去不要的电解镀铜层、非电解镀铜层及铜箔。此后,剥离于膜而得到基板芯核11。
还有,陶瓷电容器101按以下方式制作。即,形成陶瓷坯片,在该坯片上以内部电极层用镍膏进行网版印刷,使之干燥。由此形成以后成为第1内部电极层141的第1内部电极部和成为第2内部电极层142的第2内部电极部。其次,交替积层形成了第1内部电极部的坯片和形成了第2内部电极部的坯片,在片积层方向给予挤压力,从而使各坯片一体化而形成坯片积层体。
再有,采用激光加工机在坯片积层体上贯通形成多个通路孔130,采用未图示的膏压入填充装置,在各通路孔130内填充通路导体用镍膏。其次,在坯片积层体的上面上印刷电极端子形成用膏,在坯片积层体的上面侧覆盖各导体部的上端面而形成第1电源用电极端子111、第1接地用电极端子112、第2电源用电极端子113及第2接地用电极端子114。还有,在坯片积层体的下面上印刷膏,在坯片积层体的下面侧覆盖各导体部下端面而形成第1电源用电极端子121、第1接地用电极端子122、第2电源用电极端子123及第2接地用电极端子124。并且在该工序中,在给定位置印刷上述电极端子形成用膏,从而也一并形成圈状表面侧电感器图形251。之后,进行坯片积层体的干燥,使表面端子部以某种程度固化。其次,使坯片积层体脱脂,再以给定温度给定时间进行烧制。结果,钛酸钡及膏中的镍同时烧结,成为陶瓷烧结体104。
另外,表面侧电感器图形251的形成也可以采用电极端子形成用膏的印刷这种手法以外的手法,例如也可以采用另外准备的电感器图形形成用膏的印刷来进行。或是,也可以在坯片积层体的烧成后进行镀敷、溅射、膏印刷等而形成表面侧电感器图形251。
其次,对所获得的陶瓷烧结体104具有的各电极端子111~114、121~124及表面侧电感器图形251进行非电解镀铜(厚10μm的程度)。结果,在各电极端子111~114、121~124上形成了镀铜层,陶瓷电容器101即告完成。在该场合,可以进行电解镀铜来代替非电解镀铜。
另外,也可以根据需要进行表面侧电感器图形251的修剪,微调整电感。作为其具体的手法,可以列举采用激光加工一点点除去表面侧电感器图形251而使电感变化等。
接着在固定工序中,采用安装装置(YAMAHA发动机株式会社制),在收纳孔部90内收纳陶瓷电容器101(参照图7)。此时,收纳孔部90的下面13侧开口以可剥离的粘接带152密封。该粘接带152由支承台151支承。各陶瓷电容器101粘贴、临时固定在这种粘接带152的粘接侧153。
然后,在该状态下,使用撒布装置(Asymtek公司制)在收纳孔部90的内面和陶瓷电容器101的侧面106的间隙中填充热固化性树脂制的填充剂92(株式会社namikusu制,未满(underfill)材)。此后,进行加热处理的话,填充剂92就固化,陶瓷电容器101在收纳孔部90内被固定。并且,在该时点,剥离粘接带152(参照图8)。
此后,实施构建层形成工序。在构建层形成工序中,基于以前周知的手法在上面12及上面102上形成第1构建层31,并且在下面13及下面103上形成第2构建层32。具体而言,在上面12及上面102上贴盖感光性环氧树脂,并且在下面13及下面103上贴盖感光性环氧树脂,进行曝光及显影,从而在要形成通路导体47的位置形成具有盲孔的第1层树脂绝缘层33、34。并且,用YAG激光或二氧化碳激光进行激光开孔加工,在给定位置预先形成贯通基板芯核11及树脂绝缘层33、34的贯通孔。然后,按照以前公知的手法进行非电解镀铜及电解镀铜而形成通孔导体16之后在该通孔导体16内填充闭塞体17。其次,按照以前公知的手法(例如半加法)进行电解镀铜,在上述盲孔的内部形成通路导体47,并且在第1层树脂绝缘层33、34上形成第2层导体层42。
其次,在第1层树脂绝缘层33、34上贴盖感光性环氧树脂,进行曝光及显影,从而在要形成通路导体43的位置形成具有盲孔的第2层树脂绝缘层35、36。其次,按照以前公知的手法进行电解镀铜,在上述盲孔的内部形成通路导体43,并且在第2层树脂绝缘层35上形成端子垫44,在第2层树脂绝缘层36上形成BGA用垫48。
其次,在第2层树脂绝缘层35、36上涂布感光性环氧树脂,使之固化,从而形成阻焊剂37、38。其次,在配置了给定的掩模的状态下进行曝光及显影,在阻焊剂37、38上使开口部40、46形成图形。再有,在端子垫44上形成焊盘45,并且在BGA用垫48上形成焊盘49。结果,由基板芯核11及构建层31、32构成的布线基板10即告完成。
从而,根据本实施方式能获得以下效果。
(1)在本实施方式中,在陶瓷电容器101自身上形成了作为电感器的表面侧电感器图形251。因此,例如可在陶瓷电容器101内构成各种电路的一部分或全部等。列举其具体例如下,如果在布线基板10侧(构建层31、32的表层、内部,或是基板芯核11的表层)设置未图示的电阻体,电连接该电阻体和表面侧电感器图形251的话,就能比较容易地构成滤波器电路等。因而,与把电感器实装在布线基板表层部的现有构造相比,容易达成多功能化和高功能化。还有,不需要在布线基板表层部新设定电感器用的部件实装空间,因而进一步小型化不易受制约,能作为构造上整体的小型化所适合的布线基板10。再有,电感器实装工序可省略,因而能避免工数的增加,能作为低成本化、短交货期化等所适合的布线基板10。此外,根据本实施方式,毕竟是在陶瓷电容器101自身上一体形成了电感器的构造,因而与通过焊接等来连接电感器的现有构造相比,能确实提高可靠性。
(2)根据本实施方式的布线基板10,即使在2个处理器芯核24、25的电源系统不能共用,要按处理器芯核24、25而设定不同的电源系统的场合,因为能把2个电容器功能部107、108与2个处理器芯核24、25分别电连接,所以也能使各个处理器芯核24、25充分动作。因此,在采用本实施方式这样的多芯核微处理器构造的场合,能最大限度地发挥其优点。
(3)在本实施方式中,IC芯片21的IC芯片搭载区域23位于陶瓷电容器101正上方的区域内,因而IC芯片搭载区域23搭载的IC芯片21由高刚性、热膨胀率小的陶瓷电容器101支承。因而,在上述IC芯片搭载区域23,第1构建层31不易变形,所以能更稳定地支承IC芯片搭载区域23搭载的IC芯片21。因此,能防止大的热应力引起的IC芯片21的开裂、连接不良。所以,作为IC芯片21,能用热膨胀差所涉及的应力(变形)大,热应力的影响大,并且发热量大,使用时的热冲击强的10mm见方以上的大型的IC芯片、属于脆的Low-k(低介电系数)的IC芯片。
再有,本实施方式的陶瓷电容器101具有2个电容器功能部107、108,因而由各电容器功能部107、108除去噪声,就能向各处理器芯核24、25进行良好的电源供给。而且,各处理器芯核24、25分别配置在各电容器功能部107、108正上方。这样,电连接各处理器芯核24、25和各电容器功能部107、108的导通路径(电容连接布线)成为最短。所以,能顺畅地进行对各处理器芯核24、25的电源供给。还有,能把IC芯片21和陶瓷电容器101之间侵入的噪声抑制得极小,因而不会产生误动作等问题,能获得高可靠性。
(4)特开2002-43754号公报的[0063]段披露了在基板芯核内埋设多个芯片电容的技术。可是,为了埋设多个芯片电容,必须在基板芯核11上设置与芯片电容同数的收纳孔部90,因而基板芯核11的制作,进而布线基板10的制作很困难。还有,芯片电容即使有多个存在,实现电源的稳定化等所涉及的高功能化也很困难。再有,芯片电容的上面的面积与IC芯片搭载区域23相比相当小,因而不能把芯片电容作为IC芯片21的支承体来起作用。结果,在IC芯片21和布线基板10之间不能取得热膨胀系数的匹配,因而IC芯片21上大的热应力起作用,容易引起IC芯片21开裂、连接不良。
另一方面,在本实施方式中,不是使用多个芯片电容,而是使用了1个陶瓷电容器101,因而在基板芯核11上设置1个收纳孔部90即可。因而,简化了陶瓷电容器101组装时的工序,所以能容易地制造布线基板10,还能实现低成本化。还有,不是使用单纯的芯片电容,而是使用了静电容量大的通路阵列型的陶瓷电容器101,因而容易实现高功能化。再有,在本实施方式中,IC芯片搭载区域23的面积按小于陶瓷电容器101的上面102的面积来设定。换句话说,使用了面积比IC芯片搭载区域23大的陶瓷电容器101。而且,从厚度方向看时,IC芯片搭载区域23位于陶瓷电容器101的上面102内。因此,能把1个陶瓷电容器101作为IC芯片21的支承体来起作用。所以,能防止大的热应力引起的IC芯片21的开裂、连接不良。
(5)在本实施方式的电容器功能部107中,多个第1电源用通路导体131及多个第1接地用通路导体132整体配置成阵列状。同样,在本实施方式的电容器功能部108中,多个第2电源用通路导体133及多个第2接地用通路导体134整体阵列状配置。即,本实施方式的陶瓷电容器101是通路阵列型的电容器。因此,陶瓷电容器101自身的小型化容易实现,进而布线基板10整体的小型化也容易实现。而且,高静电容量比较容易达成,更加稳定的电源供给成为可能。
以下叙述本实施方式的布线基板110的制造方法。
在准备工序中,分别采用以前周知的手法制作、准备基板芯核11和陶瓷电容器1101。
基板芯核11按以下方式制作。首先,准备好在纵400mm×横400mm×厚0.8mm的基材的两面上粘贴厚35μm铜箔而成的覆铜积层板。另外,基材的厚度优选的是0.2mm以上1.0mm以下。其次,对覆铜积层板用凿孔机进行开孔加工,在给定位置预先形成成为收纳孔部90的贯通孔(参照图6)。另外,成为收纳孔部90的贯通孔是纵14.0mm×横30.0mm,四角有半径1.5mm的程度的倒角的断面大致长方形状的孔。然后,进行覆铜积层板的两面的铜箔的蚀刻,例如采用减法使导体层41形成图形。具体而言,在非电解镀铜后,把该非电解镀铜层作为共用电极而实施电解镀铜。再层压干膜,对该干膜进行曝光及显影,从而按给定图形形成干膜。在该状态下,通过蚀刻除去不要的电解镀铜层、非电解镀铜层及铜箔。此后,剥离干膜而得到基板芯核11。
还有,陶瓷电容器1101按以下方式制作。即,形成陶瓷坯片,在该坯片上以内部电极层用镍膏进行网版印刷,使之干燥。由此形成以后成为第1内部电极层141的第1内部电极部和成为第2内部电极层142的第2内部电极部。其次,交替积层形成了第1内部电极部的坯片和形成了第2内部电极部的坯片,在片积层方向给予挤压力,从而使各坯片一体化而形成坯片积层体。
再有,采用激光加工机在坯片积层体上贯通形成多个通路孔130,采用未图示的膏压入填充装置,在各通路孔130内填充通路导体用镍膏。其次,在坯片积层体的上面上印刷电极端子形成用膏,在坯片积层体的上面侧覆盖各导体部的上端面而形成第1电源用电极端子111、第1接地用电极端子112、第2电源用电极端子113及第2接地用电极端子114。还有,在坯片积层体的下面上印刷膏,在坯片积层体的下面侧覆盖各导体部下端面而形成第1电源用电极端子121、第1接地用电极端子122、第2电源用电极端子123及第2接地用电极端子124。并且在该工序中,在给定位置印刷上述电极端子形成用膏,从而也一并形成线状的表面侧电阻图形301。
之后,进行坯片积层体的干燥,使表面端子部以某种程度固化。其次,使坯片积层体脱脂,再以给定温度给定时间进行烧制。结果,钛酸钡及膏中的镍同时烧结,成为陶瓷烧结体104。
其次,对所获得的陶瓷烧结体104具有的各电极端子111~114、121~124及表面侧电阻图形301进行非电解镀铜(厚10μm的程度)。结果,在各电极端子111~114、121~124上形成了镀铜层,陶瓷电容器1101即告完成。另外,也可以根据需要进行表面侧电阻图形301的修剪,微调整电阻值。作为其具体的手法,可以列举采用激光加工一点点除去表面侧电阻图形301而提高电阻值等。
接着在固定工序中,采用安装装置(YAMAHA发动机株式会社制),在收纳孔部90内收纳陶瓷电容器1101(参照图29)。此时,收纳孔部90的下面13侧开口以可剥离的粘接带152密封。该粘接带152由支承台151支承。各陶瓷电容器1101粘贴、临时固定在这种粘接带152的粘接侧153。
然后,在该状态下,使用撒布装置(Asymtek公司制)在收纳孔部90的内面和陶瓷电容器1101的侧面106的间隙中填充热固化性树脂制的填充剂92(株式会社namikusu制,未满材)。此后,进行加热处理的话,填充剂92就固化,陶瓷电容器1101在收纳孔部90内被固定。并且,在该时点,剥离粘接带152(参照图30)。
此后,实施构建层形成工序。在构建层形成工序中,基于以前周知的手法在上面12及上面102上形成第1构建层31,并且在下面13及下面103上形成第2构建层32。具体而言,在上面12及上面102上贴盖感光性环氧树脂,并且在下面13及下面103上贴盖感光性环氧树脂,进行曝光及显影,从而在要形成通路导体47的位置形成具有盲孔的第1层树脂绝缘层33、34。并且,用YAG激光或二氧化碳激光进行激光开孔加工,在给定位置预先形成贯通基板芯核11及树脂绝缘层33、34的贯通孔。然后,按照以前公知的手法进行非电解镀铜及电解镀铜而形成通孔导体16之后在该通孔导体16内填充闭塞体17。其次,按照以前公知的手法(例如半加法)进行电解镀铜,在上述盲孔的内部形成通路导体47,并且在第1层树脂绝缘层33、34上形成第2层导体层42。
其次,在第1层树脂绝缘层33、34上贴盖感光性环氧树脂,进行曝光及显影,从而在要形成通路导体43的位置形成具有盲孔的第2层树脂绝缘层35、36。其次,按照以前公知的手法进行电解镀铜,在上述盲孔的内部形成通路导体43,并且在第2层树脂绝缘层35上形成端子垫44,在第2层树脂绝缘层36上形成BGA用垫48。
其次,在第2层树脂绝缘层35、36上涂布感光性环氧树脂,使之固化,从而形成阻焊剂37、38。其次,在配置了给定的掩模的状态下进行曝光及显影,在阻焊剂37、38上使开口部40、46形成图形。再有,在端子垫44上形成焊盘45,并且在BGA用垫48上形成焊盘49。结果,由基板芯核11及构建层31、32构成的布线基板10即告完成。
从而,根据本实施方式能获得以下效果。
(1)在本实施方式中,在陶瓷电容器1101自身上形成了作为电阻体的表面侧电阻体图形301。因此,例如可在同一陶瓷电容器1101内设定不同的电位等。因而,与把电阻体实装在布线基板表层部的现有构造相比,就容易达成多功能化和高功能化。还有,不需要在布线基板表层部新设定电阻体用的部件实装空间,因而进一步小型化不易受制约,能作为构造上整体的小型化所适合的布线基板110。再有,电阻体实装工序可省略,因而能避免工数的增加,能作为低成本化、短交货期化等所适合的布线基板110。此外,根据本实施方式,毕竟是在陶瓷电容器1101自身上一体形成了电阻体的构造,因而与通过焊接等来连接电阻体的现有构造相比,能确实提高可靠性。
(2)根据本实施方式的布线基板110,2个处理器芯核24、25的电源系统不共用,即使在要按处理器芯核24、25而设定不同的电源系统的场合,因为能把2个电容器功能部107、108与2个处理器芯核24、25分别电连接,所以也能使各个处理器芯核24、25充分动作。因此,在采用本实施方式这样的多芯核微处理器构造的场合,能最大限度地发挥其优点。
(3)在本实施方式中,IC芯片21的IC芯片搭载区域23位于陶瓷电容器1101正上方的区域内,因而IC芯片搭载区域23搭载的IC芯片21由高刚性、热膨胀率小的陶瓷电容器1101支承。因而,在上述IC芯片搭载区域23,第1构建层31不易变形,所以能更稳定地支承IC芯片搭载区域23搭载的IC芯片21。因此,能肪止大的热应力引起的IC芯片21的开裂、连接不良。所以,作为IC芯片21,能用热膨胀差所涉及的应力(变形)大,热应力的影响大,并且发热量大,使用时的热冲击强的10mm见方以上的大型的IC芯片、属于脆的Low-k(低介电系数)的IC芯片。
再有,本实施方式的陶瓷电容器1101具有2个电容器功能部107、108,因而由各电容器功能部107、108除去噪声,从而能向各处理器芯核24、25进行良好的电源供给。而且,各处理器芯核24、25分别配置在各电容器功能部107、108正上方。这样,电连接各处理器芯核24、25和各电容器功能部107、108的导通路径(电容连接布线)成为最短。所以,能顺畅地进行对各处理器芯核24、25的电源供给。还有,能把IC芯片21和陶瓷电容器1101之间侵入的噪声抑制得极小,因而不会产生误动作等问题,能获得高可靠性。
(4)特开2002-43754号公报的[0063]段披露了在基板芯核内埋设多个芯片电容的技术。可是,为了埋设多个芯片电容,必须在基板芯核11上设置与芯片电容同数的收纳孔部90,因而基板芯核11的制作,进而布线基板110的制作很困难。还有,芯片电容即使有多个存在,实现电源的稳定化等所涉及的高功能化也很困难。再有,芯片电容的上面的面积与IC芯片搭载区域23相比相当小,因而不能把芯片电容作为IC芯片21的支承体来起作用。结果,在IC芯片21和布线基板110之间不能取得热膨胀系数的匹配,因而IC芯片21上大的热应力起作用,容易引起IC芯片21开裂、连接不良。
另一方面,在本实施方式中,不是使用多个芯片电容,而是使用了1个陶瓷电容器1101,因而在基板芯核11上设置1个收纳孔部90即可。因而,简化了陶瓷电容器1101组装时的工序,所以能容易地制造布线基板110,还能实现低成本化。还有,不是使用单纯的芯片电容,而是使用了静电容量大的通路阵列型的陶瓷电容器1101,因而容易实现高功能化。再有,在本实施方式中,IC芯片搭载区域23的面积按小于陶瓷电容器1101的上面102的面积来设定。换句话说,使用了面积比IC芯片搭载区域23大的陶瓷电容器1101。而且,从厚度方向看时,IC芯片搭载区域23位于陶瓷电容器1101的上面102内。因此,能把1个陶瓷电容器1101作为IC芯片21的支承体来起作用。所以,能防止大的热应力引起的IC芯片21的开裂、连接不良。
(5)例如可以考虑用芯片电容代替陶瓷电容器1101,把该芯片电容配置在布线基板110上的IC芯片21的背侧(第2构建层32的表面侧)。在该场合,芯片电容的电感为7.2pH,连接芯片电容和IC芯片21的电路径的电感为2.8pH,因而合计的电感为10.0pH,变得比较大了。
另一方面,在本实施方式中,使用了与芯片电容相比是低电感(1.2pH)的陶瓷电容器1101。而且,陶瓷电容器1101埋设在基板芯核11内,因而连接陶瓷电容器1101和IC芯片21的电路径比连接芯片电容和IC芯片21的电路径短。因此,电路径的电感也变低了,为0.6pH。结果,合计的电感为1.8pH,因而与使用芯片电容的场合相比,能降低电感成分。这样就能顺畅地进行电源供给,抑制噪声发生。
(6)在本实施方式的电容器功能部107中,多个第1电源用通路导体131及多个第1接地用通路导体132整体配置成阵列状。同样,在本实施方式的电容器功能部108中,多个第2电源用通路导体133及及多个第2接地用通路导体134整体配置成阵列状。即,由电容器功能部107、108构成的陶瓷电容器1101是通路阵列型的电容器。因此,陶瓷电容器1101自身的小型化容易实现,进而布线基板110整体的小型化也容易实现。而且,高静电容量比较容易达成,更加稳定的电源供给成为可能。
(7)本实施方式的陶瓷电容器1101也可以按以下方式变更。例如,在图31所示的变更例中,在下面103(电容器背面)上形成了由作为电阻体的直线状图形构成的背面侧电阻图形311。还有,在图32所示的别的变更例中,在下面103(电容器背面)上形成了由蜿蜒线状图形构成的背面侧电阻图形312。还有,这些背面侧电阻图形311、312以镍为主材料而形成,表面由未图示的镀铜层覆盖,由与电极端子121~124相同的材料形成。
[第2实施方式]
以下,基于图9~图12来详细说明把本发明具体化了的第2实施方式的陶瓷电容器。
图9、图10所示的本实施方式的陶瓷电容器101A,与第1实施方式一样,具备作为电感器的表面侧电感器图形251。该表面侧电感器图形251在陶瓷电容器101A的上面102上配置在电容器功能部107、108的外侧的区域。在该区域在表面侧电感器图形251近旁,形成了作为电阻体的表面侧电阻图形261。本实施方式的表面侧电阻图形261是直线状图形,不过,也可以是蜿蜒的直线状图形。还有,在该区域在表面侧电感器图形251及表面侧电阻图形261近旁,配设了连通陶瓷电容器101A的上面102及下面103间的信号线用通路导体281。本实施方式的表面侧电感器图形251及表面侧电阻图形261以镍为主材料而形成,表面由未图示的镀铜层覆盖。即,表面侧电感器图形251及表面侧电阻图形261由与上面102上的电极端子121~124相同的材料形成。
如图9、图10所示,本实施方式的表面侧电阻图形261的一方端子和表面侧电感器图形251的外端电连接。为了方便把两者的连接点作为「端子T2」。并且,表面侧电阻图形261的其余端子T1与布线基板10侧的通路导体电连接,表面侧电感器图形251的内端(端子T3)与同布线基板10侧的别的通路导体电连接。因此,这2个无源元件的组合就构成了陶瓷电容器101A上的1个电路部300(滤波器电路)。例如,如果采用图11那样的连接形态,就能使该滤波器电路300作为所谓高通滤波器电路起作用。还有,如果采用图12那样的连接形态,就能使该滤波器电路300A作为所谓低通滤波器电路起作用。
如以上说明了的,根据本实施方式,给予电容器101A以滤波器功能的结果,能确实实现多功能化。因此,用带滤波器电路的电容器101A构成布线基板10,就能实现噪声的降低。
[第3实施方式]
以下,基于图13来详细说明把本发明具体化了的第3实施方式的陶瓷电容器。
在第2实施方式中,1个电路部300、300A(滤波器电路)在陶瓷电容器101的上面102构成。相比之下,在图13所示的本实施方式中,2个电路部300B(滤波器电路)在陶瓷电容器101B的内部构成。具体而言,构成电路部300B的电阻体为内层电阻图形263。内层电阻图263的一端通过层间连接用通路导体267而与处于表层的给定的端子部285电连接。在形成了内层电阻图形263的层的再下层上,形成了圈状的内层电感器图形253。内层电感器图形253的外端通过层间连接用通路导体267而与内层电阻图形263的其余一端电连接。在形成了内层电感器图形253的层的再下层上,形成了接地用平面导体层268。内层电感器图形253的内端通过层间连接用通路导体267而与接地用平面导体层268电连接。另外,接地用平面导体层268对于2个电路部300B可以是共用的,也可以个别设定。
如以上说明了的,根据本实施方式,在电容器101B上的2个部位设置了滤波器电路的结果,能确实实现多功能化。因此,用带滤波器电路的电容器101B构成布线基板10,就能实现噪声的降低。
[第4实施方式]
以下,基于图14~图16来详细说明把本发明具体化了的第4实施方式的陶瓷电容器。
如图14、图15所示,本实施方式的陶瓷电容器101C在第2实施方式中说明了的表面侧电感器图形251及表面侧电阻图形261的近旁,还具备电容271。该电容271由在上面102上形成了的第1电极272和夹隔陶瓷电介质层105而在第1电极272的直接下层上形成了的第2电极273所组成的对来构成。第1电极272及第2电极273俯视大致是矩形状的导体图形,不过,该图形形状可以任意变更。
表面侧电感器图形251的内端通过层间连接用通路导体267而与第2电极273电连接。在这里为了方便把两者的连接点作为「端子T3」。「端子T4」是处于第1电极274上的东西。
因而,在本实施方式中这3个无源元件的组合就在陶瓷电容器101C上构成了1个电路部310(调谐电路,参照图16)。
如以上说明了的,根据本实施方式,给予电容器101C以调谐电路的功能的结果,能确实实现多功能化。因此,用带调谐电路的电容器101C构成布线基板10,就能实现与其他布线基板之间的无线通讯等。
另外,本发明的实施方式可以变更如下。
·也可以如图17表示的别的实施方式的陶瓷电容器101D那样,构成电容21的第1电极274及第2电极273都在内层形成。
·也可以如图18表示的别的实施方式的陶瓷电容器101E那样,构成电路部310(调谐电路)的各无源元件(作为电阻体的内层电阻图形263,作为电感器的内层电感器图形253及电容271)全部配置在内层。还有,也可以如图19表示的别的实施方式的陶瓷电容器101F那样,在陶瓷电容器101F的厚度方向积层配置上述各无源元件。
·也可以如图20表示的别的实施方式的陶瓷电容器101G那样,在电容器101G的内部的不同的2个层上形成内层电感器图形253、253,通过电感器连接通路导体254来电连接它们彼此。如果是这样的构造,就把夹介陶瓷电介质层105而配置了的2个内层电感器图形253、253彼此联结起来,使之作为具有高电感的1个电感器起作用。
·也可以如图21表示的别的实施方式的陶瓷电容器101H那样,把构成电路部310(调谐电路)的各无源元件中的一部分配置在陶瓷电容器101H的下面103上。另外,该陶瓷电容器101H的上述电路部310由作为电阻体的背面侧电阻图形262、作为电感器的背面侧电感器图形252和电容271构成。
·也可以如图22表示的别的实施方式的陶瓷电容器101J那样,把构成电路部300(滤波器电路)的各无源元件(作为电阻体的内层电阻图形263及作为电感器的内层电感器图形253)配置在陶瓷电容器101J的内层上。
·上述各实施方式的收纳孔部90是在上面12及下面13上开口的贯通孔部。不过,收纳孔部90也可以是只在基板芯核11的上面12上开口的有底的凹部(非贯通孔部)。
·也可以在上述各实施方式的基板芯核11内形成布线图形(内层图形)。根据这样构成,就能在布线基板10内形成更复杂的电路,因而能实现布线基板10的进一步高功能化。还有,基板芯核11也可以通过对芯核积层薄的绝缘层来形成。
·在上述实施方式中对于具备多个电容器功能部107、108的电容器101具体化了本发明,不过,当然也可以对于只具备1个电容器功能部的东西具体化本发明。
其次,以下列举通过上述实施方式来把握的技术思想。
(1)一种陶瓷电容器,其特征在于,具有电容器主面及电容器背面,并且具有夹介陶瓷电介质层而交替积层配置第1内部电极层和第2内部电极层而成的构造,在上述陶瓷电介质层上一体形成了电感器。
(2)一种陶瓷电容器,具有电容器主面及电容器背面,并且具有夹介陶瓷电介质层而交替积层配置第1内部电极层和第2内部电极层而成的构造,其特征在于,具备:使上述第1内部电极层彼此导通的多个电源用通路导体;使上述第2内部电极层彼此导通的多个接地用通路导体;位于上述多个电源用通路导体的端部的电源用电极端子;位于上述多个接地用通路导体的端部的接地用电极端子;以及在上述陶瓷电介质层上一体形成的电感器,上述多个电源用通路导体及上述多个接地用通路导体配置成阵列状。
(3)一种布线基板,其特征在于,具备:具有芯核主面及芯核背面基板芯核;具有电容器主面及电容器背面,并且具有夹介电介质层而交替积层配置第1内部电极层和第2内部电极层而成的构造的、互相电独立的多个电容器功能部,在使上述芯核主面和上述电容器主面向着相同侧的状态下被收纳在上述基板芯核内的电容器;以及具有在上述芯核主面及上述电容器主面上交替积层层间绝缘层及导体层而成的构造布线积层部,设定了在其表面上可搭载具有多个处理器芯核的半导体集成电路元件的半导体集成电路元件搭载区域的构建层,上述多个电容器功能部可分别与上述多个处理器芯核电连接,在上述陶瓷电容器上形成了电感器。
[第5实施方式]
以下,基于图33~图35来详细说明把本发明的布线基板具体化了的第5实施方式。
图33~图35所示的本实施方式的陶瓷电容器1101′,在其内部具备电阻体及电容400,这一点与上述第1实施方式不同。在该陶瓷电容器1101′上,在第1层陶瓷电介质层105和第2层陶瓷电介质层105的界面上,形成了作为电阻体的内层电阻图形321。该内层电阻图形321由与第1内部电极层141及第2内部电极层142相同的材料形成。另外,在图34中示出了由直线状图形构成的内层电阻图形321,不过,也可以是蜿蜒的线状图形。内层电阻图形321的两端部所处的位置上配置了通路导体420,在这些通路导体420中露出的端部分别作为端子T2、T3来使用。
还有,在同第1层陶瓷电介质层105和第2层陶瓷电介质层105的界面上,在内层电阻图形321隔壁,形成了构成电容400的第1电极401(参照图34)。第1电极401也由与第1内部电极层141及第2内部电极层142相同的材料形成。第1电极401是做成了矩形状的导体图形,在其大致中央部有圆形状的排屑孔404。
在第2层陶瓷电介质层105和第3层陶瓷电介质层105的界面上,在第1电极401正下面的位置,形成了构成电容400的第2电极402(参照图35)。第2电极402也由与第1内部电极层141及第2内部电极层142相同的材料形成。第2电极401是做成了矩形状的导体图形,在其上面侧与通路导体420连接。该通路导体420贯通上述排屑孔404而配置,并且在上面12上露出的端部作为端子T1来使用。
并且,上述内层电阻图形321和电容400电连接,通过该连接,作为电路部的滤波器电路405在陶瓷电容器1101′的内部构成。例如,如果采用图36的连接形态,就能使该滤波器电路405作为所谓低通滤波器电路起作用。还有,如果采用图37连接形态,就能使该滤波器电路405作为所谓高通滤波器电路起作用。
如以上说明了的,根据本实施方式,给予电容器1101′以滤波器功能的结果,能实现多功能化。因此,用带滤波器电路405的电容器1101构成布线基板110,就能实现噪声的降低。
[第6实施方式]
以下,基于图38、图39来详细说明把本发明具体化了的布线基板的第6实施方式。
在图38、图39所示的本实施方式的陶瓷电容器1101″上,在陶瓷电介质层105上的多个界面上形成了内层电阻图形321。还有,这些内层电阻图形321配置在第1内部电极层141或第2内部电极层142的内部区域,不过,为了避免与它们的连接而位于排屑孔404内。内层电阻图形321彼此由通路导体420串联连接,通过该连接而构成1个大的电阻体。
并且,在使用了具有这种构成的电容器1101″的场合,也与第1实施方式一样,能达成布线基板110的多功能化、小型化及低成本化。
[第7实施方式]
以下,基于图40来详细说明把本发明具体化了的布线基板的第7实施方式。
在图40所示的本实施方式的陶瓷电容器1101′″的陶瓷电介质层105上,在多个部位形成了作为电阻体的通路电阻323。这些通路电阻323,例如与上述实施方式中的通路导体420相比,直径(50μm~80μm的程度)小。因此,尽管与通路导体420一样,由与通路导体131~134相同的材料形成,也能作为电阻体起作用。多个通路电阻323可以串联连接,也可以通过内层电阻图形321来连接。
并且,在使用了具有这种构成的电容器1101′″的场合,也与第1实施方式一样,能达成布线基板110的多功能化、小型化及低成本化。
[第8实施方式]
以下,基于图41来详细说明把本发明具体化了的布线基板的第8实施方式。
图41所示的本实施方式的陶瓷电容器1101″″,在其上面侧具有多个表面侧电阻图形301及多个内层电阻图形321,它们通过通路导体420而串联连接。并且该陶瓷电容器1101″″在其下面13侧具有多个内层电阻图形322,它们通过通路导体420而串联连接。
并且,在使用了具有这种构成的电容器1101″″的场合,也与第1实施方式一样,能达成布线基板110的多功能化、小型化及低成本化。
另外,本发明的各实施方式可以变更如下。
·上述各实施方式的收纳孔部90是在上面12及下面13上开口的贯通孔部。不过,收纳孔部90也可以是只在基板芯核11的上面12上开口的有底的凹部(非贯通孔部)。
·也可以在上述各实施方式的基板芯核11内形成布线图形(内层图形)。根据这样的构成,就能在布线基板110内形成更复杂的电路,因而能实现布线基板110的进一步高功能化。还有,基板芯核11也可以通过对芯核积层薄的绝缘层来形成。
如图42~图44所示,也可以在陶瓷电容器1101″″′的上面102上等,形成作为电阻体的烧成电阻图形161。例如,烧成电阻图形161与第1电源用电极端子111(第2电源用电极端子113)和其他第1电源用电极端子111(第2电源用电极端子113)电连接。另外,烧成电阻图形161与构成电源用电极端子111、113、第1内部电极层141及第2内部电极层142等的材料相比,是由电阻值高的陶瓷等构成的。另外,该烧成电阻图形161是例如在陶瓷电容器1101″″′完成后,在上面102侧涂布陶瓷膏,以给定时间烧成,除去不要部分来调整电阻值等而形成的。
根据这样构成,例如在陶瓷电容器1101″″′内设定不同的电位等就成为可能,容易实现布线基板110的高功能化。假定不在陶瓷电容器1101″″′上形成电阻体161,就必须在基板芯核11内在与陶瓷电容器1101″″′分开的部位埋设电阻体161,或者在构建层31、32侧设置电阻体161。
·在上述实施方式中对于具备多个电容器功能部107、108的电容器1101、1101′、1101″、1101″′、1101″″、1101″″′具体化了本发明,不过,当然也可以对于只具备1个电容器功能部的东西具体化本发明。
其次,以下列举通过上述实施方式来把握的技术思想。
(1)一种布线基板,其特征在于,具备:具有芯核主面及芯核背面基板芯核;具有电容器主面及电容器背面,并且具有夹介陶瓷电介质层而交替积层配置第1内部电极层和第2内部电极层而成的构造,在使上述芯核主面和上述电容器主面向着相同侧的状态下被收纳在上述基板芯核内的陶瓷电容器;以及具有在上述芯核主面及上述电容器主面上交替积层层间绝缘层及导体层而成的构造布线积层部,在上述陶瓷电容器上形成了电阻体。
(2)一种布线基板,其特征在于,具备:具有芯核主面及芯核背面基板芯核;具有电容器主面及电容器背面,并且具有夹介陶瓷电介质层而交替积层配置第1内部电极层和第2内部电极层而成的构造的、互相电独立的多个电容器功能部,在使上述芯核主面和上述电容器主面向着相同侧的状态下被埋设在上述基板芯核内的陶瓷电容器;以及具有在上述芯核主面及上述电容器主面上交替积层层间绝缘层及导体层而成的构造布线积层部,设定了在其表面上可搭载具有多个处理器芯核的半导体集成电路元件的半导体集成电路元件搭载区域的布线连接部,在上述陶瓷电容器上形成了电阻体,并且上述陶瓷电容器在上述芯核基板上配置在与上述半导体集成电路元件搭载区域对应的区域,上述多个电容器功能部可与上述多个处理器芯核分别电连接。

Claims (9)

1.一种电容器,具有电容器主面(102)及电容器背面(103),并且具有夹介电介质层(105)而交替积层配置第1内部电极层(141)和第2内部电极层(142)而成的构造,其特征在于,
在所述电容器主面(102)及所述电容器背面(103)中的至少一个上形成了电感器(251、252、253),
所述电感器(251、252、253)配置在与包括所述第1内部电极层(141)和所述第2内部电极层(142)而构成的电容器功能部(107、108)不重叠的外侧的区域。
2.根据权利要求1所述的电容器,具备:
使所述第1内部电极层(141)彼此导通的多个电源用通路导体(131、133);
使所述第2内部电极层(142)彼此导通的多个接地用通路导体(132、134);
分别位于所述多个电源用通路导体(131、133)的端部的电源用电极端子(111、121、113、123);以及
分别位于所述多个接地用通路导体(132、134)的端部的接地用电极端子(112、122、114、124),
其中,所述多个电源用通路导体(131、133)及所述多个接地用通路导体(132、134)配置成阵列状。
3.根据权利要求2所述的电容器,其中,所述电感器(251)是在所述电容器主面(102)上由与所述电源用电极端子(111、113)及所述接地用电极端子(112、114)相同的材料形成的表面侧电感器图形(251)。
4.根据权利要求3所述的电容器,其中,所述表面侧电感器图形(251)为圈状图形。
5.根据权利要求1~4中任意一项所述的电容器,其中,在所述电容器上形成了所述电感器(251、252、253),并且在其上或其中进一步形成了电阻体(261、262、263)及另一个电容器(271)中的至少一个,并且由所述电阻体(261、262、263)和所述另一个电容器(271)中的至少一个以及所述电感器(251、252、253)构成了电路部(300、300A、300B、310)。
6.根据权利要求5所述的电容器,其中,所述电路部(310)是连接所述电阻体(261、262、263)、所述电感器(251、252、253)及所述另一个电容器(271)而成的调谐电路。
7.根据权利要求5所述的电容器,其中,所述电路部(300、300A、300B)是连接所述电阻体(261、262、263)和所述电感器(251、252、253)而成的滤波器电路。
8.一种布线基板,具备:
具有芯核主面(12)及芯核背面(13)的基板芯核(11);
权利要求1至7中的任意一项所述的电容器(101、1101),在使所述芯核主面(12)和所述电容器主面(102)向着相同侧的状态下收纳在所述基板芯核(11)内;以及
布线积层部(31),具有在所述芯核主面(12)及所述电容器主面(102)上交替积层层间绝缘层(33、35)及导体层(42)而成的构造,从而在所述电容器(101、1101)的所述电容器主面(102)和所述电容器背面(103)中的一个上形成电感器(251、252、253)。
9.根据权利要求8所述的布线基板,其中,所述布线积层部(31)是第1布线积层部(31),并且还包括第2布线积层部(32),所述第2布线积层部(32)具有在所述芯核背面(13)及所述电容器背面(103)上交替积层层间绝缘层(34、36)及导体层(42)而成的构造。
CN 200610126614 2005-09-01 2006-08-30 布线基板、电容器 Active CN1925720B (zh)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP2005254030 2005-09-01
JP2005-254030 2005-09-01
JP2005254030 2005-09-01
JP2006-112262 2006-04-14
JP2006112262 2006-04-14
JP2006112262 2006-04-14
JP2006168172 2006-06-16
JP2006-168172 2006-06-16
JP2006168172A JP5160052B2 (ja) 2006-06-16 2006-06-16 配線基板、キャパシタ

Publications (2)

Publication Number Publication Date
CN1925720A CN1925720A (zh) 2007-03-07
CN1925720B true CN1925720B (zh) 2010-04-14

Family

ID=37818107

Family Applications (2)

Application Number Title Priority Date Filing Date
CN 200610126614 Active CN1925720B (zh) 2005-09-01 2006-08-30 布线基板、电容器
CN 200610128073 Active CN1925721B (zh) 2005-09-01 2006-09-01 布线基板、陶瓷电容器

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN 200610128073 Active CN1925721B (zh) 2005-09-01 2006-09-01 布线基板、陶瓷电容器

Country Status (1)

Country Link
CN (2) CN1925720B (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009050829A1 (ja) * 2007-10-18 2009-04-23 Ibiden Co., Ltd. 配線基板及びその製造方法
CN102356703B (zh) * 2009-03-19 2015-05-13 株式会社村田制作所 电路基板以及母层叠体
JP5404312B2 (ja) * 2009-07-29 2014-01-29 京セラ株式会社 電子装置
US10297550B2 (en) * 2010-02-05 2019-05-21 Taiwan Semiconductor Manufacturing Company, Ltd. 3D IC architecture with interposer and interconnect structure for bonding dies
US8847376B2 (en) * 2010-07-23 2014-09-30 Tessera, Inc. Microelectronic elements with post-assembly planarization
JP2012160586A (ja) * 2011-02-01 2012-08-23 Murata Mfg Co Ltd 積層セラミック電子部品およびその製造方法
US8891245B2 (en) * 2011-09-30 2014-11-18 Ibiden Co., Ltd. Printed wiring board
US10014843B2 (en) * 2013-08-08 2018-07-03 Zhuhai Advanced Chip Carriers & Electronic Substrate Solutions Technologies Co. Ltd. Multilayer electronic structures with embedded filters
KR101558074B1 (ko) * 2014-01-27 2015-10-06 삼성전기주식회사 복합 전자부품 및 그 실장 기판
US10074620B2 (en) 2015-03-25 2018-09-11 Infineon Technologies Americas Corp. Semiconductor package with integrated output inductor using conductive clips
WO2017094062A1 (ja) * 2015-11-30 2017-06-08 ルネサスエレクトロニクス株式会社 電子装置
WO2017131092A1 (ja) * 2016-01-27 2017-08-03 京セラ株式会社 配線基板、光半導体素子パッケージおよび光半導体装置
TWI672840B (zh) * 2017-07-25 2019-09-21 矽品精密工業股份有限公司 電子封裝件暨基板結構與製法
CN111034376B (zh) * 2017-08-21 2023-02-21 株式会社村田制作所 电子部件的制造方法以及电子部件
WO2019208221A1 (ja) * 2018-04-27 2019-10-31 株式会社村田製作所 キャパシタ集合体
CN111866325B (zh) * 2019-04-30 2022-02-22 宁波舜宇光电信息有限公司 摄像模组及其感光组件、电子设备、制备方法和阻容器件封装方法
CN110213907A (zh) * 2019-07-03 2019-09-06 安捷利电子科技(苏州)有限公司 一种在印刷电路板上进行埋容的工艺以及埋容电路板

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1412838A (zh) * 2001-10-17 2003-04-23 松下电器产业株式会社 高频半导体装置
US6721153B2 (en) * 1999-12-27 2004-04-13 Murata Manufacturing Co., Ltd. Wiring connection structure of laminated capacitor and decoupling capacitor, and wiring board

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3407716B2 (ja) * 2000-06-08 2003-05-19 株式会社村田製作所 複合積層電子部品
US6388207B1 (en) * 2000-12-29 2002-05-14 Intel Corporation Electronic assembly with trench structures and methods of manufacture
TW586205B (en) * 2001-06-26 2004-05-01 Intel Corp Electronic assembly with vertically connected capacitors and manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6721153B2 (en) * 1999-12-27 2004-04-13 Murata Manufacturing Co., Ltd. Wiring connection structure of laminated capacitor and decoupling capacitor, and wiring board
CN1412838A (zh) * 2001-10-17 2003-04-23 松下电器产业株式会社 高频半导体装置

Also Published As

Publication number Publication date
CN1925720A (zh) 2007-03-07
CN1925721A (zh) 2007-03-07
CN1925721B (zh) 2010-05-26

Similar Documents

Publication Publication Date Title
CN1925720B (zh) 布线基板、电容器
US7821795B2 (en) Multilayer wiring board
EP1761118B1 (en) Wiring board and capacitor
US6395996B1 (en) Multi-layered substrate with a built-in capacitor design
US7701052B2 (en) Power core devices
EP1761119B1 (en) Ceramic capacitor
CN101917819B (zh) 印刷线路板
CN102474992B (zh) 电容内置布线基板及配件内置布线基板
JP5122932B2 (ja) 多層配線基板
JP2006196886A (ja) 電力コアデバイス及びその作製方法
JP4912992B2 (ja) キャパシタ内蔵基板及びその製造方法
JP5160052B2 (ja) 配線基板、キャパシタ
CN101978800A (zh) 部件内置布线基板
JP2004146771A (ja) 半導体パッケージとその製造方法および半導体装置
TW200814277A (en) Shielded via
JP3640560B2 (ja) 配線基板、コンデンサ内蔵コア基板、及びこれらの製造方法
JP2007116177A (ja) 電力コアデバイスおよびその製造方法
KR100870380B1 (ko) 저 인덕턴스 내장 커패시터 층 접속부의 디자인
JP2002016327A (ja) 配線基板およびその製造方法
JP2005327932A (ja) 多層配線基板及びその製造方法
JP4851652B2 (ja) 配線基板及びその製造方法
JP2009004457A (ja) コンデンサ内蔵多層基板
JP3810296B2 (ja) 配線基板
JP2010171348A (ja) 配線基板及び積層セラミックコンデンサ
JP2002084071A (ja) 配線基板

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant