WO2019203274A1 - リチウム吸着剤の前駆体の製造方法 - Google Patents

リチウム吸着剤の前駆体の製造方法 Download PDF

Info

Publication number
WO2019203274A1
WO2019203274A1 PCT/JP2019/016479 JP2019016479W WO2019203274A1 WO 2019203274 A1 WO2019203274 A1 WO 2019203274A1 JP 2019016479 W JP2019016479 W JP 2019016479W WO 2019203274 A1 WO2019203274 A1 WO 2019203274A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
precursor
hydroxide
mixing
producing
Prior art date
Application number
PCT/JP2019/016479
Other languages
English (en)
French (fr)
Inventor
雅俊 高野
松本 伸也
修 池田
陽平 工藤
浅野 聡
和治 吉塚
章平 西浜
Original Assignee
住友金属鉱山株式会社
公立大学法人北九州市立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社, 公立大学法人北九州市立大学 filed Critical 住友金属鉱山株式会社
Priority to AU2019256018A priority Critical patent/AU2019256018B2/en
Priority to CA3087389A priority patent/CA3087389A1/en
Priority to JP2020514416A priority patent/JP7280573B2/ja
Priority to CN201980008356.0A priority patent/CN111601656A/zh
Priority to EP19787705.3A priority patent/EP3705181A4/en
Priority to US16/975,036 priority patent/US20200391177A1/en
Publication of WO2019203274A1 publication Critical patent/WO2019203274A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/10Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1207Permanganates ([MnO]4-) or manganates ([MnO4]2-)
    • C01G45/1214Permanganates ([MnO]4-) or manganates ([MnO4]2-) containing alkali metals
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds

Definitions

  • the present invention relates to a method for producing a precursor of a lithium adsorbent. More specifically, the present invention relates to a method for producing a precursor of a lithium adsorbent that adsorbs lithium from an aqueous solution containing lithium.
  • Lithium is widely used in industries such as pottery or glass additives, glass flux for continuous casting of steel, grease, pharmaceuticals, and batteries.
  • lithium-ion batteries which are secondary batteries, have high energy density and high voltage, and recently, their use as batteries for electronic devices such as laptop computers or in-vehicle batteries for electric and hybrid vehicles is expanding. That demand is soaring. Along with this, the demand for lithium as a raw material is rapidly increasing.
  • Lithium is produced in the form of lithium hydroxide or lithium carbonate using salt lake brine or ore containing lithium, such as lithia pyroxene (Li 2 O.Al 2 O 3 .2SiO 4 ), etc., as a raw material.
  • lithia pyroxene Li 2 O.Al 2 O 3 .2SiO 4
  • a process for selectively recovering lithium from an aqueous solution in which impurities coexist is desired instead of a process for removing impurities other than lithium and leaving lithium in the aqueous solution.
  • Lithium manganate with a spinel structure has an excellent selective adsorption capacity for lithium by pre-treatment that replaces lithium and hydrogen by bringing it into contact with an acid, and repeats adsorption and elution like an ion exchange resin. Can be used.
  • lithium manganate becomes a precursor of a lithium adsorbent in a process of selectively recovering lithium.
  • the production of lithium manganate includes a dry method for producing only by a baking treatment and a wet method for producing lithium manganate in an aqueous solution.
  • Patent Document 1 or 2 discloses a method for producing lithium manganate by a dry method.
  • trimanganese tetroxide and lithium hydroxide are pulverized and mixed and fired in an air or oxygen atmosphere.
  • Patent Document 3 discloses a method for producing lithium manganate by a wet method.
  • lithium manganate is prepared by an aqueous solution reaction, and then heat treatment is performed to accelerate the crystallization reaction.
  • ⁇ -manganese oxyhydroxide and lithium hydroxide are mixed and subjected to hydrothermal reaction under pressure at 100 to 140 ° C. to obtain lithium manganate (LiMn 2 O 4 ), and then 400 to 700
  • an object of the present invention is to provide a method for producing lithium manganate, which is a precursor of a lithium adsorbent, under atmospheric pressure that does not require a pressure vessel.
  • the method for producing a precursor of a lithium adsorbent according to the first aspect of the present invention includes the following steps (1) to (3): (1) First mixing step: mixing manganese salt and alkali hydroxide to mix manganese hydroxide. A step of obtaining a first slurry containing, (2) a second mixing step: adding lithium hydroxide to the first slurry and mixing to obtain a second slurry, and (3) an oxidation step: adding the second slurry to the first slurry. Adding an oxidizing agent to obtain a precursor of a lithium adsorbent.
  • the oxidation step includes a step of firing the oxide obtained by adding the oxidant to the second slurry. It is characterized by that.
  • a method for producing a precursor of a lithium adsorbent according to a third aspect of the invention is characterized in that, in the first aspect or the second aspect, the oxidizing agent is sodium hypochlorite.
  • a method for producing a precursor of a lithium adsorbent according to a fourth aspect of the present invention is characterized in that, in any one of the first to third aspects, the manganese salt is manganese sulfate.
  • a method for producing a precursor of a lithium adsorbent wherein the manganese salt is manganese nitrate, the alkali hydroxide is lithium hydroxide, and the oxidizing agent is the first invention or the second invention. It is characterized by being ammonium peroxodisulfate and / or sodium peroxodisulfate.
  • the method for producing a precursor of a lithium adsorbent of the sixth invention is any one of the first to fifth inventions, wherein the molar amount of the alkali hydroxide in the first mixing step is 2 of the molar amount of the manganese sulfate.
  • the method for producing a precursor of a lithium adsorbent according to a seventh aspect of the present invention is the method according to any one of the first to sixth aspects, wherein the molar amount of the lithium hydroxide in the second mixing step is 4 of the molar amount of the manganese sulfate. It is characterized by being not less than twice and not more than 20 times.
  • the oxidation-reduction potential of the aqueous solution in the oxidation step is from 300 mV to 1000 mV at the silver-silver chloride electrode.
  • the oxidation step is performed at 50 ° C. or higher and 80 ° C. or lower.
  • the first invention by including the first mixing step, the second mixing step, and the oxidation step, lithium manganate that is a precursor of the lithium adsorbent can be produced under atmospheric pressure. Since this process can be performed under atmospheric pressure, the precursor of the lithium adsorbent can be produced at a reduced cost.
  • the oxidation step includes the step of firing the oxide, whereby the oxidation to the oxide is more reliably performed.
  • the oxidizing agent is sodium hypochlorite, an inexpensive material is used, so that the cost for the reaction can be suppressed, and the oxidizing power is increased and the oxidation is more reliably performed.
  • the manganese salt is manganese sulfate, an inexpensive material is used, so that the cost for the reaction can be suppressed.
  • the manganese salt is manganese nitrate
  • the alkali hydroxide is lithium hydroxide
  • the oxidizing agent is ammonium peroxodisulfate and / or sodium peroxodisulfate. Precursors can be produced.
  • the amount of alkali hydroxide in the first mixing step is not less than 2 times and not more than 10 times the amount of manganese sulfate, so that the amount of alkali hydroxide used can be suppressed and the cost can be reduced.
  • the molar amount of lithium hydroxide in the second mixing step is not less than 4 times and not more than 20 times the molar amount of manganese sulfate, so that the amount of lithium hydroxide used can be suppressed and the cost can be reduced. Lithium intercalation can be advanced reliably.
  • the oxidation-reduction potential of the aqueous solution in the oxidation step is 300 mV or more and 1000 mV or less at the silver-silver chloride electrode, it is not necessary to make a special facility capable of handling a high potential, and the cost of the facility In addition to being suppressed, all of the manganese hydroxide obtained in the first mixing step can be converted to lithium manganate.
  • the oxidation process is performed at 50 ° C. or more and 80 ° C. or less, it is not necessary to use special equipment corresponding to high temperature, the cost of the equipment is suppressed, and lithium intercalates. In the oxidation step in which lithium manganate is produced, the reaction rate can be effectively increased.
  • the embodiment described below exemplifies a method for producing a precursor of a lithium adsorbent for embodying the technical idea of the present invention
  • the present invention is a method for producing a precursor of a lithium adsorbent. Is not specified as below.
  • the method for producing a precursor of a lithium adsorbent according to the present invention includes the following steps (1) to (3).
  • First mixing step a step of mixing a manganese salt and an alkali hydroxide to obtain a first slurry containing manganese hydroxide
  • Second mixing step a step of adding lithium hydroxide to the first slurry and mixing to obtain a second slurry
  • Oxidation step adding an oxidant to the second slurry to obtain a lithium adsorbent precursor;
  • the method for producing a lithium adsorbent precursor includes the above (1) first mixing step, (2) second mixing step, and (3) oxidation step. Certain lithium manganates can be produced. Since this step can be performed under atmospheric pressure, an expensive facility such as an autoclave is not used, and a lithium adsorbent precursor can be produced while suppressing running costs such as heat costs. In addition, where there is a legal restriction to use a high-pressure device such as an autoclave, the need to consider such a legal restriction is reduced.
  • the oxidation step includes a step of firing an oxide obtained by adding an oxidant to the second slurry.
  • the step of firing the oxide in the oxidation step oxidation to the oxide is more reliably performed.
  • the oxidizing agent is preferably sodium hypochlorite.
  • the oxidizing agent is sodium hypochlorite, an inexpensive material is used, so that the cost for the reaction can be suppressed and the oxidizing power is increased and the oxidation is more reliably performed.
  • the manganese salt is preferably manganese sulfate. Since the manganese salt is manganese sulfate, an inexpensive material is used, so that the cost for the reaction can be suppressed.
  • the manganese salt is manganese nitrate
  • the alkali hydroxide is lithium hydroxide
  • the oxidizing agent is ammonium peroxodisulfate and / or peroxodioxide.
  • Sodium sulfate is preferred.
  • the molar amount of alkali hydroxide in the first mixing step is not less than 2 times and not more than 10 times the molar amount of manganese sulfate used in the first mixing step. It is preferable that Thereby, it is possible to reduce the cost by reducing the amount of alkali hydroxide used, and to use all of the used manganese sulfate as lithium manganate.
  • the molar amount of lithium hydroxide in the second mixing step is not less than 4 times and not more than 20 times the molar amount of manganese sulfate used in the first mixing step. It is preferable that As a result, the amount of lithium hydroxide used can be reduced to reduce costs, and lithium intercalation can be reliably advanced.
  • the redox potential of the aqueous solution in the oxidation step is preferably 300 mV or more and 1000 mV or less at the silver-silver chloride electrode. This eliminates the need for special equipment capable of handling a high potential, thereby reducing the cost of the equipment and making all of the manganese hydroxide obtained in the second mixing step lithium manganate.
  • the oxidation step is preferably performed at 50 ° C. or higher and 80 ° C. or lower. This eliminates the need for special equipment that can handle high temperatures, reduces equipment costs, and effectively reduces this reaction rate in the oxidation process in which lithium intercalates to produce lithium manganate. Can be raised.
  • FIG. 1 the manufacturing method of the precursor of the lithium adsorbent which concerns on 1st Embodiment of this invention is shown.
  • the first mixing step manganese sulfate and alkali hydroxide are mixed to obtain a first slurry containing manganese hydroxide.
  • This first mixing step is a step aimed at neutralization.
  • this 1st slurry mixes the aqueous solution which melt
  • the method for preparing the aqueous solution containing manganese sulfate and the aqueous solution containing alkali hydroxide is not particularly limited.
  • sodium hydroxide when sodium hydroxide is employed as one of MnSO 4 .5H 2 O or alkali hydroxide, it is prepared by dissolving a hydrate such as NaOH ⁇ H 2 O in water.
  • the concentration of both aqueous solutions is not particularly limited. However, in order to make an aqueous solution, it is necessary to make it below solubility.
  • the solubility of manganese sulfate in water is about 63 g / 100 g-H 2 O at 20 ° C.
  • sodium hydroxide is employed as one of the alkalis
  • the solubility of sodium hydroxide is about 109 g / 20 at 20 ° C. 100 g-H 2 O.
  • lithium hydroxide is employed as one of the alkalis
  • the solubility of lithium hydroxide is about 12 g / 100 g-H 2 O at 20 ° C.
  • the concentration of the aqueous solution is determined in consideration of these solubilities.
  • a first slurry containing manganese hydroxide is obtained by mixing an aqueous solution containing manganese sulfate and an aqueous solution containing sodium hydroxide (see [Equation 1]).
  • the molar amount of the alkali hydroxide to be added is theoretically required twice as much as the molar amount of the manganese sulfate
  • the molar amount of the alkali hydroxide is set to the molar amount of the manganese sulfate in order to ensure the reaction.
  • the molar amount of the alkali hydroxide is preferably 10 times or less with respect to the molar amount of manganese sulfate.
  • sodium hydroxide was taken up as one of the alkali hydroxides, but it is not particularly limited as long as it is an alkali hydroxide that can neutralize manganese sulfate.
  • lithium hydroxide or potassium hydroxide can be used.
  • manganese sulfate is used in the first mixing step, but other manganese salts can be used.
  • ⁇ Second mixing step> lithium hydroxide is added to the first slurry obtained in the first mixing step and mixed to obtain a second slurry.
  • lithium hydroxide is added as a lithium manganate source. This addition is not a problem even if it is an aqueous solution, but it is preferably added as a solid in order to suppress an increase in the liquid volume.
  • the Li / Mn ratio of lithium manganate having a high adsorption capacity as an Li adsorbent is 0.5 to 1.0 times that of LiMn 2 O 4 .
  • the Li / Mn ratio of Li 1.6 Mn 1.6 O 4 is 1.0.
  • the molar amount of lithium hydroxide in consideration of the above ratio is required with respect to the molar amount of manganese sulfate used in the first mixing step.
  • the molar amount of lithium hydroxide in the second mixing step should be four times or more than the molar amount of manganese sulfate used in the first mixing step. preferable.
  • the molar amount of lithium hydroxide is preferably 20 times or less with respect to the molar amount of manganese sulfate.
  • the first mixing step may be omitted.
  • ⁇ Oxidation process> sodium hypochlorite is added to the second slurry obtained in the second mixing step to obtain an oxide.
  • Sodium hypochlorite may be added as a solid such as a crystal, or may be added in the form of a pre-dissolved aqueous solution or the like.
  • the oxidation-reduction potential of the aqueous solution in the oxidation step is preferably 300 mV or more and 1000 mV or less at the silver-silver chloride electrode.
  • the oxidation-reduction potential is less than 300 mV, all of the manganese hydroxide obtained in the first mixing step may not be converted to lithium manganate.
  • the oxidation-reduction potential is larger than 1000 mV, it is necessary to make the equipment for the oxidation process capable of withstanding such a large oxidation-reduction potential.
  • the oxidation-reduction potential of the aqueous solution in the oxidation step is 300 mV or more and 1000 mV or less at the silver-silver chloride electrode, it is not necessary to use special equipment for increasing the potential, and the cost of the equipment can be suppressed and the second mixing can be performed. All of the manganese hydroxide obtained in the process can be converted to lithium manganate.
  • sodium hypochlorite in the oxidation step little by little.
  • Sodium hypochlorite is consumed when oxidizing manganese.
  • the redox potential increases primarily, but when consumed when manganese is oxidized, the redox potential decreases accordingly.
  • Sodium hypochlorite is added so that the oxidation-reduction potential is 300 mV or higher.
  • the oxidation step is preferably performed at 50 ° C. or higher and 80 ° C. or lower, and more preferably 60 ° C. or higher and 80 ° C. or lower.
  • the oxidation step lithium intercalates to produce lithium manganate.
  • the temperature of the oxidation step is less than 50 ° C., the reaction rate of intercalation does not increase sufficiently.
  • the temperature of the oxidation process is higher than 80 ° C., it is necessary to make the equipment for the oxidation process capable of withstanding a temperature higher than 80 ° C.
  • the oxidation process is performed at 50 ° C. or more and 80 ° C. or less, it is not necessary to use special equipment corresponding to high temperatures, the cost of the equipment is suppressed, and lithium manganate is generated by lithium intercalation. This oxidation step can effectively increase the reaction rate.
  • sodium hypochlorite as an oxidant is added to the second slurry while being maintained at a temperature of 50 ° C. or higher and 80 ° C. or lower. By stirring the mixed liquid in this state, manganese in the liquid is oxidized.
  • the pressure is atmospheric and there is no problem, and there is no need to pressurize. Furthermore, in order to reliably generate lithium manganate as an oxide, it is preferable that stirring and mixing be continued at the above temperature for 3 hours or more.
  • the oxide produced in the oxidation step that is, the precursor of the lithium adsorbent that is lithium manganate is solid-liquid separated into a powder.
  • sodium hypochlorite is used as an oxidizing agent in the oxidation step, but other oxidizing agents can be used. Specifically, chlorine oxoacids (hypochlorous acid, chlorous acid, etc.) and their salts (sodium salt, potassium salt, etc.), chlorine and the like can be used.
  • lithium manganate which is an excellent lithium adsorbent precursor, is obtained.
  • FIG. 2 the manufacturing method of the precursor of the lithium adsorbent which concerns on 2nd Embodiment of this invention is shown. As shown in FIG. 2, the difference from the first embodiment is that a baking step is included after the oxidation step. In the description of the second embodiment, only differences from the first embodiment will be described. That is, the part in which the description is omitted is the same as in the first embodiment.
  • the oxide obtained in the oxidation step is fired to obtain a lithium adsorbent precursor.
  • the oxide obtained in the oxidation step is lithium manganate.
  • this lithium manganate powder is separated and dried to form a dry powder, it is fired in a firing furnace such as an electric furnace over a period of 2 hours to 24 hours.
  • the atmosphere in the furnace may be an environment in which oxygen exists, and can be realized, for example, by supplying air to the furnace.
  • the temperature at this time is preferably a temperature range of 500 ° C. or more and 700 ° C. or less in order to promote crystallization.
  • FIG. 3 the manufacturing method of the precursor of the lithium adsorbent which concerns on 3rd Embodiment of this invention is shown.
  • the difference from the first embodiment is that the substances mixed in the first mixing step are different, the oxidizing agent in the oxidizing step is different, and the baking step is included after the oxidizing step. is there.
  • the description of the third embodiment only differences from the first embodiment will be described. That is, the part in which the description is omitted is the same as in the first embodiment.
  • first mixing step manganese nitrate and lithium hydroxide are mixed to obtain a first slurry containing manganese hydroxide.
  • this 1st slurry mixes the aqueous solution which melt
  • the preparation method of the aqueous solution containing manganese nitrate and the aqueous solution containing lithium hydroxide is not particularly limited.
  • Mn (NO 3) 2 ⁇ 6H 2 O, or a hydrate, such as LiOH ⁇ H 2 0 is prepared by dissolving in water.
  • the concentration of both aqueous solutions is not particularly limited. However, in order to make an aqueous solution, it is necessary to make it below solubility.
  • the solubility of manganese nitrate in water is about 140 g / 100 g-water at 20 ° C.
  • the solubility of lithium hydroxide is also about 12 g / 100 g-water at 20 ° C.
  • the concentration of the aqueous solution is determined in consideration of these solubilities.
  • a first slurry containing manganese hydroxide is obtained by mixing an aqueous solution containing manganese nitrate and an aqueous solution containing lithium hydroxide (see [Equation 3]).
  • the molar amount of lithium hydroxide to be added is theoretically twice as much as the molar amount of manganese nitrate, the molar amount of lithium hydroxide is set to the molar amount of manganese nitrate in order to proceed the reaction reliably.
  • the equivalent that is, 2 times or more and 10 times or less.
  • ⁇ Second mixing step> lithium hydroxide is added to the first slurry obtained in the first mixing step and mixed to obtain a second slurry.
  • lithium hydroxide is added as a lithium manganate source. This addition is not a problem even if it is an aqueous solution, but it is preferably added as a solid in order to suppress an increase in the liquid volume.
  • Li / Mn ratio of lithium manganate having a high adsorption capacity as an Li adsorbent is 0.5 to 1.0 times that of LiMn 2 O 4 .
  • Li 1.33 Mn 1.67 O 4 has a Li / Mn of 0.8.
  • the molar amount of lithium hydroxide in consideration of the above ratio is necessary with respect to the molar amount of manganese nitrate used in the first step.
  • the molar amount of lithium hydroxide in the second mixing step is not less than 10 times and not more than 50 times the molar amount of manganese nitrate used in the first step. Preferably there is.
  • ammonium peroxodisulfate and / or sodium peroxodisulfate is added to the second slurry obtained in the second mixing step to obtain an oxide.
  • the ammonium peroxodisulfate and / or sodium peroxodisulfate may be added as a solid such as a crystal, or may be added in the form of an aqueous solution previously dissolved.
  • the total molar amount of ammonium peroxodisulfate (ammonium persulfate) and sodium peroxodisulfate (sodium persulfate) added in the oxidation step is 0.5 times or more the molar amount of manganese nitrate used in the first mixing step. It is preferable that it is less than twice. This is because, by defining the amount of ammonium peroxodisulfate in this manner, all of the manganese nitrate used in the first mixing step can be converted to lithium manganate.
  • ammonium peroxodisulfate and / or sodium peroxodisulfate which is an oxidizing agent, is added to the second slurry while being kept at a temperature of 70 ° C. or higher, preferably 80 ° C. or higher.
  • a temperature of 70 ° C. or higher preferably 80 ° C. or higher.
  • the reason why the temperature of the second slurry is set to the above temperature is that lithium is intercalated in the oxidation step to produce lithium manganate. To increase the reaction rate, it is effective to increase the temperature. Because there is. The pressure at this time is atmospheric pressure and there is no problem, and it is not necessary to pressurize to a temperature exceeding 100 ° C. Furthermore, in order to reliably produce lithium manganate as an oxide, it is preferable that stirring and mixing be continued for 5 hours or more at the above temperature.
  • the oxide obtained in the oxidation step is fired to obtain a lithium adsorbent precursor.
  • the oxide obtained in the oxidation step is lithium manganate.
  • this lithium manganate powder is separated and dried to form a dry powder, it is fired in an oxygen atmosphere over a period of 2 hours to 24 hours using a firing furnace such as an electric furnace.
  • the temperature at this time is preferably a temperature range of 500 ° C. or more and 700 ° C. or less in order to promote crystallization.
  • Example 1 is an example in the first embodiment. About 100 L of water is put into a 200 L heat-resistant dielite tank, 19.4 kg of powdered manganese sulfate monohydrate (manganese sulfate: 115 mol) is added, and the mixture is dissolved by stirring and mixing with an impeller. A 20% aqueous caustic soda solution (20 kg, sodium hydroxide: 240 mol) was added to prepare a manganese hydroxide slurry.
  • an aqueous hypochlorous acid solution having a weight concentration of 12% was appropriately added dropwise so that the oxidation-reduction potential was 300 mV or higher at the silver-silver chloride electrode.
  • 66 L of hypochlorous acid aqueous solution was required in order to finally show a stable oxidation-reduction potential of 300 mV or higher.
  • stirring and mixing were continued for 5 hours.
  • heating was continued with a Teflon (registered trademark) heater so that the temperature did not become 50 ° C. or lower.
  • the oxidation-reduction potential during stirring and mixing was confirmed using an ORP meter using a glass electrode.
  • a black powder was obtained by this operation. After completion of stirring, the powder was collected by solid-liquid separation by suction filtration with a Buchna funnel. The collected powder was washed with pure water, the adhesion liquid was removed, and then dried at 80 ° C. in the atmosphere for about 24 hours. The weight of the lithium manganate powder (lithium adsorbent precursor) obtained after drying was 12 kg.
  • FIG. 4 shows the result of XRD (X-ray diffraction) analysis of the obtained lithium adsorbent precursor.
  • XRD X-ray diffraction
  • the collected powder was again put into a 200 mL beaker, 150 mL of an aqueous hydrochloric acid solution adjusted to 1.0 mol / L was added, and the mixture was stirred for about 1 hour. After mixing and stirring, the slurry was suction filtered with a Buchna funnel to perform solid-liquid separation, and the powder was recovered. The collected powder was washed with about 500 mL of pure water to remove the adhering liquid, and then dried in the atmosphere at 60 ° C. for about 24 hours using a dryer. By this operation, 7 g of an adsorbent was obtained. The filtrate recovered by solid-liquid separation was analyzed by ICP-AES to determine the rate of lithium desorption from the precursor. The lithium desorption rate was about 78%.
  • Lithium chloride, sodium chloride, magnesium chloride and potassium chloride are dissolved in pure water to have a lithium concentration of 5 g / L, a sodium concentration of 13 g / L, a magnesium concentration of 91 g / L, and a potassium concentration of 23 g / L.
  • An aqueous solution was prepared, and about 70 mL of the prepared aqueous solution and 7 g of the adsorbent prepared by acid treatment were placed in a 200 mL beaker and mixed and stirred.
  • an aqueous 8 mol / L sodium hydroxide solution (manufactured by Wako Pure Chemical Industries, Ltd.) was added to adjust the pH to 7 during mixing and stirring.
  • FIG. 6 shows the relationship between the stirring and mixing time and the lithium adsorption amount.
  • the horizontal axis represents time
  • the vertical axis represents the amount of lithium adsorbed.
  • Example 2 is an example in the second embodiment.
  • Manganese sulfate pentahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) 241 g and lithium hydroxide monohydrate 84 g were dissolved in pure water, respectively, made up to 1 L, manganese sulfate aqueous solution (1.0 mol / L) and water A lithium oxide aqueous solution (2.0 mol / L) was prepared.
  • the prepared aqueous solution was put into a 3 L beaker and mixed by stirring to prepare a manganese hydroxide slurry (first slurry).
  • 420 g (10 mol) of solid lithium hydroxide monohydrate was added to the manganese hydroxide slurry, and stirring and mixing were continued (second slurry).
  • the second slurry was heated to 50 ° C., an aqueous solution of industrial sodium hypochlorite having an effective concentration of 12% was added, and the oxidation-reduction potential was measured with a silver-silver chloride electrode and dropped until it became about 400 mV. Thereafter, stirring and mixing were continued for 5 hours at a temperature of 50 to 60 ° C. using a water bath. The obtained powder (oxide) was dark brown. After stirring and mixing, vacuum filtration was performed, and the powder was washed with pure water and vacuum dried at room temperature. The dried powder was ground in a mortar and then baked at 600 ° C. for 24 hours in an oxidizing atmosphere. After firing, about 103 g of lithium adsorbent precursor, ie, lithium manganate powder, was obtained.
  • FIG. 7 The result of analyzing the obtained precursor by XRD (X-ray diffraction) is shown in FIG. 7, it can be seen that Li 1.6 Mn 1.6 O 4 is obtained from the result that there are four peaks indicated by arrows. Moreover, the SEM image of the precursor of a lithium adsorbent is shown in FIG. From FIG. 8, it is possible to grasp the state of the precursor of the lithium adsorbent.
  • Lithium chloride, sodium chloride, magnesium chloride and potassium chloride are dissolved in pure water to have a lithium concentration of 5 g / L, a sodium concentration of 12 g / L, a magnesium concentration of 74 g / L, and a potassium concentration of 18 g / L.
  • An aqueous solution was prepared. 800 mL of the prepared aqueous solution and 80 g of the adsorbent prepared in “Preparation of Lithium Adsorbent” were placed in a 1 L beaker and mixed and stirred.
  • FIG. 9 shows the relationship between the stirring and mixing time and the lithium adsorption amount.
  • the horizontal axis represents time
  • the vertical axis represents the amount of lithium adsorbed.
  • Example 3 is an example in the third embodiment. 28.70 g of manganese nitrate hexahydrate (manufactured by Wako Pure Chemical Industries), 11.41 g of ammonium peroxodisulfate (manufactured by Wako Pure Chemical Industries), and 8.39 g of lithium hydroxide monohydrate (manufactured by Wako Pure Chemical Industries) were each beaker. And dissolved in ion-exchanged water.
  • each aqueous solution was made up to 100 ml and prepared as a manganese nitrate aqueous solution (1.0 mol / L), a lithium hydroxide aqueous solution (1.0 mol / L), and an ammonium peroxodisulfate aqueous solution (0.5 mol / L).
  • the slurry was heated to 85 ° C. with a hot stirrer, and an aqueous solution of ammonium peroxodisulfate (0.5 mol / L) was added dropwise, and everything was added (oxidation step). Thereafter, stirring and mixing were continued for 10 hours while maintaining a temperature of 85 ° C. The obtained powder was brown.
  • the mixture was filtered with suction through a Buchna funnel to separate the solid and the liquid.
  • the collected powder was washed with ion-exchanged water, and after removing the adhered liquid, vacuum drying was performed at 120 ° C. for about 12 hours.
  • the dried powder was ground in a mortar and then baked in an oxidizing atmosphere at 600 ° C. for 24 hours (baking step).
  • FIG. 10 The result of analyzing the obtained precursor by XRD (X-ray diffraction) is shown in FIG. From the result of FIG. 10, it can be seen that Li 1.37 M 1.65 O 4 is obtained.
  • An SEM image of the precursor is shown in FIG. From FIG. 11, the state of the precursor of the obtained lithium adsorbent can be grasped.
  • a buffer solution prepared using ammonium chloride and a 25% aqueous ammonia solution so as to have a pH of 8.5 to 8.6 was mixed with 0.1356 g of lithium chloride, and the volume was made up to 200 mL. L) was prepared. 10 mL of this lithium chloride aqueous solution and 0.01 g of the adsorbent after acid treatment are placed in a 50 mL Erlenmeyer flask, and the permeation time is 5 minutes, 10 minutes, 15 minutes, 30 minutes, 1 hour, 2 hours, 7 hours, 24 hours. And shaken at 160 rpm.
  • FIG. 12 shows the amount of lithium adsorbed with respect to the shaking time.
  • the horizontal axis in FIG. 12 is time, and the vertical axis is the amount of lithium adsorption.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

大気圧下にてリチウム吸着剤の前駆体であるマンガン酸リチウムを製造する方法を提供する。 リチウム吸着剤の前駆体の製造方法は、次の工程(1)~(3)を含む。(1)第1混合工程:マンガン塩と、水酸化アルカリと、を混合し水酸化マンガンを含有する第1スラリーを得る工程、(2)第2混合工程:第1スラリーに水酸化リチウムを添加し、混合して第2スラリーを得る工程、(3)酸化工程:第2スラリーに酸化剤を添加してリチウム吸着剤の前駆体を得る工程。リチウム吸着剤の前駆体の製造方法がこれらの工程を包含することにより、大気圧下にてリチウム吸着剤の前駆体を製造することができる。これによりコストを抑えてリチウム吸着剤の前駆体を製造することができる。

Description

リチウム吸着剤の前駆体の製造方法
 本発明は、リチウム吸着剤の前駆体の製造方法に関する。さらに詳しくは、リチウムを含有する水溶液からリチウムを吸着するリチウム吸着剤の前駆体の製造方法に関する。
 リチウムは、陶器またはガラスの添加剤、鉄鋼連続鋳造用のガラスフラックス、グリース、医薬品、電池等の産業界において広く利用されている。特に、二次電池であるリチウムイオン電池は、エネルギー密度が高く、電圧が高いことから、最近ではノートパソコンなどの電子機器のバッテリーまたは電気自動車・ハイブリッド車の車載バッテリーとしての用途が拡大しており、その需要が急増している。これに伴い、原料であるリチウムの需要が急増している。
 リチウムは、水酸化リチウムまたは炭酸リチウムという形で、塩湖鹹水またはリチウムを含む鉱石、例えばリシア輝石(LiO・Al・2SiO)等を原料とし、これらを精製して生産されてきた。しかし、製造コストを考慮すると、リチウム以外の不純物を除去してリチウムを水溶液に残すプロセスではなく、不純物が共存している水溶液からリチウムを選択的に回収するプロセスが望まれている。
 リチウムのみを選択的に回収するプロセスとして、無機系吸着剤であるマンガン酸リチウムを用いた方法が知られている。スピネル構造を持つマンガン酸リチウムは、酸と接触させてリチウムと水素とを入れ替える前処理を行うことで、リチウムに対して優れた選択吸着能力を持ち、イオン交換樹脂のように吸着と溶離を繰り返して使用することが可能である。
 すなわちマンガン酸リチウムは、リチウムを選択的に回収するプロセスにおいて、リチウム吸着剤の前駆体となる。このマンガン酸リチウムの製造には、焼成処理のみで製造する乾式法、および水溶液中でマンガン酸リチウムを製造する湿式法がある。
 特許文献1または2では、乾式法によりマンガン酸リチウムを製造する方法が開示されている。この乾式法では四酸化三マンガンと水酸化リチウムを粉砕混合し、空気又は酸素雰囲気で焼成して作製する。
 これに対し、特許文献3では、湿式法によりマンガン酸リチウムを作成する方法が開示されている。この湿式法ではマンガン酸リチウムを水溶液反応で作製した後、結晶化反応を促進するために加熱処理を行う。
 上記の湿式法は、γ-オキシ水酸化マンガンと水酸化リチウムとを混合し、加圧下100~140℃で水熱反応させ、マンガン酸リチウム(LiMn)を得た後、400~700℃の範囲で加熱処理することで、3価のマンガンを4価に酸化し、構造を変化させることなく、安定なマンガン酸リチウム(LiMn)を得る方法である。
特許第3937865号公報 特許第5700338号公報 特許第3388406号公報
 特許文献3に記載の方法では、加圧条件で反応を行わせるために、オートクレーブなどの加圧容器が必要になる。しかし、商業規模での生産(例えば数トンオーダー)を行うためのオートクレーブは高額な設備であり、熱コストも高くなるなどの問題がある。さらにオートクレーブは圧力容器になるため、安全を確保するための法律で規制されており、厳重な管理が必要であるという問題がある。
 本発明は上記事情に鑑み、圧力容器が不要な大気圧下にてリチウム吸着剤の前駆体であるマンガン酸リチウムを製造する方法を提供することを目的とする。
 第1発明のリチウム吸着剤の前駆体の製造方法は、次の工程(1)~(3):(1)第1混合工程:マンガン塩と、水酸化アルカリと、を混合し水酸化マンガンを含有する第1スラリーを得る工程、(2)第2混合工程:前記第1スラリーに水酸化リチウムを添加し、混合して第2スラリーを得る工程、(3)酸化工程:前記第2スラリーに酸化剤を添加してリチウム吸着剤の前駆体を得る工程、を包含することを特徴とする。
 第2発明のリチウム吸着剤の前駆体の製造方法は、第1発明において、前記酸化工程には、前記第2スラリーに前記酸化剤を添加して得られた酸化物を焼成する工程が含まれることを特徴とする。
 第3発明のリチウム吸着剤の前駆体の製造方法は、第1発明または第2発明において、前記酸化剤が次亜塩素酸ナトリウムであることを特徴とする。
 第4発明のリチウム吸着剤の前駆体の製造方法は、第1発明から第3発明のいずれかにおいて、前記マンガン塩が、硫酸マンガンであることを特徴とする。
 第5発明のリチウム吸着剤の前駆体の製造方法は、第1発明または第2発明において、前記マンガン塩が、硝酸マンガンであり、前記水酸化アルカリが、水酸化リチウムであり、前記酸化剤がペルオキソ二硫酸アンモニウムおよび/またはペルオキソ二硫酸ナトリウムであることを特徴とする。
 第6発明のリチウム吸着剤の前駆体の製造方法は、第1発明から第5発明のいずれかにおいて、前記第1混合工程における前記水酸化アルカリのモル量は、前記硫酸マンガンのモル量の2倍以上10倍以下であることを特徴とする。
 第7発明のリチウム吸着剤の前駆体の製造方法は、第1発明から第6発明のいずれかにおいて、前記第2混合工程における前記水酸化リチウムのモル量は、前記硫酸マンガンのモル量の4倍以上20倍以下であることを特徴とする。
 第8発明のリチウム吸着剤の前駆体の製造方法は、第1発明から第7発明のいずれかにおいて、前記酸化工程における水溶液の酸化還元電位が、銀塩化銀電極で300mV以上1000mV以下であることを特徴とする。
 第9発明のリチウム吸着剤の前駆体の製造方法は、第1発明から第8発明のいずれかにおいて、前記酸化工程が、50℃以上80℃以下で行われることを特徴とする。
 第1発明によれば、第1混合工程、第2混合工程、酸化工程を包含することにより、大気圧下にてリチウム吸着剤の前駆体であるマンガン酸リチウムを製造することができる。この工程は大気圧下で実行できるので、コストを抑えてリチウム吸着剤の前駆体を製造することができる。
 第2発明によれば、酸化工程に、酸化物を焼成する工程が含まれることにより、酸化物への酸化がより確実に行われる。
 第3発明によれば、酸化剤が次亜塩素酸ナトリウムであることにより、安価な材料が用いられるので反応のためのコストが抑制できると共に、酸化力を上げてさらに確実に酸化が行われる。
 第4発明によれば、マンガン塩が硫酸マンガンであることにより、安価な材料が用いられるので反応のためのコストが抑制できる。
 第5発明によれば、マンガン塩が硝酸マンガンであり、水酸化アルカリが水酸化リチウムであり、酸化剤がペルオキソ二硫酸アンモニウムおよび/またはペルオキソ二硫酸ナトリウムであることにより、より確実にリチウム吸着剤の前駆体を製造することができる。
 第6発明によれば、第1混合工程における水酸化アルカリのモル量が、硫酸マンガンのモル量の2倍以上10倍以下であることにより、水酸化アルカリの使用量を抑えてコストを削減できるとともに、用いられた硫酸マンガンの全てをマンガン酸リチウムとすることが可能となる。
 第7発明によれば、第2混合工程における水酸化リチウムのモル量が硫酸マンガンのモル量の4倍以上20倍以下であることにより、水酸化リチウムの使用量を抑えてコストを削減できるとともに、リチウムのインターカレーションを確実に進めることができる。
 第8発明によれば、酸化工程における水溶液の酸化還元電位が、銀塩化銀電極で300mV以上1000mV以下であることにより、高電位に対応可能な特別な設備にする必要がなく、設備のコストが抑えられるとともに、第1混合工程で得られた水酸化マンガンの全てをマンガン酸リチウムとすることができる。
 第9発明によれば、酸化工程が50℃以上80℃以下で行われることにより、高温に対応した特別な設備にする必要がなく、設備のコストが抑えられるとともに、リチウムがインターカレーションすることでマンガン酸リチウムが生成される酸化工程で、この反応速度を効果的に上げることができる。
本発明の第1実施形態に係るリチウム吸着剤の前駆体の製造方法を示すフロー図である。 本発明の第2実施形態に係るリチウム吸着剤の前駆体の製造方法を示すフロー図である。 本発明の第3実施形態に係るリチウム吸着剤の前駆体の製造方法を示すフロー図である。 図1の製造方法で得られたリチウム吸着剤の前駆体であるマンガン酸リチウムのX線回折測定の結果を示すグラフである。 図1の製造方法で得られたリチウム吸着剤の前駆体であるマンガン酸リチウムの走査電子顕微鏡(SEM)での画像である。 図1の製造方法で得られたリチウム吸着剤の前駆体であるマンガン酸リチウムの混合撹拌時間に対するリチウムの吸着量を示すグラフである。 図2の製造方法で得られたリチウム吸着剤の前駆体であるマンガン酸リチウムのX線回折測定の結果を示すグラフである。 図2の製造方法で得られたリチウム吸着剤の前駆体であるマンガン酸リチウムの走査電子顕微鏡(SEM)での画像である。 図2の製造方法で得られたリチウム吸着剤の前駆体であるマンガン酸リチウムの混合撹拌時間に対するリチウムの吸着量を示すグラフである。 図3の製造方法で得られたリチウム吸着剤の前駆体であるマンガン酸リチウムのX線回折測定の結果を示すグラフである。 図3の製造方法で得られたリチウム吸着剤の前駆体であるマンガン酸リチウムの走査電子顕微鏡(SEM)での画像である。 図3の製造方法で得られたリチウム吸着剤の前駆体であるマンガン酸リチウムの振とう時間に対するリチウムの吸着量を示すグラフである。
 つぎに、本発明の実施形態を図面に基づき説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具現化するためのリチウム吸着剤の前駆体の製造方法を例示するものであって、本発明はリチウム吸着剤の前駆体の製造方法を以下のものに特定しない。
 本発明に係るリチウム吸着剤の前駆体の製造方法は、次の工程(1)~(3)を包含するものである。
(1)第1混合工程:マンガン塩と、水酸化アルカリと、を混合し水酸化マンガンを含有する第1スラリーを得る工程、
(2)第2混合工程:前記第1スラリーに水酸化リチウムを添加し、混合して第2スラリーを得る工程、
(3)酸化工程:前記第2スラリーに酸化剤を添加してリチウム吸着剤の前駆体を得る工程、
 リチウム吸着剤の前駆体の製造方法が、上記(1)第1混合工程、(2)第2混合工程、(3)酸化工程を含んで構成されていることにより、リチウム吸着剤の前駆体であるマンガン酸リチウムを製造することができる。この工程は大気圧下で実行できるのでオートクレーブ等の高価な設備を利用することがなくなり、熱コスト等のランニングコストも抑えながら、リチウム吸着剤の前駆体を製造することができる。また、オートクレーブ等の高圧装置を使用するには法的な規制があるところ、そのような法律上の規制に配慮する必要性が少なくなる。
 また、本発明に係るリチウム吸着剤の前駆体の製造方法は、酸化工程には、第2スラリーに酸化剤を添加して得られた酸化物を焼成する工程が含まれることが好ましい。酸化工程に、酸化物を焼成する工程が含まれることにより、酸化物への酸化がより確実に行われる。
 また、本発明に係るリチウム吸着剤の前駆体の製造方法は、酸化剤が次亜塩素酸ナトリウムであることが好ましい。酸化剤が次亜塩素酸ナトリウムであることにより、安価な材料が用いられるので反応のためのコストが抑制できると共に、酸化力を上げてさらに確実に酸化が行われる。
 また、本発明に係るリチウム吸着剤の前駆体の製造方法は、マンガン塩が、硫酸マンガンであることが好ましい。マンガン塩が硫酸マンガンであることにより、安価な材料が用いられるので反応のためのコストが抑制できる。
 また、本発明に係るリチウム吸着剤の前駆体の製造方法は、マンガン塩が、硝酸マンガンであり、前記水酸化アルカリが、水酸化リチウムであり、前記酸化剤がペルオキソ二硫酸アンモニウムおよび/またはペルオキソ二硫酸ナトリウムであることが好ましい。マンガン塩が硝酸マンガンであり、水酸化アルカリが水酸化リチウムであり、酸化剤がペルオキソ二硫酸アンモニウムおよび/またはペルオキソ二硫酸ナトリウムであることにより、より確実にリチウム吸着剤の前駆体を製造することができる。
 また、本発明に係るリチウム吸着剤の前駆体の製造方法は、第1混合工程における水酸化アルカリのモル量は、第1混合工程で用いられた硫酸マンガンのモル量の2倍以上10倍以下であることが好ましい。これにより、水酸化アルカリの使用量を抑えてコストを削減できるとともに、用いられた硫酸マンガンの全てをマンガン酸リチウムとすることが可能となる。
 また、本発明に係るリチウム吸着剤の前駆体の製造方法は、第2混合工程における水酸化リチウムのモル量は、第1混合工程で用いられた硫酸マンガンのモル量の4倍以上20倍以下であることが好ましい。これにより、水酸化リチウムの使用量を抑えてコストを削減できるとともに、リチウムのインターカレーションを確実に進めることができる。
 また、本発明に係るリチウム吸着剤の前駆体の製造方法は、酸化工程における水溶液の酸化還元電位が、銀塩化銀電極で300mV以上1000mV以下であることが好ましい。これにより、高電位に対応可能な特別な設備にする必要がなく、設備のコストが抑えられるとともに、第2混合工程で得られた水酸化マンガンの全てをマンガン酸リチウムとすることができる。
 また、本発明に係るリチウム吸着剤の前駆体の製造方法は、酸化工程が50℃以上80℃以下で行われることが好ましい。これにより、高温に対応した特別な設備にする必要がなく、設備のコストが抑えられるとともに、リチウムがインターカレーションすることでマンガン酸リチウムが生成される酸化工程で、この反応速度を効果的に上げることができる。
(第1実施形態)
 <第1混合工程>
 図1には、本発明の第1実施形態に係るリチウム吸着剤の前駆体の製造方法を示す。図1に示すように、第1混合工程では、硫酸マンガンと、水酸化アルカリと、が混合され、水酸化マンガンを含有する第1スラリーが得られる。この第1混合工程は中和を目的とする工程である。なお、この第1スラリーは、硫酸マンガンまたは水酸化アルカリのそれぞれを溶解した水溶液を混合したり、あるいは試薬等の固体を混合し、これを水等の溶媒で溶解して得られた溶液あるいは水溶液を用いたりして得られる。なお、以下は水溶液を混合した場合で述べる。
 硫酸マンガンを含む水溶液、および水酸化アルカリを含む水溶液の調製方法は特に限定されるものではない。例えばMnSO・5HO、または水酸化アルカリの一つとして水酸化ナトリウムが採用される場合、NaOH・HOのような水和物を水に溶かすことによって調製される。
 両水溶液の濃度は、特に限定されるものではない。ただし、水溶液にするために溶解度以下にする必要がある。水への硫酸マンガンの溶解度は、20℃で約63g/100g-HOであり、同じくアルカリの一つとして水酸化ナトリウムが採用される場合は水酸化ナトリウムの溶解度は20℃では約109g/100g-HOである。さらにアルカリの一つとして水酸化リチウムが採用される場合は水酸化リチウムの溶解度は20℃では約12g/100g-HOである。これらの溶解度を考慮して水溶液の濃度が決定される。
 硫酸マンガンを含む水溶液と、水酸化ナトリウムを含む水溶液と、が混合されることで水酸化マンガンを含有する第1スラリーが得られる([数1]参照)。
[数1]
MnSO+2NaOH → Mn(OH)+2NaSO
 なお、添加する水酸化アルカリのモル量は、理論上硫酸マンガンのモル量に対して2倍必要であるため、反応を確実に進めるために水酸化アルカリのモル量は、硫酸マンガンのモル量に対して当量、すなわち2倍以上であることが好ましい。また、加えられる水酸化アルカリに係るコストを考慮すると、水酸化アルカリのモル量は、硫酸マンガンのモル量に対して10倍以下であることが好ましい。
 なお、数1では水酸化アルカリの一つとして水酸化ナトリウムが取り上げられたが、硫酸マンガンを中和できる水酸化アルカリであれば、特にこれに限定されない。例えば水酸化リチウム、または水酸化カリウムなどが使用可能である。
 また、本実施形態では第1混合工程において硫酸マンガンが使用されたが、他のマンガン塩を用いることも可能である。
 <第2混合工程>
 第2混合工程では、第1混合工程で得られた第1スラリーに水酸化リチウムが添加され、混合されて第2スラリーが得られる。第1混合工程で水酸化マンガンが生成された後、マンガン酸リチウム源として水酸化リチウムが添加される。この添加は、水溶液であっても問題ないが、液量が増加するのを抑制するために固形物で添加することが好ましい。
 ここで、Liの吸着剤として吸着容量が高いマンガン酸リチウムのLi/Mn比は、LiMnの0.5倍以上1.0倍以下であることが知られている。たとえば、Li1.6Mn1.6のLi/Mn比は1.0である。
 第1混合工程で用いられた硫酸マンガンのモル量に対して、上記比率を考慮したモル量の水酸化リチウムが必要である。しかし、リチウムのインターカレーションを確実に進めるために、第2混合工程における水酸化リチウムのモル量は、第1混合工程で用いられた硫酸マンガンのモル量に対して4倍以上であることが好ましい。また、加えられる水酸化リチウムに係るコストを考慮すると、水酸化リチウムのモル量は、硫酸マンガンのモル量に対して20倍以下であることが好ましい。
 なお、第1混合工程での水酸化アルカリが水酸化リチウムの場合、第1混合工程が省略される場合もある。
 <酸化工程>
 酸化工程では、第2混合工程で得られた第2スラリーに、次亜塩素酸ナトリウムが添加され、酸化物が得られる。なお、次亜塩素酸ナトリウムは、結晶等の固体で添加しても、あるいはあらかじめ溶解した水溶液等の形態で添加してもよい。
 第2混合工程で得られた第2スラリーに、次亜塩素酸ナトリウムが添加されることで酸化物であるマンガン酸リチウム、すなわちリチウム吸着剤の前駆体が得られる([数2]参照)。
[数2]
Mn(OH)+LiOH+NaClO → 
0.625Li1.6Mn1.6+1.5HO+NaCl
 酸化工程における水溶液の酸化還元電位は、銀塩化銀電極で300mV以上1000mV以下であることが好ましい。酸化還元電位が300mV未満の場合は、第1混合工程で得られた水酸化マンガンの全てをマンガン酸リチウムとすることができない場合がある。また、酸化還元電位が1000mVよりも大きい場合は、酸化工程の設備をこのような大きな酸化還元電位に耐えうるものにする必要があるからである。
 酸化工程における水溶液の酸化還元電位が、銀塩化銀電極で300mV以上1000mV以下であることにより、高電位にするための特別な設備にする必要がなく、設備のコストが抑えられるとともに、第2混合工程で得られた水酸化マンガンの全てをマンガン酸リチウムとすることができる。
 なお、酸化工程における次亜塩素酸ナトリウムの添加は、少量ずつ徐々に行うのが好ましい。次亜塩素酸ナトリウムは、マンガンを酸化する際に消費される。次亜塩素酸ナトリウムが添加されると一次的に酸化還元電位は上昇するが、マンガンを酸化する際に消費されると、これに伴い酸化還元電位は下降する。次亜塩素酸ナトリウムは、酸化還元電位が300mV以上になるように添加される。
 また、酸化工程は50℃以上80℃以下、更には60℃以上80℃以下で行われることが好ましい。酸化工程では、リチウムがインターカレーションすることでマンガン酸リチウムが生成される。酸化工程の温度が50℃未満である場合は、インターカレーションの反応速度が十分に上がらない。また酸化工程の温度が80℃よりも高い場合、酸化工程の設備を80℃よりも高い温度に耐えうるものにする必要があるからである。
 酸化工程が50℃以上80℃以下で行われることにより、高温に対応した特別な設備にする必要がなく、設備のコストが抑えられるとともに、リチウムがインターカレーションすることでマンガン酸リチウムが生成される酸化工程で、この反応速度を効果的に上げることができる。
 また、第2スラリーは50℃以上80℃以下の温度に保持された状態で、酸化剤である次亜塩素酸ナトリウムが添加されることが好ましい。この状態で混合液が撹拌されることで、液中のマンガンが酸化される。
 なお、酸化工程では、圧力は大気圧で問題なく、加圧する必要はない。さらに、酸化物であるマンガン酸リチウムを確実に生成させるために、上記の温度で3時間以上は撹拌混合が続けられることが好ましい。
 酸化工程で生成された酸化物、すなわちマンガン酸リチウムであるリチウム吸着剤の前駆体は、固液分離され粉末状になる。
 なお、本発明では酸化工程において、酸化剤として次亜塩素酸ナトリウムが使用されたが、他の酸化剤を用いることも可能である。具体的には、塩素のオキソ酸(次亜塩素酸、亜塩素酸など)とその塩(ナトリウム塩、カリウム塩など)、塩素等が使用可能である。
 <吸着剤の調製>
 上記の工程によって、優れたリチウムの吸着剤の前駆体であるマンガン酸リチウムが得られる。このようにして得られたマンガン酸リチウムは、塩酸などの酸と接触させることでリチウムと水素とが交換反応させられ、HMnの形態となる(例えばX=1.6、Y=1.6、またはX=1.33、Y=1.67)ことでリチウムを選択的に吸着することが可能となる。
(第2実施形態)
 図2には、本発明の第2実施形態に係るリチウム吸着剤の前駆体の製造方法を示す。図2に示すように、第1実施形態との相違点は、酸化工程の後に焼成工程が含まれる点である。第2実施形態の説明では、第1実施形態と異なる点についてのみ説明する。すなわち説明が省略されている部分は、第1実施形態と同じである。
 <焼成工程>
 焼成工程では、酸化工程で得られた酸化物が焼成され、リチウム吸着剤の前駆体が得られる。
 酸化工程で得られた酸化物は、マンガン酸リチウムである。このマンガン酸リチウムの粉末が分離され、乾燥されて乾粉となったあと、電気炉等の焼成炉を用いて2時間以上24時間以下の時間をかけて焼成される。このとき炉内の雰囲気は、酸素が存在する環境であればよく、例えば大気を炉内に供給することで実現できる。このときの温度は結晶化を促進するために500℃以上700℃以下の温度範囲が好ましい。
(第3実施形態)
 図3には、本発明の第3実施形態に係るリチウム吸着剤の前駆体の製造方法を示す。図3に示すように、第1実施形態との相違点は、第1混合工程において混合される物質が異なる点、酸化工程における酸化剤が異なる点、酸化工程の後に焼成工程が含まれる点である。第3実施形態の説明では、第1実施形態と異なる点についてのみ説明する。すなわち説明が省略されている部分は、第1実施形態と同じである。
 <第1混合工程>
 第1混合工程では、硝酸マンガンと、水酸化リチウムと、が混合され、水酸化マンガンを含有する第1スラリーが得られる。なお、この第1スラリーは、硝酸マンガンや水酸化リチウムのそれぞれを溶解した水溶液を混合したり、あるいは試薬等の固体を混合し、これを水などの溶媒で溶解して得られた溶液あるいは水溶液を用いたりして得られる。なお、以下は水溶液を混合した場合で述べる。
 硝酸マンガンを含む水溶液、および水酸化リチウムを含む水溶液の調製方法は特に限定されるものではない。例えば、Mn(NO・6HO、またはLiOH・H0のような水和物を水に溶かすことによって調製される。
 両水溶液の濃度は、特に限定されるものではない。ただし、水溶液にするために溶解度以下にする必要がある。水への硝酸マンガンの溶解度は、20℃で約140g/100g-水であり、同じく水酸化リチウムの溶解度は20℃では約12g/100g-水である。これらの溶解度を考慮して水溶液の濃度が決定される。
 硝酸マンガンを含む水溶液と、水酸化リチウムを含む水溶液と、混合されることで水酸化マンガンを含有する第1スラリーが得られる([数3]参照)。
[数3]
Mn(NO+2LiOH → Mn(OH)+2LiNO
 なお、添加する水酸化リチウムのモル量は理論上、硝酸マンガンのモル量に対して2倍必要であるため、反応を確実に進めるために水酸化リチウムのモル量は、硝酸マンガンのモル量に対して当量、すなわち2倍以上で、10倍以下であることが好ましい。
 <第2混合工程>
 第2混合工程では、第1混合工程で得られた第1スラリーに水酸化リチウムが添加され、混合されて第2スラリーが得られる。第1混合工程で水酸化マンガンが生成された後、マンガン酸リチウム源として水酸化リチウムが添加される。この添加は、水溶液であっても問題ないが、液量が増加するのを抑制するために固形物で添加することが好ましい。
 ここで、Liの吸着剤として吸着容量が高いマンガン酸リチウムのLi/Mn比は、LiMnの0.5倍以上1.0倍以下であることが知られている。たとえばLi1.33Mn1.67のLi/Mnは0.8である。
 第1工程で用いられた硝酸マンガンのモル量に対して、上記比率を考慮したモル量の水酸化リチウムが必要である。しかし、リチウムのインターカレーションを確実に進めるために、第2混合工程における水酸化リチウムのモル量は、第1工程で用いられた硝酸マンガンのモル量に対して10倍以上、50倍以下であることが好ましい。
 <酸化工程>
 酸化工程では、第2混合工程で得られた第2スラリーに、ペルオキソ二硫酸アンモニウムおよび/またはペルオキソ二硫酸ナトリウムが添加され、酸化物が得られる。なお、前記のペルオキソ二硫酸アンモニウムおよび/またはペルオキソ二硫酸ナトリウムは結晶等の固体で添加しても、あるいは予め溶解した水溶液などの形態で添加してもよい。
 酸化工程で加えられるペルオキソ二硫酸アンモニウム(過硫酸アンモニウム)やペルオキソ二硫酸ナトリウム(過硫酸ナトリウム)の合計のモル量は、第1混合工程で用いられた硝酸マンガンのモル量の0.5倍以上、5倍以下であることが好ましい。ペルオキソ二硫酸アンモニウムの量がこのように規定されることにより、第1混合工程で用いられた硝酸マンガンの全てがマンガン酸リチウムとすることができるからである。
 また、第2スラリーは70℃以上、好ましくは80℃以上の温度に保持された状態で、酸化剤であるペルオキソ二硫酸アンモニウムおよび/またはペルオキソ二硫酸ナトリウムが添加される。この状態で混合液が撹拌されることで、液中のマンガンが酸化される。
 第2スラリーの温度を上記の温度とするのは、酸化工程ではリチウムがインターカレーションすることでマンガン酸リチウムが生成されるところ、この反応速度を上げるには、温度を上げることが効果的であるからである。このときの圧力は大気圧で問題なく、加圧して100℃を超える温度にする必要はない。さらに、酸化物であるマンガン酸リチウムを確実に生成させるために、上記の温度で5時間以上は撹拌混合が続けられることが好ましい。
 <焼成工程>
 焼成工程では、酸化工程で得られた酸化物が焼成され、リチウム吸着剤の前駆体が得られる。
 酸化工程で得られた酸化物は、マンガン酸リチウムである。このマンガン酸リチウムの粉末が分離され、乾燥されて乾粉となったあと、電気炉等の焼成炉を用いて2時間以上24時間以下の時間をかけて酸素雰囲気で焼成される。このときの温度は結晶化を促進するために500℃以上700℃以下の温度範囲が好ましい。
 以下、本発明に係るリチウム吸着剤の前駆体の製造方法の具体的な実施例について説明するが、本発明は、これらの実施例に限定されるものではない。
(実施例1)
 <リチウム吸着剤の前駆体の調製>
 実施例1は、第1実施形態での実施例である。容量200Lの耐熱性ダイライトタンクに約100Lの水を張り込み、粉末状の硫酸マンガン1水和物19.4kg(硫酸マンガン:115mol)を投入してインペラで攪拌混合して溶解させた後、重量濃度が48%の苛性ソーダ水溶液20kg(水酸化ナトリウム:240mol)を投入して水酸化マンガンのスラリーを作製した。水酸化マンガンのスラリーに粉末状の水酸化リチウム1水和物19.3kg(水酸化リチウム:460mol)を投入し、攪拌混合しながらテフロン(登録商標)ヒーターで加熱を行い、スラリーの温度を50℃以上とした。
 その後、酸化還元電位が銀塩化銀電極で300mV以上になるよう、重量濃度が12%の次亜塩素酸水溶液を適宜滴下した。最終的に安定して300mV以上の酸化還元電位を示すようになるには66Lの次亜塩素酸水溶液を要した。この状態で5時間攪拌混合を継続した。攪拌混合中は温度が50℃以下にならないよう、テフロン(登録商標)ヒーターで加熱を継続した。攪拌混合中の酸化還元電位はガラス電極を用いたORPメーターを用いて確認した。
 この操作によって黒色を呈する粉末が得られた。攪拌終了後、ブフナ漏斗で吸引濾過して粉末を固液分離して回収した。回収した粉末は純水で洗浄し、付着液を取り除いた後、大気中で24時間程度、80℃で乾燥を行った。乾燥後に得られたマンガン酸リチウムの粉末(リチウム吸着剤の前駆体)の重量は12kgであった。
 得られたリチウム吸着剤の前駆体のXRD(X-ray diffraction)で分析した結果を図4に示す。図4において、矢印で示した4箇所のピークがあるという結果より、Li1.6Mn1.6が得られていることがわかる。また、リチウム吸着剤の前駆体のSEM画像を図5に示す。図5により、リチウム吸着剤の前駆体の状態を把握することができる。
<リチウム吸着剤の調製(酸処理)>
 得られたリチウム吸着剤の前駆体のうち10gを分取し、200mLのビーカーに入れ、塩酸(和光純薬工業製)を純水で希釈して1.0mol/Lに調製した塩酸水溶液150mLを加え、1時間程度混合撹拌した。混合撹拌後、スラリーをブフナ漏斗で吸引濾過して固液分離を行い、粉末を回収した。
 回収した粉末は、再度200mLのビーカーに入れ、1.0mol/Lに調製した塩酸水溶液150mLを加え、1時間程度混合撹拌した。混合撹拌後、スラリーをブフナ漏斗で吸引濾過して固液分離を行い、粉末を回収した。回収した粉末は約500mLの純水で洗浄して、付着液を除去した後、乾燥機を用いて60℃で24時間程度、大気中で乾燥させた。この操作により7gの吸着剤を得た。固液分離で回収したろ液をICP-AESで分析することで前駆体からのリチウムの脱離率を求めた。リチウムの脱離率は約78%であった。
<リチウムの吸着>
 塩化リチウム、塩化ナトリウム、塩化マグネシウム及び塩化カリウム(すべて和光純薬工業製)を純水に溶解させてリチウム濃度5g/L、ナトリウム濃度13g/L、マグネシウム濃度91g/L、カリウム濃度23g/Lの水溶液を調製し、調製した水溶液約70mLと酸処理で調製した吸着剤7gを200mLビーカーに入れて混合撹拌した。リチウムの吸着とともに、水溶液のpHが低下するため、混合撹拌中は8mol/Lの水酸化ナトリウム水溶液(和光純薬工業製)を添加してpH7に調製した。
 攪拌混合後はスラリーをブフナ漏斗で吸引濾過することで固液分離を行い、ろ液中のリチウム濃度をICP-AESで分析することでリチウムの吸着量を求めた。攪拌混合時間とリチウムの吸着量の関係を図6に示す。図6の横軸は時間、縦軸はリチウムの吸着量である。
 一般的な強酸性陽イオン交換樹脂の交換容量が2mmol/gであることから、吸着能力の高いリチウム吸着剤が製造できたことが確認できた。
(実施例2)
 <リチウム吸着剤の前駆体の調製>
 実施例2は、第2実施形態での実施例である。硫酸マンガン5水和物(和光純薬工業製)241g、水酸化リチウム1水和物84gをそれぞれ純水に溶解して、1Lにメスアップし、硫酸マンガン水溶液(1.0mol/L)と水酸化リチウム水溶液(2.0mol/L)を調製した。調製された水溶液を3Lビーカーに入れ、撹拌混合し、水酸化マンガンのスラリー(第1スラリー)を作製した。水酸化マンガンのスラリーに固形の水酸化リチウム1水和物を420g(10mol)添加し、撹拌混合を継続した(第2スラリー)。
 その後、第2スラリーを50℃まで加温し、有効濃度12%の工業用次亜塩素酸ナトリウム水溶液を添加し、酸化還元電位を銀塩化銀電極で測定して約400mVになるまで滴下した。その後、ウオーターバスを用いて、50~60℃の温度で5時間程、撹拌混合を継続した。得られた粉末(酸化物)は黒みがかった茶色であった。撹拌混合後、真空濾過し、粉末を純水で洗浄し、常温で真空乾燥した。乾燥後の粉末は乳鉢ですり潰した後、酸化雰囲気で600℃にて24時間焼成した。焼成後、約103gのリチウム吸着剤の前駆体、すなわちマンガン酸リチウムの粉末が得られた。
 得られた前駆体をXRD(X-ray diffraction)で分析した結果を図7に示す。図7において、矢印で示した4箇所のピークがあるという結果より、Li1.6Mn1.6が得られていることがわかる。またリチウム吸着剤の前駆体のSEM画像を図8に示す。図8により、リチウム吸着剤の前駆体の状態を把握することができる。
 <リチウム吸着剤の調製(酸処理)>
 得られたリチウム吸着剤の前駆体のうち、約90gを約1400mLの塩酸水溶液(1mol/L)と3Lビーカー内で1時間程度、混合撹拌した。混合撹拌後、スラリーを真空濾過(固液分離)して、ろ液と粉末を回収し、その粉末を、乾燥機を用いて60℃で24時間、大気中で乾燥させた。この操作を2回繰り返してリチウムの吸着剤を得た。操作後に回収した吸着剤の乾燥重量は約80gであった。固液分離で回収したろ液をICP-AESで分析することでリチウム吸着剤の前駆体からのリチウム脱離率を求めた。リチウムの脱離率は約80%であった。
 <リチウムの吸着>
 塩化リチウム、塩化ナトリウム、塩化マグネシウム及び塩化カリウム(すべて和光純薬工業製)を純水に溶解させてリチウム濃度5g/L、ナトリウム濃度12g/L、マグネシウム濃度74g/L、カリウム濃度18g/Lの水溶液を調製した。調製した水溶液800mLと、上記「リチウム吸着剤の調製」で調製した吸着剤80gを1Lビーカーに入れて混合撹拌した。リチウムの吸着とともに、水溶液のpHが低下するため、混合撹拌中は8mol/Lの水酸化ナトリウム水溶液(和光純薬工業製)を添加してpH7に調整した。
 攪拌混合後はスラリーをブフナ漏斗で吸引濾過することで固液分離を行い、ろ液中のリチウム濃度をICP-AESで分析することでリチウムの吸着量を求めた。攪拌混合時間とリチウムの吸着量の関係を図9に示す。図9の横軸は時間、縦軸はリチウムの吸着量である。
 一般的な強酸性陽イオン交換樹脂の交換容量が2mmol/gであることから、吸着能力の高いリチウム吸着剤が製造できたことが確認できた。
(実施例3)
 <リチウム吸着剤の前駆体の調製>
 実施例3は、第3実施形態での実施例である。硝酸マンガン6水和物(和光純薬工業製)28.70g、ペルオキソニ硫酸アンモニウム(和光純薬工業製)11.41g、水酸化リチウム1水和物(和光純薬工業製)8.39gをそれぞれビーカーに測りとり、イオン交換水に溶解させた。その後、それぞれの水溶液を100mlにメスアップして、硝酸マンガン水溶液(1.0mol/L)、水酸化リチウム水溶液(1.0mol/L)、ペルオキソニ硫酸アンモニウム水溶液(0.5mol/L)に調製した。
 パイレックス(登録商標)製の500ml三角フラスコに硝酸マンガン水溶液(1.0mol/L)を全て入れ、スターラーで撹拌しながら、水酸化リチウム水溶液(1.0mol/L)を滴下して全て入れた(第1混合工程)。さらに混合撹拌しながら固形の41.96gの水酸化リチウム1水和物を加えてスラリー状にした(第2混合工程)。
 次にホットスターラーでスラリーを85℃に加温し、ペルオキソニ硫酸アンモニウム水溶液(0.5mol/L)を滴下し、全て入れた(酸化工程)。その後、10時間、85℃の温度を保持しながら撹拌混合を続けた。得られた粉末は茶色であった。
 撹拌終了後、ブフナ漏斗で吸引濾過して固液分離した。回収した粉末はイオン交換水で洗浄し、付着液を取り除いた後、12時間程度、120℃で真空乾燥を行った。乾燥後の粉末は乳鉢ですり潰した後、酸化雰囲気で600℃にて24時間焼成した(焼成工程)。
 得られた前駆体をXRD(X-ray diffraction)で分析した結果を図10に示す。図10の結果より、Li1.371.65が得られていることがわかる。また、前駆体のSEM画像を図11に示す。図11により、得られたリチウム吸着剤の前駆体の状態を把握することができる。
 <リチウム吸着剤の調製(酸処理)>
 次に1.0gの前駆体を三角フラスコに測りとり、1.0mol/Lの塩酸(和光純薬工業製)500mLを加え、24時間、160rpmで振とうした。その後、吸引濾過を行い、ろ液と粉末とを個別に回収した。回収した粉末はイオン交換水で洗浄した後、真空乾燥機で5時間乾燥させた。この操作を2回行い、リチウムの吸着剤を得た。ろ液はAAS(原子吸光法)で分析することで前駆体からのリチウム脱離率を求めた。Liの脱離率は100%であった。
 <リチウムの吸着>
 塩化アンモニウムと25%アンモニア水溶液を用いてpHが8.5~8.6になるように調製した緩衝溶液と塩化リチウム0.1356gを混合し、200mLにメスアップすることで塩化リチウム水溶液(16mol/L)を調製した。この塩化リチウム水溶液10mLと酸処理した後の吸着剤0.01gを50mLの三角フラスコに入れ、浸透時間を5分、10分、15分、30分、1時間、2時間、7時間、24時間として160rpmで振とうさせた。振とう後は濾過を行い、ろ液中のリチウム濃度をAASで測定することでLiの吸着量を求めた。振とう時間に対するリチウムの吸着量を図12に示す。図12の横軸は時間、縦軸はリチウムの吸着量である。
 一般的な強酸性陽イオン交換樹脂の交換容量が2mmol/gであることから、吸着能力の高いリチウム吸着剤が製造できたことが確認できた。

Claims (9)

  1.  次の工程(1)~(3):
    (1)第1混合工程:マンガン塩と、水酸化アルカリと、を混合し水酸化マンガンを含有する第1スラリーを得る工程、
    (2)第2混合工程:前記第1スラリーに水酸化リチウムを添加し、混合して第2スラリーを得る工程、
    (3)酸化工程:前記第2スラリーに酸化剤を添加して酸化物を得る工程、
    を包含する、
    ことを特徴とするリチウム吸着剤の前駆体の製造方法。
  2.  前記酸化工程の後に、前記酸化物を焼成する焼成工程が含まれる、
    ことを特徴とする請求項1に記載のリチウム吸着剤の前駆体の製造方法。
  3.  前記酸化剤が次亜塩素酸ナトリウムである、
    ことを特徴とする請求項1または2に記載のリチウム吸着剤の前駆体の製造方法。
  4.  前記マンガン塩が、硫酸マンガンである、
    ことを特徴とする請求項1から3のいずれかに記載のリチウム吸着剤の前駆体の製造方法。
  5.  前記マンガン塩が、硝酸マンガンであり、
    前記水酸化アルカリが、水酸化リチウムであり、
    前記酸化剤がペルオキソ二硫酸アンモニウムおよび/またはペルオキソ二硫酸ナトリウムである、
    ことを特徴とする請求項1または2に記載のリチウム吸着剤の前駆体の製造方法。
  6.  前記第1混合工程における前記水酸化アルカリのモル量は、前記硫酸マンガンのモル量の2倍以上10倍以下である、
    ことを特徴とする請求項1から5のいずれかに記載のリチウム吸着剤の前駆体の製造方法。
  7.  前記第2混合工程における前記水酸化リチウムのモル量は、前記硫酸マンガンのモル量の4倍以上20倍以下である、
    ことを特徴とする請求項1から6のいずれかに記載のリチウム吸着剤の前駆体の製造方法。
  8.  前記酸化工程における水溶液の酸化還元電位が、銀塩化銀電極で300mV以上1000mV以下である、
    ことを特徴とする請求項1から7のいずれかに記載のリチウム吸着剤の前駆体の製造方法。
  9.  前記酸化工程が、50℃以上80℃以下で行われる、
    ことを特徴とする請求項1から8のいずれかに記載のリチウム吸着剤の前駆体の製造方法。
PCT/JP2019/016479 2018-04-20 2019-04-17 リチウム吸着剤の前駆体の製造方法 WO2019203274A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2019256018A AU2019256018B2 (en) 2018-04-20 2019-04-17 Method for producing lithium adsorbent precursor
CA3087389A CA3087389A1 (en) 2018-04-20 2019-04-17 Method for producing precursor of lithium adsorbent
JP2020514416A JP7280573B2 (ja) 2018-04-20 2019-04-17 リチウム吸着剤の前駆体の製造方法
CN201980008356.0A CN111601656A (zh) 2018-04-20 2019-04-17 锂吸附剂的前驱体的制造方法
EP19787705.3A EP3705181A4 (en) 2018-04-20 2019-04-17 METHOD FOR MANUFACTURING A LITHIUM ADSORPTION PRECURSOR
US16/975,036 US20200391177A1 (en) 2018-04-20 2019-04-17 Method for producing precursor of lithium adsorbent

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018-081217 2018-04-20
JP2018081217 2018-04-20
JP2018215587 2018-11-16
JP2018-215587 2018-11-16
JP2018215586 2018-11-16
JP2018-215586 2018-11-16

Publications (1)

Publication Number Publication Date
WO2019203274A1 true WO2019203274A1 (ja) 2019-10-24

Family

ID=68238942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016479 WO2019203274A1 (ja) 2018-04-20 2019-04-17 リチウム吸着剤の前駆体の製造方法

Country Status (8)

Country Link
US (1) US20200391177A1 (ja)
EP (1) EP3705181A4 (ja)
JP (1) JP7280573B2 (ja)
CN (1) CN111601656A (ja)
AU (1) AU2019256018B2 (ja)
CA (1) CA3087389A1 (ja)
CL (1) CL2020002115A1 (ja)
WO (1) WO2019203274A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023276697A1 (ja) 2021-06-30 2023-01-05 住友金属鉱山株式会社 リチウム吸着用造粒体の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57338B2 (ja) 1973-07-04 1982-01-06
JPH01254249A (ja) * 1988-04-04 1989-10-11 Agency Of Ind Science & Technol マンガン酸化物系リチウム吸着剤からリチウムの脱着方法
JPH0631159A (ja) * 1992-07-21 1994-02-08 Agency Of Ind Science & Technol リチウム吸着剤及びその製造方法
JP3388406B2 (ja) 1999-09-22 2003-03-24 独立行政法人産業技術総合研究所 リチウム吸着剤の製造方法
JP2005518938A (ja) * 2002-03-06 2005-06-30 エンバイロスクラブ テクノロジーズ コーポレイション マンガン酸化物の再生、前処理および沈殿
JP3937865B2 (ja) 2002-02-22 2007-06-27 財団法人北九州産業学術推進機構 リチウム吸着剤の製造方法
JP2010058008A (ja) * 2008-09-01 2010-03-18 Toda Kogyo Corp 吸着剤

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11180717A (ja) * 1997-12-22 1999-07-06 Ishihara Sangyo Kaisha Ltd マンガン酸リチウム及びその製造方法ならびにそれを用いてなるリチウム電池
CN1169723C (zh) * 1999-12-24 2004-10-06 石原产业株式会社 生产锰酸锂的方法和使用锰酸锂的锂电池
JP3822437B2 (ja) * 1999-12-24 2006-09-20 石原産業株式会社 マンガン酸リチウムの製造方法及び該マンガン酸リチウムを用いてなるリチウム電池
KR100939516B1 (ko) * 2007-11-29 2010-02-03 한국지질자원연구원 리튬 망간 산화물 및 그의 제조방법, 및 상기 산화물을이용하는 리튬 흡착제
JP5700338B2 (ja) * 2009-11-10 2015-04-15 公益財団法人北九州産業学術推進機構 リチウム吸着剤の製造方法及びリチウム濃縮方法、リチウム濃縮装置
CN103272554B (zh) * 2013-06-03 2015-08-19 长沙矿冶研究院有限责任公司 锂锰氧化物型锂吸附剂的制备方法
CN104941569A (zh) * 2015-06-17 2015-09-30 浙江工业大学 一种制备锰系锂离子筛吸附剂的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57338B2 (ja) 1973-07-04 1982-01-06
JPH01254249A (ja) * 1988-04-04 1989-10-11 Agency Of Ind Science & Technol マンガン酸化物系リチウム吸着剤からリチウムの脱着方法
JPH0631159A (ja) * 1992-07-21 1994-02-08 Agency Of Ind Science & Technol リチウム吸着剤及びその製造方法
JP3388406B2 (ja) 1999-09-22 2003-03-24 独立行政法人産業技術総合研究所 リチウム吸着剤の製造方法
JP3937865B2 (ja) 2002-02-22 2007-06-27 財団法人北九州産業学術推進機構 リチウム吸着剤の製造方法
JP2005518938A (ja) * 2002-03-06 2005-06-30 エンバイロスクラブ テクノロジーズ コーポレイション マンガン酸化物の再生、前処理および沈殿
JP2010058008A (ja) * 2008-09-01 2010-03-18 Toda Kogyo Corp 吸着剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3705181A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023276697A1 (ja) 2021-06-30 2023-01-05 住友金属鉱山株式会社 リチウム吸着用造粒体の製造方法

Also Published As

Publication number Publication date
CN111601656A (zh) 2020-08-28
AU2019256018A1 (en) 2020-06-18
JPWO2019203274A1 (ja) 2021-07-15
EP3705181A4 (en) 2021-06-02
AU2019256018B2 (en) 2024-03-14
EP3705181A1 (en) 2020-09-09
US20200391177A1 (en) 2020-12-17
CA3087389A1 (en) 2019-10-24
CL2020002115A1 (es) 2021-01-29
JP7280573B2 (ja) 2023-05-24

Similar Documents

Publication Publication Date Title
CN102333725B (zh) 正磷酸铁的制备
JP7415948B2 (ja) リチウム含有溶液の製造方法
TW202105823A (zh) 自廢鋰離子電池中回收鋰和其他金屬之方法
JP6097306B2 (ja) マンガン含有金属リン酸塩及びその製造方法
TW202107764A (zh) 自廢鋰離子電池中回收鋰之方法
TW202007004A (zh) 回收廢鋰離子電池之方法
EP2695225A1 (en) Glass-coated cathode powders for rechargeable batteries
JP3263725B2 (ja) 混合アルカリ水熱法による層状岩塩型リチウムマンガン酸化物の製造方法
TW202111131A (zh) 自廢鋰離子電池中回收鋰和其他金屬之方法
Qu et al. Salt-thermal methods for recycling and regenerating spent lithium-ion batteries: a review
TW201944647A (zh) 利用熱回收鋰以及過渡金屬的方法
CA3175416A1 (en) Lithium extraction process
JP2017538652A (ja) リチウム金属リン酸塩の製造方法
TW202134182A (zh) 純化鋰鹽的方法
Fukuda Lithium extraction from brine with ion exchange resin and ferric phosphate
JP2022542637A (ja) 酸化条件における再リチウム化
JP2022518486A (ja) 鉛含有廃棄物のリサイクル
WO2019203274A1 (ja) リチウム吸着剤の前駆体の製造方法
US20160194214A1 (en) Method for producing titanium oxide using porous titanium compound impregnated with solution
Pulido et al. Hydrothermal control of the lithium-rich Li 2 MnO 3 phase in lithium manganese oxide nanocomposites and their application as precursors for lithium adsorbents
JP2016108161A (ja) ニッケルリチウム金属複合酸化物の製造方法及び該製造方法により得られるニッケルリチウム金属複合酸化物とこれからなる正極活物質
CN108063295B (zh) 从火法回收锂电池产生的炉渣中提取锂的方法
Shin et al. Recovery of lithium from LiAlO2 in waste box sagger through sulfation to produce Li2SO4 and sequential wet conversion to Li3PO4, LiCl and Li2CO3
US20240010514A1 (en) Nanomaterial Composites Useful for the Extraction and Recovery of Lithium from Aqueous Solutions
WO2011069221A1 (en) Physical-chemical process for the recovery of metals contained steel industry residues

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19787705

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020514416

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019787705

Country of ref document: EP

Effective date: 20200602

ENP Entry into the national phase

Ref document number: 2019256018

Country of ref document: AU

Date of ref document: 20190417

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3087389

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 19787705

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE