WO2019203095A1 - トリジオキシビフェニルシクロトリホスファゼンの製造方法 - Google Patents

トリジオキシビフェニルシクロトリホスファゼンの製造方法 Download PDF

Info

Publication number
WO2019203095A1
WO2019203095A1 PCT/JP2019/015671 JP2019015671W WO2019203095A1 WO 2019203095 A1 WO2019203095 A1 WO 2019203095A1 JP 2019015671 W JP2019015671 W JP 2019015671W WO 2019203095 A1 WO2019203095 A1 WO 2019203095A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonate
hydroxide
sodium
potassium
reaction step
Prior art date
Application number
PCT/JP2019/015671
Other languages
English (en)
French (fr)
Inventor
匡紀 村上
Original Assignee
大塚化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大塚化学株式会社 filed Critical 大塚化学株式会社
Publication of WO2019203095A1 publication Critical patent/WO2019203095A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/64Preparation of O-metal compounds with O-metal group bound to a carbon atom belonging to a six-membered aromatic ring
    • C07C37/66Preparation of O-metal compounds with O-metal group bound to a carbon atom belonging to a six-membered aromatic ring by conversion of hydroxy groups to O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/12Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
    • C07C39/15Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings with all hydroxy groups on non-condensed rings, e.g. phenylphenol

Definitions

  • the present invention relates to a method for producing tridioxybiphenylcyclotriphosphazene.
  • Tridioxybiphenylcyclotriphosphazene represented by the following formula (1) is used in photographic materials, polyester flame retardants, and the like (for example, Patent Documents 1 and 2).
  • Tridioxybiphenylcyclotriphosphazene is produced, for example, by reacting hexachlorocyclotriphosphazene, 2,2'-biphenol and sodium carbonate in tetrahydrofuran (Patent Document 3).
  • An object of the present invention is to provide a production method capable of obtaining tridioxybiphenylcyclotriphosphazene in a high yield.
  • the present inventor has made a first reaction step of reacting 2,2′-biphenol and a base, and 2,2′-biphenolate obtained in the first reaction step and a hexahalogenated cyclohexane.
  • the present invention provides a method for producing tridioxybiphenylcyclotriphosphazene shown in the following items 1 to 9.
  • Term 1 Formula (1)
  • a process for producing tridioxybiphenylcyclotriphosphazene represented by: A first reaction step of obtaining 2,2′-biphenolate by reacting 2,2′-biphenol with a base; 2,2′-biphenolate obtained in the first reaction step and the formula (2):
  • the base is metallic lithium, metallic sodium, metallic potassium, lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate, rubidium carbonate, lithium bicarbonate, sodium bicarbonate, potassium bicarbonate, cesium bicarbonate, rubidium bicarbonate, Lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, lithium hydride, sodium hydride, potassium hydride, trisodium phosphate, tripotassium phosphate, sodium methoxide, potassium methoxide, Sodium ethoxide, potassium ethoxide, magnesium hydroxide, calcium hydroxide, calcium hydride, magnesium hydride, strontium hydride, trimethylamine, triethylamine, diisopropylethylamine, dimethylaniline, di Item 2.
  • the item according to Item 1 which is at least one selected from the group consisting of ethylaniline, diisopropylaniline, pyridine, picoline, 4-dimethylaminopyridine, 4-diethylaminopyridine, 4-diisopropylaminopyridine, and diazabicycloundecene.
  • Production method. Item 5 The production method according to any one of Items 1 to 4, wherein X is Cl in the formula (2).
  • Item 6 The production method according to any one of Items 1 to 5, wherein in the first reaction step, 0.8 to 4 mol of a base is used per 1 mol of 2,2′-biphenol.
  • Item 7 The production method according to any one of Items 1 to 6, wherein 3 to 4.5 mol of 2,2′-biphenolate is used in the second reaction step with respect to 1 mol of hexahalogenated cyclotriphosphazene.
  • the first reaction step is chlorobenzene, o-dichlorobenzene, m-dichlorobenzene, p-dichlorobenzene, dichloromethane, trichloromethane (chloroform), tetrachloromethane, 1,1-dichloroethane, 1,2-dichloroethane, sym-tetrachloroethane, trichloroethane, n-pentane, n-hexane, toluene, o-xylene, m-xylene, p-xylene, mixed xylene, diethyl ether, tetrahydrofuran, 1,4-diox
  • the second reaction step includes chlorobenzene, o-dichlorobenzene, m-dichlorobenzene, p-dichlorobenzene, dichloromethane, trichloromethane (chloroform), tetrachloromethane, 1,1-dichloroethane, 1,2-dichloroethane, sym-tetrachloroethane, trichloroethane, n-pentane, n-hexane, toluene, o-xylene, m-xylene, p-xylene, mixed xylene, diethyl ether, tetrahydrofuran, 1,4-dioxane, anisole, cyclopentyl methyl ether, 1 , 2-dimethoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, triethylene glycol dimethyl ether, triethylene glycol dimethyl
  • tridioxybiphenylcyclotriphosphazene can be obtained in high yield. Therefore, the production method of tridioxybiphenylcyclotriphosphazene of the present invention can be said to be a very advantageous method industrially.
  • the production method of the present invention is represented by a first reaction step of reacting 2,2′-biphenol and a base, 2,2′-biphenolate obtained in the first reaction step, and the formula (2). And a second reaction step of reacting with a hexahalogenated cyclophosphazene.
  • the first reaction step is a step of reacting 2,2′-biphenol and a base to obtain 2,2′-biphenolate.
  • base examples of the base used in the first reaction step include alkali metals, alkali metal salts, alkaline earth metal salts, amine compounds, and the like, and alkali metal salts are preferable.
  • alkali metal examples include metallic lithium, metallic sodium, metallic potassium, metallic rubidium, metallic cesium and the like. Of these, sodium metal is preferred.
  • the alkali metal carbonates, hydrogen carbonates, hydroxides, hydrides, alkoxides, phosphates, and the like can be used.
  • the alkali metal carbonate include lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate, and rubidium carbonate.
  • the alkali metal hydrogen carbonate include lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, cesium hydrogen carbonate, and rubidium hydrogen carbonate.
  • the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide and the like.
  • the alkali metal hydride include lithium hydride, sodium hydride, potassium hydride and the like.
  • alkali metal alkoxide examples include sodium methoxide, sodium ethoxide, potassium methoxide, potassium ethoxide and the like.
  • alkali metal phosphate examples include trisodium phosphate and tripotassium phosphate.
  • alkali metal salts alkali metal carbonates, alkali metal hydrogen carbonates, and alkali metal hydroxides are preferable, and alkali metal carbonates and alkali metal hydroxides are more preferable.
  • sodium hydroxide is particularly preferred.
  • the form of the alkali metal salt is not particularly limited, and examples thereof include solid forms such as pellets and powders, and forms such as aqueous solutions.
  • the concentration is preferably 10 to 100% by mass, more preferably 30 to 90% by mass.
  • Alkaline earth metal hydroxide, alkaline earth metal hydride, etc. can be used as the alkaline earth metal salt.
  • alkaline earth metal hydroxide examples include magnesium hydroxide and calcium hydroxide.
  • alkaline earth metal hydride examples include magnesium hydride, calcium hydride, strontium hydride and the like.
  • An aliphatic amine compound, an aromatic amine compound, or the like can be used as the amine compound.
  • the aliphatic amine compound include trimethylamine, triethylamine, diisopropylethylamine, dimethylaniline, diethylaniline, diisopropylaniline and the like.
  • the aromatic amine compound include pyridine, picoline, 4-dimethylaminopyridine, 4-diethylaminopyridine, 4-diisopropylaminopyridine, diazabicycloundecene and the like.
  • triethylamine, pyridine, picoline, 4-dimethylaminopyridine, and diazabicycloundecene are preferable, triethylamine and pyridine are more preferable, and pyridine is more preferable.
  • the amount of the base used in the present invention is preferably 0.8 to 4 mol, more preferably 1 to 3 mol, and further preferably 1.2 to 2.4 mol with respect to 1 mol of 2,2'-biphenol.
  • the amount of base used varies depending on the valence of the base used. For example, when the valence of the base is monovalent, the amount of the base used is preferably 1.8 to 4 mol, more preferably 1.9 to 3 mol, relative to 1 mol of 2,2′-biphenol. 4 mol is more preferable.
  • the amount of base used is preferably 0.8 to 2 mol, more preferably 0.9 to 1.5 mol, and more preferably 1 to 1. mol per mol of 2,2′-biphenol. 2 mol is more preferable.
  • the 2,2′-biphenolate obtained in the first reaction step varies depending on the base used.
  • 2,2′-biphenolate include dilithium 2,2′-biphenolate, disodium 2,2′-biphenolate, dipotassium 2,2′-biphenolate, dicesium 2,2′-biphenolate, magnesium 2, Examples thereof include 2′-biphenolate, calcium 2,2′-biphenolate, bistrimethylammonium 2,2′-biphenolate, and bistriethylammonium 2,2′-biphenolate.
  • the 1st reaction process can be performed in a solvent if needed.
  • the solvent used in the first reaction step (hereinafter referred to as the first solvent) is not particularly limited as long as it is an organic solvent.
  • the first solvent halogen solvents, aliphatic hydrocarbon solvents, aromatic hydrocarbon solvents, carbonate solvents, ether solvents, ketone solvents, nitrile solvents, and the like can be used.
  • chlorobenzene chlorobenzene, o-dichlorobenzene, m-dichlorobenzene, p-dichlorobenzene, dichloromethane, trichloromethane (chloroform), tetrachloromethane, 1,1-dichloroethane, 1,2-dichloroethane, trichloroethane, sym- Examples include tetrachloroethane.
  • the aliphatic hydrocarbon solvent include n-pentane and n-hexane.
  • aromatic hydrocarbon solvent examples include benzene, toluene, o-xylene, m-xylene, p-xylene, mixed xylene and the like.
  • carbonate solvents include dimethyl carbonate, ethyl carbonate, diethyl carbonate, propylene carbonate, and the like.
  • ether solvents include diethyl ether, tetrahydrofuran, 1,4-dioxane, anisole, cyclopentyl methyl ether, 1,2-dimethoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, and the like. .
  • ketone solvents include acetone, methyl ethyl ketone, and methyl isobutyl ketone.
  • the nitrile solvent include acetonitrile, propionitrile, butyronitrile, benzonitrile and the like. Among these, halogen solvents are preferable, chlorobenzene, o-dichlorobenzene, and m-dichlorobenzene are more preferable, and chlorobenzene is particularly preferable.
  • a 1st solvent may be used individually by 1 type, and 2 or more types of solvents may be mixed and used as a mixed solvent.
  • the amount of the first solvent used is preferably 0.5 to 20 parts by mass and more preferably 1 to 10 parts by mass with respect to 1 part by mass of 2,2′-biphenol.
  • the reaction temperature in the first reaction step is preferably 10 to 200 ° C, more preferably 30 to 180 ° C, and further preferably 60 to 150 ° C. In the present invention, the temperature is most preferably 110 to 140 ° C. from the viewpoint of production efficiency.
  • the reaction time is not particularly limited and is preferably 0.5 to 24 hours, more preferably 1 to 12 hours.
  • the inside of the reaction vessel is preferably replaced with an inert gas.
  • an inert gas for example, helium, neon, argon, nitrogen etc. are mentioned. Among these, helium, argon and nitrogen are preferable.
  • the first reaction step is preferably performed while removing water generated by the reaction.
  • the second reaction step is a reaction of 2,2′-biphenolate obtained in the first reaction step with a hexahalogenated cyclotriphosphazene represented by the formula (2). It is a step of obtaining the represented tridioxybiphenylcyclotriphosphazene.
  • the hexahydrohalogenated cyclotriphosphazene represented by the formula (2) may be added to the reaction solution after the first reaction step is completed, or both may be reacted. Then, 2,2′-biphenolate is isolated by extraction and the like, and the isolated 2,2′-biphenolate is added to the hexahalogenated cyclotriphosphazene represented by the formula (2). You may make both react. From the viewpoint of production efficiency, it is preferable to add the hexahalogenated cyclotriphosphazene represented by the formula (2) to the reaction solution after completion of the first reaction step.
  • X in formula (2) examples include F (fluorine atom), Cl (chlorine atom), Br (bromine atom), and the like. All X may be the same, or a part of them may be different. Among these, hexachlorocyclotriphosphazene in which all Xs are Cl (chlorine atoms) is preferred as the hexahalogenated cyclotriphosphazene because of its availability.
  • It can be used by purchasing a commercial product. Or it can manufacture by the well-known manufacturing method, ie, the manufacturing method based on reaction of phosphorus pentachloride and ammonium chloride.
  • the amount of 2,2'-biphenolate used is preferably 3 to 4.5 mol, more preferably 3.1 to 4 mol, and even more preferably 3.2 to 3.5 mol with respect to 1 mol of hexahalogenated cyclotriphosphazene.
  • the form of the hexahalogenated cyclotriphosphazene to be used is not particularly limited.
  • Hexahalogenated cyclotriphosphazene may be used as it is in a solid state, or it may be used in the form of a solution in which hexahalogenated cyclotriphosphazene is dissolved in an organic solvent or the like. From the viewpoint of reaction control, it is preferable to use a hexahalogenated cyclotriphosphazene dissolved in an organic solvent or the like.
  • the organic solvent for dissolving the hexahalogenated cyclotriphosphazene is not particularly limited.
  • a halogen solvent examples include chlorobenzene, o-dichlorobenzene, m-dichlorobenzene, dichloromethane, 1,2-dichloroethane, 1,1-dichloroethane, sym-tetrachloroethane and the like.
  • the aliphatic hydrocarbon solvent examples include n-pentane and n-hexane.
  • the aromatic hydrocarbon solvent include benzene, toluene, o-xylene, m-xylene and the like.
  • carbonate solvents examples include dimethyl carbonate, diethyl carbonate, and propylene carbonate.
  • halogen solvents are preferable, chlorobenzene, o-dichlorobenzene, and m-dichlorobenzene are more preferable, and chlorobenzene is particularly preferable.
  • a solvent may be used individually by 1 type, and 2 or more types of solvents may be mixed and used as a mixed solvent.
  • the concentration of the hexahalogenated cyclotriphosphazene in the solution is not particularly limited, and is preferably 10 to 50% by mass, more preferably 20 to 40% by mass.
  • dropping is preferred. Since impurities may be generated when the dropping speed is too high, the dropping speed is preferably such that bumping does not occur.
  • the second reaction step can be performed in a solvent, if necessary.
  • the solvent used in the second reaction step (hereinafter referred to as the second solvent) is not particularly limited as long as it is an organic solvent.
  • a halogen solvent an aliphatic hydrocarbon solvent, an aromatic hydrocarbon solvent, a carbonate solvent, an ether solvent, a ketone solvent, a nitrile solvent, or the like can be used.
  • chlorobenzene chlorobenzene, o-dichlorobenzene, m-dichlorobenzene, p-dichlorobenzene, dichloromethane, trichloromethane (chloroform), tetrachloromethane, 1,1-dichloroethane, 1,2-dichloroethane, trichloroethane, sym- Examples include tetrachloroethane.
  • the aliphatic hydrocarbon solvent include n-pentane and n-hexane.
  • aromatic hydrocarbon solvent examples include benzene, toluene, o-xylene, m-xylene, p-xylene, mixed xylene and the like.
  • carbonate solvents include dimethyl carbonate, ethyl carbonate, diethyl carbonate, propylene carbonate, and the like.
  • ether solvents include diethyl ether, tetrahydrofuran, 1,4-dioxane, anisole, cyclopentyl methyl ether, 1,2-dimethoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, and the like. .
  • ketone solvents include acetone, methyl ethyl ketone, and methyl isobutyl ketone.
  • the nitrile solvent include acetonitrile, propionitrile, butyronitrile, benzonitrile and the like.
  • halogen solvents are preferable, chlorobenzene, o-dichlorobenzene, and m-dichlorobenzene are more preferable, and chlorobenzene is particularly preferable.
  • a 2nd solvent may be used individually by 1 type, and 2 or more types of solvents may be mixed and used as a mixed solvent.
  • the amount of the second solvent used is preferably 1 to 20 parts by mass and more preferably 1.5 to 15 parts by mass with respect to 1 part by mass of the hexahalogenated cyclotriphosphazene.
  • the reaction temperature in the second reaction step is preferably 10 to 200 ° C, more preferably 30 to 180 ° C, and further preferably 60 to 150 ° C. In the present invention, the temperature is most preferably 110 to 140 ° C. from the viewpoint of production efficiency.
  • the reaction time is not particularly limited, and is preferably 1 to 48 hours, more preferably 5 to 24 hours.
  • the inside of the reaction vessel is preferably replaced with an inert gas.
  • an inert gas for example, helium, neon, argon, nitrogen etc. are mentioned. Among these, helium, argon and nitrogen are preferable.
  • the precipitated crystals are filtered off to obtain tridioxybiphenylcyclotriphosphazene represented by the formula (1) in a high yield of 80% or more, preferably 90% or more. Can do.
  • the biphenylcyclophosphazene mixture represented by the formula (5) may be used in the form of a mixture according to the purpose, or the tridioxybiphenylcyclotriphosphazene represented by the formula (1) is taken out by means such as distillation. May be used.
  • X is the same as defined above, and n represents an integer of 3 to 15. ]
  • m represents an integer of 3 or more and 15 or less.
  • the halogenated cyclophosphazene mixture represented by the formula (4) can be produced by a known method. For example, it can be produced according to the methods described in JP-A-57-87427, JP-B-58-19604, JP-B-61-1363, JP-B-62-20124, and the like.
  • the present invention can provide a production method capable of obtaining tridioxybiphenylcyclotriphosphazene in high yield.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)

Abstract

トリジオキシビフェニルシクロトリホスファゼンを高収率で得ることができる製造方法を提供すること。 トリジオキシビフェニルシクロトリホスファゼンの製造方法であって、2,2'-ビフェノールと塩基とを反応させることで、2,2'-ビフェノラートを得る第一反応工程と、前記第一反応工程で得られた2,2'-ビフェノラートとヘキサハロゲン化シクロトリホスファゼンとを反応させることで、トリジオキシビフェニルシクロトリホスファゼンを得る第二反応工程とを含む、製造方法。

Description

トリジオキシビフェニルシクロトリホスファゼンの製造方法
 本発明は、トリジオキシビフェニルシクロトリホスファゼンの製造方法に関する。
 下記式(1)で表されるトリジオキシビフェニルシクロトリホスファゼンは、写真感光材料、ポリエステルの難燃剤等に使用されている(例えば、特許文献1及び2)。
Figure JPOXMLDOC01-appb-C000003
 トリジオキシビフェニルシクロトリホスファゼンは、例えば、テトラヒドロフラン中でヘキサクロロシクロトリホスファゼンと2,2’-ビフェノールと炭酸ナトリウムとを反応させることで製造されている(特許文献3)。
 しかしながら、この方法では、目的物の収率が70%程度にとどまり、工業的に満足できる収率であるとは言えないことから、高収率でトリジオキシビフェニルシクロトリホスファゼンを製造することができる方法が求められている。
日本国特開2002-169243号公報 米国特許3865783号公報 米国特許3356769号公報
 本発明は、トリジオキシビフェニルシクロトリホスファゼンを高収率で得ることができる製造方法を提供することを課題とする。
 本発明者は、種々検討した結果、2,2’-ビフェノールと塩基とを反応させる第一反応工程、及び、前記第一反応工程で得られた2,2’-ビフェノラートとヘキサハロゲン化シクロトリホスファゼンとを反応させる第二反応工程の2工程でトリジオキシビフェニルシクロトリホスファゼンを製造することにより、目的物が高収率で得られることを見出し、本発明を完成させるに至った。
 すなわち、本発明は、下記項1~9に示すトリジオキシビフェニルシクロトリホスファゼンの製造方法を提供する。
項1 式(1):
Figure JPOXMLDOC01-appb-C000004
で表されるトリジオキシビフェニルシクロトリホスファゼンの製造方法であって、
2,2’-ビフェノールと塩基とを反応させることで、2,2’-ビフェノラートを得る第一反応工程と、
前記第一反応工程で得られた2,2’-ビフェノラートと式(2):
Figure JPOXMLDOC01-appb-C000005
[式中、Xはハロゲン原子を示す。]
で表されるヘキサハロゲン化シクロトリホスファゼンとを反応させることで、前記トリジオキシビフェニルシクロトリホスファゼンを得る第二反応工程とを含む、製造方法。
項2 前記塩基が、アルカリ金属、アルカリ金属塩、アルカリ土類金属塩、及びアミン化合物からなる群から選ばれた少なくとも一種である、項1に記載の製造方法。
項3 前記塩基が、アルカリ金属炭酸塩、アルカリ金属水酸化物、及びアルカリ金属炭酸水素塩からなる群から選ばれた少なくとも一種である、項1に記載の製造方法。
項4 前記塩基が、金属リチウム、金属ナトリウム、金属カリウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸ルビジウム、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素セシウム、炭酸水素ルビジウム、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム、水素化リチウム、水素化ナトリウム、水素化カリウム、リン酸三ナトリウム、リン酸三カリウム、ナトリウムメトキシド、カリウムメトキシド、ナトリウムエトキシド、カリウムエトキシド、水酸化マグネシウム、水酸化カルシウム、水素化カルシウム、水素化マグネシウム、水素化ストロンチウム、トリメチルアミン、トリエチルアミン、ジイソプロピルエチルアミン、ジメチルアニリン、ジエチルアニリン、ジイソプロピルアニリン、ピリジン、ピコリン、4-ジメチルアミノピリジン、4-ジエチルアミノピリジン、4-ジイソプロピルアミノピリジン、及びジアザビシクロウンデセンからなる群から選ばれた少なくとも一種である、項1に記載の製造方法。
項5 前記式(2)においてXがClである、項1~4のいずれか一項に記載の製造方法。
項6 前記第一反応工程において、2,2’-ビフェノール1molに対して、塩基を0.8~4mol用いる、項1~5のいずれか一項に記載の製造方法。
項7 前記第二反応工程において、ヘキサハロゲン化シクロトリホスファゼン1molに対して、2,2’-ビフェノラートを3~4.5mol用いる、項1~6のいずれか一項に記載の製造方法。
項8 前記第一反応工程が、クロロベンゼン、o-ジクロロベンゼン、m-ジクロロベンゼン、p-ジクロロベンゼン、ジクロロメタン、トリクロロメタン(クロロホルム)、テトラクロロメタン、1,1-ジクロロエタン、1,2-ジクロロエタン、sym-テトラクロロエタン、トリクロロエタン、n-ペンタン、n-ヘキサン、トルエン、o-キシレン、m-キシレン、p-キシレン、混合キシレン、ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン、アニソール、シクロペンチルメチルエーテル、1,2-ジメトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、アセトン、メチルエチルケトン、メチルイソブチルケトン、アセトニトリル、プロピオニトリル、ブチロニトリル、ベンゾニトリル、ジエチルカーボネート、エチルカーボネート、及びプロピレンカーボネートから選ばれた少なくとも一種の溶媒中で行われる、項1~7のいずれか一項に記載の製造方法。
項9 前記第二反応工程が、クロロベンゼン、o-ジクロロベンゼン、m-ジクロロベンゼン、p-ジクロロベンゼン、ジクロロメタン、トリクロロメタン(クロロホルム)、テトラクロロメタン、1,1-ジクロロエタン、1,2-ジクロロエタン、sym-テトラクロロエタン、トリクロロエタン、n-ペンタン、n-ヘキサン、トルエン、o-キシレン、m-キシレン、p-キシレン、混合キシレン、ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン、アニソール、シクロペンチルメチルエーテル、1,2-ジメトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、アセトン、メチルエチルケトン、メチルイソブチルケトン、アセトニトリル、プロピオニトリル、ブチロニトリル、ベンゾニトリル、ジエチルカーボネート、エチルカーボネート、及びプロピレンカーボネートから選ばれた少なくとも一種の溶媒中で行われる、項1~8のいずれか一項に記載の製造方法。
 本発明の製造方法によれば、トリジオキシビフェニルシクロトリホスファゼンを高収率で得ることができる。よって、本発明のトリジオキシビフェニルシクロトリホスファゼンの製造方法は、工業的に極めて有利な方法といえる。
 以下、本発明について詳細に説明する。
 本発明の製造方法は、2,2’-ビフェノールと塩基とを反応させる第一反応工程と、前記第一反応工程で得られた2,2’-ビフェノラートと式(2)で表されるヘキサハロゲン化シクロホスファゼンとを反応させる第二反応工程とを含むことを特徴とする。
第一反応工程
 第一反応工程は、2,2’-ビフェノールと塩基とを反応させ、2,2’-ビフェノラートを得る工程である。
(塩基)
 第一反応工程で使用する塩基としては、アルカリ金属、アルカリ金属塩、アルカリ土類金属塩、アミン化合物等が挙げられ、アルカリ金属塩が好ましい。
 アルカリ金属としては、金属リチウム、金属ナトリウム、金属カリウム、金属ルビジウム、金属セシウム等が挙げられる。これらの中で、金属ナトリウムが好ましい。
 アルカリ金属塩として、前記アルカリ金属の炭酸塩、炭酸水素塩、水酸化物、水素化物、アルコキシド、リン酸塩等を使用することができる。アルカリ金属炭酸塩としては、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸ルビジウム等が挙げられる。アルカリ金属炭酸水素塩としては、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素セシウム、炭酸水素ルビジウム等が挙げられる。アルカリ金属水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム等が挙げられる。アルカリ金属水素化物としては、水素化リチウム、水素化ナトリウム、水素化カリウム等が挙げられる。アルカリ金属アルコキシドとしては、ナトリウムメトキシド、ナトリウムエトキシド、カリウムメトキシド、カリウムエトキシド等が挙げられる。アルカリ金属リン酸塩としては、リン酸三ナトリウム、リン酸三カリウム等が挙げられる。これらのアルカリ金属塩の中で、アルカリ金属炭酸塩、アルカリ金属炭酸水素塩、及びアルカリ金属水酸化物が好ましく、アルカリ金属炭酸塩及びアルカリ金属水酸化物がより好ましい。アルカリ金属水酸化物の中では水酸化ナトリウムが特に好ましい。塩基としてアルカリ金属塩を使用する場合、アルカリ金属塩の形態は、特に限定されるものではなく、ペレット、粉末等の固形状、水溶液等の形態が挙げられる。アルカリ金属塩を水溶液の形態で使用する場合、濃度は10~100質量%が好ましく、30~90質量%がより好ましい。
 アルカリ土類金属塩として、アルカリ土類金属水酸化物、アルカリ土類金属水素化物等を使用することができる。アルカリ土類金属水酸化物としては、水酸化マグネシウム、水酸化カルシウム等が挙げられる。アルカリ土類金属水素化物としては、水素化マグネシウム、水素化カルシウム、水素化ストロンチウム等が挙げられる。
 アミン化合物として、脂肪族アミン化合物、芳香族アミン化合物等を使用することができる。脂肪族アミン化合物としては、トリメチルアミン、トリエチルアミン、ジイソプロピルエチルアミン、ジメチルアニリン、ジエチルアニリン、ジイソプロピルアニリン等が挙げられる。芳香族アミン化合物としては、ピリジン、ピコリン、4-ジメチルアミノピリジン、4-ジエチルアミノピリジン、4-ジイソプロピルアミノピリジン、ジアザビシクロウンデセン等が挙げられる。これらの中でも、トリエチルアミン、ピリジン、ピコリン、4-ジメチルアミノピリジン、及びジアザビシクロウンデセンが好ましく、トリエチルアミン及びピリジンがより好ましく、ピリジンがさらに好ましい。
 本発明で使用する塩基の量は、2,2’-ビフェノール1molに対して、0.8~4molが好ましく、1~3molがより好ましく、1.2~2.4molがさらに好ましい。使用量を上記範囲にすることにより、次の工程での副反応を抑制することができる。さらに詳しくは、塩基の使用量は、使用する塩基の価数によって変わる。例えば、塩基の価数が一価の場合、塩基の使用量は、2,2’-ビフェノール1molに対して、1.8~4molが好ましく、1.9~3molがより好ましく、2~2.4molがさらに好ましい。塩基の価数が二価の場合、塩基の使用量は、2,2’-ビフェノール1molに対して、0.8~2molが好ましく、0.9~1.5molがより好ましく、1~1.2molがさらに好ましい。
 第一反応工程で得られる、2,2’-ビフェノラートは、使用する塩基によって変わる。2,2’-ビフェノラートとして、例えば、ジリチウム2,2’-ビフェノラート、ジソジウム2,2’-ビフェノラート、ジポタシウム2,2’-ビフェノラート、ジセシウム2,2’-ビフェノラート、マグネシウム2,2’-ビフェノラート、カルシウム2,2’-ビフェノラート、ビストリメチルアンモニウム2,2’-ビフェノラート、ビストリエチルアンモニウム2,2’-ビフェノラート等が挙げられる。
(製造条件)
 第一反応工程は、必要により、溶媒中で行うことができる。第一反応工程で使用される溶媒(以下、第一溶媒という)は、有機溶媒であれば、特に限定されるものではない。第一溶媒として、ハロゲン系溶媒、脂肪族炭化水素系溶媒、芳香族炭化水素系溶媒、カーボネート系溶媒、エーテル系溶媒、ケトン系溶媒、ニトリル系溶媒等を使用することができる。ハロゲン系溶媒として、クロロベンゼン、o-ジクロロベンゼン、m-ジクロロベンゼン、p-ジクロロベンゼン、ジクロロメタン、トリクロロメタン(クロロホルム)、テトラクロロメタン、1,1-ジクロロエタン、1,2-ジクロロエタン、トリクロロエタン、sym-テトラクロロエタン等が挙げられる。脂肪族炭化水素系溶媒として、n-ペンタン、n-ヘキサン等が挙げられる。芳香族炭化水素系溶媒として、ベンゼン、トルエン、o-キシレン、m-キシレン、p-キシレン、混合キシレン等が挙げられる。カーボネート系溶媒として、ジメチルカーボネート、エチルカーボネート、ジエチルカーボネート、プロピレンカーボネート等が挙げられる。エーテル系溶媒として、ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン、アニソール、シクロペンチルメチルエーテル、1,2-ジメトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル等が挙げられる。ケトン系溶媒として、アセトン、メチルエチルケトン、メチルイソブチルケトン等が挙げられる。ニトリル系溶媒として、アセトニトリル、プロピオニトリル、ブチロニトリル、ベンゾニトリル等が挙げられる。これらの中でも、ハロゲン系溶媒が好ましく、クロロベンゼン、o-ジクロロベンゼン、及びm-ジクロロベンゼンがより好ましく、特にクロロベンゼンが好ましい。第一溶媒は一種単独で使用してもよいし、二種以上の溶媒を混合して混合溶媒として使用してもよい。第一反応工程において溶媒を使用する場合、第一溶媒の使用量は、2,2’-ビフェノール1質量部に対して0.5~20質量部が好ましく、1~10質量部がより好ましい。
 第一反応工程の反応温度は、10~200℃が好ましく、30~180℃がより好ましく、60~150℃がさらに好ましい。本発明では、製造効率の観点から110~140℃とするのが最も好ましい。
 第一反応工程において、反応時間は、特に限定されるものではなく、0.5~24時間が好ましく、1~12時間がより好ましい。
 第一反応工程において、反応容器内を不活性ガスで置換するのが好ましい。使用する不活性ガスとしては、特に制限はなく、例えば、ヘリウム、ネオン、アルゴン、窒素等が挙げられる。これらの中でもヘリウム、アルゴン及び窒素が好ましい。
 第一反応工程は、反応により生成する水を除去しながら行うのが好ましい。
第二反応工程
 第二反応工程は、第一反応工程で得られた2,2’-ビフェノラートと式(2)で表されるヘキサハロゲン化シクロトリホスファゼンとを反応させ、式(1)で表されるトリジオキシビフェニルシクロトリホスファゼンを得る工程である。
 本工程は、前記第一反応工程が終了した後の反応液に式(2)で表されるヘキサハロゲン化シクロトリホスファゼンを添加することにより両者を反応させてもよいし、前記第一反応工程が終了した後、2,2’-ビフェノラートを抽出等により単離し、式(2)で表されるヘキサハロゲン化シクロトリホスファゼンに、単離した2,2’-ビフェノラートを添加することにより両者を反応させてもよい。製造効率の観点から、前記第一反応工程が終了した後の反応液に式(2)で表されるヘキサハロゲン化シクロトリホスファゼンを添加するのが好ましい。
(ヘキサハロゲン化シクロトリホスファゼン)
 式(2)のXとして、F(フッ素原子)、Cl(塩素原子)、Br(臭素原子)等を挙げることができる。Xは全て同じでもよいし、一部が異なっていてもよい。その中でも入手の容易性等より、ヘキサハロゲン化シクロトリホスファゼンとしては、全てのXがCl(塩素原子)であるヘキサクロロシクロトリホスファゼンが好ましい。
 上記ヘキサクロロシクロトリホスファゼンは、式(3):
Figure JPOXMLDOC01-appb-C000006
で表される化合物であり、市販品を購入して使用することができる。あるいは、公知の製造方法、すなわち五塩化リンと塩化アンモニウムとの反応に基づく製造方法により製造することができる。
 2,2’-ビフェノラートの使用量は、ヘキサハロゲン化シクロトリホスファゼン1molに対し、3~4.5molが好ましく、3.1~4molがより好ましく、3.2~3.5molがさらに好ましい。2,2’-ビフェノラートを上記範囲で使用することにより、ホスファゼン環同士が反応して高分子化するおそれがなく、反応を完結させて高収率で目的物を得ることができる。
 使用するヘキサハロゲン化シクロトリホスファゼンの形態は、特に限定されるものではない。ヘキサハロゲン化シクロトリホスファゼンをそのまま固体の状態で使用してもよく、あるいはヘキサハロゲン化シクロトリホスファゼンを有機溶媒等に溶解した溶液の状態で使用することもできる。反応制御の観点から、ヘキサハロゲン化シクロトリホスファゼンを有機溶媒等に溶解したものを使用するのが好ましい。ヘキサハロゲン化シクロトリホスファゼンを溶液の状態で使用する場合、ヘキサハロゲン化シクロトリホスファゼンを溶解するための有機溶媒は、特に限定されるものではない。有機溶媒として、ハロゲン系溶媒、脂肪族炭化水素系溶媒、芳香族炭化水素系溶媒、カーボネート系溶媒等を使用することができる。ハロゲン系溶媒として、クロロベンゼン、o-ジクロロベンゼン、m-ジクロロベンゼン、ジクロロメタン、1,2-ジクロロエタン、1,1-ジクロロエタン、sym-テトラクロロエタン等が挙げられる。脂肪族炭化水素系溶媒として、n-ペンタン、n-ヘキサン等が挙げられる。芳香族炭化水素系溶媒として、ベンゼン、トルエン、o-キシレン、m-キシレン等が挙げられる。カーボネート系溶媒として、ジメチルカーボネート、ジエチルカーボネート、プロピレンカーボネート等が挙げられる。これらの中でも、ハロゲン系溶媒が好ましく、クロロベンゼン、o-ジクロロベンゼン、及びm-ジクロロベンゼンがより好ましく、特にクロロベンゼンが好ましい。溶媒は一種単独で使用してもよいし、二種以上の溶媒を混合して混合溶媒として使用してもよい。溶液中のヘキサハロゲン化シクロトリホスファゼンの濃度も特に限定されるものではなく、10~50質量%が好ましく、20~40質量%がより好ましい。ヘキサハロゲン化シクロトリホスファゼンの添加方法としては、滴下が好ましい。滴下速度が速すぎると不純物が生じる可能性があることから、滴下速度は突沸が生じない程度が好ましい。
(製造条件)
 第二反応工程は、必要により、溶媒中で行うことができる。第二反応工程で使用される溶媒(以下、第二溶媒という)は、有機溶媒であれば、特に限定されるものではない。第二溶媒として、ハロゲン系溶媒、脂肪族炭化水素系溶媒、芳香族炭化水素系溶媒、カーボネート系溶媒、エーテル系溶媒、ケトン系溶媒、ニトリル系溶媒等を使用することができる。ハロゲン系溶媒として、クロロベンゼン、o-ジクロロベンゼン、m-ジクロロベンゼン、p-ジクロロベンゼン、ジクロロメタン、トリクロロメタン(クロロホルム)、テトラクロロメタン、1,1-ジクロロエタン、1,2-ジクロロエタン、トリクロロエタン、sym-テトラクロロエタン等が挙げられる。脂肪族炭化水素系溶媒として、n-ペンタン、n-ヘキサン等が挙げられる。芳香族炭化水素系溶媒として、ベンゼン、トルエン、o-キシレン、m-キシレン、p-キシレン、混合キシレン等が挙げられる。カーボネート系溶媒として、ジメチルカーボネート、エチルカーボネート、ジエチルカーボネート、プロピレンカーボネート等が挙げられる。エーテル系溶媒として、ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン、アニソール、シクロペンチルメチルエーテル、1,2-ジメトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル等が挙げられる。ケトン系溶媒として、アセトン、メチルエチルケトン、メチルイソブチルケトン等が挙げられる。ニトリル系溶媒として、アセトニトリル、プロピオニトリル、ブチロニトリル、ベンゾニトリル等が挙げられる。これらの中でも、ハロゲン系溶媒が好ましく、クロロベンゼン、o-ジクロロベンゼン、及びm-ジクロロベンゼンがより好ましく、特にクロロベンゼンが好ましい。第二溶媒は一種単独で使用してもよいし、二種以上の溶媒を混合して混合溶媒として使用してもよい。第二反応工程において溶媒を使用する場合、第二溶媒の使用量は、ヘキサハロゲン化シクロトリホスファゼン1質量部に対して1~20質量部が好ましく、1.5~15質量部がより好ましい。
 第二反応工程の反応温度は、10~200℃が好ましく、30~180℃がより好ましく、60~150℃がさらに好ましい。本発明では、製造効率の観点から110~140℃とするのが最も好ましい。
 第二反応工程において、反応時間は、特に限定されるものではなく、1~48時間が好ましく、5~24時間がより好ましい。
 第二反応工程において、反応容器内を不活性ガスで置換するのが好ましい。使用する不活性ガスとしては、特に制限はなく、例えば、ヘリウム、ネオン、アルゴン、窒素等が挙げられる。これらの中でもヘリウム、アルゴン及び窒素が好ましい。
 第二反応工程が終了した後、析出した結晶をろ別することで、式(1)で表されるトリジオキシビフェニルシクロトリホスファゼンを80%以上、好ましくは90%以上の高収率で得ることができる。
 上記第二反応工程において、式(4)で表されるハロゲン化シクロホスファゼンの混合物と2,2’-ビフェノラートとを反応させることで、式(1)で表されるトリジオキシビフェニルシクロトリホスファゼンを含む式(5)で表されるビフェニルシクロホスファゼン混合物を得ることができる。
 式(5)で表されるビフェニルシクロホスファゼン混合物は目的に応じて混合物の状態で使用しても良いし、蒸留等の手段により、式(1)で表されるトリジオキシビフェニルシクロトリホスファゼンを取り出して使用しても良い。
Figure JPOXMLDOC01-appb-C000007
[式中、Xは前記と同じであり、nは3以上15以下の整数を示す。]
Figure JPOXMLDOC01-appb-C000008
[式中、mは3以上15以下の整数を示す。]
 式(4)で表されるハロゲン化シクロホスファゼン混合物は、公知の方法により製造することができる。例えば、特開昭57-87427号公報、特公昭58-19604号公報、特公昭61-1363号公報、特公昭62-20124号公報、等に記載の方法に従って製造することができる。
 以下に、実施例によって本発明を具体的に説明するが、本発明はこれによって何ら限定されるものではない。
ヘキサクロロシクロトリホスファゼンの製造
 還流冷却装置を取り付けた1Lフラスコに、モノクロロベンゼン500ml、五塩化リン873.6g及び塩化アンモニウム224.3gを入れ、5時間還流させた。還流終了後、加熱を止め、濾過し、蒸留することで、ヘキサクロロシクロトリホスファゼン483gを得て、以下の実施例で用いた。
実施例:式(1)で表されるトリジオキシビフェニルシクロトリホスファゼンの製造
[第一反応工程]
 ディーンスターク装置を取り付けた5Lのフラスコに、2,2’-ビフェノール(491.09g,2.62mol)及びクロロベンゼン(2.3L)を入れ、窒素雰囲気下で、60℃で加熱撹拌し、2,2’-ビフェノールを溶解した。その後、48wt%水酸化ナトリウム水溶液(446.52g,5.30mol)を加え、水を除きながら135℃で5時間加熱還流し、反応を行い、ジソジウム2,2’-ビフェノラートを製造した。
[第二反応工程]
 第一反応工程で得られた反応液を100℃まで冷却した後、27wt%ヘキサクロロトリホスファゼンのクロロベンゼン溶液(1064.68g,0.83mol)を1時間かけて滴下して加えた。反応液を12時間加熱還流させた後、反応器内に析出した結晶をろ別した。得られた結晶を脱イオン水とメタノールとで洗浄し、乾燥させることで、白色固体のトリジオキシビフェニルシクロトリホスファゼン(564.47g,収率:99.1%) が得られた。
 本発明は、トリジオキシビフェニルシクロトリホスファゼンを高収率で得ることができる製造方法を提供することができる。

Claims (5)

  1. 式(1):
    Figure JPOXMLDOC01-appb-C000001
    で表されるトリジオキシビフェニルシクロトリホスファゼンの製造方法であって、
    2,2’-ビフェノールと塩基とを反応させることで、2,2’-ビフェノラートを得る第一反応工程と、
    前記第一反応工程で得られた2,2’-ビフェノラートと式(2):
    Figure JPOXMLDOC01-appb-C000002
    [式中、Xはハロゲン原子を示す。]
    で表されるヘキサハロゲン化シクロトリホスファゼンとを反応させることで、前記トリジオキシビフェニルシクロトリホスファゼンを得る第二反応工程とを含む、製造方法。
  2. 前記塩基が、アルカリ金属、アルカリ金属塩、アルカリ土類金属塩、及びアミン化合物からなる群から選ばれた少なくとも一種である、請求項1に記載の製造方法。
  3. 前記塩基が、アルカリ金属炭酸塩、アルカリ金属水酸化物、及びアルカリ金属炭酸水素塩からなる群から選ばれた少なくとも一種である、請求項1に記載の製造方法。
  4. 前記塩基が、金属リチウム、金属ナトリウム、金属カリウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸ルビジウム、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素セシウム、炭酸水素ルビジウム、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム、水素化リチウム、水素化ナトリウム、水素化カリウム、リン酸三ナトリウム、リン酸三カリウム、ナトリウムメトキシド、カリウムメトキシド、ナトリウムエトキシド、カリウムエトキシド、水酸化マグネシウム、水酸化カルシウム、水素化カルシウム、水素化マグネシウム、水素化ストロンチウム、トリメチルアミン、トリエチルアミン、ジイソプロピルエチルアミン、ジメチルアニリン、ジエチルアニリン、ジイソプロピルアニリン、ピリジン、ピコリン、4-ジメチルアミノピリジン、4-ジエチルアミノピリジン、4-ジイソプロピルアミノピリジン、及びジアザビシクロウンデセンからなる群から選ばれた少なくとも一種である、請求項1に記載の製造方法。
  5. 前記式(2)のXがClである、請求項1~4のいずれか一項に記載の製造方法。
PCT/JP2019/015671 2018-04-16 2019-04-10 トリジオキシビフェニルシクロトリホスファゼンの製造方法 WO2019203095A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018078277 2018-04-16
JP2018-078277 2018-04-16
JP2019-028068 2019-02-20
JP2019028068 2019-02-20

Publications (1)

Publication Number Publication Date
WO2019203095A1 true WO2019203095A1 (ja) 2019-10-24

Family

ID=68239694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015671 WO2019203095A1 (ja) 2018-04-16 2019-04-10 トリジオキシビフェニルシクロトリホスファゼンの製造方法

Country Status (2)

Country Link
TW (1) TW201945379A (ja)
WO (1) WO2019203095A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111592689A (zh) * 2020-06-04 2020-08-28 郑州大学 一种含磷杂菲和联苯结构的环三磷腈阻燃剂、制备工艺及其应用
WO2021085557A1 (ja) * 2019-10-31 2021-05-06 三菱ケミカル株式会社 フェノール化合物のナトリウム塩の製造方法及びビスホスファイト化合物
CN115636851A (zh) * 2022-09-13 2023-01-24 云南云天化股份有限公司 一种单烷氧基取代的五氟环三磷腈的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3356769A (en) * 1964-07-13 1967-12-05 American Cyanamid Co Phosphonitrilic halide derivatives and adducts thereof
JP2000198793A (ja) * 1999-01-05 2000-07-18 Otsuka Chem Co Ltd ホスホニトリル酸エステルの製造法
JP2006321734A (ja) * 2005-05-18 2006-11-30 Asahi Kasei Chemicals Corp 環状ホスホニトリル酸エステルの精製方法
WO2008000727A1 (de) * 2006-06-26 2008-01-03 Basf Se Verwendung von übergangsmetallcarbenkomplexen, die keine cyclometallierung über nicht-carbene enthalten, in oleds
CN103435654A (zh) * 2013-09-03 2013-12-11 张家港市信谊化工有限公司 一种六苯氧基环三磷腈的制备方法
CN103896985A (zh) * 2013-05-06 2014-07-02 深圳市华力兴工程塑料有限公司 六氯环三磷腈的合成方法与合成装置,以及三联苯基环磷腈的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3356769A (en) * 1964-07-13 1967-12-05 American Cyanamid Co Phosphonitrilic halide derivatives and adducts thereof
JP2000198793A (ja) * 1999-01-05 2000-07-18 Otsuka Chem Co Ltd ホスホニトリル酸エステルの製造法
JP2006321734A (ja) * 2005-05-18 2006-11-30 Asahi Kasei Chemicals Corp 環状ホスホニトリル酸エステルの精製方法
WO2008000727A1 (de) * 2006-06-26 2008-01-03 Basf Se Verwendung von übergangsmetallcarbenkomplexen, die keine cyclometallierung über nicht-carbene enthalten, in oleds
CN103896985A (zh) * 2013-05-06 2014-07-02 深圳市华力兴工程塑料有限公司 六氯环三磷腈的合成方法与合成装置,以及三联苯基环磷腈的制备方法
CN103435654A (zh) * 2013-09-03 2013-12-11 张家港市信谊化工有限公司 一种六苯氧基环三磷腈的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CARRIEDO, G. A. ET AL.: "Preparation of a New Type of Phosphazene High Polymers Containing 2, 2", DIOXYBIPHENYL GROUPS, MACROMOLECULES, vol. 29, no. 16, 1996, pages 5320 - 5325, XP000596755, ISSN: 0024-9297, DOI: 10.1021/ma951830d *
DEGENBECK, H. ET AL.: "Crystallization-Induced Dynamic Resolution of Stereolabile Biaryl Derivatives Involving Supramolecular Interactions", CRYSTAL GROWTH & DESIGN, vol. 12, no. 6, 2012, pages 2719 - 2723, XP055644997, ISSN: 1528-7483 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021085557A1 (ja) * 2019-10-31 2021-05-06 三菱ケミカル株式会社 フェノール化合物のナトリウム塩の製造方法及びビスホスファイト化合物
CN114616221A (zh) * 2019-10-31 2022-06-10 三菱化学株式会社 酚化合物的钠盐的制造方法及双亚磷酸酯化合物
CN111592689A (zh) * 2020-06-04 2020-08-28 郑州大学 一种含磷杂菲和联苯结构的环三磷腈阻燃剂、制备工艺及其应用
CN115636851A (zh) * 2022-09-13 2023-01-24 云南云天化股份有限公司 一种单烷氧基取代的五氟环三磷腈的制备方法
CN115636851B (zh) * 2022-09-13 2024-06-04 云南云天化股份有限公司 一种单烷氧基取代的五氟环三磷腈的制备方法

Also Published As

Publication number Publication date
TW201945379A (zh) 2019-12-01

Similar Documents

Publication Publication Date Title
WO2019203095A1 (ja) トリジオキシビフェニルシクロトリホスファゼンの製造方法
JP2010280586A (ja) イミド酸塩の製造方法
US10040809B2 (en) Method for preparing tris(trialkylsilyl)phosphine
CN102459143A (zh) 取代的2-氟丙烯酸衍生物的制备
JP2010047568A (ja) ジベンズ[c,e][1,2]−オキサホスホリン誘導体の製造方法、アミノジベンズ[c,e][1,2]−オキサホスホリン、及びその使用
TWI508956B (zh) Preparation method of methylene disulfonate compound
CN110229189B (zh) 一种三草酸磷酸盐的制备方法
JP6495041B2 (ja) ジハロリン酸アルカリ金属塩の製造方法およびジフルオロリン酸アルカリ金属塩の製造方法
KR20140024841A (ko) 불소 화합물의 제조 방법
TWI720410B (zh) 鉀鹽之製造方法及鉀鹽
JP4822651B2 (ja) フェノール金属塩の製造方法
EP1364956A1 (en) Solvent systems for the production of bisphosphonates
TWI537282B (zh) Production method of phosphate ester
JP6419979B2 (ja) シアノアルキルフルオロシランの製造方法
JP2000109314A (ja) アルカリ金属シアネート及びシアヌル酸誘導体の製造方法
JP2006298922A (ja) 不飽和の環状オルトエステルの製造方法
JP2006143600A (ja) 塩素原子を含むホスファゼン誘導体の製造方法
JP5342217B2 (ja) 有機リン化合物の製造方法
WO2000049024A1 (fr) Procede de production de phosphorohalidate
JP6616244B2 (ja) 新規なヒドロキシフェニルボロン酸エステルとその製造方法、およびヒドロキシビフェニル化合物の製造法
JPH107691A (ja) O,o−ジメチルホスホロアミドチオエートの製造法
JP4460333B2 (ja) 有機ホスホン酸ジハライドの製造方法
JP2006257004A (ja) ヘテロ環ジイソシアナートの製造方法
JPH10310592A (ja) リン含有ペンタエリスリトール系へテロ化合物の製造方法
JP2004035481A (ja) スピロ環ジホスホネート化合物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19788965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19788965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP