WO2019198831A1 - 促進酸化水処理システム及び方法 - Google Patents

促進酸化水処理システム及び方法 Download PDF

Info

Publication number
WO2019198831A1
WO2019198831A1 PCT/JP2019/016061 JP2019016061W WO2019198831A1 WO 2019198831 A1 WO2019198831 A1 WO 2019198831A1 JP 2019016061 W JP2019016061 W JP 2019016061W WO 2019198831 A1 WO2019198831 A1 WO 2019198831A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen peroxide
ozone
water
reaction tank
treated
Prior art date
Application number
PCT/JP2019/016061
Other languages
English (en)
French (fr)
Inventor
清一 村山
志村 尚彦
可南子 森谷
竜太郎 牧瀬
Original Assignee
株式会社東芝
東芝インフラシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝, 東芝インフラシステムズ株式会社 filed Critical 株式会社東芝
Priority to CN201980008845.6A priority Critical patent/CN111615498A/zh
Priority to CA3096823A priority patent/CA3096823A1/en
Publication of WO2019198831A1 publication Critical patent/WO2019198831A1/ja
Priority to US17/067,078 priority patent/US20210024388A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • C01B13/11Preparation of ozone by electric discharge
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/01Hydrogen peroxide
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • C02F1/685Devices for dosing the additives
    • C02F1/686Devices for dosing liquid additives
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/301Detergents, surfactants
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/78Details relating to ozone treatment devices
    • C02F2201/782Ozone generators
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/78Details relating to ozone treatment devices
    • C02F2201/784Diffusers or nozzles for ozonation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/001Upstream control, i.e. monitoring for predictive control
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/003Downstream control, i.e. outlet monitoring, e.g. to check the treating agents, such as halogens or ozone, leaving the process
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/11Turbidity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/20Total organic carbon [TOC]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/23O3
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/02Odour removal or prevention of malodour
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection

Definitions

  • Embodiments of the present invention relate to an accelerated oxidized water treatment system and method.
  • ozone has been used for oxidative decomposition, sterilization, deodorization, and the like of organic substances in water in fields such as clean water, sewage, industrial wastewater, and pools.
  • oxidation by ozone cannot be made inorganic even if it can be made hydrophilic and low molecular.
  • persistent organic substances such as dioxins and 1,4-dioxane cannot be decomposed.
  • a method using ozone and hydrogen peroxide is known as a method effective in suppressing the formation of bromate ions, which are by-products of ozone treatment such as treatment for clean water.
  • ozone addition rate is changed according to the concentration of the substance to be treated.
  • the risk of producing bromic acid, which is a disinfection byproduct of ozone treatment is high due to the influence of raw water quality or water temperature, the efficiency of reducing the amount of ozone added Operation is required.
  • OH radicals with strong oxidizing power are generated by adding hydrogen peroxide, and the rate of decomposition of musty odorous substances to be treated is increased by accelerated oxidation treatment using them, and at the same time by hydrogen peroxide. Due to the reducing action of bromic acid, the risk of producing bromic acid can be suppressed.
  • the present invention has been made in view of the above-mentioned problems.
  • the present invention maintains high treatment efficiency and does not contain excess ozone and excess ozone.
  • An object of the present invention is to provide an accelerated oxidized water treatment system and method capable of adding hydrogen oxide.
  • the water treatment system of the embodiment is an accelerated oxidation water treatment system that adds ozone and hydrogen peroxide to the water to be treated, and performs accelerated oxidation treatment of the substance to be treated in the water to be treated in an ozone reaction tank.
  • a first hydrogen peroxide supply device for supplying hydrogen peroxide before or during introduction of the treated water into the ozone reaction tank; an ozone generator for generating ozonized gas containing ozone and supplying the ozone reaction tank;
  • a second hydrogen peroxide supply device for supplying hydrogen peroxide into the flow path of the water to be treated in the ozone reaction tank, and a treatment index corresponding to the water to be treated during or after the accelerated oxidation treatment in the ozone reaction tank
  • a control for controlling the second hydrogen peroxide supply device by determining whether hydrogen peroxide can be supplied by the second hydrogen peroxide supply device and setting the supply amount based on the processing index. It includes a location, a.
  • FIG. 1 is an explanatory diagram of a schematic configuration of the accelerated oxidized water treatment system of the first embodiment.
  • FIG. 2 is an explanatory diagram of the accelerated oxidized water treatment system in the case where one ozone reaction tank is provided.
  • FIG. 3 is an explanatory diagram of the accelerated oxidized water treatment system when the water to be treated flows in the vertical direction in the ozone reaction tank.
  • FIG. 4 is a schematic configuration explanatory diagram of the accelerated oxidized water treatment system of the second embodiment.
  • FIG. 5 is an explanatory diagram of a schematic configuration of the accelerated oxidized water treatment system according to the second embodiment, which is a modification of the second embodiment.
  • FIG. 1 is an explanatory diagram of a schematic configuration of the accelerated oxidized water treatment system of the first embodiment.
  • FIG. 2 is an explanatory diagram of the accelerated oxidized water treatment system in the case where one ozone reaction tank is provided.
  • FIG. 3 is an explanatory diagram of the accelerated
  • FIG. 6 is a schematic configuration explanatory diagram of the accelerated oxidized water treatment system of the third embodiment.
  • FIG. 7 is a schematic configuration explanatory diagram of the accelerated oxidized water treatment system of the fourth embodiment.
  • FIG. 8 is a schematic configuration explanatory diagram of the accelerated oxidized water treatment system of the fifth embodiment.
  • FIG. 9 is a schematic configuration explanatory diagram of the accelerated oxidized water treatment system of the sixth embodiment.
  • FIG. 10 is a schematic configuration explanatory diagram of the accelerated oxidized water treatment system of the seventh embodiment.
  • FIG. 1 is a schematic configuration explanatory diagram of an accelerated oxidized water treatment system according to a first embodiment.
  • a supply device 14 a supply device 14.
  • the accelerated oxidized water treatment system 10 includes a first ozone reaction tank 15 that contains the treated water LQ, a second ozone reaction tank 16 that contains the treated water LQ, and the second ozone reaction tank 15 from the first ozone reaction tank 15.
  • dissolved ozone concentration meter 18 that outputs the amount of hydrogen peroxide HP2 to be supplied and calculated based on the measurement result of the dissolved ozone concentration meter 18 corresponding to the dissolved ozone concentration measurement signal Sro
  • a second hydrogen peroxide supply device 19 for additionally supplying water.
  • the accelerated oxidized water treatment system 10 is connected to the first valve 20 for adjusting the supply amount of the ozonized gas introduced into the first ozone reaction tank 15 and the first valve 20, and is connected to the bottom of the first ozone reaction tank 15.
  • a first aeration unit 21 that is arranged to supply bubble-like ozonized gas into the first ozone reaction tank 15, and a second valve 22 that adjusts the supply amount of ozonized gas introduced into the second ozone reaction tank 16.
  • a second aeration unit 23 connected to the second valve 22 and disposed at the bottom of the second ozone reaction tank 16 to supply bubble-like ozonized gas OG into the second ozone reaction tank 16;
  • An outflow passage 24 through which the treated water LQ after the reaction in the ozone reaction tank 16 flows out, and a control device 25 for controlling the entire accelerated oxidized water treatment system 10 are provided.
  • the control device 25 controls the feed water pump 13 to supply the treated water LQ via the inflow channel 12. At this time, the control device 25 controls the ozone generator 11 so that a predetermined ratio of the ozonized gas OG can be supplied with respect to the supply amount of the treated water LQ.
  • the ozone generator 11 is discharged to oxygen or dry air as a raw material gas to generate an ozonized gas OG containing ozone gas. Then, the ozone generator 11 supplies the ozonized gas OG to the first aeration unit 21 disposed in the first ozone reaction tank 15 through the first valve 20. Further, the ozone generator 11 supplies the ozonized gas OG to the second aeration unit 23 disposed in the second ozone reaction tank 16 through the second valve 22.
  • a predetermined amount of bubble-like ozonized gas OG is supplied from the first aeration unit 21 to the treated water LQ in the first ozone reaction tank 15.
  • a predetermined amount of bubble-like ozonized gas OG is supplied from the second aeration unit 23 to the treated water LQ in the second ozone reaction tank 16.
  • control device 25 supplies the hydrogen peroxide HP1 in a predetermined ratio with respect to the amount of the ozonized gas OG supplied to the first ozone reaction tank 15 and the second ozone reaction tank 16. 14 is supplied.
  • the generation of OH radicals is according to formula (1) or (2).
  • oxidation promotion treatment is performed by the generated OH radicals.
  • the dissolved ozone concentration of the to-be-treated water LQ that has passed through the first ozone reaction tank 15 introduced into the introduction flow path 17 becomes a higher value than usual.
  • the control device 25 uses the dissolved ozone concentration meter 18 to introduce an additional amount of hydrogen peroxide (the amount of hydrogen peroxide HP2) to the optimum value, and the first ozone reaction tank 15 introduced into the introduction channel 17.
  • the dissolved ozone concentration of the to-be-treated water LQ that has passed through is measured.
  • the dissolved ozone concentration meter 18 outputs a dissolved ozone concentration measurement signal Sro corresponding to the measured dissolved ozone concentration to the control device 25.
  • control device 25 calculates the amount of hydrogen peroxide corresponding to the deficiency of hydrogen peroxide supplied initially, that is, the deficiency of OH radicals, and the dissolved ozone concentration measured this time corresponding to the dissolved ozone concentration measurement signal Sro. And calculated based on the difference between the normal dissolved ozone concentration.
  • the addition rate [unit is the amount of addition per unit amount of ozonized gas, hydrogen peroxide supplied by the first hydrogen peroxide supply device 14 and hydrogen peroxide supplied by the second hydrogen peroxide supply device 19]
  • the setting of mg / L] will be described.
  • the addition rate of hydrogen peroxide (H 2 O 2 ) by the first hydrogen peroxide supply device 14 is Ad_PH_1 (hereinafter referred to as the first hydrogen peroxide addition rate Ad_PH_1), and the excess rate by the second hydrogen peroxide supply device 19 is increased.
  • the addition rate of hydrogen oxide is Ad_PH_2 (hereinafter referred to as the second hydrogen peroxide addition rate Ad_PH_2).
  • the addition rate of ozone O 3 to the first ozone reaction tank 15 and the second ozone reaction tank 16 is Ad_O 3 (hereinafter referred to as ozone addition rate Ad_O 3 ), and the first ozone reaction tank 15
  • Ad_O 3 ozone addition rate
  • Ad_O 3 ozone addition rate
  • the control device 25 determines the ozone addition rate Ad_O 3 and the first hydrogen peroxide addition rate Ad_PH_1 according to the quality of the treated water LQ flowing into the first ozone reaction tank 15. At this time, the ratio of the first hydrogen peroxide addition rate Ad_PH_1 to the ozone addition rate Ad_O 3 is K1, and the ratio K1 is constant. The value of the ratio K1 is preferably determined in the range of 1-5.
  • the first hydrogen peroxide addition rate Ad_PH_1 is determined by the following equation based on the ozone addition rate Ad_O 3 and the ratio K1.
  • Ad_PH_1 K1 ⁇ Ad_O 3
  • examples of a method for determining the ozone addition rate Ad_O 3 and the ratio K1 include a method in which an appropriate addition rate is determined by performing a test in which the addition rate is changed in advance in a beaker test or the like.
  • the ozone addition rate Ad_O 3 and the ratio K1 are changed in conjunction with the inflowing water quality. Effectively, since the ratio K1 is considered to be constant and there is no problem, the ozone addition rate Ad_O 3 is changed in conjunction with the influent water quality, and the first hydrogen peroxide addition rate Ad_PH_1 is determined.
  • the ozone addition rate Ad_O3 and the first hydrogen peroxide addition rate Ad_PH_1 are determined according to the water quality of the treated water LQ that has flowed in, but depending on how the actual reaction proceeds in the first ozone reaction tank 15. The remaining hydrogen peroxide may be insufficient with respect to the ozone added in the second ozone reaction tank 16.
  • the dissolved ozone concentration measured by the dissolved ozone concentration meter 18 is set to DO 3, and when the dissolved ozone concentration DO 3 exceeds the threshold, it is determined that the remaining hydrogen peroxide that can be used for the treatment in the second ozone reaction tank 16 is small.
  • the additional hydrogen peroxide is supplied from the second hydrogen peroxide supply device 19 with the 2 hydrogen peroxide addition rate Ad_PH_2 being a positive value.
  • the second hydrogen peroxide addition rate Ad_PH_2 calculates the dissolved ozone concentration DO 3 as a function of a parameter. For example, the second hydrogen peroxide addition rate Ad_PH_2 is increased as a function using a proportional function. As this function, it is possible to use a function that increases stepwise.
  • control device 25 supplies the hydrogen peroxide HP2 corresponding to the calculated hydrogen peroxide amount by controlling the second hydrogen peroxide supply device 19.
  • the second ozone reaction tank 16 As a result, in the second ozone reaction tank 16, sufficient OH radicals necessary for the oxidation promotion treatment are generated, the promotion oxidation treatment is performed, and the promotion oxidation treatment is performed to increase the decomposition rate of the mold odor substance and the like. .
  • the treated water LQ that has been treated while suppressing the risk of producing bromic acid by the reducing action of bromic acid with hydrogen peroxide flows out from the outflow channel 24.
  • the amount of additional hydrogen peroxide is used with the dissolved ozone concentration at the time of passing through the introduction flow path 17 being the outlet of the first ozone reaction tank 15 as an index. Necessity of injection and the injection amount can be determined, and insufficient addition of hydrogen peroxide in the accelerated oxidation treatment can be avoided.
  • a dissolved ozone concentration meter and a hydrogen peroxide supply device are provided between all reaction vessels, or a dissolved ozone concentration meter and hydrogen peroxide supply are provided between the last and last reaction vessels. It is possible to provide one apparatus at a time for the entire accelerated oxidized water treatment system.
  • a dissolved ozone concentration meter and a hydrogen peroxide supply device may be provided between the two. Further, it is possible to provide a dissolved ozone concentration meter and a hydrogen peroxide supply device only between the second ozone reaction tank and the third ozone reaction tank.
  • first ozone reaction tank 15 and second ozone reaction tank 16 are provided in the direction of flowing out from inflow.
  • the present invention can be applied even when only one ozone reaction tank is provided without being physically separated into a plurality of tanks.
  • FIG. 2 is an explanatory diagram of the accelerated oxidized water treatment system in the case where one ozone reaction tank is provided.
  • the same parts as those in FIG. 2 differs from FIG. 1 in that it has one ozone reaction tank 31 instead of the first ozone reaction tank 15 and the second ozone reaction tank 16, and a second hydrogen peroxide supply device 19 and a dissolved ozone concentration meter.
  • the “intermediate point of passage of the treated water LQ in the flow path of the treated water LQ” means a position corresponding to 30% to 70% of the total residence time along the flow direction (the time of introduction is 0% and 100% when derived).
  • FIG. 2 is different from FIG. 1 in that the first air diffusion unit 21 is located upstream of the point where the second hydrogen peroxide supply device 19 and the dissolved ozone concentration meter are provided (inflow of the treated water LQ).
  • the second aeration unit 23 is provided on the downstream side (outflow side of the treated water LQ) from the point where the second hydrogen peroxide supply device 19 and the dissolved ozone concentration meter are provided. Is a point.
  • the control device 25 determines the amount of hydrogen peroxide corresponding to the shortage of hydrogen peroxide initially supplied based on the dissolved ozone concentration measurement signal Sro, that is, the shortage of OH radicals, as the dissolved ozone concentration measured this time. Calculation is based on the difference from the normal dissolved ozone concentration. Then, the control device 25 controls the second hydrogen peroxide supply device 19 to supply hydrogen peroxide corresponding to the calculated hydrogen peroxide amount.
  • FIG. 3 is an explanatory diagram of an accelerated oxidized water treatment system when water to be treated flows in a vertical direction in an ozone reaction tank.
  • the same parts as those in FIG. 3 differs from FIG. 1 in that it has one ozone reaction tank 35 that is long in the vertical direction instead of the first ozone reaction tank 15 and the second ozone reaction tank 16, and the second hydrogen peroxide supply device 19 and
  • the dissolved ozone concentration meter is provided at an intermediate point in the flow direction of the treated water LQ in the ozone reaction tank 35 in the height direction (vertical direction) of the treated water LQ.
  • an intermediate point in the height direction (vertical direction) of the passage of the treated water LQ in the flow path of the treated water LQ” is 30% from the bottom at an effective height in the height direction. It is a position of ⁇ 60% (the bottom is 0%, the introduction is 100%).
  • the dissolved ozone concentration meter 18 is installed so that the water to be measured can measure the dissolved ozone concentration of the water LQ to be treated at a stage not containing hydrogen peroxide supplied by the second hydrogen peroxide supply device 19. Therefore, the treated water LQ to be measured by the dissolved ozone concentration meter 18 is upstream (upward in the height direction) from the treated water LQ to which hydrogen peroxide is added by the second hydrogen peroxide supply device 19.
  • the measurement position of the dissolved ozone concentration meter 18 is provided at the position.
  • FIG. 3 is different from FIG. 1 in that only one aeration unit 36 is provided at the bottom of the ozone reaction tank 35 instead of the first aeration unit 21 and the second aeration unit 23. It is.
  • the control device 25 uses the dissolved ozone concentration meter 18 to generate an ozone reaction tank in order to set the additional amount of hydrogen peroxide (the amount of hydrogen peroxide HP2) to an optimum value.
  • the dissolved ozone concentration of the to-be-treated water LQ flowing from the upstream side of the point where the second hydrogen peroxide supply device 19 and the dissolved ozone concentration meter 18 are provided is measured.
  • the control device 25 determines the amount of hydrogen peroxide corresponding to the deficiency of initially supplied hydrogen peroxide, that is, the deficiency of OH radicals, from the difference between the dissolved ozone concentration measured this time and the normal dissolved ozone concentration. Calculate based on Then, the control device 25 supplies the hydrogen peroxide HP2 corresponding to the calculated hydrogen peroxide amount by controlling the second hydrogen peroxide supply device 19.
  • the first hydrogen peroxide supply device 14 supplies the hydrogen peroxide HP1 through the inflow channel 12 .
  • the first hydrogen peroxide supply device 14 is configured to supply to the water surface of the ozone reaction tank 35 or in the vicinity of the water surface. It is also possible.
  • FIG. 4 is a schematic configuration explanatory diagram of an accelerated oxidized water treatment system according to a second embodiment.
  • the second embodiment is different from the first embodiment of FIG. 1 in that the dissolved ozone concentration meter 18 is disposed downstream of the second ozone reaction tank 16 (in the vicinity of the treated water outlet or in the vicinity of the treated water outlet). It is.
  • the dissolved ozone concentration at the outlet of the second ozone reaction tank 16 is measured by the dissolved ozone concentration meter 18 and used as an index. Thereby, it is possible to determine whether or not injection of additional hydrogen peroxide (hydrogen peroxide HP2 in the second hydrogen peroxide supply device 19) is necessary, and the amount of addition can be determined.
  • the second hydrogen peroxide addition rate Ad_PH_2 is set based on the amount of ozone remaining in the first ozone reaction tank 15, but in the second embodiment, the second ozone reaction is performed. This is based on the amount of ozone remaining in the tank 16. Therefore, the dissolved ozone concentration DO 3 measured by the dissolved ozone concentration meter 18 is dissolved in the treated water LQ of the second ozone reaction tank 16 after the hydrogen peroxide is supplied by the second hydrogen peroxide supply device 19. an ozone concentration DO 3. If this is greater than a certain threshold concentration of dissolved ozone DO 3, which means that the second addition of hydrogen peroxide index Ad_PH_2 say too low. Therefore, it is sufficient quantity feedback control of the second addition of hydrogen peroxide index Ad_PH_2 as the dissolved ozone concentration DO 3 is equal to or less than the threshold.
  • hydrogen peroxide addition is added as necessary so that the ozone added through the second air diffuser unit 23 in the second ozone reaction tank 16 is not insufficient. It is possible to avoid insufficient addition of hydrogen peroxide.
  • FIG. 5 is an explanatory diagram of a schematic configuration of the accelerated oxidized water treatment system according to the second embodiment of the modified example of the second embodiment.
  • FIG. 5 parts that are the same as those of the second embodiment of FIG. In the said 2nd Embodiment, it replaces with the dissolved ozone concentration meter 18 which measures the dissolved ozone concentration of the to-be-processed water which passed the 1st ozone reaction tank 15 introduced into the introduction flow path 17 in 1st Embodiment, and dissolved.
  • the ozone concentration meter 18 was disposed on the downstream side of the second ozone reaction tank 16 (treated water outlet or near the treated water outlet).
  • the first valve 41 that connects the dissolved ozone concentration meter 18 to the introduction flow path 17 and the second valve 42 that connects the dissolved ozone concentration meter downstream of the second ozone reaction tank 16 are provided.
  • the control device 25 exclusively opens the first valve 41 and the second valve 42 or closes the dissolved ozone concentration meter 18 in the same manner as in the first embodiment and in the same manner as in the second embodiment. In this case, it can be switched and used, and it becomes possible to accurately control the additional amount of hydrogen peroxide.
  • FIG. 6 is an explanatory diagram of a schematic configuration of an accelerated oxidized water treatment system according to a third embodiment. 6 differs from the first embodiment of FIG. 1 in that a hydrogen peroxide concentration meter 45 that measures the hydrogen peroxide concentration and outputs a hydrogen peroxide concentration measurement signal Shp is installed in place of the dissolved ozone concentration meter 18. This is the point.
  • the control device 25 uses the hydrogen peroxide concentration corresponding to the hydrogen peroxide concentration measurement signal Shp measured and output by the hydrogen peroxide concentration meter 45 as an index. It is determined whether or not additional supply should be performed, and the addition amount is determined.
  • the additional amount of hydrogen peroxide can be accurately controlled.
  • FIG. 7 is an explanatory diagram of a schematic configuration of an accelerated oxidized water treatment system according to a fourth embodiment. 7 is different from the first embodiment of FIG. 1 in that the fluorescence analyzer 50 that measures the fluorescence intensity by irradiating the treated water LQ with the excitation light and outputs the fluorescence analysis signal Sfa in the inflow channel 12. It is a point that has.
  • the fluorescence analyzer 50 measures the intensity of fluorescence (near wavelength 425 nm) with respect to excitation light (near wavelength 345 nm) and outputs a fluorescence analysis signal Sfa.
  • the fluorescence intensity is measured by measuring the amount of naturally-occurring organic matter (referred to as fulvic acid-like organic matter, etc.) of the raw material water taken in, for example, when the accelerated oxidized water treatment system 10 is applied to a water supply process. It corresponds to doing. That is, the measurement result by the fluorescence analyzer 50 has a correlation with the representative index E260 (absorbance) of organic substance concentration, TOC, trihalomethane production ability, and the like.
  • E260 absorbance
  • the control apparatus 25 grasps
  • the ozone addition rate Ad_O 3 is calculated in conjunction with the fluorescence intensity of the water to be treated LQ, and the first hydrogen peroxide addition rate Ad_PH_1 is calculated based on the predetermined ratio K1.
  • the second hydrogen peroxide addition rate Ad_PH_2 a method similar to that described in the first embodiment may be used.
  • control device 25 normally fixes (fixed) the ratio of the hydrogen peroxide addition amount to the ozone addition amount based on the analysis result of the fluorescence analyzer 50.
  • the molar ratio is desirably about 1 to 5, and it is desirable that the ratio is determined so as not to be deficient and not excessive with respect to the ozone added in the second ozone reaction tank 16. It should be noted that the ratio of the hydrogen peroxide addition amount to the ozone addition amount can be changed by the operator depending on the situation such as water quality.
  • the outlet of the first ozone reaction tank 15 is further determined. Using the dissolved ozone concentration as an index, it is determined whether or not it is necessary to inject additional hydrogen peroxide (hydrogen peroxide HP2 injected by the second hydrogen peroxide supply device 19). The amount added can be determined. Therefore, the hydrogen peroxide supply amount in the first ozone reaction tank 15 is made more accurate, and the accelerated oxidation treatment can be performed in the first ozone reaction tank 15 more reliably. Furthermore, the accelerated oxidation treatment can be more reliably performed while suppressing the amount of hydrogen peroxide supplied in the second ozone reaction tank 16.
  • FIG. 8 is a schematic configuration explanatory diagram of a promoted oxidized water treatment system of a fifth embodiment.
  • the fifth embodiment is different from the fourth embodiment of FIG. 7 in that, in addition to the configuration of the fourth embodiment, the water to be treated LQ at the outlet of the first ozone reaction tank 15 is irradiated with excitation light to fluoresce.
  • a fluorescence analyzer 51 that measures the intensity and outputs a fluorescence analysis signal Sfa2 is provided. Hydrogen peroxide is supplied based on the fluorescence analysis signal Sfa1 output from the fluorescence analyzer 50 and the fluorescence analysis signal Sfa2 output from the fluorescence analyzer 51. The amount is controlled.
  • the fluorescence analyzer 51 measures the intensity of fluorescence (near wavelength 425nm) with respect to excitation light (near wavelength 345nm).
  • the control device 25 indicates the state of the accelerated oxidation treatment in the first ozone reaction tank 15 and the second ozone reaction tank 16 and the fluorescence intensity and fluorescence corresponding to the fluorescence analysis signal Sfa1 output from the fluorescence analyzer 50. It grasps from the change of the fluorescence intensity corresponding to the fluorescence analysis signal Sfa2 output from the analyzer 51, and feedback controls the addition amount of the ozonized gas OG.
  • the ratio between the fluorescence intensity corresponding to the fluorescence analysis signal Sfa1 and the fluorescence intensity corresponding to the fluorescence analysis signal Sfa2, that is, Sfa1 / Sfa2 Should be used as an index.
  • the ozone addition rate Ad_O 3 is calculated, and based on the calculated ozone addition rate Ad_O 3 and the ratio K1, the first hydrogen peroxide addition The rate Ad_PH_1 is calculated. Further, for the second hydrogen peroxide addition rate Ad_PH_2, a method similar to that described in the first embodiment may be used.
  • the ratio of the hydrogen peroxide addition amount to the ozonization gas OG addition amount is normally fixed (fixed), but the ratio of the hydrogen peroxide addition amount to the ozonization gas OG addition amount is the water quality, etc.
  • the operator can change it accordingly.
  • the molar ratio is preferably about 1/5, and the ratio is determined so as not to be deficient with respect to the ozone added in the second ozone reaction tank 16 and not to be excessive. That is, using the dissolved ozone concentration at the outlet of the first ozone reaction tank 15 corresponding to the dissolved ozone concentration measurement signal Sro output from the dissolved ozone concentration meter 18 as an index, the amount of hydrogen peroxide added (the excess of the second hydrogen peroxide supply device). The necessity of injection of hydrogen oxide HP2) can be determined and the amount added can be determined.
  • the second peroxidation is based on the concentration of organic matter in water of the water LQ to be treated after passing through the first ozone reaction tank 15 and being treated. Since it is possible to determine whether or not the hydrogen peroxide HP2 to be supplied in the hydrogen supply device 19 is injected and the amount added, the accelerated oxidation treatment can be performed more reliably while suppressing the amount of hydrogen peroxide supplied in the second ozone reaction tank 16. it can.
  • FIG. 9 is an explanatory diagram of a schematic configuration of an accelerated oxidized water treatment system according to a sixth embodiment.
  • the two fluorescence analyzers 50 and 51 used in the configuration of the fifth embodiment are only one fluorescence analyzer 50, and the three-way valve 55 is automatically switched by the control device 25.
  • the control device 25 the control device 25.
  • the fluorescence analyzer 50 is an optical measuring instrument and does not require time for measurement. For example, averaging such as a moving average for suppressing fluctuation of the measurement result. This is because even if the processing is performed, the measurement can be performed in a few seconds to a minute or so.
  • the residence time of the water LQ to be treated in the first ozone reaction tank 15 is, for example, about 5 minutes or more, the water quality changes in about 5 minutes, so that only one fluorescence analyzer 50 is provided. Even if the water to be measured is changed by automatic switching, it is possible to sufficiently measure the treated water LQ and the fluorescence intensity at the outlet of the first ozone reaction tank 15. In the case of the above-mentioned example, since the residence time of the 1st ozone reaction tank 15 was 5 minutes, it becomes possible to measure by setting the three-way valve switching timing every 5 minutes.
  • FIG. 10 is an explanatory diagram of a schematic configuration of an accelerated oxidized water treatment system according to a seventh embodiment.
  • the seventh embodiment differs from the fifth embodiment in that the fluorescence analyzer 51 irradiates the water to be treated LQ at the outlet of the second ozone reaction tank 16 with excitation light to measure the fluorescence intensity, and the fluorescence analysis signal Sfa2 It is the point which comprised so that it might output.
  • the amount of ozone added can be feedback-controlled by grasping from the change in the fluorescence intensity at the outlet of the second ozone reaction tank 16 (corresponding to the fluorescence analysis signal Sfa2).
  • the fluorescence intensity corresponding to the fluorescence analysis signal Sfa1 / the fluorescence intensity corresponding to the fluorescence analysis signal Sfa2 is obtained and used as an index, and feedback control is performed so that this value becomes a predetermined constant value.
  • the value of the index becomes smaller and the time from when the addition amount of ozonized gas is changed until the change appears in the index is delayed.
  • the fluorescence analyzer 50 and, if necessary, the fluorescence analyzer 51 are used.
  • the fluorescence analyzers 50 and 51 are used instead.
  • An absorptiometer for example, a wavelength near 260 nm
  • a TOC (Total Organic Carbon) meter can be installed.
  • the control device 25 of the accelerated oxidized water treatment system 10 of the present embodiment includes, for example, a control device such as an MPU, a storage device such as a ROM (Read Only Memory) and a RAM, and an external storage such as an SSD, HDD, and CD drive device.
  • the apparatus can be configured to include a display device such as a display device and an input device such as a keyboard and a mouse, and has a hardware configuration using a normal computer.
  • the program executed by the control device 25 of the accelerated oxidation water treatment system 10 of the present embodiment is a file in an installable format or an executable format, and is a semiconductor such as a CD-ROM, DVD (Digital Versatile Disk), USB memory device, etc.
  • the program is provided by being recorded on a computer-readable recording medium such as a storage device.
  • the program executed by the control device 25 of the promoted oxidized water treatment system 10 of the present embodiment is stored on a computer connected to a network such as the Internet and provided by being downloaded via the network. May be. Moreover, you may comprise so that the program run with the control apparatus 25 of the promotion oxidation water treatment system 10 of this embodiment may be provided or distributed via networks, such as the internet. Moreover, you may comprise so that the program of the control apparatus 25 of the acceleration

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

実施形態の水処理システムは、オゾン及び過酸化水素を被処理水に添加し、オゾン反応槽中で前記被処理水中の処理対象物質の促進酸化処理を行う促進酸化水処理システムであって、被処理水のオゾン反応槽への導入前あるいは導入時に過酸化水素を供給する第1過酸化水素供給装置と、オゾン化ガスを生成し、オゾン反応槽へ供給するオゾン生成装置と、オゾン反応槽において被処理水の流路中に過酸化水素を供給する第2過酸化水素供給装置と、オゾン反応槽における促進酸化処理中あるいは促進酸化処理後の前記被処理水に対応する処理指標を検出する測定装置と、処理指標に基づいて第2過酸化水素供給装置による過酸化水素の供給可否を判別し、供給量を設定して、第2過酸化水素供給装置の制御を行う制御装置と、を備えるので、OHラジカルを用いた促進酸化水処理において、高い処理効率を維持し、過不足のないオゾン及び過酸化水素の添加を行うことができる。

Description

促進酸化水処理システム及び方法
 本発明の実施形態は、促進酸化水処理システム及び方法に関する。
 従来、上水、下水、産業排水、プールなどの分野で、水中の有機物の酸化分解、殺菌、脱臭等の処理のためにオゾンが用いられている。しかしながら、オゾンによる酸化でも、親水化、低分子化はできても無機化することはできない。また、ダイオキシンや1,4-ジオキサン等の難分解性有機物は分解できない。
 したがって、上述のような難分解性有機物を分解するに際しては、オゾンよりも酸化力の強いOHラジカルを用い、酸化分解することが有効な手段の一つである。
 OHラジカルの生成には、オゾン含有水に紫外線を照射する方法、過酸化水素含有水にオゾンを添加する方法、過酸化水素含有水に紫外線を照射する方法、過酸化水素、オゾン、紫外線全て併用する方法、が水処理において一般的に用いられている。
 これらの方法のうち、オゾンと過酸化水素を用いる方法は、上水向け処理などオゾン処理の副生成物である臭素酸イオンの生成抑制に効果がある方法として知られている。例えば、オゾンを利用した高度浄水処理は、カビ臭対策やトリハロメタン対策として国内外で広く稼働しているが、臭素酸生成のリスクがある。通常、処理対象物質の濃度に応じてオゾン添加率を変化させるが、原水水質や水温などの影響によりオゾン処理の消毒副生成物である臭素酸生成リスクが高い場合、オゾン添加量を抑えた効率的な運用が必要となる。その対策方法として、過酸化水素を添加することで酸化力の強いOHラジカルを生成し、それを利用した促進酸化処理により処理対象であるカビ臭物質などの分解率を高め、同時に過酸化水素による臭素酸の還元作用により、臭素酸生成リスクを抑えられる。
特開平10-099878号公報 特開2005-087813号公報
 しかしながら、このオゾンと過酸化水素を用いる促進酸化処理では、オゾンと過酸化水素を適切な添加量に維持することが重要となる。
 すなわち、オゾンと過酸化水素の添加不足の場合には、OHラジカルの生成量が不足し処理対象物質の分解が不十分となる。他方、オゾンと過酸化水素が過剰の場合、オゾン発生電力、または薬品(過酸化水素)代などのランニングコストが増加する。さらには、両者のバランスが悪い場合、処理対象物質の分解が不十分となったり、特にオゾンが多いと臭素酸生成量が多くなったりしてしまうという問題があった。
 本発明は、上記課題に鑑みてなされたものであり、オゾンと過酸化水素により生成したOHラジカルを用いた促進酸化水処理において、高い処理効率を維持し、過不足のない適切なオゾン及び過酸化水素の添加を行うことが可能な促進酸化水処理システム及び方法を提供することを目的とする。
 実施形態の水処理システムは、オゾン及び過酸化水素を被処理水に添加し、オゾン反応槽中で前記被処理水中の処理対象物質の促進酸化処理を行う促進酸化水処理システムであって、被処理水のオゾン反応槽への導入前あるいは導入時に過酸化水素を供給する第1過酸化水素供給装置と、オゾンを含むオゾン化ガスを生成し、前記オゾン反応槽へ供給するオゾン生成装置と、オゾン反応槽において被処理水の流路中に過酸化水素を供給する第2過酸化水素供給装置と、オゾン反応槽における促進酸化処理中あるいは促進酸化処理後の前記被処理水に対応する処理指標を検出する測定装置と、処理指標に基づいて第2過酸化水素供給装置による過酸化水素の供給可否の判別及び供給量の設定を行い、第2過酸化水素供給装置の制御を行う制御装置と、を備える。
図1は、第1実施形態の促進酸化水処理システムの概要構成説明図である。 図2は、一つのオゾン反応槽が設けられている場合の促進酸化水処理システムの説明図である。 図3は、オゾン反応槽内で被処理水が垂直方向に流れる場合の促進酸化水処理システムの説明図である。 図4は、第2実施形態の促進酸化水処理システムの概要構成説明図である。 図5は、第2実施形態の変形例の第2実施形態の促進酸化水処理システムの概要構成説明図である。 図6は、第3実施形態の促進酸化水処理システムの概要構成説明図である。 図7は、第4実施形態の促進酸化水処理システムの概要構成説明図である。 図8は、第5実施形態の促進酸化水処理システムの概要構成説明図である。 図9は、第6実施形態の促進酸化水処理システムの概要構成説明図である。 図10は、第7実施形態の促進酸化水処理システムの概要構成説明図である。
 次に図面を参照して好適な実施形態について詳細に説明する。
[1]第1実施形態
 図1は、第1実施形態の促進酸化水処理システムの概要構成説明図である。
 促進酸化水処理システム10は、原料ガスとしての酸素又は乾燥空気に放電し、オゾンガスを発生させ、オゾンガスを含むオゾン化ガス(=O+Oあるいは、O+O+N)OGを供給するオゾン発生器11と、処理対象の液体である被処理水LQを流入流路12を介して供給する給水ポンプ13と、流入流路12を介して過酸化水素HP1を供給する第1過酸化水素供給装置14と、を備えている。
 また、促進酸化水処理システム10は、被処理水LQを収納する第1オゾン反応槽15と、被処理水LQを収納する第2オゾン反応槽16と、第1オゾン反応槽15から第2オゾン反応槽16に被処理水LQを導入する導入流路17と、導入流路17に導入された第1オゾン反応槽15を通過した被処理水の溶存オゾン濃度を測定し溶存オゾン濃度測定信号Sroを出力する溶存オゾン濃度計18と、溶存オゾン濃度測定信号Sroに対応する溶存オゾン濃度計18の測定結果に基づいて算出された追加して供給すべき量の過酸化水素HP2を通過した被処理水に追加供給する第2過酸化水素供給装置19と、を備えている。
 さらに促進酸化水処理システム10は、第1オゾン反応槽15に導入するオゾン化ガスの供給量を調整する第1バルブ20と、第1バルブ20に接続され、第1オゾン反応槽15の底部に配置されて第1オゾン反応槽15内にバブル状のオゾン化ガスを供給する第1散気ユニット21と、第2オゾン反応槽16に導入するオゾン化ガスの供給量を調整する第2バルブ22と、第2バルブ22に接続され、第2オゾン反応槽16の底部に配置されて第2オゾン反応槽16内にバブル状のオゾン化ガスOGを供給する第2散気ユニット23と、第2オゾン反応槽16で反応後の被処理水LQを流出させる流出流路24と、促進酸化水処理システム10全体を制御するための制御装置25と、を備えている。
 次に第1実施形態の動作を説明する。
 制御装置25は、給水ポンプ13を制御し、被処理水LQを流入流路12を介して供給する。
 このとき制御装置25は、被処理水LQの供給量に対して、所定比率のオゾン化ガスOGを供給可能なようにオゾン発生器11を制御する。
 これによりオゾン発生器11は、原料ガスとしての酸素又は乾燥空気に放電し、オゾンガスを含むオゾン化ガスOGを発生させる。そしてオゾン発生器11は、オゾン化ガスOGを第1バルブ20を介して第1オゾン反応槽15内に配置された第1散気ユニット21に供給する。また、オゾン発生器11は、オゾン化ガスOGを第2バルブ22を介して第2オゾン反応槽16内に配置された第2散気ユニット23に供給する。
 この結果、第1オゾン反応槽15内の被処理水LQには、第1散気ユニット21から所定量のバブル状のオゾン化ガスOGが供給される。
 同様に、第2オゾン反応槽16内の被処理水LQには、第2散気ユニット23から所定量のバブル状のオゾン化ガスOGが供給される。
 これらと並行して制御装置25は、第1オゾン反応槽15及び第2オゾン反応槽16に供給したオゾン化ガスOGの量に対して所定比率の過酸化水素HP1を第1過酸化水素供給装置14に供給させる。この場合において、過酸化水素とオゾン化ガスOG(に含まれるオゾンO)との供給比率=H(mol)/O(mol)=1~5とするのが望ましい。
 これらの結果、第1オゾン反応槽15に供給されたオゾン化ガスOG中のオゾンおよび過酸化水素によりOHラジカル(=・OH)が生成される。
 OHラジカルの生成は、(1)式あるいは(2)式による。
  O+H→・OH+HO+O     …(1)
  H→H+HO
  O+HO →・OH+O +O     …(2)
 この結果、第1オゾン反応槽15においては、生成されたOHラジカルにより、酸化促進処理がなされることとなる。
 ところで、水質その他の要因により、第1オゾン反応槽15における過酸化水素の消費量が通常時(被処理水LQに対して通常想定している消費量)よりも多くなると、第1オゾン反応槽15から第2オゾン反応槽16に到る過酸化水素の量が減少し、第2オゾン反応槽16において第2散気ユニット23により供給されるオゾンに対して過酸化水素が不足することとなる。
 この場合には、導入流路17に導入された第1オゾン反応槽15を通過した被処理水LQの溶存オゾン濃度が通常時よりも高い値となる。
 そこで、制御装置25は、過酸化水素の追加量(過酸化水素HP2の量)を最適な値とするために溶存オゾン濃度計18により、導入流路17に導入された第1オゾン反応槽15を通過した被処理水LQの溶存オゾン濃度を測定する。この結果、溶存オゾン濃度計18は、測定した溶存オゾン濃度に対応する溶存オゾン濃度測定信号Sroを制御装置25に出力する。
 そして、制御装置25は、初期供給された過酸化水素の不足分、すなわち、OHラジカルの不足分に相当する過酸化水素量を、溶存オゾン濃度測定信号Sroに対応する今回測定された溶存オゾン濃度と通常の溶存オゾン濃度との差に基づいて算出する。
 ここで、オゾン化ガス、第1過酸化水素供給装置14で供給する過酸化水素及び第2過酸化水素供給装置19で供給する過酸化水素の単位水量当たりの添加量である添加率[単位は例えば、mg/L]の設定について説明する。
 ここで、第1過酸化水素供給装置14による過酸化水素(H)の添加率をAd_PH_1(以下、第1過酸化水素添加率Ad_PH_1という)、第2過酸化水素供給装置19による過酸化水素の添加率をAd_PH_2(以下、第2過酸化水素添加率Ad_PH_2という)とする。
 また、本実施形態においては、第1オゾン反応槽15と第2オゾン反応槽16へのオゾンOの添加率をAd_O(以下、オゾン添加率Ad_Oという)とし、第1オゾン反応槽15及び第2オゾン反応槽16に対し、1対1でオゾンOを分配することを想定するものとする。なお、オゾン反応槽が3槽以上ある場合も均等分配するものとする。
 制御装置25は、まず、第1オゾン反応槽15に流入する被処理水LQの水質に応じてオゾン添加率Ad_O及び第1過酸化水素添加率Ad_PH_1を決定する。
 この時、オゾン添加率Ad_Oに対する第1過酸化水素添加率Ad_PH_1の比率をK1とし、比率K1は一定とする。この比率K1の値は、1~5の範囲で決定するのが望ましい。
 したがって、第1過酸化水素添加率Ad_PH_1は、オゾン添加率Ad_O及び比率K1に基づいて、次式により定められる。
  Ad_PH_1=K1・Ad_O
 この場合において、オゾン添加率Ad_O及び比率K1の決定方法としては、事前にビーカ試験などで添加率を変えた試験を実施して、適切な添加率を決める方法などが挙げられる。
 また、流入する被処理水LQにおいて、大きな水質変動がないことを想定しており、必要に応じて適切な頻度で添加率を見直すことが好ましい。
 なお、後述する各実施形態のように流入する被処理水LQの水質をリアルタイムに測定する場合には、流入水質に連動させてオゾン添加率Ad_O及び比率K1を変化させる。実効的には、比率K1は一定で問題はないと考えられるので、流入水質に連動させてオゾン添加率Ad_Oを変化させ、ひいては、第1過酸化水素添加率Ad_PH_1が決まることとなる。
 次に第2過酸化水素添加率Ad_PH_2の決定について説明する。
 上述したように流入した被処理水LQの水質に応じて、オゾン添加率Ad_O3及び第1過酸化水素添加率Ad_PH_1は決定されるが、第1オゾン反応槽15における実際の反応の進み方次第では、第2オゾン反応槽16で添加されるオゾンに対し、残存している過酸化水素が足りなくなる場合がある。
 溶存オゾン濃度計18で測定した溶存オゾン濃度をDOとし、溶存オゾン濃度DOが閾値を超えると第2オゾン反応槽16における処理に使える残存している過酸化水素が少ないと判断し、第2過酸化水素添加率Ad_PH_2を正の値として第2過酸化水素供給装置19から追加の過酸化水素を供給することとなる。
 第2過酸化水素添加率Ad_PH_2は、溶存オゾン濃度DOをパラメータとする関数として算出する。例えば、関数として、比例関数を用いて第2過酸化水素添加率Ad_PH_2を増加させる。この関数としては、階段状に増加させる関数を用いても可能である。
 例えば、比例関数の比例係数をK2とすると、
  第2過酸化水素添加率Ad_PH_2=K2・DO
 あるいは、
  第2過酸化水素添加率Ad_PH_2=K2・DO-DOの閾値
として求めればよい。
 そして、制御装置25は、算出した過酸化水素量に相当する過酸化水素HP2を第2過酸化水素供給装置19を制御して供給する。
 この結果、第2オゾン反応槽16においては、酸化促進処理において必要とされる十分なOHラジカルが生成され、促進酸化処理がなされ、促進酸化処理がなされてカビ臭物質等の分解率が高められる。加えて、第2オゾン反応槽16においては、臭素酸の過酸化水素による還元作用により臭素酸生成リスクを抑制しつつ処理した被処理水LQが流出流路24から流出されることとなる。
 以上の説明のように、本第1実施形態によれば、第1オゾン反応槽15の出口である導入流路17を通過している時点の溶存オゾン濃度を指標として、過酸化水素追加分の注入要否及び注入量を判断することができ、促進酸化処理における過酸化水素の添加不足を回避できる。
[1.1]第1実施形態の第1変形例
 以上の説明においては、オゾン反応槽が、流入から流出する方向に二槽(第1オゾン反応槽15及び第2オゾン反応槽16)設けられている場合を例として説明したが、三槽以上のオゾン反応槽が存在する場合でも同様に適用が可能である。
 この場合においては、全ての反応槽間に溶存オゾン濃度計及び過酸化水素供給装置をそれぞれ設けるようにしたり、最後及び最後から一つ手前の反応槽の間に溶存オゾン濃度計及び過酸化水素供給装置を当該促進酸化水処理システム全体で一つずつ設けるようにしたりすることが可能である。
 より具体的には、第1オゾン反応槽~第3オゾン反応槽がある場合には、第1オゾン反応槽と第2オゾン反応槽との間及び第2オゾン反応槽と第3オゾン反応槽との間のそれぞれに溶存オゾン濃度計及び過酸化水素供給装置を設けるようにしてもよい。また、第2オゾン反応槽と第3オゾン反応槽との間にのみ溶存オゾン濃度計及び過酸化水素供給装置を設けるようにすることが可能である。
 これらの結果、促進酸化水処理システム10全体で最適なオゾン及び過酸化水素比率で処理を行うことが可能となる。
[1.2]第1実施形態の第2変形例
 以上の説明においては、オゾン反応槽が、流入から流出する方向に二槽(第1オゾン反応槽15及び第2オゾン反応槽16)設けられている場合を例として説明したが、物理的に複数の槽に別れておらず一つのオゾン反応槽しか設けられていない場合でも適用が可能である。
 図2は、一つのオゾン反応槽が設けられている場合の促進酸化水処理システムの説明図である。
 図2において、図1と同様の部分には、同一の符号を付すものとする。
 図2において、図1と異なる点は、第1オゾン反応槽15及び第2オゾン反応槽16に代えて一つのオゾン反応槽31を有する点並びに第2過酸化水素供給装置19及び溶存オゾン濃度計がオゾン反応槽31の被処理水LQの流路において被処理水LQの通過の中間地点に設けられている点である。
 この場合において、「被処理水LQの流路において被処理水LQの通過の中間地点」とは、流れ方向に沿って、滞留時間で全体の30%~70%に相当する位置(導入時が0%、導出時が100%)として設定される。
 また、図2において、図1と異なる点は、第1散気ユニット21が第2過酸化水素供給装置19及び溶存オゾン濃度計が設けられている地点よりも上流側(被処理水LQの流入側)に設けられ、第2散気ユニット23が第2過酸化水素供給装置19及び溶存オゾン濃度計が設けられている地点よりも下流側(被処理水LQの流出側)に設けられている点である。
 本第1実施形態の第2変形例によっても、制御装置25は、過酸化水素の追加量を最適な値とするために溶存オゾン濃度計18により、オゾン反応槽31において第2過酸化水素供給装置19及び溶存オゾン濃度計18が設けられている地点よりも上流側から流れてきた被処理水の溶存オゾン濃度を測定し溶存オゾン濃度測定信号Sroを制御装置25に出力する。
 そして、制御装置25は、溶存オゾン濃度測定信号Sroに基づいて初期供給された過酸化水素の不足分、すなわち、OHラジカルの不足分に相当する過酸化水素量を今回測定された溶存オゾン濃度と通常の溶存オゾン濃度との差に基づいて算出する。そして制御装置25は、算出した過酸化水素量に相当する過酸化水素を第2過酸化水素供給装置19を制御して供給する。
 この結果、オゾン反応槽31において第2過酸化水素供給装置19及び溶存オゾン濃度計18が設けられている地点よりも下流側において、酸化促進処理において必要とされる十分なOHラジカルが生成され、促進酸化処理がなされてカビ臭物質等の分解率が高められるとともに、臭素酸の過酸化水素による還元作用により臭素酸生成リスクを抑制しつつ処理した被処理水LQが流出流路24から流出されることとなる。
[1.3]第1実施形態の第3変形例
 以上の説明においては、オゾン反応槽において被処理水が水平方向に流れる場合の実施形態について説明したが、本第1実施形態の第3変形例は、被処理水LQが垂直方向に流れる場合の実施形態である。
 図3はオゾン反応槽内で被処理水が垂直方向に流れる場合の促進酸化水処理システムの説明図である。
 図3において、図1と同様の部分には、同一の符号を付すものとする。
 図3において、図1と異なる点は、第1オゾン反応槽15及び第2オゾン反応槽16に代えて垂直方向に長い一つのオゾン反応槽35を有する点並びに第2過酸化水素供給装置19及び溶存オゾン濃度計がオゾン反応槽35の被処理水LQの流路において被処理水LQの通過の高さ方向(上下方向)における中間地点に設けられている点である。
 この場合において、「被処理水LQの流路において被処理水LQの通過の高さ方向(上下方向)における中間地点」とは、水中であって高さ方向に有効高さで底部から30%~60%(底部が0%、導入部が100%)の位置である。
 また、溶存オゾン濃度計18は、測定する水に、第2過酸化水素供給装置19で供給された過酸化水素を含まない段階の被処理水LQの溶存オゾン濃度を測定できるように設置する。従って、溶存オゾン濃度計18の測定対象の被処理水LQの方が、第2過酸化水素供給装置19で過酸化水素が添加される被処理水LQよりも上流側(高さ方向で上)となる位置に溶存オゾン濃度計18の測定位置が設けられている。
 また、図3において、図1と異なる点は、第1散気ユニット21及び第2散気ユニット23に代えて、散気ユニット36がオゾン反応槽35の底部に一つだけ設けられている点である。
 本第1実施形態の第3変形例によっても、制御装置25は、過酸化水素の追加量(過酸化水素HP2の量)を最適な値とするために溶存オゾン濃度計18により、オゾン反応槽31において第2過酸化水素供給装置19及び溶存オゾン濃度計18が設けられている地点よりも上流側から流れてきた被処理水LQの溶存オゾン濃度を測定する。
 そして、制御装置25は、初期供給された過酸化水素の不足分、すなわち、OHラジカルの不足分に相当する過酸化水素量を、今回測定された溶存オゾン濃度と通常の溶存オゾン濃度との差に基づいて算出する。そして制御装置25は、算出した過酸化水素量に相当する過酸化水素HP2を第2過酸化水素供給装置19を制御して供給する。
 この結果、オゾン反応槽31において第2過酸化水素供給装置19及び溶存オゾン濃度計18が設けられている地点よりも下流側において、酸化促進処理において必要とされる十分なOHラジカルが生成される。そして、被処理水LQに対して促進酸化処理がなされてカビ臭物質等の分解率が高められる。さらには、臭素酸の過酸化水素による還元作用により臭素酸生成リスクを抑制しつつ処理した被処理水LQが流出流路24から流出されることとなる。
 以上の説明では、第1過酸化水素供給装置14が流入流路12を介して過酸化水素HP1を供給する構成について説明したが、オゾン反応槽35の水面あるいは水面付近に供給する様に構成することも可能である。
[2]第2実施形態
 図4は、第2実施形態の促進酸化水処理システムの概要構成説明図である。
 図4において、図1の第1実施形態と同様の部分には、同一の符号を付すものとする。
 本第2実施形態が図1の第1実施形態と異なる点は、溶存オゾン濃度計18が第2オゾン反応槽16の下流側(処理水出口あるいは、処理水出口近傍)に配置されている点である。
 したがって、最終的な被処理水LQの溶存オゾン濃度から、第2オゾン反応槽16において過酸化水素が不足しているか否かを判断し、過酸化水素の添加量を決定する。
 第1オゾン反応槽15における過酸化水素の消費量が通常想定している量(第1過酸化水素供給装置14において設定している通常時の過酸化水素HP1の量)より多くなると、第2オゾン反応槽16で添加されるオゾン化ガスOGに対して過酸化水素が不足してくる。この時、第1オゾン反応槽15の出口での溶存オゾン濃度と同様に第2オゾン反応槽16の出口における溶存オゾン濃度も過酸化水素が適量の場合よりも高い値となる。
 したがって、第2オゾン反応槽16の出口の溶存オゾン濃度を溶存オゾン濃度計18で測定し、指標とする。これにより、過酸化水素追加分(第2過酸化水素供給装置19における過酸化水素HP2)の注入要否を判断することができ、その添加量が決定できる。
 ここで、第2過酸化水素供給装置19で供給する過酸化水素の単位水量当たりの添加量である第2過酸化水素添加率Ad_PH_2の設定について説明する。
 上記第1実施形態においては、第1オゾン反応槽15に残存しているオゾン量に基づいて第2過酸化水素添加率Ad_PH_2を設定していたが、本第2実施形態では、第2オゾン反応槽16に残存しているオゾン量に基づいている。このため、溶存オゾン濃度計18で測定される溶存オゾン濃度DOは、第2過酸化水素供給装置19により過酸化水素が供給された後の第2オゾン反応槽16の被処理水LQにおける溶存オゾン濃度DOである。これは、溶存オゾン濃度DOがある閾値を超える場合は、第2過酸化水素添加率Ad_PH_2が低すぎたと言うことを意味している。従って、溶存オゾン濃度DOが閾値以下となるよう第2過酸化水素添加率Ad_PH_2の量をフィードバック制御すればよい。
 これにより、本第2実施形態によれば、第2オゾン反応槽16において第2散気ユニット23を介して添加されるオゾンに対しても不足しないよう過酸化水素追加分を必要に応じて添加することができ、過酸化水素の添加不足を回避できる。
[2.1]第2実施形態の変形例
 図5は、第2実施形態の変形例の第2実施形態の促進酸化水処理システムの概要構成説明図である。
 図5において、図4の第2実施形態と同様の部分には、同一の符号を付すものとする。
 上記第2実施形態においては、第1実施形態における導入流路17に導入された第1オゾン反応槽15を通過した被処理水の溶存オゾン濃度を測定する溶存オゾン濃度計18に代えて、溶存オゾン濃度計18が第2オゾン反応槽16の下流側(処理水出口あるいは、処理水出口近傍)に配置していた場合のものであった。これに対し、本変形例は、導入流路17に溶存オゾン濃度計18をつなぐ第1バルブ41と、第2オゾン反応槽16の下流側に溶存オゾン濃度計をつなぐ第2バルブ42と、を設けている。そして、制御装置25が第1バルブ41及び第2バルブ42を排他的に開状態あるいは閉状態とすることで溶存オゾン濃度計18を第1実施形態と同様の場合と、第2実施形態と同様の場合とで切り替えて用いることができ、より過酸化水素の追加分の制御を正確に行うことが可能となる。
[3]第3実施形態
 図6は、第3実施形態の促進酸化水処理システムの概要構成説明図である。
 図6において、図1の第1実施形態と異なる点は、溶存オゾン濃度計18に代えて過酸化水素濃度を測定して過酸化水素濃度測定信号Shpを出力する過酸化水素濃度計45を設置した点である。
 第1オゾン反応槽15において、過酸化水素の消費量が想定している量より多くなると、第2オゾン反応槽16において、第2散気ユニット23により添加されるオゾンに対して過酸化水素が不足することとなる。したがって、第1オゾン反応槽15の下流側の導入流路17において過酸化水素濃度が想定している通常時の濃度よりも低い値となる。
 そこで、本第3実施形態においては、制御装置25は、過酸化水素濃度計45で測定して出力された過酸化水素濃度測定信号Shpに対応する過酸化水素濃度を指標として、過酸化水素を追加供給すべきか否かを判断し、添加量を決定するのである。
 本第3実施形態によれば、過酸化水素の過不足を直接的に残存過酸化水素濃度から判別しているため、正確に過酸化水素の追加量の制御を行える。
[4]第4実施形態
 図7は、第4実施形態の促進酸化水処理システムの概要構成説明図である。
 図7において、図1の第1実施形態と異なる点は、流入流路12において、被処理水LQに励起光を照射して蛍光強度を測定し蛍光分析信号Sfaを出力する蛍光分析計50を備えている点である。
 ここで、蛍光分析計50は、励起光(波長345nm付近)に対する蛍光(波長425nm付近)の強度を測定し蛍光分析信号Sfaを出力している。
 この蛍光強度の測定は、例えば、促進酸化水処理システム10が、水道プロセスに適用される場合を考えると、取水した原料水の自然由来の有機物(フルボ酸様有機物などと言う)の量を測定することに相当する。すなわち、蛍光分析計50による測定結果は、有機物濃度の代表指標E260(吸光度)、TOC、トリハロメタン生成能などと相関があることとなる。
 これにより、制御装置25は、蛍光分析信号Sfaに対応する被処理水LQの蛍光強度で促進酸化処理における分解対象である水中有機物濃度を把握する。
 したがって、制御装置25は、得られた蛍光強度を指標としてオゾン化ガスOGの添加量を制御する。より詳細には、蛍光強度が大きい時には、オゾン化ガスOGの添加量を多くし、蛍光強度が小さい時にはオゾン化ガスOGの添加量を少なくするのである。
 具体的には、上述した方法と同様に、被処理水LQの蛍光強度に連動させてオゾン添加率Ad_O算出し、所定の比率K1に基づいて、第1過酸化水素添加率Ad_PH_1を算出する。
 また、第2過酸化水素添加率Ad_PH_2については、第1実施形態で上述したのと同様の方法を用いれば良い。
 さらに制御装置25は、蛍光分析計50の分析結果に基づくオゾン添加量に対する過酸化水素の添加量比は通常固定(一定)とする。例えば、モル比で1~5程度が望ましく、第2オゾン反応槽16で添加されるオゾンに対しても不足しないように、かつ過剰にならないようにその比が決定されるのが望ましい。なお、オゾン添加量に対する過酸化水素の添加量比は、水質など状況応じてオペレータが変更するように構成することも可能である。
 本第4実施形態によれば、被処理水LQの水中有機物濃度に基づいて、第1過酸化水素供給装置14において供給するオゾン濃度を決定した上で、さらに第1オゾン反応槽15の出口の溶存オゾン濃度を指標として、過酸化水素追加分(第2過酸化水素供給装置19で注入する過酸化水素HP2)の注入要否を判断し、注入が必要である場合には、過酸化水素の添加量を決定できる。したがって、第1オゾン反応槽15における過酸化水素供給量をより正確にして、より確実に第1オゾン反応槽15で促進酸化処理が行える。さらには、第2オゾン反応槽16における過酸化水素供給量を抑制しつつより確実に促進酸化処理を行うことができる。
[5]第5実施形態
 図8は、第5実施形態の促進酸化水処理システムの概要構成説明図である。
 本第5実施形態が図7の第4実施形態と異なる点は、第4の実施形態の構成に加えて、第1オゾン反応槽15の出口の被処理水LQに励起光を照射して蛍光強度を測定し、蛍光分析信号Sfa2を出力する蛍光分析計51を備え、蛍光分析計50が出力した蛍光分析信号Sfa1及び蛍光分析計51が出力した蛍光分析信号Sfa2に基づいて過酸化水素の供給量を制御している点である。ここで、蛍光分析計51は、蛍光分析計50と同様に、励起光(波長345nm付近)に対する蛍光(波長425nm付近)の強度を測定している。
 この構成によれば、制御装置25は、第1オゾン反応槽15及び第2オゾン反応槽16における促進酸化処理の状況を、蛍光分析計50が出力した蛍光分析信号Sfa1に対応する蛍光強度及び蛍光分析計51が出力した蛍光分析信号Sfa2に対応する蛍光強度の変化から把握し、オゾン化ガスOGの添加量をフィードバック制御する。
 この場合において、蛍光強度の変化として、蛍光分析信号Sfa1に対応する蛍光強度と蛍光分析信号Sfa2に対応する蛍光強度との比、すなわち、
   Sfa1/Sfa2
を求めて指標とするとよい。
 そして、得られた値が所定の一定値となるようにフィードバック制御を実施し、オゾン添加率Ad_Oを算出し、算出したオゾン添加率Ad_O及び比率K1に基づいて、第1過酸化水素添加率Ad_PH_1を算出する。
 さらに第2過酸化水素添加率Ad_PH_2については、第1実施形態で上述したのと同様の方法を用いれば良い。
 この場合において、オゾン化ガスOGの添加量に対する過酸化水素の添加量の比は通常固定(一定)とするが、オゾン化ガスOGの添加量に対する過酸化水素の添加量の比を水質など状況応じてオペレータが変更可能である。より詳細には、モル比で1/5程度が望ましく、第2オゾン反応槽16で添加されるオゾンに対しても不足しないように、かつ過剰にならないようにその比を決定する。すなわち、溶存オゾン濃度計18が出力した溶存オゾン濃度測定信号Sroに対応する第1オゾン反応槽15の出口の溶存オゾン濃度を指標として、過酸化水素追加分(第2過酸化水素供給装置の過酸化水素HP2)の注入要否を判断し、その添加量を決定できる。
 本第5実施形態によれば、第4実施形態の効果に加えて、第1オゾン反応槽15を通過して処理された後の被処理水LQの水中有機物濃度に基づいて、第2過酸化水素供給装置19において供給する過酸化水素HP2の注入要否及び添加量を決定できるので、第2オゾン反応槽16における過酸化水素供給量を抑制しつつ、より確実に促進酸化処理を行うことができる。
[6]第6実施形態
 図9は、第6実施形態の促進酸化水処理システムの概要構成説明図である。
 本第6実施形態は、第5の実施形態の構成において用いていた2台の蛍光分析計50,51を蛍光分析計50のみの1台とし、三方バルブ55を制御装置25により自動切替することにより、測定対象水を変更し、第5実施形態と同等の制御を実施するものである。
 このような構成が可能な理由は、蛍光分析計50は光学的な計測機器であり、測定に時間を要さないからであり、例えば、測定結果のふらつきを抑えるための移動平均などの平均化処理がなされたとしても数秒から長くて1分程度で測定できるからである。
 従って、第1オゾン反応槽15における被処理水LQの滞留時間が例えば5分程度以上であれば、水質の変化も5分程度の時間で生じるため、蛍光分析計50を1台設けるだけでバルブの自動切替で測定対象水を変更しても被処理水LQと第1オゾン反応槽15出口の蛍光強度を十分測定できる。上述の例の場合、第1オゾン反応槽15の滞留時間が5分であったので、三方バルブ切替タイミングを5分毎とすることで測定が可能となる。
[7]第7実施形態
 図10は、第7実施形態の促進酸化水処理システムの概要構成説明図である。
 本第7実施形態が第5実施形態と異なる点は、蛍光分析計51を第2オゾン反応槽16の出口の被処理水LQに励起光を照射して蛍光強度を測定し、蛍光分析信号Sfa2を出力するように構成した点である。
 本第7実施形態によれば、第1オゾン反応槽15及び第2オゾン反応槽16を一体としたオゾン反応槽における促進酸化処理の状況を、供給された被処理水LQの蛍光強度(蛍光分析信号Sfa1に相当)と、第2オゾン反応槽16出口の蛍光強度(蛍光分析信号Sfa2に相当)の変化から把握し、オゾン添加量をフィードバック制御できる。
 この場合においても、蛍光分析信号Sfa1に対応する蛍光強度/蛍光分析信号Sfa2に対応する蛍光強度を求めて指標とし、この値が所定の一定値となるようにフィードバック制御を実施する。
 この場合においては、第5実施形態と比較して、上記指標の値は、小さくなるとともに、オゾン化ガスの添加量を変化させてから上記指標に変化が現れるまでの時間は遅くなる。
[8]実施形態の変形例
 上記第4実施形態~第7実施形態においては、蛍光分析計50、さらに必要に応じて蛍光分析計51を用いていたが、蛍光分析計50,51に代えて吸光度計(例えば、波長260nmm付近)、またはTOC(Total Organic Carbon;全有機体炭素)計を設置するように構成することも可能である。
 この場合において、吸光度計を用いる場合には、蛍光強度よりも吸光度の感度が小さいため、その点を考慮して適用する必要がある。また、溶存オゾンも検出されるため、溶存オゾン濃度が高い部分の水を計測する場合には適していない。
 また、TOCKは、促進酸化処理により水中の有機物成分が十分に分解される場合はTOCが変化し、減少するので、適用が可能である。
 本実施形態の促進酸化水処理システム10の制御装置25は、例えば、MPUなどの制御装置と、ROM(Read Only Memory)やRAMなどの記憶装置と、SSD、HDD、CDドライブ装置などの外部記憶装置と、ディスプレイ装置などの表示装置と、キーボードやマウスなどの入力装置を備えて構成可能であり、通常のコンピュータを利用したハードウェア構成とされる。
 本実施形態の促進酸化水処理システム10の制御装置25で実行されるプログラムは、インストール可能な形式又は実行可能な形式のファイルでCD-ROM、DVD(Digital Versatile Disk)、USBメモリ装置等の半導体記憶装置等のコンピュータで読み取り可能な記録媒体に記録されて提供される。
 また、本実施形態の促進酸化水処理システム10の制御装置25で実行されるプログラムを、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせることにより提供するように構成しても良い。また、本実施形態の促進酸化水処理システム10の制御装置25で実行されるプログラムをインターネット等のネットワーク経由で提供または配布するように構成しても良い。
 また、本実施形態の促進酸化水処理システム10の制御装置25のプログラムを、ROM等に予め組み込んで提供するように構成してもよい。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (13)

  1.  オゾン及び過酸化水素を被処理水に添加し、オゾン反応槽中で前記被処理水中の処理対象物質の促進酸化処理を行う促進酸化水処理システムであって、
     前記被処理水のオゾン反応槽への導入前あるいは導入時に過酸化水素を供給する第1過酸化水素供給装置と、
     オゾンを含むオゾン化ガスを生成し、前記オゾン反応槽へ供給するオゾン生成装置と、
     前記オゾン反応槽において前記被処理水の流路中に過酸化水素を供給する第2過酸化水素供給装置と、
     前記オゾン反応槽における前記促進酸化処理中あるいは前記促進酸化処理後の前記被処理水に対応する処理指標を検出する測定装置と、
     前記処理指標に基づいて前記第2過酸化水素供給装置による過酸化水素の供給可否の判別及び供給量の設定を行い、前記第2過酸化水素供給装置の制御を行う制御装置と、
     を備えた促進酸化水処理システム。
  2.  前記オゾン反応槽は、複数のオゾン反応槽で構成され、
     前記測定装置は、少なくともいずれか一つのオゾン反応槽から導出された前記被処理水について前記処理指標を検出する、
     請求項1記載の促進酸化水処理システム。
  3.  相異なる検出位置で同一の前記処理指標を検出する一対の前記測定装置を備え、
     前記制御装置は、前記一対の測定装置の検出した前記処理指標の比に基づいて前記供給可否の判別及び前記供給量の設定を行う、
     請求項1又は請求項2記載の促進酸化水処理システム。
  4.  前記測定装置は、溶存オゾン濃度測定装置、過酸化水素濃度測定装置、蛍光分析計、吸光度計あるいはTOC計のいずれかである、
     請求項1乃至請求項3のいずれか一項記載の促進酸化水処理システム。
  5.  前記測定装置は、溶存オゾン濃度測定装置であり、
     前記制御装置は、前記処理指標としての溶存オゾン濃度に比例させて、前記過酸化水素の供給量を設定する、
     請求項1乃至請求項3のいずれか一項記載の促進酸化水処理システム。
  6.  前記測定装置は、過酸化水素濃度測定装置であり、
     前記制御装置は、前記処理指標としての過酸化水素濃度に反比例させて、前記過酸化水素の供給量を設定する、
     請求項1乃至請求項3のいずれか一項記載の促進酸化水処理システム。
  7.  前記測定装置は、前記処理指標として、前記被処理水中に含まれる有機物濃度に比例する蛍光強度を測定する蛍光分析計であり、
     前記制御装置は、前記蛍光強度に基づいて前記オゾン化ガスの供給量及び前記過酸化水素の供給量を設定する、
     請求項1乃至請求項3のいずれか一項記載の促進酸化水処理システム。
  8.  前記測定装置として、複数の測定箇所の前記蛍光強度を測定する一の蛍光分析計あるいはそれぞれ異なる測定箇所の前記蛍光強度を測定する複数の蛍光分析計を備え、
     前記制御装置は、複数の前記測定箇所の蛍光強度比に基づいて前記オゾン化ガスの供給量及び前記過酸化水素の供給量を設定する、
     請求項7記載の促進酸化水処理システム。
  9.  前記蛍光分析計は、励起波長について波長345nmを含む波長域とし、前記蛍光強度の測定波長について波長425nmを含む波長域とする、
     請求項7又は請求項8記載の促進酸化水処理システム。
  10.  前記測定装置は前記処理指標として、前記被処理水中に含まれる有機物濃度に比例する吸光度を測定する吸光度計であり、
     前記制御装置は、前記吸光度に基づいて前記オゾン化ガスの供給量及び前記過酸化水素の供給量を設定する、
     請求項1乃至請求項3のいずれか一項記載の促進酸化水処理システム。
  11.  前記測定装置として、複数の測定箇所の前記吸光度を測定する一の吸光度計あるいはそれぞれ異なる測定箇所の前記吸光度を測定する複数の吸光度計を備え、
     前記制御装置は、複数の前記測定箇所の吸光度比に基づいて前記オゾン化ガスの供給量及び前記過酸化水素の供給量を設定する、
     請求項10記載の促進酸化水処理システム。
  12.  前記吸光度計は、前記吸光度の測定波長について波長260nmを含む波長域とする、
     請求項10又は請求項11記載の促進酸化水処理システム。
  13.  オゾン及び過酸化水素を被処理水に添加し、オゾン反応槽中で前記被処理水中の処理対象物質の促進酸化処理を行う促進酸化水処理システムで実行される方法であって、
     前記被処理水のオゾン反応槽への導入前あるいは導入時に過酸化水素を供給する過程と、
     オゾンを含むオゾン化ガスを生成し、前記オゾン反応槽へ供給する過程と、
     前記オゾン反応槽における前記促進酸化処理中あるいは前記促進酸化処理後の前記被処理水に対応する処理指標を検出する過程と、
     前記処理指標に基づいて追加の過酸化水素の供給可否の判別及び供給量の設定を行う過程と、
     前記オゾン反応槽において前記被処理水の流路中に前記設定された供給量の過酸化水素を供給する過程と、
     を備えた方法。
PCT/JP2019/016061 2018-04-12 2019-04-12 促進酸化水処理システム及び方法 WO2019198831A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980008845.6A CN111615498A (zh) 2018-04-12 2019-04-12 促进氧化水处理系统及方法
CA3096823A CA3096823A1 (en) 2018-04-12 2019-04-12 Advanced oxidation water treatment system and method
US17/067,078 US20210024388A1 (en) 2018-04-12 2020-10-09 Advanced oxidation water treatment system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-076860 2018-04-12
JP2018076860A JP6952640B2 (ja) 2018-04-12 2018-04-12 促進酸化水処理システム及び方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/067,078 Continuation US20210024388A1 (en) 2018-04-12 2020-10-09 Advanced oxidation water treatment system and method

Publications (1)

Publication Number Publication Date
WO2019198831A1 true WO2019198831A1 (ja) 2019-10-17

Family

ID=68164306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016061 WO2019198831A1 (ja) 2018-04-12 2019-04-12 促進酸化水処理システム及び方法

Country Status (5)

Country Link
US (1) US20210024388A1 (ja)
JP (1) JP6952640B2 (ja)
CN (1) CN111615498A (ja)
CA (1) CA3096823A1 (ja)
WO (1) WO2019198831A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7408371B2 (ja) * 2019-12-13 2024-01-05 株式会社東芝 水処理システムおよび水処理方法
AR127651A1 (es) * 2021-11-18 2024-02-14 Dow Global Technologies Llc Sistemas y métodos para reducir contaminantes oxidables en un líquido
WO2024079836A1 (ja) * 2022-10-13 2024-04-18 株式会社島津製作所 処理装置、処理方法、および制御プログラム

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1133567A (ja) * 1997-07-25 1999-02-09 Meidensha Corp オゾン分解方法とその装置
JPH11290878A (ja) * 1998-02-16 1999-10-26 Japan Organo Co Ltd Toc成分除去の制御方法
JP2000202471A (ja) * 1999-01-11 2000-07-25 Ebara Corp 内分泌撹乱物質もしくは発ガン性物質を含有する汚水の処埋方法及び処理装置
JP2006272082A (ja) * 2005-03-28 2006-10-12 Takuma Co Ltd 超高度水処理方法及びそれに用いる水処理システム
JP2006272081A (ja) * 2005-03-28 2006-10-12 Takuma Co Ltd 超高度水処理方法及びそれに用いる水処理システム
JP2006281061A (ja) * 2005-03-31 2006-10-19 Fuji Electric Systems Co Ltd 促進酸化水処理方法における過酸化水素注入制御方法および装置
JP2007000767A (ja) * 2005-06-23 2007-01-11 Mitsubishi Electric Corp 水処理方法および水処理装置
JP2007083186A (ja) * 2005-09-22 2007-04-05 Toshiba Corp 水処理システム
JP2009000677A (ja) * 2007-05-21 2009-01-08 Japan Health Science Foundation 水処理用反応槽、水処理システム及び水処理方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1133567A (ja) * 1997-07-25 1999-02-09 Meidensha Corp オゾン分解方法とその装置
JPH11290878A (ja) * 1998-02-16 1999-10-26 Japan Organo Co Ltd Toc成分除去の制御方法
JP2000202471A (ja) * 1999-01-11 2000-07-25 Ebara Corp 内分泌撹乱物質もしくは発ガン性物質を含有する汚水の処埋方法及び処理装置
JP2006272082A (ja) * 2005-03-28 2006-10-12 Takuma Co Ltd 超高度水処理方法及びそれに用いる水処理システム
JP2006272081A (ja) * 2005-03-28 2006-10-12 Takuma Co Ltd 超高度水処理方法及びそれに用いる水処理システム
JP2006281061A (ja) * 2005-03-31 2006-10-19 Fuji Electric Systems Co Ltd 促進酸化水処理方法における過酸化水素注入制御方法および装置
JP2007000767A (ja) * 2005-06-23 2007-01-11 Mitsubishi Electric Corp 水処理方法および水処理装置
JP2007083186A (ja) * 2005-09-22 2007-04-05 Toshiba Corp 水処理システム
JP2009000677A (ja) * 2007-05-21 2009-01-08 Japan Health Science Foundation 水処理用反応槽、水処理システム及び水処理方法

Also Published As

Publication number Publication date
CN111615498A (zh) 2020-09-01
US20210024388A1 (en) 2021-01-28
JP2019181386A (ja) 2019-10-24
CA3096823A1 (en) 2019-10-17
JP6952640B2 (ja) 2021-10-20

Similar Documents

Publication Publication Date Title
WO2019198831A1 (ja) 促進酸化水処理システム及び方法
JP4673709B2 (ja) 水処理システム
KR20100062596A (ko) 순환 전해살균가능한 정수기
JP5142895B2 (ja) 液体処理装置
US20180265385A1 (en) Water treatment apparatus and water treatment method
JP2010179272A (ja) 廃水処理装置及び廃水処理方法
JP6911002B2 (ja) 水処理制御装置および水処理システム
KR102330266B1 (ko) 난분해성 유기물질 처리용 순환식 자외선 고도처리장치 및 방법
JP6847908B2 (ja) 水処理システム、水処理システム用の制御装置及び水処理方法
US11174181B2 (en) Accelerated oxidation treatment method and accelerated oxidation treatment device
JP4509644B2 (ja) オゾンガス注入制御システム
JP4660211B2 (ja) 水処理制御システム及び水処理制御方法
JP2007117849A (ja) オゾン処理システム
KR20070060314A (ko) 과산화수소-ct제어유닛을 이용한 고도산화공정의자동제어장치 및 제어방법
JP7408371B2 (ja) 水処理システムおよび水処理方法
KR20020007469A (ko) Ct제어를 이용한 오존공정과 고도산화공정의자동제어장치 및 방법
JP4331048B2 (ja) オゾンによる水処理制御システム
JP2006281061A (ja) 促進酸化水処理方法における過酸化水素注入制御方法および装置
KR101674984B1 (ko) 오존제어장치 및 오존제어방법
JP2005324121A (ja) 水処理方法および水処理装置
JP6749463B2 (ja) 促進酸化処理方法及び促進酸化処理装置
JP2003236566A (ja) 過酸化水素の残留濃度制御装置
JP4138618B2 (ja) 促進酸化処理方法および装置
JP2011121026A (ja) 水処理装置
JP2024013507A (ja) オゾン水処理システム及び方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19786074

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3096823

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19786074

Country of ref document: EP

Kind code of ref document: A1