WO2019198816A1 - 超音波溶着方法、超音波溶着方法で溶着した構造物、超音波溶着装置 - Google Patents

超音波溶着方法、超音波溶着方法で溶着した構造物、超音波溶着装置 Download PDF

Info

Publication number
WO2019198816A1
WO2019198816A1 PCT/JP2019/015975 JP2019015975W WO2019198816A1 WO 2019198816 A1 WO2019198816 A1 WO 2019198816A1 JP 2019015975 W JP2019015975 W JP 2019015975W WO 2019198816 A1 WO2019198816 A1 WO 2019198816A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
pair
tool horn
resin materials
pressing
Prior art date
Application number
PCT/JP2019/015975
Other languages
English (en)
French (fr)
Inventor
茂 小栢
松岸 則彰
Original Assignee
精電舎電子工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 精電舎電子工業株式会社 filed Critical 精電舎電子工業株式会社
Priority to JP2020513462A priority Critical patent/JP6758012B2/ja
Priority to US17/046,376 priority patent/US11214012B2/en
Priority to CN201980025720.4A priority patent/CN112074400A/zh
Priority to EP19785641.2A priority patent/EP3778196A4/en
Publication of WO2019198816A1 publication Critical patent/WO2019198816A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
    • B29C65/081Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations having a component of vibration not perpendicular to the welding surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/10Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating making use of vibrations, e.g. ultrasonic welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/50Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like
    • B29C65/5042Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like covering both elements to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/50Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like
    • B29C65/5064Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like of particular form, e.g. being C-shaped, T-shaped
    • B29C65/5071Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like of particular form, e.g. being C-shaped, T-shaped and being composed by one single element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/50Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like
    • B29C65/5064Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like of particular form, e.g. being C-shaped, T-shaped
    • B29C65/5078Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like of particular form, e.g. being C-shaped, T-shaped and being composed by several elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/50Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like
    • B29C65/5064Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like of particular form, e.g. being C-shaped, T-shaped
    • B29C65/5085Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like of particular form, e.g. being C-shaped, T-shaped and comprising grooves, e.g. being E-shaped, H-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7841Holding or clamping means for handling purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/003Protecting areas of the parts to be joined from overheating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • B29C66/1142Single butt to butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/116Single bevelled joints, i.e. one of the parts to be joined being bevelled in the joint area
    • B29C66/1162Single bevel to bevel joints, e.g. mitre joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/13Single flanged joints; Fin-type joints; Single hem joints; Edge joints; Interpenetrating fingered joints; Other specific particular designs of joint cross-sections not provided for in groups B29C66/11 - B29C66/12
    • B29C66/131Single flanged joints, i.e. one of the parts to be joined being rigid and flanged in the joint area
    • B29C66/1312Single flange to flange joints, the parts to be joined being rigid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/22Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being in the form of recurring patterns
    • B29C66/223Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being in the form of recurring patterns being in the form of a triangle wave or of a sawtooth wave, e.g. zigzagged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/22Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being in the form of recurring patterns
    • B29C66/225Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being in the form of recurring patterns being castellated, e.g. in the form of a square wave or of a rectangular wave
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/24Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight
    • B29C66/242Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours
    • B29C66/2422Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours being circular, oval or elliptical
    • B29C66/24221Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours being circular, oval or elliptical being circular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/301Three-dimensional joints, i.e. the joined area being substantially non-flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/305Decorative or coloured joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/306Applying a mark during joining
    • B29C66/3062Applying a mark during joining in the form of letters or numbers
    • B29C66/30621Applying a mark during joining in the form of letters or numbers in the form of letters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/348Avoiding melting or weakening of the zone directly next to the joint area, e.g. by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/349Cooling the welding zone on the welding spot
    • B29C66/3492Cooling the welding zone on the welding spot by means placed on the side opposed to the welding tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/349Cooling the welding zone on the welding spot
    • B29C66/3494Cooling the welding zone on the welding spot while keeping the welding zone under pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5346Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/65General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles with a relative motion between the article and the welding tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7311Thermal properties
    • B29C66/73115Melting point
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/733General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence
    • B29C66/7332General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being coloured
    • B29C66/73321General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being coloured both parts to be joined being coloured
    • B29C66/73322General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being coloured both parts to be joined being coloured both parts to be joined having a different colour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/735General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the extensive physical properties of the parts to be joined
    • B29C66/7352Thickness, e.g. very thin
    • B29C66/73521Thickness, e.g. very thin of different thickness, i.e. the thickness of one of the parts to be joined being different from the thickness of the other part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81411General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat
    • B29C66/81415General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat being bevelled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81411General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat
    • B29C66/81421General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat being convex or concave
    • B29C66/81422General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat being convex or concave being convex
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81433General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined being toothed, i.e. comprising several teeth or pins, or being patterned
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81433General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined being toothed, i.e. comprising several teeth or pins, or being patterned
    • B29C66/81435General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined being toothed, i.e. comprising several teeth or pins, or being patterned comprising several parallel ridges, e.g. for crimping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/818General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the cooling constructional aspects, or by the thermal or electrical insulating or conducting constructional aspects of the welding jaws or of the clamps ; comprising means for compensating for the thermal expansion of the welding jaws or of the clamps
    • B29C66/8181General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the cooling constructional aspects, or by the thermal or electrical insulating or conducting constructional aspects of the welding jaws or of the clamps ; comprising means for compensating for the thermal expansion of the welding jaws or of the clamps characterised by the cooling constructional aspects
    • B29C66/81811General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the cooling constructional aspects, or by the thermal or electrical insulating or conducting constructional aspects of the welding jaws or of the clamps ; comprising means for compensating for the thermal expansion of the welding jaws or of the clamps characterised by the cooling constructional aspects of the welding jaws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/836Moving relative to and tangentially to the parts to be joined, e.g. transversely to the displacement of the parts to be joined, e.g. using a X-Y table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • B29C66/91231Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature of the joining tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91421Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the joining tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/922Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by measuring the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/9221Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by measuring the pressure, the force, the mechanical power or the displacement of the joining tools by measuring the pressure, the force or the mechanical power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/922Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by measuring the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/9231Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by measuring the pressure, the force, the mechanical power or the displacement of the joining tools by measuring the displacement of the joining tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/924Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/9261Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the displacement of the joining tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/929Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools characterized by specific pressure, force, mechanical power or displacement values or ranges
    • B29C66/9292Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools characterized by specific pressure, force, mechanical power or displacement values or ranges in explicit relation to another variable, e.g. pressure diagrams
    • B29C66/92921Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools characterized by specific pressure, force, mechanical power or displacement values or ranges in explicit relation to another variable, e.g. pressure diagrams in specific relation to time, e.g. pressure-time diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/96Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process
    • B29C66/961Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process involving a feedback loop mechanism, e.g. comparison with a desired value
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2795/00Printing on articles made from plastics or substances in a plastic state
    • B29C2795/002Printing on articles made from plastics or substances in a plastic state before shaping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0079Liquid crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0012Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular thermal properties
    • B29K2995/0016Non-flammable or resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/14Filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/7418Suitcases

Definitions

  • the present invention relates to an ultrasonic welding method, ultrasonic welding, in which a tool horn that vibrates ultrasonically is directly or indirectly pressed between two thermoplastic resin materials, or indirectly by inserting another thermoplastic resin material in between. More particularly, regarding the structure welded by the welding method and the ultrasonic welding apparatus, the positional spacing and positional relationship of the end faces of the pair of thermoplastic resin materials kept the same before and after the ultrasonic welding, The present invention relates to an ultrasonic welding method that maintains the same state so that the anvil side surface of a plastic resin material is not burned and discolored before and after ultrasonic welding, a structure that is welded by an ultrasonic welding method, and an ultrasonic welding apparatus.
  • the brand nameplate 100 is made of two different colors of thermoplastic resin plates, and any combination of two colors, for example, a white plate 10 and a red plate 11 is selected according to the purchaser's preference.
  • any two types of pattern combinations may be selected and pasted. Even if the suitcase 200 is not attached with an original identification sticker or an original band, it can be identified whether it belongs to one's own or another. However, it is not easy to make a beautiful brand nameplate by welding thermoplastic resin plates with two different colors or two kinds of patterns.
  • Patent Document 1 Japanese Patent Document 1
  • the pair of thermoplastic resin materials placed on the anvil are welded in a state where the end faces are in contact with each other, for example, as shown in FIGS. 52A and 52B, the pair of thermoplastic resin materials 10 and 11 is placed on the anvil 70.
  • the lower surface of the other thermoplastic resin material 12 is superimposed on the abutted end surfaces, and the other heat
  • a tool horn 20 that vibrates ultrasonically from above the upper surface of the plastic resin material 12 in the vertical direction of the figure (perpendicular to the surface of the thermoplastic resin material 12).
  • thermoplastic resin material 10 will be described as a “white plate” and the thermoplastic resin material 11 will be described as a “red plate” for the sake of simplicity, but the thermoplastic resin materials 10 and 11 are super As long as it generates heat and melts when sonic vibration is applied, the hardness, thickness, shape, color, pattern, transparency, material, etc. are arbitrary.
  • thermoplastic resin materials 10, 11, and 12 are placed on the anvil 70.
  • FIG. 53 (b) shows a partial cross-sectional view of the state after welding of the thermoplastic resin materials 10, 11, and 12, and FIG. 53 (d) shows welding of the thermoplastic resin materials 10, 11, and 12 Shown later.
  • FIG. 54 shows a perspective view of the thermoplastic resin materials 10, 11, and 12 after the welding operation.
  • a rectangular recess 12 c is formed on the surface of the thermoplastic resin material 12.
  • FIG. 55 shows a perspective view when the front and back surfaces of the thermoplastic resin materials 10, 11, 12 after welding are reversed from the state of FIG. 54.
  • the position interval (S) between the butted end surfaces of the pair of thermoplastic resin materials 10 and 11 is not a uniform position interval (S1) as before the welding, It spreads in the position interval (S2) in the vicinity. If the space between the character parts spreads, the positional relationship between the character parts will change, and the characters will collapse.
  • the portion (G) that generates heat due to the welding of the surface (P) printed with the letters “ABC” is burnt and discolored.
  • the tool horn 20 is ultrasonically vibrated longitudinally toward the thermoplastic resin materials 10, 11, and 12 to overlap the thermoplastic resin materials 10, 11, and 12.
  • the pressing force is applied while applying ultrasonic vibration energy so as to strike the entire part. Therefore, the molten thermoplastic resin materials 10, 11, and 12 are inserted between the end surfaces (S) where the pair of thermoplastic resin materials 10, 11 are abutted. Then, depending on the location, the gap between the end faces of the pair of thermoplastic resin materials 10 and 11 (S) becomes wider as the position interval (S2) than the position interval (S1) before welding, and the positional relationship changes. In some cases, the finished state of the end face deteriorates and a certain level of finished quality cannot be obtained.
  • thermoplastic resin materials 10, 11, 12 since ultrasonic vibration energy is sent from the tool horn 20 in the thickness direction of the thermoplastic resin materials 10, 11, 12, the thermoplastic resin materials 10, 11, 12 immediately below the pressing surface of the tool horn 20. The entire part where the overlaps generates heat. Therefore, if the ultrasonic vibration energy is applied too much, the surfaces (P) of the thermoplastic resin materials 10 and 11 in contact with the anvil may be burned and discolored. As shown in FIG. 55, when the characters “ABC” and other printings were made on the surfaces (P) of the thermoplastic resin materials 10 and 11, the poor finished state was conspicuous.
  • the present invention can maintain the same positional interval and positional relationship between the end faces of a pair of thermoplastic resin materials before and after ultrasonic welding when ultrasonic welding is performed.
  • the structure on the anvil side of a pair of thermoplastic resin materials can be kept the same before and after ultrasonic welding.
  • An object is to provide a sonic welding apparatus.
  • the structure welded by the ultrasonic welding method and the ultrasonic welding apparatus a pair of thermoplastic resin materials are placed on the anvil, and the upper surface of the pair of thermoplastic resin materials is mounted.
  • a pressing force of a tool horn that is ultrasonically vibrated in a direction along the surface that is not vertical and by applying ultrasonic vibration energy, the vicinity of the upper surface of the pair of thermoplastic resin materials is melted to form a welding structure.
  • the portion is generated on the non-welded structure portion, and the pair of thermoplastic resin materials are welded in a structure in which the weld structure portion is stacked on the non-welded structure portion.
  • the ultrasonic vibration energy is supplied from the pressing surface of the tool horn in the direction along the surface of the pair of thermoplastic resin materials, and does not go in the thickness direction of the pair of thermoplastic resin materials. Therefore, heat is generated near the surface of the thermoplastic resin material with which the pressing surface of the tool horn comes into contact, but heat generation is small near the surface of the thermoplastic resin material on the anvil side.
  • the molten thermoplastic resin material is in the vicinity of the surface of the thermoplastic resin material on the side where the pressing surface of the tool horn comes into contact, and does not break between the end surfaces of the pair of thermoplastic resin materials. The positional relationship is maintained, and there is little heat generation near the surface of the thermoplastic resin material on the anvil side, and the surface is not burned and discolored.
  • thermoplastic resin materials are kept the same as before ultrasonic welding, and Even if welding is performed, the surface state where the other thermoplastic resin materials of the pair of thermoplastic resin materials are not in contact with each other is kept the same as before the ultrasonic welding.
  • the mutual positional interval and positional relationship between the end faces of a pair of thermoplastic resin materials can be kept the same as before ultrasonic welding.
  • Ultrasonic welding method that can keep the state of the surface of anvil side of a pair of thermoplastic resin materials the same as before ultrasonic welding when ultrasonic welding, structure welded by ultrasonic welding method, and ultrasonic A welding apparatus can be provided.
  • the amount of depression of the pressing surface of the tool horn of the second embodiment of the present invention, the pressing force, the direction of the vertical movement operation, and the time relationship (timing) of the ultrasonic vibration driving state are expressed as follows.
  • thermoplastic resin material which made a pair of L-shaped cross section The figure which showed the positional relationship of the thermoplastic resin material which made a pair of L-shaped cross section, and the tool horn of the ultrasonic welding apparatus concerning 6th embodiment of this invention.
  • thermoplastic resin material which made a pair of L-shaped cross section The figure which showed the positional relationship of the thermoplastic resin material which made a pair of L-shaped cross section, and the tool horn of the ultrasonic welding apparatus concerning 6th embodiment of this invention.
  • Sectional drawing of the welding structure part vicinity of the structure welded with the welding method concerning 8th embodiment of this invention The principal part front view of the ultrasonic welding apparatus concerning the modification 1 of 8th embodiment of this invention. Sectional drawing of the welding structure part vicinity of the structure welded with the welding method concerning the modification 1 of the 8th embodiment of this invention. (A) (b) (c) (d) The figure which showed the state welded, moving a tool horn to the left and right on a pair of thermoplastic resin material of the modification 1 of the 8th embodiment of this invention. .
  • the front view of the ultrasonic welding apparatus concerning the modification 2 of 8th embodiment of this invention Sectional drawing of the welding structure part vicinity of the structure welded with the welding method concerning the modification 2 of the 8th embodiment of this invention.
  • the flowchart (flow diagram) which showed the procedure which performs a welding operation
  • the perspective view which showed the inclination of the press surface of a tool horn seen from the front end side of the tool horn of the 12th embodiment of this invention.
  • (A) (b) (c) The figure which showed the inclination of the press surface of a tool horn seen from the front end side of the tool horn of 12th embodiment of this invention.
  • the figure which showed the state which welded the white fitting part on the white board with the ultrasonic welding apparatus of 13th embodiment of this invention (A) (b) The figure which showed the state which welded the white fitting part on the white board with the ultrasonic welding apparatus of 13th embodiment of this invention, (c) (d) of this invention The figure which showed the white board and white fitting part which were welded with the ultrasonic welding apparatus of 13th embodiment.
  • the front view which showed the state which welded the heat-resistant film and the heat-resistant ring with the ultrasonic welding apparatus of 14th embodiment of this invention in a partial cross section.
  • the principal part enlarged view which showed the state which has welded the heat-resistant film and the heat-resistant ring with the ultrasonic welding apparatus of 14th embodiment of this invention.
  • the perspective view which showed the heat-resistant filter and heat-resistant ring of 15th embodiment of this invention.
  • the transition diagram which showed the procedure which welds a heat-resistant filter and a heat-resistant ring with the ultrasonic welding apparatus of 15th embodiment of this invention.
  • FIG. 1A and FIG. 1B show a positional relationship between a pair of thermoplastic resin materials, another thermoplastic resin material, and a tool horn of the ultrasonic welding apparatus according to the first embodiment of the present invention.
  • FIG. 1B the lower surfaces of the pair of thermoplastic resin materials 10 and 11 are placed on the anvil 70 (not shown), and the end surfaces of the pair of thermoplastic resin materials 10 and 11 are butted together.
  • the lower surface of another thermoplastic resin material 12 is overlaid on the end surface. This is the same as FIG. 52B of the conventional example.
  • the tool horn 30 that ultrasonically vibrates in the direction along the upper surface from the upper surface of another thermoplastic resin material 12 (the horizontal direction with respect to the surface of the thermoplastic resin material 12) is pressed. ing.
  • the present invention will be described using this positional relationship as a basic form.
  • the vibration direction of the tool horn 30 in FIG. 1 is different from that in FIGS.
  • the vibration direction of the tool horn 30 is ultrasonically oscillated in one direction (parallel to the surface) along the surfaces of the pair of thermoplastic resin materials 10 and 11 and the other thermoplastic resin material 12.
  • one thermoplastic resin material 10 to be abutted is a white plate
  • the other thermoplastic resin material 11 is a red plate.
  • the tool horn 30 in the first embodiment is ultrasonically vibrated in a linear direction that intersects the butted surfaces of the pair of thermoplastic resin materials 10 and 11 as one direction along the upper surface of the thermoplastic resin material. If the ultrasonic vibration energy is transmitted in one direction (parallel to the surface) along the surface of the thermoplastic resin material 10, 11, 12, the welding operation is performed for the angle of the butt surface and the one direction. If necessary, they may intersect at a predetermined angle or may be parallel.
  • FIG. 2 shows a front view of the ultrasonic welding apparatus according to the first embodiment of the present invention.
  • the configuration of the ultrasonic welding apparatus in FIG. 2 is that the anvil 70 on which the pair of thermoplastic resin materials 10 and 11 and the other thermoplastic resin material 12 are placed, and the end faces of the pair of thermoplastic resin materials 10 and 11 are abutted.
  • the tool horn 30 that presses the vicinity of the portion from above the other thermoplastic resin material 12, and the pressing surface of the tool horn 30 along the surfaces of the pair of thermoplastic resin materials 10 and 11 and the other thermoplastic resin material 12.
  • Ultrasonic vibration means 37 for ultrasonic vibration in one direction Ultrasonic vibration control means 38, support means 80 for the tool horn 30, and vertical movement means 81 for moving the tool horn 30 up and down together with the support means 80, , A support column 70a and a mounting portion 70b for vertical movement means.
  • the tool horn 30 is made of a material such as titanium or duralumin, and a right-handed rectangular parallelepiped pressing part, a central curved truncated cone-shaped connecting part, and a left cylindrical base part are integrated.
  • An ultrasonic vibration means 37 using a piezoelectric element such as a piezo vibrator is attached to the end face of the left cylindrical base.
  • the tool horn 30 of the present embodiment is tapered in a conical shape from the cylindrical base to the tip, and a rectangular parallelepiped pressing portion is formed at the tip.
  • the said press part gives pressing force to the thermoplastic resin material 12 by making the lower surface which is a thermoplastic resin side (anvil side) into a press surface.
  • the pressing portion of the tool horn 30 causes ultrasonic vibration with an amplitude of several tens of ⁇ m and a frequency of about 20 kHz to 40 kHz by an ultrasonic vibration control means 38 described later. .
  • the lower surface of the pressing portion of the tool horn 30 is used as a pressing surface.
  • a support column 70a is integrally provided on the left side of the anvil 70, and a mounting portion 70b for vertical movement means is provided on the support column 70a.
  • An air press which is the vertical movement means 81 is attached downward to the vertical movement means mounting portion 70b.
  • the support means 80 of the tool horn 30 is fixed and attached to the tip of the actuator that moves up and down of the air press.
  • the left side portion of the support means 80 of the tool horn 30 is in sliding contact with the sliding guide portion of the column 70a.
  • the ultrasonic vibration control means 38 of the tool horn 30 indicated by a broken line in the column 70 a has a control signal line and a power supply line connected to the ultrasonic vibration means 37.
  • the pressing surface of the tool horn 30 ultrasonically vibrates in one direction along the surfaces of the pair of thermoplastic resin materials 10 and 11 and the other thermoplastic resin material 12.
  • the pressing surface of the tool horn 30 presses the vicinity of the end face of the pair of thermoplastic resin materials 10 and 11 from above the other thermoplastic resin material 12
  • a pair of other thermoplastic resin materials 12 and a pair of Ultrasonic vibration energy is applied in the vicinity of the portion where the end faces of the thermoplastic resin materials 10 and 11 are abutted.
  • the thermoplastic resin materials 10, 11, and 12 are welded through processes of heat generation, melting, cooling, and solidification. A recess is formed on the other thermoplastic resin material 12.
  • FIG. 3 (a) shows ultrasonic vibration of the ultrasonic welding apparatus according to the first embodiment of the present invention using a tool horn 30 with respect to a pair of thermoplastic resin materials 10 and 11 and another thermoplastic resin material 12.
  • FIG. The positional relationship in a state where energy is applied is shown.
  • the pressing surface of the tool horn 30 presses the upper surface of the other thermoplastic resin material 12 placed on the pair of thermoplastic resin materials 10 and 11 with which the end surfaces are abutted, and the ultrasonic vibration energy in the horizontal direction of the drawing. Is transmitted to the upper surface of another thermoplastic resin material 12.
  • the pressing surface of the tool horn 30 descends as indicated by a white line arrow while rubbing the upper surface of the other thermoplastic resin material 12 in the horizontal direction of the paper surface, and the other thermoplastic resin material 12 is removed.
  • the upper surface is melted to form the recess 12c.
  • the thermoplastic resin over the width direction (W2) wider than the width (H1) of the pressing surface of the tool horn 30 at the contact surface between the other thermoplastic resin material 12 and the pair of thermoplastic resin materials 10, 11. Melt the material.
  • FIG. 3C when the tool horn 30 is ultrasonically vibrated for a predetermined time and then raised to stop the ultrasonic vibration, the melted portion is cooled and solidified to complete the welding.
  • FIG.3 (c) is the figure which showed a part in cross section about a pair of thermoplastic resin material after welding and other thermoplastic resin materials concerning 1st embodiment of this invention.
  • FIG. 3D is a view showing the appearance of a pair of thermoplastic resin materials and other thermoplastic resin materials after welding.
  • the ultrasonic vibration energy is supplied from the pressing surface of the tool horn 30 in the direction along the surfaces of the pair of thermoplastic resin materials 10 and 11, that is, horizontally in the drawing of FIG. It does not go in the vertical direction, that is, downward in FIG. For this reason, the vicinity of the surface of the thermoplastic resin material 12 with which the pressing surface of the tool horn 30 abuts often generates heat, but the vicinity of the surface of the thermoplastic resin materials 10 and 11 on the anvil side generates little heat.
  • the molten thermoplastic resin material is in the vicinity of the surface of the thermoplastic resin material 12 on the side where the pressing surface of the tool horn 30 abuts, and can be inserted between the end surfaces of the pair of thermoplastic resin materials 10 and 11 that are abutted with each other. Absent. Further, the vicinity of the surface of the thermoplastic resin materials 10 and 11 on the anvil side generates little heat, and the surface is not burned or discolored.
  • the mutual position interval between the end faces of the pair of thermoplastic resin materials 10 and 11 is the same as that before ultrasonic welding.
  • the surface state where the other thermoplastic resin materials 12 of the pair of thermoplastic resin materials 10 and 11 do not contact each other can be kept the same as before ultrasonic welding. It has realized what it can do.
  • FIG. 4 is a perspective view of the thermoplastic resin materials 10, 11, 12 after welding work, which is a structure welded using the ultrasonic welding method and apparatus according to the first embodiment of the present invention.
  • a concave portion 12 c is formed on the upper surface of another thermoplastic resin material 12.
  • the thermoplastic resin material 12 removed when forming the recess 12c is raised around the recess 12c.
  • the melted thermoplastic resin material is abutted by the pair of thermoplastic resin materials 10 and 11 from the vicinity of the surface of the thermoplastic resin material 12 on the side where the pressing surface of the tool horn 30 abuts to the anvil side with less heat generation. There is no interruption between the end faces.
  • FIG. 5 the front and back of the thermoplastic resin materials 10 and 11 after the welding operation, which is a structure welded using the ultrasonic welding method and apparatus according to the first embodiment of the present invention, are reversed during welding.
  • the printed surface (P) of the letter “ABC” that was on the anvil side is shown as a perspective view.
  • the position interval (S1) of the gap (S) between the abutted end faces of the pair of thermoplastic resin materials 10 and 11 is uniform and the same as before welding.
  • the printed surface of the characters “ABC” does not become high temperature, does not burn, and is not discolored.
  • the character “ABC” is a golden character (Le) in this embodiment, but the character itself is not discolored.
  • the gap (S) between the end surfaces of the pair of thermoplastic resin materials 10 and 11 is illustrated as an image having a gap of a predetermined dimension of 1 mm or less, but the gap (S) is illustrated.
  • the setting of is a value determined as necessary. Therefore, as illustrated in FIG. 6B later, the end surfaces of the pair of thermoplastic resin materials 40 and 41 may be adhered, that is, the gap (S) may be zero, or may be widened.
  • thermoplastic resin materials 40 and 41 which are structures welded using the ultrasonic welding method and apparatus according to the second embodiment of the present invention in FIG.
  • the positional relationship between the thermoplastic resin material 50 and the tool horn 35 is shown.
  • the tool horn 35 in the present embodiment has irregularities formed on the pressing surface. Therefore, the surface of the recess 50c has unevenness corresponding to the unevenness of the pressing surface of the tool horn 35.
  • the ultrasonic vibration energy from the tool horn 35 is applied in one direction along the upper surface of the thermoplastic resin material 50. Therefore, heat is generated from the surface of the thermoplastic resin material 50 with which the pressing surface of the tool horn 35 abuts to the point where the thermoplastic resin material 50 and the thermoplastic resin materials 40 and 41 are in contact with each other. Near the surface of the plastic resin materials 40 and 41, there is little heat generation.
  • the molten thermoplastic resin material is in the vicinity of the surface of the thermoplastic resin material 50 with which the pressing surface of the tool horn 35 abuts and the contact surface between the thermoplastic resin material 50 and the thermoplastic resin materials 40 and 41, The pair of thermoplastic resin materials 40 and 41 cannot be interrupted between the end faces. In addition, the vicinity of the surface of the thermoplastic resin materials 40 and 41 on the anvil side generates little heat, and the surface is not burned and discolored.
  • FIG. 6B shows a brand name plate in which a pattern of ⁇ mark and ⁇ mark is displayed on P (character face) instead of the letter “ABC”.
  • the structure welded by the ultrasonic welding method and the ultrasonic welding apparatus when ultrasonic welding is performed, the mutual position interval between the end faces of the pair of thermoplastic resin materials is abutted. It can be kept the same as before ultrasonic welding. Moreover, the state of the anvil side surface of a pair of thermoplastic resin materials can be kept the same as before ultrasonic welding.
  • the pressing surface of the tool horn 30 is a rectangular plane.
  • the pressing surface of the tool horn 35 is a concave portion and a convex surface. The surface was uneven. If the pressing surface is an uneven surface where the concave surface portion and the convex surface portion repeat, the thermoplastic resin pushed away by the convex surface portion easily moves to the space of the concave surface portion adjacent to the convex surface portion. If the pressing surface of the tool horn is a rectangular flat surface, the entire rectangular flat surface will sink into the recess, and a large pressing force will be required, but the pressing surface will be replaced with an uneven surface where the concave and convex portions repeat. For example, since the pressing force that pushes the convex portion is sufficient, the welding operation proceeds with a small pressing force.
  • FIG. 7 shows a partially enlarged perspective view of the pressing portion of the tool horn of the second embodiment of the present invention.
  • FIG. 8A shows the state of the moment when welding is started with the tool horn of the second embodiment of the present invention
  • FIG. 8B shows the moment when welding is completed with the tool horn of the second embodiment of the present invention. I showed the situation.
  • the pressing surface of the tool horn 35 is an uneven surface where the concave surface portion and the convex surface portion repeat, and the step difference between the concave surface portion and the convex surface portion of the pressing surface is 2 ⁇ h as shown in FIG. 8A.
  • the thermoplastic resin in the portion where the convex surface portion of the pressing surface of the tool horn 35 is in contact starts to melt.
  • the thermoplastic resin can be melted with a small pressing force.
  • thermoplastic resin material displaced by the convex surface portion rises to the concave surface portion of the pressing surface of the tool horn 35 by ⁇ h.
  • An arrow was described in the figure to show that the thermoplastic resin material that the convex surface portion was displaced moved to the concave surface portion.
  • both the convex surface portion and the concave surface portion of the pressing surface of the tool horn 35 that is, the entire pressing surface of the tool horn 35 hits the thermoplastic resin material
  • the same area as when the pressing surface of the tool horn 35 is a rectangular flat surface. Entering the stage of pushing down the thermoplastic resin material. Until the convex portion of the pressing surface of the tool horn 35 is subtracted by ⁇ h, the thermoplastic resin can be melted with a small pressing force.
  • both the convex surface portion and the concave surface portion of the pressing surface of the tool horn 35 that is, the entire pressing surface of the tool horn 35 hits the thermoplastic resin material
  • the load resistance increases, and a large pressing force is required.
  • thermoplastic resin material 50 is melted.
  • the pair of thermoplastic resin materials 40 and 41 under the thermoplastic resin material 50 are also melted together.
  • the ultrasonic vibration may be stopped at this time, and the welding may be performed by cooling and solidifying. At this time, welding work can be performed with a small pressing force.
  • the tool horn 35 is turned upside down upon detecting that the entire pressing surface of the tool horn 35 has hit the thermoplastic resin material and the load resistance is increased, a small pressing force is required. The welding operation can be completed simply by applying pressure.
  • the shape after welding of the recess 50c in FIG. 6A is such that both the convex surface portion and the concave surface portion of the pressing surface of the tool horn 35, that is, the entire pressing surface of the tool horn 35 hit the thermoplastic resin material. It shows a state when a thermoplastic resin material having the same area as that when the pressing surface is a rectangular flat surface is pressed down and welded. In this way, a strong welding force can be obtained.
  • the horizontal axis represents the amount by which the tip of the pressing surface of the tool horn 35 sinks into the thermoplastic resin material
  • the vertical axis represents the pressing force required for the tool horn 35 to push the thermoplastic resin material
  • the direction of the vertical movement of the tool horn 35 and the ON / OFF state of the ultrasonic vibration drive are shown.
  • FIG. 9 shows the relationship between the timing of the sinking into the thermoplastic resin material, the pressing force, the direction of the vertical movement of the tool horn, and the ON / OFF state of the ultrasonic vibration drive.
  • ultrasonic vibration is first started, and when the tool horn 35 starts to descend, the convex portion of the pressing surface of the tool horn 35 comes into contact with the thermoplastic resin material 50 at the timing indicated by the subtraction amount t ⁇ b> 1. start.
  • the convex surface portion starts to sink into the thermoplastic resin material 50
  • the pressing force gradually increases from zero as the sinking amount increases.
  • all of the convex portion sinks and the concave portion comes into contact with the thermoplastic resin material 50. If the sinking amount is stopped at the timing indicated by t2 and the tool horn 35 is stopped from descending and inverted, the welding operation can be completed simply by sinking the convex surface portion into the thermoplastic resin material 50.
  • the tool horn is lowered until the pressing force reaches a predetermined level after the timing indicated by t2, for example, indicated by t3. If the timing of the tool horn 35 is stopped at the timing and then reversed, the convex surface portion and the concave surface portion are submerged in the thermoplastic resin material 50 and the welding operation can be completed.
  • FIG. 10 is a flowchart showing an example of the welding procedure.
  • the procedure of the welding operation when (1) only the convex surface part is submerged and (2) the convex surface part and the concave surface part are submerged by a predetermined amount is selected. Shown in the flowchart.
  • the welding operation shown in the flowchart is executed under the control of the ultrasonic vibration control means 38, for example.
  • step ST1 As an initial procedure, as the amount of subsidence, either (1) whether only the convex surface part is subducted or (2) whether the convex surface part and the concave surface part are subducted by a predetermined amount is selected.
  • step ST2 welding work is started
  • step ST3 the tool horn 35 is vibrated ultrasonically and lowered toward the upper surface of the thermoplastic resin material.
  • the pressing force required for the tool horn 35 to push the thermoplastic resin material 50 gradually increases.
  • the pressing force (F0) exceeds the predetermined pressing force (F1).
  • step ST4 When the pressure sensor (not shown) detects that the pressing force (F0) exceeds the pressing force (F1) (step ST4), if the selection of step ST1 is “sink only the convex portion” (YES in step ST5) ) The vertical movement operation of the tool horn 35 is reversed from the lowering operation to the upper surface of the thermoplastic resin material 50 to the raising operation, and is raised (step ST7). Thereafter, the ultrasonic vibration drive of the tool horn 35 is turned off, and the welding operation is completed (step ST8). Thus, only the convex portion of the pressing surface of the tool horn 35 can be submerged in the thermoplastic resin material 50.
  • step ST5 When it is selected and input that the convex portion and the concave portion are depressed by a predetermined amount (No in Step ST5), while the pressing force (F0) does not exceed the predetermined pressing force (F2) (YES in Step ST6) ), Moving to step ST3 and continuing the descending operation.
  • the pressing force (F0) exceeds the predetermined pressing force (F2) (NO in step ST6) the vertical movement operation of the tool horn 35 is changed from the lowering operation to the upper surface of the thermoplastic resin material. It reverses and raises (step ST7). Thereafter, the ultrasonic vibration drive of the tool horn 35 is turned off, and the welding operation is completed (step ST8).
  • the convex portion and the concave portion of the pressing surface of the tool horn 35 can be submerged into the thermoplastic resin material 50 by a predetermined amount.
  • a convex part may be arranged at intervals as shown in FIG. 11A, and the convex part and the concave part may be repeated.
  • a small convex portion may be arranged in a staggered manner. If necessary, the convex portion may be shaped as a character as shown in FIG. 11C. If there is a concave portion on the side of the convex surface portion, a mechanism is realized in which the molten resin displaced by the convex surface portion rises at the concave surface portion.
  • a dotted line is drawn within the surface range of the convex surface portion, but the surface roughness of the convex surface portion and the concave surface portion may be different.
  • the tool horn 36 is ultrasonically vibrated in parallel with the butted surfaces of the pair of thermoplastic resin materials 40 and 41.
  • FIG. 12 shows a pair of thermoplastic resin materials 40 and 41, another thermoplastic resin material 50, and a tool, which are structures welded using the ultrasonic welding method and apparatus of the third embodiment of the present invention. The figure which showed the horn 36 and its positional relationship was shown.
  • the vibration direction of the tool horn 36 is made to intersect with other angles, and the end surface of the thermoplastic resin material 50 is made. Even if the angle of the direction in which they are connected is changed, the position interval between the butt end faces is maintained before and after the welding of the present invention, and there is no burning or discoloration on the anvil side surface of the thermoplastic resin before and after the welding. An effect is obtained.
  • the frame type positioning jig cover 60 is made of a metal frame, and is provided with a window 60a that is substantially the same as the outer shape of the other thermoplastic resin material 12 and through which the other thermoplastic resin material 12 communicates with the outside.
  • the window 60a surrounds the outer shape of the other thermoplastic resin material 12 as a window frame.
  • the frame type positioning jig cover 60 is supported so as to maintain a certain position.
  • the position is regulated like a side anvil. Therefore, there is an effect of promoting the heat generation of the other thermoplastic resin material 12.
  • the frame type positioning jig cover 60 may be used.
  • thermoplastic resin materials are butted together, another thermoplastic resin material is placed thereon, and the other thermoplastic resin material is pressed with a tool horn.
  • a mode of supplying ultrasonic vibration energy in one direction along the surface of another thermoplastic resin material has been shown.
  • the end surfaces of the pair of thermoplastic resin materials are placed on the anvil while the end surfaces of the pair of thermoplastic resin materials are brought into contact with each other.
  • On top of the other thermoplastic resin material and press the pressing surface of the tool horn that ultrasonically vibrates in one direction along the surface that is not perpendicular to the upper surface of the other thermoplastic resin material, By applying a pressing force of a tool horn that vibrates ultrasonically, the vicinity of the upper surface of another thermoplastic resin material is melted, and a welded structure part is generated on the non-welded structure part.
  • the ultrasonic welding method, the structure welded by the ultrasonic welding method, and the ultrasonic welding apparatus in which a pair of thermoplastic resin materials are butted and welded with a structure in which the welding structure portions are stacked have been described.
  • the other thermoplastic resin material is not used, and the pair of thermoplastic resin materials is a pair of L-shaped cross section white plate thermoplastic resin material 10a and red plate thermoplasticity.
  • the resin material 11a the thick portion of the L-shaped cross section, that is, the white thick portion 10ax and the red thick portion 11ax are brought into contact with each other on the upper surface of the thick portions 10ax and 11ax of the L-shaped cross section.
  • FIGS. 15A and 15B show the positional relationship between the pair of L-shaped thermoplastic resin materials 10a and 11a and the tool horn 30 in the ultrasonic welding apparatus according to the fifth embodiment of the present invention.
  • FIG. 16 (a) shows the upper side of the abutted thick portions 10ax and 11ax of a pair of L-shaped thermoplastic resin materials 10a and 11a of an ultrasonic welding apparatus according to the fifth embodiment of the present invention. The positional relationship of the state which has provided the ultrasonic vibration energy with the tool horn 30 with respect to the surface was shown.
  • the thick portion of the L-shaped cross section plays the role of the other thermoplastic resin material 12 shown in the first embodiment and the second embodiment of the present invention.
  • FIG. 16B when ultrasonic vibration energy is applied to the abutted thick portions 10ax and 11ax of a pair of thermoplastic resin materials 10a and 11a having an L-shaped cross section, a melted portion is formed. Then, the thermoplastic resin materials 10a and 11a are melted over the width direction (W3) wider than the width (H1) of the pressing surface of the tool horn 30.
  • FIG. 16 (c) shows a section of a part of the thermoplastic resin materials 10a and 11a having a pair of L-shaped cross sections after welding, which are structures welded using an ultrasonic welding method and apparatus.
  • FIG. 16 (d) shows a thermoplastic resin material 10a having a pair of L-shaped cross sections after welding, which is a structure welded using the ultrasonic welding method and apparatus according to the fifth embodiment of the present invention. It is the figure which showed 11a.
  • FIG. 17 shows a structure welded by using the ultrasonic welding method and apparatus according to the fifth embodiment of the present invention, and the thermoplastic resin materials 10a and 11a having an L-shaped cross section after the welding work and a tool horn. The positional relationship is shown in a perspective view.
  • the thick portion of the thermoplastic resin material having an L-shaped cross section according to the fifth embodiment is used as a plurality of fitting portions that fit each other. Is.
  • 18A and 18B show the positional relationship between the pair of thermoplastic resin materials 10b and 11b with fitting portions and the tool horn 30 of the ultrasonic welding apparatus according to the sixth embodiment of the present invention.
  • thermoplastic resin materials 10 b and 11 b since a plurality of fitting portions 10 bw and 11 br that are fitted to each other are provided on the abutted thick portions of the pair of L-shaped thermoplastic resin materials 10 b and 11 b, When these are melted, they are strongly integrated with each other and the bond strength increases.
  • the plurality of fitting portions 10bw and 11br are integrally formed on the end surfaces of the respective thermoplastic resin materials 10b and 11b, the plurality of fitting portions 10bw and 11br are formed. By welding, integration of the thermoplastic resin materials 10b and 11b is realized.
  • fitting portions 10bw and 11br are provided on the end surfaces of the pair of thermoplastic resin materials 10b and 11b, respectively, and the fittings are provided on the end surfaces of the pair of thermoplastic resin materials 10b and 11b.
  • a pressing force of a tool horn that ultrasonically vibrates in one direction along the surface is applied to the upper surface of the fitting portion of the pair of thermoplastic resin materials 10b and 11b.
  • the upper surface vicinity of each fitting part 10bw and 11br of a pair of thermoplastic resin materials 10b and 11b is melted, and the respective fitting parts 10bw and 11br are welded in a fitted state.
  • the shape of the fitting portion of the white fitting portion 10bw and the red fitting portion 11br is a concave portion having a cubic space and a convex portion having an outer shape of a cube, respectively. It fits together.
  • the white fitting part 10bw has comprised the shape which connected the base part of the fitting protrusion 10bwx which protruded outside to the protrusion connection part 10bwy. Therefore, when the fitting portion 11br is pushed toward the fitting portion 10bw as indicated by the three white arrows shown in FIG. 18B, the respective concave portions and convex portions are fitted.
  • the fitting portion 10bw and the fitting portion 11br are oriented in the direction opposite to the three white arrows shown in FIG. 18B.
  • the fitting portion 10bw and the fitting portion 11br are separated from each other and are not connected to each other. If it does, the thermoplastic resin material which melted into the gap will be integrated and will not come off.
  • the degree of fitting between the fitting portion 10bw and the fitting portion 11b may be arbitrarily determined according to the application.
  • FIG. 19C is a cross-sectional view showing a part of the structure welded using the ultrasonic welding method and apparatus according to the sixth embodiment of the present invention.
  • FIG. 19D shows the appearance of a structure welded using the ultrasonic welding method and apparatus according to the sixth embodiment of the present invention.
  • thermoplastic resin materials 10b and 11b and are not connected to each other will be described.
  • 10 bw and 11 br are provided, and a pair of welded object fitting portions 10 bw and 11 br are placed on the anvil 70 in a state of being fitted to each other, and the thermoplastic resin materials 10 b and 11 b that are the pair of welded objects are provided.
  • the pressing force of the tool horn 30 that ultrasonically vibrates by pressing the pressing surface of the tool horn 30 that ultrasonically vibrates in a direction along the surface that is not perpendicular to the upper surfaces of the fitting portions 10bw and 11br that are fitted.
  • thermoplastic resin materials 10b and 11b which are a pair of welded materials, so that the welded structure portion is formed on the non-welded structure portion. And, in the structure of repeated welding structure on the non-welded structure, it is welded a pair of thermoplastic resin material 10b as an object to be weld deposits, each of the fitting portion 10bw of 11b, and 11bR.
  • thermoplastic resin in addition to the effect that (1) the position interval between the butt end faces is maintained before and after welding, and (2) there is no burning or discoloration on the anvil side surface of the thermoplastic resin before and after welding, (3 ) The effect that the butted surfaces of the pair of thermoplastic resin materials can be firmly integrated is obtained.
  • the flat portions of the thermoplastic resin materials 10b and 11b and the materials of the fitting portions 10bw and 11br may be different materials.
  • the flat portions of the thermoplastic resin materials 10b and 11b are easily broken, when the material is easily broken, or when the material is difficult to weld, the flat portions of the thermoplastic resin materials 10b and 11b are insufficient.
  • the fitting portions 10bw and 11br made of other materials are provided, and the fitting portions 10bw and 11br are welded to perform good welding.
  • thermoplastic resin material Even if the material of the planar portions of the pair of objects to be welded is not the thermoplastic resin material, if the fitting portions 10bw and 11br of the thermoplastic resin material can be firmly attached to the respective planar portions, the sixth of the present invention. This embodiment can be applied.
  • the ultrasonic welding apparatus is a thermoplastic resin in one of a plurality of fitting portions 10bw and 11br which are fitted to each other in the sixth embodiment shown in FIG. Based on the shape of the fitting portion 10bw (white joint portion) of the material 10b, the shapes of the fitting portions 10cw, 11cr, 10dw, and 11dr of the pair of thermoplastic resins 10c, 11c, 10d, and 11d are substantially the same. I have to.
  • Each shape of the fitting portions 10cw, 11cr, 10dw, and 11dr is formed into an E shape or a C shape by connecting the fitting protrusions 10cwx with the fitting connecting portions 10cwy as shown in FIGS. 20A and 20B. It is a connected fitting part.
  • Heat is provided by providing a plurality of fitting portions 10cw, 11cr, 10dw, and 11dr that are fitted to each other in the thick-walled portions of the thermoplastic resin materials 10c, 11c, 10d, and 11d having a pair of L-shaped cross sections. There is an effect of increasing the welding strength of the plastic resin materials 10c, 11c, 10d, and 11d.
  • fitting part 10cw, 11cr, 10dw, and 11dr it is arbitrary.
  • 20A and 20B the positional relationship between the pair of thermoplastic resin materials 10c and 11c, 10d and 11d, and the tool horn 35 of the ultrasonic welding apparatus according to Modification 1 of the sixth embodiment of the present invention. showed that.
  • the length of the mating protrusion 10cwx is longer than that of the mating protrusion 10bwx in FIG. 18A.
  • the length of the mating protrusion 10dwx is increased, and the number of the mating protrusions 10dwx is further increased. If both the length and number of the mating protrusions 10dwx are increased, the welding strength is increased. Therefore, what is necessary is just to determine arbitrarily according to a use.
  • 20A and 20B show an example in which a tool horn 35 having an uneven pressing surface is used.
  • FIG. 21 shows an external perspective view of the plurality of fitting portions 10cw and 11cr shown in FIG. 20A before fitting with the fitting portions 10cw and 11cr separated so that the shapes of the fitting portions 10cw and 11cr can be seen.
  • the white fitting portion 10cw is connected to the E-shape by connecting the three mating projections 10cwx and the one projection coupling portion 10cwy.
  • the protrusion coupling part 10cwy of the white fitting part 10cw may not be provided, and only the three mating protrusions 10cwx may be formed.
  • the mating protrusion 10cwx may be embedded in the flat portion of the thermoplastic resin material 10c. What is necessary is just to determine arbitrarily the shape of a fitting part according to a use.
  • thermoplastic resin (1) the position interval between the butt end faces is maintained before and after welding, and (2) there is no burning or discoloration on the anvil side surface of the thermoplastic resin before and after welding. In addition to the effect, (3) the effect of firmly integrating the butting surfaces of the pair of thermoplastic resin materials can be obtained.
  • the ultrasonic welding apparatus is obtained by abutting a pair of thick thermoplastic resin materials 10e and 11e.
  • a pair of thermoplastic resin materials are welded to a pair of thermoplastic resin materials 10a and 11a having an L-shaped cross section, or are attached to end faces of a pair of thermoplastic resin materials.
  • Each is provided with a fitting portion, and in a state where the fitting portion is fitted, a pressing force of a tool horn that ultrasonically vibrates in one direction along the upper surface of the fitting portion is applied and welded.
  • thermoplastic resin materials 10b and 11b with a fitting part 10c and 11c, 10d, and 11d was demonstrated, even when the thermoplastic resin materials of the whole or a thin wall are faced
  • FIG. 22A shows the positional relationship between the pair of thick thermoplastic resin materials 10e and 11e and the tool horn 35 of the ultrasonic welding apparatus according to the seventh embodiment of the present invention.
  • FIG. 22B shows the positional relationship between a pair of thick thermoplastic resin materials 10e and 11e and a tool horn 35 which are structures welded using the ultrasonic welding method and apparatus according to the seventh embodiment of the present invention. It was.
  • the seventh embodiment in a state where the end surfaces of the pair of thick thermoplastic resin materials 10e and 11e are butted, in one direction along the upper surface of the pair of thick thermoplastic resin materials.
  • a pressing force of a tool horn that vibrates ultrasonically By applying a pressing force of a tool horn that vibrates ultrasonically, the vicinity of the upper surface of the pair of thick thermoplastic resin materials is melted and welded.
  • thermoplastic resin is burned or discolored before and after welding.
  • the effect that the butted surfaces of the pair of thermoplastic resin materials can be firmly integrated is obtained.
  • the ultrasonic welding apparatus according to the first modified example of the seventh embodiment of the present invention is a device in which a pair of thin, so-called thin (thin) thermoplastic resin materials 10f and 11f are butted together.
  • FIG. 23A shows the positional relationship between the pair of thin thermoplastic resin materials 10f and 11f and the tool horn 35 in the ultrasonic welding apparatus according to the first modification of the seventh embodiment of the present invention.
  • FIG. 23B shows the welded thin thermoplastic resin materials 10f and 11f and the tool horn 35, which are structures welded using the ultrasonic welding method and apparatus according to the first modification of the seventh embodiment of the present invention. The positional relationship is shown.
  • the end surfaces of the pair of thin thermoplastic resins 10f and 11f are in contact with each other along the upper surface of the pair of thin thermoplastic resins.
  • the first modification of the seventh embodiment of the present invention described with reference to FIG. 23A has a straight butted surface and a short welding length SL.
  • the amount of the thermoplastic resin materials to be welded is smaller than that of the pair of thick thermoplastic resin materials 10e and 11e, and the welding strength is low. .
  • the shape of the butted end surfaces of the pair of thin thermoplastic resin materials 10g and 11g is viewed from above. Zigzag.
  • the welding length SL is double that of the linear shape shown in FIG. 24A.
  • the welding strength also doubles.
  • the welding strength can be further increased if the welding length is further increased and the wedges are joined together in a wedge shape.
  • the shape of the end faces of the pair of thin-walled thermoplastic resin materials 10g and 11g is formed so that the concave shape and the convex shape are engaged like a zigzag shape.
  • the shape of the butted end faces of the pair of thin thermoplastic resin materials 10g and 11g is zigzag as viewed from above.
  • the thicknesses of the welded portions of the pair of thin thermoplastic resin materials are the same, the rigidity is the same, and there is no sense of incongruity.
  • thermoplastic resin materials are placed side by side on the anvil, and ultrasonic vibration is performed in a direction along the surface that is not perpendicular to the upper surface of the thermoplastic resin material.
  • ultrasonic vibration is performed in a direction along the surface that is not perpendicular to the upper surface of the thermoplastic resin material.
  • the ultrasonic welding apparatus has (1) that the position interval between the butted end faces is maintained before and after welding, and (2) the anvil of the thermoplastic resin before and after welding.
  • the ultrasonic welding apparatus has (1) that the position interval between the butted end faces is maintained before and after welding, and (2) the anvil of the thermoplastic resin before and after welding.
  • thermoplastic resin materials are placed side by side and welded on the anvil.
  • thermoplastic resins is placed on the upper surface of the portion where the end surfaces of the pair of thermoplastic resin materials are butted against each other on the anvil.
  • the pair of thermoplastic resin materials are butt-welded by melting the vicinity of the upper surface of the pair of thermoplastic resin materials.
  • FIG. 25 is a front view of an ultrasonic welding apparatus according to the eighth embodiment of the present invention
  • FIGS. 27, 30 and 32 show modifications 1, 2, and 3.
  • the end faces of the pair of thermoplastic resin materials 10j and 11j, 10k and 11k, 10m and 11m, 10n and 11n placed on the upper surface of the anvil 70 are projected.
  • the end faces of the pair of thermoplastic resin materials 10j and 11j, 10m and 11m, that is, the butted end faces, are the surfaces of the anvil 70. It is a butted slope, so-called “butt slope”. The reason is that the welding strength is greater than when the butt end surface is the same as the surface that is perpendicular to the surface of the anvil 70 as in the above-described embodiment.
  • FIG. 25 shows a configuration in which ultrasonic welding is performed by pressing the tool horn 35 obliquely from the upper left to the lower right from the butt slope of the pair of thermoplastic resin materials 10j and 11j.
  • the pressing surface of the tool horn 35 is moved in an oblique direction with respect to the upper surface of the butt slope so that the pressing force of the tool horn 35 can be applied in the oblique direction. Yes.
  • the ultrasonic vibration of the pressing surface of the tool horn 35 is given to the upper surfaces of the butt slopes of the pair of thermoplastic resin materials 10j and 11j from the oblique direction from the upper left to the lower right.
  • a force vector (F VO ) of an air press is decomposed into a horizontal force (F VX ) and a vertical force (F VY ).
  • the pressing force applied to the butt slopes of 10j and 11j, that is, the vertical force (F VY ) is smaller than the force vector (F VO ) of the air press.
  • a welded structure (A) is formed in a parallelogram region drawn by a dotted line on the welded structure (B).
  • the thermoplastic resin materials 10j and 11j are welded.
  • the tool horn 35a is obliquely pressed from the upper right to the lower left, and the upper surface of the pair of thermoplastic resin materials 10k and 11k.
  • the ultrasonic vibration energy applied to the upper part of the upper surface of the pair of thermoplastic resin materials 10k and 11k increases, and the upper surface of the pair of thermoplastic resin materials 10k and 11k increases. Since the amount of melting, cooling and solidification increases, an increase in welding strength can be expected.
  • the tool horn 35b is directly pressed diagonally from the upper right to the lower left on the butt slope of the pair of thermoplastic resin materials 10m and 11m for ultrasonic welding.
  • the configuration was shown.
  • the pressing surface of the tool horn 35b is shaped like a trapezoid so that the upper surfaces of the pair of thermoplastic resin materials 10m and 11m are pressed with a flat surface, and the trapezoidal slope is the pressing surface.
  • the end surfaces of the pair of thermoplastic resin materials 10m and 11m that is, the butt end surfaces are inclined with respect to the surface of the anvil 70, so-called “ It is a match at the butt slope.
  • ultrasonic vibration energy is applied in an oblique direction toward the anvil side of the pair of thermoplastic resin materials 10m and 11m from the pressing surface of the tool horn 35b, and the pair of thermoplastic resins.
  • the vicinity of the upper surface of the resin material is melted.
  • the butt slope is taken into the welded structure (A), and the ultrasonic vibration is stopped with the non-welded structure (B) left.
  • the ultrasonic vibration of the tool horn 35b acts as vibration that presses against and strikes against the “butt slopes” of the pair of thermoplastic resin materials 10m and 11m. Therefore, vibration energy can be applied to the butt slopes of the pair of thermoplastic resin materials 10m and 11m more strongly than the butt face perpendicular to the surface of the anvil 70.
  • a plurality of projections and depressions are provided on the pressing surface of the tool horn 35b, and ultrasonic vibration energy is applied obliquely toward the anvil side of the pair of thermoplastic resin materials 10m and 11m, so that the vicinity of the upper surface of the pair of thermoplastic resin materials Is melting.
  • the butting surfaces are oblique to the surfaces of the pair of thermoplastic resin materials 10m and 11m, but the ultrasonic vibration is stopped with the non-welded structure portion (B) left.
  • the tool horn 35c is obliquely pressed from the upper left to the lower right on the butted surfaces of the pair of thermoplastic resin materials 10n and 11n, and ultrasonic welding is performed.
  • the configuration was shown.
  • the ultrasonic vibration direction of the tool horn 35 is also made to strike diagonally against the surfaces of the pair of thermoplastic resin materials 10n and 11n.
  • the pressing surface of the tool horn 35c is shaped like a trapezoid so that the upper surfaces of the pair of thermoplastic resin materials 10n and 11n are pressed in a plane, and the inclined surface of the trapezoid is used as a pressing surface, and the pressing surface is uneven. Provided.
  • ultrasonic vibration energy is applied in an oblique direction toward the anvil side of the thermoplastic resin materials 10n and 11n, and the upper surfaces of the pair of thermoplastic resin materials 10n and 11n. The neighborhood is melted. The butted surfaces are perpendicular to the surfaces of the pair of thermoplastic resin materials 10n and 11n, but the ultrasonic vibration is stopped with the non-welded structure portion (B) left.
  • the tool horn 35c is obliquely pressed from the upper left to the lower right, and the upper surfaces of the pair of thermoplastic resin materials 10n and 11n.
  • the ultrasonic vibration energy applied to the upper part of the upper surface of the pair of thermoplastic resin materials 10n and 11n increases, and the upper surface of the pair of thermoplastic resin materials 10n and 11n.
  • an increase in welding strength can be expected.
  • the tool horn 35 is ultrasonically moved along the upper surface of the butted surfaces of the pair of thermoplastic resin materials 10n and 11n.
  • the range to which ultrasonic vibration energy is applied also moves from left to right.
  • the amount of ultrasonic vibration energy applied is an integral value at that location, so the amount of ultrasonic vibration energy applied varies depending on the length of time pressed by the tool horn 35.
  • the welded structure part (A) and the non-welded structure part (B) are formed such that the upper surface of the welded structure part (A) is wide and narrows as it proceeds downward (thickness direction).
  • the welding structure (A) may be shaped so that the abutting surface is shallow on the lower side (thickness direction), the vicinity of the abutting surface is deep, and the periphery is shallow. I can do it. If the movement of the tool horn 35 is controlled in this way, the shapes of the welded structure part (A) and the non-welded structure part (B) shown in FIGS. 35 (d) and (e) are formed as necessary. Can be set arbitrarily.
  • control means 38 performs ultrasonic vibration operation and pressing operation of the tool horn 35 so that the tool horn 35 is ultrasonic in a direction along the surface that is not perpendicular to the upper surfaces of the thermoplastic resin materials 10n and 11n. Vibrate and press on the pressing surface of the tool horn 35.
  • the pressing surface of the tool horn 35 is formed in a predetermined pattern in a direction along the upper surface of the pair or two or more thermoplastic resin materials 10n and 11n.
  • the moving speed is varied to move the upper surface of the pair of thermoplastic resin materials 10n and 11n.
  • the amount of ultrasonic vibration energy released by the tool horn 35 when the tool horn 35 is moved at the same moving speed is indicated by a rectangular area.
  • the movement speed per unit is fast, the thickness of the rectangle is thin and the area is small.
  • the moving speed per unit length is slow, the thickness of the rectangle is large and the area is large.
  • the size of the weld structure is proportional to the amount of ultrasonic vibration energy applied.
  • the moving speed of the moving means of the tool horn is variably controlled in a predetermined pattern, thereby generating a welded structure portion corresponding to the pattern on the non-welded structure portion.
  • welding is performed as shown in FIGS. 35 (d) and (e).
  • the shape of the structure part (A) and the non-welded structure part (B) can be formed.
  • the end surfaces of the pair of thermoplastic resin materials are placed on the anvil so as to face each other and perpendicular to the upper surface of the portion where the end surfaces of the pair of thermoplastic resin materials are faced together.
  • An ultrasonic welding method and ultrasonic welding in which a welded structure is generated on a non-welded structure and a pair of thermoplastic resin materials are butt-welded as a structure in which the welded structure is superimposed on the non-welded structure. The structure welded by the method and the ultrasonic welding apparatus have been described.
  • thermoplastic resin before and after the welding of the present invention
  • the anvil side of the thermoplastic resin before and after the welding.
  • the abutting surfaces of the pair of thermoplastic resin materials can be firmly integrated, and (4) the effect that even a thin thermoplastic resin material can be welded is obtained. .
  • an air cooling fan 73 that is an air cooling device is attached outside the anvil 70, and a through hole 74 through which the air C passes is provided in the anvil 70.
  • the air flows from one of the through holes 74 to the other, and releases the heat of the anvil 70 out of the anvil 70.
  • a temperature sensor 75 is embedded in the anvil 70, temperature information is transmitted to the ultrasonic vibration control means 38 via the signal line 75a, and the temperature information of the anvil 70 is feedback-controlled.
  • FIG. 36 shows an ultrasonic wave according to the ninth embodiment of the present invention.
  • the positional relationship among a part of the anvil 70 of the main structure of the welding apparatus, the pair of thin thermoplastic resin materials 10j and 11j, and the tool horn 35 is shown in an enlarged view.
  • the end surfaces of the pair of thermoplastic resin materials 10j and 11j are placed on the anvil 70 so as to face each other, and the temperature of the anvil 70 is set to a predetermined temperature or less using cooling means based on the temperature information of the anvil. Then, the pressing force of the tool horn 35 that ultrasonically vibrates in one direction along the surface is applied to the upper surface of the portion where the end faces of the pair of thermoplastic resin materials 10j and 11j are abutted, and the ultrasonic vibration energy is given. By applying, the vicinity of the upper surface of the pair of thermoplastic resin materials 10j and 11j is melted, and the pair of thermoplastic resin materials 10j and 11j are butt-welded.
  • the pair of thin thermoplastic resin materials 10j, 11j The anvil 70 is cooled to a certain temperature by the temperature sensor 75 and the air cooling fan 73, so that the temperature of the pair of thin thermoplastic resin materials 10j and 11j near the anvil 70 is melted. Is kept low.
  • the temperature of the pair of thin thermoplastic resin materials 10j and 11j in the vicinity of the anvil 70 is low, the flow of the molten thermoplastic resin material becomes duller as it is closer to the anvil 70, the gap (S) does not widen, and the surface does not burn. .
  • the structure which piled up the welding structure part (A) on the non-welding structure part (B) of the butted end surface of a pair of thin thermoplastic resin material is made.
  • thermoplastic resin material can be firmly integrated, and (4) even a thin thermoplastic resin material can be welded can be obtained.
  • the anvil is controlled to be cooled.
  • Step ST11 When the welding operation is started (Step ST12), the ultrasonic vibration control means 38 lowers the tool horn 35 by a predetermined amount every ⁇ t time, and each time the temperature (T0) of the anvil 70 becomes the predetermined temperature. It is determined whether (T1) or less (step ST14) or whether the applied ultrasonic vibration energy E0 is equal to or less than a predetermined energy amount (E1) (step ST15). When either is Yes, it returns to step ST13 and continues the descent of the tool horn 35.
  • step ST16 the tool horn 35 is raised (step ST16) and the welding operation is terminated (step ST17) in order to prevent the gap (S) from spreading and the surface from burning.
  • step ST17 the welding operation is terminated.
  • step ST18 the anvil 70 is cooled within a predetermined temperature range.
  • This control operation is particularly useful when the temperature of the anvil 70 rises as a result of continuous welding operations.
  • control is performed to keep the anvil within a predetermined temperature range from the start of the welding operation to the end of the welding operation.
  • the ultrasonic vibration control means 38 starts control to keep the anvil 70 within the predetermined temperature range (step ST19), and continues the control to keep the anvil 70 within the predetermined temperature range.
  • the operation from the start of the welding operation (step ST12) to the end of the welding operation (step ST17) is performed.
  • the ultrasonic vibration control means 38 performs control to keep the anvil within the predetermined temperature range, and then lowers the tool horn 35 by a predetermined amount every ⁇ t time, and each time the temperature (T0) of the anvil 70 becomes the predetermined temperature (T1). ) Or less (step ST14) or whether the applied ultrasonic vibration energy (E0) is equal to or less than a predetermined energy amount (E1) (step ST15). If both are No, the tool horn 35 is raised to prevent the gap (S) from spreading and the surface from burning (step ST16), and the welding operation is finished (step ST17).
  • the anvil is cooled after the welding operation is completed.
  • control is performed to keep the temperature within a predetermined temperature range during welding work. Therefore, it is possible to stably prevent the gap (S) from spreading and the surface from burning.
  • the ultrasonic welding apparatus As shown in FIG. 39, the ultrasonic welding apparatus according to the twelfth embodiment of the present invention has a tool horn parallel to the butted surfaces of a pair of thin thermoplastic resin materials 10f and 11f. 36a is ultrasonically vibrated.
  • the end surfaces of the pair of thermoplastic resin materials are placed on the anvil so as to face each other, and the thin thermoplastic is placed on the upper surface of the portion where the end surfaces of the pair of thermoplastic resin materials are faced.
  • the tool horn is ultrasonically vibrated in parallel with the butt surface of the resin material, the pressing force of the tool horn that is ultrasonically vibrated in one direction along the surface is applied, and the ultrasonic vibration energy is applied, so that a pair of A pair of thermoplastic resin materials are butt-welded by melting the vicinity of the upper surface of the thermoplastic resin material.
  • the tool horn 36a is inclined and pressed against the surfaces of the pair of thick, thin thermoplastic resin materials 10f and 11f;
  • the tool horn 36a may be welded in combination with a process of pressing the tool horn 36a perpendicularly to the surfaces of the pair of thin thermoplastic resin materials 10f and 11f.
  • thermoplastic resin on the anvil side is burned before and after welding.
  • the effect that (3) the butted surfaces of the pair of thermoplastic resin materials can be firmly integrated, and (4) even the thin thermoplastic resin material can be welded can be obtained.
  • the white plate thermoplastic resin material 10b and the white fitting portion 10bw, and the red plate thermoplastic resin material 11b and the red fitting portion 11br are integrally molded.
  • the white fitting portion 10bw and the red fitting are used.
  • the joint portion 11br may be manufactured as a separate part and welded to the flat portion of the white plate 10b and the flat portion of the red plate 11b.
  • the white fitting portion 10cw and the red fitting portion 11cr are manufactured as separate parts and welded to the flat portion of the white plate 10c and the flat portion of the red plate 11c, respectively.
  • 41A, B, and C show a manufacturing process of the brand nameplate 100 including three processes. That is, (First Step) The thin white plate thermoplastic resin material 10c, the white fitting portion 10cw, the thin red plate thermoplastic resin material 11c, and the red fitting portion 11cr are made as separate parts. (Second Step) The thin white plate thermoplastic resin material 10c and the white fitting portion 10cw and the thin red plate thermoplastic resin material 11c and the red fitting portion 11cr are welded to each other. (Third step) A thin white plate thermoplastic resin material 10c with white fitting portion 10cw and a thin red plate thermoplastic resin material 11c with red fitting portion 11cr are welded, Make brand nameplate 100.
  • thermoplastic resin plate is cut using a conventional technique, and a thin white plate thermoplastic resin material 10c, a white fitting portion 10cw, and a thin red plate thermoplastic resin are used.
  • the material 11c and the red fitting portion 11cr are made as separate parts.
  • a dummy plate 99 is placed on the anvil 70 of the ultrasonic welding apparatus of the present invention, and the white plate thermoplastic resin material 10c is abutted against the end surface of the dummy plate 99.
  • the white fitting portion 10cw is placed on the dummy plate 99 and the white plate thermoplastic resin material 10c.
  • FIGS. 43 (a) (b) (c) Weld as shown in (d).
  • a thin white plate thermoplastic resin material 10c with a white fitting portion 10cw and a thin red plate thermoplastic resin material 11c with a red fitting portion 11cr are welded to obtain a brand name plate 100.
  • the brand nameplate 100 can be made by ultrasonic welding of individual parts.
  • thermoplastic resin materials are placed side by side on the anvil and the end faces of the two or more thermoplastic resin materials are butt welded. It can also be applied when thermoplastic resin materials are stacked and welded.
  • thermoplastic resin materials are placed on the anvil so as not to be perpendicular to the upper surface of the thermoplastic resin material.
  • the vicinity of the upper surface of the thermoplastic resin material is melted and the welded structure is not welded.
  • Ultrasonic welding method that welds thermoplastic resin material, structure that is welded by ultrasonic welding method, superstructure that is generated on the structure part and has the welded structure part superimposed on the non-welded structure part, A sonic welding apparatus will be described.
  • 44A is a perspective view showing the heat-resistant film 84 and the heat-resistant ring 85 according to the fourteenth embodiment of the present invention.
  • FIG. 44B the heat-resistant film 84 and the heat-resistant ring 85 which are welded are shown in a perspective view.
  • FIG. 45 a direction along the surfaces of the heat-resistant ring 85 and the heat-resistant film 84 in a state where the heat-resistant ring 85 is placed on the turntable 77 that is rotatably mounted on the anvil 70 and the heat-resistant film 84 is placed thereon.
  • the state where the pressing surface of the so-called laterally vibrating tool horn 35d that is ultrasonically oscillated is pressed from the upper left to the lower right is welded together.
  • FIG. 46 is an enlarged view showing a state in which the heat-resistant film 84 and the heat-resistant ring 85 are welded by the ultrasonic welding apparatus according to the fourteenth embodiment of the present invention.
  • both the heat-resistant film 84 and the heat-resistant ring 85 have a high melting point temperature and do not readily melt, the pressing of the tool horn 35d that is ultrasonically vibrated in the direction along the surfaces of the heat-resistant ring 85 and the heat-resistant film 84 as shown in FIG.
  • the weld structure (A) is formed on the non-weld structure (B).
  • the heat-resistant film 84 when tested with a super engineering plastic such as a liquid crystal polymer (LCP), the heat-resistant film 84 was welded to the heat-resistant ring 85 cleanly without thermal deformation.
  • a super engineering plastic such as a liquid crystal polymer (LCP)
  • the heat-resistant film 84 since the heat-resistant film 84 has a thickness of several tens of ⁇ m and the heat-resistant film 84 can be neatly welded, it can be used in a wide range of technical fields including precision parts.
  • a longitudinal vibration welding method that is, a welding method that gives vertical vibration to the upper surface of the thermoplastic resin material.
  • the transverse vibration that is, the vibration in the direction parallel to the upper surface of the thermoplastic resin material, it is compared with the longitudinal vibration.
  • the melting distance is very short and the heat-resistant ring 85 is not thermally deformed, and the heat-resistant ring 85 and the heat-resistant film 84 have a very narrow weld width. Even with a possible welding width, welding was possible with low pressure and without deformation due to pressure.
  • 47A is a perspective view showing the heat-resistant filter 94 and the heat-resistant ring 95 according to the fifteenth embodiment of the present invention.
  • FIG. 47B the welded heat resistant filter and heat resistant ring are shown in a perspective view.
  • 48 (a), (b) and (c) the procedure for welding the heat-resistant filter and the heat-resistant ring with the ultrasonic welding apparatus according to the fifteenth embodiment of the present invention is shown as a transition diagram.
  • Both the heat-resistant filter 94 and the heat-resistant ring 95 have a high melting point temperature and do not readily melt, but when the pressing surface of the tool horn 35c that is ultrasonically vibrated in the direction along the surface of the heat-resistant ring 95 and the heat-resistant filter 94 is pressed, As shown in FIG. 48 (c), the welded structure portion (A) was formed on the non-welded structure portion (B), and the heat-resistant filter 94 was welded in the form of sinking into the heat-resistant ring 95.
  • the fifteenth embodiment of the present invention it is possible to weld a thin resin having a high heat distortion temperature. Strength can be obtained even with welding with a narrow welding width. There is an advantage that the amount of melted sinking is small and the melting burrs are difficult to occur.
  • the shape of the pair of thermoplastic resin materials to be welded includes not only a flat plate or sheet but also a three-dimensional object such as a polyhedron or a sphere such as a helmet or a container.
  • a sixteenth embodiment of the present invention an example in which a heat resistant film is welded to the bottom surface of a round dish type plastic container will be described.
  • FIG. 49 is a front view of the ultrasonic welding apparatus according to the sixteenth embodiment of the present invention at the start of the welding operation
  • FIG. 50 is a welding operation of the ultrasonic welding apparatus according to the sixteenth embodiment of the present invention. It is a front view at the time of completion
  • the integrated tool horn 30 and ultrasonic vibration means 37 are supported so as to be swingable around the support shaft 83 of the support means 80.
  • the tool horn 30 and the ultrasonic vibration means 37 ultrasonically vibrate in the axial direction of the tool horn 30 and the ultrasonic vibration means 37 and swing around the support shaft 83.
  • the pressing surface of the tool horn 30 is in contact with the upper surfaces of the pair of thermoplastic resin materials at a constant pressure.
  • a slide base 65 is slidably mounted on the anvil 70, and a thermoplastic resin material 61, which is a round plate-type plastic container, is placed on the upper surface of the slide base 65.
  • a thermoplastic resin material 62 which is a thin heat-resistant film is stacked. Since the basic structure of the ultrasonic welding apparatus is similar to the ultrasonic welding apparatus already described with reference to FIGS. 2 and 25, description of the apparatus structure is omitted.
  • the ultrasonic vibration energy flows in the upper surface direction of the pair of thermoplastic resin materials 61 and 62, the ultrasonic vibration energy does not advance in the thickness direction of the pair of thermoplastic resin materials 61 and 62, and A structure in which a welded structure portion is generated on the non-welded structure portion while leaving the non-melted structure portion on the anvil side, and the welded structure portion is overlapped on the non-welded structure portion, a pair of thermoplastic resin materials 61, 62 is welded.
  • the “tool horn that ultrasonically vibrates in one direction along the upper surface of the pair of thermoplastic resin materials” is described in the first to seventh embodiments. (1) It includes a tool horn that ultrasonically vibrates in a plane direction parallel to the upper surfaces of the pair of thermoplastic resin materials, and of course (2) the upper sides of the pair of thermoplastic resin materials described in the eighth embodiment. A tool horn that ultrasonically vibrates in a plane direction that is inclined with respect to the surface, and (3) even if the upper surfaces of the pair of thermoplastic resin materials are curved surfaces, It is understood that the tool horn vibrates ultrasonically in a plane direction parallel to the upper surface.
  • the first embodiment to the seventh (1)
  • a further important point of the present invention is that by applying a pressing force of a tool horn that vibrates ultrasonically, the vicinity of the upper surface of the pair of thermoplastic resin materials is melted, and the welding structure portion is placed on the non-welding structure portion. This is to weld the pair of thermoplastic resin materials in a structure in which the welded structure part is overlapped on the non-welded structure part.
  • the non-welded structure part is a structure part that is not welded, and its surface is an untouched surface as it is before the welding operation, and the gap between the butted surfaces does not increase.
  • the so-called end face position interval and positional relationship do not change. Further, the surface does not become hot and the surface does not burn.
  • the end faces of a pair of thermoplastic resin materials are butted together, directly or over another thermoplastic resin material, and a tool horn that ultrasonically vibrates the other thermoplastic resin material is pressed.
  • a tool horn that ultrasonically vibrates the other thermoplastic resin material is pressed.
  • ultrasonic waves are applied to the surfaces of the pair of thermoplastic resin materials with the end surfaces being butted or overlapped.
  • the present invention can be widely applied to an ultrasonic welding method and an ultrasonic welding apparatus in which a vibrating tool horn is welded directly or indirectly by pressing another thermoplastic resin material in between.
  • thermoplastic resin materials 12 Other thermoplastic resin materials 30, 35, 36 Tool horn 60 Frame type positioning jig cover 65 Slide base 70 Anvil

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

アンビル上に、一対の熱可塑性樹脂材を載置し、一対の熱可塑性樹脂材の上側表面に対して垂直でない当該表面に沿った方向に超音波振動する工具ホーンの押圧力を付与し、前記超音波振動する工具ホーンの押圧力を付与することにより、前記一対の熱可塑性樹脂材の上側表面近傍を溶融させて、溶着構造部を非溶着構造部の上に生成し、前記非溶着構造部の上に溶着構造部を重なった構造の構造物として、前記一対の熱可塑性樹脂材を溶着する。溶着後の一対の熱可塑性樹脂材の位置間隔や位置関係は、溶着前と変わらず、アンビルに載置されている側の熱可塑性樹脂材の表面は焼けず、変色しない。

Description

超音波溶着方法、超音波溶着方法で溶着した構造物、超音波溶着装置
 本発明は、一対の熱可塑性樹脂材の表面に、超音波振動する工具ホーンを直接、又は他の熱可塑性樹脂材を間に入れて間接的に押し付けて溶着する、超音波溶着方法、超音波溶着方法で溶着した構造物、と超音波溶着装置に関し、より詳しくは、一対の熱可塑性樹脂材の突き合わせた端面の位置間隔や位置関係を超音波溶着前後で同じに保ち、また、一対の熱可塑性樹脂材のアンビル側の表面が、超音波溶着前後で焼けて変色しないように同じ状態を保つ超音波溶着方法、超音波溶着方法で溶着した構造物、超音波溶着装置に関する。
 キャスター付きスーツケースは、海外旅行用スーツケースとして普及しており、空港の荷物受取口で容易にピックアップできる識別性が求められている。そのため、プラスチック容器の形、模様、凹凸、色等の異なるユニークなものが多数販売されている。しかし、スーツケースメーカーは同一のブランド銘板を付けて販売するため、同一メーカ品の外観とブランド銘板が全く同じキャスター付きスーツケースが空港の荷物受取口で並んで出てくることがある。外観とブランド銘板の全てが同じだと識別できない。
 図51に示したように、ブランド銘板100を異なる二色の熱可塑性樹脂板で作り、購入者の好みに応じて、例えば白色板10と赤色板11という任意の二色の組み合わせを選択させてスーツケース200に貼りつけるようにすれば、外観が全く同じスーツケース200であっても、ブランド銘板100の二色の色の組み合わせと、二色の左右の配置が異なっていれば、識別できる可能性は高くなる。購入者の好みに応じて任意の二種類の紋様の組み合わせを選択させて貼りつけるようにしても良い。スーツケース200に、識別用のオリジナルシールやオリジナルバンドを付けなくても、自分のものか他人のものか識別できる。しかし、ブランド銘板を異なる二色、又は二種類の紋様のついた熱可塑性樹脂板を溶着して美しく作ることは簡単ではない。
 従来から、重ねたプラスチックのシートや薄板をアンビルと工具ホーンで挟み、工具ホーンを超音波振動させて溶着するとき、過度の熱を発生させると焦げが生じることが知られていた(特許文献1、参照)。
 アンビルの上に載置した一対の熱可塑性樹脂材を、端面を突き合わせた状態で溶着するとき、例えば、図52A、Bのように、アンビル70の上に一対の熱可塑性樹脂材10、11の下側表面を載置し、その一対の熱可塑性樹脂材10、11の端面を突き合わせた状態で、突き合せた端面の上に他の熱可塑性樹脂材12の下側表面を重ね、他の熱可塑性樹脂材12の上側表面の上から図の上下方向(熱可塑性樹脂材12の表面に対して垂直方向)に超音波振動する工具ホーン20を押圧して溶着する技術がある。
 図53(a)(b)(c)(d)に、一対の熱可塑性樹脂材10、11の端面を突き合わせ、突き合せた端面の上に他の熱可塑性樹脂材12を重ねて超音波溶着する工程を示した。
 なお以下の明細書では、説明を簡単にするため、熱可塑性樹脂材10を「白色板」、熱可塑性樹脂材11を「赤色板」として説明するが、熱可塑性樹脂材10、11は、超音波振動を付与すると発熱、溶融するものであれば、硬さ、厚さ、形状、色彩、紋様、透明度、材質、その他については任意である。
 また、図53と他の図においてアンビル70の図示を省略することもあるが、熱可塑性樹脂材10、11、12はアンビル70の上に載置されているとして理解されたい。
 図53(a)では、工具ホーン20を例えば、数十μmの振幅で40kHzの周期で超音波振動をさせながら、他の熱可塑性樹脂材12の上側表面に当てると、工具ホーン20の幅(H0)に対してやや広い幅(W0)の範囲全体に押圧力がかかる。すると、熱可塑性樹脂材10、11、12に超音波振動エネルギーが伝わり、発熱して溶融する。
 図53(b)では、工具ホーン20の押圧面は熱可塑性樹脂材12の表面に沈み込み、凹部12cを形成する。そして、工具ホーン20を上昇させると、図53(c)のように、工具ホーン20の幅(H0)に対してやや広い幅(W0)の範囲で、点線で示したように、熱可塑性樹脂材10、11、12は互いに溶融し、冷却して溶着する。図53(c)では、熱可塑性樹脂材10、11、12の溶着後の状態を、一部を断面とした図を示し、図53(d)では熱可塑性樹脂材10、11、12の溶着後の状態を示した。
 図54に、溶着作業後の熱可塑性樹脂材10、11、12の斜視図を示した。熱可塑性樹脂材12の表面には矩形の凹部12cが形成されている。図55には、溶着した後の熱可塑性樹脂材10、11、12の表裏を、図54の状態から反転したときの斜視図を示した。図55を見ると、一対の熱可塑性樹脂材10、11の突き合わせた端面の間(S)の位置間隔が、溶着前のように均一な位置間隔(S1)ではなく、溶着で発熱した部分の近傍で位置間隔(S2)に広がっている。文字部分の間が広がると文字部分の位置関係が変わり、文字が崩れる。また、文字「ABC」と印刷した表面(P)の溶着で発熱した部分(G)は、表面が焼けて変色している。
 図52A、Bの従来の超音波溶着装置では、工具ホーン20を熱可塑性樹脂材10、11、12に向けた縦振動の超音波振動をさせて、熱可塑性樹脂材10、11、12を重ねた部分全体を叩くように超音波振動エネルギーを与えながら、押圧力をかけている。そのため、一対の熱可塑性樹脂材10、11の突き合わせた端面の間(S)に、溶融した熱可塑性樹脂材10、11、12が割り込んでいく。そして場所により、一対の熱可塑性樹脂材10、11の突き合わせた端面の間(S)が、溶着前の位置間隔(S1)より位置間隔(S2)というように広くなり位置関係が変わって、突き合わせた端面の仕上がり状態が悪くなり一定レベルの仕上がり品質が得られないことがあった。
 また、工具ホーン20から熱可塑性樹脂材10、11、12の厚さ方向に向けて、超音波振動エネルギーが送られるため、工具ホーン20の押圧面の直下の熱可塑性樹脂材10、11、12が重なった部分全体が発熱する。そのため、超音波振動エネルギーを与え過ぎると、アンビルに当接している側の熱可塑性樹脂材10、11の表面(P)が焼けて変色することがあった。図55のように、熱可塑性樹脂材10、11の表面(P)に文字「ABC」やその他の印刷がされていると、仕上がり状態の悪さが目立った。
実開昭55-129607号公報
 本発明は、超音波溶着をしたときに、一対の熱可塑性樹脂材の端面を突き合わせた間の互いの位置間隔や位置関係を超音波溶着前後で同じに保つことができ、また、超音波溶着をしたときに、一対の熱可塑性樹脂材のアンビル側の表面状態を超音波溶着前後で同じに保つことができる熱可塑性樹脂材の超音波溶着方法、超音波溶着方法で溶着した構造物と超音波溶着装置を提供することを課題としている。
 本発明の超音波溶着方法、超音波溶着方法で溶着した構造物と超音波溶着装置では、アンビル上に一対の熱可塑性樹脂材を載置し、一対の熱可塑性樹脂材の上側表面に対して垂直でない、当該表面に沿った方向に超音波振動する工具ホーンの押圧力を付与し、超音波振動エネルギーを付与することにより、一対の熱可塑性樹脂材の上側表面近傍を溶融させて、溶着構造部を非溶着構造部の上に生成し、前記非溶着構造部の上に溶着構造部を重ねた構造で、前記一対の熱可塑性樹脂材を溶着するようにしている。
 超音波振動エネルギーは、工具ホーンの押圧面から一対の熱可塑性樹脂材の表面に沿った方向に供給され、一対の熱可塑性樹脂材の厚さ方向には向かわない。そのため、工具ホーンの押圧面が当接する熱可塑性樹脂材の表面近傍は発熱するが、アンビル側の熱可塑性樹脂材の表面近傍は発熱が少ない。溶融した熱可塑性樹脂材は、工具ホーンの押圧面が当接する側の熱可塑性樹脂材の表面近傍にあって、一対の熱可塑性樹脂材の突き合わせた端面の間に割り込んでいかない。位置関係を保つ、また、アンビル側の熱可塑性樹脂材の表面近傍は発熱が少なく、表面が焼けて変色することはない。
 このように構成したことにより、超音波溶着をしても、一対の熱可塑性樹脂材の端面を突き合わせた間の互いの位置間隔や位置関係を超音波溶着前と同じに保ち、また、超音波溶着をしても一対の熱可塑性樹脂材の他の熱可塑性樹脂材を当接しない表面の状態を超音波溶着前と同じに保つようにしている。
 本発明によれば、超音波溶着をしたときに、一対の熱可塑性樹脂材の端面を突き合わせた間の互いの位置間隔や位置関係を超音波溶着前と同じに保つことができ、また、超音波溶着をしたときに、一対の熱可塑性樹脂材のアンビル側の表面の状態を超音波溶着前と同じに保ことができる超音波溶着方法、超音波溶着方法で溶着した構造物と、超音波溶着装置を提供できる。
本発明の第一の実施形態にかかる超音波溶着装置の、一対の熱可塑性樹脂材と他の熱可塑性樹脂材と工具ホーンと、その位置関係を示した図。 本発明の第一の実施形態にかかる超音波溶着装置の、一対の熱可塑性樹脂材と他の熱可塑性樹脂材と工具ホーンと、その位置関係を示した図。 本発明の第一の実施形態にかかる超音波溶着装置の正面図。 (a)(b)本発明の第一の実施形態にかかる超音波溶着装置の、一対の熱可塑性樹脂材と他の熱可塑性樹脂材に対して工具ホーンで超音波振動エネルギーを付与している状態の位置関係を示した図、(c)本発明の第一の実施形態にかかる超音波溶着方法と装置を用いて溶着した構造物の一部を断面で示した図、(d)本発明の第一の実施形態にかかる超音波溶着方法と装置を用いて溶着した構造物の外観を示した図。 本発明の第一の実施形態の超音波溶着方法と装置を用いて溶着した構造物の斜視図。 本発明の第一の実施形態にかかる超音波溶着方法と装置を用いて溶着した構造物の表裏を反転して、溶着時にアンビル側だった文字の印刷面を示した斜視図。 本発明の第二の実施形態にかかる超音波溶着方法と装置を用いて溶着した構造物と工具ホーンの位置関係を示した図。 本発明の第二の実施形態にかかる超音波溶着方法で溶着した構造物の表裏を反転した状態を示した図。 本発明の第二の実施形態にかかる超音波溶着装置の工具ホーンの押圧部の部分拡大斜視図。 本発明の第二の実施形態の超音波溶着装置の工具ホーンで溶着を開始した瞬間の様子を示した図 本発明の第二の実施形態の超音波溶着装置の工具ホーンで溶着を完了した瞬間の様子を示した図。 本発明の第二の実施形態の工具ホーンの押圧面の沈み込み量と、押圧力と、上下動動作の向きと、超音波振動駆動状態の時間関係(タイミング)を、工具ホーンの押圧面の沈み込み量を横軸にして示した図。 本発明の第二の実施形態にかかる超音波溶着装置で溶着作業をする手順をフローで示したフローチャート(流れ図)。 本発明の第二の実施形態で使用される各種工具ホーンの押圧面の状態を例示して示した図。 本発明の第二の実施形態で使用される各種工具ホーンの押圧面の状態を例示して示した図。 本発明の第二の実施形態で使用される各種工具ホーンの押圧面の状態を例示して示した図。 本発明の第三の実施形態の超音波溶着方法と装置を用いて溶着した構造物と工具ホーンの位置関係を示した図。 (a)本発明の第四の実施形態にかかる超音波溶着装置の、一対の熱可塑性樹脂材と他の熱可塑性樹脂材の上に、枠型位置決め治具カバーを被せたときの、工具ホーン、アンビルとの位置関係を示した図、(b)本発明の第四の実施形態にかかる超音波溶着装置の枠型位置決め治具カバーの窓を介して他の熱可塑性樹脂材の上側表面に工具ホーンを当てた状態を示した図、(c)本発明の第四の実施形態にかかる超音波溶着装置の枠型位置決め治具カバーの窓を介して他の熱可塑性樹脂材の上側表面に工具ホーン超音波振動エネルギーを付与している状態を示した図。 本発明の第四の実施形態にかかる超音波溶着装置の、一対の熱可塑性樹脂材と他の熱可塑性樹脂材の上に、枠型位置決め治具カバーを被せたときの、工具ホーン、アンビルとの位置関係を示した外観斜視図。 本発明の第五の実施形態にかかる超音波溶着装置の、一対のL字型断面をした熱可塑性樹脂材と工具ホーンの位置関係を示した図。 本発明の第五の実施形態にかかる超音波溶着装置の、一対のL字型断面をした熱可塑性樹脂材と工具ホーンの位置関係を示した図。 (a)(b)本発明の第五の実施形態にかかる超音波溶着装置の、一対のL字型断面をした熱可塑性樹脂材の突き合わせた厚肉部分の上側表面に対して工具ホーンで超音波振動エネルギーを付与している状態の位置関係を示した図、(c)本発明の第五の実施形態にかかる超音波溶着方法と装置を用いて溶着した構造物の一部を断面で示した図、(d)本発明の第五の実施形態にかかる超音波溶着方法と装置を用いて溶着した構造物の外観を示した図。 本発明の第五の実施形態の超音波溶着方法と装置を用いて溶着した構造物と工具ホーンの位置関係を示した斜視図。 本発明の第六の実施形態にかかる超音波溶着装置の、一対のL字型断面をした熱可塑性樹脂材と工具ホーンの位置関係を示した図。 本発明の第六の実施形態にかかる超音波溶着装置の、一対のL字型断面をした熱可塑性樹脂材と工具ホーンの位置関係を示した図。 (a)(b)本発明の第六の実施形態にかかる超音波溶着装置の、一対の嵌合部付き熱可塑性樹脂材に対して工具ホーンで超音波振動エネルギー付与している状態の位置関係を示した図、(c)本発明の第六の実施形態にかかる超音波溶着方法と装置を用いて溶着した構造物の一部を断面で示した図、(d)本発明の第六の実施形態にかかる超音波溶着方法と装置を用いて溶着した構造物の外観を示した図。 本発明の第六の実施形態の第一変形例にかかる超音波溶着装置の、一対の嵌合部付き熱可塑性樹脂材と工具ホーンの位置関係を示した図。 本発明の第六の実施形態の第二変形例にかかる超音波溶着装置の、一対の嵌合部付き熱可塑性樹脂材と工具ホーンの位置関係を示した図。 本発明の第六の実施形態の第一変形例にかかる超音波溶着装置の、一対の嵌合部付き熱可塑性樹脂材と工具ホーンの位置関係を示した図。 本発明の第七の実施形態にかかる超音波溶着装置の、一対の厚肉(あつにく)熱可塑性樹脂材と工具ホーンの位置関係を示した図。 本発明の第七の実施形態にかかる超音波溶着方法と装置を用いて溶着した構造物と工具ホーンの位置関係を示した斜視図。 本発明の第七の実施形態の変形例1にかかる超音波溶着装置の、一対の薄肉(うすにく)熱可塑性樹脂材と工具ホーンの位置関係を示した図。 本発明の第七の実施形態の変形例1にかかる超音波溶着方法と装置を用いて溶着した構造物と工具ホーンの位置関係を示した斜視図。 本発明の第七の実施形態の変形例1の、一対の薄肉(うすにく)熱可塑性樹脂材の突き合せ面を突き合せた状態を上から見た平面図。 本発明の第七の実施形態の変形例2の、一対の薄肉熱可塑性樹脂材の突き合せ面を突き合せた状態を上から見た平面図。 本発明の第八の実施形態にかかる超音波溶着装置の正面図。 本発明の第八の実施形態にかかる溶着方法で溶着した構造物の溶着構造部近傍の断面図。 本発明の第八の実施形態の変形例1にかかる超音波溶着装置の要部正面図。 本発明の第八の実施形態の変形例1にかかる溶着方法で溶着した構造物の溶着構造部近傍の断面図。 (a)(b)(c)(d)本発明の第八の実施形態の変形例1の一対の熱可塑性樹脂材上で工具ホーンを左右に移動しながら溶着している状態を示した図。 本発明の第八の実施形態の変形例2にかかる超音波溶着装置の正面図。 本発明の第八の実施形態の変形例2にかかる溶着方法で溶着した構造物の溶着構造部近傍の断面図。 本発明の第八の実施形態の変形例3にかかる超音波溶着装置の要部正面図。 本発明の第八の実施形態の変形例3にかかる溶着方法で溶着した構造物の溶着構造部近傍の断面図。 (a)(b)(c)(d)本発明の第八の実施形態の変形例3の一対の熱可塑性樹脂材上で工具ホーンを左右に移動しながら溶着している状態を示した図。 (a)(b)(c)本発明の第八の実施形態で、一対の熱可塑性樹脂材上で工具ホーンを左右に移動しながら溶着している状態を示した図、(d)(e)本発明の第八の実施形態で、一対の熱可塑性樹脂材上で工具ホーンを左右に移動しながら溶着した構造体の構造を示した図。 本発明の第九の実施形態にかかる超音波溶着装置のアンビルと一対の薄肉熱可塑性樹脂材と工具ホーンとの位置関係を示した部分断面図。 本発明の第十の実施形態にかかる超音波溶着装置で溶着作業をする手順をフローで示したフローチャート(流れ図)。 本発明の第十一の実施形態にかかる超音波溶着装置で溶着作業をする手順をフローで示したフローチャート(流れ図)。 本発明の第十二の実施形態の、工具ホーンの先端側から見た、工具ホーンの押圧面の傾きを示した斜視図。 (a)(b)(c)本発明の第十二の実施形態の、工具ホーンの先端側から見た、工具ホーンの押圧面の傾きを示した図。 本発明の第十三の実施形態のブランド銘板100の製造工程図。 本発明の第十三の実施形態のブランド銘板100の製造工程図。 本発明の第十三の実施形態のブランド銘板100の製造工程図。 本発明の第十三の実施形態の超音波溶着装置で白色板の上に白色嵌合部を溶着している状態を示した図。 (a)(b)本発明の第十三の実施形態の超音波溶着装置で白色板の上に白色嵌合部を溶着している状態を示した図、(c)(d)本発明の第十三の実施形態の超音波溶着装置で溶着した白色板と白色嵌合部を示した図。 本発明の第十四の実施形態の耐熱フィルムと耐熱リングを示した斜視図。 本発明の第十四の実施形態の溶着した耐熱フィルムと耐熱リングを示した斜視図。 本発明の第十四の実施形態の超音波溶着装置で耐熱フィルムと耐熱リングを溶着している状態を一部断面で示した正面図。 本発明の第十四の実施形態の超音波溶着装置で耐熱フィルムと耐熱リングを溶着している状態を示した要部拡大図。 本発明の第十五の実施形態の耐熱フィルタと耐熱リングを示した斜視図。 本発明の第十五の実施形態の溶着した耐熱フィルタと耐熱リングを示した斜視図。 (a)(b)(c)本発明の第十五の実施形態の超音波溶着装置で耐熱フィルタと耐熱リングを溶着する手順を示した遷移図。 本発明の第十六の実施形態にかかる超音波溶着装置の溶着作業開始時の正面図。 本発明の第十六の実施形態にかかる超音波溶着装置の溶着作業終了時の正面図。 従来のキャスター付きスーツケースの斜視図と溶着した構造物であるブランド銘板の拡大図。 従来の超音波溶着装置の、一対の熱可塑性樹脂材と他の熱可塑性樹脂材と工具ホーンの位置関係を示した図。 従来の超音波溶着装置の、一対の熱可塑性樹脂材と他の熱可塑性樹脂材と工具ホーンの位置関係を示した図。 (a)(b)従来の超音波溶着装置の、一対の熱可塑性樹脂材と他の熱可塑性樹脂材に対して工具ホーンで超音波振動エネルギーを付与しているときの位置関係を示した図、(c)従来の超音波溶着装置の、溶着した構造物の一部を断面で示した図、(d)従来の超音波溶着装置の、溶着した構造物の外観を示した図。 従来の超音波溶着装置で溶着した構造物であるブランド銘板の斜視図。 従来の超音波溶着装置で溶着した構造物であるブランド銘板の表裏を反転して、溶着時にアンビル側だった文字「ABC」の印刷面を示した斜視図。
(本発明の第一の実施形態)
 図1A、図1Bに、本発明の第一の実施形態にかかる超音波溶着装置の、一対の熱可塑性樹脂材と他の熱可塑性樹脂材と工具ホーンと、その位置関係を示す。
 図1Bでは、図示しないアンビル70の上に、一対の熱可塑性樹脂材10、11の下側表面を載置し、一対の熱可塑性樹脂材10、11の端面を突き合わせた状態で、突き合せた端面の上に他の熱可塑性樹脂材12の下側表面を重ねている。このことは、従来例の図52Bと同じである。
 しかし、図1Bでは、他の熱可塑性樹脂材12の上側表面の上から上側表面に沿った方向(熱可塑性樹脂材12の表面に対して水平方向)に超音波振動する工具ホーン30を押圧している。以下、本発明は、この位置関係を基本形として説明する。
 図1の工具ホーン30の振動方向は、従来例の図52A、52B、53と異なっている。工具ホーン30の振動方向は一対の熱可塑性樹脂材10、11と他の熱可塑性樹脂材12の表面に沿った一方向(表面と平行)に超音波振動している。なお、突き合わせる一方の熱可塑性樹脂材10が白色板であり、他方の熱可塑性樹脂材11が赤色板として以下説明する。
 超音波振動の方向が違うと、超音波振動の伝わり方が異なってくる。超音波振動の伝わり方が違うと、一対の熱可塑性樹脂材10、11と他の熱可塑性樹脂材12での発熱のしかた、熱の伝わり方、溶融のしかた、溶着のしかたが異なってくる。熱可塑性樹脂材10、11、12の表面に沿った一方向(表面と平行)に超音波振動すると、超音波振動エネルギーは熱可塑性樹脂材10、11、12の表面に沿った一方向(表面と平行)に伝わる。
 なお、本第一の実施形態における工具ホーン30は、熱可塑性樹脂材の上側表面に沿った一方向として、一対の熱可塑性樹脂材10、11の突き合せ面と交差する直線方向に超音波振動する場合を示したが、超音波振動エネルギーが熱可塑性樹脂材10、11、12の表面に沿った一方向(表面と平行)に伝われば、突き合せ面と一方向の角度については、溶着作業の必要に応じて、所定の角度で交差させても良いし、平行でも良い。
 図2に、本発明の第一の実施形態にかかる超音波溶着装置の正面図を示した。図2の超音波溶着装置の構成は、一対の熱可塑性樹脂材10、11と他の熱可塑性樹脂材12を載置するアンビル70と、一対の熱可塑性樹脂材10、11の端面を突き合せた部分近傍を、他の熱可塑性樹脂材12の上から押圧する工具ホーン30と、工具ホーン30の押圧面を一対の熱可塑性樹脂材10、11と他の熱可塑性樹脂材12の表面に沿った一方向に超音波振動させる超音波振動手段37と、超音波振動制御手段38と、工具ホーン30の支持手段80と、工具ホーン30を支持手段80とともに一体として上下動させる上下動手段81と、支柱70aと、上下動手段の取付け部70bと、を有している。
 図2で、工具ホーン30は、チタンやジュラルミンの素材から、右側の直方体の形をした押圧部と、中央のカーブした円錐台の形をした接続部と、左側の円柱状の基部を一体に削り出したもので、左側の円柱状の基部の端面には、ピエゾ振動子などの圧電素子を用いた超音波振動手段37が取り付けてある。
 繰り返しになるが、本実施形態の工具ホーン30は、円柱状の基部から先端に向けて円錐状に細くなり、先端部には直方体の押圧部が形成されている。当該押圧部は、熱可塑性樹脂側(アンビル側)である下面を押圧面として、熱可塑性樹脂材12に押圧力を付与する。
 超音波振動手段37には、後に説明する超音波振動制御手段38によって、工具ホーン30の押圧部が、振幅が数十μmで、周波数が20kHz~40kHz程度の超音波振動をするようにしている。工具ホーン30の押圧部の下面が押圧面として用いられる。
 アンビル70の左に支柱70aが一体に設けてあり、支柱70aの上に上下動手段の取付け部70bが設けてある。上下動手段の取付け部70bには、上下動手段81である空気プレスを下向きに取り付けている。空気プレスの上下動するアクチュエータの先端には、工具ホーン30の支持手段80を吊り下げた形に固定して取り付けている。図2で、工具ホーン30の支持手段80の左側部分は、支柱70aの摺動ガイド部に当接して摺動ガイドされている。上下動手段81である空気プレスのアクチュエータ先端を下降させると、工具ホーン30の押圧面が、一対の熱可塑性樹脂材10、11の端面を突き合せた部分近傍を、他の熱可塑性樹脂材12の上から押圧する。
 支柱70aの中に破線で示した、工具ホーン30の超音波振動制御手段38は、制御信号線と給電線が超音波振動手段37に接続されている。超音波振動手段37を駆動させると、工具ホーン30の押圧面は、一対の熱可塑性樹脂材10、11と他の熱可塑性樹脂材12の表面に沿った一方向に超音波振動する。工具ホーン30の押圧面は、一対の熱可塑性樹脂材10、11の端面を突き合せた部分近傍を、他の熱可塑性樹脂材12の上から押圧すると、他の熱可塑性樹脂材12と一対の熱可塑性樹脂材10、11の端面を突き合せた部分近傍に超音波振動エネルギーを与える。すると、熱可塑性樹脂材10、11、12は、発熱、溶融、冷却、固化のプロセスを経て溶着する。他の熱可塑性樹脂材12の上には、凹部が形成される。
 図3(a)は、本発明の第一の実施形態にかかる超音波溶着装置の、一対の熱可塑性樹脂材10、11と他の熱可塑性樹脂材12に対して工具ホーン30で超音波振動エネルギーを付与している状態の位置関係を示している。工具ホーン30の押圧面は、端面が突き合わされた一対の熱可塑性樹脂材10、11の上に置かれた他の熱可塑性樹脂材12の上側表面を押圧し、図面水平方向の超音波振動エネルギーを、他の熱可塑性樹脂材12の上側表面に伝えている。
 図3(b)のように、工具ホーン30の押圧面は、他の熱可塑性樹脂材12の上側表面を紙面の水平方向にこすりながら白線矢印のように下降し、他の熱可塑性樹脂材12の上側表面を溶融して凹部12cを形成する。そして、他の熱可塑性樹脂材12と一対の熱可塑性樹脂材10、11との当接面で、工具ホーン30の押圧面の幅(H1)より広い幅方向(W2)に渡って熱可塑性樹脂材を溶融させる。
 図3(c)のように、工具ホーン30を所定時間超音波振動させた後、上昇させて超音波振動を止めると、溶融した部分は冷却固化して溶着が完了する。図3(c)は、本発明の第一の実施形態にかかる溶着後の一対の熱可塑性樹脂材と他の熱可塑性樹脂材について一部を断面で示した図である。図3(d)は、溶着後の一対の熱可塑性樹脂材と他の熱可塑性樹脂材の外観を示した図である。
 超音波振動エネルギーは、工具ホーン30の押圧面から一対の熱可塑性樹脂材10、11の表面に沿った方向、つまり図3の図面水平に供給され、一対の熱可塑性樹脂材10、11の厚さ方向、つまり図3の図面下方には向かわない。そのため、工具ホーン30の押圧面が当接する熱可塑性樹脂材12の表面近傍はよく発熱するが、アンビル側の熱可塑性樹脂材10、11の表面近傍は発熱が少ない。溶融した熱可塑性樹脂材は、工具ホーン30の押圧面が当接する側の熱可塑性樹脂材12の表面近傍にあって、一対の熱可塑性樹脂材10、11の突き合わせた端面の間に割り込んでいかない。また、アンビル側の熱可塑性樹脂材10、11の表面近傍は発熱が少なく、表面が焼けたり、変色したりしない。
 本発明の第一の実施形態にかかる超音波溶着装置では、超音波溶着をしたときに、一対の熱可塑性樹脂材10、11の端面を突き合わせた互いの位置間隔を超音波溶着前と同じに保つことができ、また、超音波溶着をしたときに、一対の熱可塑性樹脂材10、11の他の熱可塑性樹脂材12を当接しない表面の状態を超音波溶着前と同じに保つことができることを実現している。
 図4は、本発明の第一の実施形態の超音波溶着方法と装置を用いて溶着した構造物である、溶着作業後の熱可塑性樹脂材10、11、12の斜視図を示す。他の熱可塑性樹脂材12の上側表面には凹部12cができている。図4では示していないが、凹部12cの周囲は、凹部12cを形成する際に排除した熱可塑性樹脂材12が盛り上がっている。溶融した熱可塑性樹脂材は、工具ホーン30の押圧面が当接する側の熱可塑性樹脂材12の表面近傍から、発熱の少ないアンビル側に向かわず、一対の熱可塑性樹脂材10、11の突き合わせた端面の間に割り込んでいない。
 図5に、本発明の第一の実施形態にかかる超音波溶着方法と装置を用いて溶着した構造物である、溶着作業後の熱可塑性樹脂材10、11の表裏を反転して、溶着時にアンビル側だった文字「ABC」の印刷面(P)を斜視図として示した。一対の熱可塑性樹脂材10、11の突き合わせた端面の隙間(S)の位置間隔(S1)は、均一で溶着前と同じである。また、文字「ABC」の印刷面は、高温にならず、焼きはなく変色していない。また文字「ABC」は本実施形態では金色文字(Le)であるが、文字自体も変色していない。
 なお、図4、図5では、一対の熱可塑性樹脂材10、11の突き合わせた端面の隙間(S)は、1mm以下の所定寸法の隙間をあけているイメージで図示したが、隙間(S)の設定は必要に応じて定まる値である。そのため、後に図6Bで図示するように、一対の熱可塑性樹脂材40、41の端面を密着、つまり隙間(S)をゼロにして溶着しても良いし、逆に広くしてもよい。
(本発明の第二の実施形態)
 本発明の第二の実施形態として、図6Aに本発明の第二の実施形態にかかる超音波溶着方法と装置を用いて溶着した構造物である一対の熱可塑性樹脂材40、41と他の熱可塑性樹脂材50と、工具ホーン35の位置関係を示した。
 本実施形態における工具ホーン35は、押圧面に凹凸が形成されている。そのため、凹部50cの表面には、工具ホーン35の押圧面の凹凸に対応した凹凸が出来ている。
 本実施形態では、工具ホーン35からの超音波振動エネルギーは、熱可塑性樹脂材50の上側表面に沿った一方向に付与される。そのため、工具ホーン35の押圧面が当接する熱可塑性樹脂材50の表面から熱可塑性樹脂材50と熱可塑性樹脂材40、41の当接面を越えたあたりまでは発熱するが、アンビル側の熱可塑性樹脂材40、41の表面近傍は発熱が少ない。溶融した熱可塑性樹脂材は、工具ホーン35の押圧面が当接する熱可塑性樹脂材50の表面から熱可塑性樹脂材50と熱可塑性樹脂材40、41の当接面を越えたあたりにあって、一対の熱可塑性樹脂材40、41を突き合わせた端面の間に割り込んでいかない。また、アンビル側の熱可塑性樹脂材40、41の表面近傍は発熱が少なく、表面が焼けず、変色しない。
 そのため、超音波溶着後の熱可塑性樹脂材40、41の表裏を反転して示した図6Bのように、熱可塑性樹脂材40、41の突き合わせ面の隙間は一定幅の直線Seのままであり、アンビル側の熱可塑性樹脂材40、41の表面が焼けず、変色しないことを確認した。なお、図6Bでは、P(文字面)に文字「ABC」の代わりに、△印と〇印の紋様を表示したブランド銘板を示した。
 本発明の超音波溶着方法、超音波溶着方法で溶着した構造物と超音波溶着装置によれば、超音波溶着をしたときに、一対の熱可塑性樹脂材の端面を突き合わせた互いの位置間隔を超音波溶着前と同じに保つことができる。また、一対の熱可塑性樹脂材のアンビル側の表面の状態を超音波溶着前と同じに保つことができる。
 なお、本発明の第一の実施形態では、工具ホーン30の押圧面は長方形をした平面にしていたが、本発明の第二の実施形態では、工具ホーン35の押圧面を、凹面部と凸面部が繰り返す凹凸面にした。押圧面を凹面部と凸面部が繰り返す凹凸面にすれば、凸面部で押しのけた熱可塑性樹脂は凸面部の隣の凹面部の空間に移動しやすい。工具ホーンの押圧面が、長方形をした平面だと、長方形をした平面全体を凹部に沈み込ませることになり大きい押圧力が要るが、押圧面を凹面部と凸面部が繰り返す凹凸面にすれば、凸面部が押しのける押圧力ですむので、小さい押圧力で溶着作業が進む。
 図7に、本発明の第二の実施形態の工具ホーンの押圧部を部分拡大した斜視図を示した。また、図8Aに、本発明の第二の実施形態の工具ホーンで溶着を開始した瞬間の様子を示し、図8Bに、本発明の第二の実施形態の工具ホーンで溶着を完了した瞬間の様子を示した。
 すなわち、図7と図8で示したように、工具ホーン35の押圧面を、凹面部と凸面部が繰り返す凹凸面にし、図8Aのように、押圧面の凹面部と凸面部の段差を2Δhとしたとき、工具ホーン35で溶着を開始した瞬間は、工具ホーン35の押圧面の凸面部が当たっている部分の熱可塑性樹脂が溶け始める。このとき溶融するのは、工具ホーン35の押圧面の凸面部が当たっている部分だけであるので、小さい押圧力で熱可塑性樹脂を溶かしていける。
 図8Bのように、工具ホーン35の押圧面の凸面部をΔhだけ沈み込ませると、凸面部が押しのけた熱可塑性樹脂材は、工具ホーン35の押圧面の凹面部にΔhだけ盛り上がる。図中に矢印を記載して、凸面部が押しのけた熱可塑性樹脂材が凹面部に移動する様子を示した。
 工具ホーン35の押圧面の凸面部と凹面部の両方、即ち工具ホーン35の押圧面の全面が熱可塑性樹脂材に当たると、工具ホーン35の押圧面が長方形をした平面だったときと同じ面積の熱可塑性樹脂材を押し下げる段階に入る。工具ホーン35の押圧面の凸面部をΔhだけ沈み込ませるまでは、熱可塑性樹脂を溶かすのは小さい押圧力でできる。工具ホーン35の押圧面の凸面部と凹面部の両方、即ち工具ホーン35の押圧面の全面が熱可塑性樹脂材に当たると負荷抵抗力が大きくなり、大きい押圧力が必要になる。
 この時点で、既に他の熱可塑性樹脂材50の上側表面には、凹部50cができており、熱可塑性樹脂材50は溶融している。そして、熱可塑性樹脂材50の下の一対の熱可塑性樹脂材40、41も互いに溶融している。
 そこで、溶着作業としては、この時点で超音波振動を止めて、冷却、固化して、溶着させても良い。このときは、小さい押圧力で溶着作業ができる。求められる溶着作業条件の必要によるが、工具ホーン35の押圧面の全面が熱可塑性樹脂材に当たって負荷抵抗力が大きくなったことを検知して工具ホーン35を反転上昇するようにすれば、小さい押圧力を加えるだけで溶着作業を終了することが出来る。
 図6Aの凹部50cの溶着後の形は、工具ホーン35の押圧面の凸面部と凹面部の両方、即ち工具ホーン35の押圧面の全面が熱可塑性樹脂材に当たった後、工具ホーン35の押圧面が長方形をした平面だったときと同じ面積の熱可塑性樹脂材を押し下げて溶着したときの状態を示している。このようにすれば、強固な溶着力を得ることが出来る。
 図9に、横軸に、工具ホーン35の押圧面の先端が熱可塑性樹脂材へ沈み込む量を取り、縦軸に、工具ホーン35が熱可塑性樹脂材を押し込むのに必要な押圧力と、工具ホーン35の上下動動作の向きと、超音波振動駆動のON/OFFの状態を示した。図9を見れば、熱可塑性樹脂材への沈み込みが進むタイミングと、押圧力、工具ホーンの上下動動作の向き、超音波振動駆動のON/OFFの状態の関係がわかる。
 図9で、まず超音波振動を始め、工具ホーン35の下降を始めると、沈み込み量がt1で示したタイミングで、工具ホーン35の押圧面の凸面部が熱可塑性樹脂材50に当接を始める。凸面部が熱可塑性樹脂材50に沈み込み始めると、押圧力は沈み込み量の増加に伴い、ゼロから少しずつ増加する。そして、凸面部のすべてが沈み込み、凹面部が熱可塑性樹脂材50に当接する。この沈み込み量がt2で示したタイミングで、工具ホーン35の下降を止めて上昇に反転すれば、凸面部を熱可塑性樹脂材50に沈み込ませただけで溶着作業を終えることが出来る。
 必要により、凸面部と凹面部の全てを沈み込ませる必要があれば、t2で示したタイミングの後も、押圧力が所定の大きさになるまで工具ホーンを下降させ、例えば、t3で示したタイミングで、工具ホーン35の下降を止めて上昇に反転すれば、凸面部と凹面部を熱可塑性樹脂材50に沈み込ませて溶着作業を終えることが出来る。
 図10に溶着作業の手順の一例をフローチャートで示した。図10では、設定により、(1)凸面部のみを沈み込ませる、(2)凸面部と凹面部を所定量だけ沈み込ませる、のどちらかを選択して溶着するときの溶着作業の手順をフローチャートで示した。なお、当該フローチャートで示す溶着作業は、例えば超音波振動制御手段38の制御の下で実行される。
 まず、最初の手順として、沈み込み量として、(1)凸面部のみを沈み込ませるか、(2)凸面部と凹面部を所定量だけ沈み込ませるか、のどちらかを選択して、装置の図示しない入力手段から入力し(ステップST1)、溶着作業を開始させる(ステップST2)。このことにより、工具ホーン35を超音波振動させて、熱可塑性樹脂材の上側表面に向けて下降させる(ステップST3)。工具ホーン35の凸面部が熱可塑性樹脂材50の上側表面に当接すると、工具ホーン35が熱可塑性樹脂材50を押し込むのに必要な押圧力は、少しずつ増大する。そして、押圧力(F0)は、所定の押圧力(F1)を超える。押圧力(F0)が押圧力(F1)を超えたことを図示しない圧力センサーで検知すると(ステップST4)、ステップST1の選択が「凸面部のみを沈み込ませる」であれば(ステップST5のYES)、工具ホーン35の上下動動作を熱可塑性樹脂材50の上側表面への下降動作から上昇動作に反転して、上昇させる(ステップST7)。その後、工具ホーン35の超音波振動駆動をOFFにして溶着作業を終了する(ステップST8)。これで、工具ホーン35の押圧面の凸面部だけを熱可塑性樹脂材50に沈み込ませることができる。
 凸面部と凹面部を所定量沈み込ませることを選択して入力したときは(ステップST5のNo)、押圧力(F0)が所定の押圧力(F2)を超えない間は(ステップST6のYES)、ステップST3に移って、下降動作を続ける。そして、押圧力(F0)が所定の押圧力(F2)を超えたときは(ステップST6のNO)、工具ホーン35の上下動動作を熱可塑性樹脂材の上側表面への下降動作から上昇動作に反転して、上昇させる(ステップST7)。その後、工具ホーン35の超音波振動駆動をOFFにして溶着作業を終了する(ステップST8)。これで、工具ホーン35の押圧面の凸面部と凹面部を熱可塑性樹脂材50に所定量沈み込ませることができる。
 なお、工具ホーン35の押圧面の形状については、図11Aのように凸面部を、間隔をあけて並べ、凸面部と凹面部が繰り返すようにしたものでも良いし、図11Bのように複数の小さな凸面部を千鳥状に離散配置したものでも良い。また必要により、図11Cのように、凸面部を文字の形としても良い。凸面部の横に凹面部があれば、凸面部が押しのけた溶融樹脂が凹面部で盛り上がるメカニズムが実現する。図11では、凸面部と凹面部を区別するために、凸面部の表面範囲内に点線を描いたが、凸面部と凹面部の表面粗さに差をつけても良い。
(本発明の第三の実施形態)
 本発明の第三の実施形態の超音波溶着装置は、一対の熱可塑性樹脂材40、41の突き合わせ面と平行に、工具ホーン36を超音波振動させたものである。
図12に、本発明の第三の実施形態の超音波溶着方法と装置を用いて溶着した構造物である、一対の熱可塑性樹脂材40、41と、他の熱可塑性樹脂材50と、工具ホーン36と、その位置関係を示した図を示した。
 なお、工具ホーン36の振動方向と熱可塑性樹脂材50の端面が連なっている方向の関係については、その他の角度で交差させたりして、工具ホーン36の振動方向を熱可塑性樹脂材50の端面が連なっている方向の角度を変えても、本発明の溶着前後で突き合わせ端面の間の位置間隔が保たれること、溶着前後で熱可塑性樹脂のアンビル側の表面に焼けや変色が無いこという効果が得られる。
(本発明の第四の実施形態)
 図13(a)(b)(c)に、本発明の第四の実施形態にかかる超音波溶着装置の、一対の熱可塑性樹脂材10、11と他の熱可塑性樹脂材12の上に、枠型位置決め治具カバー60を被せたときの、工具ホーン30、アンビル70との位置関係を示した。図14に、発明の第四の実施形態にかかる超音波溶着装置の、一対の熱可塑性樹脂材10、11と他の熱可塑性樹脂材12の上に、枠型位置決め治具カバー60を被せたときの、工具ホーン30、アンビル70との位置関係を外観斜視図として示した。
 枠型位置決め治具カバー60は、金属枠でできていて、他の熱可塑性樹脂材12の外形とほぼ同じで他の熱可塑性樹脂材12が外と通じる窓60aを設けている。窓60aは、他の熱可塑性樹脂材12の外形を窓枠として囲んでいる。
 そのため、枠型位置決め治具カバー60は、他の熱可塑性樹脂材12が工具ホーン30の超音波振動エネルギーを受けたとき、一定の位置を保つように支える。工具ホーン30により大きい振幅で振れるときには、側方アンビルのように位置規制する。そのため、他の熱可塑性樹脂材12の発熱を促す効果がある。必要により、枠型位置決め治具カバー60を使うと良い。
 本発明の第一の実施形態から第四の実施形態までは、一対の熱可塑性樹脂材を突き合わせ、その上に他の熱可塑性樹脂材を載せ、工具ホーンで他の熱可塑性樹脂材を押圧して、他の熱可塑性樹脂材の表面に沿った一方向に超音波振動エネルギーを供給する形態を示した。
 すなわち、上記の第一から第四の実施形態とそれぞれの変形例では、アンビル上に、一対の熱可塑性樹脂材の端面を突き合わせて載置し、一対の熱可塑性樹脂材の端面を突き合わせた部分の上に、他の熱可塑性樹脂材を載置し、他の熱可塑性樹脂材の上側表面に対して垂直でない当該表面に沿った一方向に超音波振動する工具ホーンの押圧面を押圧し、超音波振動する工具ホーンの押圧力を付与することにより、他の熱可塑性樹脂材の上側表面近傍を溶融し、溶着構造部を非溶着構造部の上に生成し、非溶着構造部の上に溶着構造部を重ねた構造で、一対の熱可塑性樹脂材を突き合わせ溶着する超音波溶着方法、超音波溶着方法で溶着した構造物、超音波溶着装置を説明した。
 このことにより、(1)溶着前後で突き合わせ端面の間の位置間隔が保たれること、(2)溶着前後で熱可塑性樹脂のアンビル側の表面に焼けや変色が無いという効果が得られる。
(本発明の第五の実施形態)
 本発明の第五の実施形態では、上記他の熱可塑性樹脂材を用いず、一対の熱可塑性樹脂材を一対のL字型断面をした白色板の熱可塑性樹脂材10aと赤色板の熱可塑性樹脂材11aとして、L字型断面の厚肉(あつにく)部分、つまり白色厚肉部10axと赤色厚肉部11axを突き合わせて、L字型断面の厚肉部分10axと11axの上側表面に工具ホーン30の押圧面を当て、L字型断面の厚肉部分の上側表面に沿った一方向に超音波振動エネルギーを与えて、L字型断面の厚肉部分の上側表面近傍を発熱させ、溶融して凹部を形成して溶着するようにしている。
 図15A、Bに、本発明の第五の実施形態にかかる超音波溶着装置の、一対のL字型断面をした熱可塑性樹脂材10a、11aと工具ホーン30の位置関係を示した。図16(a)には、本発明の第五の実施形態にかかる超音波溶着装置の、一対のL字型断面をした熱可塑性樹脂材10a、11aの突き合わせた厚肉部分10axと11axの上側表面に対して工具ホーン30で超音波振動エネルギーを付与している状態の位置関係を示した。
 本発明の第一の実施形態と第二の実施形態で示した他の熱可塑性樹脂材12の役目をL字型断面の厚肉部分が果たしている。図16(b)のように、一対のL字型断面をした熱可塑性樹脂材10a、11aの突き合わせた厚肉部分10axと11axに超音波振動エネルギーが付与されると、溶融して凹部が形成され、工具ホーン30の押圧面の幅(H1)より広い幅方向(W3)に渡って熱可塑性樹脂材10a、11aを溶融させる。
 図16(c)に、超音波溶着方法と装置を用いて溶着した構造物である、溶着後の一対のL字型断面をした熱可塑性樹脂材10a、11aの一部を断面で示した。図16(d)は、本発明の第五の実施形態にかかる超音波溶着方法と装置を用いて溶着した構造物である、溶着後の一対のL字型断面をした熱可塑性樹脂材10a、11aを示した図である。
 図17に、本発明の第五の実施形態の超音波溶着方法と装置を用いて溶着した構造物である、溶着作業後の、L字型断面をした熱可塑性樹脂材10a、11aと工具ホーンの位置関係を斜視図で示した。
 溶着の技術的な内容は、本発明の第一の実施形態と第二の実施形態と類似している。詳しい説明は、省略するが、第一の実施形態と第二の実施形態と同様、(1)溶着前後で突き合わせ端面の間の位置間隔が保たれること、(2)溶着前後で熱可塑性樹脂のアンビル側の表面に焼けや変色が無いという効果が得られる。
(本発明の第六の実施形態)
 本発明の第六の実施形態にかかる超音波溶着装置は、第五の実施形態のL字型断面をした熱可塑性樹脂材の厚肉部分を、互いに嵌合しあう複数の嵌合部としたものである。
 図18A、Bに、本発明の第六の実施形態にかかる超音波溶着装置の、一対の嵌合部付き熱可塑性樹脂材10b、11bと工具ホーン30の位置関係を示した。
 第六の実施形態のように、一対のL字型断面をした熱可塑性樹脂材10b、11bの突き合わせた厚肉部分に、互いに嵌合しあう複数の嵌合部10bw、11brを設けたため、これを溶融したときは、互いに強く一体化され、結合強度が大きくなる。特に、図18Bの斜視図で示したように、複数の嵌合部10bw、11brはそれぞれの熱可塑性樹脂材10b、11bの端面に一体成形されているので、複数の嵌合部10bw、11brを溶着することで、熱可塑性樹脂材10b、11bの一体化が実現される。
 第六の実施形態では、被溶着物である一対の熱可塑性樹脂材10b、11bの端面にそれぞれ嵌合部10bw、11brを設け、一対の熱可塑性樹脂材10b、11bのそれぞれ端面に設けた嵌合部10bw、11brを嵌合した状態で、一対の熱可塑性樹脂材10b、11bの嵌合部の上側表面に、その表面に沿った一方向に超音波振動する工具ホーンの押圧力を付与することにより、一対の熱可塑性樹脂材10b、11bのそれぞれの嵌合部10bw、11brの上側表面近傍を溶融させて、それぞれの嵌合部10bw、11brを嵌合した状態で溶着している。
 図18A、Bに示した第六の実施形態では、白色嵌合部10bwと赤色嵌合部11brの嵌め合う部分の形は、それぞれ立方体の空間をした凹部と、立方体の外形をした凸部を嵌め合わせるようにしている。なお、白色嵌合部10bwは、外側に突出した嵌合突起10bwxの根元部分を突起連結部10bwyに連結した形状をなしている。そのため、図18Bに示した、3つの白色矢印のように、嵌合部10bwに向けて嵌合部11brを押し込んでいくと、それぞれの凹部と凸部が嵌りあう。
 ちなみに、立方体の空間をした凹部と、立方体の外形をした凸部の側面は平面であるため、図18Bに示した、3つの白色矢印と反対の向きに、嵌合部10bwと嵌合部11brを離していくと、抵抗なく外れる構造にしている。このように、嵌合部10bwと嵌合部11brが、すきま嵌めの状態で、嵌合部10bwと嵌合部11brが互いに分離独立して、相互に連結されていない状態であっても、溶着すれば、すきまに溶融した熱可塑性樹脂材が入って一体になり、外れることはない。嵌合部10bwと嵌合部11bの嵌合の程度は、用途に応じて任意に定めればよい。
 図19(a)(b)に、本発明の第六の実施形態にかかる超音波溶着装置の、一対の嵌合部付き熱可塑性樹脂材に対して工具ホーンで超音波振動エネルギー付与している状態の位置関係を示した。図19(c)に、本発明の第六の実施形態にかかる超音波溶着方法と装置を用いて溶着した構造物の一部を断面で示した。図19(d)に、本発明の第六の実施形態にかかる超音波溶着方法と装置を用いて溶着した構造物の外観を示した。
 くりかえしの説明になるが、第六の実施形態では、一対の被溶着物である熱可塑性樹脂材10b、11bの端にそれぞれ互いに分離独立して、相互に連結されない熱可塑性樹脂材の嵌合部10bw、11brを設け、アンビル70上に、一対の被溶着物の嵌合部10bw、11brを互いに嵌合した状態で、載置し、一対の被溶着物である熱可塑性樹脂材10b、11bが嵌合している嵌合部10bw、11brの上側表面に対して垂直でない当該表面に沿った方向に超音波振動する工具ホーン30の押圧面を押圧し、超音波振動する工具ホーン30の押圧力を付与することにより、一対の被溶着物である熱可塑性樹脂材10b、11bのそれぞれの嵌合部10bw、11brの上側表面近傍を溶融し、溶着構造部を非溶着構造部の上に生成して、非溶着構造部の上に溶着構造部を重ねた構造で、一対の被溶着物である熱可塑性樹脂材10b、11bのそれぞれの嵌合部10bw、11brを溶着している。
 このことにより、(1)溶着前後で突き合わせ端面の間の位置間隔が保たれること、(2)溶着前後で熱可塑性樹脂のアンビル側の表面に焼けや変色が無いという効果に加え、(3)一対の熱可塑性樹脂材の突合せ面を強固に一体化できる効果が得られる。
 必要により熱可塑性樹脂材10b、11bの平面部分とそれぞれの嵌合部10bw、11brの材料を異なる材料としてもよい。熱可塑性樹脂材10b、11bの平面部分が破れやすい材質のときや、割れやすい材質のときや、溶着しにくい材質であるときなど、熱可塑性樹脂材10b、11bの平面部分の材質の足りない部分を補う、他の材質でできた嵌合部10bw、11brをそれぞれ設け、嵌合部10bw、11brを溶着して、良好な溶着を行うことができる。
 ブランド銘板の溶着方法ではないが、他の用途として、一対のビニールシートを被溶着物として、ビニールシートの端にそれぞれ熱可塑性樹脂材の嵌合部を設け、それぞれの嵌合部を嵌合した状態で溶着する方法が求められている。同様にテント用シートの端にそれぞれ熱可塑性樹脂材の嵌合部を設け、それぞれの嵌合部を嵌合した状態で溶着する方法が求められている。ビニールシートやテント用シートの素材にはいろいろなものがある。一対の被溶着物の平面部分の材質が熱可塑性樹脂材でなくても、熱可塑性樹脂材の嵌合部10bw、11brをそれぞれの平面部分に強固に取り付けることが出来れば、本発明の第六の実施形態として適用することができる。
(本発明の第六の実施形態の変形例1)
 本発明の第六の実施形態の変形例1にかかる超音波溶着装置は、図18で示した第六の実施形態の互いに嵌合しあう複数の嵌合部10bw、11brの一方の熱可塑性樹脂材10bの嵌合部10bw(白色篏合部)の形状をもとに、一対の熱可塑性樹脂10c、11c、10d、11dそれぞれの嵌合部10cw、11cr、10dw、11drの形をほぼ同じ形にしている。嵌合部10cw、11cr、10dw、11drのそれぞれの形は、図20A、Bに示したように、嵌合突起10cwxを嵌合連結部10cwyでつないでEの字型、あるいはCの字型に連結した嵌合部としたものである。
 一対のL字型断面をした熱可塑性樹脂材10c、11c、10d、11dの突き合わせた厚肉部分に、互いに嵌合しあう複数の嵌合部10cw、11cr、10dw、11drを設けたことにより熱可塑性樹脂材10c、11c、10d、11dの溶着強度が大きくなる効果がある。
 なお、嵌合部10cw、11cr、10dw、11drの形については、任意である。図20A、Bに、本発明の第六の実施形態の変形例1にかかる超音波溶着装置の、一対の嵌合部付き熱可塑性樹脂材10cと11c、10dと11dと工具ホーン35の位置関係を示した。
 図20Aでは、篏合突起10cwxの長さを、図18Aの篏合突起10bwxより長くしている。図20Bでは、篏合突起10dwxの長さを長くし、更に、篏合突起10dwxの数を増やしている。篏合突起10dwxの長さと数は、どちらも増やすと溶着強度が増大する。そのため、用途に応じて任意に定めればよい。図20A、Bでは、押圧面に凹凸のある工具ホーン35を用いた例を図示した。
 図21では、図20Aで示した複数の嵌合部10cw、11crのそれぞれの形状が見えるように、嵌合部10cw、11crを離した嵌合前の外観斜視図を示した。図21を見ると、白色嵌合部10cwが、3つの篏合突起10cwxと一つの突起結合部10cwyをつないでE字型に連結した形にしていることがわかる。必要な溶着強度が小さいときは、白色嵌合部10cwの突起結合部10cwyを設けず、3つの篏合突起10cwxだけの形にしても良い。また、篏合突起10cwxを熱可塑性樹脂材10cの平面部に埋め込んだ形にしても良い。嵌合部の形は、用途に応じて任意に定めればよい。
 上記第六の実施形態と変形例では、一対の被溶着物の端にそれぞれ熱可塑性樹脂材の嵌合部を設けたときの、超音波溶着方法、超音波溶着方法で溶着した構造物、超音波溶着装置を説明した。
 本発明の第六の実施形態は、(1)溶着前後で突き合わせ端面の間の位置間隔が保たれること、(2)溶着前後で熱可塑性樹脂のアンビル側の表面に焼けや変色が無いという効果に加え、(3)一対の熱可塑性樹脂材の突合せ面を強固に一体化できる効果が得られる。
(本発明の第七の実施形態)
 本発明の第七の実施形態にかかる超音波溶着装置は、一対の厚肉(あつにく)の熱可塑性樹脂材10e、11eを突き合わせたものである。本発明の第五と第六の実施形態では、一対の熱可塑性樹脂材を一対のL字型断面をした熱可塑性樹脂材10aと11aとを溶着したり、一対の熱可塑性樹脂材の端面にそれぞれ嵌合部を設け、その嵌合部を嵌合した状態で、嵌合部の上側表面に沿った一方向に超音波振動する工具ホーンの押圧力を付与して溶着したりする、一対の嵌合部付き熱可塑性樹脂材10bと11bや10cと11c、10dと11dを溶着する例を説明したが、全体が厚肉、あるいは薄肉の熱可塑性樹脂材同士を突き合わせた場合でも、同様の効果があるため、例示した。
 図22Aに、本発明の第七の実施形態にかかる超音波溶着装置の、一対の厚肉の熱可塑性樹脂材10e、11eと工具ホーン35の位置関係を示した。図22Bに、本発明の第七の実施形態にかかる超音波溶着方法と装置を用いて溶着した構造物である一対の厚肉の熱可塑性樹脂材10e、11eと工具ホーン35の位置関係を示した。
 第七の実施形態では、一対の厚肉(あつにく)の熱可塑性樹脂材10e、11eの端面を突合せた状態で、一対の厚肉の熱可塑性樹脂材の上側表面に沿った一方向に超音波振動する工具ホーンの押圧力を付与することにより、一対の厚肉の熱可塑性樹脂材の上側表面近傍を溶融させて溶着している。
 第七の実施形態にかかる超音波溶着装置は、(1)溶着前後で突き合わせ端面の間の位置間隔が保たれること、(2)溶着前後で熱可塑性樹脂のアンビル側の表面に焼けや変色が無いという効果に加え、(3)一対の熱可塑性樹脂材の突合せ面を強固に一体化できる、という効果が得られる。
(本発明の第七の実施形態の第一変形例)
 本発明の第七の実施形態の第一変形例にかかる超音波溶着装置は、一対の肉の薄い、いわゆる薄肉(うすにく)の熱可塑性樹脂材10f、11fを突き合わせたものである。図23Aに、本発明の第七の実施形態の第一変形例にかかる超音波溶着装置の、一対の薄肉の熱可塑性樹脂材10f、11fと工具ホーン35の位置関係を示した。図23Bに、本発明の第七の実施形態の第一変形例にかかる超音波溶着方法と装置を用いて溶着した構造物である溶着した薄肉の熱可塑性樹脂材10f、11fと工具ホーン35の位置関係を示した。
 第七の実施形態の第一変形例では、一対の薄肉(うすにく)の熱可塑性樹脂材10f、11fの端面を突合せた状態で、一対の薄肉の熱可塑性樹脂材の上側表面に沿った一方向に超音波振動する工具ホーン35の押圧力を付与することにより、一対の薄肉の熱可塑性樹脂材の上側表面近傍を溶融させて溶着している。
 第七の実施形態の第一変形例にかかる超音波溶着装置は、(1)溶着前後で突き合わせ端面の間の位置間隔が保たれること、(2)溶着前後で熱可塑性樹脂のアンビル側の表面に焼けや変色が無いという効果に加え、(3)全体の厚さを薄くできるという効果が得られる。
(本発明の第七の実施形態の第二変形例)
 本発明の第七の実施形態の第一変形例として図23Aを用いて説明したものは、突き合せ面が直線状をしていて、溶着長さSLが短い。一対の薄肉熱可塑性樹脂材は厚さが薄く溶着長さが短いと、溶着しあう熱可塑性樹脂材の量が一対の厚肉の熱可塑性樹脂材10e、11eの時より少なく、溶着強度が小さい。
 そこで、本発明の第七の実施形態の第二変形例にかかる超音波溶着装置は、図24Bのように、一対の薄肉熱可塑性樹脂材10g、11gの突き合せ端面の形を、上から見てジグザグ状にしている。このことにより、溶着長さSLは図24Aで示した直線状の時の2倍になる。そして、溶着強度も倍増する。図示しないが、溶着長さが更に長くなる、くさび状に篏合した形で突き合せれば、更に溶着強度を増やすことができる。
 第七の実施形態の第二変形例では、一対の薄肉(うすにく)の熱可塑性樹脂材10g、11gの端面の形をジグザグ状のように凹形状と凸形状がかみ合うような形にして、突合せて互いにかみ合わせた状態で、一対の薄肉の熱可塑性樹脂材10g、11gの上側表面に沿った一方向に超音波振動する工具ホーン35の押圧力を付与することにより、一対の薄肉の熱可塑性樹脂材10g、11gの上側表面近傍を溶融させて溶着している。
 但し、一対の薄肉熱可塑性樹脂材の突き合せ端面の形をジグザグ状にすると、美観の点からブランド銘板のように目立つ所には使えないので、他の用途、例えばテント用シート同士の突合せ溶着等に利用できる。図示はしていないが、一対のテント用シートを、それぞれの嵌合部を嵌め合せた状態で、お互いの嵌合部の上側表面に、表面に沿う方向に超音波振動する工具ホーンを押し付けると、一定形状で屈折した線状に切断して嵌め合せたそれぞれの嵌合部が、嵌め合せたときの姿のまま一体に溶着される。
 従来のテント用シートなどの端部の溶着は、一対のテント用シートを重ねて、重ねた表面の垂直方向に工具ホーンや高周波電極を押し付けて溶着していたため、溶着した部分の厚さを元の厚さに近づくまで十分に押しつぶせず、溶着した部分が厚く仕上がるので、剛性が異なり、違和感があった。
 しかし、本発明の第七の実施形態の第二変形例では、図24Bのように、一対の薄肉熱可塑性樹脂材10g、11gの突き合せ端面の形を、上から見てジグザグ状になっていても、一対の薄肉熱可塑性樹脂材の溶着部の厚さは同じに仕上がり、剛性は同じで、違和感がない。
 上記第七の実施形態と変形例では、アンビル上に、二以上の熱可塑性樹脂材を並べて載置し、熱可塑性樹脂材の上側表面に対して垂直でない当該表面に沿った方向に超音波振動する工具ホーンの押圧面を押圧し、超音波振動する工具ホーンの押圧力を付与することにより、熱可塑性樹脂材の上側表面近傍を溶融し、溶着構造部を非溶着構造部の上に生成し、非溶着構造部の上に溶着構造部を重ねた構造の構造物として、熱可塑性樹脂材を溶着する超音波溶着方法、超音波溶着方法で溶着した構造物、超音波溶着装置を説明した。
 このことにより、第七の実施形態の変形例にかかる超音波溶着装置は、(1)溶着前後で突き合わせ端面の間の位置間隔が保たれること、(2)溶着前後で熱可塑性樹脂のアンビル側の表面に焼けや変色が無いという効果に加え、(3)一対の熱可塑性樹脂材の突合せ面を強固に一体化できる、(4)薄肉の熱可塑性樹脂材でも溶着できる、という効果が得られる。
 先に説明した第五の実施形態もアンビル上に、二以上の熱可塑性樹脂材を並べて載置し溶着している点では、同じである。
(本発明の第八の実施形態)
 本発明の第八の実施形態では、アンビル上に一対の熱可塑性樹脂材の端面を突き合わせて載置し、一対の熱可塑性樹脂材の端面を突き合わせた部分の上側表面に、一対の熱可塑性樹脂材の端面を突き合わせた部分の上側表面の斜め上方から斜め下方に向けて、当該表面に沿った一方向に超音波振動する工具ホーンの押圧力を付与し、超音波振動エネルギーを付与することにより、一対の熱可塑性樹脂材の上側表面近傍を溶融させて一対の熱可塑性樹脂材を突き合わせ溶着している。
 本発明の第八の実施形態にかかる超音波溶着装置の正面図を図25に、その変形例1、2、3を図27、図30、図32に示した。本発明の第八の実施形態にかかる超音波溶着装置では、アンビル70の上面に載置した、一対の熱可塑性樹脂材10jと11j、10kと11k、10mと11m、10nと11nの端面を突き合せた。
 なお、図25と図30の本発明の第八の実施形態にかかる超音波溶着装置では、一対の熱可塑性樹脂材10jと11j、10mと11mの端面、つまり、突合せ端面を、アンビル70の表面に対して傾斜した斜面、いわゆる「突合せ斜面」で突き合わせている。理由は、突合せ端面を既に説明した実施形態と同じ、アンビル70の表面に対して垂直な面としたときより溶着強度が大きくなるからである。
 図25では、一対の熱可塑性樹脂材10jと11jの突き合せ斜面の上から工具ホーン35を左上から右下に向けて斜めに押し当てて超音波溶着する構成を示した。一対の熱可塑性樹脂材10jと11jでは、突き合せ斜面の上側表面に対して、工具ホーン35の押圧面を斜め方向に移動させて、工具ホーン35の押圧力を斜め方向に付与できるようにしている。
 一対の熱可塑性樹脂材10j、11jの突き合せ斜面の上側表面に対して左上から右下に向けて斜めの方向から、工具ホーン35の押圧面の超音波振動を与えている。このことは、例えば空気プレスの力ベクトル(FVO)が水平方向の力(FVX)と垂直方向の力(FVY)に分解して作用すると理解されるように、一対の熱可塑性樹脂材10j、11jの突き合せ斜面に与える押圧力、すなわち、垂直方向の力(FVY)が空気プレスの力ベクトル(FVO)より小さくなる。このことから、同じ超音波溶着装置でも、工具ホーンを傾いた方向に動かして押圧すると、押圧力を小さく、ソフトに(柔らかく)付与することができることが分かる。特に、薄肉の熱可塑性樹脂材に対しては、表面から小さい力でゆっくりと押して超音波振動を与えることができるので、一対の薄肉の熱可塑性樹脂材の突き合せ端面の非溶着構造部(B)の上に溶着構造部(A)を重ねた構造物が作りやすい利点がある。
 図26に示したように、工具ホーン35が左上から右下に移動するとき、溶着範囲は、一対の熱可塑性樹脂材10j、11jの上側表面からアンビル側に向けて斜めに移動して、非溶着構造部(B)の上に点線で描いた平行四辺形の領域に、溶着構造部(A)が形成される。一対の熱可塑性樹脂材10j、11jの突合せ斜面がこの溶着構造部(A)に入れば、熱可塑性樹脂材10j、11jは溶着する。
 図27の第八の実施形態の変形例1では、一対の熱可塑性樹脂材10kと11kの突き合せ面の上に直接工具ホーン35aを右上から左下に向けて斜めに押し当てて超音波溶着する構成を示した。図27では、工具ホーン35aの超音波振動方向も一対の熱可塑性樹脂材10kと11kの表面に対して斜めに当たるようにしている。そして、図28で拡大図を示したように、工具ホーン35aの押圧面には凹凸を複数設け、一対の熱可塑性樹脂材10kと11kのアンビル側に向けて斜め方向に超音波振動エネルギーを付与して、一対の熱可塑性樹脂材10kと11kの上側表面近傍を溶融させている。突き合せ面は、一対の熱可塑性樹脂材10kと11kの表面に対して垂直であるが、非溶着構造部(B)を残した状態で、超音波振動を止めている。
 なお、図29(a)(b)(c)(d)のように、工具ホーン35aを右上から左下に向けて斜めに押し当てる動作と、一対の熱可塑性樹脂材10kと11kの上側表面に沿って左から右に動かす動作を交互に組み合わせると、一対の熱可塑性樹脂材10kと11kの上側表面の上部に与える超音波振動エネルギーが増え、一対の熱可塑性樹脂材10kと11kの上側表面で溶融、冷却、固化する量が増えるので、溶着強度の増加が期待出来る。
 図30の第八の実施形態の変形例2では、一対の熱可塑性樹脂材10mと11mの突き合せ斜面の上に直接工具ホーン35bを右上から左下に向けて斜めに押し当てて超音波溶着する構成を示した。工具ホーン35bの押圧面は、一対の熱可塑性樹脂材10mと11mの上側表面を平面で押圧するように台形のような形にしてあり、台形の斜面部を押圧面としている。図30の本発明の第八の実施形態にかかる超音波溶着装置では、一対の熱可塑性樹脂材10mと11mの端面、つまり、突合せ端面を、アンビル70の表面に対して傾斜した斜面、いわゆる「突合せ斜面」で突き合わせている。
 図31で拡大図を示したように、工具ホーン35bの押圧面から、一対の熱可塑性樹脂材10mと11mのアンビル側に向けて斜め方向に超音波振動エネルギーを付与して、一対の熱可塑性樹脂材の上側表面近傍を溶融させている。突き合せ斜面を溶着構造部(A)内に取り込み、非溶着構造部(B)を残した状態で超音波振動を止めている。
 工具ホーン35bの超音波振動は、一対の熱可塑性樹脂材10m、11mの「突合せ斜面」に押し付ける振動、叩き付ける振動として作用する。そのため、一対の熱可塑性樹脂材10m、11mの突合せ斜面には、アンビル70の表面に対して垂直な突合せ面のときよりも振動エネルギーを強く押し付けるように与えることができる。工具ホーン35bの押圧面には凹凸を複数設け、一対の熱可塑性樹脂材10m、11mのアンビル側に向けて斜め方向に超音波振動エネルギーを付与して、一対の熱可塑性樹脂材の上側表面近傍を溶融させている。突き合せ面は、一対の熱可塑性樹脂材10m、11mの表面に対して斜めであるが、非溶着構造部(B)を残した状態で、超音波振動を止めている。
 図32の第八の実施形態の変形例3では、一対の熱可塑性樹脂材10nと11nの突き合せ面の上に工具ホーン35cを左上から右下に向けて斜めに押し当てて超音波溶着する構成を示した。図32では、工具ホーン35の超音波振動方向も一対の熱可塑性樹脂材10nと11nの表面に対して斜めに当たるようにしている。工具ホーン35cの押圧面は、一対の熱可塑性樹脂材10nと11nの上側表面を平面で押圧するように台形のような形にしてあり、台形の斜面部を押圧面とし、押圧面に凹凸を設けている。
 そして、図33で拡大図を示したように、熱可塑性樹脂材10nと11nのアンビル側に向けて斜め方向に超音波振動エネルギーを付与して、一対の熱可塑性樹脂材10nと11nの上側表面近傍を溶融させている。突き合せ面は、一対の熱可塑性樹脂材10nと11nの表面に対して垂直であるが、非溶着構造部(B)を残した状態で、超音波振動を止めている。
 なお、図34(a)(b)(c)(d)のように、工具ホーン35cを左上から右下に向けて斜めに押し当てる動作と、一対の熱可塑性樹脂材10nと11nの上側表面に沿って右から左に動かす動作を交互に組み合わせると、一対の熱可塑性樹脂材10nと11nの上側表面の上部に与える超音波振動エネルギーが増え、一対の熱可塑性樹脂材10nと11nの上側表面で溶融、冷却、固化する量が増えので、溶着強度の増加が期待出来る。
 このことは、例えば図35(a)(b)(c)に示したように、工具ホーン35を一対の熱可塑性樹脂材10n、11nを、突き合わせた突合せ面の上側表面に沿って、超音波振動して、押圧面を押圧しながら、左から右に移動すると、超音波振動エネルギーが付与される範囲も左から右に移動する。超音波振動エネルギーがどれだけ付与されたかは、その場所における積分値なので、工具ホーン35で押圧された時間の長さにより、超音波振動エネルギーが付与させる量は変化する。例えば、図35(d)のように溶着構造部(A)を上側表面は広く、下側(厚さ方向)に進むにつれて狭くなる形に、溶着構造部(A)と非溶着構造部(B)の形を形成することが出来る。また、図35(e)のように溶着構造部(A)を突き合わせ面は下側(厚さ方向)に浅く、突き合わせ面の近傍は深く、その周辺は浅くしたような形にもすることが出来る。このように工具ホーン35の移動のしかたを制御すれば、必要に応じて、図35(d)や(e)に示した、溶着構造部(A)と非溶着構造部(B)の形を任意に設定することが出来る。
 図示はしていないが、既に説明した本発明の超音波溶着装置の手段に、(1)工具ホーンを一対または二以上の熱可塑性樹脂材の上側表面に沿った方向に移動する工具ホーンの移動手段と、(2)工具ホーンの移動手段の移動速度を所定のパターンで可変制御する移動速度制御手段と、を新たな追加手段として更に設けると、溶着構造部(A)と非溶着構造部(B)の形を任意の形にすることが出来る。
 すなわち、制御手段38により工具ホーン35の超音波振動動作と押圧動作を行わせて、工具ホーン35を熱可塑性樹脂材10n、11nの上側表面に対して垂直でない当該表面に沿った方向に超音波振動させて、工具ホーン35の押圧面で押圧する。
 このとき、工具ホーン35の移動手段と移動速度制御手段を用いて、工具ホーン35の押圧面を一対または二以上の熱可塑性樹脂材10n、11nの上側表面に沿った方向に、所定のパターンで移動速度を可変して移動させて、一対の熱可塑性樹脂材10n、11nの上側表面近傍を溶融させる。工具ホーン35の押圧面から一定の超音波振動エネルギーが放出されているとき、単位長さ当たりの移動速度が速いと、超音波振動エネルギーはその単位長さに対して薄く放出される。一方、単位長さ当たりの移動速度が遅いと、超音波振動エネルギーはその単位長さに対して濃密に放出される。図35(a)(b)(c)では、工具ホーン35を同一の移動速度で移動したときに、工具ホーン35が放出する超音波振動エネルギーの量を長方形の面積で示したが、単位長さ当たりの移動速度が速いと、長方形の厚さは薄く、面積は小さい。一方、単位長さ当たりの移動速度が遅いと、長方形の厚さは厚く、面積は大きい。溶着構造部の大きさは、与えられる超音波振動エネルギーの量に比例する。
 そして、工具ホーンの移動手段の移動速度を所定のパターンで可変制御することにより、そのパターンに応じた形の溶着構造部を非溶着構造部の上に生成する。このように、非溶着構造部の上に溶着構造部を重なった構造で、二以上の熱可塑性樹脂材を溶着する制御をすると、図35(d)や(e)に示したように、溶着構造部(A)と非溶着構造部(B)の形を形成できる。
 重ねて言うが、工具ホーン35の移動のしかたを必要に応じた特定のパターンで動作するように制御すれば、図35(d)や(e)に示した、溶着構造部(A)と非溶着構造部(B)の形を任意に設定することが出来るので、超音波振動エネルギーを効率的に利用して、所望の溶着強度が得られるので便利である。
 上記の第八の実施形態と変形例では、アンビル上に、一対の熱可塑性樹脂材の端面を突き合わせて載置し、一対の熱可塑性樹脂材の端面を突き合わせた部分の上側表面に対して垂直でない当該表面に沿った方向に超音波振動する工具ホーンの押圧面を押圧し、超音波振動する工具ホーンの押圧力を付与することにより、一対の熱可塑性樹脂材の上側表面近傍を溶融し、溶着構造部を非溶着構造部の上に生成し、非溶着構造部の上に溶着構造部重ねた構造の構造物として、一対の熱可塑性樹脂材を突き合わせ溶着する超音波溶着方法、超音波溶着方法で溶着した構造物、超音波溶着装置を説明した。
 本発明の第八の実施形態にかかる超音波溶着装置では、本発明の(1)溶着前後で突き合わせ端面の間の位置間隔が保たれること、(2)溶着前後で熱可塑性樹脂のアンビル側の表面に焼けや変色が無いという効果に加え、(3)一対の熱可塑性樹脂材の突合せ面を強固に一体化できる、(4)薄肉の熱可塑性樹脂材でも溶着できる、という効果が得られる。
(本発明の第九の実施形態)
 本発明の第九の実施形態にかかる超音波溶着装置では、アンビル70の外に空冷装置である空冷ファン73を取り付け、アンビル70の中に、空気Cを通す貫通孔74を設けている。空気は、貫通孔74の一方から他方に流れ、アンビル70の熱をアンビル70の外に放出する。アンビル70には温度センサー75を埋め込み、信号線75aを介して超音波振動制御手段38に温度情報を伝えて、アンビル70の温度情報をフィードバック制御するようにしている。
 本発明の第九の実施形態にかかる超音波溶着装置の構成は、既に図25に記載した構成とほぼ同じだが、念のため、図36に、本発明の第九の実施形態にかかる超音波溶着装置の要部構造のアンビル70の一部と一対の薄肉熱可塑性樹脂材10j、11jと工具ホーン35との位置関係を拡大図で示した。
 第九の実施形態では、アンビル70上に一対の熱可塑性樹脂材10j、11jの端面を突き合わせて載置し、アンビルの温度情報を基に冷却手段を用いて、アンビル70の温度を一定温度以下にして、一対の熱可塑性樹脂材10j、11jの端面を突き合わせた部分の上側表面に、当該表面に沿った一方向に超音波振動する工具ホーン35の押圧力を付与し、超音波振動エネルギーを付与することにより、一対の熱可塑性樹脂材10j、11jの上側表面近傍を溶融させて一対の熱可塑性樹脂材10j、11jを突き合わせ溶着している。
 図36のように、工具ホーン35が一対の薄肉の熱可塑性樹脂材10j、11jの上側表面に沿った方向に超音波振動を与えると、一対の薄肉の熱可塑性樹脂材10j、11jは上側表面からアンビル70に向けて溶融していくが、アンビル70は、温度センサー75と空冷ファン73により、一定温度下に冷却されるので、アンビル70近傍の一対の薄肉熱可塑性樹脂材10j、11jの温度は低いままに保たれる。アンビル70近傍の一対の薄肉熱可塑性樹脂材10j、11jの温度が低いと、溶融した熱可塑性樹脂材の流れはアンビル70に近いほど鈍く、間隙(S)は広がらず、表面が焼けることが無い。そして、一対の薄肉の熱可塑性樹脂材の突き合せ端面の非溶着構造部(B)の上に溶着構造部(A)を重ねた構造物ができる。
 そして、本発明の(1)溶着前後で突き合わせ端面の間の位置間隔が保たれること、(2)溶着前後で熱可塑性樹脂のアンビル側の表面に焼けや変色が無いという効果に加え、(3)一対の熱可塑性樹脂材の突合せ面を強固に一体化できる、(4)薄肉の熱可塑性樹脂材でも溶着できる、という効果が得られる。
 なお、上記では、空冷ファン73による空冷手段を説明したが、液体の冷媒を還流させる液冷手段を用いてもよい。
(本発明の第十の実施形態)
 本発明の第十の実施形態にかかる超音波溶着装置では、アンビルを冷却する制御をしている。
 図37に示した、本発明の第九の実施形態にかかる超音波溶着装置の動作フローでは、本発明の作業である「非溶着構造部の上に溶着構造部が重なる構造」を選択して(ステップST11)、溶着作業を開始すると(ステップST12)、超音波振動制御手段38は、Δt時間ごとに、工具ホーン35を所定量下降させ、その都度、アンビル70の温度(T0)が所定温度(T1)以下か(ステップST14)、付与した超音波振動エネルギーE0が所定エネルギー量(E1)以下か(ステップST15)を見ている。どちらかがYesの場合は、ステップST13に戻り、工具ホーン35の下降を継続する。どちらもNoとなれば、間隙(S)の広がりや、表面が焼けるのを防ぐため、工具ホーン35を上昇させ(ステップST16)、溶着作業を終了させる(ステップST17)。その後、アンビル70を所定温度範囲内に冷却する(ステップST18)。アンビル70の温度が冷えたら、溶着作業を再開できる。特に、連続して溶着作業をしてアンビル70の温度が上昇するときに、この制御動作は役立つ。
(本発明の第十一の実施形態)
 本発明の第十一の実施形態にかかる超音波溶着装置では、溶着作業開始前から溶着作業終了まで、アンビルを所定温度範囲内に保つ制御をしている。
 すなわち、図38に示した、本発明の第十一の実施形態にかかる超音波溶着装置の他の動作フローでは、本発明の作業である「非溶着構造部の上に溶着構造部が重なる構造」を選択すると(ステップST11)、超音波振動制御手段38は、アンビル70を所定温度範囲内に保つ制御を開始し(ステップST19)、アンビル70を所定温度範囲内に保つ制御を継続した状態で、溶着作業開始(ステップST12)から、溶着作業終了(ステップST17)までの動作を行っている。
 超音波振動制御手段38は、アンビルを所定温度範囲内に保つ制御をした後、Δt時間ごとに、工具ホーン35を所定量下降させ、その都度、アンビル70の温度(T0)が所定温度(T1)以下か(ステップST14)、付与した超音波振動エネルギー(E0)が所定エネルギー量(E1)以下か(ステップST15)を見ている。どちらもNoとなれば、間隙(S)の広がりや、表面が焼けるのを防ぐため、工具ホーン35を上昇させ(ステップST16)、溶着作業を終了している(ステップST17)。
 本発明の第十の実施形態にかかる超音波溶着装置では、溶着作業終了後にアンビルを冷却する。第十一の実施形態にかかる超音波溶着装置では、溶着作業のときに、所定温度範囲内に保つ制御をする。そのため、間隙(S)の広がりや、表面が焼けるのを安定的に防ぐことができる。
(本発明の第十二の実施形態)
 本発明の第十二の実施形態にかかる超音波溶着装置は、図39に示したように、一対の肉厚の薄い、薄肉の熱可塑性樹脂材10f、11fの突き合わせ面と平行に、工具ホーン36aを超音波振動させたものである。
 なお、図40(a)(b)のように、工具ホーン36aを一対の肉厚の薄い、薄肉の熱可塑性樹脂材10f、11fの表面に対して傾けると、工具ホーン36aの食い込み量が変わり、工具ホーン36aの傾きに応じて溶融する樹脂の量を変化させることができる。
 本発明の第十二の実施形態では、アンビル上に一対の熱可塑性樹脂材の端面を突き合わせて載置し、一対の熱可塑性樹脂材の端面を突き合わせた部分の上側表面に、薄肉の熱可塑性樹脂材の突き合わせ面と平行に、工具ホーンを超音波振動させ、当該表面に沿った一方向に超音波振動する工具ホーンの押圧力を付与し、超音波振動エネルギーを付与することにより、一対の熱可塑性樹脂材の上側表面近傍を溶融させて一対の熱可塑性樹脂材を突き合わせ溶着している。
 図40(a)(b)のように、工具ホーン36aを一対の厚肉の薄い、薄肉の熱可塑性樹脂材10f、11fの表面に対して傾けて押圧する工程と、図36(c)のように、工具ホーン36aを一対の薄肉の熱可塑性樹脂材10f、11fの表面に対して垂直に押圧する工程を組み合わせて溶着するようにしても良い。
 第十二の実施形態にかかる超音波溶着装置は、(1)溶着前後で突き合わせ端面の間の位置間隔が保たれること、(2)溶着前後で熱可塑性樹脂のアンビル側の表面に焼けや変色が無いという効果に加え、(3)一対の熱可塑性樹脂材の突合せ面を強固に一体化できる、(4)薄肉の熱可塑性樹脂材でも溶着できる、という効果が得られる。
(本発明の第十三の実施形態)
 本発明の第六の実施形態では、図18を示して、白色板の熱可塑性樹脂材10bと白色嵌合部10bw、赤色板の熱可塑性樹脂材11bと赤色嵌合部11brは、一体成形されている場合を説明したが、白色板の熱可塑性樹脂材10bの平面部と赤色板の熱可塑性樹脂材11bの平面部が薄肉の熱可塑性樹脂材のときは、白色嵌合部10bwと赤色嵌合部11brを別部品として製造して、白色板10bの平面部と赤色板11bの平面部にそれぞれ溶着するようにしても良い。
 本発明の第十三の実施形態では、白色嵌合部10cwと赤色嵌合部11crを別部品として製造して、白色板10cの平面部と赤色板11cの平面部にそれぞれ溶着する方法を説明する。図41A、B、Cに、3工程からなるブランド銘板100の製造工程を示した。
すなわち、
(第一工程)厚さの薄い白色板の熱可塑性樹脂材10c、白色嵌合部10cw、厚さの薄い赤色板の熱可塑性樹脂材11c、赤色嵌合部11crをそれぞれ別部品として作る。
(第二工程)厚さの薄い白色板の熱可塑性樹脂材10cと白色嵌合部10cw、厚さの薄い赤色板の熱可塑性樹脂材11cと赤色嵌合部11crをそれぞれ互いに溶着する。
(第三工程)白色嵌合部10cw付の厚さの薄い白色板の熱可塑性樹脂材10cと、赤色嵌合部11cr付の厚さの薄い赤色板の熱可塑性樹脂材11cを溶着して、ブランド銘板100にする。
 第一工程は、従来技術を用いて、熱可塑性樹脂板を切削加工して、厚さの薄い白色板の熱可塑性樹脂材10c、白色嵌合部10cw、厚さの薄い赤色板の熱可塑性樹脂材11c、赤色嵌合部11crをそれぞれ別部品として作る。
 第二工程は、図42のように、本発明の超音波溶着装置のアンビル70の上にダミー板99を置いて、ダミー板99の端面に白色板の熱可塑性樹脂材10cを突き合わせる。ダミー板99と白色板の熱可塑性樹脂材10cの上に白色嵌合部10cwを載せる。工具ホーンの押圧面の最外部を、ダミー板99の端面に白色板の熱可塑性樹脂材10cを突き合わせ面を境にして、白色板の熱可塑性樹脂材10c内に位置させておくと、ダミー板99の端面と白色板の熱可塑性樹脂材10cの突き合わせ面には、超音波振動エネルギーが付与されないので、非溶着構造のままとなる。このことを利用して、白色嵌合部10cwの上側表面を、上側表面に沿った方向で超音波振動している工具ホーンの押圧面を押し当てて図43(a)(b)(c)(d)のように溶着する。
 第三工程は、白色嵌合部10cw付の薄い白色板の熱可塑性樹脂材10cと、赤色嵌合部11cr付の薄い赤色板の熱可塑性樹脂材11cを溶着して、ブランド銘板100を得る。
 以上により、個々の部品を超音波溶着してブランド銘板100を作ることができる。
 上記では、アンビル上に、二以上の熱可塑性樹脂材を並べて載置し、二以上の熱可塑性樹脂材の端面を突合せ溶着する例を説明したが、本発明は、アンビル上に、二以上の熱可塑性樹脂材を重ねて溶着するときにも適用できる。
 以下の第十四の実施形態から第十六の実施形態では、アンビル上に、二以上の熱可塑性樹脂材を重ねて載置し、熱可塑性樹脂材の上側表面に対して垂直でない当該表面に沿った方向に超音波振動する工具ホーンの押圧面を押圧し、超音波振動する工具ホーンの押圧力を付与することにより、熱可塑性樹脂材の上側表面近傍を溶融し、溶着構造部を非溶着構造部の上に生成し、非溶着構造部の上に溶着構造部を重ねた構造の構造物として、熱可塑性樹脂材を溶着する超音波溶着方法、超音波溶着方法で溶着した構造物、超音波溶着装置を説明する。
(本発明の第十四の実施形態)
 本発明の第十四の実施形態にかかる超音波溶着装置では、耐熱フィルムと耐熱リングを溶着している。
 図44Aでは、本発明の第十四の実施形態の耐熱フィルム84と耐熱リング85を斜視図で示した。図44Bでは、溶着した耐熱フィルム84と耐熱リング85を斜視図で示した。図45では、アンビル70の上に回転自在に取り付けたターンテーブル77に、耐熱リング85を載せ、その上に耐熱フィルム84を載せた状態で、耐熱リング85と耐熱フィルム84の表面に沿った方向に超音波振動している、いわゆる横振動している工具ホーン35dの押圧面を左上から右斜め下に向けて押し付けて、両者を溶着している状態を示した。
 図46では、本発明の第十四の実施形態の超音波溶着装置で耐熱フィルム84と耐熱リング85を溶着している状態を拡大して示した。耐熱フィルム84も耐熱リング85も融点温度が高く、なかなか溶融しないのだが、図46のように、耐熱リング85と耐熱フィルム84の表面に沿った方向に超音波振動している工具ホーン35dの押圧面を押し当てると、溶着構造部(A)が非溶着構造部(B)の上にできる。
 ちなみに、耐熱フィルム84と耐熱リング85の材質として液晶ポリマー(LCP)のようなスーパーエンプラで試したところ、熱変形もなく耐熱フィルム84が、耐熱リング85にきれいに溶着できた。特に、耐熱フィルム84の厚さが、数十μmというように極薄の耐熱フィルム84をきれいに溶着できたので、精密部品を含む広い技術分野で利用できる。
 超音波ウェルダーによる耐熱性の高い成形品である耐熱リング85と同材質の耐熱フィルム84の溶着の場合、縦振動の溶着方法、つまり熱可塑性樹脂材の上側表面に垂直方向の振動を与える溶着方法では溶着面で耐熱リング85のみ熱変形をおこし溶着強度を得ることは極めて困難であるが、横振動、つまり熱可塑性樹脂材の上側表面と平行方向の振動を利用することで縦振動に比べて発熱効率が良く、必要強度を得るための、溶かす距離が極めて短く耐熱リング85の熱変形も無く耐熱リング85と耐熱フィルム84の溶着幅が極めて細い溶着幅では縦振動では強度を得るには不可能な溶着幅でも低加圧で加圧による変形も無く溶着することができた。
 本発明の第十四の実施形態の実験によれば、熱変形温度が高い薄物樹脂の溶着が可能である。溶着幅が細い溶着でも強度が得られる。溶けの沈み込み量が少なく溶けバリが出にくい、という利点が得られる。
(本発明の第十五の実施形態)
 第十四の実施形態では、耐熱リング85と耐熱フィルム84の溶着の例を示したが、第十五の実施形態にかかる超音波溶着装置では、耐熱フィルム84の代わりに格子上の耐熱フィルタ94を薄肉の耐熱リング95に溶着している。
 図47Aでは、本発明の第十五の実施形態の耐熱フィルタ94と耐熱リング95を斜視図で示した。図47Bでは、溶着した耐熱フィルタと耐熱リングを斜視図で示した。図48(a)(b)(c)では、本発明の第十五の実施形態の超音波溶着装置で耐熱フィルタと耐熱リングを溶着する手順を遷移図で示した。
 特に、図48では、耐熱リング95と耐熱フィルタ94の表面に沿った方向に超音波振動している工具ホーン35dの押圧面を、耐熱リング95と耐熱フィルタ94の表面に対して垂直方向に押圧した。
 耐熱フィルタ94も耐熱リング95も融点温度が高く、なかなか溶融しないのだが、耐熱リング95と耐熱フィルタ94の表面に沿った方向に超音波振動している工具ホーン35cの押圧面を押し当てると、図48(c)のように、溶着構造部(A)が非溶着構造部(B)の上にでき、耐熱フィルタ94が耐熱リング95に沈み込んだ形で溶着した。
 本発明の第十五の実施形態でも、熱変形温度が高い薄物樹脂の溶着が可能。溶着幅が細い溶着でも強度が得られる。溶けの沈み込み量が少なく溶けバリが出にくい、という利点が得られる。
(本発明の第十六の実施形態)
 被溶着物である一対の熱可塑性樹脂材の形状には、平板やシートの平面状のものだけでなく、ヘルメットや容器のように多面体や球体等の立体物が含まれる。本発明の第十六の実施形態として、丸皿型プラスチック容器の底面に耐熱フィルムを溶着する例を説明する。
 図49は、本発明の第十六の実施形態にかかる超音波溶着装置の溶着作業開始時の正面図、図50は、本発明の第十六の実施形態にかかる超音波溶着装置の溶着作業終了時の正面図である。
 図49と図50では、工具ホーン30と超音波振動手段37が一体化されたものが支持手段80の支軸83を中心として揺動自在に支持されている。簡単に言うと、工具ホーン30と超音波振動手段37は工具ホーン30と超音波振動手段37の軸方向に超音波振動するとともに、支軸83を中心として首振り運動をする。工具ホーン30の押圧面は、一対の熱可塑性樹脂材の上側表面に、当該表面に一定圧力で当接している。図49と図50では、アンビル70の上に摺動自在にスライド台65を載置し、スライド台65の上面に、丸皿型プラスチック容器である熱可塑性樹脂材61を伏せ、その上に、薄い耐熱フィルムである熱可塑性樹脂材62を重ねている。超音波溶着装置の基本構造は、既に図2や図25を用いて説明した超音波溶着装置と類似しているため、装置構造の説明は省略する。
 図49と図50の右から左にスライド台65を移動しながら、一対の熱可塑性樹脂材61、62の上側表面に、当該表面に沿った一方向に超音波振動する工具ホーン30の押圧力を付与していく。すると、工具ホーン30の押圧面は、一対の熱可塑性樹脂材61、62の上側表面に一定圧力で当接して、シェイバーの首振り運動のように、角度を変えながら、一対の熱可塑性樹脂材61、62の上側表面近傍を溶融させていく。
 超音波振動エネルギーは、一対の熱可塑性樹脂材61、62の上側表面方向に流れるため、一対の熱可塑性樹脂材61、62の厚さ方向に進まず、一対の熱可塑性樹脂材61、62のアンビル側に非溶融構造部を残したまま、非溶着構造部の上に溶着構造部を生成し、非溶着構造部の上に溶着構造部を重なった構造で、一対の熱可塑性樹脂材61、62を溶着する。
 上記で説明したことから、「一対の熱可塑性樹脂材の上側表面に、当該表面に沿った一方向に超音波振動する工具ホーン」には、第一の実施形態から第七の実施形態で説明した(1)一対の熱可塑性樹脂材の上側表面と平行な平面方向に超音波振動する工具ホーンを含むことはもちろん、第八の実施形態で説明した(2)一対の熱可塑性樹脂材の上側表面に対して傾斜して交わる平面方向に超音波振動する工具ホーンも含まれること、(3)一対の熱可塑性樹脂材の上側表面が曲面であっても、その曲面である熱可塑性樹脂材の上側表面と平行な平面方向に工具ホーンが超音波振動することが理解される。
 また、上記で説明した「一対の熱可塑性樹脂材の上側表面に、超音波振動する工具ホーンの押圧力を付与し」の押圧力の付与の方向には、第一の実施形態から第七の実施形態で説明した(1)一対の熱可塑性樹脂材の上側表面に向かう方向として、垂直方向を含むことはもちろん、第八の実施形態で説明した(2)一対の熱可塑性樹脂材の上側表面に対して傾斜して交わる方向も含まれることが、理解される。
 なお、超音波溶着装置、超音波ウェルダーの当業者間では、熱可塑性樹脂材の表面に対して垂直方向に超音波振動を与えるのを「縦振動を与える」と言い、熱可塑性樹脂材の表面に対して平行方向に超音波振動を与えるのを「横振動を与える」と言うことがある。第十四の実施形態では、「縦振動」と「横振動」の用語を用いて説明した。この用語の使い方に従えば、本発明の発明特定事項の一つである「表面に対して垂直でない当該表面に沿った振動」という表現内容は「縦振動でない当該表面に沿った振動」という表現内容に言い換えることができる。
 本発明の更に重要な点は、超音波振動する工具ホーンの押圧力を付与することにより、一対の熱可塑性樹脂材の上側表面近傍を溶融させて、溶着構造部を非溶着構造部の上に生成し、非溶着構造部の上に溶着構造部を重なった構造で、前記一対の熱可塑性樹脂材を溶着することにある。
 非溶着構造部とは、溶着していない構造部であり、その表面は溶着作業前のまま、手つかずの表面であり、突合せ面の間隔が広がったりすることはない。いわゆる端面の位置間隔や位置関係が変わってしまうこともない。また、表面は高温にならず表面がやけることはない。
 上記のフローチャートの動作や、アンビルの冷却手段は、一対の熱可塑性樹脂材の上側表面近傍を溶融させたときに、溶着構造部を非溶着構造部の上に生成し、非溶着構造部の上に溶着構造部が重なった構造となるように用いられる。
 本発明は、一対の熱可塑性樹脂材の端面を突き合わせ、突き合せた端面の上に直接、又は他の熱可塑性樹脂材を重ね、他の熱可塑性樹脂材を超音波振動する工具ホーンを押し付けて、前記一対の熱可塑性樹脂材と他の熱可塑性樹脂材の当接面を溶融して互いに溶着する場合など、端面を突き合わせたり、重ねたりした、一対の熱可塑性樹脂材の表面に、超音波振動する工具ホーンを直接又は、他の熱可塑性樹脂材を間に入れて間接的に押し付けて溶着する、超音波溶着方法と超音波溶着装置に、広範囲に適用することができる。
10、11 一対の熱可塑性樹脂材
12    他の熱可塑性樹脂材
30、35、36 工具ホーン
60 枠型位置決め治具カバー
65 スライド台
70 アンビル

Claims (17)

  1.  アンビル上に、二以上の熱可塑性樹脂材を載置し、
     前記熱可塑性樹脂材の上側表面に対して垂直でない当該表面に沿った方向に超音波振動する工具ホーンの押圧面を押圧し、
     前記超音波振動する工具ホーンの押圧力を付与することにより、前記熱可塑性樹脂材の上側表面近傍を溶融し、
     溶着構造部を非溶着構造部の上に生成し、前記非溶着構造部の上に溶着構造部を重ねた構造の構造物として、
     前記熱可塑性樹脂材を溶着する、ことを特徴とする超音波溶着方法。
  2.  アンビル上に、一対の熱可塑性樹脂材の端面を突き合わせて載置し、
     前記一対の熱可塑性樹脂材の端面を突き合わせた部分の上側表面に対して垂直でない当該表面に沿った方向に超音波振動する工具ホーンの押圧面を押圧し、
     前記超音波振動する工具ホーンの押圧力を付与することにより、前記一対の熱可塑性樹脂材の上側表面近傍を溶融し、
     溶着構造部を非溶着構造部の上に生成し、前記非溶着構造部の上に溶着構造部を重ねた構造の構造物として、
     前記一対の熱可塑性樹脂材を突き合わせ溶着する、ことを特徴とする超音波溶着方法。
  3.  アンビル上に、一対の熱可塑性樹脂材の端面を突き合わせて載置し、
     前記一対の熱可塑性樹脂材の端面を突き合わせた部分の上に、他の熱可塑性樹脂材を載置し、
     前記他の熱可塑性樹脂材の上側表面に対して垂直でない当該表面に沿った方向に超音波振動する工具ホーンの押圧面を押圧し、
     前記超音波振動する工具ホーンの押圧力を付与することにより、前記他の熱可塑性樹脂材の上側表面近傍を溶融し、
     溶着構造部を非溶着構造部の上に生成し、前記非溶着構造部の上に溶着構造部を重ねた構造で、前記一対の熱可塑性樹脂材を突き合わせ溶着する、ことを特徴とする超音波溶着方法。
  4.  一対の被溶着物の端にそれぞれ熱可塑性樹脂材の嵌合部を設け、
     アンビル上に、前記一対の被溶着の嵌合部を互いに嵌合した状態で、載置し、
     前記一対の被溶着物が嵌合している嵌合部の上側表面に対して垂直でない当該表面に沿った方向に超音波振動する工具ホーンの押圧面を押圧し、
     前記超音波振動する工具ホーンの押圧力を付与することにより、前記一対の被溶着物のそれぞれの嵌合部の上側表面近傍を溶融し、
     溶着構造部を非溶着構造部の上に生成して、非溶着構造部の上に溶着構造部を重ねた構造で、
     前記一対の被溶着物のそれぞれの嵌合部を溶着する、ことを特徴とする超音波溶着方法。
  5.  アンビル上に、二以上の熱可塑性樹脂材を載置し、
     前記熱可塑性樹脂材の上側表面に対して垂直でない当該表面に沿った方向に超音波振動する工具ホーンの押圧面を押圧し、
     前記超音波振動する工具ホーンの押圧力を付与することにより、前記熱可塑性樹脂材の上側表面近傍を溶融し、
     溶着構造部を非溶着構造部の上に生成し、前記非溶着構造部の上に溶着構造部を重ねた構造の構造物として、
     前記熱可塑性樹脂材を溶着する超音波溶着方法により溶着した構造物。
  6.  アンビル上に、一対の熱可塑性樹脂材の端面を突き合わせて載置し、
     前記一対の熱可塑性樹脂材の端面を突き合わせた部分の上側表面に対して垂直でない当該表面に沿った方向に超音波振動する工具ホーンの押圧面を押圧し、
     前記超音波振動する工具ホーンの押圧力を付与することにより、前記一対の熱可塑性樹脂材の上側表面近傍を溶融し、
     溶着構造部を非溶着構造部の上に生成し、前記非溶着構造部の上に溶着構造部を重ねた構造の構造物として、
     前記一対の熱可塑性樹脂材を突き合わせ溶着する超音波溶着方法により溶着した構造物。
  7.  アンビル上に、一対の熱可塑性樹脂材の端面を突き合わせて載置し、
     前記一対の熱可塑性樹脂材の端面を突き合わせた部分の上に、他の熱可塑性樹脂材を載置し、
     前記他の熱可塑性樹脂材の上側表面に対して垂直でない当該表面に沿った方向に超音波振動する工具ホーンの押圧面を押圧し、
     前記超音波振動する工具ホーンの押圧力を付与することにより、前記他の熱可塑性樹脂材の上側表面近傍を溶融し、
     溶着構造部を非溶着構造部の上に生成し、前記非溶着構造部の上に溶着構造部を重ねた構造で、前記一対の熱可塑性樹脂材を突き合わせ溶着する超音波溶着方法により溶着した構造物。
  8.  一対の被溶着物の端にそれぞれ熱可塑性樹脂材の嵌合部を設け、
     アンビル上に、前記一対の被溶着の嵌合部を互いに嵌合した状態で、載置し、
     前記一対の被溶着物が嵌合している嵌合部の上側表面に対して垂直でない当該表面に沿った方向に超音波振動する工具ホーンの押圧面を押圧し、
     前記超音波振動する工具ホーンの押圧力を付与することにより、前記一対の被溶着物のそれぞれの嵌合部の上側表面近傍を溶融し、
     溶着構造部を非溶着構造部の上に生成して、非溶着構造部の上に溶着構造部を重ねた構造で、
    前記一対の被溶着物のそれぞれの嵌合部を溶着する超音波溶着方法により溶着した構造物。
  9.  二以上の熱可塑性樹脂材を載置するアンビルと、
     前記二以上の熱可塑性樹脂材の上側表面に対して垂直でない当該表面に沿った方向に超音波振動しつつ押圧する押圧面を有する工具ホーンと、
     前記工具ホーンの押圧面を前記二以上の熱可塑性樹脂材の上側表面に押圧する押圧手段と、
     前記工具ホーンの超音波振動動作と前記押圧手段による前記工具ホーンの押圧動作を制御する制御手段と、を備え、
     前記制御手段には、前記工具ホーンを超音波振動させた状態で、前記一対の熱可塑性樹脂材の上側表面を押圧する押圧力を付与することにより、前記一対の熱可塑性樹脂材の上側表面近傍を溶融させて、溶着構造部を非溶着構造部の上に生成し、前記非溶着構造部の上に溶着構造部を重なった構造で、前記二以上の熱可塑性樹脂材を溶着する制御をするように、構成したことを特徴とする超音波溶着装置。
  10.  端面を突き合わせた一対の熱可塑性樹脂材を載置するアンビルと、
     前記一対の熱可塑性樹脂材の端面を突き合わせた部分の上側表面に対して垂直でない当該表面に沿った方向に超音波振動しつつ押圧する押圧面を有する工具ホーンと、
     前記工具ホーンの押圧面を前記二以上の熱可塑性樹脂材の上側表面に押圧する押圧手段と、
     前記工具ホーンの超音波振動動作と前記押圧手段による前記工具ホーンの押圧動作を制御する制御手段と、を備え、
     前記制御手段には、前記工具ホーンを超音波振動させた状態で、前記一対の熱可塑性樹脂材の上側表面を押圧する押圧力を付与することにより、前記一対の熱可塑性樹脂材の上側表面近傍を溶融させて、溶着構造部を非溶着構造部の上に生成し、前記非溶着構造部の上に溶着構造部を重なった構造で、前記一対の熱可塑性樹脂材を溶着する制御をするように、構成したことを特徴とする超音波溶着装置。
  11.  端面を突き合わせた一対の熱可塑性樹脂材、並びに前記一対の熱可塑性樹脂材の端面を突き合わせた部分の上に載置された他の熱可塑性樹脂材を載置するアンビルと、
     前記他の熱可塑性樹脂材の上側表面に対して垂直でない当該表面に沿った方向に超音波振動しつつ押圧する押圧面を有する工具ホーンと、
     前記工具ホーンの押圧面を前記二以上の熱可塑性樹脂材の上側表面に押圧する押圧手段と、
    前記工具ホーンの超音波振動動作と前記押圧手段による前記工具ホーンの押圧動作を制御する制御手段と、
    を備え、
     前記制御手段には、前記工具ホーンを超音波振動させた状態で、前記他の熱可塑性樹脂材の上側表面を押圧する押圧力を付与することにより、前記他の熱可塑性樹脂材の上側表面近傍を溶融させて、溶着構造部を非溶着構造部の上に生成し、前記非溶着構造部の上に溶着構造部を重なった構造で、前記一対の熱可塑性樹脂材を溶着する制御をするように、構成したことを特徴とする超音波溶着装置。
  12.  端にそれぞれ熱可塑性樹脂材の嵌合部を設けた一対の被溶着物を、前記一対の被溶着物の嵌合部を互いに嵌合した状態で載置するアンビルと、
     前記前記一対の被溶着物の嵌合部の上側表面に対して垂直でない当該表面に沿った方向に超音波振動しつつ押圧する押圧面を有する工具ホーンと、
     前記工具ホーンの押圧面を前記一対の被溶着物の嵌合部の上側表面を押圧する押圧手段と、
     前記工具ホーンの超音波振動動作と前記押圧手段による前記工具ホーンの押圧動作を制御する制御手段と、を備え、
     前記制御手段には、前記工具ホーンを超音波振動させた状態で、前記一対の被溶着物の嵌合部の上側表面を押圧する押圧力を付与することにより、前記一対の被溶着物の嵌合部の上側表面近傍を溶融させて、溶着構造部を非溶着構造部の上に生成し、前記非溶着構造部の上に溶着構造部を重なった構造で、前記一対の被溶着物の嵌合部を溶着する制御をするように、構成したことを特徴とする超音波溶着装置。
  13.  前記アンビルの温度を測定する温度センサーと、
     前記アンビルを冷却する冷却手段と、
     前記温度センサーで検出したアンビルの温度情報に基づき、前記冷却手段を用いて前記アンビルの温度を所定温度以下に冷却する冷却制御手段と、を更に設け、
     前記アンビルの温度が一定温度以上になったら、前記制御手段により前記工具ホーンの超音波振動動作と押圧動作を止める制御を行わせ、
     前記冷却制御手段により、アンビルの温度を所定温度以下に冷却する制御を行わせるよう構成したことを特徴とする、請求項9から12のいずれかに記載の超音波溶着装置。
  14.  前記アンビルの温度を測定する温度センサーと、
     前記アンビルを冷却する冷却手段と、
     前記温度センサーで検出したアンビルの温度情報に基づき、前記冷却手段を用いて前記アンビルの温度を所定温度以下に冷却する冷却制御手段と、を更に設け、
     前記冷却制御手段により、アンビルの温度を所定温度以下に冷却する制御を行わせている状態で、前記制御手段により前記工具ホーンの超音波振動動作と押圧動作を行わせるよう構成したことを特徴とする、請求項9から12のいずれかに記載の超音波溶着装置。
  15.  前記工具ホーンの押圧面を、凹面部と凸面部が繰り返すように構成したことを特徴とする、請求項9から12のいずれかに記載の超音波溶着装置。
  16.  前記工具ホーンを一対または二以上の熱可塑性樹脂材の上側表面に沿った方向に移動する工具ホーンの移動手段と、
     前記工具ホーンの移動手段の移動速度を所定のパターンで可変制御する移動速度制御手段と、を更に設け、
     前記制御手段により前記工具ホーンの超音波振動動作と押圧動作を行わせて、前記工具ホーンを前記熱可塑性樹脂材の上側表面に対して垂直でない当該表面に沿った方向に超音波振動させて、工具ホーンの押圧面で押圧すると同時に、
     前記工具ホーンの移動手段と移動速度制御手段を用いて、工具ホーンの押圧面を前記一対または二以上の熱可塑性樹脂材の上側表面に沿った方向に、所定のパターンで移動速度を可変して移動させて、
     前記一対の熱可塑性樹脂材の上側表面近傍を溶融させて、溶着構造部を非溶着構造部の上に生成し、前記非溶着構造部の上に溶着構造部が重なった構造で、前記一対または二以上の熱可塑性樹脂材を溶着する制御をするように、構成したことを特徴とする、請求項9から12のいずれかに記載の超音波溶着装置。
  17.  前記アンビルの温度を測定する温度センサーと、
     前記工具ホーンから出す超音波振動エネルギー量の検出手段と、を更に設け、
     前記温度センサーからのアンビルの温度情報が所定温度を超え、更に、前記超音波振動エネルギー量の検出手段で、前記工具ホーンから出た超音波振動エネルギー量が所定値を超えたときに、前記制御手段で、工具ホーンの超音波振動動作と押圧動作を停止する制御を行わせるよう構成したことを特徴とする、請求項9から12のいずれかに記載の超音波溶着装置。
PCT/JP2019/015975 2018-04-13 2019-04-12 超音波溶着方法、超音波溶着方法で溶着した構造物、超音波溶着装置 WO2019198816A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020513462A JP6758012B2 (ja) 2018-04-13 2019-04-12 超音波溶着方法、超音波溶着装置
US17/046,376 US11214012B2 (en) 2018-04-13 2019-04-12 Ultrasonic welding method, structure welded by ultrasonic welding method, and ultrasonic welding device
CN201980025720.4A CN112074400A (zh) 2018-04-13 2019-04-12 超声波焊接方法、利用超声波焊接方法焊接而成的结构体、超声波焊接装置
EP19785641.2A EP3778196A4 (en) 2018-04-13 2019-04-12 ULTRASONIC WELDING PROCESS, STRUCTURE WELDED BY AN ULTRASONIC WELDING PROCESS, AND ULTRASONIC WELDING DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-078022 2018-04-13
JP2018078022 2018-04-13

Publications (1)

Publication Number Publication Date
WO2019198816A1 true WO2019198816A1 (ja) 2019-10-17

Family

ID=68163130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015975 WO2019198816A1 (ja) 2018-04-13 2019-04-12 超音波溶着方法、超音波溶着方法で溶着した構造物、超音波溶着装置

Country Status (5)

Country Link
US (1) US11214012B2 (ja)
EP (1) EP3778196A4 (ja)
JP (2) JP6758012B2 (ja)
CN (1) CN112074400A (ja)
WO (1) WO2019198816A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021172503A1 (ja) * 2020-02-28 2021-09-02 精電舎電子工業株式会社 超音波溶着装置
JP2022011333A (ja) * 2020-06-30 2022-01-17 株式会社アルテクス 接合方法及び接合装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102379409B1 (ko) * 2021-02-05 2022-03-28 (주)삼원 휠 가드 성형 장치
KR102399181B1 (ko) * 2021-05-13 2022-05-18 주식회사 성창오토텍 차량용 휠 가드 융착기
FR3124137B1 (fr) * 2021-06-21 2023-05-05 Psa Automobiles Sa Elément d’habillage à conception simplifié
KR20240038802A (ko) * 2021-08-18 2024-03-25 애자일 울트라소닉스 코포레이션 재료들의 초음파 통합

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55129607U (ja) 1979-03-09 1980-09-12
JPH10273115A (ja) * 1997-03-28 1998-10-13 Nippon Hiyuuchiyaa Kk 超音波溶着装置
JP2003136613A (ja) * 2001-11-02 2003-05-14 Toppan Printing Co Ltd 口栓溶着方法
JP2017218703A (ja) * 2016-06-09 2017-12-14 アツギ株式会社 無縫製伸縮性編物衣料とその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02117815A (ja) * 1988-10-27 1990-05-02 Nippon Steel Corp 延伸加工を施した高分子材料の接合方法
CN2776616Y (zh) * 2004-09-07 2006-05-03 深圳市微迅自动化设备有限公司 具有压力自适应功能的超声波压焊机
US8250725B2 (en) * 2007-03-27 2012-08-28 GM Global Technology Operations LLC Joining polymer workpieces to other components
US7794555B2 (en) * 2007-09-05 2010-09-14 Albany International Corp. Formation of a fabric seam by ultrasonic gap welding of a flat woven fabric
JP4549432B2 (ja) * 2007-10-03 2010-09-22 パナソニック株式会社 粘着テープ貼付装置及びテープ接続方法
US8439247B1 (en) * 2011-11-04 2013-05-14 GM Global Technology Operations LLC Ultrasonic welding system with dynamic pressure control
US20170361540A1 (en) * 2016-06-16 2017-12-21 GM Global Technology Operations LLC Ultrasonic welding of dissimilar sheet materials

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55129607U (ja) 1979-03-09 1980-09-12
JPH10273115A (ja) * 1997-03-28 1998-10-13 Nippon Hiyuuchiyaa Kk 超音波溶着装置
JP2003136613A (ja) * 2001-11-02 2003-05-14 Toppan Printing Co Ltd 口栓溶着方法
JP2017218703A (ja) * 2016-06-09 2017-12-14 アツギ株式会社 無縫製伸縮性編物衣料とその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3778196A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021172503A1 (ja) * 2020-02-28 2021-09-02 精電舎電子工業株式会社 超音波溶着装置
JP2022011333A (ja) * 2020-06-30 2022-01-17 株式会社アルテクス 接合方法及び接合装置
JP7032819B2 (ja) 2020-06-30 2022-03-09 株式会社アルテクス 接合方法及び接合装置

Also Published As

Publication number Publication date
US20210154944A1 (en) 2021-05-27
JPWO2019198816A1 (ja) 2020-07-27
US11214012B2 (en) 2022-01-04
JP2020196269A (ja) 2020-12-10
EP3778196A4 (en) 2021-06-02
JP6758012B2 (ja) 2020-09-23
EP3778196A1 (en) 2021-02-17
CN112074400A (zh) 2020-12-11

Similar Documents

Publication Publication Date Title
WO2019198816A1 (ja) 超音波溶着方法、超音波溶着方法で溶着した構造物、超音波溶着装置
US10016836B2 (en) Sonotrode and anvil energy director grids for narrow/complex ultrasonic welds of improved durability
US5855706A (en) Simultaneous amplitude and force profiling during ultrasonic welding of thermoplastic workpieces
US4618516A (en) Ultrasonic welding of thermoplastic workpieces
US20120097339A1 (en) Sonotrode and anvil energy director grids for narrow/complex ultrasonic welds of improved durability
JP2015509850A (ja) 低熱伝導性ツールおよび高機械的特性を有する振動溶着機を用いた部品の溶着方法および対応する振動溶着機
US20170233123A1 (en) Package Formed with a Stepped Sonotrode/Anvil Combination Having Energy Director Grids for Narrow Ultrasonic Welds of Improved Durability
KR100457206B1 (ko) 패스너 테이프에 보강 테이프 편을 용착하기 위한 초음파용착 방법 및 장치
US20050199682A1 (en) Bonding method for a plurality of components, bonding method for container and lid member, and ultrasonic welding apparatus
US9993967B2 (en) Method for joining a sealing seam of a tubular bag packaging by means of an ultrasound applicator and longitudinal seal joining device for use with said method
JP2009185951A (ja) ベルトの継手加工方法
JPH05138739A (ja) 長尺テ−プの接続方法
JP6861017B2 (ja) 超音波接合方法および接合体
JP3936669B2 (ja) コンテナーおよびコンテナーの製造方法
JPH068330A (ja) 搬送ベルトの製造方法
US20220234323A1 (en) Ultrasonically joined hang tab
TWI785293B (zh) 拉鏈的下止形成裝置和下止形成方法
JP2013034963A (ja) 超音波振動用ブースタ、同ブースタを用いた超音波振動接合装置、同ブースタを用いた超音波振動溶着装置
US20230059804A1 (en) Ultrasonic consolidation of materials
JPH11268135A (ja) 超音波接合方法
JPS59137188A (ja) 超音波溶接方法
WO2021230350A1 (ja) リベット接合方法及び接合処理装置
JP3542437B2 (ja) テープカセット或いはディスクカートリッジの製造方法
JPH11216776A (ja) 振動溶着リブ構造および振動溶着方法
JP4759581B2 (ja) ベルトの継手加工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19785641

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020513462

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019785641

Country of ref document: EP