WO2019198631A1 - 光重合開始剤、表示素子用シール剤、上下導通材料、表示素子、及び、化合物 - Google Patents

光重合開始剤、表示素子用シール剤、上下導通材料、表示素子、及び、化合物 Download PDF

Info

Publication number
WO2019198631A1
WO2019198631A1 PCT/JP2019/015089 JP2019015089W WO2019198631A1 WO 2019198631 A1 WO2019198631 A1 WO 2019198631A1 JP 2019015089 W JP2019015089 W JP 2019015089W WO 2019198631 A1 WO2019198631 A1 WO 2019198631A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate
display element
sealant
liquid crystal
Prior art date
Application number
PCT/JP2019/015089
Other languages
English (en)
French (fr)
Inventor
信烈 梁
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2019521499A priority Critical patent/JP6655219B1/ja
Priority to CN201980005877.0A priority patent/CN111372952B/zh
Priority to KR1020207012630A priority patent/KR102642077B1/ko
Publication of WO2019198631A1 publication Critical patent/WO2019198631A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D335/00Heterocyclic compounds containing six-membered rings having one sulfur atom as the only ring hetero atom
    • C07D335/04Heterocyclic compounds containing six-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D335/10Dibenzothiopyrans; Hydrogenated dibenzothiopyrans
    • C07D335/12Thioxanthenes
    • C07D335/14Thioxanthenes with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 9
    • C07D335/16Oxygen atoms, e.g. thioxanthones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells

Definitions

  • the present invention relates to a photopolymerization initiator excellent in reactivity with light having a long wavelength.
  • the present invention also includes a sealant for a display element that contains the photopolymerization initiator, has excellent curability with respect to long-wavelength light, and is excellent in low liquid crystal contamination when used in a liquid crystal display element, and the display
  • the present invention relates to a vertical conduction material and a display element using a sealing agent for an element. Furthermore, this invention relates to the compound which comprises this photoinitiator.
  • a photothermal combined curing type seal as disclosed in Patent Document 1 and Patent Document 2 is used from the viewpoint of shortening tact time and optimizing the amount of liquid crystal used.
  • a liquid crystal dropping method called a dropping method using an agent is used. In the dropping method, first, a frame-shaped seal pattern is formed on one of the two transparent substrates with electrodes by dispensing. Next, a liquid crystal micro-droplet is dropped on the entire surface of the transparent substrate frame with the sealant being uncured, and the other transparent substrate is immediately bonded together, and the seal portion is irradiated with light such as ultraviolet rays for temporary curing. .
  • the position of the seal portion is arranged under the black matrix (hereinafter also referred to as a narrow frame design).
  • the sealant is placed directly under the black matrix, so when the dripping method is used, the light irradiated when photocuring the sealant is blocked, and the light does not reach the inside of the sealant. There was a problem that the curing was insufficient. If the sealant is insufficiently cured in this manner, the uncured sealant component is eluted in the liquid crystal, and the curing reaction by the eluted sealant component proceeds in the liquid crystal, resulting in liquid crystal contamination. there were.
  • irradiation of ultraviolet rays is usually performed as a method for photocuring the sealing agent.
  • the liquid crystal is formed by irradiating ultraviolet rays to cure the sealing agent after dropping the liquid crystal.
  • photocuring is performed with light having a long wavelength in the visible light region through a cut filter or the like.
  • a method for photocuring the sealant with light having a long wavelength a method using a sensitizer having high sensitivity to light having a long wavelength in combination with a photopolymerization initiator can be considered.
  • Patent Literature 3 and Patent Literature 4 disclose a photocurable resin composition containing a combination of a photopolymerization initiator and a sensitizer.
  • these photocurable resin compositions are used as a sealing agent for liquid crystal display elements, the total amount of the photopolymerization initiator and the sensitizer becomes large in order to be sufficiently photocured by long wavelength light. As a result, liquid crystal contamination may occur.
  • An object of this invention is to provide the photoinitiator which is excellent in the reactivity with respect to the light of a long wavelength.
  • the present invention also includes a sealant for a display element that contains the photopolymerization initiator, has excellent curability with respect to long-wavelength light, and is excellent in low liquid crystal contamination when used in a liquid crystal display element, and the display It is an object of the present invention to provide a vertical conduction material and a display element using a device sealing agent. Furthermore, an object of this invention is to provide the compound which comprises this photoinitiator.
  • the present invention is a compound having a thioxanthonyl group optionally substituted with a hydroxyl group and an amino group, and the absorbance at a wavelength of 420 nm when dissolved in acetonitrile so that the concentration becomes 0.1 mg / mL. It is a photoinitiator which is 0.10 or more. The present invention is described in detail below.
  • the inventor is a compound having a thioxanthonyl group and an amino group which may be substituted with a hydroxyl group, and a compound having a high absorbance at 420 nm is excellent in reactivity to light having a long wavelength in the visible light region, And it discovered that the residue which causes liquid-crystal contamination after light irradiation hardly generate
  • the photopolymerization initiator of the present invention is a compound having a thioxanthonyl group and an amino group which may be substituted with a hydroxyl group.
  • the photopolymerization initiator of the present invention is curable even when incorporated in a small amount because it is a compound having a thioxanthonyl group and an amino group which may be substituted with a hydroxyl group, and exhibits an absorbance described later.
  • the resin composition has excellent photocurability. Therefore, when this curable resin composition is used as a sealing agent for a liquid crystal display element, it has excellent low liquid crystal contamination.
  • the thioxanthonyl group has a role of generating radicals by performing hydrogen abstraction or cleavage by light irradiation to promote the polymerization reaction of the polymerizable compound.
  • the amino group has a role of exerting a sensitizing effect on the thioxanthonyl group by performing energy transfer or the like by light irradiation.
  • the “thioxanthonyl group” means a 9-oxo-9H-thioxanthenyl group.
  • the photopolymerization initiator of the present invention preferably has a 4- (N, N-dialkylamino) benzoyloxy group as the group containing the dialkylamino group, and 4- (N, N-dimethylamino) benzoyloxy It is more preferable to have a group.
  • the photopolymerization initiator of the present invention preferably has a hydroxyl group from the viewpoint of low liquid crystal contamination, and more preferably has two or more hydroxyl groups in one molecule.
  • the photopolymerization initiator of the present invention preferably has a molecular weight of 200 or more, and more preferably 400 or more, from the viewpoint of low liquid crystal contamination.
  • a molecular weight of the photopolymerization initiator of the present invention there is no particular upper limit for the molecular weight of the photopolymerization initiator of the present invention, but the substantial upper limit is 30,000.
  • the “molecular weight” is a molecular weight obtained from the structural formula for a compound whose molecular structure is specified, but for a compound having a wide distribution of polymerization degree and a compound whose modification site is unspecified, It may be expressed using the number average molecular weight.
  • the “number average molecular weight” is a value determined by polystyrene conversion after measurement using gel permeation chromatography (GPC) with tetrahydrofuran as a solvent.
  • GPC gel permeation chromatography
  • Examples of the column used when measuring the number average molecular weight in terms of polystyrene by GPC include Shodex LF-804 (manufactured by Showa Denko KK).
  • the photopolymerization initiator of the present invention has an absorbance at a wavelength of 420 nm of 0.10 or more when dissolved in acetonitrile so as to have a concentration of 0.1 mg / mL.
  • the photopolymerization initiator of the present invention can be suitably used as a sealant for a display element that is cured with light having a long wavelength in the visible light region.
  • the absorbance is more preferably 0.15 or more.
  • the absorbance can be measured using a spectrophotometer under the condition of an optical path length of 1 cm. Examples of the spectrophotometer include U-3900 (manufactured by Hitachi High-Tech Science Co., Ltd.).
  • the photopolymerization initiator of the present invention is preferably a compound represented by the following formula (1-1) or (1-2), and the following formulas (2-1), (2-2) Or a compound represented by (2-3) is more preferable.
  • a compound represented by the following formula (2-1), (2-2), or (2-3) is also one aspect of the present invention.
  • R 1 is an alkylene group having 1 to 20 carbon atoms which may be substituted with a hydroxyl group, or 1 to 20 carbon atoms which may be substituted with a hydroxyl group.
  • (Poly) alkyleneoxy group R 2 is independently a hydrogen atom or an amino group, and at least one R 2 is an amino group.
  • the amino group represented by R 2 is preferably a primary amino group, a dimethylamino group, or a diethylamino group.
  • a sealant for a display element containing a curable resin and the photopolymerization initiator of the present invention is also one aspect of the present invention. Since the sealant for a display element of the present invention contains the photopolymerization initiator of the present invention, it has excellent curability with respect to light having a long wavelength, and also has excellent low liquid crystal contamination when used in a liquid crystal display element. It becomes. That is, the sealant for display elements of the present invention is suitably used for liquid crystal display elements as a sealant for liquid crystal display elements.
  • a preferable minimum is 0.01 weight part with respect to 100 weight part of curable resin, and a preferable upper limit is 5 weight part.
  • the content of the photopolymerization initiator of the present invention is within this range, the obtained sealant for a display element is more excellent in curability with respect to light having a long wavelength. It is excellent due to the effect of satisfying both the curability with respect to and the low liquid crystal contamination.
  • the more preferable lower limit of the content of the photopolymerization initiator of the present invention is 0.5 parts by weight, and the more preferable upper limit is 3 parts by weight.
  • the sealant for display elements of the present invention contains a curable resin.
  • the curable resin preferably contains a (meth) acrylic compound.
  • the (meth) acrylic compound include (meth) acrylic acid ester compounds, epoxy (meth) acrylates, urethane (meth) acrylates, and the like. Of these, epoxy (meth) acrylate is preferable.
  • the (meth) acrylic compound preferably has two or more (meth) acryloyl groups in the molecule from the viewpoint of reactivity.
  • the “(meth) acryl” means acryl or methacryl
  • the “(meth) acryl compound” means a compound having a (meth) acryloyl group.
  • Method) acryloyl means acryloyl or methacryloyl.
  • the “(meth) acrylate” means acrylate or methacrylate.
  • the “epoxy (meth) acrylate” represents a compound obtained by reacting all epoxy groups in the epoxy compound with (meth) acrylic acid.
  • Examples of the monofunctional compounds among the (meth) acrylic acid ester compounds include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl (meth) acrylate.
  • Examples of the bifunctional compound among the (meth) acrylic acid ester compounds include 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,6-hexane.
  • those having three or more functions include, for example, trimethylolpropane tri (meth) acrylate, ethylene oxide-added trimethylolpropane tri (meth) acrylate, propylene oxide-added trimethylolpropane tri ( (Meth) acrylate, caprolactone-modified trimethylolpropane tri (meth) acrylate, ethylene oxide-added isocyanuric acid tri (meth) acrylate, glycerin tri (meth) acrylate, propylene oxide-added glycerin tri (meth) acrylate, pentaerythritol tri (meth) acrylate, Tris (meth) acryloyloxyethyl phosphate, ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra Meth) acrylate, dipentaerythritol pen
  • Examples of the epoxy (meth) acrylate include those obtained by reacting an epoxy compound and (meth) acrylic acid in the presence of a basic catalyst according to a conventional method.
  • Examples of the epoxy compound used as a raw material for synthesizing the epoxy (meth) acrylate include bisphenol A type epoxy compound, bisphenol F type epoxy compound, bisphenol S type epoxy compound, and 2,2′-diallyl bisphenol A type epoxy compound. Hydrogenated bisphenol type epoxy compound, propylene oxide added bisphenol A type epoxy compound, resorcinol type epoxy compound, biphenyl type epoxy compound, sulfide type epoxy compound, diphenyl ether type epoxy compound, dicyclopentadiene type epoxy compound, naphthalene type epoxy compound, phenol Novolac epoxy compounds, orthocresol novolac epoxy compounds, dicyclopentadiene novolac epoxy compounds, biphenyl Novolac-type epoxy compounds, naphthalene phenol novolac-type epoxy compounds, glycidyl amine type epoxy compounds, alkyl polyol type epoxy compound, a rubber-modified epoxy compounds, glycidyl ester compounds.
  • Epicron EXA7015 made by DIC Corporation
  • propylene oxide-added bisphenol A type epoxy compounds include EP-4000S (manufactured by ADEKA).
  • examples of commercially available resorcinol-type epoxy compounds include EX-201 (manufactured by Nagase ChemteX Corporation).
  • Examples of commercially available biphenyl type epoxy compounds include jER YX-4000H (manufactured by Mitsubishi Chemical Corporation).
  • Examples of commercially available sulfide-type epoxy compounds include YSLV-50TE (manufactured by Nippon Steel Chemical & Materials Co., Ltd.).
  • Examples of commercially available diphenyl ether type epoxy compounds include YSLV-80DE (manufactured by Nippon Steel Chemical & Materials Co., Ltd.). Examples of commercially available dicyclopentadiene type epoxy compounds include EP-4088S (manufactured by ADEKA). Examples of commercially available naphthalene type epoxy compounds include Epicron HP4032, Epicron EXA-4700 (both manufactured by DIC Corporation), and the like. Examples of commercially available phenol novolac epoxy compounds include Epicron N-770 (manufactured by DIC). Examples of commercially available ortho cresol novolac epoxy compounds include Epicron N-670-EXP-S (manufactured by DIC).
  • Epicron HP7200 made by DIC Corporation
  • examples of commercially available biphenyl novolac epoxy compounds include NC-3000P (manufactured by Nippon Kayaku Co., Ltd.).
  • examples of commercially available naphthalenephenol novolac epoxy compounds include ESN-165S (manufactured by Nippon Steel Chemical & Materials Co., Ltd.).
  • Examples of commercially available glycidylamine type epoxy compounds include jER630 (manufactured by Mitsubishi Chemical), Epicron 430 (manufactured by DIC), and TETRAD-X (manufactured by Mitsubishi Gas Chemical).
  • alkyl polyol type epoxy compounds examples include ZX-1542 (manufactured by Nippon Steel Chemical & Materials), Epiklon 726 (manufactured by DIC), Epolite 80MFA (manufactured by Kyoeisha Chemical Co., Ltd.), Denacol EX. -611 (manufactured by Nagase ChemteX Corporation).
  • Examples of commercially available rubber-modified epoxy compounds include YR-450, YR-207 (both manufactured by Nippon Steel Chemical & Materials Co., Ltd.), Epolide PB (manufactured by Daicel Corp.), and the like.
  • Examples of commercially available glycidyl ester compounds include Denacol EX-147 (manufactured by Nagase ChemteX Corporation).
  • Other commercially available epoxy compounds include, for example, YDC-1312, YSLV-80XY, YSLV-90CR (all manufactured by Nippon Steel Chemical & Materials), XAC4151 (manufactured by Asahi Kasei), jER1031, and jER1032. (All manufactured by Mitsubishi Chemical Corporation), EXA-7120 (manufactured by DIC Corporation), TEPIC (manufactured by Nissan Chemical Industries, Ltd.) and the like.
  • Examples of commercially available epoxy (meth) acrylates include, for example, an epoxy (meth) acrylate manufactured by Daicel Ornex, an epoxy (meth) acrylate manufactured by Shin-Nakamura Chemical Co., Ltd., and an epoxy ( Examples include (meth) acrylate and epoxy (meth) acrylate manufactured by Nagase ChemteX Corporation. Examples of the epoxy (meth) acrylates manufactured by Daicel Ornex Co., Ltd.
  • Examples of the epoxy (meth) acrylate manufactured by Shin-Nakamura Chemical Co., Ltd. include EA-1010, EA-1020, EA-5323, EA-5520, EA-CHD, EMA-1020 and the like. Examples of the epoxy (meth) acrylate manufactured by Kyoeisha Chemical Co., Ltd.
  • epoxy ester M-600A examples include epoxy ester M-600A, epoxy ester 40EM, epoxy ester 70PA, epoxy ester 200PA, epoxy ester 80MFA, epoxy ester 3002M, epoxy ester 3002A, epoxy ester 1600A, Epoxy ester 3000M, epoxy ester 3000A, epoxy ester 200EA, epoxy ester 400EA, and the like can be given.
  • Examples of the epoxy (meth) acrylate manufactured by Nagase ChemteX examples include Denacol acrylate DA-141, Denacol acrylate DA-314, Denacol acrylate DA-911, and the like.
  • the urethane (meth) acrylate can be obtained, for example, by reacting a (meth) acrylic acid derivative having a hydroxyl group with an isocyanate compound in the presence of a catalytic amount of a tin-based compound.
  • isocyanate compound examples include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, diphenylmethane-4,4′-diisocyanate (MDI), and hydrogenation.
  • MDI polymeric MDI, 1,5-naphthalene diisocyanate, norbornane diisocyanate, tolidine diisocyanate, xylylene diisocyanate (XDI), hydrogenated XDI, lysine diisocyanate, triphenylmethane triisocyanate, tris (isocyanatophenyl) thiophosphate, tetramethylxylylene diene Isocyanate, 1,6,11-undecane triisocyanate and the like.
  • isocyanate compound a chain-extended isocyanate compound obtained by a reaction between a polyol and an excess of an isocyanate compound can also be used.
  • the polyol include ethylene glycol, propylene glycol, glycerin, sorbitol, trimethylolpropane, carbonate diol, polyether diol, polyester diol, and polycaprolactone diol.
  • Examples of the (meth) acrylic acid derivative having a hydroxyl group include hydroxyalkyl mono (meth) acrylate, mono (meth) acrylate of divalent alcohol, mono (meth) acrylate or di (meth) acrylate of trivalent alcohol. And epoxy (meth) acrylate.
  • Examples of the hydroxyalkyl mono (meth) acrylate include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate. Can be mentioned.
  • Examples of the divalent alcohol include ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, and polyethylene glycol.
  • Examples of the trivalent alcohol include trimethylolethane, trimethylolpropane, and glycerin.
  • Examples of the epoxy (meth) acrylate include bisphenol A type epoxy acrylate.
  • urethane (meth) acrylates examples include, for example, urethane (meth) acrylate manufactured by Toagosei Co., Ltd., urethane (meth) acrylate manufactured by Daicel Ornex, and urethane (meth) manufactured by Negami Kogyo Co., Ltd. Examples thereof include acrylate, urethane (meth) acrylate manufactured by Shin-Nakamura Chemical Co., Ltd., urethane (meth) acrylate manufactured by Kyoeisha Chemical Co., Ltd., and the like. Examples of the urethane (meth) acrylate manufactured by Toagosei include M-1100, M-1200, M-1210, and M-1600.
  • the urethane (meth) acrylate manufactured by the Daicel Orunekusu Inc. for example, EBECRYL210, EBECRYL220, EBECRYL230, EBECRYL270, EBECRYL1290, EBECRYL2220, EBECRYL4827, EBECRYL4842, EBECRYL4858, EBECRYL5129, EBECRYL6700, EBECRYL8402, EBECRYL8803, EBECRYL8804, EBECRYL8807, EBECRYL9260 etc. Can be mentioned.
  • urethane (meth) acrylate manufactured by Kyoeisha Chemical Co., Ltd. include AH-600, AI-600, AT-600, UA-101I, UA-101T, UA-306H, UA-306I, UA-306T and the like. It is done.
  • the said curable resin contains an epoxy compound for the purpose of improving the adhesiveness of the sealing agent for display elements obtained.
  • said epoxy compound the epoxy compound used as the raw material for synthesize
  • the partial (meth) acryl-modified epoxy compound means a compound having one or more epoxy groups and (meth) acryloyl groups in one molecule, for example, two in one molecule. It can be obtained by reacting a part of the epoxy group having an epoxy group with (meth) acrylic acid.
  • the (meth) acryloyl group and the epoxy in the curable resin are preferably 30 mol% or more and 95 mol% or less.
  • the obtained sealant for a display element is excellent in adhesiveness while suppressing occurrence of liquid crystal contamination when used in a liquid crystal display element.
  • the curable resin preferably has a hydrogen bonding unit such as —OH group, —NH— group, —NH 2 group, etc. from the viewpoint of suppressing liquid crystal contamination.
  • the said curable resin may be used independently and 2 or more types may be used in combination.
  • the sealant for display elements of the present invention may contain a thermal polymerization initiator as long as the object of the present invention is not impaired.
  • the thermal polymerization initiator include azo compounds and organic peroxides. Of these, polymer azo compounds are preferred.
  • the said thermal polymerization initiator may be used independently and 2 or more types may be used in combination.
  • the “polymer azo compound” means a compound having an azo group and generating a radical capable of curing a (meth) acryloyloxy group by heat and having a number average molecular weight of 300 or more. means.
  • the preferable lower limit of the number average molecular weight of the polymer azo compound is 1000, and the preferable upper limit is 300,000.
  • the more preferable lower limit of the number average molecular weight of the polymer azo compound is 5000, the more preferable upper limit is 100,000, the still more preferable lower limit is 10,000, and the still more preferable upper limit is 90,000.
  • Examples of the polymer azo compound include those having a structure in which a plurality of units such as polyalkylene oxide and polydimethylsiloxane are bonded via an azo group.
  • the polymer azo compound having a structure in which a plurality of units such as polyalkylene oxide are bonded via the azo group those having a polyethylene oxide structure are preferable.
  • Specific examples of the polymer azo compound include, for example, a polycondensate of 4,4′-azobis (4-cyanopentanoic acid) and polyalkylene glycol, and 4,4′-azobis (4-cyanopentanoic acid). And a polycondensate of polydimethylsiloxane having a terminal amino group.
  • Examples of commercially available polymer azo compounds include VPE-0201, VPE-0401, VPE-0601, VPS-0501, and VPS-1001 (all manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.). It is done.
  • Examples of the azo compound that is not a polymer include V-65 and V-501 (both manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.).
  • organic peroxide examples include ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, peroxyester, diacyl peroxide, and peroxydicarbonate.
  • the content of the thermal polymerization initiator is preferably 0.05 parts by weight and preferably 10 parts by weight with respect to 100 parts by weight of the curable resin.
  • the sealant for display elements of the present invention is more excellent in thermosetting.
  • the sealant for a display element of the present invention is more excellent in storage stability, and also when used in a liquid crystal display element due to low liquid crystal contamination. It will be excellent.
  • the minimum with more preferable content of the said thermal-polymerization initiator is 0.1 weight part, and a more preferable upper limit is 5 weight part.
  • the sealant for display elements of the present invention may contain a thermosetting agent.
  • the thermosetting agent include organic acid hydrazides, imidazole derivatives, amine compounds, polyhydric phenol compounds, acid anhydrides, and the like. Of these, organic acid hydrazide is preferably used.
  • the said thermosetting agent may be used independently and 2 or more types may be used in combination.
  • Examples of the organic acid hydrazide include sebacic acid dihydrazide, isophthalic acid dihydrazide, adipic acid dihydrazide, malonic acid dihydrazide, and the like.
  • Examples of commercially available organic acid hydrazides include organic acid hydrazides manufactured by Otsuka Chemical Co., Ltd., organic acid hydrazides manufactured by Ajinomoto Fine Techno Co., and the like.
  • Examples of the organic acid hydrazide manufactured by Otsuka Chemical Co., Ltd. include SDH and ADH.
  • Examples of the organic acid hydrazide manufactured by Ajinomoto Fine Techno Co. include Amicure VDH, Amicure VDH-J, Amicure UDH, Amicure UDH-J, and the like.
  • the content of the thermosetting agent is preferably 1 part by weight with respect to 100 parts by weight of the curable resin, and 50 parts by weight with respect to the preferable upper limit.
  • the upper limit with more preferable content of the said thermosetting agent is 30 weight part.
  • the sealant for display element of the present invention preferably contains a filler for the purpose of improving the viscosity, improving the adhesion due to the stress dispersion effect, improving the linear expansion coefficient, and the like.
  • an inorganic filler or an organic filler can be used as the filler.
  • the inorganic filler include silica, talc, glass beads, asbestos, gypsum, diatomaceous earth, smectite, bentonite, montmorillonite, sericite, activated clay, alumina, zinc oxide, iron oxide, magnesium oxide, tin oxide, and titanium oxide.
  • the organic filler include polyester fine particles, polyurethane fine particles, vinyl polymer fine particles, and acrylic polymer fine particles. The said filler may be used independently and 2 or more types may be used in combination.
  • the preferable lower limit of the content of the filler in 100 parts by weight of the sealant for display element of the present invention is 10 parts by weight, and the preferable upper limit is 70 parts by weight.
  • the minimum with more preferable content of the said filler is 20 weight part, and a more preferable upper limit is 60 weight part.
  • the sealing agent for display elements of this invention contains a silane coupling agent.
  • the silane coupling agent mainly has a role as an adhesion assistant for favorably bonding the sealing agent and the substrate.
  • silane coupling agent for example, 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-isocyanatopropyltrimethoxysilane and the like are preferably used. These are excellent in the effect of improving the adhesion to the substrate and the like, and chemically bonded to the curable resin, so that when the obtained sealant for a display element is used for a liquid crystal display element, the curable resin into the liquid crystal Outflow can be suppressed.
  • the said silane coupling agent may be used independently and 2 or more types may be used in combination.
  • the minimum with preferable content of the said silane coupling agent in 100 weight part of sealing agents for display elements of this invention is 0.1 weight part, and a preferable upper limit is 10 weight part.
  • a preferable upper limit is 10 weight part.
  • the minimum with more preferable content of the said silane coupling agent is 0.3 weight part, and a more preferable upper limit is 5 weight part.
  • the sealing agent for display elements of the present invention may contain a light shielding agent.
  • the sealing compound for display elements of this invention can be used suitably as a light shielding sealing agent. Since the sealant for a display element of the present invention contains the photopolymerization initiator of the present invention that is excellent in reactivity to light having a long wavelength, it is excellent in curability for light having a long wavelength even when the light-shielding agent is contained. Become.
  • Examples of the light-shielding agent include iron oxide, titanium black, aniline black, cyanine black, fullerene, carbon black, and resin-coated carbon black. Among these, a highly insulating material is preferable, and titanium black is more preferable.
  • the above-mentioned titanium black exhibits a sufficient effect even if it is not surface-treated, but the surface is treated with an organic component such as a coupling agent, silicon oxide, titanium oxide, germanium oxide, aluminum oxide, oxidized Surface-treated titanium black such as those coated with an inorganic component such as zirconium or magnesium oxide can also be used. Especially, what is processed with the organic component is preferable at the point which can improve insulation more.
  • the display element manufactured using the sealant for display element of the present invention containing the above-described titanium black as a light-shielding agent has sufficient light-shielding properties, and thus has high contrast without light leakage. A display element having image display quality can be realized.
  • titanium black examples include 12S, 13M, 13M-C, 13R-N, 14M-C (all manufactured by Mitsubishi Materials Corporation), Tilak D (manufactured by Ako Kasei Co., Ltd.), and the like. Can be mentioned.
  • the preferable lower limit of the specific surface area of the titanium black is 13 m 2 / g, the preferable upper limit is 30 m 2 / g, the more preferable lower limit is 15 m 2 / g, and the more preferable upper limit is 25 m 2 / g.
  • the preferred lower limit of the volume resistance of the titanium black is 0.5 ⁇ ⁇ cm, the preferred upper limit is 3 ⁇ ⁇ cm, the more preferred lower limit is 1 ⁇ ⁇ cm, and the more preferred upper limit is 2.5 ⁇ ⁇ cm.
  • the primary particle diameter of the said light-shielding agent will not be specifically limited if it is below the distance between the board
  • the more preferable lower limit of the primary particle diameter of the light shielding agent is 5 nm
  • the more preferable upper limit is 200 nm
  • the still more preferable lower limit is 10 nm
  • the still more preferable upper limit is 100 nm.
  • the primary particle size of the light shielding agent can be measured by using NICOMP 380ZLS (manufactured by PARTICS SIZING SYSTEMS) and dispersing the light shielding agent in a solvent (water, organic solvent, etc.).
  • the preferable lower limit of the content of the light shielding agent in 100 parts by weight of the sealant for display elements of the present invention is 5 parts by weight, and the preferable upper limit is 80 parts by weight.
  • the more preferable lower limit of the content of the light shielding agent is 10 parts by weight, the more preferable upper limit is 70 parts by weight, the still more preferable lower limit is 30 parts by weight, and the still more preferable upper limit is 60 parts by weight.
  • the sealant for a display element of the present invention further contains additives such as a reactive diluent, a thixotropic agent, a spacer, a curing accelerator, an antifoaming agent, a leveling agent, and a polymerization inhibitor, if necessary. Also good.
  • a method for producing the sealant for display element of the present invention for example, a method of mixing a curable resin, a photopolymerization initiator, a silane coupling agent to be added as necessary, etc. using a mixer.
  • the mixer include a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, and a three roll.
  • a vertical conducting material can be produced by blending conductive fine particles with the sealant for display elements of the present invention.
  • the vertical conduction material containing the sealing agent for display elements of the present invention and conductive fine particles is also one aspect of the present invention.
  • the conductive fine particles a metal ball, a resin fine particle formed with a conductive metal layer on the surface, or the like can be used.
  • the one in which the conductive metal layer is formed on the surface of the resin fine particles is preferable because the conductive connection is possible without damaging the transparent substrate due to the excellent elasticity of the resin fine particles.
  • a display element using the sealant for display element of the present invention or the vertical conduction material of the present invention is also one aspect of the present invention.
  • a liquid crystal display element is preferable, and a liquid crystal display element with a narrow frame design is more preferable.
  • the width of the frame portion around the liquid crystal display unit is preferably 2 mm or less.
  • variety of the sealing compound for display elements of this invention when manufacturing the liquid crystal display element of a narrow frame design as a display element of this invention is 1 mm or less.
  • a liquid crystal dropping method is suitably used as a method for producing a liquid crystal display element as the display element of the present invention.
  • a method for producing a liquid crystal display element as the display element of the present invention includes a method having the following steps. First, a process of forming a frame-shaped seal pattern by applying the display element sealant of the present invention to one of two transparent substrates having an electrode such as an ITO thin film and an alignment film by screen printing, dispenser application, etc. Do. Next, the liquid crystal microdroplet is dropped and applied into the frame of the seal pattern of the substrate while the display element sealant of the present invention is uncured, and the other transparent substrate is superposed under vacuum.
  • a liquid crystal display element can be obtained by a method of photocuring the sealant by irradiating the seal pattern portion of the sealant for display element of the present invention with light having a long wavelength through a cut filter or the like. it can.
  • a step of heating and thermosetting the sealant may be performed.
  • the photoinitiator which is excellent in the reactivity with respect to long wavelength light can be provided.
  • the photopolymerization initiator is contained, and is excellent in curability with respect to light having a long wavelength.
  • the sealant for a display element excellent in low liquid crystal contamination, and It is possible to provide a vertical conduction material and a display element using the sealant for display element.
  • the compound which comprises this photoinitiator can be provided.
  • FIG. 1 is a 1 H-NMR spectrum of the compound represented by formula (2-1) obtained in Synthesis Example 1.
  • FIG. 2 is an absorption spectrum of the compound represented by the formula (2-1) obtained in Synthesis Example 1.
  • FIG. 3 is a cross-sectional view schematically showing a liquid crystal display element produced using the sealants for display elements obtained in Examples and Comparative Examples without a light shielding part.
  • FIG. 4 is a cross-sectional view schematically showing a liquid crystal display element manufactured with the light-shielding portion using each display element sealant obtained in Examples and Comparative Examples.
  • FIG. 1 shows the 1 H-NMR spectrum of the obtained compound represented by the formula (2-1).
  • the obtained compound represented by the formula (2-1) was dissolved in acetonitrile so that the concentration became 0.1 mg / mL.
  • an absorption spectrum in the range of 300 nm to 800 nm was measured using a spectrophotometer (manufactured by Hitachi High-Tech Science Co., Ltd., “U-3900”) under the condition of an optical path length of 1 cm.
  • a spectrophotometer manufactured by Hitachi High-Tech Science Co., Ltd., “U-3900”
  • the compound represented by the formula (2-1) had an absorbance at 420 nm of 0.10 or more.
  • the absorption spectrum of the compound represented by the formula (2-1) obtained is shown in FIG.
  • Examples 1 to 7 and Comparative Examples 1 to 4 According to the mixing ratio described in Table 1, each material was mixed using a planetary stirrer (manufactured by Shinky Co., Ltd., “Awatori Nertaro”), and then further mixed using three rolls. To 7 and Comparative Examples 1 to 4 were prepared.
  • the sealant portion of the bonded glass substrate was irradiated with light of 100 mW / cm 2 for 10 seconds using a metal halide lamp.
  • the light irradiation was performed through a cut filter (400 nm cut filter) that cuts light having a wavelength of 400 nm or less.
  • the sealing agent was subjected to FT-IR measurement using an infrared spectroscope (manufactured by BIORAD, “FTS3000”), and the amount of change of the (meth) acryloyl group-derived peak before and after light irradiation was measured.
  • indicates that the peak derived from (meth) acryloyl groups has decreased by 85% or more after light irradiation
  • indicates that the peak has decreased by 70% or more but less than 85%
  • indicates that the peak has decreased by 60% or more but less than 70%.
  • the case where the decrease in the peak derived from the (meth) acryloyl group after light irradiation was less than 60% was evaluated as “x”, and the photocurability was evaluated.
  • the sealant portion was cured by irradiating with 100 mW / cm 2 of light for 30 seconds using a metal halide lamp, and further heated at 120 ° C. for 1 hour to obtain a liquid crystal display element.
  • the light irradiation was performed through a cut filter (400 nm cut filter) that cuts light having a wavelength of 400 nm or less.
  • the liquid crystal display element controls the application position of the sealant with a dispenser, and the liquid crystal display element (no light blocking part) where the sealant is completely exposed to light, and the sealant has 50% of the line width on the black matrix of the color filter substrate. Two types of liquid crystal display elements (with light-shielding portions) coated in this way were produced.
  • FIG. 3 is a cross-sectional view schematically showing a liquid crystal display device produced without using a light-shielding portion using each display device sealant obtained in Examples and Comparative Examples, and FIG. It is sectional drawing which shows typically the liquid crystal display element produced in the state with a light-shielding part using each sealing compound for display elements obtained by the comparative example.
  • the state without the light shielding part on the sealing agent 1 is the state where the sealing agent 1 completely hits the light, while the state with the light shielding part on the sealing agent 1 is shown in FIG.
  • the sealant 1 in contact with the liquid crystal 3 is shielded by the black matrix 2 and hardly receives light.
  • the liquid crystal orientation disorder (display nonuniformity) after making it into a voltage application state at 80 degreeC for 1000 hours was confirmed visually.
  • the low liquid crystal contamination property was evaluated with “ ⁇ ” when the display was uneven and “X” when the clear dark display was spreading not only in the peripheral part but also in the central part.
  • liquid crystal display elements having evaluations of “ ⁇ ” and “O” are at a level where there is no problem in practical use, and the liquid crystal display elements of “ ⁇ ” are levels that may cause a problem depending on the display design.
  • the “ ⁇ ” liquid crystal display element is at a level that cannot withstand practical use.
  • the photoinitiator which is excellent in the reactivity with respect to long wavelength light can be provided.
  • the sealant for a display element that is excellent in curability for light having a long wavelength and is excellent in low liquid crystal contamination when used in a liquid crystal display element, and the sealant for the display element are used.
  • the vertical conduction material and the display element can be provided.
  • the compound which comprises this photoinitiator can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Medicinal Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Liquid Crystal (AREA)
  • Sealing Material Composition (AREA)
  • Polymerisation Methods In General (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本発明は、長波長の光に対する反応性に優れる光重合開始剤を提供することを目的とする。また、本発明は、該光重合開始剤を含有し、長波長の光に対する硬化性に優れ、液晶表示素子に用いた場合に低液晶汚染性にも優れる表示素子用シール剤、並びに、該表示素子用シール剤を用いてなる上下導通材料及び表示素子を提供することを目的とする。更に、本発明は、該光重合開始剤を構成する化合物を提供することを目的とする。 本発明は、水酸基で置換されていてもよいチオキサントニル基とアミノ基とを有する化合物であり、かつ、濃度が0.1mg/mLとなるようにアセトニトリルに溶解させたときの、波長420nmにおける吸光度が0.10以上である光重合開始剤である。

Description

光重合開始剤、表示素子用シール剤、上下導通材料、表示素子、及び、化合物
本発明は、長波長の光に対する反応性に優れる光重合開始剤に関する。また、本発明は、該光重合開始剤を含有し、長波長の光に対する硬化性に優れ、液晶表示素子に用いた場合に低液晶汚染性にも優れる表示素子用シール剤、並びに、該表示素子用シール剤を用いてなる上下導通材料及び表示素子に関する。更に、本発明は、該光重合開始剤を構成する化合物に関する。
近年、液晶表示セル等の液晶表示素子の製造方法としては、タクトタイム短縮、使用液晶量の最適化といった観点から、特許文献1、特許文献2に開示されているような光熱併用硬化型のシール剤を用いた滴下工法と呼ばれる液晶滴下方式が用いられている。
滴下工法では、まず、2枚の電極付き透明基板の一方に、ディスペンスにより枠状のシールパターンを形成する。次いで、シール剤が未硬化の状態で液晶の微小滴を透明基板の枠内全面に滴下し、すぐに他方の透明基板を貼り合わせ、シール部に紫外線等の光を照射して仮硬化を行う。その後、液晶アニール時に加熱して本硬化を行い、液晶表示素子を作製する。基板の貼り合わせを減圧下で行うようにすれば、極めて高い効率で液晶表示素子を製造することができ、現在この滴下工法が液晶表示素子の製造方法の主流となっている。
ところで、携帯電話、携帯ゲーム機等、各種液晶パネル付きモバイル機器が普及している現代において、装置の小型化は最も求められている課題である。装置の小型化の手法としては、液晶表示部の狭額縁化が挙げられ、例えば、シール部の位置をブラックマトリックス下に配置することが行われている(以下、狭額縁設計ともいう)。
しかしながら、狭額縁設計ではシール剤がブラックマトリックスの直下に配置されるため、滴下工法を行うと、シール剤を光硬化させる際に照射した光が遮られ、シール剤の内部まで光が到達せず硬化が不充分となるという問題があった。このようにシール剤の硬化が不充分となると、未硬化のシール剤成分が液晶中に溶出し、溶出したシール剤成分による硬化反応が液晶中において進行することで液晶汚染が発生するという問題があった。
また、通常、シール剤を光硬化させる方法として紫外線の照射が行われているが、特に液晶滴下工法おいては、液晶を滴下した後にシール剤を硬化させるため、紫外線を照射することによって液晶が劣化するという問題があった。そこで、紫外線による液晶の劣化を防止するため、カットフィルター等を介した可視光領域の長波長の光により光硬化させることが行われている。長波長の光によりシール剤を光硬化させる方法としては、長波長の光に対する感度の高い増感剤を光重合開始剤と組み合わせて用いる方法が考えられる。例えば、特許文献3及び特許文献4には、光重合開始剤と増感剤とを組み合わせて配合した光硬化性樹脂組成物が開示されている。しかしながら、これらの光硬化性樹脂組成物を液晶表示素子用シール剤として用いた場合、長波長の光により充分に光硬化させるために光重合開始剤と増感剤との合計量が多量になることにより液晶汚染が発生することがあるという問題があった。
特開2001-133794号公報 国際公開第02/092718号 特開2017-125033号公報 国際公開第2017/130594号
本発明は、長波長の光に対する反応性に優れる光重合開始剤を提供することを目的とする。また、本発明は、該光重合開始剤を含有し、長波長の光に対する硬化性に優れ、液晶表示素子に用いた場合に低液晶汚染性にも優れる表示素子用シール剤、並びに、該表示素子用シール剤を用いてなる上下導通材料及び表示素子を提供することを目的とする。更に、本発明は、該光重合開始剤を構成する化合物を提供することを目的とする。
本発明は、水酸基で置換されていてもよいチオキサントニル基とアミノ基とを有する化合物であり、かつ、濃度が0.1mg/mLとなるようにアセトニトリルに溶解させたときの、波長420nmにおける吸光度が0.10以上である光重合開始剤である。
以下に本発明を詳述する。
本発明者は、水酸基で置換されていてもよいチオキサントニル基とアミノ基とを有する化合物であり、かつ、420nmにおいて高い吸光度を有する化合物が、可視光領域の長波長の光に対する反応性に優れ、かつ、光照射後に液晶汚染の原因となる残渣をほとんど発生しないことを見出した。そこで本発明者は、該化合物を光重合開始剤として用いることにより、長波長の光に対する硬化性に優れ、液晶表示素子に用いた場合に低液晶汚染性にも優れる表示素子用シール剤を得ることができることを見出し、本発明を完成させるに至った。
本発明の光重合開始剤は、水酸基で置換されていてもよいチオキサントニル基とアミノ基とを有する化合物である。
上記水酸基で置換されていてもよいチオキサントニル基とアミノ基とを有する化合物であり、かつ、後述する吸光度を示すものであることにより、本発明の光重合開始剤は、少量配合した場合でも硬化性樹脂組成物が優れた光硬化性を有するものとなる。そのため、該硬化性樹脂組成物を液晶表示素子用シール剤として用いた場合に低液晶汚染性に優れるものとなる。
本発明の光重合開始剤において上記チオキサントニル基は、光照射により水素引き抜きや開裂等を行ってラジカルを発生し、重合性化合物の重合反応を促進する役割を有する。また、本発明の光重合開始剤において上記アミノ基は、光照射によりエネルギー移動等を行って上記チオキサントニル基に対して増感効果を発揮する役割を有する。
なお、本明細書において上記「チオキサントニル基」は、9-オキソ-9H-チオキサンテン-イル基を意味する。
上記アミノ基としては、長波長の光に対する反応性により優れるものとなることから、第1級アミノ基又はジアルキルアミノ基が好ましく、ジアルキルアミノ基がより好ましく、ジメチルアミノ基が更に好ましい。
また、本発明の光重合開始剤は、上記ジアルキルアミノ基を含む基として4-(N,N-ジアルキルアミノ)ベンゾイルオキシ基を有することが好ましく、4-(N,N-ジメチルアミノ)ベンゾイルオキシ基を有することがより好ましい。
本発明の光重合開始剤は、低液晶汚染性の観点から、水酸基を有することが好ましく、1分子中に水酸基を2以上有することがより好ましい。
本発明の光重合開始剤は、低液晶汚染性の観点から、分子量が200以上であることが好ましく、400以上であることがより好ましい。
本発明の光重合開始剤の分子量の好ましい上限は特にないが、実質的な上限は3万となる。
なお、本明細書において上記「分子量」は、分子構造が特定される化合物については、構造式から求められる分子量であるが、重合度の分布が広い化合物及び変性部位が不特定な化合物については、数平均分子量を用いて表す場合がある。また、本明細書において上記「数平均分子量」は、ゲルパーミエーションクロマトグラフィー(GPC)で溶媒としてテトラヒドロフランを用いて測定を行い、ポリスチレン換算により求められる値である。GPCによってポリスチレン換算による数平均分子量を測定する際に用いるカラムとしては、例えば、Shodex LF-804(昭和電工社製)等が挙げられる。
本発明の光重合開始剤は、濃度が0.1mg/mLとなるようにアセトニトリルに溶解させたときの、波長420nmにおける吸光度が0.10以上である。上記波長420nmにおける吸光度が0.10以上であることにより、本発明の光重合開始剤は、可視光領域の長波長の光で硬化させる表示素子用シール剤等に好適に用いることができる。
上記吸光度は0.15以上であることがより好ましい。
上記吸光度は、分光光度計を用いて光路長1cmの条件で測定することができる。上記分光光度計としては、例えば、U-3900(日立ハイテクサイエンス社製)等が挙げられる。
本発明の光重合開始剤は、具体的には、下記式(1-1)又は(1-2)で表される化合物であることが好ましく、下記式(2-1)、(2-2)、又は、(2-3)で表される化合物であることがより好ましい。下記式(2-1)、(2-2)、又は、(2-3)で表される化合物もまた、本発明の1つである。
Figure JPOXMLDOC01-appb-C000004
式(1-1)及び(1-2)中、Rは、水酸基で置換されていてもよい炭素数1~20のアルキレン基、又は、水酸基で置換されていてもよい炭素数1~20の(ポリ)アルキレンオキシ基であり、Rは、それぞれ独立して、水素原子又はアミノ基であり、少なくとも1つのRは、アミノ基である。
上記Rで表されるアミノ基としては、第1級アミノ基、ジメチルアミノ基、又は、ジエチルアミノ基が好ましい。
Figure JPOXMLDOC01-appb-C000005
硬化性樹脂と本発明の光重合開始剤とを含有する表示素子用シール剤もまた、本発明の1つである。
本発明の表示素子用シール剤は、本発明の光重合開始剤を含有するため、長波長の光に対する硬化性に優れるものとなり、液晶表示素子に用いた場合に低液晶汚染性にも優れるものとなる。即ち、本発明の表示素子用シール剤は、液晶表示素子用シール剤として液晶表示素子に好適に用いられる。
本発明の表示素子用シール剤における本発明の光重合開始剤の含有量としては、硬化性樹脂100重量部に対して、好ましい下限が0.01重量部、好ましい上限が5重量部である。本発明の光重合開始剤の含有量がこの範囲であることにより、得られる表示素子用シール剤が長波長の光に対する硬化性により優れるものとなり、液晶表示素子に用いた場合に長波長の光に対する硬化性及び低液晶汚染性を両立する効果により優れるものとなる。本発明の光重合開始剤の含有量のより好ましい下限は0.5重量部、より好ましい上限は3重量部である。
本発明の表示素子用シール剤は、硬化性樹脂を含有する。
上記硬化性樹脂は、(メタ)アクリル化合物を含有することが好ましい。
上記(メタ)アクリル化合物としては、例えば、(メタ)アクリル酸エステル化合物、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート等が挙げられる。なかでも、エポキシ(メタ)アクリレートが好ましい。また、上記(メタ)アクリル化合物は、反応性の観点から分子中に(メタ)アクリロイル基を2個以上有するものが好ましい。
なお、本明細書において、上記「(メタ)アクリル」とは、アクリル又はメタクリルを意味し、上記「(メタ)アクリル化合物」とは、(メタ)アクリロイル基を有する化合物を意味し、上記「(メタ)アクリロイル」とは、アクリロイル又はメタクリロイルを意味する。また、上記「(メタ)アクリレート」とは、アクリレート又はメタクリレートを意味する。更に、上記「エポキシ(メタ)アクリレート」とは、エポキシ化合物中の全てのエポキシ基を(メタ)アクリル酸と反応させた化合物のことを表す。
上記(メタ)アクリル酸エステル化合物のうち単官能のものとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソノニル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、ステアリル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ビシクロペンテニル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-ブトキシエチル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H-オクタフルオロペンチル(メタ)アクリレート、イミド(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルコハク酸、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、2-(メタ)アクリロイロキシエチル2-ヒドロキシプロピルフタレート、2-(メタ)アクリロイロキシエチルホスフェート、グリシジル(メタ)アクリレート等が挙げられる。
また、上記(メタ)アクリル酸エステル化合物のうち2官能のものとしては、例えば、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、2-n-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールAジ(メタ)アクリレート、プロピレンオキシド付加ビスフェノールAジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールFジ(メタ)アクリレート、ジメチロールジシクロペンタジエニルジ(メタ)アクリレート、エチレンオキシド変性イソシアヌル酸ジ(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイロキシプロピル(メタ)アクリレート、カーボネートジオールジ(メタ)アクリレート、ポリエーテルジオールジ(メタ)アクリレート、ポリエステルジオールジ(メタ)アクリレート、ポリカプロラクトンジオールジ(メタ)アクリレート、ポリブタジエンジオールジ(メタ)アクリレート等が挙げられる。
また、上記(メタ)アクリル酸エステル化合物のうち3官能以上のものとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加イソシアヌル酸トリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、プロピレンオキシド付加グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリス(メタ)アクリロイルオキシエチルフォスフェート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。
上記エポキシ(メタ)アクリレートとしては、例えば、エポキシ化合物と(メタ)アクリル酸とを、常法に従って塩基性触媒の存在下で反応することにより得られるもの等が挙げられる。
上記エポキシ(メタ)アクリレートを合成するための原料となるエポキシ化合物としては、例えば、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールS型エポキシ化合物、2,2’-ジアリルビスフェノールA型エポキシ化合物、水添ビスフェノール型エポキシ化合物、プロピレンオキシド付加ビスフェノールA型エポキシ化合物、レゾルシノール型エポキシ化合物、ビフェニル型エポキシ化合物、スルフィド型エポキシ化合物、ジフェニルエーテル型エポキシ化合物、ジシクロペンタジエン型エポキシ化合物、ナフタレン型エポキシ化合物、フェノールノボラック型エポキシ化合物、オルトクレゾールノボラック型エポキシ化合物、ジシクロペンタジエンノボラック型エポキシ化合物、ビフェニルノボラック型エポキシ化合物、ナフタレンフェノールノボラック型エポキシ化合物、グリシジルアミン型エポキシ化合物、アルキルポリオール型エポキシ化合物、ゴム変性型エポキシ化合物、グリシジルエステル化合物等が挙げられる。
上記ビスフェノールA型エポキシ化合物のうち市販されているものとしては、例えば、jER828EL、jER1004(いずれも三菱ケミカル社製)、エピクロン850CRP(DIC社製)等が挙げられる。
上記ビスフェノールF型エポキシ化合物のうち市販されているものとしては、例えば、jER806、jER4004(いずれも三菱ケミカル社製)等が挙げられる。
上記ビスフェノールS型エポキシ化合物のうち市販されているものとしては、例えば、エピクロンEXA1514(DIC社製)等が挙げられる。
上記2,2’-ジアリルビスフェノールA型エポキシ化合物のうち市販されているものとしては、例えば、RE-810NM(日本化薬社製)等が挙げられる。
上記水添ビスフェノール型エポキシ化合物のうち市販されているものとしては、例えば、エピクロンEXA7015(DIC社製)等が挙げられる。
上記プロピレンオキシド付加ビスフェノールA型エポキシ化合物のうち市販されているものとしては、例えば、EP-4000S(ADEKA社製)等が挙げられる。
上記レゾルシノール型エポキシ化合物のうち市販されているものとしては、例えば、EX-201(ナガセケムテックス社製)等が挙げられる。
上記ビフェニル型エポキシ化合物のうち市販されているものとしては、例えば、jER YX-4000H(三菱ケミカル社製)等が挙げられる。
上記スルフィド型エポキシ化合物のうち市販されているものとしては、例えば、YSLV-50TE(日鉄ケミカル&マテリアル社製)等が挙げられる。
上記ジフェニルエーテル型エポキシ化合物のうち市販されているものとしては、例えば、YSLV-80DE(日鉄ケミカル&マテリアル社製)等が挙げられる。
上記ジシクロペンタジエン型エポキシ化合物のうち市販されているものとしては、例えば、EP-4088S(ADEKA社製)等が挙げられる。
上記ナフタレン型エポキシ化合物のうち市販されているものとしては、例えば、エピクロンHP4032、エピクロンEXA-4700(いずれもDIC社製)等が挙げられる。
上記フェノールノボラック型エポキシ化合物のうち市販されているものとしては、例えば、エピクロンN-770(DIC社製)等が挙げられる。
上記オルトクレゾールノボラック型エポキシ化合物のうち市販されているものとしては、例えば、エピクロンN-670-EXP-S(DIC社製)等が挙げられる。
上記ジシクロペンタジエンノボラック型エポキシ化合物のうち市販されているものとしては、例えば、エピクロンHP7200(DIC社製)等が挙げられる。
上記ビフェニルノボラック型エポキシ化合物のうち市販されているものとしては、例えば、NC-3000P(日本化薬社製)等が挙げられる。
上記ナフタレンフェノールノボラック型エポキシ化合物のうち市販されているものとしては、例えば、ESN-165S(日鉄ケミカル&マテリアル社製)等が挙げられる。
上記グリシジルアミン型エポキシ化合物のうち市販されているものとしては、例えば、jER630(三菱ケミカル社製)、エピクロン430(DIC社製)、TETRAD-X(三菱ガス化学社製)等が挙げられる。
上記アルキルポリオール型エポキシ化合物のうち市販されているものとしては、例えば、ZX-1542(日鉄ケミカル&マテリアル社製)、エピクロン726(DIC社製)、エポライト80MFA(共栄社化学社製)、デナコールEX-611(ナガセケムテックス社製)等が挙げられる。
上記ゴム変性型エポキシ化合物のうち市販されているものとしては、例えば、YR-450、YR-207(いずれも日鉄ケミカル&マテリアル社製)、エポリードPB(ダイセル社製)等が挙げられる。
上記グリシジルエステル化合物のうち市販されているものとしては、例えば、デナコールEX-147(ナガセケムテックス社製)等が挙げられる。
上記エポキシ化合物のうちその他に市販されているものとしては、例えば、YDC-1312、YSLV-80XY、YSLV-90CR(いずれも日鉄ケミカル&マテリアル社製)、XAC4151(旭化成社製)、jER1031、jER1032(いずれも三菱ケミカル社製)、EXA-7120(DIC社製)、TEPIC(日産化学社製)等が挙げられる。
上記エポキシ(メタ)アクリレートのうち市販されているものとしては、例えば、ダイセル・オルネクス社製のエポキシ(メタ)アクリレート、新中村化学工業社製のエポキシ(メタ)アクリレート、共栄社化学社製のエポキシ(メタ)アクリレート、ナガセケムテックス社製のエポキシ(メタ)アクリレート等が挙げられる。
上記ダイセル・オルネクス社製のエポキシ(メタ)アクリレートとしては、例えば、EBECRYL860、EBECRYL3200、EBECRYL3201、EBECRYL3412、EBECRYL3600、EBECRYL3700、EBECRYL3701、EBECRYL3702、EBECRYL3703、EBECRYL3708、EBECRYL3800、EBECRYL6040、EBECRYL RDX63182等が挙げられる。
上記新中村化学工業社製のエポキシ(メタ)アクリレートとしては、例えば、EA-1010、EA-1020、EA-5323、EA-5520、EA-CHD、EMA-1020等が挙げられる。
上記共栄社化学社製のエポキシ(メタ)アクリレートとしては、例えば、エポキシエステルM-600A、エポキシエステル40EM、エポキシエステル70PA、エポキシエステル200PA、エポキシエステル80MFA、エポキシエステル3002M、エポキシエステル3002A、エポキシエステル1600A、エポキシエステル3000M、エポキシエステル3000A、エポキシエステル200EA、エポキシエステル400EA等が挙げられる。
上記ナガセケムテックス社製のエポキシ(メタ)アクリレートとしては、例えば、デナコールアクリレートDA-141、デナコールアクリレートDA-314、デナコールアクリレートDA-911等が挙げられる。
上記ウレタン(メタ)アクリレートは、例えば、イソシアネート化合物に対して水酸基を有する(メタ)アクリル酸誘導体を、触媒量のスズ系化合物存在下で反応させることによって得ることができる。
上記イソシアネート化合物としては、例えば、イソホロンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート(MDI)、水添MDI、ポリメリックMDI、1,5-ナフタレンジイソシアネート、ノルボルナンジイソシアネート、トリジンジイソシアネート、キシリレンジイソシアネート(XDI)、水添XDI、リジンジイソシアネート、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオフォスフェート、テトラメチルキシリレンジイソシアネート、1,6,11-ウンデカントリイソシアネート等が挙げられる。
また、上記イソシアネート化合物としては、ポリオールと過剰のイソシアネート化合物との反応により得られる鎖延長されたイソシアネート化合物も使用することができる。
上記ポリオールとしては、例えば、エチレングリコール、プロピレングリコール、グリセリン、ソルビトール、トリメチロールプロパン、カーボネートジオール、ポリエーテルジオール、ポリエステルジオール、ポリカプロラクトンジオール等が挙げられる。
上記水酸基を有する(メタ)アクリル酸誘導体としては、例えば、ヒドロキシアルキルモノ(メタ)アクリレート、二価のアルコールのモノ(メタ)アクリレート、三価のアルコールのモノ(メタ)アクリレート又はジ(メタ)アクリレート、エポキシ(メタ)アクリレート等が挙げられる。
上記ヒドロキシアルキルモノ(メタ)アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等が挙げられる。
上記二価のアルコールとしては、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ポリエチレングリコール等が挙げられる。
上記三価のアルコールとしては、例えば、トリメチロールエタン、トリメチロールプロパン、グリセリン等が挙げられる。
上記エポキシ(メタ)アクリレートとしては、例えば、ビスフェノールA型エポキシアクリレート等が挙げられる。
上記ウレタン(メタ)アクリレートのうち市販されているものとしては、例えば、東亞合成社製のウレタン(メタ)アクリレート、ダイセル・オルネクス社製のウレタン(メタ)アクリレート、根上工業社製のウレタン(メタ)アクリレート、新中村化学工業社製のウレタン(メタ)アクリレート、共栄社化学社製のウレタン(メタ)アクリレート等が挙げられる。
上記東亞合成社製のウレタン(メタ)アクリレートとしては、例えば、M-1100、M-1200、M-1210、M-1600等が挙げられる。
上記ダイセル・オルネクス社製のウレタン(メタ)アクリレートとしては、例えば、EBECRYL210、EBECRYL220、EBECRYL230、EBECRYL270、EBECRYL1290、EBECRYL2220、EBECRYL4827、EBECRYL4842、EBECRYL4858、EBECRYL5129、EBECRYL6700、EBECRYL8402、EBECRYL8803、EBECRYL8804、EBECRYL8807、EBECRYL9260等が挙げられる。
上記根上工業社製のウレタン(メタ)アクリレートとしては、例えば、アートレジンUN-330、アートレジンSH-500B、アートレジンUN-1200TPK、アートレジンUN-1255、アートレジンUN-3320HB、アートレジンUN-7100、アートレジンUN-9000A、アートレジンUN-9000H等が挙げられる。
上記新中村化学工業社製のウレタン(メタ)アクリレートとしては、例えば、U-2HA、U-2PHA、U-3HA、U-4HA、U-6H、U-6HA、U-6LPA、U-10H、U-15HA、U-108、U-108A、U-122A、U-122P、U-324A、U-340A、U-340P、U-1084A、U-2061BA、UA-340P、UA-4000、UA-4100、UA-4200、UA-4400、UA-5201P、UA-7100、UA-7200、UA-W2A等が挙げられる。
上記共栄社化学社製のウレタン(メタ)アクリレートとしては、例えば、AH-600、AI-600、AT-600、UA-101I、UA-101T、UA-306H、UA-306I、UA-306T等が挙げられる。
上記硬化性樹脂は、得られる表示素子用シール剤の接着性を向上させること等を目的として、エポキシ化合物を含有することが好ましい。上記エポキシ化合物としては、例えば、上述したエポキシ(メタ)アクリレートを合成するための原料となるエポキシ化合物や、部分(メタ)アクリル変性エポキシ化合物等が挙げられる。
なお、本明細書において上記部分(メタ)アクリル変性エポキシ化合物とは、1分子中にエポキシ基と(メタ)アクリロイル基とをそれぞれ1つ以上有する化合物を意味し、例えば、1分子中に2つ以上のエポキシ基を有するエポキシ化合物の一部のエポキシ基を(メタ)アクリル酸と反応させることによって得ることができる。
上記硬化性樹脂として上記(メタ)アクリル化合物と上記エポキシ化合物とを含有する場合、又は、上記部分(メタ)アクリル変性エポキシ化合物を含有する場合、上記硬化性樹脂中の(メタ)アクリロイル基とエポキシ基との合計中における(メタ)アクリロイル基の比率を30モル%以上95モル%以下になるようにすることが好ましい。上記(メタ)アクリロイル基の比率がこの範囲であることにより、得られる表示素子用シール剤が、液晶表示素子に用いた場合に液晶汚染の発生を抑制しつつ、接着性により優れるものとなる。
上記硬化性樹脂は、液晶汚染を抑制する等の観点から、-OH基、-NH-基、-NH基等の水素結合性のユニットを有するものが好ましい。
上記硬化性樹脂は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
本発明の表示素子用シール剤は、本発明の目的を阻害しない範囲で、熱重合開始剤を含有してもよい。
上記熱重合開始剤としては、例えば、アゾ化合物、有機過酸化物等が挙げられる。なかでも、高分子アゾ化合物が好ましい。
上記熱重合開始剤は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
なお、本明細書において上記「高分子アゾ化合物」とは、アゾ基を有し、熱によって(メタ)アクリロイルオキシ基を硬化させることができるラジカルを生成する、数平均分子量が300以上の化合物を意味する。
上記高分子アゾ化合物の数平均分子量の好ましい下限は1000、好ましい上限は30万である。上記高分子アゾ化合物の数平均分子量がこの範囲であることにより、得られる表示素子用シール剤を液晶表示素子に用いた場合に液晶汚染を抑制しつつ、硬化性樹脂と容易に混合することができる。上記高分子アゾ化合物の数平均分子量のより好ましい下限は5000、より好ましい上限は10万であり、更に好ましい下限は1万、更に好ましい上限は9万である。
上記高分子アゾ化合物としては、例えば、アゾ基を介してポリアルキレンオキサイドやポリジメチルシロキサン等のユニットが複数結合した構造を有するものが挙げられる。
上記アゾ基を介してポリアルキレンオキサイド等のユニットが複数結合した構造を有する高分子アゾ化合物としては、ポリエチレンオキサイド構造を有するものが好ましい。
上記高分子アゾ化合物としては、具体的には例えば、4,4’-アゾビス(4-シアノペンタン酸)とポリアルキレングリコールの重縮合物や、4,4’-アゾビス(4-シアノペンタン酸)と末端アミノ基を有するポリジメチルシロキサンの重縮合物等が挙げられる。
上記高分子アゾ化合物のうち市販されているものとしては、例えば、VPE-0201、VPE-0401、VPE-0601、VPS-0501、VPS-1001(いずれも富士フイルム和光純薬社製)等が挙げられる。
また、高分子ではないアゾ化合物としては、例えば、V-65、V-501(いずれも富士フイルム和光純薬社製)等が挙げられる。
上記有機過酸化物としては、例えば、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、パーオキシエステル、ジアシルパーオキサイド、パーオキシジカーボネート等が挙げられる。
上記熱重合開始剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が0.05重量部、好ましい上限が10重量部である。上記熱重合開始剤の含有量が0.05重量部以上であることにより、本発明の表示素子用シール剤が熱硬化性により優れるものとなる。上記熱重合開始剤の含有量が10重量部以下であることにより、本発明の表示素子用シール剤が保存安定性により優れるものとなり、液晶表示素子に用いた場合に低液晶汚染性にもより優れるものとなる。上記熱重合開始剤の含有量のより好ましい下限は0.1重量部、より好ましい上限は5重量部である。
本発明の表示素子用シール剤は、熱硬化剤を含有してもよい。
上記熱硬化剤としては、例えば、有機酸ヒドラジド、イミダゾール誘導体、アミン化合物、多価フェノール系化合物、酸無水物等が挙げられる。なかでも、有機酸ヒドラジドが好適に用いられる。
上記熱硬化剤は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
上記有機酸ヒドラジドとしては、例えば、セバシン酸ジヒドラジド、イソフタル酸ジヒドラジド、アジピン酸ジヒドラジド、マロン酸ジヒドラジド等が挙げられる。
上記有機酸ヒドラジドのうち市販されているものとしては、例えば、大塚化学社製の有機酸ヒドラジド、味の素ファインテクノ社製の有機酸ヒドラジド等が挙げられる。
上記大塚化学社製の有機酸ヒドラジドとしては、例えば、SDH、ADH等が挙げられる。
上記味の素ファインテクノ社製の有機酸ヒドラジドとしては、例えば、アミキュアVDH、アミキュアVDH-J、アミキュアUDH、アミキュアUDH-J等が挙げられる。
上記熱硬化剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が1重量部、好ましい上限が50重量部である。上記熱硬化剤の含有量がこの範囲であることにより、得られる表示素子用シール剤の塗布性等を悪化させることなく、熱硬化性により優れるものとすることができる。上記熱硬化剤の含有量のより好ましい上限は30重量部である。
本発明の表示素子用シール剤は、粘度の向上、応力分散効果による接着性の改善、線膨張率の改善等を目的として充填剤を含有することが好ましい。
上記充填剤としては、無機充填剤や有機充填剤を用いることができる。
上記無機充填剤としては、例えば、シリカ、タルク、ガラスビーズ、石綿、石膏、珪藻土、スメクタイト、ベントナイト、モンモリロナイト、セリサイト、活性白土、アルミナ、酸化亜鉛、酸化鉄、酸化マグネシウム、酸化錫、酸化チタン、炭酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、水酸化アルミニウム、窒化アルミニウム、窒化珪素、硫酸バリウム、珪酸カルシウム等が挙げられる。
上記有機充填剤としては、例えば、ポリエステル微粒子、ポリウレタン微粒子、ビニル重合体微粒子、アクリル重合体微粒子等が挙げられる。
上記充填剤は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
本発明の表示素子用シール剤100重量部中における上記充填剤の含有量の好ましい下限は10重量部、好ましい上限は70重量部である。上記充填剤の含有量がこの範囲であることにより、塗布性等を悪化させることなく、接着性の改善等の効果により優れるものとなる。上記充填剤の含有量のより好ましい下限は20重量部、より好ましい上限は60重量部である。
本発明の表示素子用シール剤は、シランカップリング剤を含有することが好ましい。上記シランカップリング剤は、主にシール剤と基板等とを良好に接着するための接着助剤としての役割を有する。
上記シランカップリング剤としては、例えば、3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-イソシアネートプロピルトリメトキシシラン等が好適に用いられる。これらは、基板等との接着性を向上させる効果に優れ、硬化性樹脂と化学結合することにより、得られる表示素子用シール剤を液晶表示素子に用いた場合に液晶中への硬化性樹脂の流出を抑制することができる。
上記シランカップリング剤は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
本発明の表示素子用シール剤100重量部中における上記シランカップリング剤の含有量の好ましい下限は0.1重量部、好ましい上限は10重量部である。上記シランカップリング剤の含有量がこの範囲であることにより、得られる表示素子用シール剤を液晶表示素子に用いた場合に液晶汚染の発生を抑制しつつ、接着性を向上させる効果により優れるものとなる。上記シランカップリング剤の含有量のより好ましい下限は0.3重量部、より好ましい上限は5重量部である。
本発明の表示素子用シール剤は、遮光剤を含有してもよい。上記遮光剤を含有することにより、本発明の表示素子用シール剤は、遮光シール剤として好適に用いることができる。
本発明の表示素子用シール剤は、長波長の光に対する反応性に優れる本発明の光重合開始剤を含有するため、上記遮光剤を含有した場合でも長波長の光に対する硬化性に優れるものとなる。
上記遮光剤としては、例えば、酸化鉄、チタンブラック、アニリンブラック、シアニンブラック、フラーレン、カーボンブラック、樹脂被覆型カーボンブラック等が挙げられる。なかでも、絶縁性の高い物質が好ましく、チタンブラックがより好ましい。
上記チタンブラックは、表面処理されていないものでも充分な効果を発揮するが、表面がカップリング剤等の有機成分で処理されているものや、酸化ケイ素、酸化チタン、酸化ゲルマニウム、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウム等の無機成分で被覆されているもの等、表面処理されたチタンブラックを用いることもできる。なかでも、有機成分で処理されているものは、より絶縁性を向上できる点で好ましい。
また、遮光剤として上記チタンブラックを含有する本発明の表示素子用シール剤を用いて製造した表示素子は、充分な遮光性を有するため、光の漏れ出しがなく高いコントラストを有し、優れた画像表示品質を有する表示素子を実現することができる。
上記チタンブラックのうち市販されているものとしては、例えば、12S、13M、13M-C、13R-N、14M-C(いずれも三菱マテリアル社製)、ティラックD(赤穂化成社製)等が挙げられる。
上記チタンブラックの比表面積の好ましい下限は13m/g、好ましい上限は30m/gであり、より好ましい下限は15m/g、より好ましい上限は25m/gである。
また、上記チタンブラックの体積抵抗の好ましい下限は0.5Ω・cm、好ましい上限は3Ω・cmであり、より好ましい下限は1Ω・cm、より好ましい上限は2.5Ω・cmである。
上記遮光剤の一次粒子径は、表示素子の基板間の距離以下であれば特に限定されないが、好ましい下限は1nm、好ましい上限は5000nmである。上記遮光剤の一次粒子径がこの範囲であることにより、得られる表示素子用シール剤の描画性等を悪化させることなく遮光性により優れるものとすることができる。上記遮光剤の一次粒子径のより好ましい下限は5nm、より好ましい上限は200nm、更に好ましい下限は10nm、更に好ましい上限は100nmである。
なお、上記遮光剤の一次粒子径は、NICOMP 380ZLS(PARTICLE SIZING SYSTEMS社製)を用いて、上記遮光剤を溶媒(水、有機溶媒等)に分散させて測定することができる。
本発明の表示素子用シール剤100重量部中における上記遮光剤の含有量の好ましい下限は5重量部、好ましい上限は80重量部である。上記遮光剤の含有量がこの範囲であることにより、得られる表示素子用シール剤の基板に対する接着性や硬化後の強度や描画性を低下させることなくより優れた遮光性を発揮することができる。上記遮光剤の含有量のより好ましい下限は10重量部、より好ましい上限は70重量部であり、更に好ましい下限は30重量部、更に好ましい上限は60重量部である。
本発明の表示素子用シール剤は、更に、必要に応じて、反応性希釈剤、揺変剤、スペーサー、硬化促進剤、消泡剤、レベリング剤、重合禁止剤等の添加剤を含有してもよい。
本発明の表示素子用シール剤を製造する方法としては、例えば、混合機を用いて、硬化性樹脂と、光重合開始剤と、必要に応じて添加するシランカップリング剤等とを混合する方法等が挙げられる。
上記混合機としては、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリーミキサー、ニーダー、3本ロール等が挙げられる。
本発明の表示素子用シール剤に導電性微粒子を配合することにより、上下導通材料を製造することができる。本発明の表示素子用シール剤と導電性微粒子とを含有する上下導通材料もまた、本発明の1つである。
上記導電性微粒子としては、金属ボール、樹脂微粒子の表面に導電金属層を形成したもの等を用いることができる。なかでも、樹脂微粒子の表面に導電金属層を形成したものは、樹脂微粒子の優れた弾性により、透明基板等を損傷することなく導電接続が可能であることから好適である。
本発明の表示素子用シール剤又は本発明の上下導通材料を用いてなる表示素子もまた、本発明の1つである。
本発明の表示素子としては、液晶表示素子が好ましく、狭額縁設計の液晶表示素子がより好ましい。具体的には、液晶表示部の周囲の枠部分の幅が2mm以下であることが好ましい。
また、本発明の表示素子として狭額縁設計の液晶表示素子を製造する際の本発明の表示素子用シール剤の塗布幅は1mm以下であることが好ましい。
本発明の表示素子として液晶表示素子を製造する方法としては、液晶滴下工法が好適に用いられ、具体的には例えば、以下の各工程を有する方法等が挙げられる。
まず、ITO薄膜等の電極及び配向膜を有する2枚の透明基板の一方に、本発明の表示素子用シール剤をスクリーン印刷、ディスペンサー塗布等により塗布して枠状のシールパターンを形成する工程を行う。次いで、本発明の表示素子用シール剤が未硬化の状態で液晶の微小滴を基板のシールパターンの枠内に滴下塗布し、真空下で他方の透明基板を重ね合わせる工程を行う。その後、本発明の表示素子用シール剤のシールパターン部分にカットフィルター等を介して長波長の光を照射することにより、シール剤を光硬化させる工程を行う方法により、液晶表示素子を得ることができる。また、上記シール剤を光硬化させる工程に加えて、シール剤を加熱して熱硬化させる工程を行ってもよい。
本発明によれば、長波長の光に対する反応性に優れる光重合開始剤を提供することができる。また、本発明によれば、該光重合開始剤を含有し、長波長の光に対する硬化性に優れ、液晶表示素子に用いた場合に低液晶汚染性にも優れる表示素子用シール剤、並びに、該表示素子用シール剤を用いてなる上下導通材料及び表示素子を提供することができる。更に、本発明によれば、該光重合開始剤を構成する化合物を提供することができる。
図1は、合成例1で得られた式(2-1)で表される化合物のH-NMRスペクトルである。 図2は、合成例1で得られた式(2-1)で表される化合物の吸収スペクトルである。 図3は、実施例及び比較例で得られた各表示素子用シール剤を用いて遮光部なしの状態で作製した液晶表示素子を模式的に示す断面図である。 図4は、実施例及び比較例で得られた各表示素子用シール剤を用いて遮光部ありの状態で作製した液晶表示素子を模式的に示す断面図である。
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。
(合成例1)
(式(2-1)で表される化合物の作製)
ジクロロメタン100重量部に、4-(ジメチルアミノ)ベンゾイルクロリド10重量部と、触媒であるピリジン0.5重量部とを加えて、0℃の環境下にてグリシドール1重量部を滴下し、放冷後、室温にて終夜撹拌した。得られた反応液からジクロロメタンを除去することにより反応生成物を得た。
N,N-ジメチルホルムアミド100重量部に、得られた反応生成物10重量部と、2-ヒドロキシ-9H-チオキサンテン-9-オン5重量部とを添加し、塩基性触媒として炭酸カリウム存在下で、120℃で48時間撹拌しながら反応させた。得られた反応液からN,N-ジメチルホルムアミドを除去し、カラムクロマトグラフィで精製することにより、上記式(2-1)で表される化合物を得た。
なお、得られた上記式(2-1)で表される化合物の構造は、H-NMR、13C-NMR、及び、FT-IRにより確認した。得られた式(2-1)で表される化合物のH-NMRスペクトルを図1に示した。
また、得られた式(2-1)で表される化合物を、濃度が0.1mg/mLとなるようにアセトニトリルに溶解させた。得られたアセトニトリル溶液について分光光度計(日立ハイテクサイエンス社製、「U-3900」)を用いて、光路長1cmの条件で300nm以上800nm以下の範囲の吸収スペクトルを測定した。その結果、式(2-1)で表される化合物は、420nmにおける吸光度が0.10以上であることを確認した。得られた式(2-1)で表される化合物の吸収スペクトルを図2に示した。
(合成例2)
(式(2-2)で表される化合物の作製)
2-ヒドロキシ-9H-チオキサンテン-9-オンを2、7-ジヒドロキシ-9H-チオキサンテン-9-オンに変更したこと以外は合成例1と同様にして、上記式(2-2)で表される化合物を得た。
なお、得られた上記式(2-2)で表される化合物の構造は、H-NMR、13C-NMR、及び、FT-IRにより確認した。
また、得られた式(2-2)で表される化合物を、濃度が0.1mg/mLとなるようにアセトニトリルに溶解させた。得られたアセトニトリル溶液について分光光度計(日立ハイテクサイエンス社製、「U-3900」)を用いて、光路長1cmの条件で300nm以上800nm以下の範囲の吸収スペクトルを測定した。その結果、式(2-2)で表される化合物は、420nmにおける吸光度が0.10以上であることを確認した。
(合成例3)
(式(2-3)で表される化合物の作製)
4-(ジメチルアミノ)ベンゾイルクロリドを3,5-ビス-(ジメチルアミノ)ベンゾイルクロリドに変更したこと以外は合成例1と同様にして、上記式(2-3)で表される化合物を得た。
なお、得られた上記式(2-3)で表される化合物の構造は、H-NMR、13C-NMR、及び、FT-IRにより確認した。
また、得られた式(2-3)で表される化合物を、濃度が0.1mg/mLとなるようにアセトニトリルに溶解させた。得られたアセトニトリル溶液について分光光度計(日立ハイテクサイエンス社製、「U-3900」)を用いて、光路長1cmの条件で300nm以上800nm以下の範囲の吸収スペクトルを測定した。その結果、式(2-3)で表される化合物は、420nmにおける吸光度が0.10以上であることを確認した。
(実施例1~7及び比較例1~4)
表1に記載された配合比に従い、各材料を遊星式撹拌機(シンキー社製、「あわとり練太郎」)を用いて混合した後、更に3本ロールを用いて混合することにより実施例1~7及び比較例1~4の表示素子用シール剤を調製した。
<評価>
実施例及び比較例で得られた各表示素子用シール剤について以下の評価を行った。結果を表1に示した。
(光硬化性)
実施例及び比較例で得られた各表示素子用シール剤100重量部にスペーサ微粒子(積水化学工業社製、「ミクロパールSI-H050」)1重量部を分散させた。次いで、シール剤をディスペンス用のシリンジ(武蔵エンジニアリング社製、「PSY-10E」)に充填し、脱泡処理を行ってから、ディスペンサー(武蔵エンジニアリング社製、「SHOTMASTER300」)にてガラス基板上に塗布した。その基板に真空貼り合わせ装置にて5Paの減圧下にて同サイズのガラス基板を貼り合わせた。貼り合わせたガラス基板のシール剤部分にメタルハライドランプを用いて100mW/cmの光を10秒照射した。光照射は、波長400nm以下の光をカットするカットフィルター(400nmカットフィルター)を介して行った。
赤外分光装置(BIORAD社製、「FTS3000」)を用いてシール剤のFT-IR測定を行い、(メタ)アクリロイル基由来ピークの光照射前後での変化量を測定した。光照射後に(メタ)アクリロイル基由来のピークが85%以上減少した場合を「◎」、70%以上85%未満減少した場合を「○」、60%以上70%未満減少した場合を「△」、光照射後の(メタ)アクリロイル基由来のピークの減少が60%未満であった場合を「×」として光硬化性を評価した。
(低液晶汚染性)
実施例及び比較例で得られた各表示素子用シール剤100重量部にスペーサ微粒子(積水化学工業社製、「ミクロパールSI-H050」)1重量部を分散させた。次いで、スペーサ微粒子を分散させたシール剤を、ラビング済み配向膜及び透明電極付き基板に線幅が1mmになるようにディスペンサーで塗布した。
続いて液晶(チッソ社製、「JC-5004LA」)の微小滴を透明電極付き基板のシール剤の枠内全面に滴下塗布し、すぐに透明電極付きカラーフィルター基板を貼り合わせた。その後、シール剤部分にメタルハライドランプを用いて100mW/cmの光を30秒照射して硬化させ、更に、120℃で1時間加熱して液晶表示素子を得た。光照射は、波長400nm以下の光をカットするカットフィルター(400nmカットフィルター)を介して行った。
液晶表示素子は、ディスペンサーでシール剤の塗布位置をコントロールし、シール剤に完全に光が当たる液晶表示素子(遮光部なし)と、シール剤がカラーフィルター基板のブラックマトリックスに線幅の50%がかかるように塗布した液晶表示素子(遮光部あり)の2種類を作製した。図3は、実施例及び比較例で得られた各表示素子用シール剤を用いて遮光部なしの状態で作製した液晶表示素子を模式的に示す断面図であり、図4は、実施例及び比較例で得られた各表示素子用シール剤を用いて遮光部ありの状態で作製した液晶表示素子を模式的に示す断面図である。図3に示すように、シール剤1上に遮光部なしの状態ものは完全にシール剤1が光に当たる状態であり、一方、シール剤1上に遮光部ありの状態のものは、図4に示すように、液晶3と接する部分のシール剤1には、ブラックマトリックス2で遮蔽されて光がほとんど届かない。
得られた液晶表示素子について、100時間動作試験を行った後、80℃で1000時間電圧印加状態とした後の液晶配向乱れ(表示むら)を目視にて確認した。
液晶表示素子に表示むらが全く見られなかった場合を「◎」、液晶表示素子のシール剤付近(周辺部)に少し薄い表示むらが見えた場合を「○」、周辺部にはっきりとした濃い表示むらがあった場合を「△」、はっきりとした濃い表示むらが周辺部のみではなく、中央部まで広がっていた場合を「×」として低液晶汚染性を評価した。
なお、評価が「◎」、「○」の液晶表示素子は実用に全く問題のないレベルであり、「△」の液晶表示素子は表示設計によっては問題になる可能性があるレベルであり、「×」の液晶表示素子は実用に耐えないレベルである。
Figure JPOXMLDOC01-appb-T000006
本発明によれば、長波長の光に対する反応性に優れる光重合開始剤を提供することができる。また、本発明によれば、長波長の光に対する硬化性に優れ、液晶表示素子に用いた場合に低液晶汚染性にも優れる表示素子用シール剤、並びに、該表示素子用シール剤を用いてなる上下導通材料及び表示素子を提供することができる。更に、本発明によれば、該光重合開始剤を構成する化合物を提供することができる。
1 シール剤
2 ブラックマトリックス
3 液晶

Claims (8)

  1. 水酸基で置換されていてもよいチオキサントニル基とアミノ基とを有する化合物であり、かつ、濃度が0.1mg/mLとなるようにアセトニトリルに溶解させたときの、波長420nmにおける吸光度が0.10以上であることを特徴とする光重合開始剤。
  2. 下記式(1-1)又は(1-2)で表される化合物である請求項1記載の光重合開始剤。
    Figure JPOXMLDOC01-appb-C000001
    式(1-1)及び(1-2)中、Rは、水酸基で置換されていてもよい炭素数1~20のアルキレン基、又は、水酸基で置換されていてもよい炭素数1~20の(ポリ)アルキレンオキシ基であり、Rは、それぞれ独立して、水素原子又はアミノ基であり、少なくとも1つのRは、アミノ基である。
  3. 下記式(2-1)、(2-2)、又は、(2-3)で表される化合物である請求項2記載の光重合開始剤。
    Figure JPOXMLDOC01-appb-C000002
  4. 硬化性樹脂と請求項1、2又は3記載の光重合開始剤とを含有する表示素子用シール剤。
  5. 液晶表示素子に用いられる請求項4記載の表示素子用シール剤。
  6. 請求項4又は5記載の表示素子用シール剤と導電性微粒子とを含有する上下導通材料。
  7. 請求項4若しくは5記載の表示素子用シール剤又は請求項6記載の上下導通材料を用いてなる表示素子。
  8. 下記式(2-1)、(2-2)、又は、(2-3)で表されることを特徴とする化合物。
    Figure JPOXMLDOC01-appb-C000003
PCT/JP2019/015089 2018-04-11 2019-04-05 光重合開始剤、表示素子用シール剤、上下導通材料、表示素子、及び、化合物 WO2019198631A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019521499A JP6655219B1 (ja) 2018-04-11 2019-04-05 光重合開始剤、表示素子用シール剤、上下導通材料、表示素子、及び、化合物
CN201980005877.0A CN111372952B (zh) 2018-04-11 2019-04-05 光聚合引发剂、显示元件用密封剂、上下导通材料、显示元件及化合物
KR1020207012630A KR102642077B1 (ko) 2018-04-11 2019-04-05 광중합 개시제, 표시 소자용 시일제, 상하 도통 재료, 표시 소자, 및 화합물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-076174 2018-04-11
JP2018076174 2018-04-11

Publications (1)

Publication Number Publication Date
WO2019198631A1 true WO2019198631A1 (ja) 2019-10-17

Family

ID=68164053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015089 WO2019198631A1 (ja) 2018-04-11 2019-04-05 光重合開始剤、表示素子用シール剤、上下導通材料、表示素子、及び、化合物

Country Status (5)

Country Link
JP (2) JP6655219B1 (ja)
KR (1) KR102642077B1 (ja)
CN (1) CN111372952B (ja)
TW (1) TWI801554B (ja)
WO (1) WO2019198631A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112079813A (zh) * 2020-08-18 2020-12-15 新丰博兴聚合材料有限公司 一种uv led光引发剂及其制备方法
JPWO2021157377A1 (ja) * 2020-02-06 2021-08-12

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022071116A1 (ja) * 2020-09-30 2022-04-07 積水化学工業株式会社 チオキサントン化合物、光重合開始剤、硬化性樹脂組成物、表示素子用組成物、液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子
KR20220057097A (ko) 2020-10-29 2022-05-09 주식회사 엘지에너지솔루션 전지 모듈 및 이를 포함하는 전지 팩
WO2023176778A1 (ja) * 2022-03-16 2023-09-21 積水化学工業株式会社 硬化性樹脂組成物及び半導体部品の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63180942A (ja) * 1987-01-22 1988-07-26 Canon Inc 記録媒体
JP2005512973A (ja) * 2001-10-18 2005-05-12 コーテス ブラザーズ パブリック リミティド カンパニー 多官能チオキサントン光開始剤
JP2008169231A (ja) * 2007-01-06 2008-07-24 Konica Minolta Medical & Graphic Inc 活性光線硬化型組成物、活性光線硬化型インク、活性光線硬化型組成物の硬化方法及び画像形成方法
US20120046377A1 (en) * 2009-04-30 2012-02-23 Siegwerk Benelux Sa Photoinitiators
JP2015231985A (ja) * 2014-05-13 2015-12-24 積水化学工業株式会社 変性ジアルキルアミノ安息香酸系化合物、変性チオキサントン誘導体、光硬化性樹脂組成物、液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子
WO2017130594A1 (ja) * 2016-01-25 2017-08-03 三井化学株式会社 光硬化性樹脂組成物、表示素子シール剤、液晶表示素子シール剤、及び液晶表示パネルとその製造方法
JP2018104662A (ja) * 2016-12-22 2018-07-05 日本化薬株式会社 光硬化性樹脂組成物及び電子部品用封止剤

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3583326B2 (ja) 1999-11-01 2004-11-04 協立化学産業株式会社 Lcdパネルの滴下工法用シール剤
KR100906926B1 (ko) 2001-05-16 2009-07-10 세키스이가가쿠 고교가부시키가이샤 경화성 수지 조성물, 표시 소자용 시일제 및 표시 소자용주입구 밀봉제
JP2005272826A (ja) * 2004-02-27 2005-10-06 Toyo Ink Mfg Co Ltd ラジカル重合開始剤、重合性組成物、および重合物の製造方法。
WO2010063612A1 (en) * 2008-12-01 2010-06-10 Basf Se Silsesquioxane photoinitiators
CN104981732B (zh) * 2013-03-06 2017-05-24 积水化学工业株式会社 液晶滴下工艺用密封剂、上下导通材料及液晶显示元件
CN104262511B (zh) * 2014-09-02 2016-11-23 天津久日新材料股份有限公司 可聚合共引发剂和uv可固化组合物
KR101788399B1 (ko) * 2015-09-23 2017-10-19 (주)경인양행 내열안정성이 우수한 옥심 에스테르 화합물, 그것을 포함하는 광중합 개시제 및 감광성 수지 조성물
CN108219691A (zh) * 2016-12-22 2018-06-29 日本化药株式会社 光固化性树脂组合物和电子部件用密封剂
JP6190553B2 (ja) 2017-02-20 2017-08-30 協立化学産業株式会社 光重合開始剤

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63180942A (ja) * 1987-01-22 1988-07-26 Canon Inc 記録媒体
JP2005512973A (ja) * 2001-10-18 2005-05-12 コーテス ブラザーズ パブリック リミティド カンパニー 多官能チオキサントン光開始剤
JP2008169231A (ja) * 2007-01-06 2008-07-24 Konica Minolta Medical & Graphic Inc 活性光線硬化型組成物、活性光線硬化型インク、活性光線硬化型組成物の硬化方法及び画像形成方法
US20120046377A1 (en) * 2009-04-30 2012-02-23 Siegwerk Benelux Sa Photoinitiators
JP2015231985A (ja) * 2014-05-13 2015-12-24 積水化学工業株式会社 変性ジアルキルアミノ安息香酸系化合物、変性チオキサントン誘導体、光硬化性樹脂組成物、液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子
WO2017130594A1 (ja) * 2016-01-25 2017-08-03 三井化学株式会社 光硬化性樹脂組成物、表示素子シール剤、液晶表示素子シール剤、及び液晶表示パネルとその製造方法
JP2018104662A (ja) * 2016-12-22 2018-07-05 日本化薬株式会社 光硬化性樹脂組成物及び電子部品用封止剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LUO, AIFANG ET AL.: "Thioxanthone-containing renewable vegetable oil as photoini tiators", POLYMER, vol. 53, 2012, pages 2183 - 2189, XP028419176, ISSN: 0032-3861, DOI: 10.1016/j.polymer.2012.03.042 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021157377A1 (ja) * 2020-02-06 2021-08-12
JP7411693B2 (ja) 2020-02-06 2024-01-11 三井化学株式会社 光熱硬化性樹脂組成物およびこれを含む液晶シール剤、ならびに液晶表示パネルおよびその製造方法
CN112079813A (zh) * 2020-08-18 2020-12-15 新丰博兴聚合材料有限公司 一种uv led光引发剂及其制备方法
CN112079813B (zh) * 2020-08-18 2021-05-25 新丰博兴聚合材料有限公司 一种uv led光引发剂及其制备方法

Also Published As

Publication number Publication date
TW201943738A (zh) 2019-11-16
CN111372952A (zh) 2020-07-03
CN111372952B (zh) 2023-03-07
JPWO2019198631A1 (ja) 2020-04-30
KR20200141977A (ko) 2020-12-21
JP6655219B1 (ja) 2020-02-26
TWI801554B (zh) 2023-05-11
KR102642077B1 (ko) 2024-02-28
JP2020097746A (ja) 2020-06-25

Similar Documents

Publication Publication Date Title
JP6655219B1 (ja) 光重合開始剤、表示素子用シール剤、上下導通材料、表示素子、及び、化合物
JP6434901B2 (ja) 液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子
WO2017119406A1 (ja) 液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子
JP6454217B2 (ja) 変性ジアルキルアミノ安息香酸系化合物、変性チオキサントン誘導体、光硬化性樹脂組成物、液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子
JP5340502B2 (ja) 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
WO2015152030A1 (ja) 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
JP6216260B2 (ja) 液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子
WO2020013128A1 (ja) 液晶素子用シール剤、上下導通材料、及び、液晶素子
JP6126756B1 (ja) 液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子
WO2016194871A1 (ja) 液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子
JP7000164B2 (ja) 液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子
JP7000159B2 (ja) 液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子
WO2021044842A1 (ja) 液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子
WO2020084988A1 (ja) 液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子
JPWO2019013194A1 (ja) 液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子
JP6630871B1 (ja) 電子材料用組成物、液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子
JP6378970B2 (ja) 硬化性樹脂組成物、液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子
JP6821102B1 (ja) 液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子
JP2019184730A (ja) 液晶表示素子用シール剤、エポキシ化合物、エポキシ化合物の製造方法、上下導通材料、及び、液晶表示素子
WO2017119260A1 (ja) 液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子
JP6031215B1 (ja) 液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子
JPWO2019225376A1 (ja) 液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子
WO2017119407A1 (ja) 液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子
JP2017003989A (ja) 液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子
WO2018116928A1 (ja) 液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019521499

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19784930

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19784930

Country of ref document: EP

Kind code of ref document: A1