WO2019198401A1 - 触媒、触媒の製造方法、アクリロニトリルの製造方法 - Google Patents

触媒、触媒の製造方法、アクリロニトリルの製造方法 Download PDF

Info

Publication number
WO2019198401A1
WO2019198401A1 PCT/JP2019/009654 JP2019009654W WO2019198401A1 WO 2019198401 A1 WO2019198401 A1 WO 2019198401A1 JP 2019009654 W JP2019009654 W JP 2019009654W WO 2019198401 A1 WO2019198401 A1 WO 2019198401A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
ammonia
propylene
state
molar ratio
Prior art date
Application number
PCT/JP2019/009654
Other languages
English (en)
French (fr)
Inventor
篤志 友田
章喜 福澤
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to JP2019540134A priority Critical patent/JP6758514B2/ja
Priority to KR1020197024295A priority patent/KR102251604B1/ko
Priority to CN201980001554.4A priority patent/CN110612158B/zh
Priority to MYPI2019005812A priority patent/MY201490A/en
Priority to US16/498,743 priority patent/US20210322959A1/en
Priority to EP19765961.8A priority patent/EP3778013A4/en
Publication of WO2019198401A1 publication Critical patent/WO2019198401A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8876Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/038Precipitation; Co-precipitation to form slurries or suspensions, e.g. a washcoat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/18Preparation of carboxylic acid nitriles by reaction of ammonia or amines with compounds containing carbon-to-carbon multiple bonds other than in six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/24Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons
    • C07C253/26Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons containing carbon-to-carbon multiple bonds, e.g. unsaturated aldehydes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/06Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms of an acyclic and unsaturated carbon skeleton
    • C07C255/07Mononitriles
    • C07C255/08Acrylonitrile; Methacrylonitrile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/10Constitutive chemical elements of heterogeneous catalysts of Group I (IA or IB) of the Periodic Table
    • B01J2523/14Rubidium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/30Constitutive chemical elements of heterogeneous catalysts of Group III (IIIA or IIIB) of the Periodic Table
    • B01J2523/37Lanthanides
    • B01J2523/3712Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/50Constitutive chemical elements of heterogeneous catalysts of Group V (VA or VB) of the Periodic Table
    • B01J2523/54Bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/60Constitutive chemical elements of heterogeneous catalysts of Group VI (VIA or VIB) of the Periodic Table
    • B01J2523/68Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/80Constitutive chemical elements of heterogeneous catalysts of Group VIII of the Periodic Table
    • B01J2523/84Metals of the iron group
    • B01J2523/842Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/80Constitutive chemical elements of heterogeneous catalysts of Group VIII of the Periodic Table
    • B01J2523/84Metals of the iron group
    • B01J2523/845Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/80Constitutive chemical elements of heterogeneous catalysts of Group VIII of the Periodic Table
    • B01J2523/84Metals of the iron group
    • B01J2523/847Nickel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a catalyst, a method for producing a catalyst, and a method for producing acrylonitrile.
  • a method for producing acrylonitrile a method of ammoxidizing propylene is known. Moreover, hydrogen cyanide can be obtained together with acrylonitrile by this ammoxidation.
  • a catalyst for ammoxidation an oxide catalyst containing molybdenum, bismuth and iron and an oxide catalyst containing antimony and iron are used. Ammoxidation reaction is performed on catalysts having these basic compositions. Various improvements have been made for the purpose of improving the efficiency.
  • the fluidized bed ammoxidation reaction catalyst represented by the following general formula (1) described in Patent Document 1 does not need to use an excessive amount of ammonia in the ammoxidation of propylene, and yields acrylonitrile in a high yield. It is said that it can be produced stably for a long time.
  • Mo 12 Bi a Fe b Ni c Co d Ce e Cr f X g O h / (SiO 2) A ⁇ (1)
  • Mo represents molybdenum
  • Bi represents bismuth
  • Fe represents iron
  • Ni nickel
  • Co represents cobalt
  • Ce represents cerium
  • Cr represents chromium
  • X represents at least one element selected from the group consisting of potassium, rubidium and cesium
  • SiO 2 represents silica, a, b, c, d, e, f, g and h represent the atomic ratio of each element.
  • h is an atomic ratio of oxygen atoms satisfying the valence of each constituent element excluding silica, A represents the content (mass%) of silica in the composite, and 35 ⁇ A ⁇ 48 is satisfied and calculated from the following formulas (2), (3) and (4) from the atomic ratio of each element.
  • the performance of the catalyst may deteriorate due to continuous reaction for a long time. Therefore, the catalyst may be added to the reaction system without stopping the reaction so that the production of acrylonitrile and hydrogen cyanide can be continued. Therefore, in order to maintain the productivity of acrylonitrile and hydrogen cyanide when a catalyst is added to the reaction system, a catalyst having a performance as a catalyst for ammoxidation and having a high propylene reaction activity (hereinafter also referred to as catalyst activity) is obtained. It has been demanded.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a catalyst having a high propylene reaction activity, which can improve the yield of hydrogen cyanide while maintaining a high yield of acrylonitrile in the ammoxidation of propylene.
  • the present inventors have found that a catalyst containing a specific metal species and having a reduction rate in a specific range is high in acrylonitrile, which is a product of ammoxidation of propylene.
  • the inventors have found that the yield of hydrogen cyanide can be improved while maintaining the yield, and that the catalytic activity is high, and the present invention has been completed. That is, the present invention is as follows.
  • X is one or more elements selected from the group consisting of nickel, cobalt, magnesium, calcium, zinc, strontium, barium and tungsten
  • Y is one or more elements selected from the group consisting of cerium, chromium, lanthanum, neodymium, yttrium, praseodymium, samarium, aluminum, boron, gallium and indium
  • Z is one or more elements selected from the group consisting of sodium, potassium, rubidium and cesium
  • a, b, c, d and e are 0.1 ⁇ a ⁇ 2.0, 0.1 ⁇ b ⁇ 2.8, 0.1 ⁇ c ⁇ 10.0, 0.1 ⁇ d ⁇ 3, respectively.
  • the contacting step comprises A step of bringing the ammonia / propylene molar ratio to a state (state 1) exceeding 2.50;
  • [6] [1] A method for producing acrylonitrile, comprising a step of reacting propylene, molecular oxygen and ammonia in the presence of the catalyst according to any one of [1] to [3]. [7] The method for producing acrylonitrile according to [6], which is carried out in a fluidized bed reactor. [8] The molar ratio of ammonia and air to propylene (propylene / ammonia / air) is in the range of 1.0 / (0.8 to 2.5) / (7.0 to 12.0) [6] or [ [7] A process for producing acrylonitrile according to [7]. [9] The method for producing acrylonitrile according to any one of [6] to [8], wherein the reaction is carried out in a temperature range of 300 to 500 ° C.
  • the yield of hydrogen cyanide can be improved while maintaining a high yield of acrylonitrile, which is a product of ammoxidation of propylene, and the propylene reaction activity in the reaction system can be increased. Therefore, the production method including the step of ammoxidizing propylene in the presence of the catalyst of the present invention can increase the productivity of acrylonitrile and hydrogen cyanide, and can efficiently supply acrylonitrile and hydrogen cyanide.
  • the present embodiment an embodiment of the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
  • this invention is not restrict
  • when “ ⁇ ” is used to express a numerical value or a physical property value before and after it, the value before and after that is used.
  • the description of a numerical value range of “1 to 100” includes both the upper limit value “100” and the lower limit value “1”. This also applies to other numerical range notations.
  • the catalyst of this embodiment contains molybdenum, bismuth, and iron. Further, the reduction rate of the catalyst of the present embodiment is in the range of 0.20 to 5.00%.
  • the catalyst of this embodiment for the ammoxidation of propylene, the yield of hydrogen cyanide can be improved while maintaining a high yield of the product acrylonitrile.
  • the catalyst of the present embodiment has high catalytic activity, when used as a catalyst when added to the propylene ammoxidation reaction system, the propylene reaction activity of the in-reactor catalyst that has decreased due to long-term operation may be increased. it can.
  • the reduction rate of the catalyst of the present embodiment is 0.20 to 5.00%, preferably 0.70 to 4.30%, more preferably 1.00 to 3.70%.
  • the reduction rate is 0.20% or more and 5.00% or less, the yield of hydrogen cyanide is improved while the high yield of acrylonitrile is maintained, and the catalytic activity is increased.
  • Examples of the method of reducing the reduction rate to 0.20 to 5.00% include a method of controlling the molar ratio of ammonia / propylene in the catalyst preparation step as described in the examples described later. .
  • the reduction rate can be specifically measured by the method described in the examples.
  • the catalyst of this embodiment is not particularly limited as long as it contains at least molybdenum (Mo), bismuth (Bi), and iron (Fe), and may contain other elements.
  • Other elements include magnesium and alkali metals.
  • the crystal phase can be stabilized, and there is a tendency to suppress the ⁇ -ization of the crystal phase that leads to performance degradation when subjected to a fluidized bed reaction.
  • an alkali metal By containing an alkali metal, the production of by-products tends to be suppressed, and the firing temperature of the catalyst tends to be kept in a preferable region.
  • the catalyst of this embodiment contains the composite metal oxide which has a composition represented by Formula (1).
  • Mo 12 Bi a Fe b X c Y d Z e O f
  • X is one or more elements selected from the group consisting of nickel, cobalt, magnesium, calcium, zinc, strontium, barium and tungsten
  • Y is one or more elements selected from the group consisting of cerium, chromium, lanthanum, neodymium, yttrium, praseodymium, samarium, aluminum, boron, gallium and indium
  • Z is one or more elements selected from the group consisting of sodium, potassium, rubidium and cesium
  • a, b, c, d and e are 0.1 ⁇ a ⁇ 2.0, 0.1 ⁇ b ⁇ 2.8, 0.1 ⁇ c ⁇ 10.0, 0.1 ⁇ d ⁇ 3, respectively.
  • f is the number
  • the atomic ratio a of bismuth to 12 atoms of molybdenum is 0.1 ⁇ a ⁇ 2.0, preferably 0.2 ⁇ a ⁇ 1.8.
  • a is from 0.1 to 2.0, the initial yield of the reaction for producing acrylonitrile and hydrogen cyanide increases, and the stability of the reaction tends to be excellent.
  • the atomic ratio b of iron to 12 atoms of molybdenum is 0.1 ⁇ b ⁇ 2.8, preferably 0.2 ⁇ b ⁇ 2.6.
  • the atomic ratio c of the element X to 12 atoms of molybdenum is 0.1 ⁇ c ⁇ 10.0, preferably 0.2 ⁇ c ⁇ 9.6.
  • the element X is at least one selected from the group consisting of nickel, cobalt, magnesium, calcium, zinc, strontium, barium and tungsten.
  • the atomic ratio d of element Y to molybdenum 12 atoms is 0.1 ⁇ d ⁇ 3.0, preferably 0.2 ⁇ d ⁇ 2.8.
  • the element Y is at least one selected from the group consisting of cerium, chromium, lanthanum, neodymium, yttrium, praseodymium, samarium, aluminum, boron, gallium and indium.
  • the element Y preferably contains at least cerium, and may further contain one or more elements selected from the group consisting of chromium, lanthanum, neodymium, yttrium, praseodymium, samarium, aluminum, gallium and indium.
  • the atomic ratio e of the element Z with respect to 12 atoms of molybdenum is 0.01 ⁇ e ⁇ 2.0, preferably 0.03 ⁇ e ⁇ 1.8.
  • the element Z is at least one selected from the group consisting of sodium, potassium, rubidium and cesium. Also, the atomic ratio f of oxygen to 12 atoms of molybdenum may be the number of oxygen atoms necessary to satisfy the valence requirements of other elements present.
  • the catalyst of this embodiment may be supported on a carrier.
  • a carrier oxides such as silica, alumina, titania, zirconia, etc. are used. From the viewpoint of reducing the selectivity of the target product and improving the wear resistance and particle strength of the formed catalyst particles, silica is used. Is preferred. That is, one of the preferable aspects of the catalyst of the present embodiment is a catalyst further containing silica.
  • the amount of the silica carrier is in the range of 20% by mass to 80% by mass, preferably 30% by mass to 70% by mass, and more preferably 40% by mass to 60% by mass with respect to the total mass of the silica carrier and the composite metal oxide. Used in
  • the shape and particle size of the catalyst of the present embodiment are not particularly limited, but when used as a fluidized bed catalyst, a spherical shape is preferable from the viewpoint of fluidity, and a particle size of 10 to 180 ⁇ m is preferable. .
  • the catalyst of this embodiment includes a step of bringing a calcined product containing molybdenum, bismuth, and iron into contact with propylene, air, and ammonia. Manufactured by the method.
  • the state 1 is a step in which the molar ratio of ammonia / propylene exceeds 2.50.
  • the state 2 is a step in which the ammonia / propylene molar ratio is 2.50 or less.
  • the molar ratio of ammonia / propylene in the above state 1 is a value exceeding 2.50, preferably a value exceeding 5.00.
  • the upper limit of the ammonia / propylene molar ratio in State 1 is not particularly limited, but is usually a value of 30.00 or less, may be a value of 25.00 or less, and is a value of 20.00 or less. May be.
  • the ammonia / air molar ratio in the state 1 is preferably a value exceeding 0.12, more preferably a value exceeding 0.21.
  • the yield of hydrogen cyanide can be improved while maintaining a high yield of acrylonitrile, the product of ammoxidation of propylene, and the catalytic activity is improved. There is a tendency to obtain a high catalyst.
  • the upper limit of the ammonia / air molar ratio in State 1 is not particularly limited, but is usually a value of 1.00 or less, may be a value of 0.70 or less, and is a value of 0.50 or less. May be.
  • the ammonia / propylene molar ratio in state 2 is a value of 2.50 or less, preferably a value of 2.00 or less.
  • the lower limit value of the molar ratio of ammonia / propylene in the state 2 is not particularly limited, but is usually a value exceeding 0, a value exceeding 0.1, or a value exceeding 0.5. Good.
  • the ammonia / air molar ratio in State 2 is preferably a value of 0.12 or less, more preferably a value of 0.10 or less.
  • the lower limit of the ammonia / air molar ratio in state 2 is not particularly limited, but is usually a value exceeding 0, a value exceeding 0.01, or a value exceeding 0.05. Good.
  • the calcined product containing molybdenum, bismuth, and iron can be manufactured by referring to a known method, for example, a manufacturing method described in International Publication No. 2018/21858.
  • the fired product containing molybdenum, bismuth and iron is not particularly limited.
  • a step of spray-drying a slurry containing molybdenum, bismuth and iron to obtain dry particles, and the dry particles can be manufactured by a method including a step of baking in air.
  • the fired product containing molybdenum, bismuth and iron may contain a metal contained in the composition represented by the formula (1) in addition to molybdenum, bismuth and iron.
  • the fired product containing molybdenum, bismuth, and iron is preferably a composite metal oxide having a composition represented by the formula (1).
  • a slurry containing molybdenum, bismuth, and iron can be obtained by mixing a catalyst raw material and a solvent.
  • the solvent is preferably water, and the slurry is preferably an aqueous slurry.
  • a preparation method in which an aqueous solution containing molybdenum is mixed and stirred with an aqueous solution containing silica, and then a solution containing bismuth and another metal is mixed and stirred is preferably used. It is done.
  • silica raw material silica sol is preferable.
  • the preferred concentration of the silica sol in the raw material state in which no other metal component is mixed is 10 to 50% by mass.
  • the raw material of each element constituting the catalyst such as molybdenum, bismuth, cerium, iron, nickel, cobalt, magnesium, zinc, potassium, rubidium, and cesium for preparing the slurry is a salt soluble in water or nitric acid.
  • Any metal salts such as ammonium salts, nitrates, hydrochlorides, sulfates, and organic acid salts may be used.
  • An ammonium salt is preferably used as a raw material containing molybdenum, and a nitrate is preferably used as a raw material containing bismuth, cerium, iron, nickel, magnesium, zinc, potassium, rubidium, and cesium.
  • a slurry containing molybdenum, bismuth, and iron is spray-dried to prepare dry particles.
  • the slurry is spray dried to obtain spherical particles.
  • the spraying of the aqueous slurry can be performed by a method such as a centrifugal method, a two-fluid nozzle method, or a high-pressure nozzle method that is usually used industrially, and is preferably performed by a centrifugal method.
  • heated air for drying and examples of the heat source for drying include steam and an electric heater.
  • the inlet temperature of the dryer is preferably 100 ° C. to 400 ° C., more preferably 150 ° C. to 300 ° C.
  • the outlet temperature of the dryer is preferably 100 ° C to 180 ° C, more preferably 120 ° C to 170 ° C.
  • the dried particles obtained as described above are fired in air to obtain a fired product. Firing is performed using a normal tunnel type or rotary type kiln.
  • the firing temperature is preferably in the range of 500 to 750 ° C., more preferably 500 to 680 ° C.
  • the firing time may be appropriately adjusted depending on the firing temperature, and is preferably in the range of 1 to 20 hours.
  • the size of the fired product of the present embodiment is not particularly limited, but is preferably spherical and preferably has a particle size of 10 to 180 ⁇ m.
  • the fired product obtained as described above is subjected to contact with propylene, ammonia, and air, and a fluidized bed reactor can be suitably used for the contact.
  • the fluidized bed reactor is not particularly limited, and is preferably a vertical cylindrical type, preferably a reactor equipped with an air dispersion plate, a raw material gas dispersion pipe for supplying propylene and ammonia thereon, a reactor outlet, and the like. Can be used.
  • Step A First, a calcined product containing molybdenum, bismuth, and iron is charged into a fluidized bed reactor, air is supplied from an air dispersion plate at a flow rate of 500 to 100,000 Nm 3 / hr, and nitrogen is supplied from a raw material gas dispersion tube to 500 to 10,000 Nm 3 / hr. Feed and bring the temperature in the reactor to 350-550 ° C.
  • Step B Then, to reduce the flow rate of air to about 30-70% of the 500 ⁇ 100000Nm 3 / hr, the flow rate to supply ammonia from the feed gas dispersion tube and 500 ⁇ 10000Nm 3 / hr.
  • the time for continuing the state 1 is usually 0.1 to 5.0 hours, preferably 0.5 to 3.0 hours.
  • the time for continuing state 2 is not particularly limited and may be adjusted as appropriate, and is usually 0.1 hour or longer, preferably 0.5 hour or longer.
  • the time for continuing the state 2 is not particularly limited and may be adjusted as appropriate.
  • the production of acrylonitrile and hydrogen cyanide may be continued as they are, at that time, the molar ratio of ammonia / propylene is 2.5 or less, and the molar ratio of ammonia / air is 0.12 or less. That is, the state 2 may be continued.
  • the state 2 can be continuously performed with the production of acrylonitrile and hydrogen cyanide as described above, the time of the state 2 may be usually 20 hours or less, or 10 hours or less.
  • the temperature in the reactor in state 1 is usually 350 to 550 ° C., and the temperature in the reactor in state 2 is usually 300 to 500 ° C.
  • the pressure in the reactor in states 1 and 2 is usually 0.01 to 1.00 MPa at the top of the reactor.
  • the method for producing acrylonitrile of the present embodiment uses the catalyst of the present embodiment. That is, the method for producing acrylonitrile of this embodiment includes a step of reacting propylene, molecular oxygen, and ammonia in the presence of the catalyst of this embodiment.
  • the production method of this embodiment is preferably performed by a fluidized bed ammoxidation reaction.
  • the manufacture of the acrylonitrile of this embodiment can be performed in the same reactor as the fluidized bed reactor used for the manufacture of the catalyst described above. Acrylonitrile and hydrogen cyanide can be produced by the production method of this embodiment.
  • the method for producing acrylonitrile of the present embodiment may be performed, for example, in a commonly used fluidized bed reactor.
  • the raw material propylene and ammonia are not necessarily highly pure, and industrial grade ones can be used.
  • As the molecular oxygen source it is usually preferable to use air, but it is also possible to use a gas whose oxygen concentration is increased by mixing oxygen with air.
  • the composition of the raw material gas is preferably 1 / (0.8 to 2.5) / (7.0 to 12.0), more preferably 1 / (0.9 to 1.3) / (8.0 to 11.0).
  • the reaction temperature in the acrylonitrile production method of the present embodiment is preferably in the range of 300 to 500 ° C., more preferably in the range of 400 to 480 ° C.
  • the reaction pressure is preferably in the range of normal pressure to 0.3 MPa.
  • the contact time between the raw material gas and the catalyst is preferably 0.5 to 20 (sec ⁇ g / cc), more preferably 1 to 10 (sec ⁇ g / cc).
  • a in the formula for calculating the reduction rate is the ratio of the amount of oxygen substance in the metal oxide molecule.
  • M metal Of in the following formula is the amount of metal oxide according to each metal atomic ratio, and M metal is the amount of each metal.
  • the content of propylene in the mixed gas was 9% by volume, and the molar ratio of propylene / ammonia / air was 1 / (0.7 to 2.5) / (8.0 to 13.5).
  • the ammonia flow rate is such that the sulfuric acid basic unit defined by the following formula is 20 ⁇ 2 kg / T-AN, and the oxygen concentration of the reactor outlet gas is 0.2 ⁇ 0.02% by volume.
  • the air flow rate was changed as appropriate.
  • the contact time defined by the following formula was changed by changing the flow rate of the entire mixed gas, and the propylene conversion rate defined by the following formula was set to 99.3 ⁇ 0.2%.
  • the yield of acrylonitrile produced by the reaction and the yield of hydrogen cyanide were values defined as in the following formula.
  • the catalytic activity represents the height of the activity of the catalyst, and is represented by the reaction rate calculated from the propylene conversion determined by the above-described method.
  • Acrylonitrile and hydrogen cyanide were produced by the ammoxidation reaction of propylene using each catalyst obtained in the examples and comparative examples.
  • a reaction tube used at that time a reaction tube made of SUS316 having an inner diameter of 10 mm was used.
  • the reaction was carried out by supplying a catalyst amount of 1 cc, a reaction temperature of 440 ° C., a reaction pressure of the reaction pressure, and supplying a mixed gas of propylene / ammonia / oxygen / helium at a total gas flow rate of 40 cc / sec (converted to NTP).
  • the content of propylene in the mixed gas is 5.4% by volume
  • the molar ratio of propylene / ammonia / oxygen is 1 / 1.2 / 1.89
  • the total gas flow rate of helium is 40 cc / sec (NTP (Conversion).
  • the propylene conversion rate defined by the above formula was calculated from the contact time defined by the above formula and the value of supplied and consumed propylene. From these contact times and propylene conversion rates, the catalytic activity is determined by the following formula.
  • Catalytic activity K (Hr ⁇ 1 ) ⁇ 3600 / (contact time) ⁇ ln ((100-propylene conversion) / 100) (In the formula, ln represents a natural logarithm.)
  • Example 1 The composition of the metal component is Mo 12.00 Bi 0.37 Fe 1.42 Co 4.47 Ni 3.30 Ce 0.91 Rb 0.14 60 mass% mixed metal oxide 40 mass% silica Using the composite metal oxide particles supported on the carrier consisting of, that is, the fired body, contact treatment of propylene, ammonia and air was performed. The fired body was prepared by spray drying a slurry containing molybdenum, bismuth, iron, cobalt, nickel, cerium, and rubidium to obtain dry particles, and firing the dry particles in air.
  • the fluidized bed reactor used for the contact treatment is a vertical cylindrical type having an inner diameter of 8 m and a length of 20 m, and has an air dispersion plate at a position 2 m from the bottom, and a raw material gas dispersion pipe for supplying propylene and ammonia thereon.
  • the control was carried out with the average value of 12 thermometers, 8 on the cross section at a height of 5 m and 4 on the cross section at a height of 6 m, as the reaction temperature. Specifically, the following operations were performed. First, the above-mentioned fired body was charged into the reactor by an amount corresponding to 2.7 m in the height of the stationary layer. After filling, Step A and Step B described above were performed.
  • the flow rate was adjusted such that the ammonia / propylene molar ratio (N / C) was 15.00 and the ammonia / air molar ratio (N / A) was 0.20.
  • the ammonia / propylene molar ratio (N / C) is 1.20
  • the ammonia / air molar ratio (N / A) is 0.10.
  • the catalyst of Example 1 was obtained by allowing the flow rate to be as follows and allowing 3.0 hours to elapse. At this time, the reduction rate of the catalyst of Example 1 was 0.65%, and the catalytic activity was 7.7. Further, using the catalyst of Example 1, acrylonitrile and hydrogen cyanide were produced by an ammoxidation reaction. As a result of analyzing the gas at the outlet of the reactor, the AN yield was 84.1% and the HCN yield was 3.4%.
  • Example 2 A catalyst of Example 2 was obtained by performing the same operation as in Example 1 except that the molar ratio of ammonia / propylene in State 2 was changed to 1.00. At this time, the reduction rate of the catalyst of Example 2 was 0.36%, and the catalytic activity was 7.6. In addition, as a result of analyzing the gas at the outlet of the reactor at this time, the AN yield was 84.2%, and the HCN yield was 3.3%.
  • Example 3 A catalyst of Example 3 was obtained by performing the same operation as in Example 1 except that the molar ratio of ammonia / propylene in State 2 was changed to 0.85. At this time, the reduction rate of the catalyst of Example 3 was 0.27%, and the catalytic activity was 7.4. In addition, as a result of analyzing the gas at the outlet of the reactor at this time, the AN yield was 84.2%, and the HCN yield was 3.3%.
  • Example 4 A catalyst of Example 4 was obtained by performing the same operation as in Example 1 except that the molar ratio of ammonia / propylene in State 1 was set to a flow rate of 10.00. At this time, the reduction rate of the catalyst of Example 4 was 0.48%, and the catalytic activity was 7.6. In addition, as a result of analyzing the gas at the outlet of the reactor at this time, the AN yield was 84.1%, and the HCN yield was 3.4%.
  • Example 5 A catalyst of Example 5 was obtained by performing the same operation as in Example 1, except that the molar ratio of ammonia / propylene in State 1 was set to 3.00. At this time, the reduction rate of the catalyst of Example 5 was 0.22%, and the catalytic activity was 7.5. In addition, as a result of analyzing the gas at the outlet of the reactor at this time, the AN yield was 84.2%, and the HCN yield was 3.3%.
  • Example 6 A catalyst of Example 6 was obtained in the same manner as in Example 1 except that the ammonia / air molar ratio in State 1 was changed to a flow rate of 0.10. At this time, the reduction rate of the catalyst of Example 6 was 0.21%, and the catalytic activity was 7.4. Moreover, as a result of analyzing the gas at the reactor outlet at this time, the AN yield was 84.2% and the HCN yield was 3.2%.
  • Example 7 A catalyst of Example 7 was obtained by performing the same operation as in Example 1 except that the ammonia / air molar ratio in State 1 was changed to a flow rate of 0.22. At this time, the reduction rate of the catalyst of Example 7 was 0.82%, and the catalytic activity was 8.0. In addition, as a result of analyzing the gas at the outlet of the reactor at this time, the AN yield was 84.1% and the HCN yield was 3.5%.
  • Example 8 A catalyst of Example 8 was obtained by performing the same operation as in Example 1 except that the ammonia / air molar ratio in State 1 was 0.24. At this time, the reduction rate of the catalyst of Example 8 was 1.09%, and the catalytic activity was 7.9. Moreover, as a result of analyzing the gas at the reactor outlet at this time, the AN yield was 83.8% and the HCN yield was 3.8%.
  • Example 9 A catalyst of Example 9 was obtained in the same manner as in Example 1 except that the ammonia / air molar ratio in State 1 was set to a flow rate of 0.27. At this time, the reduction rate of the catalyst of Example 9 was 3.60%, and the catalytic activity was 8.0. In addition, as a result of analyzing the gas at the outlet of the reactor at this time, the AN yield was 83.4% and the HCN yield was 4.1%.
  • Example 10 A catalyst of Example 10 was obtained in the same manner as in Example 1 except that the ammonia / air molar ratio in State 1 was set to a flow rate of 0.30. At this time, the reduction rate of the catalyst of Example 10 was 4.20%, and the catalytic activity was 7.8. Moreover, as a result of analyzing the gas at the outlet of the reactor at this time, the AN yield was 83.2% and the HCN yield was 4.3%.
  • Example 1 The same operation as in Example 1 was performed except that the ammonia / propylene molar ratio in State 1 was 2.00, and the ammonia / air molar ratio was 0.10. A catalyst was obtained. At this time, the reduction rate of the catalyst of Comparative Example 1 was 0.05%, and the catalytic activity was 6.8. Moreover, as a result of analyzing the gas at the reactor outlet at this time, the AN yield was 84.2% and the HCN yield was 2.9%.
  • Comparative Example 2 A catalyst of Comparative Example 2 was obtained in the same manner as in Example 1 except that the ammonia / propylene molar ratio in State 1 was set to a flow rate of 2.00. At this time, the reduction rate of the catalyst of Comparative Example 2 was 0.15%, and the catalytic activity was 7.0. Moreover, as a result of analyzing the gas at the reactor outlet at this time, the AN yield was 84.2% and the HCN yield was 3.0%.
  • Comparative Example 3 A catalyst of Comparative Example 3 was obtained in the same manner as in Example 1 except that the ammonia / propylene molar ratio in State 2 was 8.50. At this time, the reduction rate of the catalyst of Comparative Example 3 was 5.30%, and the catalytic activity was 6.3. Moreover, as a result of analyzing the gas at the reactor outlet at this time, the AN yield was 82.3%, and the HCN yield was 4.1%.
  • Comparative Example 4 A catalyst of Comparative Example 4 was obtained in the same manner as in Example 1 except that the flow rate was such that the ammonia / propylene molar ratio in State 2 was 15.00. At this time, the reduction rate of the catalyst of Comparative Example 4 was 8.30%, and the catalytic activity was 5.1. Moreover, as a result of analyzing the gas at the reactor outlet at this time, the AN yield was 71.0%, and the HCN yield was 6.3%.
  • the catalyst of the present invention has industrial applicability in the production of acrylonitrile and hydrogen cyanide including a step of ammoxidizing propylene.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

本発明は、モリブデンと、ビスマスと、鉄とを含む触媒であって、還元率が、0.20~5.00%の範囲である触媒を提供する。

Description

触媒、触媒の製造方法、アクリロニトリルの製造方法
 本発明は、触媒、触媒の製造方法、アクリロニトリルの製造方法に関する。
 アクリロニトリルを製造する方法として、プロピレンをアンモ酸化する方法が知られている。また、このアンモ酸化によって、アクリロニトリルと共にシアン化水素を得ることができる。
 アンモ酸化用の触媒としては、モリブデン、ビスマス及び鉄を含む酸化物触媒や、アンチモン及び鉄を含む酸化物触媒が利用されており、これらの基本的な組成を有する触媒に対して、アンモ酸化反応の効率を向上させることを目的に様々な改良が加えられている。
 例えば、特許文献1に記載の、下記一般式(1)で表される、流動床アンモ酸化反応触媒は、プロピレンのアンモ酸化におけるアンモニアを過剰量使用する必要なく、アクリロニトリルを高収率、且つ、長期安定的に生産することができるとされている。
 Mo12BiFeNiCoCeCr/(SiO・・・(1)
(式(1)中、Moはモリブデンを表し、Biはビスマスを表し、Feは鉄を表し、Niはニッケルを表し、Coはコバルトを表し、Ceはセリウムを表し、Crはクロムを表し、Xはカリウム、ルビジウム及びセシウムからなる群より選ばれる少なくとも1つの元素を表し、SiOはシリカを表し、a、b、c、d、e、f、g及びhは、それぞれの元素の原子比を表し、0.1≦a≦1、1≦b≦3、1≦c≦6.5、1≦d≦6.5、0.2≦e≦1.2、f≦0.05、及び0.05≦g≦1を満たし、hはシリカを除く各構成元素の原子価を満足する酸素原子の原子比であり、Aは前記複合体中のシリカの含有量(質量%)を表し、35≦A≦48を満たし、各元素の原子比から下記式(2)、(3)及び(4)より算出されるα、β及びγの値が、0.03≦α≦0.08、0.2≦β≦0.4及び0.5≦γ≦2を満たす。)
  α=1.5a/(1.5(b+f)+c+d)・・・(2)
  β=1.5(b+f)/(c+d)・・・・・・・・(3)
  γ=d/c・・・・・・・・・・・・・・・・・・・(4)
国際公開2017/130906号公報
 プロピレンのアンモ酸化においては、アクリロニトリルと共にシアン化水素の生産性も上げることが求められており、アクリロニトリルの高い収率を維持しながらシアン化水素の収率も向上することが課題となっている。
 また、アクリロニトリル及びシアン化水素の製造においては、長時間、連続して反応を行うことにより触媒の性能が低下すること等がある。そのため、アクリロニトリル及びシアン化水素の生産を継続できるよう、反応を停止することなく、反応系内に触媒の追加が行われることがある。したがって、反応系内に触媒の追加をする場合にアクリロニトリル及びシアン化水素の生産性を維持するため、アンモ酸化の触媒としての性能を有し且つプロピレン反応活性(以下、触媒活性ともいう)の高い触媒が求められている。
 本発明は、上記問題点に鑑みてなされたものであり、プロピレンのアンモ酸化においてアクリロニトリルの高い収率を維持しながらシアン化水素の収率も向上でき、プロピレン反応活性の高い触媒を提供することを目的とする。
 本発明者らは、前記課題を解決するために鋭意検討を重ねた結果、特定の金属種を含み、還元率が特定の範囲である触媒は、プロピレンのアンモ酸化の生成物であるアクリロニトリルの高い収率を維持しながらシアン化水素の収率も向上させることができ、且つ触媒活性が高いことを見出し、本発明を完成するに至った。
 すなわち、本発明は以下のとおりである。
[1]
 モリブデンと、ビスマスと、鉄とを含む触媒であって、
 還元率が、0.20~5.00%の範囲である、触媒。
[2]
 前記還元率が、0.70~4.30%の範囲である、[1]に記載の触媒。
[3]
 下記式(1)で表される組成を有する複合金属酸化物を含む、[1]又は[2]に記載の触媒。
Mo12BiFe (1)
(式(1)中、Xは、ニッケル、コバルト、マグネシウム、カルシウム、亜鉛、ストロンチウム、バリウム及びタングステンからなる群より選ばれる1種以上の元素であり、
 Yは、セリウム、クロム、ランタン、ネオジム、イットリウム、プラセオジム、サマリウム、アルミニウム、ホウ素、ガリウム及びインジウムからなる群より選ばれる1種以上の元素であり、
 Zは、ナトリウム、カリウム、ルビジウム及びセシウムからなる群より選ばれる1種以上の元素であり、
 a、b、c、d及びeは、それぞれ、0.1≦a≦2.0、0.1≦b≦2.8、0.1≦c≦10.0、0.1≦d≦3.0、及び0.01≦e≦2.0を満たし、
 fは、存在する他の元素の原子価要求を満足させるのに必要な酸素の原子数である。)
[4]
 モリブデンと、ビスマスと、鉄とを含む焼成物を、プロピレン、空気、及びアンモニアと接触させる接触工程を含み、
 前記接触工程が、
 アンモニア/プロピレンのモル比を2.50を超える状態(状態1)とする工程と、
 アンモニア/プロピレンのモル比を2.50以下の状態(状態2)とする工程と、
を含む、[1]~[3]のいずれかに記載の触媒の製造方法。
[5]
 前記状態1におけるアンモニア/空気のモル比が0.12を超え、
 前記状態2におけるアンモニア/空気のモル比が0.12以下である、
[4]に記載の触媒の製造方法。
[6]
 [1]~[3]のいずれかに記載の触媒の存在下、プロピレンと、分子状酸素と、アンモニアと、を反応させる工程を含む、アクリロニトリルの製造方法。
[7]
 流動床反応器により実施する、[6]に記載のアクリロニトリルの製造方法。
[8]
 プロピレンに対するアンモニア及び空気のモル比(プロピレン/アンモニア/空気)が、1.0/(0.8~2.5)/(7.0~12.0)の範囲である、[6]又は[7]に記載のアクリロニトリルの製造方法。
[9]
 反応を300~500℃の温度範囲で実施する、[6]~[8]のいずれかに記載のアクリロニトリルの製造方法。
 本発明の触媒によれば、プロピレンのアンモ酸化の生成物であるアクリロニトリルの高い収率を維持しながらシアン化水素の収率も向上でき、反応系内のプロピレン反応活性を高めることができる。したがって、本発明の触媒の存在下、プロピレンをアンモ酸化する工程を含む製造方法は、アクリロニトリル及びシアン化水素の生産性を高め、アクリロニトリル及びシアン化水素を効率よく供給することができる。
 以下、本発明の実施の形態(以下、「本実施形態」という。)について詳細に説明する。なお、本発明は、以下の本実施形態に制限されるものではなく、その要旨の範囲内で種々変形して実施することができる。なお、本明細書において、「~」を用いてその前後に数値又は物性値を挟んで表現する場合、その前後の値を含むものとして用いる。例えば「1~100」との数値範囲の表記は、その上限値「100」及び下限値「1」の双方を包含するものとする。また、他の数値範囲の表記も同様である。
 本実施形態の触媒は、モリブデンと、ビスマスと、鉄とを含む。また、本実施形態の触媒の還元率は、0.20~5.00%の範囲である。
 本実施形態の触媒をプロピレンのアンモ酸化に用いることにより、生成物であるアクリロニトリルの高い収率を維持しながらシアン化水素の収率も向上できる。また、本実施形態の触媒は高い触媒活性を有するため、プロピレンのアンモ酸化反応系内に追加するときの触媒として用いると、長期運転により低下した反応器内触媒のプロピレン反応活性を上昇させることができる。
 本実施形態の触媒の還元率は、0.20~5.00%であり、好ましくは0.70~4.30%であり、より好ましくは1.00~3.70%である。
 還元率が0.20%以上5.00%以下であることにより、アクリロニトリルの高い収率を維持しながらシアン化水素の収率が向上し、且つ触媒活性が高くなる。
 還元率を0.20~5.00%にする方法としては、例えば、後述する実施例に記載したように、触媒の調製の工程において、アンモニア/プロピレンのモル比を制御する方法等が挙げられる。
 還元率は、具体的には実施例に記載の方法によって測定することができる。
 本実施形態の触媒は、少なくともモリブデン(Mo)、ビスマス(Bi)、及び鉄(Fe)を含んでいれば特に制限されず、その他の元素を含んでいてもよい。
 その他の元素としては、例えば、マグネシウム等やアルカリ金属等が挙げられる。
 例えば、マグネシウムを含むことによって、結晶相を安定化させることができ、流動床反応に供した際の性能低下につながる結晶相のα化を抑える傾向にある。アルカリ金属を含むことによって、副生成物の生成を抑えたり、触媒の焼成温度を好ましい領域に保ったりする傾向にある。
 本実施形態の触媒は、式(1)で表される組成を有する複合金属酸化物を含むことが好ましい。
 Mo12BiFe (1)
(式(1)中、Xは、ニッケル、コバルト、マグネシウム、カルシウム、亜鉛、ストロンチウム、バリウム及びタングステンからなる群より選ばれる1種以上の元素であり、
 Yは、セリウム、クロム、ランタン、ネオジム、イットリウム、プラセオジム、サマリウム、アルミニウム、ホウ素、ガリウム及びインジウムからなる群より選ばれる1種以上の元素であり、
 Zは、ナトリウム、カリウム、ルビジウム及びセシウムからなる群より選ばれる1種以上の元素であり、
 a、b、c、d及びeは、それぞれ、0.1≦a≦2.0、0.1≦b≦2.8、0.1≦c≦10.0、0.1≦d≦3.0、及び0.01≦e≦2.0を満たし、
 fは、存在する他の元素の原子価要求を満足させるのに必要な酸素の原子数である。)
 モリブデン12原子に対するビスマスの原子比aは、0.1≦a≦2.0、好ましくは0.2≦a≦1.8である。
 aが0.1以上2.0以下であることにより、アクリロニトリル及びシアン化水素を製造する反応初期の収率が高くなり、反応の安定性も優れる傾向にある。
 モリブデン12原子に対する鉄の原子比bは、0.1≦b≦2.8、好ましくは0.2≦b≦2.6である。
 モリブデン12原子に対する元素Xの原子比cは、0.1≦c≦10.0であり、好ましくは0.2≦c≦9.6である。元素Xは、ニッケル、コバルト、マグネシウム、カルシウム、亜鉛、ストロンチウム、バリウム及びタングステンからなる群より選ばれる1種以上である。
 モリブデン12原子に対する元素Yの原子比dは、0.1≦d≦3.0であり、好ましくは0.2≦d≦2.8である。元素Yは、セリウム、クロム、ランタン、ネオジム、イットリウム、プラセオジム、サマリウム、アルミニウム、ホウ素、ガリウム及びインジウムからなる群より選ばれる1種以上である。元素Yは、少なくともセリウムを含むことが好ましく、さらに、クロム、ランタン、ネオジム、イットリウム、プラセオジム、サマリウム、アルミニウム、ガリウム及びインジウムからなる群より選ばれる1種以上の元素を含んでいてもよい。
 モリブデン12原子に対する元素Zの原子比eは、0.01≦e≦2.0であり、好ましくは0.03≦e≦1.8である。元素Zは、ナトリウム、カリウム、ルビジウム及びセシウムからなる群より選ばれる1種以上である。
 また、モリブデン12原子に対する酸素の原子比fは、存在する他の元素の原子価要求を満足させるのに必要な酸素の原子数であればよい。
 本実施形態の触媒は、担体に担持されたものであってもよい。担体としては、シリカ、アルミナ、チタニア、ジルコニア等の酸化物が用いられるが、目的物の選択性の低下が小さく、形成した触媒粒子の耐摩耗性、粒子強度が良好となる観点から、シリカが好適である。すなわち、本実施形態の触媒の好ましい態様の一つは、さらにシリカを含む触媒である。
 シリカ担体の量は、シリカ担体と複合金属酸化物との合計質量に対して20質量%~80質量%、好ましくは30質量%~70質量%、さらに好ましくは40質量%~60質量%の範囲で用いられる。
 本実施形態の触媒の形状及び粒子の大きさとしては、特に制限はないが、流動床触媒として使用する場合、流動性の観点から、球状が好ましく、10~180μmの粒子径を有することが好ましい。
[触媒の製造方法]
 本実施形態の触媒は、モリブデンと、ビスマスと、鉄とを含む焼成物を、プロピレン、空気、及びアンモニアと接触する工程を含み、前記工程が、下記状態1及び状態2とする工程を含む製造方法により製造される。
 上記状態1は、アンモニア/プロピレンのモル比を2.50を超える状態とする工程である。また、上記状態2は、アンモニア/プロピレンのモル比を、2.50以下の状態とする工程である。
 上記状態1におけるアンモニア/プロピレンのモル比は、2.50を超える値であり、好ましくは5.00を超える値である。状態1におけるアンモニア/プロピレンのモル比を2.50を超える値とすることにより、プロピレンのアンモ酸化の生成物であるアクリロニトリルの高い収率を維持しながらシアン化水素の収率も向上でき、触媒活性が高い触媒を得られる傾向にある。上記状態1におけるアンモニア/プロピレンのモル比の上限値は、特に制限されないが、通常30.00以下の値であり、25.00以下の値であってもよく、20.00以下の値であってもよい。
 また、上記状態1におけるアンモニア/空気のモル比は、好ましくは0.12を超える値であり、より好ましくは0.21を超える値である。状態1におけるアンモニア/空気のモル比を0.12を超える値とすることにより、プロピレンのアンモ酸化の生成物であるアクリロニトリルの高い収率を維持しながらシアン化水素の収率も向上でき、触媒活性が高い触媒を得られる傾向にある。上記状態1におけるアンモニア/空気のモル比の上限値は、特に制限されないが、通常1.00以下の値であり、0.70以下の値であってもよく、0.50以下の値であってもよい。
 上記状態2におけるアンモニア/プロピレンのモル比は、2.50以下の値であり、好ましくは2.00以下の値である。状態2におけるアンモニア/プロピレンのモル比を2.50以下の値とすることにより、プロピレンのアンモ酸化の生成物であるアクリロニトリルの高い収率を維持しながらシアン化水素の収率も向上でき、触媒活性が高い触媒を得られる傾向にある。上記状態2におけるアンモニア/プロピレンのモル比の下限値は、特に制限されないが、通常0を超える値であり、0.1を超える値であってもよく、0.5を超える値であってもよい。
 上記状態2におけるアンモニア/空気のモル比は、好ましくは0.12以下の値であり、より好ましくは0.10以下の値である。状態2におけるアンモニア/空気のモル比を0.12以下の値とすることにより、プロピレンのアンモ酸化の生成物であるアクリロニトリルの高い収率を維持しながらシアン化水素の収率も向上でき、触媒活性が高い触媒を得られる傾向にある。上記状態2におけるアンモニア/空気のモル比の下限値は、特に制限されないが、通常0を超える値であり、0.01を超える値であってもよく、0.05を超える値であってもよい。
 上記モリブデンと、ビスマスと、鉄とを含む焼成物は、公知の方法、例えば、国際公開第2018/211858号に記載の製造方法を参考に製造することができる。具体的には、上記モリブデンと、ビスマスと、鉄とを含む焼成物は、特に制限されないが、例えば、モリブデン、ビスマス、鉄を含むスラリーを噴霧乾燥し、乾燥粒子を得る工程と、上記乾燥粒子を空気中で焼成する工程とを含む方法によって製造することができる。上記モリブデンと、ビスマスと、鉄とを含む焼成物は、モリブデンと、ビスマスと、鉄に加え、式(1)で表される組成に含まれる金属を含んでいてもよい。上記モリブデンと、ビスマスと、鉄とを含む焼成物は、式(1)で表される組成を有する複合金属酸化物であることが好ましい。
 モリブデン、ビスマス、鉄を含むスラリーは、触媒の原料と、溶媒とを混合することにより得られる。溶媒は水であることが好ましく、上記スラリーは水性スラリーであることが好ましい。本実施形態の触媒をシリカに担持する場合、シリカを含んだ水溶液に対してモリブデンを含んだ水溶液を混合撹拌し、その後、ビスマス及び他の金属を含んだ溶液を混合撹拌する調製法が好ましく用いられる。
 シリカの原料としてはシリカゾルが好ましい。その他の金属成分が混合されていない原料の状態におけるシリカゾルの好ましい濃度は、10~50質量%である。
 スラリーを調製するためのモリブデン、ビスマス、セリウム、鉄、ニッケル、コバルト、マグネシウム、亜鉛、カリウム、ルビジウム、及びセシウム等の、触媒を構成する各元素の原料は、水又は硝酸に可溶な塩であればよく、各金属のアンモニウム塩、硝酸塩、塩酸塩、硫酸塩、有機酸塩等が挙げられる。
 モリブデンを含む原料としてはアンモニウム塩が好適に用いられ、ビスマス、セリウム、鉄、ニッケル、マグネシウム、亜鉛、カリウム、ルビジウム、及びセシウムを含む原料としては硝酸塩が好適に用いられる。
 モリブデン、ビスマス、鉄を含むスラリーは噴霧乾燥され、乾燥粒子が調製される。
 噴霧乾燥では、上記スラリーを噴霧乾燥して球状の粒子が得られる。水性スラリーの噴霧は、工業的に通常用いられる遠心方式、二流体ノズル方式、高圧ノズル方式等の方法により行うことができ、遠心方式により行うことが好ましい。乾燥には加熱された空気を用いることが好ましく、乾燥のための熱源としてはスチーム、電気ヒーター等が挙げられる。乾燥機の入口温度は、好ましくは100℃~400℃、より好ましくは150℃~300℃である。乾燥機の出口温度は、好ましくは100℃~180℃、より好ましくは120℃~170℃である。
 上述のように得られた乾燥粒子は、空気中で焼成され焼成物が得られる。
 焼成は、通常のトンネル型あるいはロータリー型のキルンを用いて行われる。焼成温度は、好ましくは500~750℃、より好ましくは500~680℃の範囲である。焼成時間は、焼成温度によって適宜調整すればよく、好ましくは1~20時間の範囲である。
 本実施形態の焼成物の大きさとしては、特に制限はないが、球状が好ましく、10~180μmの粒子径を有することが好ましい。
 上述のように得られた焼成物は、プロピレン、アンモニア、及び空気と接触する状態に供され、接触には流動層反応器を好適に用いることができる。
 流動層反応器としては、特に制限されず、好ましくは縦型円筒型であり、空気分散板、その上にプロピレン及びアンモニア供給用の原料ガス分散管、及び反応器出口等を備える反応器を好適に用いることができる。
 流動層反応器を用いたプロピレン、アンモニア、及び空気との接触は、具体的には以下のとおり行うことができる。
 以下の工程A~Bは、後述する状態1及び2となる前の処理工程であって、必要に応じて行われる。
 工程A:まず、モリブデン、ビスマス、鉄を含む焼成物を流動層反応器に充填し、空気分散板から空気を流量500~100000Nm/hr、原料ガス分散管から窒素を500~10000Nm/hr供給し、反応器内の温度を350~550℃にする。
 工程B:次に、空気の流量を500~100000Nm/hrの30~70%程度に低下させ、原料ガス分散管からアンモニアを供給し流量を500~10000Nm/hrとする。
 次に状態1として、原料ガス分散管からプロピレンを供給する。このとき、アンモニア/プロピレンのモル比が2.5を超え、アンモニア/空気のモル比が0.12を超える流量とする。
 その後、状態2として、アンモニア/プロピレンのモル比が2.5以下であり、アンモニア/空気のモル比が0.12以下である流量とする。
 続いて、窒素の供給を停止する。
 これらの状態1及び2を経ることにより、本実施形態の触媒を得ることができる。
 状態1を継続する時間は、通常0.1~5.0時間であり、好ましくは0.5~3.0時間である。
 状態2を継続する時間は、特に制限されず、適宜調整すればよく、通常0.1時間以上であり、好ましくは0.5時間以上である。状態2を継続する時間は、特に制限されず、適宜調整すればよい。また、状態2を経た後、そのままアクリロニトリル及びシアン化水素の製造を継続して行ってもよく、その時、アンモニア/プロピレンのモル比が2.5以下であり、アンモニア/空気のモル比が0.12以下である流量とすること、すなわち、状態2を継続してもよい。状態2は、上述のとおりアクリロニトリル及びシアン化水素の製造と継続的に行うことができるが、状態2の時間を、通常20時間以下としてもよく、10時間以下としてもよい。
 状態1の反応器内温度は、通常350~550℃であり、状態2の際の反応器内温度は、通常300~500℃である。状態1及び2の反応器内圧力は、反応器トップにおいて通常0.01~1.00MPaである。
[アクリロニトリル及びシアン化水素の製造方法]
 本実施形態のアクリロニトリルの製造方法は、本実施形態の触媒を用いるものである。すなわち、本実施形態のアクリロニトリルの製造方法は、本実施形態の触媒の存在下、プロピレンと、分子状酸素と、アンモニアと、を反応させる工程を含む。本実施形態の製造方法は、流動床アンモ酸化反応により行うことが好ましい。また、本実施形態のアクリロニトリルの製造は、上述した触媒の製造に用いた流動層反応器と同じ反応器にて行うことができる。
 本実施形態の製造方法によって、アクリロニトリル及びシアン化水素を製造することができる。
 本実施形態のアクリロニトリルの製造方法は、例えば、通常用いられる流動層反応器内で行われてもよい。原料のプロピレン及びアンモニアは、必ずしも高純度である必要はなく、工業グレードのものを使用することができる。また、分子状酸素源としては、通常空気を用いるのが好ましいが、酸素を空気と混合する等して酸素濃度を高めたガスを用いることもできる。
 本実施形態のアクリロニトリルの製造方法における分子状酸素源が空気である場合、原料ガスの組成(プロピレンに対するアンモニア及び空気のモル比;プロピレン/アンモニア/空気)は、好ましくは1/(0.8~2.5)/(7.0~12.0)の範囲であり、より好ましくは1/(0.9~1.3)/(8.0~11.0)の範囲である。
 本実施形態のアクリロニトリルの製造方法における反応温度は、好ましくは300~500℃の範囲であり、より好ましくは400~480℃の範囲である。反応圧力は、好ましくは常圧~0.3MPaの範囲である。原料ガスと触媒との接触時間は、好ましくは0.5~20(sec・g/cc)、より好ましくは1~10(sec・g/cc)である。
 以下に実施例を挙げて本実施形態をより具体的に説明するが、本実施形態はこれらの実施例により何ら限定されるものではない。また、各種物性の評価方法は下記に示すとおりである。
[還元率測定]
 還元率の測定は、下記手法で行った。
 まず、300mLのビーカーに、5mLの精製水と、各実施例、各比較例で製造した触媒のそれぞれを1.4g加え、硫酸水溶液(水体積:硫酸体積=1:1)を5mL加えた。
 次に、0.005mol/L過マンガン酸カリウム水溶液を24mL加え、さらに硫酸水溶液(水体積:硫酸体積=1:1)を10mL加えた。さらに、全液量が150mLとなるまで精製水を加え、73℃の湯浴で1時間加熱し、その後ろ紙を用いて混合物をろ別して、ろ液を回収した。
 上記ろ液に0.0125mol/Lシュウ酸ナトリウム溶液を15mL加えた後、73℃の湯浴で10分加熱し、硫酸水溶液(水体積:硫酸体積=1:1)を2mL加えた。
 その後、ろ液を、0.005mol/L過マンガン酸カリウム溶液で滴定し、ろ液が茶褐色になった状態を終点として、過マンガン酸カリウム滴定量(mL)を記録した。
 還元率は、過マンガン酸カリウムの添加量(24mL)、シュウ酸ナトリウムの添加量(15mL)、1電子あたりの酸素の物質量8、単位を合わせるための数値40に基づき、下記式により算出した。
Figure JPOXMLDOC01-appb-M000001
 還元率を算出するための式中のAは、金属酸化物分子中の酸素物質量の割合である。また、下記式中のM金属Ofは、各金属原子比に応じた金属酸化物の物質量であり、M金属は、各金属の物質量である。
Figure JPOXMLDOC01-appb-M000002
[プロピレン転化率、アクリロニトリル収率、シアン化水素収率]
 実施例及び比較例で得られた触媒を用いて、プロピレンのアンモ酸化反応によりアクリロニトリル及びシアン化水素を製造した。その際に使用する反応管としては、10メッシュの金網を1cm間隔で16枚内蔵した内径25mmのパイレックス(登録商標)ガラス管を使用した。
 触媒量50cc、反応温度430℃、反応圧力0.17MPaに設定し、プロピレン/アンモニア/空気の混合ガスを全ガス流量として250~450cc/sec(NTP換算)で供給して反応を実施した。その際、混合ガス中のプロピレンの含有量は9容積%とし、プロピレン/アンモニア/空気のモル比は1/(0.7~2.5)/(8.0~13.5)として、その範囲内で、下記式で定義される硫酸原単位が20±2kg/T-ANとなるようにアンモニア流量を、また、反応器出口ガスの酸素濃度が0.2±0.02容積%になるように空気流量を、適宜変更した。また、混合ガス全体の流速を変更することにより、下記式で定義される接触時間を変更し、下記式で定義されるプロピレン転化率が99.3±0.2%となるように設定した。
 反応によって生成するアクリロニトリル収率及びシアン化水素の収率は、下記式のように定義される値とした。
Figure JPOXMLDOC01-appb-M000003
[触媒活性]
 触媒活性は、触媒の活性の高さを表し、前述した方法によって求められたプロピレンの転化率から算出される反応速度によって表される。
 実施例及び比較例で得られた各触媒を用いて、プロピレンのアンモ酸化反応によりアクリロニトリル及びシアン化水素を製造した。その際に使用する反応管としては、内径10mmのSUS316製反応管を使用した。
 触媒量1cc、反応温度440℃、反応圧力は成行き圧とし、プロピレン/アンモニア/酸素/ヘリウムの混合ガスを全ガス流量として40cc/sec(NTP換算)で供給して反応を実施した。その際、混合ガス中のプロピレンの含有量は5.4容積%とし、プロピレン/アンモニア/酸素のモル比は1/1.2/1.89とし、ヘリウムは全ガス流量が40cc/sec(NTP換算)となる流量とした。混合ガスの流速から、前述した式で定義される接触時間、並びに、供給及び消費されたプロピレンの値より、前述した式で定義されるプロピレン転化率を算出した。
 これらの接触時間、プロピレン転化率より、触媒活性は下記式で求められる。
触媒活性K(Hr-1)=-3600/(接触時間)×ln((100-プロピレン転化率)/100)
(式中、lnは自然対数を表す。)
[実施例1]
 金属成分の組成がMo12.00Bi0.37Fe1.42Co4.47Ni3.30Ce0.91Rb0.14で表される60質量%複合金属酸化物を40質量%のシリカからなる担体に担持した複合金属酸化物粒子、すなわち、焼成体を用い、プロピレン、アンモニア及び空気の接触処理を行った。なお、焼成体は、モリブデン、ビスマス、鉄、コバルト、ニッケル、セリウム、ルビジウムを含むスラリーを噴霧乾燥し、乾燥粒子を得て、上記乾燥粒子を空気中で焼成することにより調製した。
 接触処理に用いた流動層反応器は、内径8m、長さ20mの縦型円筒型で、下から2mの位置に空気分散板、その上にプロピレン及びアンモニア供給用の原料ガス分散管を有しており、反応器下から5mの高さの断面に8個、6mの高さの断面に4個ある温度計12個の平均値を反応温度とし、管理を行った。
 具体的には以下のとおりの操作を行った。
 まず、上記焼成体を静止層高で2.7mとなる分だけ反応器に充填した。
 充填後、上述した、工程A、工程Bを行った。
 次に、状態1として、アンモニア/プロピレンのモル比(N/C)が15.00、アンモニア/空気のモル比(N/A)が0.20となるよう流量を調節した。
 上記の状態1を0.6時間継続した後、状態2として、アンモニア/プロピレンのモル比(N/C)が1.20であり、アンモニア/空気のモル比(N/A)が0.10である流量とし、3.0時間経過させることにより、実施例1の触媒を得た。
 このとき、実施例1の触媒の還元率は、0.65%であり、触媒活性は7.7であった。
 また、この実施例1の触媒を用いて、アンモ酸化反応によりアクリロニトリル及びシアン化水素を製造した。反応器出口のガスを分析した結果、AN収率は84.1%、HCN収率は3.4%であった。
[実施例2]
 状態2におけるアンモニア/プロピレンのモル比を1.00となる流量としたこと以外は、実施例1と同様の操作を行い、実施例2の触媒を得た。
 このとき、実施例2の触媒の還元率は、0.36%であり、触媒活性は7.6であった。
 また、このとき反応器出口のガスを分析した結果、AN収率は84.2%、HCN収率は3.3%であった。
[実施例3]
 状態2におけるアンモニア/プロピレンのモル比を0.85となる流量としたこと以外は、実施例1と同様の操作を行い、実施例3の触媒を得た。
 このとき、実施例3の触媒の還元率は、0.27%であり、触媒活性は7.4であった。
 また、このとき反応器出口のガスを分析した結果、AN収率は84.2%、HCN収率は3.3%であった。
[実施例4]
 状態1におけるアンモニア/プロピレンのモル比を10.00となる流量としたこと以外は、実施例1と同様の操作を行い、実施例4の触媒を得た。
 このとき、実施例4の触媒の還元率は、0.48%であり、触媒活性は7.6であった。
 また、このとき反応器出口のガスを分析した結果、AN収率は84.1%、HCN収率は3.4%であった。
[実施例5]
 状態1におけるアンモニア/プロピレンのモル比を3.00となる流量としたこと以外は、実施例1と同様の操作を行い、実施例5の触媒を得た。
 このとき、実施例5の触媒の還元率は、0.22%であり、触媒活性は7.5であった。
 また、このとき反応器出口のガスを分析した結果、AN収率は84.2%、HCN収率は3.3%であった。
[実施例6]
 状態1におけるアンモニア/空気のモル比を0.10となる流量としたこと以外は、実施例1と同様の操作を行い、実施例6の触媒を得た。
 このとき、実施例6の触媒の還元率は0.21%であり、触媒活性は7.4であった。
 また、このとき反応器出口のガスを分析した結果、AN収率は84.2%、HCN収率は3.2%であった。
[実施例7]
 状態1におけるアンモニア/空気のモル比を0.22となる流量としたこと以外は、実施例1と同様の操作を行い、実施例7の触媒を得た。
 このとき、実施例7の触媒の還元率は0.82%であり、触媒活性は8.0であった。
 また、このとき反応器出口のガスを分析した結果、AN収率は84.1%、HCN収率は3.5%であった。
[実施例8]
 状態1におけるアンモニア/空気のモル比を0.24となる流量としたこと以外は、実施例1と同様の操作を行い、実施例8の触媒を得た。
 このとき、実施例8の触媒の還元率は1.09%であり、触媒活性は7.9であった。
 また、このとき反応器出口のガスを分析した結果、AN収率は83.8%、HCN収率は3.8%であった。
[実施例9]
 状態1におけるアンモニア/空気のモル比を0.27となる流量としたこと以外は、実施例1と同様の操作を行い、実施例9の触媒を得た。
 このとき、実施例9の触媒の還元率は3.60%であり、触媒活性は8.0であった。
 また、このとき反応器出口のガスを分析した結果、AN収率は83.4%、HCN収率は4.1%であった。
[実施例10]
 状態1におけるアンモニア/空気のモル比を0.30となる流量としたこと以外は、実施例1と同様の操作を行い、実施例10の触媒を得た。
 このとき、実施例10の触媒の還元率は4.20%であり、触媒活性は7.8であった。
 また、このとき反応器出口のガスを分析した結果、AN収率は83.2%、HCN収率は4.3%であった。
[比較例1]
 状態1におけるアンモニア/プロピレンのモル比を2.00となる流量、アンモニア/空気のモル比を0.10となる流量としたこと以外は、実施例1と同様の操作を行い、比較例1の触媒を得た。
 このとき、比較例1の触媒の還元率は、0.05%であり、触媒活性は6.8であった。
 また、このとき反応器出口のガスを分析した結果、AN収率は84.2%、HCN収率は2.9%であった。
[比較例2]
 状態1におけるアンモニア/プロピレンのモル比を2.00となる流量としたこと以外は、実施例1と同様の操作を行い、比較例2の触媒を得た。
 このとき、比較例2の触媒の還元率は0.15%であり、触媒活性は7.0であった。
 また、このとき反応器出口のガスを分析した結果、AN収率は84.2%、HCN収率は3.0%であった。
[比較例3]
 状態2におけるアンモニア/プロピレンのモル比を8.50となる流量としたこと以外は、実施例1と同様の操作を行い、比較例3の触媒を得た。
 このとき、比較例3の触媒の還元率は5.30%であり、触媒活性は6.3であった。
 また、このとき反応器出口のガスを分析した結果、AN収率は82.3%、HCN収率は4.1%であった。
[比較例4]
 状態2におけるアンモニア/プロピレンのモル比が15.00となる流量としたこと以外は、実施例1と同様の操作を行い、比較例4の触媒を得た。
 このとき、比較例4の触媒の還元率は8.30%であり、触媒活性は5.1であった。
 また、このとき反応器出口のガスを分析した結果、AN収率は71.0%、HCN収率は6.3%であった。
Figure JPOXMLDOC01-appb-T000004
 本出願は、2018年 4月13日出願の日本特許出願(特願2018-077658号)に基づくものであり、それらの内容はここに参照として取り込まれる。
 本発明の触媒は、プロピレンをアンモ酸化する工程を含むアクリロニトリル及びシアン化水素の製造において産業上の利用可能性を有する。

Claims (9)

  1.  モリブデンと、ビスマスと、鉄とを含む触媒であって、
     還元率が、0.20~5.00%の範囲である、触媒。
  2.  前記還元率が、0.70~4.30%の範囲である、請求項1に記載の触媒。
  3.  下記式(1)で表される組成を有する複合金属酸化物を含む、請求項1又は2に記載の触媒。
    Mo12BiFe (1)
    (式(1)中、Xは、ニッケル、コバルト、マグネシウム、カルシウム、亜鉛、ストロンチウム、バリウム及びタングステンからなる群より選ばれる1種以上の元素であり、
     Yは、セリウム、クロム、ランタン、ネオジム、イットリウム、プラセオジム、サマリウム、アルミニウム、ホウ素、ガリウム及びインジウムからなる群より選ばれる1種以上の元素であり、
     Zは、ナトリウム、カリウム、ルビジウム及びセシウムからなる群より選ばれる1種以上の元素であり、
     a、b、c、d及びeは、それぞれ、0.1≦a≦2.0、0.1≦b≦2.8、0.1≦c≦10.0、0.1≦d≦3.0、及び0.01≦e≦2.0を満たし、
     fは、存在する他の元素の原子価要求を満足させるのに必要な酸素の原子数である。)
  4.  モリブデンと、ビスマスと、鉄とを含む焼成物を、プロピレン、空気、及びアンモニアと接触させる接触工程を含み、
     前記接触工程が、
     アンモニア/プロピレンのモル比を2.50を超える状態(状態1)とする工程と、
     アンモニア/プロピレンのモル比を2.50以下の状態(状態2)とする工程と、
    を含む、請求項1~3のいずれか一項に記載の触媒の製造方法。
  5.  前記状態1におけるアンモニア/空気のモル比が0.12を超え、
     前記状態2におけるアンモニア/空気のモル比が0.12以下である、
    請求項4に記載の触媒の製造方法。
  6.  請求項1~3のいずれか一項に記載の触媒の存在下、プロピレンと、分子状酸素と、アンモニアと、を反応させる工程を含む、アクリロニトリルの製造方法。
  7.  流動床反応器により実施する、請求項6に記載のアクリロニトリルの製造方法。
  8.  プロピレンに対するアンモニア及び空気のモル比(プロピレン/アンモニア/空気)が、1.0/(0.8~2.5)/(7.0~12.0)の範囲である、請求項6又は7に記載のアクリロニトリルの製造方法。
  9.  反応を300~500℃の温度範囲で実施する、請求項6~8のいずれか一項に記載のアクリロニトリルの製造方法。
PCT/JP2019/009654 2018-04-13 2019-03-11 触媒、触媒の製造方法、アクリロニトリルの製造方法 WO2019198401A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2019540134A JP6758514B2 (ja) 2018-04-13 2019-03-11 触媒、触媒の製造方法、アクリロニトリルの製造方法
KR1020197024295A KR102251604B1 (ko) 2018-04-13 2019-03-11 촉매, 촉매의 제조 방법, 아크릴로니트릴의 제조 방법
CN201980001554.4A CN110612158B (zh) 2018-04-13 2019-03-11 催化剂、催化剂的制造方法、丙烯腈的制造方法
MYPI2019005812A MY201490A (en) 2018-04-13 2019-03-11 Catalyst, method for producing catalyst, and method for producing acrylonitrile
US16/498,743 US20210322959A1 (en) 2018-04-13 2019-03-11 Catalyst, method for producing catalyst, and method for producing acrylonitrile
EP19765961.8A EP3778013A4 (en) 2018-04-13 2019-03-11 CATALYST, CATALYST PRODUCTION PROCESS, AND ACRYLONITRILE PRODUCTION PROCESS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018077658 2018-04-13
JP2018-077658 2018-04-13

Publications (1)

Publication Number Publication Date
WO2019198401A1 true WO2019198401A1 (ja) 2019-10-17

Family

ID=68162909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009654 WO2019198401A1 (ja) 2018-04-13 2019-03-11 触媒、触媒の製造方法、アクリロニトリルの製造方法

Country Status (8)

Country Link
US (1) US20210322959A1 (ja)
EP (1) EP3778013A4 (ja)
JP (2) JP6758514B2 (ja)
KR (1) KR102251604B1 (ja)
CN (1) CN110612158B (ja)
MY (1) MY201490A (ja)
TW (1) TWI714993B (ja)
WO (1) WO2019198401A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022080642A1 (ko) * 2020-10-16 2022-04-21 주식회사 엘지화학 몰리브덴-비스무트계 복합 금속 산화물의 제조방법

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210059261A (ko) 2019-11-15 2021-05-25 김수빈 복용시간에 맞춰 알람이 울리는 약통이 내장된 물병

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064043A (ja) * 2001-08-29 2003-03-05 Asahi Kasei Corp 青酸を安定に増産する方法
JP2005538173A (ja) * 2002-09-10 2005-12-15 アルケマ 分子酸素の存在下におけるプロパンからのアクリル酸の製造方法
JP2014161776A (ja) * 2013-02-22 2014-09-08 Asahi Kasei Chemicals Corp 酸化物触媒及びその製造方法、並びに不飽和アルデヒドの製造方法
WO2017130906A1 (ja) 2016-01-25 2017-08-03 旭化成株式会社 流動床アンモ酸化反応触媒及びアクリロニトリルの製造方法
JP2018077658A (ja) 2016-11-09 2018-05-17 株式会社デンソーテン 共用車両管理装置、共用車両管理システムおよび共用車両管理方法
WO2018211858A1 (ja) 2017-05-19 2018-11-22 旭化成株式会社 アンモ酸化用触媒、及び、その製造方法、並びにアクリロニトリルの製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003170044A (ja) * 2001-12-10 2003-06-17 Asahi Kasei Corp 触媒の調製方法
US7595277B2 (en) * 2003-06-09 2009-09-29 Asahi Kasei Chemicals Corporation Catalyst for oxidation or ammoxidation
RU2551855C2 (ru) * 2011-01-13 2015-05-27 Асахи Касеи Кемикалз Корпорейшн Способ получения ненасыщенного нитрила
US9433929B2 (en) * 2011-09-21 2016-09-06 Ineos Europe Ag Mixed metal oxide catalysts
CN104661747B (zh) * 2012-09-28 2017-02-15 旭化成株式会社 氧化物催化剂及其制造方法、以及不饱和醛、二烯烃和不饱和腈的制造方法
KR101892566B1 (ko) 2016-05-20 2018-08-28 주식회사 크레펀 지역기반 실감미디어 콘텐츠의 제공방법 및 시스템
JP6722284B2 (ja) * 2016-06-14 2020-07-15 旭化成株式会社 アンモ酸化用触媒の製造方法、及びアクリロニトリルの製造方法
WO2018043007A1 (ja) * 2016-08-31 2018-03-08 旭化成株式会社 触媒の製造方法、及びアクリロニトリルの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064043A (ja) * 2001-08-29 2003-03-05 Asahi Kasei Corp 青酸を安定に増産する方法
JP2005538173A (ja) * 2002-09-10 2005-12-15 アルケマ 分子酸素の存在下におけるプロパンからのアクリル酸の製造方法
JP2014161776A (ja) * 2013-02-22 2014-09-08 Asahi Kasei Chemicals Corp 酸化物触媒及びその製造方法、並びに不飽和アルデヒドの製造方法
WO2017130906A1 (ja) 2016-01-25 2017-08-03 旭化成株式会社 流動床アンモ酸化反応触媒及びアクリロニトリルの製造方法
JP2018077658A (ja) 2016-11-09 2018-05-17 株式会社デンソーテン 共用車両管理装置、共用車両管理システムおよび共用車両管理方法
WO2018211858A1 (ja) 2017-05-19 2018-11-22 旭化成株式会社 アンモ酸化用触媒、及び、その製造方法、並びにアクリロニトリルの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022080642A1 (ko) * 2020-10-16 2022-04-21 주식회사 엘지화학 몰리브덴-비스무트계 복합 금속 산화물의 제조방법

Also Published As

Publication number Publication date
US20210322959A1 (en) 2021-10-21
KR102251604B1 (ko) 2021-05-13
KR20190120201A (ko) 2019-10-23
JP6758514B2 (ja) 2020-09-23
EP3778013A1 (en) 2021-02-17
JP2020146686A (ja) 2020-09-17
CN110612158A (zh) 2019-12-24
TW201943456A (zh) 2019-11-16
JPWO2019198401A1 (ja) 2020-04-30
CN110612158B (zh) 2023-09-01
TWI714993B (zh) 2021-01-01
MY201490A (en) 2024-02-27
EP3778013A4 (en) 2021-06-23

Similar Documents

Publication Publication Date Title
JP5919870B2 (ja) アクリロニトリル製造用触媒の製造方法および該アクリロニトリル製造用触媒を用いたアクリロニトリルの製造方法
JP5011176B2 (ja) アクリロニトリル合成用触媒およびアクリロニトリルの製造方法
KR101741888B1 (ko) 복합 산화물 촉매 및 그의 제조 방법, 및 불포화 니트릴의 제조 방법
WO1995005241A1 (en) Ammoxidation catalyst composition
JP5361034B2 (ja) 流動床用アンモ酸化触媒及びそれを用いたアクリロニトリル又はメタクリロニトリルの製造方法
JPS6126419B2 (ja)
JPWO2017217343A1 (ja) アンモ酸化用触媒の製造方法、及びアクリロニトリルの製造方法
JP5011167B2 (ja) アクリロニトリル製造用触媒およびアクリロニトリルの製造方法
WO2001028986A1 (fr) Methode de production d'acrylonitrile, catalyseur employe et methode de preparation dudit produit
JP3214984B2 (ja) アンモ酸化に用いる触媒組成物及びこれを用いたアクリロニトリルまたはメタクリロニトリルの製造方法
EP3450018B1 (en) Production method for ammoxidation catalyst and production method for acrylonitrile
JP6758514B2 (ja) 触媒、触媒の製造方法、アクリロニトリルの製造方法
US10940463B2 (en) Catalyst, method for producing catalyst, and method for producing acrylonitrile
JP5187800B2 (ja) 不飽和酸または不飽和ニトリルの製造方法
JPH0134222B2 (ja)
KR102244998B1 (ko) 산화물 촉매의 제조 방법 및 불포화 니트릴의 제조 방법
JP2012245432A (ja) メタクリル酸製造用触媒の製造方法およびメタクリル酸の製造方法
CN114100652A (zh) 一种甲醇气相催化氨氧化生产氰化氢的催化剂及其制备方法和应用
JP4823950B2 (ja) アクリロニトリル製造用触媒の製造方法
JP4454009B2 (ja) アンモ酸化反応の選択性改善方法およびこれを用いる不飽和ニトリルの製造方法
JPS6041665B2 (ja) メタクリロニトリルの製造方法
CN113692315A (zh) 催化剂、催化剂的制造方法、丙烯腈的制造方法
KR102605977B1 (ko) 촉매, 촉매의 제조 방법, 아크릴로니트릴의 제조 방법
JP4565712B2 (ja) ニトリルの製造触媒およびこれを用いたニトリルの製造方法
WO2020184330A1 (ja) アクリロニトリル合成触媒、アクリロニトリル合成触媒の製造方法、アクリロニトリルの製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019540134

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197024295

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19765961

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019765961

Country of ref document: EP