WO2019196836A1 - 加氢精制催化剂、其制备方法及应用 - Google Patents

加氢精制催化剂、其制备方法及应用 Download PDF

Info

Publication number
WO2019196836A1
WO2019196836A1 PCT/CN2019/081915 CN2019081915W WO2019196836A1 WO 2019196836 A1 WO2019196836 A1 WO 2019196836A1 CN 2019081915 W CN2019081915 W CN 2019081915W WO 2019196836 A1 WO2019196836 A1 WO 2019196836A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
weight
group
metal element
precursor
Prior art date
Application number
PCT/CN2019/081915
Other languages
English (en)
French (fr)
Inventor
陈文斌
张乐
龙湘云
聂红
李明丰
李大东
刘清河
鞠雪艳
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司石油化工科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司石油化工科学研究院 filed Critical 中国石油化工股份有限公司
Priority to US17/044,817 priority Critical patent/US11439989B2/en
Priority to EP19785814.5A priority patent/EP3778021A4/en
Priority to SG11202009693XA priority patent/SG11202009693XA/en
Publication of WO2019196836A1 publication Critical patent/WO2019196836A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • B01J23/8885Tungsten containing also molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/882Molybdenum and cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/65150-500 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • B01J35/69Pore distribution bimodal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0205Impregnation in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0213Preparation of the impregnating solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1074Vacuum distillates

Definitions

  • the invention relates to the technical field of hydrotreating of distillate oil, in particular to a hydrotreating catalyst, a preparation method thereof and application thereof.
  • Hydrotreating is a pillar technology in the modern refining industry, which plays an important role in the production of clean fuels, improved product quality, full use of petroleum resources and raw material pretreatment.
  • refining enterprises have put forward higher requirements on the activity and stability of hydrotreating catalysts, and the activity and selectivity of hydrotreating catalysts need to be continuously improved.
  • hydrodesulfurization activity is an important indicator to measure the performance of hydrotreating catalysts.
  • the hydrofinishing catalyst has a sulfide of a Group VIB metal (Mo and/or W) as a main active component, and a sulfide of a Group VIII metal (Co and/or Ni) as a co-active component, a catalyst
  • the remaining components are carriers.
  • the preparation method of the general hydrotreating catalyst is a dipping method and a kneading method.
  • the impregnation method generally comprises the following steps: (1) preparing the alumina by using the pseudo-boehmite powder as a raw material, adding a fluxing agent and a binder, and forming the dried alumina at 100-200 ° C and calcining at 400-1000 ° C.
  • the kneading method generally comprises the following steps: (1) mixing the pseudo-boehmite powder, the active metal precursor (or the precursor-containing solution), the auxiliary agent, and the binder to obtain a powder; (2) after mixing The powder is shaped, dried, and/or calcined after molding to obtain an oxidation catalyst.
  • CN101450327A discloses heat treatment of alumina monohydrate at a temperature of 150-300 ° C, followed by reaming with one or more selected from the group consisting of graphite, stearic acid, sodium stearate, and aluminum stearate.
  • the mixture is kneaded uniformly after mixing, and dried by 100-150 ° C and then calcined at 700-1000 ° C to obtain alumina.
  • the uneven mixing of the pore-enlarging agent and the pseudo-boehmite results in poor hole-expanding effect, and the addition of the pore-expanding agent also increases the cost.
  • CN1087289A discloses a method for preparing a macroporous alumina carrier which instantaneously raises the aqueous pseudoboehmite at room temperature to a high temperature of 500-650 ° C and is kept at this elevated temperature for 2-4 hours.
  • the method utilizes the rapid evaporation of water at a high temperature to ream the support, but the activity of the hydrogenation catalyst prepared by using the support needs to be further improved.
  • the distillate oil also contains a large amount of nitrides and aromatic hydrocarbons, which can interact with the active center of the catalyst to inhibit the activity of the catalyst.
  • the H 2 S gradually formed during the reaction may also react with the active site of the catalyst to inhibit the activity of the catalyst.
  • the content and type of sulfides and nitrides in the stream will also change greatly. Choosing a suitable hydrodesulfurization catalyst for the oil properties of different reaction stages will better reduce diesel fuel. The content of impurities in the medium.
  • CN101092573A discloses a grading scheme in which a hydrogenation preservative, a hydrofinishing catalyst I, a hydrofinishing catalyst II and an optional hydrofinishing catalyst III are charged in a reactor, wherein the hydrofinishing catalyst I is a metal-supported catalyst having a metal component of a Group VIB metal or a Group VIII non-noble metal or a combination thereof; the hydrotreating catalyst II comprising a silica-alumina support and nickel oxide, molybdenum oxide, tungsten oxide, fluorine And a component such as phosphorus oxide; the hydrotreating catalyst III is a metal supported catalyst, and the metal component is a Group VIB metal or a Group VIII non-noble metal or a combination thereof.
  • the program fully exerts the advantages of each catalyst in different desulfurization stages, and can obtain low sulfur diesel that meets Euro III and Euro IV standards.
  • due to the demand for higher quality diesel due to the demand for higher quality diesel, due to the demand for higher quality diesel,
  • CN101591566A discloses dividing a reactor into four reaction zones, sequentially charging a hydrogenation protecting agent, a hydrotreating catalyst I comprising an active metal cobalt-molybdenum, a mixture of a hydrofinishing catalyst I and a hydrofinishing catalyst II, and comprising an active metal nickel.
  • - Hydrogenation catalyst II of tungsten The catalyst system enhances overall catalyst activity by synergy between the various catalysts. However, this system cannot produce diesel with lower sulfur content at lower reaction temperatures.
  • CN102311759A discloses the provision of two or more mixed catalyst beds composed of a Mo-Co type catalyst and a Mo-Ni type catalyst, in which the proportion of the Mo-Ni catalyst is gradually increased.
  • CN102876374A discloses dividing a reactor into four reaction zones, loading a first type of catalyst in a first reaction zone, and filling a mixture of a first type of catalyst and a second type of catalyst in a second reaction zone in a third reaction zone. A second type of catalyst is charged, and a first type of catalyst is loaded in the fourth reaction zone, wherein the first type of catalyst is a Mo-Co catalyst and the second type of catalyst is a W-Mo-Ni catalyst or W-Ni.
  • This patent application achieves the treatment of high sulfur, high nitrogen inferior diesel by grading of different catalysts.
  • One object of the present invention is to provide a novel hydrofinishing catalyst having high catalytic activity and having an aperture in order to overcome the problems of insufficient hydrostatic catalyst activity and small pore size existing in the prior art.
  • the ratio of the pore volume in the range of 100-300 nm to the total pore volume may be up to 30%.
  • Another object of the present invention is to overcome the problem of insufficient activity of the hydrofinishing catalyst system existing in the prior art, and to provide a novel hydrotreating catalyst system capable of improving desulfurization, denitrification and dearomatization of inferior oil. At least one of the performance.
  • an aspect of the invention provides a hydrotreating catalyst comprising:
  • An inorganic refractory component comprising a first hydrodesulfurization catalytically active component and an oxide selected from the group consisting of at least one selected from the group consisting of alumina, silica, magnesia, calcia, zirconia and titania ;
  • An organic component supported on an inorganic refractory component comprising a carboxylic acid and optionally an alcohol,
  • the hydrofinishing catalyst has pores having a pore diameter in the range of 2-40 nm and 100-300 nm, respectively, wherein the pore volume in the range of 2-40 nm pore diameter accounts for about 60- of the total pore volume. 95%, and the pore volume in the range of 100-300 nm pore diameter accounts for about 0.5-30% of the total pore volume.
  • Another aspect of the invention provides a method of preparing a hydrofinishing catalyst comprising the steps of:
  • a hydrofinishing catalyst system comprising a first catalyst and a second catalyst, wherein the first catalyst is a hydrofinishing catalyst according to the present invention, and the second catalyst comprises a second inorganic refractory a component, a third hydrodesulfurization catalytically active component supported on the second inorganic refractory component, and an organic component supported on the second inorganic refractory component, wherein the second inorganic refractory component comprises alumina,
  • the organic component is selected from the group consisting of a carboxylic acid and an alcohol, and the pore size of the second catalyst is concentrated in the range of 2-100 nm, wherein the volume ratio of the first catalyst to the second catalyst is about 1:1 to about 1:8.
  • the present invention provides a method of preparing a hydrofinishing catalyst system, the hydrofinishing catalyst system comprising a first catalyst and a second catalyst, the method comprising:
  • the first catalyst and the second catalyst are respectively charged in a first catalyst bed and a second catalyst bed in a volume ratio of from about 1:1 to about 1:8 to obtain the hydrofinishing catalyst system.
  • the present invention provides a method for hydrotreating a distillate oil, comprising the steps of:
  • the distillate to be hydrodesulfurized is contacted with the hydrotreated catalyst or hydrofinishing catalyst system after vulcanization under hydrodesulfurization conditions.
  • the hydrofinishing catalyst and hydrotreating catalyst system of the present invention can provide one or more of the following advantages:
  • the pore size of the hydrofinishing catalyst of the present invention is concentrated between 2-40 nm and 100-300 nm, respectively. In the inferior distillate, the size of the reactant molecules is large, which requires a large reaction space.
  • the pore size of the catalyst in the range of 100-300 nm can provide sufficient space for the diffusion of the reactants, promoting the reactants and activity. The accessibility of the center increases the performance of the catalyst.
  • a method of preparing a hydrofinishing catalyst provided by the present invention by calcining a precursor of a carrier prior to extrusion molding.
  • the heat treatment can reduce the number of hydroxyl groups in the carrier precursor particles, reduce the probability of channel condensation, and increase the pore size of the catalyst; in the second aspect, the formed catalyst does not need to be treated with a higher temperature, and the carrier pore walls do not need to be excessive.
  • the condensation enhances the utilization of the carrier; in the third aspect, the carrier precursor is heat treated before molding, and some of the secondary particles are also condensed, which causes the size of the formed alumina particles to become uniform, after molding
  • the pores in the catalyst will be more uniform and will facilitate the diffusion of the reactants. Especially for heavier and less inferior oils, it is more effective than conventional catalysts.
  • the present invention comprises a partially hydrodesulfurization catalytically active component, more preferably a part of the Group VIII metal is mixed into a carrier precursor, and an inorganic refractory powder is formed by calcination. Then, the impregnation solution containing the remaining active component is mixed with the inorganic refractory powder, thereby increasing the content of the active component in the catalyst, and further improving the hydrotreating performance of the catalyst.
  • the preparation method of the hydrorefining catalyst provided by the invention has a short process, and the preparation cost and the preparation time can be greatly saved.
  • the preparation method of the catalyst of the invention it is not necessary to add a peptizing agent nitric acid and an auxiliary squeezing field phthalocyanine powder, thereby reducing the emission of harmful substances (such as NOx), reducing the material cost and the environmental protection cost, and realizing the green manufacturing of the catalyst.
  • the pore size of the second catalyst is concentrated at 2 to 100 nm, and a small amount of the active metal component is used in the preparation process, and an organic carboxylic acid and/or an alcohol compound is added to make the active component highly Dispersion, making full use of the active metal, the catalyst achieves higher activity and greatly reduces the cost of the catalyst.
  • the invention combines the first catalyst with the second catalyst, and uses the first catalyst having higher activity in the first catalyst bed, so that the high activity of the catalyst can be utilized to a greater extent, and the oil is better removed. Impurities in the product.
  • the hydrotreating reaction temperature of the second catalyst bed is high, if the active center is too concentrated, more heat will be released, and coking of the catalyst is increased, and the active component in the second catalyst of the present invention It is in a highly dispersed state, and the pore diameter of the catalyst is large, the heat released by the reaction is moderate, and can be carried away by the reaction stream relatively quickly, so that a better reaction effect can be achieved.
  • Figure 1 is a graph showing the XRD spectrum of an inorganic refractory component and a catalyst prepared according to Example I-8 of the present invention.
  • any specific numerical values (including the endpoints of the numerical ranges) disclosed herein are not limited to the precise value of the numerical value, but should be understood to cover the value close to the precise value. Moreover, for the disclosed numerical range, one or more new ones can be obtained between the endpoint values of the range, the endpoint values and the specific point values in the range, and the specific point values. Numerical ranges, these new numerical ranges are also considered to be specifically disclosed herein.
  • any matters or matters not mentioned are directly applicable to those known in the art without any change other than those explicitly stated.
  • any of the embodiments described herein can be freely combined with one or more other embodiments described herein, and the resulting technical solution or technical idea is considered to be part of the original disclosure or original description of the present invention, and should not be It is considered to be new content that has not been disclosed or anticipated herein, unless it is apparent to those skilled in the art that the combination is clearly unreasonable.
  • carboxylic acid means an organic compound having the formula R(COOH) n which is composed of a hydrocarbon group and one or more carboxyl groups (-COOH), wherein n is an integer greater than or equal to 1, preferably 1-5, R is a substituted or unsubstituted aliphatic hydrocarbon group (including an alicyclic hydrocarbon group) or an aromatic hydrocarbon group, and the substituent on the hydrocarbon group is not particularly limited and includes, but not limited to, an alkyl group, a halogen, a hydroxyl group and the like.
  • the carboxylic acid may include a fatty acid and an aromatic acid depending on the hydrocarbon group; depending on the number of carboxyl groups, a monobasic acid, a dibasic acid, and a polybasic acid may be included; depending on the presence or absence of an unsaturated bond, A saturated acid and an unsaturated acid may be included.
  • the term "alcohol” means an organic compound having the formula R(OH) n which is composed of a hydrocarbon group and one or more hydroxyl groups (-OH), wherein n is an integer greater than or equal to 1, preferably 1 Further, R is a substituted or unsubstituted aliphatic hydrocarbon group (including an alicyclic hydrocarbon group) or an aromatic hydrocarbon group, and the substituent on the hydrocarbon group is not particularly limited and includes, but not limited to, an alkyl group, a halogen or the like.
  • the alcohol may include a fatty alcohol and an aromatic alcohol (including a phenol) depending on the hydrocarbon group; depending on the number of hydroxyl groups, a monohydric alcohol, a glycol, and a polyhydric alcohol may be included; depending on the presence or absence of an unsaturated bond; It may include saturated alcohols and unsaturated alcohols.
  • aromatic alcohol including a phenol
  • the specific surface area, pore distribution, pore size (including average pore diameter), and pore volume (including total pore volume) of the catalyst were measured after calcination at 400 ° C for 3 h unless otherwise stated.
  • the specific surface area of the catalyst and the pore distribution, pore diameter and pore volume in the pore size range of 2-40 nm are determined by low-temperature nitrogen adsorption method (according to GB/T5816-1995 standard), 100-300 nm pore size, unless otherwise specified.
  • the pore distribution, pore size and pore volume in the range were determined by mercury intrusion method (according to GB/T21650.1-2008).
  • the pore volume of the catalyst with a pore diameter of less than 100 nm is determined by low-temperature nitrogen adsorption method (according to GB/T5816-1995 standard), and the pore volume of pore diameter above 100 nm is determined by mercury intrusion method (according to GB/T21650.1-2008).
  • the pore volume is the sum of the two.
  • the "pore size in the range of 2-4 nm", “pore size (2-4)” or “2-4 nm pore size” means that the pore diameter is 2 nm or more and less than 4 nm
  • the pore size in the range of 2-40 nm", “pore size (2-40 nm)” or “2-40 nm pore size” means that the pore diameter is 2 nm or more and less than 40 nm
  • the "pore diameter is in the range of 100-300 nm
  • “aperture (for) 100-300 nm” or “100-300 nm pore size” means that the pore diameter is 100 nm or more and less than 300 nm
  • the "pore diameter in the range of 2-100 nm", “pore diameter (-) 2-100 nm” or “2-100 nm pore size” means The pore diameter is 2 nm or more and less than 100 nm.
  • the phrase "concentration of the pore size in the range of 2-100 nm” means that the ratio of the pore volume in the range of 2-100 nm to the total pore volume is at least about 90%, for example, about 91%, about 92%. About 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, about 100%, preferably at least about 95%, more preferably at least about 98%, particularly preferably at least about 99.5%.
  • the amounts of the inorganic refractory component (including the ratio between the amounts used with other components) and the contents are respectively referred to as the dry refractory component.
  • the dry basis weight of the inorganic refractory powder refers to the weight determined by calcining the sample at 600 ° C for 4 h; and the dry basis weight of the catalyst means by calcining the sample at 400 ° C for 3 h. Determined weight.
  • the alcohol and the organic carboxylic acid contained in the catalyst are decomposed and volatilized at a high temperature, the amounts and contents of the alcohol and the organic carboxylic acid in the present application are not based on the dry basis.
  • the present invention provides a hydrofinishing catalyst comprising:
  • An inorganic refractory component comprising a first hydrodesulfurization catalytically active component and an oxide selected from the group consisting of at least one selected from the group consisting of alumina, silica, magnesia, calcia, zirconia and titania ;
  • An organic component supported on an inorganic refractory component comprising a carboxylic acid and optionally an alcohol,
  • the hydrofinishing catalyst has pores having a pore diameter in the range of 2-40 nm and 100-300 nm, respectively, wherein the pore volume in the range of 2-40 nm pore diameter accounts for about 60- of the total pore volume. 95%, and the pore volume in the range of 100-300 nm pore diameter accounts for about 0.5-30% of the total pore volume.
  • the inorganic refractory component in the catalyst of the present invention is subjected to a calcination treatment prior to loading the second hydrodesulfurization catalytically active component and the organic component, and the calcination is preferably carried out under the following conditions:
  • the calcination temperature is about 300 to 900 ° C, preferably about 400 to 700 ° C; and the calcination time is about 1 to 15 h, preferably about 3 to 8 h.
  • the catalysts of the present invention are free of pore expanding agents, such as carbon black, graphite, stearic acid, sodium stearate, and aluminum stearate, and are also free of surfactants and the like.
  • the alumina, silica, magnesia, calcium oxide, zirconia and titania used in the inorganic refractory component of the present invention are substantially inert substances, and it is difficult to combine with a Group VIII element to form a structurally stable compound, thereby improving the number Utilization of Group VIII elements.
  • these materials have weaker interaction with other active components in the catalyst, which is beneficial to the growth of the active phase of the catalyst, thereby enhancing the performance of the catalyst.
  • the pore volume of the catalyst of the present invention having a pore diameter in the range of 2 to 40 nm accounts for about 75 to 90% of the total pore volume, and the pore volume of the pore diameter in the range of 100 to 300 nm accounts for about 5 to 15% of the total pore volume.
  • the ratio of the pore volume in the range of 2-4 nm to the total pore volume does not exceed about 10%.
  • the hydrofinishing catalyst has a specific surface area of from about 70 to 200 m 2 /g, preferably from about 90 to 180 m 2 /g, and a total pore volume of from about 0.15 to 0.6 mL/g, after calcination at 400 ° C for 3 h. It is preferably about 0.2 to 0.4 mL/g and has an average pore diameter of 5 to 25 nm, preferably about 8 to 15 nm.
  • the hydrodesulfurization catalytically active component may be any component known to be useful as a hydrodesulfurization active component in a hydrofinishing catalyst, for example, the active component may be selected from Group VIII. Metal elements and Group VIB metal elements.
  • the first hydrodesulfurization catalytically active component comprises a metal element selected from at least one of a Group VIII metal element and a Group VIB metal element
  • the second hydrodesulfurization catalytically active component comprises at least A Group VIII metal element and at least one Group VIB metal element.
  • the Group VIII metal element is at least one selected from the group consisting of iron, cobalt, nickel, ruthenium, osmium, and palladium
  • the Group VIB metal element is at least one selected from the group consisting of chromium, molybdenum, and tungsten.
  • the content of the active component can be varied within a wide range.
  • the total content of the Group VIII metal element is from about 15 to 35 wt%, preferably from about 20 to 30 wt%, based on the dry basis weight of the catalyst and based on the oxide.
  • the total content of the Group VIB metal element is from about 35 to 75% by weight, preferably from about 40 to 65% by weight.
  • the inventors of the present invention have found in the research that by including a partially hydrodesulfurization catalytically active component, particularly a part of the Group VIII metal element, in the inorganic refractory component, the content of the active component in the catalyst can be increased, thereby improving the catalyst. Hydrotreating performance.
  • the amount of the hydrodesulfurization catalytically active component contained in the inorganic refractory component, such as the Group VIII metal element, is not particularly limited, and it can be selected within a wide range.
  • the first hydrodesulfurization catalytically active component contained in the inorganic refractory component comprises at least one Group VIII metal element in an amount of the total content of the Group VIII metal element in the hydrofinishing catalyst. About 60-90%.
  • the total content of the other components of the inorganic refractory component other than the first hydrodesulfurization catalytically active component is from about 5 to 40% by weight, based on the dry basis weight of the catalyst, preferably about 10-30% by weight.
  • the inventors of the present invention have found in research that the introduction of a carboxylic acid compound into a hydrofinishing catalyst can protect the active component of the catalyst and increase the activity of the catalyst, and further introduction of the alcohol can more effectively protect the active component in the catalyst, In the case of coexistence, synergistic effects can also be achieved.
  • the weight content of the carboxylic acid and the inorganic refractory component are in addition to the first hydrodesulfurization catalytically active component
  • the ratio of the dry basis weight of the other components is from about 0.1 to 0.8:1, preferably from about 0.2 to 0.6:1; or, when the organic component comprises both a carboxylic acid and an alcohol, the carboxylic acid
  • the ratio of the weight content to the dry basis weight of the other components of the inorganic refractory component other than the first hydrodesulfurization catalytically active component is from about 0.002 to about 0.1:1, preferably from about 0.02 to about 0.06: 1; a ratio of a molar content of the alcohol to a dry basis weight of the other components of the inorganic refractory component other than the first hydrodesulfurization catalytically active component is from about 0.005 to 0.03:1, preferably It is about 0.01-0.02:1.
  • the carboxylic acid is selected from the group consisting of C 1-18 monobasic saturated carboxylic acids, for example, C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, C15 , C16, C17 and C18 saturated monocarboxylic acids, including but not limited to formic acid, acetic acid, propionic acid, octanoic acid, valeric acid, caproic acid, capric acid, valeric acid, caproic acid, capric acid, stearic acid and the like; C 7 a phenyl acid of -10 , for example, a phenyl acid of C7, C8, C9 and C10, including but not limited to benzoic acid, phenylacetic acid, phthalic acid and terephthalic acid; and citric acid, adipic acid, At least one of malonic acid, succin
  • the alcohol is selected from the group consisting of C 1-18 monohydric alcohols, preferably C 1-10 monohydric alcohols, for example, C1, C2, C3, C4, C5, C6, C7, C8, C9 and C10 monohydric alcohols, Including but not limited to methanol, ethanol, propanol, isopropanol, butanol, isobutanol, pentanol and heptanol; ethylene glycol, polyethylene glycol, glycerol, polyglycerol, butyl alcohol, pentaerythritol At least one of xylitol, sorbitol, and trimethylolethane.
  • C 1-18 monohydric alcohols preferably C 1-10 monohydric alcohols, for example, C1, C2, C3, C4, C5, C6, C7, C8, C9 and C10 monohydric alcohols, Including but not limited to methanol, ethanol, propanol, isopropanol, butanol,
  • the hydrotreating catalyst in order to further improve the performance of the catalyst, further contains a phosphorus element, which is preferably present in the form of P 2 O 5 .
  • the phosphorus element is present in an amount of from about 0.8 to 10% by weight, more preferably from about 1 to 8% by weight, based on the dry basis weight of the catalyst and based on P 2 O 5 .
  • the hydrofinishing catalyst is a shaped catalyst, and the shape of the catalyst is preferably a cylindrical shape, a clover shape, a four-leaf clover shape or a honeycomb shape.
  • the pore size of the catalyst of the invention is respectively concentrated between 2-40 nm and 100-300 nm, and the pore size of the catalyst in the range of 100-300 nm can provide sufficient space for the diffusion of the reactants, and promotes the reactants and the active center. Proximity, thereby improving the performance of the catalyst.
  • the inorganic refractory component in the catalyst of the present invention is subjected to a calcination treatment
  • the inorganic refractory component and the hydrofinishing catalyst have an XRD spectrum selected from the group consisting of alumina, silica, magnesia, calcium oxide, and oxidation.
  • the XRD characteristic peaks of these oxides and metal oxides can be referred to their standard XRD patterns.
  • the present invention provides a method of preparing a hydrofinishing catalyst comprising the steps of:
  • the precursor of the first hydrodesulfurization catalytically active component comprises a precursor of a metal element selected from at least one of a Group VIII metal element and a Group VIB metal element
  • the second hydrodesulfurization comprises at least one precursor of a Group VIII metal element and at least one precursor of a Group VIB metal element.
  • the precursor of the first hydrodesulfurization catalytically active component and the precursor of the second hydrodesulfurization catalytically active component are such that in the hydrofinishing catalyst, the dry basis weight of the catalyst
  • the total content of the Group VIII metal element is from about 15 to 35% by weight, preferably from about 20 to 30% by weight, based on the oxide, and the total content of the Group VIB metal element is from about 35 to 75% by weight, It is preferably from about 40 to 65% by weight.
  • the Group VIII metal element is at least one selected from the group consisting of iron, cobalt, nickel, ruthenium, osmium, and palladium
  • the Group VIB metal element is at least one selected from the group consisting of chromium, molybdenum, and tungsten.
  • the precursor of the iron element may include, but is not limited to, iron nitrate, iron oxide, basic iron carbonate, and iron acetate.
  • the precursor of the cobalt element may include, but is not limited to, one or more of cobalt nitrate, basic cobalt carbonate, cobalt acetate, and cobalt oxide
  • the precursor of the nickel element may include It is not limited to one or more of nickel nitrate, basic nickel carbonate, nickel acetate, and nickel oxide
  • the precursor of the lanthanum element may include, but is not limited to, one of cerium nitrate, cerium acetate, cerium oxide, and cerium hydroxide.
  • the precursor of the lanthanum element may include, but is not limited to, one or more of cerium nitrate, cerium hydroxide, and cerium oxide;
  • the precursor of the palladium element may include, but is not limited to, palladium nitrate, oxidation One or more of palladium and palladium hydroxide;
  • the precursor of the chromium element may include, but is not limited to, one or more of chromium nitrate, chromium oxide, chromium hydroxide, and chromium acetate;
  • Precursors may include, but are not limited to, ammonium heptamolybdate One or more of ammonium molybdate, ammonium phosphomolybdate, and molybdenum oxide;
  • the precursor of the tungsten element may include, but is not limited to, one of ammonium metatungstate, ammonium ethyl metatungstate, and tungsten oxide or A variety.
  • the inventors of the present invention found in the study that a precursor of a partially hydrodesulfurized catalytically active component, particularly a precursor of a Group VIII metal element, is incorporated into the inorganic refractory component, and the remaining hydrodesulfurization catalyst is catalyzed.
  • the active component such as the precursor of the remaining Group VIII metal element and the precursor of the Group VIB metal element, are incorporated into the impregnation solution to impregnate the inorganic refractory component, thereby increasing the content of the active component in the catalyst, thereby enhancing Hydrotreating performance of the catalyst.
  • the amount of the precursor of the first hydrodesulfurization catalytically active component for preparing the inorganic refractory component is not particularly limited, and it can be selected within a wide range.
  • the precursor of the first hydrodesulfurization catalytically active component used comprises at least one precursor of a Group VIII metal element in an amount of the total amount of the precursor of the Group VIII metal element. About 60-90%.
  • the precursor of the alumina, silica, magnesia, calcium oxide, zirconia and titania may be any known alumina, silica, or the like which can be provided under firing conditions.
  • the precursor of the alumina includes, but is not limited to, pseudoboehmite, aluminum hydroxide powder, aluminum nitrate, aluminum carbonate, aluminum citrate, etc.; precursors of the silicon oxide include, but are not limited to, silica sol, white Carbon black and silica, etc.; precursors of the magnesium oxide include, but are not limited to, magnesium hydroxide, magnesium nitrate, magnesium carbonate, magnesium acetate, magnesium oxide, etc.; precursors of the calcium oxide include, but are not limited to, calcium hydroxide Calcium carbonate, calcium oxalate, calcium nitrate, calcium acetate, calcium oxide, etc.; the zirconia precursors include, but are not limited to, zirconium hydroxide, zirconium carbonate, zirconium nitrate, zirconium acetate, zirconium oxide, etc.; precursor of the titanium oxide
  • the body includes, but is not limited to, titanium hydroxide, titanium nitrate, titanium acetate, zircon
  • the inorganic refractory component is used in an amount such that, in the hydrofinishing catalyst, the inorganic refractory component is excluded based on the dry basis weight of the hydrofinishing catalyst
  • the total content of the other components other than the first hydrodesulfurization catalytically active component is from about 5 to 40% by weight, preferably from about 10 to 30% by weight.
  • the weight of the carboxylic acid used and the inorganic refractory component other than the first hydrodesulfurization catalytically active component is from about 0.1 to 0.8:1, preferably from about 0.2 to 0.6:1; or, when the organic component comprises both a carboxylic acid and an alcohol, the weight of the carboxylic acid used
  • the ratio of the dry basis weight of the other components of the inorganic refractory component other than the first hydrodesulfurization catalytically active component is from about 0.002 to about 0.1:1, preferably from about 0.02 to about 0.06:1.
  • the ratio of the molar amount of the alcohol to the dry basis weight of the other components of the inorganic refractory component other than the first hydrodesulfurization catalytically active component is from about 0.005 to 0.03:1, preferably about 0.01. -0.02:1.
  • the introduction of a carboxylic acid substance in the impregnation solution can protect the hydrodesulfurization catalytically active component while also promoting the formation of the catalyst, and further introducing the alcohol can more effectively protect the hydrodesulfurization catalytically active component. , thereby effectively improving the performance of the catalyst.
  • the alumina, silica, magnesia, calcium oxide, zirconia and titania precursors used have an average pore diameter of not less than about 10 nm. More preferably, the ratio of the pore volume in the range of 2-6 nm in the precursor to the total pore volume in the precursor is not more than about 15%, and the ratio of the pore volume in the range of 6-40 nm to the total pore volume is not less than about 75%. .
  • a phosphorus-containing compound in order to further improve the solubility of the precursor of the hydrodesulfurization catalytically active component in the formulated impregnation solution, and to improve the performance of the finally prepared catalyst, it is preferred to add a phosphorus-containing compound during the preparation of the impregnation solution,
  • the phosphorus-containing compound is preferably a phosphorus-containing inorganic acid, and more preferably at least one of phosphoric acid, hypophosphorous acid, ammonium phosphate, and ammonium dihydrogen phosphate.
  • the phosphorus-containing compound is used in an amount such that the phosphorus content of the finally prepared catalyst is from about 0.8 to 10% by weight, preferably from about 1 to 1 on a dry basis weight and based on P 2 O 5 . 8 wt%, more preferably about 2-8 wt%.
  • the order of addition of the precursor of the catalytically active component, the organic component including the organic carboxylic acid and the optional organic alcohol compound, and the optional phosphorus-containing compound is not particularly Requirements.
  • the alcohol compound and the precursor containing the Group VIB metal element and the Group VIII metal element, respectively are first added to the aqueous solution of the phosphorus-containing compound, and then at about 40- Stir at 100 ° C for about 1-8 h until all is dissolved. Finally, the organic carboxylic acid is added until the organic carboxylic acid is completely dissolved.
  • the calcination conditions can be selected within a wide range, and preferably, the calcination temperature is about 300 to 900 ° C, preferably about 400 to 700 ° C; the calcination time is It is about 1-15 h, preferably about 3-8 h.
  • the drying conditions can be selected within a wide range, preferably, the drying temperature is about 50 to 250 ° C, preferably about 100 to 200 ° C; and the drying time is about 2 -10h, preferably about 3-8h.
  • the catalyst can be formed by various existing molding methods, for example, extrusion molding or ball molding.
  • the extrusion molding method can be carried out by referring to the prior art, and the inorganic refractory component to be extruded and the impregnation solution containing the metal component are uniformly mixed and extruded into a desired shape, such as a cylindrical shape, a clover shape, and a fourth shape. Leaf grass, honeycomb, etc.
  • the steps of preparing the hydrotreating catalyst generally include: (1) mixing an alumina precursor (for example, pseudoboehmite) or a precursor containing other powders and elements with a peptizing agent and assisting The agent is squeezed and mixed, (2) prepared by extruding the strip, (3) the alumina precursor is prepared by calcining the formed alumina precursor; (4) preparing an impregnation solution containing the metal component; (5) impregnating The solution is uniformly impregnated with the calcined alumina support to prepare a catalyst precursor; (6) the catalyst precursor is dried or calcined to prepare a hydrotreating catalyst.
  • an alumina precursor for example, pseudoboehmite
  • a precursor containing other powders and elements with a peptizing agent and assisting The agent is squeezed and mixed
  • the alumina precursor is prepared by calcining the formed alumina precursor
  • (4) preparing an impregnation solution containing the metal component (5) impregnating The
  • the catalyst preparation process provided by the present invention is short, and the preparation cost and preparation time can be greatly saved.
  • it is not necessary to add a peptizing agent nitric acid and an auxiliary squeezing phthalocyanine powder it is not necessary to add a peptizing agent nitric acid and an auxiliary squeezing phthalocyanine powder, thereby reducing the emission of harmful substances (such as NOx), reducing the material cost and environmental protection cost, and realizing the green manufacturing of the catalyst.
  • the carrier of the hydrogenation catalyst is usually formed by extruding a carrier precursor (such as pseudo-boehmite powder) with a peptizer and a propellant, and then drying and Roasting is obtained.
  • a carrier precursor such as pseudo-boehmite powder
  • the pores are generally concentrated at 2 to 12 nm. Therefore, the pore size of the support is generally increased by calcining the formed support to increase the pore size of the catalyst.
  • the pores of the calcined support are generally concentrated at 2-100 nm, the average pore diameter of the support is increased, and it is generally considered that the higher the calcination temperature, the larger the pore size.
  • the preparation method of the hydrotreating catalyst provided by the invention comprises calcining the precursor of the carrier before extrusion molding, and on the one hand, the heat treatment can reduce the number of hydroxyl groups in the carrier precursor particles, reduce the probability of channel condensation, and increase the pore diameter of the catalyst.
  • the formed catalyst does not need to be treated at a higher temperature, and the carrier pore walls do not need to be excessively condensed, thereby improving the utilization rate of the carrier.
  • the carrier precursor is heat-treated before molding, and some of the secondary particles are also condensed, which causes the size of the formed alumina particles to become uniform, and the pores in the formed catalyst will be more uniform, which is favorable for the reaction. The spread of things. Especially for heavier and less inferior oils, it is more effective than conventional catalysts.
  • the inventors of the present invention have found that the amount of metal supported in the catalyst prepared by the conventional impregnation method is not high, the content of the Group VIII metal is usually less than 10%, and the content of the Group VIB metal is usually less than 35%. This limits the amount of catalyst active metal centers and the catalyst activity does not reach higher levels.
  • the preparation of the catalyst by the kneading method can increase the active metal loading in the catalyst, but the hydrotreating activity of the catalyst is not high, and the utilization rate of the active metal is low. Currently, the preparation of the catalyst generally does not adopt this method.
  • the invention combines a partially hydrodesulfurization catalytically active component, preferably a part of a Group VIII metal precursor, into a carrier precursor to form an inorganic refractory powder by calcination; and then, the impregnation solution containing the remaining active metal precursor and the inorganic The refractory powder is mixed, thereby increasing the content of the active component in the catalyst and improving the hydrotreating performance of the catalyst.
  • the pore size of the catalyst prepared by the method of the present invention is concentrated between 2-40 nm and 100-300 nm, respectively, wherein the pore size in the range of 100-300 nm can provide a larger space for the diffusion of the reactants. It promotes the accessibility of the reactants to the active center, thereby improving the performance of the catalyst.
  • the XRD spectrum of the obtained inorganic refractory component and the hydrofinishing catalyst has an oxidation selected from alumina and oxidized.
  • a characteristic peak corresponding to an XRD characteristic peak of an oxide of at least one of silicon, magnesium oxide, calcium oxide, zirconium oxide, and titanium oxide, and a metal element as the first hydrodesulfurization catalytically active component preferably A characteristic peak corresponding to an XRD characteristic peak of an oxide selected from at least one of a Group VIII metal element and a Group VIB metal element.
  • the XRD characteristic peaks of these oxides and metal oxides can be referred to their standard XRD patterns.
  • the present invention provides a hydrofinishing catalyst system comprising a first catalyst and a second catalyst, wherein:
  • the first catalyst is a hydrofinishing catalyst according to the present invention or a hydrofinishing catalyst prepared by the method of the present invention
  • the second catalyst comprises a second inorganic refractory component, a third hydrodesulfurization catalytically active component supported on the second inorganic refractory component, and an organic component supported on the second inorganic refractory component, wherein
  • the second inorganic refractory component comprises alumina, the organic component is selected from the group consisting of a carboxylic acid and an alcohol, and the pore size of the second catalyst is concentrated in the range of 2-100 nm;
  • volume ratio of the first catalyst to the second catalyst is from about 1:1 to about 1:8, preferably from about 1:2 to about 1:6.
  • the hydrofinishing catalyst system of the present invention comprises a first catalyst located in a first catalyst bed and a second catalyst located in a second catalyst bed, wherein:
  • the first catalyst comprises:
  • a first inorganic refractory component comprising a first hydrodesulfurization catalytically active component and a mixture thereof selected from at least one selected from the group consisting of alumina, silica, magnesia, calcia, zirconia and titania Oxide
  • An organic component supported on the first inorganic refractory component comprising a carboxylic acid and optionally an alcohol,
  • the first catalyst has pores having pore diameters in the range of 2-40 nm and 100-300 nm, respectively, wherein the pore volume in the range of 2-40 nm pore diameter accounts for about 60-95 of the total pore volume. %, the pore volume in the range of 100-300 nm pore diameter accounts for about 0.5-30% of the total pore volume;
  • the second catalyst comprises a second inorganic refractory component, a third hydrodesulfurization catalytically active component supported on the second inorganic refractory component, and an organic component supported on the second inorganic refractory component, wherein
  • the second inorganic refractory component comprises alumina, the organic component is selected from the group consisting of a carboxylic acid and an alcohol, and the pore size of the second catalyst is concentrated in the range of 2-100 nm;
  • volume ratio of the first catalyst to the second catalyst is from about 1:1 to about 1:8, preferably from about 1:2 to about 1:6.
  • the first catalyst of the present invention comprises:
  • a first inorganic refractory component comprising a first hydrodesulfurization catalytically active component and a mixture thereof selected from at least one selected from the group consisting of alumina, silica, magnesia, calcia, zirconia and titania Oxide
  • An organic component supported on the first inorganic refractory component comprising a carboxylic acid and optionally an alcohol,
  • the first catalyst has pores having pore diameters in the range of 2-40 nm and 100-300 nm, respectively, wherein the pore volume in the range of 2-40 nm pore diameter accounts for about 60-95 of the total pore volume. %, the pore volume in the range of 100-300 nm pore diameter accounts for about 0.5-30% of the total pore volume.
  • the first inorganic refractory component in the first catalyst is subjected to a calcination treatment before loading the second hydrodesulfurization catalytically active component and the organic component, and the calcination is preferably as follows
  • the conditions are as follows: the calcination temperature is about 300 to 900 ° C, preferably about 400 to 700 ° C; and the calcination time is about 1 to 15 h, preferably about 3 to 8 h.
  • the first catalyst of the present invention contains no pore-expanding agents, such as carbon black, graphite, stearic acid, sodium stearate, and aluminum stearate, and does not contain components such as surfactants. .
  • the alumina, silica, magnesia, calcium oxide, zirconia and titania used in the first inorganic refractory component of the present invention are substantially inert substances, and it is difficult to combine with a Group VIII element to form a structurally stable compound, and thus Improve the utilization of Group VIII elements.
  • these materials have weaker interaction with other active components in the catalyst, which is beneficial to the growth of the active phase of the catalyst, thereby enhancing the performance of the first catalyst.
  • the first catalyst of the present invention has a pore volume in the range of 2-40 nm in the range of about 75-90% of the total pore volume, and a pore volume in the range of 100-300 nm in the pore volume of about 5-15% of the total pore volume. Further preferably, the ratio of the pore volume in the range of 2-4 nm to the total pore volume does not exceed about 10%.
  • the first catalyst has a specific surface area of about 70-200 m 2 /g, preferably about 90-180 m 2 /g, and a total pore volume of about 0.15-0.6 mL/g, after calcination at 400 ° C for 3 h. It is preferably about 0.2 to 0.4 mL/g and has an average pore diameter of 5 to 25 nm, preferably about 8 to 15 nm.
  • the hydrodesulfurization catalytically active component in the first catalyst may be any component known to be useful as a hydrodesulfurization active component in a hydrofinishing catalyst, for example, the active component may It is selected from the group VIII metal element and the group VIB metal element.
  • the first hydrodesulfurization catalytically active component comprises a metal element selected from at least one of a Group VIII metal element and a Group VIB metal element
  • the second hydrodesulfurization catalytically active component comprises at least A Group VIII metal element and at least one Group VIB metal element.
  • the Group VIII metal element is at least one selected from the group consisting of iron, cobalt, nickel, ruthenium, osmium, and palladium
  • the Group VIB metal element is at least one selected from the group consisting of chromium, molybdenum, and tungsten.
  • the content of the active component can be varied within a wide range.
  • the total content of the Group VIII metal element is from about 15 to 35% by weight, preferably from about 20 to 30, based on the dry basis weight of the first catalyst and based on the oxide. %; and the total content of the Group VIB metal element is from about 35 to 75% by weight, preferably from about 40 to 65% by weight.
  • the inventors of the present invention have found in the research that the content of the active component in the first catalyst can be increased by including a partially hydrodesulfurization catalytically active component, particularly a part of the Group VIII metal element, in the first inorganic refractory component. , thereby improving the hydrotreating performance of the first catalyst.
  • the amount of the hydrodesulfurization catalytically active component contained in the first inorganic refractory component, such as the Group VIII metal element is not particularly limited, and it can be selected within a wide range.
  • the first hydrodesulfurization catalytically active component contained in the first inorganic refractory component comprises at least one Group VIII metal element in an amount of the total content of the Group VIII metal element in the first catalyst. About 60-90%.
  • the total content of the other components of the first inorganic refractory component other than the first hydrodesulfurization catalytically active component is from about 5 to 40% by weight based on the dry basis weight of the first catalyst. More preferably, it is about 10-30% by weight.
  • the inventors of the present invention have found in research that the introduction of a carboxylic acid compound into the first catalyst can protect the active component of the catalyst and increase the activity of the catalyst, and further introduce an alcohol, preferably an organic alcohol compound can more effectively protect the active group in the catalyst. In the case where the two coexist, they can also play a synergistic effect.
  • the weight content of the carboxylic acid and the first inorganic refractory component are in addition to the first hydrodesulfurization catalytic activity
  • the ratio between the dry basis weights of the other components other than the component is from about 0.1 to 0.8:1, preferably from about 0.2 to 0.6:1; or when the organic component comprises both a carboxylic acid and an alcohol, the carboxy group
  • the ratio of the weight content of the acid to the dry basis weight of the other components of the first inorganic refractory component other than the first hydrodesulfurization catalytically active component is from about 0.002 to about 0.1:1, preferably about 0.02-0.06:1; a ratio of a molar content of the alcohol to a dry basis weight of the other components of the first inorganic refractory component other than the first hydrodesulfurization catalytically active component is about 0.005 -0.03:1, preferably about 0.01-0.02:1.
  • the carboxylic acid is selected from the group consisting of C 1-18 monobasic saturated carboxylic acids, for example, C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, C15 , C16, C17 and C18 saturated monocarboxylic acids, including but not limited to formic acid, acetic acid, propionic acid, octanoic acid, valeric acid, caproic acid, capric acid, valeric acid, caproic acid, capric acid, stearic acid and the like; C 7 a phenyl acid of -10 , for example, a phenyl acid of C7, C8, C9 and C10, including but not limited to benzoic acid, phenylacetic acid, phthalic acid and terephthalic acid; and citric acid, adipic acid, At least one of malonic acid, succin
  • the alcohol is selected from the group consisting of C 1-18 monohydric alcohols, preferably C 1-10 monohydric alcohols, for example, C1, C2, C3, C4, C5, C6, C7, C8, C9 and C10 monohydric alcohols, Including but not limited to methanol, ethanol, propanol, isopropanol, butanol, isobutanol, pentanol and heptanol; ethylene glycol, polyethylene glycol, glycerol, polyglycerol, butyl alcohol, pentaerythritol At least one of xylitol, sorbitol, and trimethylolethane.
  • C 1-18 monohydric alcohols preferably C 1-10 monohydric alcohols, for example, C1, C2, C3, C4, C5, C6, C7, C8, C9 and C10 monohydric alcohols, Including but not limited to methanol, ethanol, propanol, isopropanol, butanol,
  • the first catalyst further comprises a phosphorus element, which is preferably present in the form of P 2 O 5 .
  • the phosphorus element is present in an amount of from about 0.8 to 10% by weight, more preferably from about 1 to 8% by weight, based on the dry basis weight of the first catalyst and based on P 2 O 5 .
  • the first catalyst is a shaped catalyst, and the shape of the catalyst is preferably a cylindrical shape, a clover shape, a four-leaf clover shape or a honeycomb shape.
  • the pore size of the first catalyst of the present invention is concentrated between 2-40 nm and 100-300 nm, respectively.
  • the pore size of the catalyst in the range of 100-300 nm can provide sufficient space for the diffusion of the reactants, and promote the reactants. Accessibility to the active center to improve catalyst performance.
  • the XRD spectrum of the first inorganic refractory component and the first catalyst has a characteristic peak corresponding to an XRD characteristic peak of an oxide selected from at least one of alumina, silica, magnesia, calcium oxide, zirconia and titania, and as a catalytically active component of the first hydrodesulfurization
  • the metal element which is preferably selected from the characteristic peak corresponding to the XRD characteristic peak of the oxide of at least one of the Group VIII metal element and the Group VIB metal element.
  • the XRD characteristic peaks of these oxides and metal oxides can be referred to their standard XRD patterns.
  • the second catalyst of the present invention comprises a second inorganic refractory component, a third hydrodesulfurization catalytically active component supported on the second inorganic refractory component, and a second inorganic refractory component supported on the second inorganic refractory component.
  • An organic component wherein the second inorganic refractory component comprises alumina, the organic component is selected from the group consisting of a carboxylic acid and an alcohol, and the pore size of the second catalyst is concentrated in the range of 2-100 nm.
  • the specific surface area of the second catalyst and the pore distribution, pore diameter, and pore volume in the range of 2-100 nm pore diameter are measured by a low-temperature nitrogen gas adsorption method (according to the GB/T5816-1995 standard).
  • the second catalyst has a specific surface area of about 130-300 m 2 /g, preferably about 160-270 m 2 /g, and a pore volume of about 0.2-0.7 mL/g, preferably after calcination at 400 ° C for 3 h. It is about 0.3-0.6 mL/g and has an average pore diameter of 6-20 nm, preferably about 7-15 nm.
  • the third hydrodesulfurization catalytically active component may be any component known to be useful as a hydrodesulfurization active component in a hydrofinishing catalyst, for example, the active component may be selected from the group VIII. Group metal elements and Group VIB metal elements.
  • the third hydrodesulfurization catalytically active component comprises at least one Group VIII metal element and at least one Group VIB metal element.
  • the Group VIII metal element is at least one selected from the group consisting of iron, cobalt, nickel, ruthenium, osmium, and palladium
  • the Group VIB metal element is at least one selected from the group consisting of chromium, molybdenum, and tungsten.
  • the active component may be selected from the group VIII. Group metal elements and Group VIB metal elements.
  • the third hydrodesulfurization catalytically active component comprises at least one Group VIII metal element and at least one Group VIB metal element.
  • the Group VIII metal element is at least one selected from the group consisting of iron, cobalt, nickel,
  • the content of the active component can be varied within a wide range.
  • the total content of the Group VIII metal element is from about 1 to 8% by weight, preferably from about 2 to 6 by weight based on the dry basis weight of the second catalyst and based on the oxide. %; and the total content of the Group VIB metal element is from about 10 to 35% by weight, preferably from about 15 to 30% by weight.
  • the second inorganic refractory component is present in an amount of from about 60 to 85% by weight, more preferably from about 70 to 80% by weight, based on the dry basis weight of the second catalyst.
  • the second inorganic refractory component is preferably alumina, and the interaction between the alumina and the active component is strong, thereby ensuring a high dispersion of the active component and producing a larger amount at a lower active component content. The active center, thereby improving the performance of the second catalyst.
  • the inventors of the present invention have found in research that the introduction of an organic component selected from a carboxylic acid and an alcohol in the second catalyst can effectively protect the catalytically active component and make the dispersion of the active component better and produce more activity. center.
  • the molar ratio of the organic component to the Group VIII element of the second catalyst is from about 0.5 to about 8, preferably from about 1 to about 5.
  • the carboxylic acid is selected from the group consisting of C 1-18 monobasic saturated carboxylic acids, for example, C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, C15 , C16, C17 and C18 saturated monocarboxylic acids, including but not limited to formic acid, acetic acid, propionic acid, octanoic acid, valeric acid, caproic acid, capric acid, valeric acid, caproic acid, capric acid, stearic acid and the like; C 7 -10 phenyl acids, for example, C7, C8, C9 and C10 phenyl acids, including but not limited to benzoic acid, phenylacetic acid, phthalic acid and terephthalic acid; citric acid, adipic acid, C At least one of diacid, succinic acid, maleic acid,
  • the alcohol is selected from the group consisting of C 1-18 monohydric alcohols, preferably C 1-10 monohydric alcohols, for example, C1, C2, C3, C4, C5, C6, C7, C8, C9 and C10 monohydric alcohols, Including but not limited to methanol, ethanol, propanol, isopropanol, butanol, isobutanol, pentanol and heptanol; ethylene glycol, polyethylene glycol, glycerol, polyglycerol, butyl alcohol, pentaerythritol At least one of xylitol, sorbitol, and trimethylolethane.
  • C 1-18 monohydric alcohols preferably C 1-10 monohydric alcohols, for example, C1, C2, C3, C4, C5, C6, C7, C8, C9 and C10 monohydric alcohols, Including but not limited to methanol, ethanol, propanol, isopropanol, butanol,
  • the second catalyst further comprises a phosphorus element, which is preferably present in the form of P 2 O 5 .
  • the phosphorus element is present in an amount of from about 0.8 to 10% by weight, more preferably from about 1 to 8% by weight, based on the dry basis weight of the second catalyst and based on P 2 O 5 .
  • the second catalyst is a shaped catalyst, and the shape of the catalyst is preferably a cylindrical shape, a clover shape, a four-leaf clover shape or a honeycomb shape.
  • the first catalyst is highly active, a small amount of the first catalyst is used in the first bed in the catalyst system, and the cost of the entire catalyst system can be reduced.
  • the active component in the second catalyst is well dispersed, and can cope with the harsh reaction conditions of the second bed, and the amount of active metal in the catalyst is small and the cost is low.
  • the high activity of the catalyst can be fully utilized to better remove impurities in the oil.
  • the hydrotreating reaction temperature of the lower catalyst is relatively high, if the active center is too concentrated, more heat will be released and the coking of the catalyst is increased, and the active component in the second catalyst in the present invention is The state of high dispersion, and the pore diameter of the catalyst is large, the heat released by the reaction is moderate, and can be carried away by the reaction stream relatively quickly, so that a better reaction effect can be achieved.
  • the present invention provides a process for preparing a hydrofinishing catalyst system, the hydrofinishing catalyst system comprising a first catalyst and a second catalyst, the method comprising:
  • the method of the present invention for preparing a hydrofinishing catalyst system comprises:
  • the preparation of the first catalyst of the present invention comprises the following steps:
  • the precursor of the first hydrodesulfurization catalytically active component comprises a precursor of a metal element selected from at least one of a Group VIII metal element and a Group VIB metal element
  • the second hydrodesulfurization comprises at least one precursor of a Group VIII metal element and at least one precursor of a Group VIB metal element.
  • the precursor of the first hydrodesulfurization catalytically active component and the precursor of the second hydrodesulfurization catalytically active component are used such that in the first catalyst, the dry weight of the catalyst is
  • the total content of the Group VIII metal element is from about 15 to 35% by weight, preferably from about 20 to 30% by weight, based on the oxide, and the total content of the Group VIB metal element is from about 35 to 75% by weight, preferably It is about 40-65% by weight.
  • the Group VIII metal element is at least one selected from the group consisting of iron, cobalt, nickel, ruthenium, osmium, and palladium
  • the Group VIB metal element is at least one selected from the group consisting of chromium, molybdenum, and tungsten.
  • the precursor of the iron element may include, but is not limited to, iron nitrate, iron oxide, basic iron carbonate, and iron acetate.
  • the precursor of the cobalt element may include, but is not limited to, one or more of cobalt nitrate, basic cobalt carbonate, cobalt acetate, and cobalt oxide
  • the precursor of the nickel element may include It is not limited to one or more of nickel nitrate, basic nickel carbonate, nickel acetate, and nickel oxide
  • the precursor of the lanthanum element may include, but is not limited to, one of cerium nitrate, cerium acetate, cerium oxide, and cerium hydroxide.
  • the precursor of the lanthanum element may include, but is not limited to, one or more of cerium nitrate, cerium hydroxide, and cerium oxide;
  • the precursor of the palladium element may include, but is not limited to, palladium nitrate, oxidation One or more of palladium and palladium hydroxide;
  • the precursor of the chromium element may include, but is not limited to, one or more of chromium nitrate, chromium oxide, chromium hydroxide, and chromium acetate;
  • Precursors may include, but are not limited to, ammonium heptamolybdate One or more of ammonium molybdate, ammonium phosphomolybdate, and molybdenum oxide;
  • the precursor of the tungsten element may include, but is not limited to, one of ammonium metatungstate, ammonium ethyl metatungstate, and tungsten oxide or A variety.
  • the inventors of the present invention found in the study that the precursor of the partially hydrodesulfurized catalytically active component, in particular the precursor of a part of the Group VIII metal element, is incorporated into the first inorganic refractory component, and the remaining hydrogenation is carried out.
  • Desulfurization catalytically active component such as a precursor of a residual Group VIII metal element and a precursor of a Group VIB metal element, are incorporated into the first impregnation solution to impregnate the first inorganic refractory component, which can improve the first catalyst
  • the content of the active component further increases the hydrofinishing performance of the first catalyst.
  • the amount of the precursor of the first hydrodesulfurization catalytically active component used for the preparation of the first inorganic refractory component is not particularly limited, and it can be selected within a wide range.
  • the precursor of the first hydrodesulfurization catalytically active component used comprises at least one precursor of a Group VIII metal element in an amount of the total amount of the precursor of the Group VIII metal element. About 60-90%.
  • the precursor of the alumina, silica, magnesia, calcium oxide, zirconia and titania may be any known alumina, silica, or the like which can be provided under firing conditions.
  • the precursor of the alumina includes, but is not limited to, pseudoboehmite, aluminum hydroxide powder, aluminum nitrate, aluminum carbonate, aluminum citrate, etc.; precursors of the silicon oxide include, but are not limited to, silica sol, white Carbon black and silica, etc.; precursors of the magnesium oxide include, but are not limited to, magnesium hydroxide, magnesium nitrate, magnesium carbonate, magnesium acetate, magnesium oxide, etc.; precursors of the calcium oxide include, but are not limited to, calcium hydroxide Calcium carbonate, calcium oxalate, calcium nitrate, calcium acetate, calcium oxide, etc.; the zirconia precursors include, but are not limited to, zirconium hydroxide, zirconium carbonate, zirconium nitrate, zirconium acetate, zirconium oxide, etc.; precursor of the titanium oxide
  • the body includes, but is not limited to, titanium hydroxide, titanium nitrate, titanium acetate, zircon
  • the first inorganic refractory component is used in an amount such that, in the first catalyst, the first inorganic refractory component is based on the dry basis weight of the first catalyst
  • the total content of the other components excluding the first hydrodesulfurization catalytically active component is from about 5 to 40% by weight, preferably from about 10 to 30% by weight.
  • the weight of the carboxylic acid used and the first inorganic refractory component other than the first hydrodesulfurization catalytically active component is from about 0.1 to 0.8:1, preferably from about 0.2 to 0.6:1; or, when the organic component comprises both a carboxylic acid and an alcohol, the weight of the carboxylic acid used
  • the ratio between the dry weight of the other components of the first inorganic refractory component other than the first hydrodesulfurization catalytically active component is from about 0.002 to about 0.1:1, preferably from about 0.02 to about 0.06:
  • a ratio of the molar amount of the alcohol to the dry weight of the other components of the first inorganic refractory component other than the first hydrodesulfurization catalytically active component is from about 0.005 to 0.03: 1, preferably from about 0.01 to 0.02:1.
  • the introduction of a carboxylic acid species in the first impregnation solution can protect the hydrodesulfurization catalytically active component while also promoting the formation of the catalyst, and further introducing the alcohol can more effectively protect the hydrodesulfurization catalytic activity.
  • the components are effective to increase the performance of the first catalyst.
  • the alumina, silica, magnesia, calcium oxide, zirconia and titania precursors used have an average pore diameter of not less than 10 nm. More preferably, the ratio of the pore volume in the range of 2-6 nm in the precursor to the total pore volume in the precursor is not more than about 15%, and the ratio of the pore volume in the range of 6-40 nm to the total pore volume is not less than about 75%. .
  • a phosphorus-containing compound is added, and the phosphorus-containing compound is preferably a phosphorus-containing inorganic acid, and more preferably at least one of phosphoric acid, hypophosphorous acid, ammonium phosphate, and ammonium dihydrogen phosphate.
  • the phosphorus-containing compound is used in an amount such that the content of the phosphorus element is from about 0.8 to 10% by weight, preferably about 0.8 to 10% by weight, based on the weight of the dry basis and based on the weight of the P 2 O 5 in the first catalyst to be finally prepared. 1-8 wt%, more preferably about 2-8 wt%.
  • the organic component in formulating the first impregnation solution, includes the order of addition of the organic carboxylic acid and the optional organic alcohol compound, and optionally the phosphorus-containing compound
  • the alcohol compound and the precursor containing the Group VIB metal element and the Group VIII metal element, respectively are first added to the aqueous solution of the phosphorus-containing compound, and then Stir at 40-100 ° C for about 1-8 h until all is dissolved. Finally, the organic carboxylic acid is added until the organic carboxylic acid is completely dissolved.
  • the calcination conditions can be selected within a wide range, preferably, the calcination temperature is about 300 to 900 ° C, preferably about 400 to 700 ° C; and the calcination time is It is about 1-15 h, preferably about 3-8 h.
  • the drying conditions can be selected within a wide range, preferably, the drying temperature is about 50 to 250 ° C, preferably about 100 to 200 ° C; and the drying time is about 2 -10h, preferably about 3-8h.
  • the first catalyst can be formed by various existing molding methods, for example, extrusion molding or ball molding.
  • the method for forming the extruded strip can be carried out by referring to the prior art, and the first inorganic refractory component to be extruded and the first impregnation solution containing the metal component are uniformly mixed and extruded into a desired shape, such as a cylindrical shape. Clover, four-leaf clover, honeycomb, etc.
  • the precursor of the carrier is calcined before extrusion molding, and on the one hand, the heat treatment can reduce the amount of hydroxyl groups in the carrier precursor particles, reduce the probability of channel condensation, and increase the pore diameter of the catalyst.
  • the formed catalyst does not need to be treated at a higher temperature, and the carrier pore walls do not need to be excessively condensed, thereby improving the utilization rate of the carrier.
  • the carrier precursor is heat-treated before molding, and some of the secondary particles are also condensed, which causes the size of the formed alumina particles to become uniform, and the pores in the formed catalyst will be more uniform, which is favorable for the reaction. The spread of things. When used in combination with a catalyst prepared from a carrier obtained by a conventional method, it is more effective especially for heavier and less inferior oils.
  • the partial hydrodesulfurization catalytically active component preferably a part of the precursor of the Group VIII metal
  • the carrier precursor preferably a part of the precursor of the Group VIII metal
  • the impregnation solution of the metal precursor is mixed with the inorganic refractory powder, thereby increasing the content of the active component in the catalyst and improving the hydrotreating performance of the catalyst.
  • the preparation process of the first catalyst of the present invention is short, and the preparation cost and the preparation time can be greatly saved.
  • it is not necessary to add a peptizing agent nitric acid and an auxiliary squeezing phthalocyanine powder it is not necessary to add a peptizing agent nitric acid and an auxiliary squeezing phthalocyanine powder, thereby reducing the emission of harmful substances (such as NOx), reducing the material cost and environmental protection cost, and realizing the green manufacturing of the catalyst.
  • the pore size of the first catalyst prepared by the above steps is respectively concentrated between 2-40 nm and 100-300 nm, wherein the pore size in the range of 100-300 nm can provide a larger space for the diffusion of the reactants. Promoting the accessibility of the reactants to the active center, thereby improving the performance of the first catalyst.
  • the XRD spectrum of the first inorganic refractory component and the first catalyst is obtained because the first inorganic refractory component in the first catalyst is subjected to a calcination treatment
  • the figure has a characteristic peak corresponding to an XRD characteristic peak of an oxide selected from at least one of alumina, silica, magnesia, calcium oxide, zirconia and titania, and as the first hydrodesulfurization
  • the metal element of the catalytically active component which is preferably selected from the characteristic peak corresponding to the XRD characteristic peak of the oxide of at least one of the Group VIII metal element and the Group VIB metal element.
  • the XRD characteristic peaks of these oxides and metal oxides can be referred to their standard XRD patterns.
  • the preparation of the second catalyst of the present invention comprises the following steps:
  • the third hydrodesulfurization catalytically active component precursor may be selected from the group consisting of a Group VIII metal element and a Group VIB metal element precursor, preferably a precursor comprising at least one Group VIII metal element and at least A precursor of a Group VIB metal element.
  • the precursor of the Group VIII metal element and the precursor of the Group VIB metal element are used in an amount such that the total content of the Group VIII metal element is based on the dry basis weight of the second catalyst and based on the oxide. It is about 1 to 8% by weight, preferably about 2 to 6% by weight; and the total content of the Group VIB metal element is from about 10 to 35% by weight, preferably from about 15 to 30% by weight.
  • the Group VIII metal element is at least one selected from the group consisting of iron, cobalt, nickel, ruthenium, osmium, and palladium
  • the Group VIB metal element is at least one selected from the group consisting of chromium, molybdenum, and tungsten.
  • the precursor of the iron element may include, but is not limited to, one of ferric nitrate, iron oxide, basic iron carbonate, and iron acetate. Or a plurality of; the precursor of the cobalt element may include, but is not limited to, one or more of cobalt nitrate, basic cobalt carbonate, cobalt acetate, and cobalt oxide; the precursor of the nickel element may include, but is not limited to, nitric acid One or more of nickel, basic nickel carbonate, nickel acetate, and nickel oxide; the precursor of the lanthanum element may include, but is not limited to, one or more of cerium nitrate, cerium acetate, cerium oxide, and cerium hydroxide.
  • the precursor of the lanthanum element may include, but is not limited to, one or more of cerium nitrate, cerium hydroxide, and cerium oxide; the precursor of the palladium element may include, but is not limited to, palladium nitrate, palladium oxide, and hydrogen.
  • the precursor of the chromium element may include, but is not limited to, one or more of chromium nitrate, chromium oxide, chromium hydroxide, and chromium acetate;
  • the precursor of the molybdenum element may Including but not limited to ammonium heptamolybdate, molybdic acid One or more of ammonium, ammonium phosphomolybdate, and molybdenum oxide;
  • the precursor of the tungsten element may include, but is not limited to, one or more of ammonium metatungstate, ammonium ammonium metatungstate, and tungsten oxide. .
  • the second inorganic refractory component is used in an amount such that, in the second catalyst, the content of the second inorganic refractory component is based on the dry basis weight of the second catalyst About 60-85% by weight, preferably about 70-80% by weight.
  • the second inorganic refractory component is preferably alumina, and the interaction between the alumina and the active component is strong, thereby ensuring a high dispersion of the active component and producing a larger amount at a lower active component content. The active center, thereby improving the performance of the second catalyst.
  • the alumina precursor may be one or more of pseudoboehmite, aluminum hydroxide powder, aluminum nitrate, aluminum carbonate, and aluminum citrate.
  • the alumina precursor is pseudo-boehmite powder, more preferably the pseudo-boehmite powder has a specific surface area of about 250-450 m 2 /g, preferably about 280-400 m 2 /g, total pore volume. It is about 0.85-1.4 mL/g, preferably about 0.9-1.2 mL/g.
  • the preparation condition of the step (2a) is such that the pore volume of the obtained second inorganic refractory component (preferably alumina carrier) having a pore diameter in the range of 2-4 nm accounts for about 0 to 2% of the total pore volume, and the pore diameter is The pore volume in the range of 4-6 nm accounts for about 2-15% of the total pore volume, the pore volume of the pore diameter of 6-40 nm accounts for about 85-95% of the total pore volume, and the pore diameter of the remaining pores ranges from 40-100 nm without the pore diameter. Holes above 100 nm.
  • the organic component selected from the group consisting of a carboxylic acid and an alcohol in the second impregnation solution promotes dispersion of the active component, increases the number of active sites, and further improves the performance of the catalyst.
  • the organic component is used in an amount such that it has a molar ratio to the Group VIII element in the second catalyst of from about 0.5 to about 8, preferably from about 1 to about 5.
  • the specific selection of the carboxylic acid and the alcohol is as described above for the description of the second catalyst and will not be described herein.
  • the phosphorus-containing compound is preferably a phosphorus-containing inorganic acid, and more preferably at least one of phosphoric acid, hypophosphorous acid, ammonium phosphate, and ammonium dihydrogen phosphate.
  • the phosphorus-containing compound is used in an amount such that the content of the phosphorus element is from about 0.8 to 10% by weight, preferably about 0.8 to 10% by weight, based on the weight of the dry basis and based on the weight of the P 2 O 5 in the second catalyst finally prepared. 1-8 wt%, more preferably about 2-8 wt%.
  • the alcohol compound and the precursor containing the Group VIB metal element and the Group VIII metal element, respectively are added to the aqueous solution of the phosphorus-containing compound, and then at about 40-100. Stir at ° C for about 1-8 h until all is dissolved.
  • the calcination conditions can be selected within a wide range, preferably, the calcination temperature is about 400 to 1000 ° C, preferably about 500 to 800 ° C; and the calcination time is about 1 -15h, preferably about 3-8h.
  • the drying conditions can be selected within a wide range, preferably, the drying temperature is about 50 to 250 ° C, preferably about 100 to 200 ° C; and the drying time is about 2 -10h, preferably about 3-8h.
  • the squeezing agent may be one or more of phthalocyanine powder, methyl cellulose and starch.
  • the peptizing agent may be one or more of nitric acid, citric acid, and acetic acid.
  • the second catalyst can be formed by various existing molding methods, for example, extrusion molding or ball molding.
  • the extrusion molding method can be carried out by referring to the prior art, and the inorganic refractory component to be extruded and the impregnation solution containing the metal component are uniformly mixed and extruded into a desired shape, such as a cylindrical shape, a clover shape, and a fourth shape. Leaf grass, honeycomb, etc.
  • the active metal component In the preparation process of the second catalyst of the present invention, only a small amount of the active metal component is used, and the organic component is added, so that the active component is highly dispersed, thereby fully utilizing the active metal to achieve higher activity of the catalyst, and The cost of the catalyst is greatly reduced.
  • the second catalyst prepared by the above steps has a pore size of 2 to 100 nm and a large average pore diameter (6 to 20 nm), which can promote the accessibility of the reactants to the active center.
  • the invention provides a hydrofinishing catalyst prepared by the process of the invention.
  • the invention provides a hydrofinishing catalyst system prepared by the process of the invention.
  • the invention provides the use of a hydrofinishing catalyst according to the invention or a hydrofinishing catalyst prepared by the process of the invention in hydrotreating of distillate oil.
  • the invention provides the use of a hydrofinishing catalyst system according to the invention or a hydrofinishing catalyst system prepared by the process of the invention in hydrotreating of distillate oil.
  • the hydrofinishing catalyst and hydrotreating catalyst system provided by the invention, and the hydrorefining catalyst and hydrotreating catalyst system prepared by the method of the invention are particularly suitable for sulfur content of 5000-3000 ppm, nitrogen content of 50-3000 ppm, aromatic hydrocarbons Hydrorefining of a distillate having a content of 20 to 80% by weight.
  • a distillate having a sulfur content of 9100 ppm, a nitrogen content of 532 ppm, and an aromatic content of 55% by weight at 340 ° C was carried out using the hydrotreating catalyst or hydrotreating catalyst system of the present invention.
  • the sulfur content can be reduced to below 15ppm, the nitrogen content is reduced to below 5.5ppm, the desulfurization rate is up to 99.8%, the denitrification rate is above 99.0%, the aromatic content is reduced to below 38.5 wt%, and the dearomatization rate can be as high as 30. %.
  • the present invention provides a method for hydrotreating a distillate oil, comprising the steps of:
  • the distillate to be hydrodesulfurized is contacted with the hydrotreated catalyst after vulcanization under hydrodesulfurization conditions.
  • the present invention provides a hydrotreating method for distillate oil, comprising the steps of:
  • the distillate to be hydrodesulfurized is contacted with the hydrotreated catalyst system after vulcanization under hydrodesulfurization conditions.
  • the vulcanization conditions of the hydrofinishing catalyst and the hydrofinishing catalyst system may be known conditions for the sulfurization hydrotreating catalyst.
  • the vulcanization pressure is about 0.1-15 MPa
  • the volume space velocity is about 0.5-20 h -1
  • the hydrogen oil volume ratio is about 100-2000:1.
  • the vulcanization method is not particularly limited and may be dry vulcanization or wet vulcanization.
  • the conditions of the hydrodesulfurization may be a known condition for hydrodesulfurization using a hydrotreating catalyst.
  • the pressure is about 0.1-8 MPa
  • the temperature is about 260-410 ° C
  • the volume space velocity is about 0.5-10 h -1
  • the hydrogen oil volume ratio is about 200-1000:1.
  • the present application provides the following technical solutions:
  • a hydrorefining catalyst comprising:
  • An inorganic refractory component comprising a first hydrodesulfurization catalytically active component and an oxide selected from the group consisting of at least one selected from the group consisting of alumina, silica, magnesia, calcia, zirconia and titania ;
  • An organic component supported on an inorganic refractory component comprising a carboxylic acid and optionally an alcohol,
  • the hydrofinishing catalyst has pores having a pore diameter in the range of 2-40 nm and 100-300 nm, respectively, wherein the pore volume in the range of 2-40 nm pore diameter accounts for about 60- of the total pore volume. 95%, and the pore volume in the range of 100-300 nm pore diameter accounts for about 0.5-30% of the total pore volume.
  • the inorganic refractory component is subjected to a calcination treatment before supporting the second hydrodesulfurization catalytically active component and the organic component, and the calcination is preferably carried out under the following conditions: a calcination temperature of about 300 to 900 ° C, It is preferably about 400-700 ° C; the calcination time is about 1-15 h, preferably about 3-8 h.
  • the hydrofinishing catalyst according to item A1 wherein the first hydrodesulfurization catalytically active component comprises a metal element selected from at least one of a Group VIII metal element and a Group VIB metal element, and
  • the second hydrodesulfurization catalytically active component comprises at least one Group VIII metal element and at least one Group VIB metal element;
  • the total content of the Group VIII metal element is from about 15 to 35 wt%, preferably from about 20 to 30 wt%, based on the dry basis weight of the catalyst and based on the oxide.
  • the total content of the Group VIB metal element is from about 35 to 75% by weight, preferably from about 40 to 65% by weight;
  • the Group VIII metal element is at least one selected from the group consisting of iron, cobalt, nickel, ruthenium, osmium, and palladium
  • the Group VIB metal element is at least one selected from the group consisting of chromium, molybdenum, and tungsten.
  • the Group VIII metal element is at least one selected from the group consisting of iron, cobalt, nickel, ruthenium, osmium, and palladium
  • the Group VIB metal element is at least one selected from the group consisting of chromium, molybdenum, and tungsten.
  • the Group VIII metal element is at least one selected from the group consisting of iron, cobalt, nickel, ruthenium, osmium, and palladium
  • the Group VIB metal element is at least one selected from the group consisting of chromium, molybdenum, and tungsten.
  • the hydrofinishing catalyst according to item A2, wherein the first hydrodesulfurization catalytically active component comprises at least one Group VIII metal element in an amount of the total content of the Group VIII metal element in the catalyst. About 60-90%.
  • A4 The hydrofinishing catalyst according to any one of the preceding items, wherein a pore volume having a pore diameter in the range of 2 to 40 nm accounts for about 75 to 90% of the total pore volume, and a pore volume having a pore diameter in the range of 100 to 300 nm accounts for the total pore volume. About 5-15% of the volume;
  • the hydrofinishing catalyst is a shaped catalyst, and the shape of the hydrofinishing catalyst is preferably cylindrical, clover-shaped, four-leaf clover or honeycomb;
  • the hydrotreating catalyst has a specific surface area of about 70-200 m 2 /g, a total pore volume of about 0.15-0.6 mL / g, and an average pore diameter of 5-25 nm;
  • the pore volume having a pore diameter in the range of 2-4 nm does not exceed about 10% of the total pore volume.
  • the total content of the fractions is from about 5 to 40% by weight, preferably from about 10 to 30% by weight.
  • the weight content of the carboxylic acid is between the dry weight of the other components of the inorganic refractory component other than the first hydrodesulfurization catalytically active component Ratio of from about 0.1 to 0.8:1, preferably from about 0.2 to 0.6:1; or
  • the organic component comprises both a carboxylic acid and an alcohol
  • the weight content of the carboxylic acid and the dry weight of the other components of the inorganic refractory component other than the first hydrodesulfurization catalytically active component is about 0.002-0.1:1, preferably about 0.02-0.06:1;
  • the carboxylic acid is selected from the group consisting of a mono-saturated carboxylic acid of C 1-18 , a phenyl acid of C 7-10 , citric acid, adipic acid, malonic acid, succinic acid, maleic acid, tartaric acid and combination.
  • a hydrotreating catalyst according to any one of the preceding claims wherein, when the organic component comprises both a carboxylic acid and an alcohol, a molar content of the alcohol and the inorganic refractory component are The ratio of the dry basis weight of the other components other than the hydrodesulfurization catalytically active component is from about 0.005 to 0.03:1, preferably from about 0.01 to 0.02:1;
  • the alcohol is selected from the group consisting of a monohydric alcohol of C 1-18 , ethylene glycol, polyethylene glycol, glycerol, polyglycerol, tetramethylene alcohol, pentaerythritol, xylitol, sorbitol, trishydroxyl Ethylethane and combinations thereof.
  • a monohydric alcohol of C 1-18 ethylene glycol, polyethylene glycol, glycerol, polyglycerol, tetramethylene alcohol, pentaerythritol, xylitol, sorbitol, trishydroxyl Ethylethane and combinations thereof.
  • hydrotreating catalyst according to any one of the preceding claims, wherein the hydrofinishing catalyst further comprises a phosphorus element, based on the dry basis weight of the catalyst and based on P 2 O 5 , the phosphorus element The content is from about 0.8 to 10% by weight, preferably from about 1 to 8% by weight.
  • a method for preparing a hydrotreating catalyst comprising the steps of:
  • the precursor of the first hydrodesulfurization catalytically active component comprises a precursor of a metal element selected from at least one of a Group VIII metal element and a Group VIB metal element
  • the precursor of the second hydrodesulfurization catalytically active component comprises at least one precursor of a Group VIII metal element and at least one precursor of a Group VIB metal element
  • the precursor of the first hydrodesulfurization catalytically active component and the precursor of the second hydrodesulfurization catalytically active component are such that in the hydrofinishing catalyst, the dry basis weight of the catalyst
  • the total content of the Group VIII metal element is from about 15 to 35% by weight, preferably from about 20 to 30% by weight, based on the oxide, and the total content of the Group VIB metal element is from about 35 to 75% by weight, Preferably it is about 40-65% by weight;
  • the Group VIII metal element is at least one selected from the group consisting of iron, cobalt, nickel, ruthenium, osmium, and palladium
  • the Group VIB metal element is at least one selected from the group consisting of chromium, molybdenum, and tungsten.
  • the Group VIII metal element is at least one selected from the group consisting of iron, cobalt, nickel, ruthenium, osmium, and palladium
  • the Group VIB metal element is at least one selected from the group consisting of chromium, molybdenum, and tungsten.
  • the Group VIII metal element is at least one selected from the group consisting of iron, cobalt, nickel, ruthenium, osmium, and palladium
  • the Group VIB metal element is at least one selected from the group consisting of chromium, molybdenum, and tungsten.
  • the precursor of the first hydrodesulfurization catalytically active component comprises at least one precursor of a Group VIII metal element in an amount of a precursor of the Group VIII metal element.
  • the total amount is about 60-90%.
  • the total content of the other components of the inorganic refractory component other than the first hydrodesulfurization catalytically active component is from about 5 to 40% by weight, preferably from about 10 to 30% by weight.
  • the weight of the carboxylic acid used in the step (2) and the dry basis of the other components of the inorganic refractory component other than the first hydrodesulfurization catalytically active component is from about 0.1 to 0.8:1, preferably from about 0.2 to 0.6:1; or
  • the weight of the carboxylic acid used in the step (2) and the other components of the inorganic refractory component other than the first hydrodesulfurization catalytically active component is about 0.002-0.1:1, preferably about 0.02-0.06:1;
  • the carboxylic acid is selected from the group consisting of a mono-saturated carboxylic acid of C 1-18 , a phenyl acid of C 7-10 , citric acid, adipic acid, malonic acid, succinic acid, maleic acid, tartaric acid and combination.
  • A14 The method according to any one of items A9 to A13, wherein when the organic component comprises both a carboxylic acid and an alcohol, the molar amount of the alcohol in the step (2) is in the inorganic refractory component.
  • the ratio of the dry basis weight of the other components other than the first hydrodesulfurization catalytically active component is from about 0.005 to 0.03:1, preferably from about 0.01 to 0.02:1;
  • the alcohol is selected from the group consisting of a monohydric alcohol of C 1-18 , ethylene glycol, polyethylene glycol, glycerol, polyglycerol, tetramethylene alcohol, pentaerythritol, xylitol, sorbitol, trishydroxyl Ethylethane and combinations thereof.
  • a monohydric alcohol of C 1-18 ethylene glycol, polyethylene glycol, glycerol, polyglycerol, tetramethylene alcohol, pentaerythritol, xylitol, sorbitol, trishydroxyl Ethylethane and combinations thereof.
  • the phosphorus content is from about 0.8 to 10% by weight, preferably from about 1 to 8% by weight;
  • the phosphorus-containing compound is selected from the group consisting of phosphoric acid, hypophosphorous acid, ammonium phosphate, ammonium dihydrogen phosphate, and combinations thereof.
  • A16 The method according to any one of items A9 to A15, wherein in the step (1), the calcination is carried out under the following conditions: a calcination temperature of about 300-900 ° C, preferably about 400-800 ° C; The calcination time is from about 1 to 15 h, preferably from about 3 to 8 h.
  • the drying is carried out under the following conditions: a drying temperature of about 50-250 ° C, preferably about 100-200 ° C;
  • the drying time is from 2 to 10 h, preferably from about 3 to 8 h.
  • any one of items A9 to A17 wherein the precursor of the alumina is selected from the group consisting of pseudoboehmite, aluminum hydroxide powder, aluminum nitrate, aluminum carbonate, aluminum citrate, and combinations thereof;
  • the precursor of the silicon oxide is selected from the group consisting of silica sol, silica, silica, and combinations thereof;
  • the precursor of the magnesium oxide is selected from the group consisting of magnesium hydroxide, magnesium nitrate, magnesium carbonate, magnesium acetate, magnesium oxide, and combinations thereof.
  • the precursor of the calcium oxide is selected from the group consisting of calcium hydroxide, calcium carbonate, calcium oxalate, calcium nitrate, calcium acetate, calcium oxide, and combinations thereof;
  • the precursor of the zirconia is selected from the group consisting of zirconium hydroxide, zirconium carbonate, and zirconium nitrate , zirconium acetate, zirconium oxide and combinations thereof;
  • the precursor of the titanium oxide is selected from the group consisting of titanium hydroxide, titanium nitrate, titanium acetate, zirconium oxide and combinations thereof;
  • the precursors of the alumina, silica, magnesia, calcium oxide, zirconium oxide and titanium oxide have an average pore diameter of not less than about 10 nm, and the pore volume in the range of 2-6 nm has a ratio of pore volume to total pore volume. Not more than about 15%, the ratio of the pore volume in the range of 6-40 nm to the total pore volume is not less than about 75%.
  • distillate has a sulfur content of about 5,000 to 30,000 ppm, a nitrogen content of about 50 to 3000 ppm, and an aromatic content of about 20 to 80% by weight.
  • a method for hydrotreating a distillate oil comprising the steps of:
  • the distillate to be hydrodesulfurized is contacted with the hydrotreated catalyst after vulcanization under hydrodesulfurization conditions.
  • a hydrofinishing catalyst system comprising a first catalyst located in a first catalyst bed and a second catalyst located in a second catalyst bed, wherein:
  • the first catalyst comprises:
  • a first inorganic refractory component comprising a first hydrodesulfurization catalytically active component and a mixture thereof selected from at least one selected from the group consisting of alumina, silica, magnesia, calcia, zirconia and titania Oxide
  • An organic component supported on the first inorganic refractory component comprising a carboxylic acid and optionally an alcohol,
  • the first catalyst has pores having pore diameters in the range of 2-40 nm and 100-300 nm, respectively, wherein the pore volume in the range of 2-40 nm pore diameter accounts for about 60-95 of the total pore volume. %, the pore volume in the range of 100-300 nm pore diameter accounts for about 0.5-30% of the total pore volume.
  • the first inorganic refractory component is subjected to a calcination treatment before the second hydrodesulfurization catalytically active component and the organic component are supported, and the calcination is preferably carried out under the following conditions: a calcination temperature of about 300-900 °C, preferably about 400-700 ° C; calcination time is about 1-15h, preferably about 3-8h;
  • the second catalyst comprises a second inorganic refractory component, a third hydrodesulfurization catalytically active component supported on the second inorganic refractory component, and an organic component supported on the second inorganic refractory component, wherein
  • the second inorganic refractory component comprises alumina, the organic component is selected from the group consisting of a carboxylic acid and an alcohol, and the pore size of the second catalyst is concentrated in the range of 2-100 nm;
  • volume ratio of the first catalyst to the second catalyst is from about 1:1 to about 1:8, preferably from about 1:2 to about 1:6.
  • the first hydrodesulfurization catalytically active component comprises a metal element selected from at least one of a Group VIII metal element and a Group VIB metal element, and the second hydrodesulfurization catalyst The active component comprises at least one Group VIII metal element and at least one Group VIB metal element;
  • the total content of the Group VIII metal element in the first catalyst is from about 15 to 35% by weight, preferably from about 20 to 30, based on the dry basis weight of the first catalyst and based on the oxide. %, and the content of the Group VIB metal element is from about 35 to 75% by weight, preferably from about 40 to 65% by weight; and/or
  • the third hydrodesulfurization catalytically active component comprises at least one Group VIII metal element and at least one Group VIB metal element;
  • the total content of the Group VIII metal element in the second catalyst is from about 1 to 8% by weight, preferably from about 2 to 6 weight, based on the dry basis weight of the second catalyst and based on the oxide. %, and the total content of the Group VIB metal element is from about 10 to 35% by weight, preferably from about 15 to 30% by weight;
  • the Group VIII metal element is at least one selected from the group consisting of iron, cobalt, nickel, ruthenium, osmium, and palladium
  • the Group VIB metal element is at least one selected from the group consisting of chromium, molybdenum, and tungsten.
  • the Group VIII metal element is at least one selected from the group consisting of iron, cobalt, nickel, ruthenium, osmium, and palladium
  • the Group VIB metal element is at least one selected from the group consisting of chromium, molybdenum, and tungsten.
  • the Group VIII metal element is at least one selected from the group consisting of iron, cobalt, nickel, ruthenium, osmium, and palladium
  • the Group VIB metal element is at least one selected from the group consisting of chromium, molybdenum, and tungsten.
  • the hydrofinishing catalyst system according to item A24 wherein in the first catalyst, the first hydrodesulfurization catalytically active component comprises at least one Group VIII metal element, the content of which is The total content of the Group VIII metal element in a catalyst is about 60-90%.
  • A26 The hydrofinishing catalyst system according to any one of items A23 to A25, wherein:
  • a pore volume having a pore diameter in the range of 2 to 40 nm accounts for about 75 to 90% of the total pore volume, and a pore volume having a pore diameter in the range of 100 to 300 nm accounts for about 5 to 15% of the total pore volume, and the pore diameter is The pore volume in the range of 2-4 nm does not exceed about 10% of the total pore volume;
  • the first catalyst has a specific surface area of about 70-200 m 2 /g, a total pore volume of about 0.15-0.6 mL/g, an average pore diameter of 5-25 nm; and/or
  • the second catalyst has a specific surface area of about 130-300 m 2 /g, a total pore volume of about 0.2-0.7 mL / g, and an average pore diameter of 6-20 nm;
  • the first catalyst and the second catalyst are respectively shaped catalyst systems, and the shape of the first catalyst and the shape of the second catalyst are each independently selected from the group consisting of a cylindrical shape, a clover shape, and a four-leaf clover shape. And honeycomb.
  • the total content of the other components of the first inorganic refractory component other than the first hydrodesulfurization catalytically active component is about the basis of the dry basis weight of the first catalyst. 5-40% by weight, preferably about 10-30% by weight; and/or
  • the content of the second inorganic refractory component is from about 60 to 85% by weight, preferably from about 70 to 80% by weight, based on the dry basis weight of the second catalyst.
  • the weight content of the carboxylic acid and the first inorganic refractory component are other than the first hydrodesulfurization catalytically active component
  • the ratio of the dry basis weight of the other components is from about 0.1 to 0.8:1, preferably from about 0.2 to 0.6:1;
  • the organic component comprises both a carboxylic acid and an alcohol
  • the weight content of the carboxylic acid and the dryness of the other components of the first inorganic refractory component other than the first hydrodesulfurization catalytically active component is about 0.002-0.1:1, preferably about 0.02-0.06:1;
  • the carboxylic acid is selected from the group consisting of a mono-saturated carboxylic acid of C 1-18 , a phenyl acid of C 7-10 , citric acid, adipic acid, malonic acid, succinic acid, maleic acid, tartaric acid and combination.
  • the organic component contains both a carboxylic acid and an alcohol
  • the molar content of the alcohol and the first inorganic refractory component except the first hydrodesulfurization catalytically active component is from about 0.005 to 0.03:1, preferably from about 0.01 to 0.02:1; and/or
  • the molar ratio of the organic component to the Group VIII metal element contained in the second catalyst is about 0.5-8, preferably about 1-5;
  • the carboxylic acid in the first catalyst and the second catalyst are independently selected from a mono-saturated carboxylic acid of C 1-18 , a phenyl acid of C 7-10 , citric acid, adipic acid, and propylene. Acid, succinic acid, maleic acid, tartaric acid, and combinations thereof;
  • the alcohol in the first catalyst and the second catalyst are independently selected from a mono-saturated alcohol of C 1-18 , ethylene glycol, polyethylene glycol, glycerol, polyglycerol, butanediol Pentaerythritol, xylitol, sorbitol, trimethylolethane, and combinations thereof.
  • the hydrofinishing catalyst system according to any one of items A23 to A29, wherein the first catalyst further comprises a phosphorus element, based on the dry basis weight of the first catalyst and based on P 2 O 5 .
  • the phosphorus element is present in an amount of from about 0.8% to about 10% by weight, preferably from about 1% to about 8% by weight; and/or
  • the second catalyst further comprises a phosphorus element in an amount of from about 0.8 to 10% by weight, preferably from about 1 to 8% by weight, based on the dry basis weight of the second catalyst and based on P 2 O 5 .
  • a method of preparing a hydrofinishing catalyst system comprising a first catalyst located in a first catalyst bed and a second catalyst located in a second catalyst bed, the method comprising:
  • the precursor of the first hydrodesulfurization catalytically active component comprises a precursor of a metal element selected from at least one of a Group VIII metal element and a Group VIB metal element, and the The precursor of the dihydrodesulfurization catalytically active component comprises at least one precursor of a Group VIII metal element and at least one precursor of a Group VIB metal element;
  • the precursor of the first hydrodesulfurization catalytically active component and the precursor of the second hydrodesulfurization catalytically active component are such that in the first catalyst, the dry basis of the first catalyst
  • the total content of the Group VIII metal element is from about 15 to 35% by weight, preferably from about 20 to 30% by weight, based on the weight and based on the oxide, and the total content of the Group VIB metal element is from about 35 to 75% by weight. , preferably from about 40 to 65% by weight; and/or
  • the precursor of the third hydrodesulfurization catalytically active component comprises at least one precursor of a Group VIII metal element and at least one precursor of a Group VIB metal element;
  • the precursor of the third hydrodesulfurization catalytically active component is used in an amount such that, in the second catalyst, based on the dry basis weight of the second catalyst and based on the oxide, the Group VIII metal element
  • the total content is from about 1 to 8% by weight, preferably from about 2 to 6% by weight
  • the content of the Group VIB metal element is from about 10 to 35% by weight, preferably from about 15 to 30% by weight;
  • the Group VIII metal element is at least one selected from the group consisting of iron, cobalt, nickel, ruthenium, osmium, and palladium
  • the Group VIB metal element is at least one selected from the group consisting of chromium, molybdenum, and tungsten.
  • the Group VIII metal element is at least one selected from the group consisting of iron, cobalt, nickel, ruthenium, osmium, and palladium
  • the Group VIB metal element is at least one selected from the group consisting of chromium, molybdenum, and tungsten.
  • the Group VIII metal element is at least one selected from the group consisting of iron, cobalt, nickel, ruthenium, osmium, and palladium
  • the Group VIB metal element is at least one selected from the group consisting of chromium, molybdenum, and tungsten.
  • the precursor of the first hydrodesulfurization catalytically active component comprises at least one precursor of a Group VIII metal element in an amount used in the preparation of the first catalyst.
  • the total amount of the Group VIII metal element precursor is about 60-90%.
  • the first inorganic refractory component is used in an amount such that the first catalyst Based on the dry basis weight, the total content of the other components of the first inorganic refractory component other than the first hydrodesulfurization catalytically active component is from about 5 to 40% by weight, preferably from about 10 to 30% by weight. %;and / or
  • the second inorganic refractory component is used in an amount such that, in the second catalyst, the content of the second inorganic refractory component is based on the dry basis weight of the second catalyst. About 60-85% by weight, preferably about 70-80% by weight.
  • the weight of the carboxylic acid used and the other components of the inorganic refractory component other than the first hydrodesulfurization catalytically active component is from about 0.1 to 0.8:1, preferably from about 0.2 to 0.6:1; or
  • the organic component comprises both a carboxylic acid and an alcohol
  • the weight of the carboxylic acid used and the dry weight of the other components of the first inorganic refractory component other than the first hydrodesulfurization catalytically active component is about 0.002-0.1:1, preferably about 0.02-0.06:1;
  • the carboxylic acid is selected from the group consisting of a mono-saturated carboxylic acid of C 1-18 , a phenyl acid of C 7-10 , citric acid, adipic acid, malonic acid, succinic acid, maleic acid, tartaric acid and combination.
  • a method according to any one of items A31 to A35, wherein, in the step (1b), when the organic component contains both a carboxylic acid and an alcohol, the molar amount of the alcohol is the same as the first
  • the ratio of the dry basis weight of the other components of the inorganic refractory component other than the first hydrodesulfurization catalytically active component is from about 0.005 to 0.03:1, preferably from about 0.01 to 0.02:1; and/or
  • step (2b) the molar ratio of the organic component to the Group VIII metal element used in the preparation of the second catalyst is about 0.5-8, preferably about 1-5;
  • the carboxylic acid used in step (1b) and step (2b) is independently selected from the group consisting of C 1-18 monobasic saturated carboxylic acid, C 7-10 phenyl acid, citric acid, adipic acid, malonic acid. , succinic acid, maleic acid, tartaric acid and combinations thereof;
  • the alcohol used in the step (1b) and the step (2b) is independently selected from the group consisting of a monohydric alcohol of C 1-18 , ethylene glycol, polyethylene glycol, glycerol, polyglycerol, tetrabutyl alcohol, Pentaerythritol, xylitol, sorbitol, trimethylolethane, and combinations thereof.
  • the phosphorus-containing compound is used in an amount such that the dry weight of the first catalyst is based on P 2 O 5 , the content of phosphorus element is about 0.8-10% by weight, preferably about 1-8% by weight; and / or
  • the phosphorus-containing compound is used in an amount such that the phosphorus element is contained in an amount of from about 0.8 to 10% by weight based on the dry basis weight of the second catalyst and in terms of P 2 O 5 , preferably about 1-8% by weight;
  • the phosphorus-containing compounds used in step (1b) and step (2b) are independently selected from the group consisting of phosphoric acid, hypophosphorous acid, ammonium phosphate, ammonium dihydrogen phosphate, and combinations thereof.
  • the calcination is carried out under the following conditions: a calcination temperature of about 300 to 900 ° C, preferably about 400 to 800 ° C; a calcination time of about 1 to 15 h, preferably about 3 to 8 h; or
  • the calcination is carried out under the following conditions: a calcination temperature of about 400 to 1000 ° C, preferably about 500 to 800 ° C; and a calcination time of about 1 to 15 h, preferably about 3 to 8 h.
  • step (1c) and the step (2c) the drying is independently performed under the following conditions: a drying temperature of about 50 to 250 ° C, It is preferably about 100-200 ° C; the drying time is about 2-10 h, preferably about 3-8 h.
  • the precursor of the alumina is selected from the group consisting of pseudoboehmite, aluminum hydroxide powder, aluminum nitrate, aluminum carbonate, aluminum citrate, and combinations thereof;
  • the precursor of the silicon oxide is selected from the group consisting of silica sol, silica, silica, and combinations thereof;
  • the precursor of the magnesium oxide is selected from the group consisting of magnesium hydroxide, magnesium nitrate, magnesium carbonate, magnesium acetate, magnesium oxide, and combinations thereof.
  • the precursor of the calcium oxide is selected from the group consisting of calcium hydroxide, calcium carbonate, calcium oxalate, calcium nitrate, calcium acetate, calcium oxide, and combinations thereof;
  • the precursor of the zirconia is selected from the group consisting of zirconium hydroxide, zirconium carbonate, and zirconium nitrate , zirconium acetate, zirconium oxide and combinations thereof;
  • the precursor of the titanium oxide is selected from the group consisting of titanium hydroxide, titanium nitrate, titanium acetate, zirconium oxide and combinations thereof;
  • the precursors of the alumina, silica, magnesia, calcium oxide, zirconium oxide and titanium oxide have an average pore diameter of not less than about 10 nm, and the pore volume in the range of 2-6 nm has a ratio of pore volume to total pore volume. Not more than about 15%, the ratio of the pore volume in the range of 6-40 nm to the total pore volume is not less than about 75%.
  • the preparation conditions are such that, in the obtained second inorganic refractory component, the pore volume having a pore diameter in the range of 2-4 nm It accounts for about 0-2% of the total pore volume, the pore volume of the pore size in the range of 4-6 nm accounts for about 2-15% of the total pore volume, and the pore volume of the pore diameter in the range of 6-40 nm accounts for about 85-95% of the total pore volume.
  • the pore size of the remaining pores is in the range of 40-100 nm, and there is no pore having a pore diameter of 100 nm or more.
  • a hydrofinishing catalyst system obtained by the method according to any one of items A31 to A41.
  • a method for hydrotreating a distillate oil comprising the steps of:
  • Vaporizing the hydrofinishing catalyst system according to any one of items A23 to A30 and A42;
  • the distillate to be hydrodesulfurized is contacted with the hydrotreated catalyst system after vulcanization under hydrodesulfurization conditions.
  • a hydrotreating catalyst according to any one of the items A1 to A8, wherein the inorganic refractory component and the hydrofinishing catalyst have an XRD spectrum selected from the group consisting of alumina, silica, a characteristic peak corresponding to an XRD characteristic peak of an oxide of at least one of magnesium oxide, calcium oxide, zirconium oxide, and titanium oxide, and a metal element as the first hydrodesulfurization catalytically active component, which is preferably selected from the group consisting of A characteristic peak corresponding to an XRD characteristic peak of an oxide of at least one of a Group VIII metal element and a Group VIB metal element.
  • A. The hydrofinishing catalyst system according to any one of the items A23 to A30 and A42, wherein the first inorganic refractory component and the first catalyst have an XRD spectrum selected from the group consisting of alumina, silica, a characteristic peak corresponding to an XRD characteristic peak of an oxide of at least one of magnesium oxide, calcium oxide, zirconium oxide, and titanium oxide, and a metal element as the first hydrodesulfurization catalytically active component, which is preferably selected from the group consisting of A characteristic peak corresponding to an XRD characteristic peak of an oxide of at least one of a Group VIII metal element and a Group VIB metal element.
  • a hydrotreating catalyst characterized in that the catalyst comprises an inorganic refractory component, a hydrodesulfurization catalytically active component, an alcohol and a carboxylic acid;
  • the inorganic refractory component comprises at least one of silicon oxide, magnesium oxide, calcium oxide, zirconium oxide and titanium oxide and a partially hydrodesulfurization catalytically active component;
  • the catalyst has pores having pore diameters in the range of 2-40 nm and 100-300 nm, respectively, wherein the pore volume of pores at 2-40 nm accounts for 60-95% of the total pore volume, and the pore volume of pores at 100-300 nm accounts for total pore volume. 0.5-30%.
  • hydrofinishing catalyst according to item B2 wherein the hydrodesulfurization catalytically active component is a Group VIII metal element and a Group VIB metal element;
  • the content of the Group VIII metal element is 15 to 35 wt%, preferably 20 to 30 wt% based on the dry weight of the catalyst and based on the oxide;
  • the Group VIB metal The content of the element is from 35 to 75% by weight, preferably from 40 to 65% by weight;
  • the Group VIII metal element is preferably at least one selected from the group consisting of iron, cobalt, nickel, ruthenium, osmium, and palladium
  • the Group VIB metal element is preferably at least one selected from the group consisting of chromium, molybdenum, and tungsten.
  • the catalyst is a shaped catalyst, and the shape of the catalyst is preferably a cylindrical shape, a clover shape, a four-leaf clover shape or a honeycomb shape;
  • the hydrotreating catalyst has a specific surface area of 70-200 m 2 /g, a pore volume of 0.15-0.6 mL / g, and an average pore diameter of 5-25 nm;
  • the pore volume having a pore diameter in the range of 2-4 nm does not exceed 10% of the total pore volume.
  • the carboxylic acid is selected from the group consisting of a mono-saturated carboxylic acid of C 1-18 , a phenyl acid of C 7-10 , citric acid, adipic acid, malonic acid, succinic acid, maleic acid, tartaric acid, and the like. At least one of them.
  • hydrotreating catalyst according to any one of items B1 to B5, wherein the molar ratio of the number of moles of the alcohol to the dry basis of the inorganic refractory component is from 0.005 to 0.03:1, preferably from 0.01 to 0.02. :1;
  • the alcohol is selected from the group consisting of monobasic saturated alcohols of C 1-18 , ethylene glycol, polyethylene glycol, glycerol, polyglycerol, tetramethylene alcohol, pentaerythritol, xylitol, sorbitol and trimethylol At least one of ethane.
  • a method for preparing a hydrotreating catalyst characterized in that the method comprises:
  • hydrodesulfurization catalytically active component precursor is a precursor of a Group VIII metal element and a precursor of a Group VIB metal element;
  • the amount of the precursor of the Group VIII metal element and the precursor of the Group VIB metal element is such that, in the hydrotreating catalyst, based on the dry basis weight of the catalyst and based on the oxide, the Group VIII metal element
  • the content is 15 to 35% by weight, preferably 20 to 30% by weight; the content of the Group VIB metal element is 35 to 75% by weight, preferably 40 to 65% by weight;
  • the Group VIII metal element is preferably at least one selected from the group consisting of iron, cobalt, nickel, ruthenium, osmium, and palladium
  • the Group VIB metal element is preferably at least one selected from the group consisting of chromium, molybdenum, and tungsten.
  • the inorganic refractory component is present in an amount of from 5 to 40% by weight, preferably from 10 to 30% by weight.
  • the ratio of the amount of the carboxylic acid to the dry basis weight of the inorganic refractory component is from 0.002 to 0.1:1, preferably 0.02. -0.06:1;
  • the carboxylic acid is selected from the group consisting of a mono-saturated carboxylic acid of C 1-18 , a phenyl acid of C 7-10 , citric acid, adipic acid, malonic acid, succinic acid, maleic acid, tartaric acid, and the like. At least one of them.
  • the alcohol is selected from the group consisting of monobasic saturated alcohols of C 1-18 , ethylene glycol, polyethylene glycol, glycerol, polyglycerol, tetramethylene alcohol, pentaerythritol, xylitol, sorbitol and trimethylol At least one of ethane.
  • the phosphorus-containing substance is selected from at least one of phosphoric acid, hypophosphorous acid, ammonium phosphate, and ammonium dihydrogen phosphate.
  • the calcining conditions comprise: a calcination temperature of 300-900 ° C, preferably 400-800 ° C; and a calcination time of 1-15 h, preferably 3-8h.
  • the drying condition comprises: a drying temperature of 50-250 ° C, preferably 100-200 ° C; a drying time of 2-10 h, preferably 3-8h.
  • the silicon oxide precursor is at least one of silica sol, white carbon black and silicon dioxide
  • the magnesium oxide precursor is magnesium hydroxide, magnesium nitrate, magnesium carbonate At least one of magnesium acetate and magnesium oxide
  • the precursor of the calcium oxide is at least one of calcium hydroxide, calcium carbonate, calcium oxalate, calcium nitrate, calcium acetate and calcium oxide
  • the zirconia precursor Is at least one of zirconium hydroxide, zirconium carbonate, zirconium nitrate, zirconium acetate and zirconium oxide
  • the precursor of the titanium oxide is at least one of titanium hydroxide, titanium nitrate, titanium acetate and zirconium oxide
  • the silicon oxide, magnesium oxide, calcium oxide, zirconium oxide and titanium oxide precursors have an average pore diameter of not less than 10 nm, and a pore volume of 2-6 nm has a pore volume ratio of not more than 15%, and the pore diameter is not more than 15%.
  • the ratio of the pore volume of 6-40 nm to the total pore volume is not less than 75%.
  • a method for hydrotreating a distillate characterized in that the method comprises: vulcanizing the hydrotreating catalyst according to any one of items B1 to B8 and B19, and then introducing a distillate to be hydrodesulfurized The hydrodesulfurized distillate oil is contacted with the post-vulcanization hydrotreating catalyst under hydrodesulfurization conditions.
  • a hydrofinishing catalyst system characterized in that the hydrofinishing catalyst system comprises a first catalyst bed layer and a second catalyst bed layer;
  • the first catalyst contained in the first catalyst bed comprises a first inorganic refractory component, a first hydrodesulfurization catalytically active component, an alcohol, and a carboxylic acid; wherein the first inorganic refractory component comprises silicon oxide, oxidized At least one of magnesium, calcium oxide, zirconium oxide and titanium oxide and a portion of the first hydrodesulfurization catalytically active component;
  • the first catalyst has pores having pore diameters in the range of 2-40 nm and 100-300 nm, respectively, wherein the pore volume of pores at 2-40 nm accounts for 60-95% of the total pore volume, and the pore volume of pores at 100-300 nm accounts for total pores. 0.5-30% by volume;
  • the second catalyst contained in the second catalyst bed comprises a second inorganic refractory component, a second hydrodesulfurization catalytically active component, and an alcohol; wherein the second inorganic refractory component is alumina; The pore size of the two catalysts is concentrated at 2-100 nm;
  • volume ratio of the first catalyst to the second catalyst is 1:1-8.
  • the first hydrodesulfurization catalytically active component is a Group VIII metal element and a Group VIB metal element;
  • the content of the Group VIII metal element is 15 to 35% by weight, preferably 20 to 30% by weight, based on the dry basis weight of the catalyst; and the content of the Group VIB metal element is 35 to 75% by weight. , preferably 40-65% by weight; and/or
  • the second hydrodesulfurization catalytically active component is a Group VIII metal element and a Group VIB metal element;
  • the content of the Group VIII metal element is from 1 to 8% by weight, preferably from 2 to 6% by weight, based on the dry basis weight of the second catalyst, and the content of the Group VIB metal element is from 10 to 35. % by weight, preferably 15-30% by weight;
  • the Group VIII metal element is at least one selected from the group consisting of iron, cobalt, nickel, ruthenium, osmium, and palladium
  • the Group VIB metal element is at least one selected from the group consisting of chromium, molybdenum, and tungsten.
  • the partial first hydrodesulfurization catalytically active component is a part of a Group VIII metal element, and the part of the Group VIII metal element The content is 60-90% of the total content of the Group VIII metal element.
  • the pore volume of the pore diameter of 2-40 nm accounts for 75-90% of the total pore volume, the pore volume of the pore diameter of 100-300 nm accounts for 5-15% of the total pore volume, and the pore diameter of the pore of the range of 2-4 nm.
  • the volume does not exceed 10% of the total pore volume;
  • the first catalyst has a specific surface area of 70-200 m 2 /g, a pore volume of 0.15-0.6 mL/g, an average pore diameter of 5-25 nm; and/or
  • the second catalyst has a specific surface area of 130-300 m 2 /g, a pore volume of 0.2-0.7 mL / g, an average pore diameter of 6-20 nm;
  • the first catalyst and the second catalyst are respectively shaped catalyst systems, and the shape of the first catalyst and the shape of the second catalyst are each independently selected from the group consisting of a cylindrical shape, a clover shape, a four-leaf clover shape, and a honeycomb shape.
  • the content of the first inorganic refractory component is from 5 to 40% by weight, preferably from 10 to 30% by weight, based on the dry basis weight of the first catalyst; and/or
  • the content of the second inorganic refractory component is from 60 to 85% by weight, preferably from 70 to 80% by weight, based on the dry basis weight of the second catalyst.
  • the hydrotreating catalyst according to any one of items C1 to C5, wherein in the first catalyst, the weight ratio of the carboxylic acid to the dry weight of the first inorganic refractory component is 0.002-0.1:1. , preferably 0.02-0.06:1;
  • the carboxylic acid is selected from the group consisting of a mono-saturated carboxylic acid of C 1-18 , a phenyl acid of C 7-10 , citric acid, adipic acid, malonic acid, succinic acid, maleic acid, and tartaric acid, and the like. At least one of them.
  • hydrotreating catalyst according to any one of items C1 to C5, wherein the molar ratio of the number of moles of the alcohol to the dry basis of the first inorganic refractory component is 0.005-0.03 in the first catalyst: 1, preferably 0.01-0.02:1; and/or
  • the molar ratio of the alcohol to the Group VIII element contained in the second catalyst is 0.5-8, preferably 1-5;
  • the alcohol is selected from the group consisting of monobasic saturated alcohols of C 1-18 , ethylene glycol, polyethylene glycol, glycerol, polyglycerol, tetramethylene alcohol, pentaerythritol, xylitol, sorbitol and trimethylol At least one of ethane.
  • the second catalyst further comprises a phosphorus element in an amount of from 0.8 to 10% by weight, preferably from 1 to 8% by weight, based on the dry basis weight of the second catalyst and based on P 2 O 5 .
  • a method for preparing a hydrofinishing catalyst system comprising a first catalyst bed layer and a second catalyst bed layer, wherein the method comprises:
  • the first catalyst and the second catalyst are respectively charged in a first catalyst bed layer and a second catalyst bed in a volume ratio of 1:1 to 8 to obtain the hydrotreating catalyst system.
  • the precursor of the first hydrodesulfurization catalytically active component is a precursor of a Group VIII metal element and a precursor of a Group VIB metal element;
  • the precursor of the Group VIII metal element and the precursor of the Group VIB metal element are used in an amount such that, in the first catalyst, based on the dry basis weight of the first catalyst and based on the oxide, the Group VIII metal element
  • the content is 15 to 35% by weight, preferably 20 to 30% by weight; the content of the Group VIB metal element is 35 to 75% by weight, preferably 40 to 65% by weight; and/or
  • the precursor of the second hydrodesulfurization catalytically active component is a precursor of a Group VIII metal element and a precursor of a Group VIB metal element;
  • the precursor of the Group VIII metal element and the precursor of the Group VIB metal element are used in an amount such that, in the second catalyst, based on the dry basis weight of the second catalyst and based on the oxide, the Group VIII metal element
  • the content of the component is from 1 to 8% by weight, preferably from 2 to 6% by weight; the content of the Group VIB metal element is from 10 to 35% by weight, preferably from 15 to 30% by weight;
  • the Group VIII metal element is at least one selected from the group consisting of iron, cobalt, nickel, ruthenium, osmium, and palladium
  • the Group VIB metal element is at least one selected from the group consisting of chromium, molybdenum, and tungsten.
  • the precursor of the partial first hydrodesulfurization catalytically active component is a precursor of using a Group VIII metal element in a part of the first catalyst preparation
  • the precursor of the Part VIII metal element used in the preparation of the partial first catalyst is used in an amount of 60-90% of the total amount of the precursor using the Group VIII metal element in the preparation of the first catalyst.
  • the first inorganic refractory component is used in an amount such that the first catalyst
  • the content of the first inorganic refractory component is from 5 to 40% by weight, preferably from 10 to 30% by weight, based on the dry basis weight; and/or
  • the second inorganic refractory component is used in an amount such that, in the second catalyst, the content of the second inorganic refractory component is based on the dry basis weight of the second catalyst. 60-85% by weight, preferably 70-80% by weight.
  • the ratio of the amount of the carboxylic acid to the dry weight of the first inorganic refractory component is from 0.002 to 0.1:1, preferably 0.02-0.06:1;
  • the carboxylic acid is selected from the group consisting of a mono-saturated carboxylic acid of C 1-18 , a phenyl acid of C 7-10 , citric acid, adipic acid, malonic acid, succinic acid, maleic acid, and tartaric acid, and the like. At least one of them.
  • the molar ratio of the molar amount of the alcohol to the dry basis weight of the first inorganic refractory component is 0.005-0.03:1 , preferably from 0.01 to 0.02:1;
  • step (2) the molar ratio of the alcohol to the Group VIII element in the preparation of the second catalyst is 0.5-8, preferably 1-5;
  • the alcohol is selected from the group consisting of monobasic saturated alcohols of C 1-18 , ethylene glycol, polyethylene glycol, glycerol, polyglycerol, tetramethylene alcohol, pentaerythritol, xylitol, sorbitol and trimethylol At least one of ethane.
  • the first impregnation solution further comprises a phosphorus-containing substance
  • the phosphorus-containing substance is used in an amount such that the dry weight of the first catalyst is based on P 2 O 5
  • the phosphorus element is contained in an amount of from 0.8 to 10% by weight, preferably from 1 to 8% by weight; and/or
  • the second impregnation solution further comprises a phosphorus-containing substance, the phosphorus-containing substance is used in an amount such that the phosphorus element content is 0.8 based on the dry basis weight of the second catalyst and based on P 2 O 5 . 10% by weight, preferably 1-8% by weight;
  • the phosphorus-containing substance is selected from at least one of phosphoric acid, hypophosphorous acid, ammonium phosphate, and ammonium dihydrogen phosphate.
  • the first calcination conditions include: a calcination temperature of 300 to 900 ° C, preferably 400 to 800 ° C; a calcination time of 1 to 15 h, preferably 3 to 8 h; and/or
  • the second calcination conditions include a calcination temperature of 400 to 1000 ° C, preferably 500 to 800 ° C; and a calcination time of 1 to 15 h, preferably 3 to 8 h.
  • drying conditions each independently comprise: drying at a temperature of 50-250 ° C, preferably 100-200 ° C; drying The time is 2-10 h, preferably 3-8 h.
  • the silica precursor is at least one of silica sol, white carbon and silica
  • the magnesium oxide precursor is magnesium hydroxide, magnesium nitrate, magnesium carbonate At least one of magnesium acetate and magnesium oxide
  • the precursor of the calcium oxide is at least one of calcium hydroxide, calcium carbonate, calcium oxalate, calcium nitrate, calcium acetate and calcium oxide
  • the zirconia precursor Is at least one of zirconium hydroxide, zirconium carbonate, zirconium nitrate, zirconium acetate and zirconium oxide
  • the precursor of the titanium oxide is at least one of titanium hydroxide, titanium nitrate, titanium acetate and zirconium oxide
  • the silicon oxide, magnesium oxide, calcium oxide, zirconium oxide and titanium oxide precursors have an average pore diameter of not less than 10 nm, and a pore volume of 2-6 nm has a pore volume ratio of not more than 15%, and the pore diameter is not more than 15%.
  • the ratio of the pore volume of 6-40 nm to the total pore volume is not less than 75%.
  • the alumina carrier is prepared such that a pore volume having a pore diameter in the range of 2-4 nm accounts for 0 of the total pore volume in the alumina carrier. -2%, the pore volume of pores at 4-6 nm accounts for 2-15% of the total volume, the pore volume of pores at 6-40 nm accounts for 85-95% of the total volume, and the pore diameter of the remaining pores is 40-100 nm, and the pore diameter is not included at 100 nm. Above the hole.
  • a hydrofinishing catalyst system prepared by the process of any one of items C9 to C19.
  • a method for hydrotreating a distillate oil characterized in that the method comprises: vulcanizing a hydrotreating catalyst system according to any one of items C1 to C8 and C20, and then introducing a hydrodesulfurization fraction to be hydrotreated The oil is subjected to contact with the post-vulcanization hydrotreating catalyst under hydrodesulfurization conditions.
  • a hydrotreating catalyst characterized in that the catalyst comprises an inorganic refractory component, a hydrodesulfurization catalytically active component and a carboxylic acid;
  • the inorganic refractory component comprises at least one of silicon oxide, magnesium oxide, calcium oxide, zirconium oxide and titanium oxide and a partially hydrodesulfurization catalytically active component;
  • the catalyst has pores having pore diameters in the range of 2-40 nm and 100-300 nm, respectively, wherein the pore volume of the pores at 2-40 nm accounts for 60-95% of the total pore volume, and the pore volume of 100-300 nm accounts for 0.5- of the total pore volume. 30%.
  • the hydrofinishing catalyst according to item D1 wherein the hydrodesulfurization catalytically active component is a Group VIII metal element and a Group VIB metal element;
  • the content of the Group VIII metal element is 15 to 35 wt%, preferably 20 to 30 wt% based on the dry weight of the catalyst and based on the oxide;
  • the Group VIB metal The content of the element is from 35 to 75% by weight, preferably from 40 to 65% by weight;
  • the Group VIII metal element is preferably at least one selected from the group consisting of iron, cobalt, nickel, ruthenium, osmium, and palladium
  • the Group VIB metal element is preferably at least one selected from the group consisting of chromium, molybdenum, and tungsten.
  • the catalyst is a shaped catalyst, and the shape of the catalyst is preferably a cylindrical shape, a clover shape, a four-leaf clover shape or a honeycomb shape;
  • the hydrotreating catalyst has a specific surface area of 70-200 m 2 /g, a pore volume of 0.15-0.6 mL / g, and an average pore diameter of 5-25 nm;
  • the pore volume having a pore diameter in the range of 2-4 nm does not exceed 10% of the total pore volume.
  • the carboxylic acid is selected from the group consisting of a mono-saturated carboxylic acid of C 1-18 , a phenyl acid of C 7-10 , citric acid, adipic acid, malonic acid, succinic acid, maleic acid, tartaric acid, and the like. At least one of them.
  • hydrofinishing catalyst according to item D1, wherein the hydrotreating catalyst further comprises a phosphorus element, the phosphorus element content being 0.8 based on the dry basis weight of the catalyst and based on P 2 O 5 . 10% by weight, preferably 1 to 8% by weight.
  • a method for preparing a hydrotreating catalyst characterized in that the method comprises:
  • hydrodesulfurization catalytically active component precursor is a precursor of a Group VIII metal element and a precursor of a Group VIB metal element;
  • the amount of the precursor of the Group VIII metal element and the precursor of the Group VIB metal element is such that, in the hydrotreating catalyst, based on the dry basis weight of the catalyst and based on the oxide, the Group VIII metal element
  • the content is 15 to 35% by weight, preferably 20 to 30% by weight; the content of the Group VIB metal element is 35 to 75% by weight, preferably 40 to 65% by weight;
  • the Group VIII metal element is preferably at least one selected from the group consisting of iron, cobalt, nickel, ruthenium, osmium, and palladium
  • the Group VIB metal element is preferably at least one selected from the group consisting of chromium, molybdenum, and tungsten.
  • any one of items D8 to D10 wherein the inorganic refractory component is used in an amount such that the hydrotreating catalyst is based on the dry basis weight of the hydrofinishing catalyst.
  • the inorganic refractory component is present in an amount of from 5 to 40% by weight, preferably from 10 to 30% by weight.
  • the amount of the carboxylic acid to the dry basis weight ratio of the inorganic refractory component is from 0.1 to 0.8:1, preferably 0.2. -0.6:1;
  • the carboxylic acid is selected from the group consisting of a mono-saturated carboxylic acid of C 1-18 , a phenyl acid of C 7-10 , citric acid, adipic acid, malonic acid, succinic acid, maleic acid, tartaric acid, and the like. At least one of them.
  • the phosphorus-containing substance is selected from at least one of phosphoric acid, hypophosphorous acid, ammonium phosphate, and ammonium dihydrogen phosphate.
  • the calcination conditions comprise: a calcination temperature of 300-900 ° C, preferably 400-800 ° C; and a calcination time of 1-15 h, preferably 3-8h.
  • the drying condition comprises: a drying temperature of 50-250 ° C, preferably 100-200 ° C; a drying time of 2-10 h, preferably 3-8h.
  • the silicon oxide precursor is at least one of silica sol, white carbon black and silicon dioxide
  • the magnesium oxide precursor is magnesium hydroxide, magnesium nitrate, magnesium carbonate At least one of magnesium acetate and magnesium oxide
  • the precursor of the calcium oxide is at least one of calcium hydroxide, calcium carbonate, calcium oxalate, calcium nitrate, calcium acetate and calcium oxide
  • the zirconia precursor Is at least one of zirconium hydroxide, zirconium carbonate, zirconium nitrate, zirconium acetate and zirconium oxide
  • the precursor of the titanium oxide is at least one of titanium hydroxide, titanium nitrate, titanium acetate and zirconium oxide
  • the silicon oxide, magnesium oxide, calcium oxide, zirconium oxide and titanium oxide precursors have an average pore diameter of not less than 10 nm, and a pore volume of 2-6 nm has a pore volume ratio of not more than 15%, and the pore diameter is not more than 15%.
  • the ratio of the pore volume in the range of 6-40 nm to the total pore volume is not less than 75%.
  • distillate oil has a sulfur content of 5,000 to 30,000 ppm, a nitrogen content of 50 to 3000 ppm, and an aromatic hydrocarbon content of 20 to 80% by weight.
  • a method for hydrotreating a distillate characterized in that the method comprises: vulcanizing the hydrorefining catalyst according to any one of items D1 to D7 and D17, and then introducing a distillate to be hydrodesulfurized The hydrodesulfurized distillate oil is contacted with the post-vulcanization hydrotreating catalyst under hydrodesulfurization conditions.
  • a hydrofinishing catalyst system characterized in that the hydrotreating catalyst system comprises a first catalyst bed layer and a second catalyst bed layer;
  • the first catalyst contained in the first catalyst bed layer comprises a first inorganic refractory component, a first hydrodesulfurization catalytically active component, and a carboxylic acid; wherein the first inorganic refractory component comprises silicon oxide, magnesium oxide At least one of calcium oxide, zirconium oxide and titanium oxide and a portion of the first hydrodesulfurization catalytically active component;
  • the first catalyst has pores having pore diameters in the range of 2-40 nm and 100-300 nm, respectively, wherein the pore volume of the pores at 2-40 nm accounts for 60-95% of the total pore volume, and the pore volume of 100-300 nm accounts for the total pore volume. 0.5-30%;
  • the second catalyst contained in the second catalyst bed comprises a second inorganic refractory component, a second hydrodesulfurization catalytically active component, and a carboxylic acid; wherein the second inorganic refractory component is alumina; The pore size of the second catalyst is concentrated at 2-100 nm;
  • volume ratio of the first catalyst to the second catalyst is 1:1-8.
  • the first hydrodesulfurization catalytically active component is a Group VIII metal element and a Group VIB metal element;
  • the content of the Group VIII metal element is 15 to 35% by weight, preferably 20 to 30% by weight, based on the dry basis weight of the catalyst; and the content of the Group VIB metal element is 35 to 75% by weight. , preferably 40-65% by weight; and/or
  • the second hydrodesulfurization catalytically active component is a Group VIII metal element and a Group VIB metal element;
  • the content of the Group VIII metal element is from 1 to 8% by weight, preferably from 2 to 6% by weight, based on the dry basis weight of the second catalyst, and the content of the Group VIB metal element is from 10 to 35. % by weight, preferably 15-30% by weight;
  • the Group VIII metal element is at least one selected from the group consisting of iron, cobalt, nickel, ruthenium, osmium, and palladium
  • the Group VIB metal element is at least one selected from the group consisting of chromium, molybdenum, and tungsten.
  • the part of the first hydrodesulfurization catalytically active component is a part of a Group VIII metal element, and the content of the part of the Group VIII metal element It is 60-90% of the total content of the Group VIII metal elements.
  • the pore volume of the pore diameter of 2-40 nm accounts for 75-90% of the total pore volume, the pore volume of the pore diameter of 100-300 nm accounts for 5-15% of the total pore volume, and the pore diameter of the pore of the range of 2-4 nm.
  • the volume does not exceed 10% of the total pore volume;
  • the first catalyst has a specific surface area of 70-200 m 2 /g, a pore volume of 0.15-0.6 mL/g, an average pore diameter of 5-25 nm; and/or
  • the second catalyst has a specific surface area of 130-300 m 2 /g, a pore volume of 0.2-0.7 mL / g, an average pore diameter of 6-20 nm;
  • the first catalyst and the second catalyst are respectively shaped catalyst systems, and the shape of the first catalyst and the shape of the second catalyst are each independently selected from the group consisting of a cylindrical shape, a clover shape, a four-leaf clover shape, and a honeycomb shape.
  • the first inorganic refractory component is contained in an amount of 5 to 40% by weight, preferably 10 to 30% by weight based on the dry basis weight of the first catalyst; and/or
  • the content of the second inorganic refractory component is from 60 to 85% by weight, preferably from 70 to 80% by weight, based on the dry basis weight of the second catalyst.
  • the molar ratio of the carboxylic acid to the Group VIII element is from 0.5 to 8, preferably from 1 to 5;
  • the carboxylic acid is selected from the group consisting of a mono-saturated carboxylic acid of C 1-18 , a phenyl acid of C 7-10 , citric acid, adipic acid, malonic acid, succinic acid, maleic acid, tartaric acid, and the like. At least one of them.
  • the second catalyst further comprises a phosphorus element in an amount of from 0.8 to 10% by weight, preferably from 1 to 8% by weight, based on the dry basis weight of the second catalyst and based on P 2 O 5 .
  • a method for preparing a hydrofinishing catalyst system comprising a first catalyst bed layer and a second catalyst bed layer, wherein the method comprises:
  • the first catalyst and the second catalyst are respectively charged in a first catalyst bed layer and a second catalyst bed in a volume ratio of 1:1 to 8 to obtain the hydrotreating catalyst system.
  • the precursor of the first hydrodesulfurization catalytically active component is a precursor of a Group VIII metal element and a precursor of a Group VIB metal element;
  • the precursor of the Group VIII metal element and the precursor of the Group VIB metal element are used in an amount such that, in the first catalyst, based on the dry basis weight of the first catalyst and based on the oxide, the Group VIII metal element
  • the content is 15 to 35% by weight, preferably 20 to 30% by weight; the content of the Group VIB metal element is 35 to 75% by weight, preferably 40 to 65% by weight; and/or
  • the precursor of the second hydrodesulfurization catalytically active component is a precursor of a Group VIII metal element and a precursor of a Group VIB metal element;
  • the precursor of the Group VIII metal element and the precursor of the Group VIB metal element are used in an amount such that, in the second catalyst, based on the dry basis weight of the second catalyst and based on the oxide, the Group VIII metal element
  • the content of the component is from 1 to 8% by weight, preferably from 2 to 6% by weight; the content of the Group VIB metal element is from 10 to 35% by weight, preferably from 15 to 30% by weight;
  • the Group VIII metal element is at least one selected from the group consisting of iron, cobalt, nickel, ruthenium, osmium, and palladium
  • the Group VIB metal element is at least one selected from the group consisting of chromium, molybdenum, and tungsten.
  • the precursor of the part of the first hydrodesulfurization catalytically active component is a precursor of the part VIII metal element used in the preparation of the partial first catalyst
  • the precursor of the Part VIII metal element used in the preparation of the partial first catalyst is used in an amount of 60-90% of the total amount of the precursor using the Group VIII metal element in the preparation of the first catalyst.
  • the first inorganic refractory component is used in an amount such that the first catalyst
  • the content of the first inorganic refractory component is from 5 to 40% by weight, preferably from 10 to 30% by weight, based on the dry basis weight; and/or
  • the second inorganic refractory component is used in an amount such that, in the second catalyst, the content of the second inorganic refractory component is based on the dry basis weight of the second catalyst. 60-85% by weight, preferably 70-80% by weight.
  • step (2) the molar ratio of the carboxylic acid to the Group VIII element is from 0.5 to 8, preferably from 1 to 5;
  • the carboxylic acid is selected from the group consisting of a mono-saturated carboxylic acid of C 1-18 , a phenyl acid of C 7-10 , citric acid, adipic acid, malonic acid, succinic acid, maleic acid, and tartaric acid, and the like. At least one of them.
  • the first impregnation solution further comprises a phosphorus-containing substance
  • the phosphorus-containing substance is used in an amount such that the dry weight of the first catalyst is based on P 2 O 5
  • the phosphorus element is contained in an amount of from 0.8 to 10% by weight, preferably from 1 to 8% by weight; and/or
  • the second impregnation solution further comprises a phosphorus-containing substance, the phosphorus-containing substance is used in an amount such that the phosphorus element content is 0.8 based on the dry basis weight of the second catalyst and based on P 2 O 5 . 10% by weight, preferably 1-8% by weight;
  • the phosphorus-containing substance is selected from at least one of phosphoric acid, hypophosphorous acid, ammonium phosphate, and ammonium dihydrogen phosphate.
  • the first calcination conditions include: a calcination temperature of 300 to 900 ° C, preferably 400 to 800 ° C; a calcination time of 1 to 15 h, preferably 3 to 8 h; and/or
  • the second calcination conditions include a calcination temperature of 400 to 1000 ° C, preferably 500 to 800 ° C; and a calcination time of 1 to 15 h, preferably 3 to 8 h.
  • drying conditions each independently comprise: drying at a temperature of 50-250 ° C, preferably 100-200 ° C; drying The time is 2-10 h, preferably 3-8 h.
  • the silica precursor is at least one of silica sol, white carbon and silica;
  • the magnesium oxide precursor is magnesium hydroxide, magnesium nitrate, magnesium carbonate At least one of magnesium acetate and magnesium oxide;
  • the precursor of the calcium oxide is at least one of calcium hydroxide, calcium carbonate, calcium oxalate, calcium nitrate, calcium acetate and calcium oxide;
  • the zirconia precursor Is at least one of zirconium hydroxide, zirconium carbonate, zirconium nitrate, zirconium acetate and zirconium oxide;
  • the precursor of the titanium oxide is at least one of titanium hydroxide, titanium nitrate, titanium acetate and zirconium oxide;
  • the silicon oxide, magnesium oxide, calcium oxide, zirconium oxide and titanium oxide precursors have an average pore diameter of not less than 10 nm, and a pore volume of 2-6 nm has a pore volume ratio of not more than 15%, and the pore diameter is not more than 15%.
  • the ratio of the pore volume in the range of 6-40 nm to the total pore volume is not less than 75%.
  • the alumina carrier is prepared such that a pore volume having a pore diameter in the range of 2-4 nm accounts for 0 of the total pore volume in the alumina carrier. -2%, the pore volume of pores at 4-6 nm accounts for 2-15% of the total volume, the pore volume of pores at 6-40 nm accounts for 85-95% of the total volume, and the pore diameter of the remaining pores is 40-100 nm, and the pore diameter is not included at 100 nm. Above the hole.
  • a hydrofinishing catalyst system prepared by the process of any one of items E8 to E17.
  • a method for hydrotreating a distillate characterized in that the method comprises: vulcanizing the hydrofinishing catalyst system according to any one of items E1 to E7 and E19, and then introducing a hydrodesulfurization fraction to be hydrolyzed.
  • the oil is subjected to contact with the post-vulcanization hydrotreating catalyst under hydrodesulfurization conditions.
  • the hydrodesulfurization performance of the catalyst was measured on a 20 mL high pressure hydrodesulfurization reactor, and the oxidation state catalyst was directly converted into a sulfided catalyst by a temperature programmed vulcanization method.
  • the vulcanization conditions include: the vulcanization pressure is 6.4 MPa, the vulcanized oil is kerosene containing CS 2 2% by weight, the volumetric space velocity is 2 h -1 , and the hydrogen to oil ratio is 300 v/v. First, the temperature is maintained at 230 ° C / h for 6 h, and then the temperature is raised.
  • the rate of temperature increase in each stage was 10 ° C / h.
  • the reaction raw materials were switched to carry out a hydrodesulfurization activity test, and the reaction raw materials were high nitrogen high aromatic hydrocarbon distillates having a sulfur content of 9100 ppm, a nitrogen content of 532 ppm, and an aromatic content of 55 wt%.
  • the test conditions included a pressure of 6.4 MPa, a volumetric space velocity of 1.5 h -1 , a hydrogen to oil ratio of 300 v/v, and a reaction temperature of 340 °C.
  • the sulfur content of the product was analyzed after 7 days of stable reaction.
  • the composition of the catalyst was calculated based on the amount of charge in the preparation process.
  • the sulfur and nitrogen mass fractions of the product were analyzed using a sulfur nitrogen analyzer (manufactured by Thermo Fisher Scientific, model TN/TS3000), and the aromatics content of the product was measured by Near Infrared Spectroscopy using an Antaris II analyzer manufactured by Thermo Scientific. Analyzed.
  • the specific surface area of the catalyst and the pore distribution, pore size and pore volume in the 2-40 nm pore size range were determined by low temperature nitrogen adsorption method (according to GB/T5816-1995), pore distribution, pore size and pore volume in the pore range of 100-300 nm. It is determined by mercury intrusion method (according to GB/T21650.1-2008).
  • the XRD patterns of the inorganic refractory component and the catalyst were recorded using an EMPYREAN model XRD diffractometer of PANalytical Co., Ltd., wherein 2 ⁇ was 10-70° and the scanning speed was 5°/min. .
  • the amounts of the inorganic refractory components refer to the The total amount and total content of other components of the inorganic refractory component other than the hydrodesulfurization catalytically active component.
  • This example is intended to illustrate a hydrofinishing catalyst and a process for the preparation thereof according to the present invention.
  • the amount of the basic cobalt carbonate used is 22.0% by weight based on the cobalt (as cobalt oxide) in the catalyst.
  • the ratio of the number of moles of propanol to the mass of the inorganic refractory component is 0.01, and the ratio of the mass of citric acid to the mass of the inorganic refractory component is 0.02.
  • the mixing ratio of the impregnation solution and the cobalt-containing inorganic refractory powder is such that the content of molybdenum oxide in the catalyst is 55.0% by weight and the content of cobalt oxide is 30.0% by weight based on the dry weight of the catalyst and based on the oxide.
  • the content of P 2 O 5 was 5% by weight, and the content of the inorganic refractory component was 10.0% by weight.
  • the specific surface area of the catalyst is 93.0 m 2 /g, and the pore diameter is mainly distributed at 2-40 nm and 100-300 nm, wherein the pore volume in the range of 2-40 nm accounts for 88.5% of the total pore volume (wherein the pore diameter is in the range of 2-4 nm).
  • the pore volume accounts for 8.9% of the total pore volume, the pore volume in the range of 100-300 nm accounts for 6.3% of the total pore volume, the total pore volume is 0.22 mL/g, and the average pore diameter is 9.5 nm.
  • the obtained product had a sulfur content of 9.3 ppm, a nitrogen content of 1.8 ppm, and an aromatic hydrocarbon of 36.6 wt%.
  • This example is intended to illustrate a hydrofinishing catalyst and a process for the preparation thereof according to the present invention.
  • the amount of the basic nickel carbonate used is 15.0% by weight based on the nickel (as nickel oxide) in the catalyst.
  • the ratio of the number of moles of ethylene glycol to the mass of the inorganic refractory component is 0.015, and the ratio of the mass of the acetic acid to the mass of the inorganic refractory component is 0.03.
  • the mixing ratio of the impregnation solution and the nickel-containing inorganic refractory powder is such that the content of molybdenum oxide in the catalyst is 46.0% by weight and the content of nickel oxide is 20.0% by weight based on the dry weight of the catalyst and based on the oxide.
  • the content of P 2 O 5 was 4% by weight, and the content of the inorganic refractory component was 30.0% by weight.
  • the specific surface area of the catalyst is 145 m 2 /g, and the pore diameter is mainly distributed at 2-40 nm and 100-300 nm, wherein the pore volume in the range of 2-40 nm accounts for 85.5% of the total pore volume (wherein the pore diameter is in the range of 2-4 nm).
  • the ratio of the pore volume to the total pore volume was 7.6%.
  • the ratio of the pore volume in the range of 100-300 nm to the total pore volume was 13.2%, the total pore volume was 0.36 mL/g, and the average pore diameter was 9.9 nm.
  • the obtained product had a sulfur content of 9.8 ppm, a nitrogen content of 1.9 ppm, and an aromatic hydrocarbon of 34.8% by weight.
  • This example is intended to illustrate a hydrofinishing catalyst and a process for the preparation thereof according to the present invention.
  • the amount of the basic nickel carbonate used is 16.0% by weight based on the nickel (as nickel oxide) in the catalyst.
  • the ratio of the mole number of butanol to the mass of the inorganic refractory component is 0.02, and the ratio of the mass of tartaric acid to the mass of the inorganic refractory component is 0.05.
  • the mixing ratio of the impregnation solution to the nickel-containing inorganic refractory powder is such that the content of molybdenum oxide in the catalyst is 47.0% by weight and the content of nickel oxide is 25.0% by weight based on the dry weight of the catalyst and based on the oxide.
  • the content of P 2 O 5 was 8.0% by weight, and the content of the inorganic refractory component was 20.0% by weight.
  • the catalyst After the catalyst was calcined at 400 ° C for 3 h, its pore size distribution was analyzed by low temperature nitrogen adsorption and mercury intrusion.
  • the catalyst has a specific surface area of 155 m 2 /g, and the pore diameter is mainly distributed at 2-40 nm and 100-300 nm, wherein the pore volume in the range of 2-40 nm accounts for 89.3% of the total pore volume (wherein the pore diameter is in the range of 2-4 nm).
  • the ratio of the pore volume to the total pore volume was 6.7%.
  • the ratio of the pore volume in the range of 100-300 nm to the total pore volume was 7.4%, the total pore volume was 0.31 mL/g, and the average pore diameter was 8.0 nm.
  • the obtained product had a sulfur content of 6.4 ppm, a nitrogen content of 0.8 ppm, and an aromatic hydrocarbon of 33.5 wt%.
  • This example is intended to illustrate a hydrofinishing catalyst and a process for the preparation thereof according to the present invention.
  • the amount of the basic nickel carbonate used is 20.0% by weight based on the nickel (as nickel oxide) in the catalyst.
  • the ratio of the number of moles of ethylene glycol to the mass of the inorganic refractory component is 0.012, and the ratio of the mass of the acetic acid to the mass of the inorganic refractory component is 0.06.
  • the mixing ratio of the impregnation solution and the nickel-containing inorganic refractory powder is such that the content of molybdenum oxide in the catalyst is 22.5% by weight and the content of tungsten oxide is 22.5% based on the dry weight of the catalyst and based on the oxide.
  • the content of nickel oxide was 27.0% by weight, the content of P 2 O 5 was 4.0% by weight, and the content of the inorganic refractory component was 15.0% by weight.
  • the catalyst After the catalyst was calcined at 400 ° C for 3 h, its pore size distribution was analyzed by low temperature nitrogen adsorption and mercury intrusion.
  • the catalyst has a specific surface area of 120 m 2 /g, and the pore diameter is mainly distributed at 2-40 nm and 100-300 nm, wherein the pore volume in the range of 2-40 nm accounts for 76.9% of the total pore volume (wherein the pore diameter is in the range of 2-4 nm).
  • the ratio of the pore volume to the total pore volume was 9.5%.
  • the ratio of the pore volume in the range of 100-300 nm to the total pore volume was 20.3%, the total pore volume was 0.26 mL/g, and the average pore diameter was 8.7 nm.
  • the obtained product had a sulfur content of 9.1 ppm, a nitrogen content of 1.8 ppm, and an aromatic hydrocarbon of 36.2% by weight.
  • This example is intended to illustrate a hydrofinishing catalyst and a process for the preparation thereof according to the present invention.
  • the amount of the basic nickel carbonate used is 28.0% by weight based on the nickel (as nickel oxide) in the catalyst.
  • the ratio of the number of moles of glycerol to the mass of the inorganic refractory component is 0.01, and the ratio of the mass of the hexanoic acid to the mass of the inorganic refractory component is 0.025.
  • the mixing ratio of the impregnation solution and the nickel-containing inorganic refractory powder is such that the content of tungsten oxide in the catalyst is 45.0% and the content of nickel oxide is 32.0% by weight based on the dry weight of the catalyst and based on the oxide.
  • the content of P 2 O 5 was 3.0% by weight, and the content of the inorganic refractory component was 20.0% by weight.
  • the catalyst After the catalyst was calcined at 400 ° C for 3 h, its pore size distribution was analyzed by low temperature nitrogen adsorption and mercury intrusion.
  • the catalyst has a specific surface area of 109 m 2 /g, and the pore diameter is mainly distributed at 2-40 nm and 100-300 nm, wherein the pore volume in the range of 2-40 nm accounts for 85.6% of the total pore volume (wherein the pore diameter is in the range of 2-4 nm).
  • the ratio of the pore volume to the total pore volume was 6.8%.
  • the ratio of the pore volume in the range of 100-300 nm to the total pore volume was 12.3%, the total pore volume was 0.29 mL/g, and the average pore diameter was 10.6 nm.
  • the obtained product had a sulfur content of 7.5 ppm, a nitrogen content of 0.4 ppm, and an aromatic hydrocarbon of 34.8% by weight.
  • This example is intended to illustrate a hydrofinishing catalyst and a process for the preparation thereof according to the present invention.
  • the amount of basic nickel carbonate used is 21.0% by weight based on the nickel (as nickel oxide) in the catalyst.
  • the ratio of the molar number of glycerol to the mass of the inorganic refractory component is 0.008, and the ratio of the mass of citric acid to the mass of the inorganic refractory component is 0.08.
  • the mixing ratio of the impregnation solution and the nickel-containing inorganic refractory powder is such that the content of tungsten oxide in the catalyst is 53.0% by weight and the content of nickel oxide is 25.0% by weight based on the dry weight of the catalyst and based on the oxide.
  • the content of the inorganic refractory component was 22.0% by weight (wherein the content of silica was 15% by weight and the content of magnesium oxide was 7.0% by weight).
  • the catalyst After the catalyst was calcined at 400 ° C for 3 h, its pore size distribution was analyzed by low temperature nitrogen adsorption and mercury intrusion.
  • the catalyst has a specific surface area of 165 m 2 /g, and the pore diameter is mainly distributed at 2-40 nm and 100-300 nm, wherein the pore volume in the range of 2-40 nm accounts for 87.5% of the total pore volume (wherein the pore diameter is in the range of 2-4 nm).
  • the ratio of the pore volume to the total pore volume was 8.7%.
  • the ratio of the pore volume in the range of 100-300 nm to the total pore volume was 7.8%, the total pore volume was 0.32 mL/g, and the average pore diameter was 7.8 nm.
  • the obtained product had a sulfur content of 9.9 ppm, a nitrogen content of 2.1 ppm, and an aromatic hydrocarbon of 37.2% by weight.
  • This example is intended to illustrate a hydrofinishing catalyst and a process for the preparation thereof according to the present invention.
  • the catalyst was prepared substantially in the same manner as in Example I-6 except that the Group VIII and Group VIB elements were introduced in the step (1), and the total amount was unchanged.
  • the amount of ammonium metatungstate is 3.0% by weight based on the tungsten (as tungsten oxide) in the catalyst, and the amount of basic nickel carbonate in the catalyst is 18.0% by weight based on the nickel (as nickel oxide).
  • the ratio of the molar number of glycerol to the mass of the inorganic refractory component is 0.008, and the ratio of the mass of citric acid to the mass of the inorganic refractory component is 0.08.
  • the mixing ratio of the impregnation solution to the inorganic refractory powder containing tungsten and nickel is such that the content of tungsten oxide in the catalyst is 53.0% by weight and the content of nickel oxide is 25.0 based on the dry weight of the catalyst and based on the oxide.
  • the content by weight of the inorganic refractory component was 22.0% by weight (wherein the content of silica was 15% by weight and the content of magnesium oxide was 7.0% by weight).
  • the catalyst After the catalyst was calcined at 400 ° C for 3 h, its pore size distribution was analyzed by low temperature nitrogen adsorption and mercury intrusion.
  • the catalyst has a specific surface area of 162 m 2 /g, and the pore diameter is mainly distributed at 2-40 nm and 100-300 nm, wherein the pore volume in the range of 2-40 nm accounts for 85.6% of the total pore volume (wherein the pore diameter is in the range of 2-4 nm).
  • the ratio of pore volume to total pore volume was 8.7%.
  • the ratio of pore volume in the range of 100-300 nm to the total pore volume was 8.3%, the total pore volume was 0.33 mL/g, and the average pore diameter was 7.9 nm.
  • the obtained product had a sulfur content of 15.3 ppm, a nitrogen content of 5.7 ppm, and an aromatic hydrocarbon of 38.9 wt%.
  • This example is intended to illustrate a hydrofinishing catalyst and a process for the preparation thereof according to the present invention.
  • the catalyst was prepared essentially as in Example I-2 except that the silica was replaced with a pseudo-boehmite powder.
  • the amount of the basic nickel carbonate used is 15.0% by weight based on the nickel (as nickel oxide) in the catalyst.
  • the ratio of the number of moles of ethylene glycol to the mass of the inorganic refractory component is 0.015, and the ratio of the mass of the acetic acid to the mass of the inorganic refractory component is 0.03.
  • the mixing ratio of the impregnation solution and the nickel-containing inorganic refractory powder is such that the content of molybdenum oxide in the catalyst is 46.0% by weight and the content of nickel oxide is 20.0% by weight based on the dry weight of the catalyst and based on the oxide.
  • the content of P 2 O 5 was 4% by weight, and the content of the inorganic refractory component was 30.0% by weight.
  • the catalyst After the catalyst was calcined at 400 ° C for 3 h, its pore size distribution was analyzed by low temperature nitrogen adsorption and mercury intrusion.
  • the catalyst has a specific surface area of 167 m 2 /g, and the pore diameter is mainly distributed at 2-40 nm and 100-300 nm, wherein the pore volume in the range of 2-40 nm accounts for 89.0% of the total pore volume (wherein the pore diameter is in the range of 2-4 nm).
  • the ratio of the pore volume to the total pore volume was 7.9%.
  • the ratio of the pore volume in the range of 100-300 nm to the total pore volume was 7.3%, the total pore volume was 0.37 mL/g, and the average pore diameter was 8.9 nm.
  • the obtained product had a sulfur content of 28.5 ppm, a nitrogen content of 7.3 ppm, and an aromatic hydrocarbon of 40.1% by weight.
  • FIG. 1 shows an XRD spectrum of an inorganic refractory component and a hydrofinishing catalyst prepared according to the present embodiment, wherein peaks of 2 ⁇ at 37.1°, 43.1°, and 62.6° correspond to characteristic peaks of nickel oxide, 2 ⁇ is 45.5° and The peak of 65.8° corresponds to the characteristic peak of alumina.
  • the XRD spectrum of the obtained catalyst exhibited characteristic peaks similar to those of the obtained inorganic refractory component.
  • This comparative example is for explaining a hydrotreating catalyst which is not the present invention and a method for producing the same.
  • Example I-1 Commercially available white carbon black (specific surface area: 220 m 2 /g, average pore diameter: 12.7 nm) and basic cobalt carbonate powder were uniformly mixed, and a cobalt-containing inorganic refractory powder was obtained without undergoing a calcination step.
  • the amount of the basic cobalt carbonate used is 22.0% by weight based on the cobalt (as cobalt oxide) in the catalyst.
  • the impregnation solution was prepared in accordance with the step (2) of Example I-1, and the catalyst was prepared in accordance with the step (3) of Example I-1.
  • the content of the inorganic refractory component and each metal component in the obtained catalyst was the same as that of the catalyst obtained in Example I-1.
  • the catalyst After the catalyst was calcined at 400 ° C for 3 h, its pore size distribution was analyzed by low temperature nitrogen adsorption and mercury intrusion.
  • the catalyst has a specific surface area of 172 m 2 /g, and the pore diameter is mainly distributed at 2-40 nm and 100-300 nm, wherein the pore volume in the range of 2-40 nm accounts for 90.2% of the total pore volume (wherein the pore diameter is in the range of 2-4 nm).
  • the ratio of pore volume to total pore volume was 12.5%.
  • the ratio of pore volume in the range of 100-300 nm to the total pore volume was 2.5%, the total pore volume was 0.31 mL/g, and the average pore diameter was 7.2 nm.
  • the obtained product had a sulfur content of 45.6 ppm, a nitrogen content of 8.7 ppm, and an aromatic hydrocarbon of 42.1% by weight.
  • This comparative example is for explaining a hydrotreating catalyst which is not the present invention and a method for producing the same.
  • Example I-2 The same inorganic refractory precursor, active component precursor, and organic alcohol and organic carboxylic acid as used in Example I-2 were mixed, extruded, and dried in the same amounts as in Example I-2 to obtain a catalyst.
  • the specific surface area of the catalyst is 122 m 2 /g, and the pore diameter is mainly distributed at 2-40 nm and 100-300 nm, wherein the pore volume in the range of 2-40 nm accounts for 91.5% of the total pore volume (wherein the pore diameter is in the range of 2-4 nm).
  • the ratio of the pore volume to the total pore volume was 10.2), the ratio of the pore volume in the range of 100-300 nm to the total pore volume was 2.2%, the total pore volume was 0.29 mL/g, and the average pore diameter was 9.5 nm.
  • the obtained product had a sulfur content of 60.2 ppm, a nitrogen content of 13.5 ppm, and an aromatic hydrocarbon of 43.5 wt%.
  • This comparative example is for explaining a hydrotreating catalyst which is not the present invention and a method for producing the same.
  • the catalyst was prepared essentially as in Example I-6, except that the organic alcohol and the organic carboxylic acid were not added in the preparation of the impregnation solution.
  • the specific surface area of the catalyst is 115 m 2 /g, and the pore diameter is mainly distributed at 2-40 nm and 100-300 nm, wherein the pore volume in the range of 2-40 nm accounts for 80.3% of the total pore volume (wherein the pore diameter is in the range of 2-4 nm).
  • the ratio of the pore volume to the total pore volume was 7.3%.
  • the ratio of the pore volume in the range of 100-300 nm to the total pore volume was 19.5%, the total pore volume was 0.38 mL/g, and the average pore diameter was 13.2 nm.
  • the obtained product had a sulfur content of 32.5 ppm, a nitrogen content of 6.8 ppm, and an aromatic hydrocarbon of 40.3 wt%.
  • This comparative example is for explaining a hydrotreating catalyst which is not the present invention and a method for producing the same.
  • the catalyst was prepared substantially in accordance with the procedure of Example I-6, except that the Group VIII metal element was not introduced in the step (1), and the Group VIII metal element was completely introduced in the step (2).
  • the ratio of the molar number of glycerol to the mass of the inorganic refractory component is 0.008, and the ratio of the mass of citric acid to the mass of the inorganic refractory component is 0.08.
  • the mixing ratio of the impregnation solution and the inorganic refractory powder is such that the content of tungsten oxide in the catalyst is 53.0% by weight, the content of nickel oxide is 25.0% by weight, and the inorganic refractory component is based on the dry weight of the catalyst and based on the oxide.
  • the content was 22.0% by weight (wherein the content of silica was 15% by weight and the content of magnesium oxide was 7.0% by weight).
  • the specific surface area of the catalyst is 178 m 2 /g, and the pore diameter is mainly distributed at 2-40 nm and 100-300 nm, wherein the pore volume in the range of 2-40 nm accounts for 92.5% of the total pore volume (wherein the pore diameter is in the range of 2-4 nm).
  • the ratio of the pore volume to the total pore volume was 9.8%.
  • the pore volume in the range of 100-300 nm accounted for 4.5% of the total pore volume, the total pore volume was 0.30 mL/g, and the average pore diameter was 6.74 nm.
  • the obtained product had a sulfur content of 37.5 ppm, a nitrogen content of 7.6 ppm, and an aromatic hydrocarbon of 41.8 wt%.
  • This comparative example is for explaining a hydrotreating catalyst which is not the present invention and a method for producing the same.
  • the pseudo-boehmite (purchased from Sinopec Changling Catalyst Factory, having a specific surface area of 300 m 2 /g, an average pore diameter of 12 nm, a pore volume of 2-6 nm and a ratio of pore volume to total pore volume of 8.9%, The ratio of the pore volume of the pores of 6-40 nm to the total pore volume is 76.5%.
  • the mixture is mixed with an appropriate amount of phthalocyanine powder and nitric acid, and an alumina carrier precursor having a particle diameter of 1.6 mm is prepared by extrusion. The precursor is It was dried at 120 ° C for 3 h and then calcined at 500 ° C for 6 h to obtain an alumina carrier as an inorganic refractory component.
  • the ratio of the number of moles of propanol to the number of moles of cobalt oxide is 1:1, and the ratio of the mass of citric acid to the mass of alumina is 0.02.
  • the carrier was impregnated according to the pore saturated impregnation method, and dried at 120 ° C for 3 hours to prepare an oxidation state catalyst having a particle diameter of 1.6 mm.
  • the content of molybdenum oxide in the catalyst was 25.5% by weight, the content of cobalt oxide was 5.6% by weight, and the content of the inorganic refractory component was 68.9% based on the dry weight of the catalyst and based on the oxide.
  • the catalyst was calcined at 400 ° C for 3 h, its pore size distribution was analyzed by low temperature nitrogen adsorption and mercury intrusion.
  • the specific surface area of the catalyst was 158.0 m 2 /g, and the pore diameter was mainly distributed at 2-40 nm, and did not contain pores of 100-300 nm.
  • the total pore volume was 0.42 mL/g and the average pore diameter was 10.6 nm.
  • the obtained product had a sulfur content of 48.3 ppm, a nitrogen content of 6.1 ppm, and an aromatic hydrocarbon of 43.8 wt%.
  • Example I-8 28.5 7.3 40.1% Comparative Example I-1 45.6 8.7 42.1% Comparative Example I-2 60.2 13.5 43.5% Comparative Example I-3 32.5 6.8 40.3% Comparative Example I-4 37.5 7.6 41.8% Comparative Example I-5 48.3 6.1 43.8%
  • This example is intended to illustrate a hydrofinishing catalyst and a process for the preparation thereof according to the present invention.
  • the amount of the basic cobalt carbonate used is 22.0% by weight based on the cobalt (as cobalt oxide) in the catalyst.
  • the ratio of the mass of citric acid to the mass of the inorganic refractory component is 0.2.
  • the mixing ratio of the impregnation solution and the cobalt-containing inorganic refractory powder is such that the content of molybdenum oxide in the catalyst is 55.0% by weight and the content of cobalt oxide is 30.0% by weight based on the dry weight of the catalyst and based on the oxide.
  • the content of P 2 O 5 was 5% by weight, and the content of the inorganic refractory component was 10.0% by weight.
  • the specific surface area of the catalyst is 96.0 m 2 /g, and the pore diameter is mainly distributed at 2-40 nm and 100-300 nm, wherein the pore volume in the range of 2-40 nm accounts for 86.6% of the total pore volume (wherein the pore diameter is in the range of 2-4 nm).
  • the pore volume accounts for 9.5% of the total pore volume, the pore volume in the range of 100-300 nm accounts for 7.2% of the total pore volume, the total pore volume is 0.26 mL/g, and the average pore diameter is 10.8 nm.
  • the obtained product had a sulfur content of 6.4 ppm, a nitrogen content of 1.2 ppm, and an aromatic hydrocarbon of 36.1% by weight.
  • This example is intended to illustrate a hydrofinishing catalyst and a process for the preparation thereof according to the present invention.
  • the amount of the basic nickel carbonate used is 15.0% by weight based on the nickel (as nickel oxide) in the catalyst.
  • the ratio of the mass of the acetic acid to the mass of the inorganic refractory component is 0.3.
  • the mixing ratio of the impregnation solution and the nickel-containing inorganic refractory powder is such that the content of molybdenum oxide in the catalyst is 46.0% by weight and the content of nickel oxide is 20.0% by weight based on the dry weight of the catalyst and based on the oxide.
  • the content of P 2 O 5 was 4% by weight, and the content of the inorganic refractory component was 30.0% by weight.
  • the specific surface area of the catalyst is 149 m 2 /g, and the pore diameter is mainly distributed at 2-40 nm and 100-300 nm, wherein the pore volume in the range of 2-40 nm accounts for 88.5% of the total pore volume (wherein the pore diameter is in the range of 2-4 nm).
  • the ratio of the pore volume to the total pore volume was 6.3%.
  • the ratio of the pore volume in the range of 100-300 nm to the total pore volume was 10.0%, the total pore volume was 0.33 mL/g, and the average pore diameter was 8.9 nm.
  • the obtained product had a sulfur content of 5.4 ppm, a nitrogen content of 0.9 ppm, and an aromatic hydrocarbon of 33.9 wt%.
  • This example is intended to illustrate a hydrofinishing catalyst and a process for the preparation thereof according to the present invention.
  • the amount of the basic nickel carbonate used is 16.0% by weight based on the nickel (as nickel oxide) in the catalyst.
  • the ratio of the mass of tartaric acid to the mass of the inorganic refractory component is 0.5.
  • the mixing ratio of the impregnation solution to the nickel-containing inorganic refractory powder is such that the content of molybdenum oxide in the catalyst is 47.0% by weight and the content of nickel oxide is 25.0% by weight based on the dry weight of the catalyst and based on the oxide.
  • the content of P 2 O 5 was 8.0% by weight, and the content of the inorganic refractory component was 20.0% by weight.
  • the specific surface area of the catalyst is 151 m 2 /g, and the pore diameter is mainly distributed at 2-40 nm and 100-300 nm, wherein the pore volume in the range of 2-40 nm accounts for 90.0% of the total pore volume (wherein the pore diameter is in the range of 2-4 nm).
  • the ratio of pore volume to total pore volume was 7.6%.
  • the ratio of pore volume in the range of 100-300 nm to the total pore volume was 6.1%, the total pore volume was 0.28 mL/g, and the average pore diameter was 7.4 nm.
  • the obtained product had a sulfur content of 4.5 ppm, a nitrogen content of 0.6 ppm, and an aromatic hydrocarbon of 32.9 wt%.
  • This example is intended to illustrate a hydrofinishing catalyst and a process for the preparation thereof according to the present invention.
  • the amount of the basic nickel carbonate used is 20.0% by weight based on the nickel (as nickel oxide) in the catalyst.
  • the ratio of the mass of the acetic acid to the mass of the inorganic refractory component is 0.25.
  • the mixing ratio of the impregnation solution and the nickel-containing inorganic refractory powder is such that the content of molybdenum oxide in the catalyst is 22.5% by weight and the content of tungsten oxide is 22.5% based on the dry weight of the catalyst and based on the oxide.
  • the content of nickel oxide was 27.0% by weight, the content of P 2 O 5 was 4.0% by weight, and the content of the inorganic refractory component was 15.0% by weight.
  • the specific surface area of the catalyst is 132 m 2 /g, and the pore diameter is mainly distributed at 2-40 nm and 100-300 nm, wherein the ratio of the pore volume in the range of 2-40 nm to the total pore volume is 81.1% (wherein the pore diameter is in the range of 2-4 nm).
  • the ratio of the pore volume to the total pore volume was 7.9%.
  • the pore volume in the range of 100-300 nm accounted for 16.5% of the total pore volume, the total pore volume was 0.27 mL/g, and the average pore diameter was 8.2 nm.
  • the obtained product had a sulfur content of 6.9 ppm, a nitrogen content of 1.2 ppm, and an aromatic hydrocarbon of 36.3 wt%.
  • This example is intended to illustrate a hydrofinishing catalyst and a process for the preparation thereof according to the present invention.
  • a commercially available zirconium hydroxide powder (having a specific surface area of 180 m 2 /g, an average pore diameter of 13.3 nm) and a basic nickel carbonate powder were uniformly mixed, and then calcined at 400 ° C for 3 hours to obtain a nickel-containing inorganic refractory powder.
  • the amount of the basic nickel carbonate used is 28.0% by weight based on the nickel (as nickel oxide) in the catalyst.
  • the ratio of the mass of the caproic acid to the mass of the inorganic refractory component is 0.6.
  • the mixing ratio of the impregnation solution and the nickel-containing inorganic refractory powder is such that the content of tungsten oxide in the catalyst is 45.0% and the content of nickel oxide is 32.0% by weight based on the dry weight of the catalyst and based on the oxide.
  • the content of P 2 O 5 was 3.0% by weight, and the content of the inorganic refractory component was 20.0% by weight.
  • the catalyst has a specific surface area of 104 m 2 /g, and the pore diameter is mainly distributed at 2-40 nm and 100-300 nm, wherein the pore volume in the range of 2-40 nm accounts for 82.2% of the total pore volume (wherein the pore diameter is in the range of 2-4 nm).
  • the pore volume accounts for 6.0% of the total pore volume, the pore volume in the range of 100-300 nm accounts for 14.5% of the total pore volume, the total pore volume is 0.34 mL/g, and the average pore diameter is 13.1 nm.
  • the obtained product had a sulfur content of 4.2 ppm, a nitrogen content of 0.3 ppm, and an aromatic hydrocarbon of 33.2% by weight.
  • This example is intended to illustrate a hydrofinishing catalyst and a process for the preparation thereof according to the present invention.
  • the amount of basic nickel carbonate used is 21.0% by weight based on the nickel (as nickel oxide) in the catalyst.
  • the ratio of the mass of citric acid to the mass of the inorganic refractory component is 0.3.
  • the mixing ratio of the impregnation solution and the nickel-containing inorganic refractory powder is such that the content of tungsten oxide in the catalyst is 53.0% by weight and the content of nickel oxide is 25.0% by weight based on the dry weight of the catalyst and based on the oxide.
  • the content of the inorganic refractory component was 22.0% by weight (wherein the content of silica was 15% by weight and the content of magnesium oxide was 7.0% by weight).
  • the specific surface area of the catalyst is 143 m 2 /g, and the pore diameter is mainly distributed at 2-40 nm and 100-300 nm, wherein the pore volume in the range of 2-40 nm accounts for 85.3% of the total pore volume (wherein the pore diameter is in the range of 2-4 nm).
  • the ratio of the pore volume to the total pore volume was 7.8%.
  • the pore volume in the range of 100-300 nm accounted for 9.4% of the total pore volume, the total pore volume was 0.35 mL/g, and the average pore diameter was 9.8 nm.
  • the obtained product had a sulfur content of 6.7 ppm, a nitrogen content of 1.1 ppm, and an aromatic hydrocarbon of 35.4% by weight.
  • This example is intended to illustrate a hydrofinishing catalyst and a process for the preparation thereof according to the present invention.
  • the catalyst was prepared substantially in the same manner as in Example II-6 except that the Group VIII and Group VIB elements were introduced in the step (1), and the total amount was unchanged.
  • the amount of ammonium metatungstate is 3.0% by weight based on the tungsten (as tungsten oxide) in the catalyst, and the amount of basic nickel carbonate in the catalyst is 18.0% by weight based on the nickel (as nickel oxide).
  • the ratio of the mass of citric acid to the mass of the inorganic refractory component is 0.3.
  • the mixing ratio of the impregnation solution and the nickel-containing inorganic refractory powder is such that the content of tungsten oxide in the catalyst is 53.0% by weight and the content of nickel oxide is 25.0% by weight based on the dry weight of the catalyst and based on the oxide.
  • the content of the inorganic refractory component was 22.0% by weight (wherein the content of silica was 15% by weight and the content of magnesium oxide was 7.0% by weight).
  • the catalyst has a specific surface area of 152 m 2 /g, and the pore diameter is mainly distributed at 2-40 nm and 100-300 nm, wherein the pore volume in the range of 2-40 nm accounts for 91.2% of the total pore volume (wherein the pore diameter is in the range of 2-4 nm).
  • the pore volume accounts for 8.5% of the total pore volume
  • the pore volume in the range of 100-300 nm accounts for 8.2% of the total pore volume
  • the total pore volume is 0.33 mL/g
  • the average pore diameter is 8.7 nm.
  • the obtained product had a sulfur content of 11.2 ppm, a nitrogen content of 4.6 ppm, and an aromatic hydrocarbon of 38.4% by weight.
  • This example is intended to illustrate a hydrofinishing catalyst and a process for the preparation thereof according to the present invention.
  • the catalyst was prepared essentially as in Example II-2 except that the silica was replaced with pseudo-boehmite powder.
  • the amount of the basic nickel carbonate used is 15.0% by weight based on the nickel (as nickel oxide) in the catalyst.
  • the ratio of the mass of the acetic acid to the mass of the inorganic refractory component is 0.3.
  • the mixing ratio of the impregnation solution and the nickel-containing inorganic refractory powder is such that the content of molybdenum oxide in the catalyst is 46.0% by weight and the content of nickel oxide is 20.0% by weight based on the dry weight of the catalyst and based on the oxide.
  • the content of P 2 O 5 was 4% by weight, and the content of the inorganic refractory component was 30.0% by weight.
  • the catalyst After the catalyst was calcined at 400 ° C for 3 h, its pore size distribution was analyzed by low temperature nitrogen adsorption and mercury intrusion.
  • the catalyst has a specific surface area of 154 m 2 /g, and the pore diameter is mainly distributed at 2-40 nm and 100-300 nm, wherein the pore volume in the range of 2-40 nm accounts for 92.1% of the total pore volume (wherein the pore diameter is in the range of 2-4 nm).
  • the ratio of pore volume to total pore volume was 8.2%), the ratio of pore volume in the range of 100-300 nm to the total pore volume was 6.2%, the total pore volume was 0.31 mL/g, and the average pore diameter was 8.1 nm.
  • the obtained product had a sulfur content of 26.2 ppm, a nitrogen content of 6.0 ppm, and an aromatic hydrocarbon of 39.7 wt%.
  • This comparative example is for explaining a hydrotreating catalyst which is not the present invention and a method for producing the same.
  • Example II-1 Commercially available white carbon black (specific surface area: 220 m 2 /g, average pore diameter: 12.7 nm) and basic cobalt carbonate powder were uniformly mixed, and a cobalt-containing inorganic refractory powder was obtained without undergoing a calcination step.
  • the amount of the basic cobalt carbonate used is 22.0% by weight based on the cobalt (as cobalt oxide) in the catalyst.
  • an impregnation solution was prepared in accordance with the step (2) of Example II-1, and a catalyst was prepared in accordance with the step (3) of Example II-1.
  • the content of the inorganic refractory component and each metal component in the obtained catalyst was the same as that of the catalyst obtained in Example II-1.
  • the catalyst has a specific surface area of 103 m 2 /g, and the pore diameter is mainly distributed at 2-40 nm and 100-300 nm, wherein the pore volume in the range of 2-40 nm accounts for 89.2% of the total pore volume (wherein the pore diameter is in the range of 2-4 nm).
  • the pore volume accounts for 10.2% of the total pore volume, the pore volume in the range of 100-300 nm accounts for 3.5% of the total pore volume, the total pore volume is 0.25 mL/g, and the average pore diameter is 9.7 nm.
  • the obtained product had a sulfur content of 39.5 ppm, a nitrogen content of 7.9 ppm, and an aromatic hydrocarbon of 41.6 wt%.
  • This comparative example is for explaining a hydrotreating catalyst which is not the present invention and a method for producing the same.
  • Example II-2 The same inorganic refractory precursor, active component precursor and organic carboxylic acid as used in Example 2 were mixed, extruded and dried in the same amounts as in Example II-2 to obtain a catalyst, and the obtained catalyst was inorganic refractory group.
  • the content of each component and each metal component was the same as that of the catalyst obtained in Example II-2.
  • the catalyst has a specific surface area of 152 m 2 /g, and the pore diameter is mainly distributed at 2-40 nm and 100-300 nm, wherein the pore volume in the range of 2-40 nm accounts for 92.2% of the total pore volume (wherein the pore diameter is in the range of 2-4 nm).
  • the pore volume accounts for 8.1% of the total pore volume, the pore volume in the range of 100-300 nm accounts for 2.1% of the total pore volume, the total pore volume is 0.32 mL/g, and the average pore diameter is 8.4 nm.
  • the obtained product had a sulfur content of 52.7 ppm, a nitrogen content of 10.1 ppm, and an aromatic hydrocarbon of 42.2% by weight.
  • This comparative example is for explaining a hydrotreating catalyst which is not the present invention and a method for producing the same.
  • the catalyst was prepared essentially as in Example II-6, except that the organic carboxylic acid was not added in the preparation of the impregnation solution.
  • the specific surface area of the catalyst is 115 m 2 /g, and the pore diameter is mainly distributed at 2-40 nm and 100-300 nm, wherein the pore volume in the range of 2-40 nm accounts for 80.3% of the total pore volume (wherein the pore diameter is in the range of 2-4 nm).
  • the pore volume accounts for 7.3% of the total pore volume, the pore volume in the range of 100-300 nm accounts for 18.5% of the total pore volume, the total pore volume is 0.38 mL/g, and the average pore diameter is 13.2 nm.
  • the obtained product had a sulfur content of 32.5 ppm, a nitrogen content of 6.8 ppm, and an aromatic hydrocarbon of 40.3 wt%.
  • This comparative example is for explaining a hydrotreating catalyst which is not the present invention and a method for producing the same.
  • the catalyst was prepared essentially according to the procedure of Example II-6, except that the Group VIII metal element was not introduced in the step (1), and the Group VIII metal element was completely introduced in the step (2).
  • the ratio of the mass of citric acid to the mass of the inorganic refractory component is 0.3.
  • the mixing ratio of the impregnation solution and the nickel-containing inorganic refractory powder is such that the content of tungsten oxide in the catalyst is 53.0% by weight and the content of nickel oxide is 25.0% by weight based on the dry weight of the catalyst and based on the oxide.
  • the content of the inorganic refractory component was 22.0% by weight (wherein the content of silica was 15% by weight and the content of magnesium oxide was 7.0% by weight).
  • the specific surface area of the catalyst is 148 m 2 /g, and the pore diameter is mainly distributed at 2-40 nm and 100-300 nm, wherein the pore volume in the range of 2-40 nm accounts for 93.0% of the total pore volume (wherein the pore diameter is in the range of 2-4 nm).
  • the pore volume accounts for 8.2% of the total pore volume, the pore volume in the range of 100-300 nm accounts for 5.2% of the total pore volume, the total pore volume is 0.33 mL/g, and the average pore diameter is 8.9 nm.
  • the obtained product had a sulfur content of 30.8 ppm, a nitrogen content of 6.3 ppm, and an aromatic hydrocarbon of 40.1% by weight.
  • the catalyst according to the present invention has better performance, and not only the catalyst performance is improved, but also the catalyst preparation process is shortened compared with the catalyst of the present invention.
  • the catalyst preparation cost is reduced, and the industrial application prospect is good.
  • the hydrodesulfurization performance of the catalyst system was measured on a 20 mL high-pressure hydrodesulfurization reactor, and the oxidation state catalyst was directly converted into a sulfided catalyst by a temperature-programmed vulcanization method.
  • the vulcanization conditions include: the vulcanization pressure is 6.4 MPa, the vulcanized oil is kerosene containing CS 2 2% by weight, the volumetric space velocity is 2 h -1 , and the hydrogen to oil ratio is 300 v/v. First, the temperature is maintained at 230 ° C / h for 6 h, and then the temperature is raised.
  • the rate of temperature increase in each stage was 10 ° C / h.
  • the reaction raw materials were switched to carry out a hydrodesulfurization activity test, and the reaction raw materials were high nitrogen high aromatic hydrocarbon distillates having a sulfur content of 9100 ppm, a nitrogen content of 532 ppm, and an aromatic content of 55 wt%.
  • the test conditions included a pressure of 6.4 MPa, a volumetric space velocity of 2.0 h -1 , a hydrogen to oil ratio of 300 v/v, and a reaction temperature of 340 °C.
  • the sulfur content of the product was analyzed after 7 days of stable reaction.
  • the composition of the catalyst was calculated based on the amount of charge in the preparation process.
  • the sulfur and nitrogen mass fractions of the product were analyzed using a sulfur nitrogen analyzer (manufactured by Thermo Fisher Scientific, model TN/TS3000), and the aromatics content of the product was measured by Near Infrared Spectroscopy using an Antaris II analyzer manufactured by Thermo Scientific. Analyzed.
  • the specific surface area of the alumina support and the catalyst and the pore distribution, pore size and pore volume below 100 nm pore diameter are determined by low temperature nitrogen adsorption method (according to GB/T5816-1995), pore distribution, pore size and pore volume in the range of 100-300 nm pore size. It is determined by mercury intrusion method (according to GB/T21650.1-2008).
  • the XRD patterns of the inorganic refractory component and the catalyst were recorded using an EMPYREAN model XRD diffractometer of PANalytical Co., Ltd., wherein 2 ⁇ was 10-70° and the scanning speed was 5°/min. .
  • the amounts of the inorganic refractory components refer to the The total amount and total content of other components of the inorganic refractory component other than the hydrodesulfurization catalytically active component.
  • This example is intended to illustrate a hydrofinishing catalyst system and a process for the preparation thereof according to the present invention.
  • the first bed catalyst (Cat1A) was prepared as follows by following the procedure of Example I-1:
  • the amount of the basic cobalt carbonate used is 22.0% by weight based on the cobalt (as cobalt oxide) in the catalyst.
  • the ratio of the number of moles of propanol to the mass of the inorganic refractory component is 0.01, and the ratio of the mass of citric acid to the mass of the inorganic refractory component is 0.02.
  • the mixing ratio of the impregnation solution to the cobalt-containing inorganic refractory powder is such that the content of molybdenum oxide in the Cat1A catalyst is 55.0% by weight and the content of cobalt oxide is 30.0% based on the dry weight of the catalyst and based on the oxide.
  • the content of P 2 O 5 was 5% by weight, and the content of the inorganic refractory component was 10.0% by weight.
  • the Cat1A catalyst has a specific surface area of 93.0 m 2 /g, and the pore diameter is mainly distributed at 2-40 nm and 100-300 nm, wherein the pore volume in the range of 2-40 nm accounts for 88.5% of the total pore volume (wherein the pore diameter is 2-4 nm).
  • the ratio of the pore volume to the total pore volume was 8.9%.
  • the ratio of the pore volume in the range of 100-300 nm to the total pore volume was 6.3%, the total pore volume was 0.22 mL/g, and the average pore diameter was 9.5 nm.
  • a second bed catalyst (Cat1B) was prepared as follows:
  • the pseudoboehmite (specific surface area is 295 m 2 /g, total pore volume is 1.05 mL/g, average pore diameter is 14.2 nm) and an appropriate amount of Tianjing powder (purchased from Sinopec Changling Catalyst Factory, industry Pure) was mixed with nitric acid (purchased from Sinopharm Chemical Reagent Co., Ltd., analytically pure) to prepare an alumina carrier precursor with a particle size of 1.6 mm by extrusion. The precursor was dried at 120 ° C for 3 h and then at 500 ° C. After calcination for 3 h, an alumina carrier is obtained as an inorganic refractory component;
  • the alumina carrier was uniformly mixed with the above impregnation solution, and dried at 200 ° C for 3 hours to prepare an oxidation state catalyst.
  • the ratio of the pore volume in the range of 2-4 nm in the alumina carrier to the total pore volume was 1.6%, and the ratio of the pore volume in the range of 4-6 nm to the total pore volume was measured.
  • the ratio of the pore volume in the range of 6-40 nm to the total pore volume was 85.0%, the pore volume in the range of 40-100 nm in the total pore volume was 3.9%, and the pore diameter was larger than 100 nm.
  • the content of molybdenum in the Cat1B catalyst was 30.0% by weight, the content of nickel was 6.0% by weight, the content of P 2 O 5 was 5% by weight, and the balance was alumina, based on the dry weight of the catalyst.
  • the Cat1B catalyst has a specific surface area of 205 m 2 /g, a total pore volume of 0.39 mL/g, an average pore diameter of 7.6 nm, a pore volume in the range of 2-4 nm in a total pore volume ratio of 5.6%, and a pore diameter of 4-6 nm.
  • the ratio of the pore volume to the total pore volume is 14.3%, the pore volume in the range of 6-40 nm is 76.8%, and the pore volume in the range of 40-100 nm is 3.3. %, without pores with a pore diameter greater than 100 nm.
  • the Cat1A and Cat1B catalysts were compounded in a volume ratio of 1:6. After the catalyst system was subjected to sulfurization and reaction tests, the obtained product had a sulfur content of 9.3 ppm, a nitrogen content of 1.5 ppm, and an aromatic hydrocarbon of 33.8 wt%.
  • This example is intended to illustrate a hydrofinishing catalyst system and a process for the preparation thereof according to the present invention.
  • the first bed catalyst (Cat2A) was prepared as described in Example I-2 as follows:
  • the amount of the basic nickel carbonate used is 15.0% by weight based on the nickel (as nickel oxide) in the catalyst.
  • the ratio of the number of moles of ethylene glycol to the mass of the inorganic refractory component is 0.015, and the ratio of the mass of the acetic acid to the mass of the inorganic refractory component is 0.03.
  • the mixing ratio of the impregnation solution and the nickel-containing inorganic refractory powder is such that the content of molybdenum oxide in the Cat2A catalyst is 46.0% by weight and the content of nickel oxide is 20.0 by weight based on the dry weight of the catalyst and based on the oxide.
  • the content of P 2 O 5 was 4% by weight, and the content of the inorganic refractory component was 30.0% by weight.
  • the Cat2A catalyst has a specific surface area of 145 m 2 /g, and the pore diameter is mainly distributed at 2-40 nm and 100-300 nm, wherein the pore volume in the range of 2-40 nm accounts for 85.5% of the total pore volume (wherein the pore diameter is in the range of 2-4 nm).
  • the pore volume accounts for 7.6% of the total pore volume, the pore volume in the range of 100-300 nm accounts for 13.2% of the total pore volume, the total pore volume is 0.36 mL/g, and the average pore diameter is 9.9 nm.
  • the pseudoboehmite (specific surface area is 295 m 2 /g, total pore volume is 1.05 mL/g, average pore diameter is 14.2 nm) and an appropriate amount of methyl cellulose (purchased from Sinopharm Chemical Reagent Co., Ltd., Analytically purely mixed with citric acid, an alumina carrier precursor having a particle diameter of 1.6 mm was prepared by extrusion, and the precursor was dried at 150 ° C for 4 h and then calcined at 600 ° C for 4 h to obtain an alumina carrier as an inorganic refractory group. Minute;
  • the alumina carrier was uniformly mixed with the above impregnation solution, and dried at 150 ° C for 4 hours to prepare an oxidation state catalyst.
  • the ratio of the pore volume in the alumina carrier in the range of 2-4 nm to the total pore volume was 0.4%, and the ratio of the pore volume in the range of 4-6 nm to the total pore volume was measured.
  • the ratio of the pore volume in the range of 6-40 nm to the total pore volume was 88.5%, the pore volume in the range of 40-100 nm in the total pore volume was 5.3%, and the pore diameter was larger than 100 nm.
  • the content of molybdenum in the Cat2B catalyst was 26.0% by weight, the content of nickel was 4.8% by weight, the content of P 2 O 5 was 6.5% by weight, and the balance was alumina, based on the dry weight of the catalyst and based on the oxide.
  • the Cat2B catalyst has a specific surface area of 196 m 2 /g, a total pore volume of 0.42 mL/g, an average pore diameter of 8.6 nm, a pore volume in the range of 2-4 nm in a total pore volume ratio of 3.5%, and a pore diameter of 4-6 nm.
  • the ratio of pore volume to total pore volume is 12.3%, the ratio of pore volume in the range of 6-40 nm to total pore volume is 79.0%, and the ratio of pore volume in the range of 40-100 nm to total pore volume is 5.2. %, without pores with a pore diameter greater than 100 nm.
  • the Cat2A and Cat2B catalysts were compounded in a volume ratio of 1:3. After the catalyst system was subjected to sulfurization and reaction tests, the obtained product had a sulfur content of 6.5 ppm, a nitrogen content of 0.8 ppm, and an aromatic hydrocarbon of 34.2% by weight.
  • This example is intended to illustrate a hydrofinishing catalyst system and a process for the preparation thereof according to the present invention.
  • the first bed catalyst (Cat3A) was prepared as follows by following the procedure of Example I-3:
  • the amount of the basic nickel carbonate used is 16.0% by weight based on the nickel (as nickel oxide) in the catalyst.
  • the ratio of the mole number of butanol to the mass of the inorganic refractory component is 0.02, and the ratio of the mass of tartaric acid to the mass of the inorganic refractory component is 0.05.
  • the mixing ratio of the impregnation solution to the nickel-containing inorganic refractory powder is such that the content of molybdenum oxide in the Cat3A catalyst is 47.0% by weight and the content of nickel oxide is 25.0 by weight based on the dry weight of the catalyst and based on the oxide.
  • the content of P 2 O 5 was 8.0% by weight, and the content of the inorganic refractory component was 20.0% by weight.
  • the Cat3A catalyst has a specific surface area of 155 m 2 /g, and the pore diameter is mainly distributed at 2-40 nm and 100-300 nm, wherein the pore volume in the range of 2-40 nm accounts for 89.3% of the total pore volume (wherein the pore diameter is in the range of 2-4 nm).
  • the pore volume accounts for 6.7% of the total pore volume, the pore volume in the range of 100-300 nm accounts for 7.4% of the total pore volume, the total pore volume is 0.31 mL/g, and the average pore diameter is 8.0 nm.
  • the pseudoboehmite (specific surface area is 295 m 2 /g, total pore volume is 1.05 mL/g, average pore diameter is 14.2 nm) and an appropriate amount of starch (purchased from Sinopharm Chemical Reagent Co., Ltd., analytically pure) It was mixed with acetic acid (purchased from Sinopharm Chemical Reagent Co., Ltd., analytically pure), and an alumina carrier precursor with a particle size of 1.6 mm was prepared by extrusion. The precursor was dried at 190 ° C for 4 h and then calcined at 800 ° C for 3 h. Obtaining an alumina carrier as an inorganic refractory component;
  • the alumina carrier was uniformly mixed with the above impregnation solution, and dried at 120 ° C for 8 hours to prepare an oxidation state catalyst.
  • the ratio of the pore volume in the range of 2-4 nm in the alumina carrier to the total pore volume was 0.2%, and the ratio of the pore volume in the range of 4-6 nm to the total pore volume was measured.
  • the ratio of the pore volume in the range of 6-40 nm to the total pore volume was 89.8%, and the ratio of the pore volume in the range of 40-100 nm to the total pore volume was 6.6%, and the pores having a pore diameter larger than 100 nm were not included.
  • the content of molybdenum in the Cat3B catalyst was 30.0% by weight, the content of nickel was 3.0% by weight, the content of P 2 O 5 was 5.5% by weight, based on the dry weight of the catalyst, and the balance was alumina.
  • the Cat3B catalyst has a specific surface area of 162 m 2 /g, a total pore volume of 0.46 mL/g, an average pore diameter of 11.4 nm, a pore volume in the range of 2-4 nm, a ratio of pore volume to total pore volume of 1.4%, and a pore diameter of 4-6 nm.
  • the ratio of the pore volume to the total pore volume is 9.5%, the pore volume in the range of 6-40 nm is 83.0%, and the pore volume in the range of 40-100 nm is 6.1. %, without pores with a pore diameter greater than 100 nm.
  • the Cat3A and Cat3B catalysts were compounded in a volume ratio of 1:2. After the catalyst system was subjected to sulfurization and reaction tests, the obtained product had a sulfur content of 4.4 ppm, a nitrogen content of 0.5 ppm, and an aromatic hydrocarbon of 33.1% by weight.
  • This example is intended to illustrate a hydrofinishing catalyst system and a process for the preparation thereof according to the present invention.
  • the first bed catalyst (Cat4A) was prepared as follows by the procedure of Example I-4 as follows:
  • the amount of the basic nickel carbonate used is 20.0% by weight based on the nickel (as nickel oxide) in the catalyst.
  • the ratio of the number of moles of ethylene glycol to the mass of the inorganic refractory component is 0.012, and the ratio of the mass of the acetic acid to the mass of the inorganic refractory component is 0.06.
  • the mixing ratio of the impregnation solution and the nickel-containing inorganic refractory powder is such that the content of molybdenum oxide in the Cat4A catalyst is 22.5% by weight and the content of tungsten oxide is 22.5% based on the dry weight of the catalyst and based on the oxide.
  • the content of nickel oxide was 27.0% by weight, the content of P 2 O 5 was 4.0% by weight, and the content of the inorganic refractory component was 15.0% by weight.
  • the Cat4A catalyst has a specific surface area of 120 m 2 /g, and the pore diameter is mainly distributed at 2-40 nm and 100-300 nm, wherein the pore volume in the range of 2-40 nm accounts for 76.9% of the total pore volume (wherein the pore diameter is in the range of 2-4 nm).
  • the pore volume accounts for 9.5% of the total pore volume, the pore volume in the range of 100-300 nm accounts for 20.3% of the total pore volume, the total pore volume is 0.26 mL/g, and the average pore diameter is 8.7 nm.
  • a second bed catalyst (Cat4B) was prepared as follows:
  • the pseudoboehmite (specific surface area: 385 m 2 /g, total pore volume: 0.85 mL/g, average pore diameter: 8.8 nm) is mixed with an appropriate amount of phthalocyanine powder and nitric acid, and is prepared by extrusion.
  • the alumina carrier was uniformly mixed with the above impregnation solution, and dried at 100 ° C for 8 hours to prepare an oxidation state catalyst.
  • the ratio of the pore volume in the range of 2-4 nm in the alumina carrier to the total pore volume was 1.4%, and the ratio of the pore volume in the range of 4-6 nm to the total pore volume was measured.
  • the ratio of pore volume in the range of 6-40 nm to the total pore volume was 86.5%, and the ratio of the pore volume in the range of 40-100 nm to the total pore volume was 1.8%, and the pores having a pore diameter larger than 100 nm were not included.
  • the content of molybdenum in the Cat4B catalyst was 35.0% by weight, the content of cobalt was 2.9% by weight, the content of P 2 O 5 was 4.5% by weight, and the balance was alumina, based on the dry weight of the catalyst and based on the oxide.
  • the Cat4B catalyst has a specific surface area of 220 m 2 /g, a total pore volume of 0.34 mL/g, an average pore diameter of 6.2 nm, a pore volume in the range of 2-4 nm in a total pore volume ratio of 6.7%, and a pore diameter of 4-6 nm.
  • the ratio of pore volume to total pore volume is 15.9%, the ratio of pore volume in the range of 6-40 nm to total pore volume is 74.2%, and the ratio of pore volume in the range of 40-100 nm to total pore volume is 3.2. %, without pores with a pore diameter greater than 100 nm.
  • the Cat4A and Cat4B catalysts were compounded in a volume ratio of 1:1. After the catalyst system was subjected to sulfurization and reaction tests, the obtained product had a sulfur content of 9.0 ppm, a nitrogen content of 1.9 ppm, and an aromatic hydrocarbon of 36.1% by weight.
  • This example is intended to illustrate a hydrofinishing catalyst system and a process for the preparation thereof according to the present invention.
  • the first bed catalyst (Cat5A) was prepared as follows by following the procedure of Example I-5:
  • a commercially available zirconium hydroxide powder (having a specific surface area of 180 m 2 /g, an average pore diameter of 13.3 nm) and a basic nickel carbonate powder were uniformly mixed, and then calcined at 400 ° C for 3 hours to obtain a nickel-containing inorganic refractory powder.
  • the amount of the basic nickel carbonate used is 28.0% by weight based on the nickel (as nickel oxide) in the catalyst.
  • the ratio of the number of moles of glycerol to the mass of the inorganic refractory component is 0.01, and the ratio of the mass of the hexanoic acid to the mass of the inorganic refractory component is 0.025.
  • the mixing ratio of the impregnation solution to the nickel-containing inorganic refractory powder is such that the content of tungsten oxide in the Cat5A catalyst is 45.0% and the content of nickel oxide is 32.0% by weight based on the dry weight of the catalyst and based on the oxide.
  • the content of P 2 O 5 was 3.0% by weight, and the content of the inorganic refractory component was 20.0% by weight.
  • the Cat5A catalyst has a specific surface area of 109 m 2 /g, and the pore diameter is mainly distributed at 2-40 nm and 100-300 nm, wherein the pore volume in the range of 2-40 nm accounts for 85.6% of the total pore volume (wherein the pore diameter is in the range of 2-4 nm).
  • the pore volume accounts for 6.8% of the total pore volume, the pore volume in the range of 100-300 nm accounts for 12.3% of the total pore volume, the total pore volume is 0.29 mL/g, and the average pore diameter is 10.6 nm.
  • a second bed catalyst (Cat5B) was prepared as follows:
  • the pseudoboehmite (specific surface area: 275 m 2 /g, total pore volume: 1.2 mL/g, average pore diameter: 17.5 nm) was mixed with an appropriate amount of phthalocyanine powder and nitric acid, and prepared by extruding.
  • the alumina carrier was uniformly mixed with the above impregnation solution, and dried at 180 ° C for 5 hours to prepare an oxidation state catalyst.
  • the ratio of the pore volume in the range of 2-4 nm in the alumina carrier to the total pore volume was 0.9%, and the ratio of the pore volume in the range of 4-6 nm to the total pore volume was measured.
  • the ratio of the pore volume in the range of 6-40 nm to the total pore volume was 85.3%, the pore volume in the range of 40-100 nm in the total pore volume was 5.9%, and the pore diameter was larger than 100 nm.
  • the content of tungsten in the Cat5B catalyst is 30% by weight, the content of molybdenum is 5.0% by weight, the content of nickel is 3.5% by weight, and the content of P 2 O 5 is 3.0% by weight. %, the rest is alumina.
  • the Cat5B catalyst has a specific surface area of 185 m 2 /g, a total pore volume of 0.47 mL/g, an average pore diameter of 10.2 nm, a pore volume in the range of 2-4 nm, a ratio of pore volume to total pore volume of 1.3%, and a pore diameter of 4-6 nm.
  • the ratio of pore volume to total pore volume is 8.8%, the ratio of pore volume in the range of 6-40 nm to total pore volume is 85.4%, and the ratio of pore volume in the range of 40-100 nm to total pore volume is 4.5. %, without pores with a pore diameter greater than 100nm
  • the Cat5A and Cat5B catalysts were compounded in a volume ratio of 1:7. After the catalyst system was subjected to sulfurization and reaction tests, the obtained product had a sulfur content of 7.0 ppm, a nitrogen content of 0.2 ppm, and an aromatic hydrocarbon of 34.1% by weight.
  • This example is intended to illustrate a hydrofinishing catalyst system and a process for the preparation thereof according to the present invention.
  • the first bed catalyst (Cat6A) was prepared as follows by following the procedure of Example I-6:
  • the amount of basic nickel carbonate used is 21.0% by weight based on the nickel (as nickel oxide) in the catalyst.
  • the ratio of the molar number of glycerol to the mass of the inorganic refractory component is 0.008, and the ratio of the mass of citric acid to the mass of the inorganic refractory component is 0.08.
  • the mixing ratio of the impregnation solution and the nickel-containing inorganic refractory powder is such that the content of tungsten oxide in the Cat6A catalyst is 53.0% by weight and the content of nickel oxide is 25.0 by weight based on the dry weight of the catalyst and based on the oxide. %, the content of the inorganic refractory component was 22.0% by weight (wherein the content of silica was 15% by weight, and the content of magnesium oxide was 7.0% by weight).
  • the Cat6A catalyst has a specific surface area of 165 m 2 /g, and the pore diameter is mainly distributed at 2-40 nm and 100-300 nm, wherein the pore volume in the range of 2-40 nm accounts for 87.5% of the total pore volume (wherein the pore diameter is in the range of 2-4 nm).
  • the pore volume accounts for 8.7% of the total pore volume, the pore volume in the range of 100-300 nm accounts for 7.8% of the total pore volume, the total pore volume is 0.32 mL/g, and the average pore diameter is 7.8 nm.
  • a second bed catalyst (Cat6B) was prepared as follows:
  • the pseudoboehmite (specific surface area: 320 m 2 /g, total pore volume: 1.0 mL/g, average pore diameter: 12.5 nm) is mixed with an appropriate amount of phthalocyanine powder and nitric acid, and is prepared by extrusion.
  • the alumina carrier was uniformly mixed with the above impregnation solution, and dried at 170 ° C for 5 hours to prepare an oxidation state catalyst.
  • the ratio of the pore volume in the range of 2-4 nm in the alumina carrier to the total pore volume was 1.3%, and the ratio of the pore volume in the range of 4-6 nm to the total pore volume was measured.
  • the ratio of the pore volume in the range of 6-40 nm to the total pore volume was 83.4%, the pore volume in the range of 40-100 nm in the total pore volume was 5.3%, and the pores having a pore diameter larger than 100 nm were not contained.
  • the content of molybdenum in the Cat6B catalyst was 15.0% by weight, the content of nickel was 5.5% by weight, the content of P 2 O 5 was 6.0% by weight, based on the dry weight of the catalyst, and the balance was alumina.
  • the Cat6B catalyst has a specific surface area of 235 m 2 /g, a total pore volume of 0.55 mL/g, an average pore diameter of 9.4 nm, a pore volume in the range of 2-4 nm in a total pore volume ratio of 2.5%, and a pore diameter of 4-6 nm.
  • the ratio of pore volume to total pore volume is 10.4%, the ratio of pore volume in the range of 6-40 nm to total pore volume is 84.5%, and the ratio of pore volume in the range of 40-100 nm to total pore volume is 2.6%, without pores with a pore diameter greater than 100 nm.
  • the Cat6A and Cat6B catalysts were compounded in a volume ratio of 1:2. After the catalyst system was subjected to sulfurization and reaction tests, the obtained product had a sulfur content of 8.4 ppm, a nitrogen content of 1.1 ppm, and an aromatic hydrocarbon of 35.2% by weight.
  • This example is intended to illustrate a hydrofinishing catalyst system and a process for the preparation thereof according to the present invention.
  • the first bed catalyst Cat7A used the catalyst prepared in Example I-7, while the second bed catalyst Cat7B used the catalyst Cat6B prepared in Example III-6.
  • Cat7A and Cat7B catalysts were compounded in a volume ratio of 1:2. After the catalyst system was subjected to sulfurization and reaction tests, the obtained product had a sulfur content of 13.1 ppm and a nitrogen content of 4.0 ppm. It is 37.2 wt%.
  • This example is intended to illustrate a hydrofinishing catalyst system and a process for the preparation thereof according to the present invention.
  • the first bed catalyst Cat8A used the catalyst prepared in Example I-8, while the second bed catalyst Cat8B used the catalyst Cat2B prepared in Example III-2.
  • Cat8A and Cat8B catalysts were compounded according to a 1:3 volume ratio scheme. After the catalyst system was subjected to sulfurization and reaction tests, the obtained product had a sulfur content of 25.4 ppm and a nitrogen content of 5.4 ppm. It is 39.2% by weight.
  • This comparative example is intended to illustrate the effect of using a hydrofinishing catalyst system other than the present invention. .
  • the first bed catalyst Cat-D1A used the catalyst prepared in Comparative Example I-1
  • the second bed catalyst Cat-D1B used the catalyst Cat1B prepared in Example III-1.
  • Cat-D1A and Cat-D1B catalysts were compounded in a volume ratio of 1:6. After the catalyst system was subjected to sulfurization and reaction tests, the sulfur content in the obtained product was 45.2 ppm, and the nitrogen content was 8.3 ppm, and the aromatic hydrocarbon was 41.5 wt%.
  • This comparative example is intended to illustrate the effect of using a hydrofinishing catalyst system other than the present invention. .
  • the first bed catalyst Cat-D2A used the catalyst prepared in Comparative Example I-2
  • the second bed catalyst Cat-D2B used the catalyst Cat2B prepared in Example III-2.
  • Example III-2 the Cat-D2A and Cat-D2B catalysts were compounded in a volume ratio of 1:3. After the catalyst system was subjected to sulfurization and reaction testing, the sulfur content in the obtained product was 59.5 ppm, and the nitrogen content was 12.9 ppm, the aromatic hydrocarbon was 42.7 wt%.
  • This comparative example is intended to illustrate the effect of using a hydrofinishing catalyst system other than the present invention. .
  • the first bed catalyst Cat-D3A used the catalyst prepared in Comparative Example I-3, and the second bed catalyst Cat-D3B used the catalyst Cat6B prepared in Example III-6.
  • Example III-6 the Cat-D3A and Cat-D3B catalysts were compounded in a volume ratio of 1:2. After the catalyst system was subjected to sulfurization and reaction tests, the sulfur content in the obtained product was 31.5 ppm, and the nitrogen content was 5.8 ppm, and the aromatic hydrocarbon was 39.9 wt%.
  • This comparative example is intended to illustrate the effect of using a hydrofinishing catalyst system other than the present invention. .
  • the first bed catalyst Cat-D4A used the catalyst prepared in Comparative Example I-4, while the second bed catalyst Cat-D4B used the catalyst Cat6B prepared in Example III-6.
  • Cat-D4A and Cat-D4B catalysts were compounded according to a 1:2 volume ratio scheme.
  • the catalyst system was subjected to sulfurization and reaction test. After the catalyst system was subjected to sulfurization and reaction test, the sulfur in the obtained product was obtained.
  • the content was 35.0 ppm, the nitrogen content was 6.3 ppm, and the aromatic hydrocarbon was 40.4% by weight.
  • This comparative example is intended to illustrate the effect of using a hydrofinishing catalyst system other than the present invention.
  • the first bed catalyst Cat-D5A used the catalyst prepared in Comparative Example I-1.
  • the second bed catalyst Cat-D5B was prepared substantially by reference to the preparation method of Catalyst Cat1B in Example III-1, except that no organic alcohol was used in the preparation thereof.
  • the Cat-D5B catalyst has a specific surface area of 202 m 2 /g, a total pore volume of 0.38 mL/g, an average pore diameter of 7.5 nm, a pore volume in the range of 2-4 nm, a ratio of pore volume to total pore volume of 6.8%, and a pore diameter of 4
  • the ratio of the pore volume in the range of -6 nm to the total pore volume is 14.8%
  • the ratio of the pore volume in the range of 6-40 nm to the total pore volume is 75.2%
  • the ratio of the pore volume in the range of 40-100 nm to the total pore volume It is 3.0% and does not contain pores with a pore diameter greater than 100 nm.
  • Cat-D5A and Cat-D5B catalysts were compounded in a volume ratio of 1:6. After the catalyst system was subjected to sulfurization and reaction testing, the sulfur content in the obtained product was 73.5 ppm, and the nitrogen content was 14.8 ppm and aromatics were 45.2% by weight.
  • the catalyst system according to the present invention has better performance, not only improved performance but also shortened catalyst preparation process compared with the catalyst system not according to the present invention.
  • the catalyst preparation cost is reduced, and the industrial application prospect is good.
  • This comparative example is intended to illustrate the effect of using a hydrofinishing catalyst system other than the present invention.
  • the first bed catalyst Cat-D6A used the catalyst prepared in Comparative Example I-5, and the second bed catalyst Cat-D6B used the catalyst Cat1B prepared in Example III-1.
  • Cat-D6A and Cat-D6B catalysts were compounded in a volume ratio of 1:6. After the catalyst system was subjected to sulfurization and reaction tests, the sulfur content in the obtained product was 45.7 ppm, and the nitrogen content was 8.3 ppm and aromatics were 38.2% by weight.
  • This comparative example is intended to illustrate the effect of using a hydrofinishing catalyst system other than the present invention.
  • the first bed catalyst Cat-D7A was prepared using the catalyst prepared in Comparative Example I-5, while the second bed catalyst Cat-D7B was prepared as follows:
  • the alumina carrier was uniformly mixed with the above impregnation solution, and dried at 120 ° C for 3 hours to prepare an oxidation state catalyst.
  • the ratio of the pore volume in the range of 2-4 nm in the alumina carrier to the total pore volume was 1.2%, and the ratio of the pore volume in the range of 4-6 nm to the total pore volume was measured.
  • the ratio of the pore volume in the range of 6-40 nm to the total pore volume was 86.5%, the pore volume in the range of 40-100 nm in the total pore volume was 4.5%, and the pore diameter was greater than 100 nm.
  • the content of molybdenum in the Cat-D7B catalyst was 18.0% by weight, the content of nickel was 3.3% by weight, the content of P 2 O 5 was 3.0% by weight, and the balance was alumina. .
  • the Cat-D7B catalyst has a specific surface area of 189 m 2 /g, a total pore volume of 0.42 mL/g, an average pore diameter of 8.8 nm, a pore volume in the range of 2-4 nm, a ratio of pore volume to total pore volume of 2.6%, and a pore diameter of 4
  • the ratio of the pore volume in the range of -6 nm to the total pore volume is 15.5%
  • the ratio of the pore volume in the range of 6-40 nm to the total pore volume is 78.9%
  • the ratio of the pore volume in the range of 40-100 nm to the total pore volume It is 3.0% and does not contain pores with a pore diameter greater than 100 nm.
  • the Cat-D7A and Cat-D7B catalysts were compounded in a volume ratio of 1:3. After the catalyst system was subjected to sulfurization and reaction tests, the sulfur content in the obtained product was 46.5 ppm, the nitrogen content was 7.6 ppm, and the aromatic hydrocarbon was 40.2 wt. %.
  • the catalyst system according to the present invention has better performance, not only improved performance but also shortened catalyst preparation process compared with the catalyst system not according to the present invention.
  • the catalyst preparation cost is reduced, and the industrial application prospect is good.
  • This example is intended to illustrate a hydrofinishing catalyst system and a process for the preparation thereof according to the present invention.
  • the first bed catalyst (Cat1A') was prepared as follows according to the procedure of Example II-1:
  • the amount of the basic cobalt carbonate used is 22.0% by weight based on the cobalt (as cobalt oxide) in the catalyst.
  • the ratio of the mass of citric acid to the mass of the inorganic refractory component is 0.2.
  • the mixing ratio of the impregnation solution and the cobalt-containing inorganic refractory powder is such that the content of molybdenum oxide in the Cat1A' catalyst is 55.0% by weight and the content of cobalt oxide is 30.0 based on the dry weight of the catalyst and based on the oxide.
  • the Cat1A' catalyst has a specific surface area of 96.0 m 2 /g, and the pore diameter is mainly distributed at 2-40 nm and 100-300 nm, wherein the pore volume in the range of 2-40 nm accounts for 86.6% of the total pore volume (wherein the pore diameter is 2
  • the ratio of the pore volume in the range of 4 nm to the total pore volume was 9.5%
  • the ratio of the pore volume in the range of 100-300 nm to the total pore volume was 7.2%
  • the total pore volume was 0.26 mL/g
  • the average pore diameter was 10.8 nm.
  • a second bed catalyst (Cat1B') was prepared as follows:
  • the pseudoboehmite (having a specific surface area of 295 m 2 /g, a total pore volume of 1.05 mL/g, and an average pore diameter of 14.2 nm) is mixed with an appropriate amount of phthalocyanine powder and nitric acid, and is prepared by extrusion.
  • An alumina carrier precursor having a particle diameter of 1.6 mm, the precursor was dried at 120 ° C for 3 h, and then calcined at 500 ° C for 3 h to obtain an alumina carrier as an inorganic refractory component;
  • the alumina carrier was uniformly mixed with the above impregnation solution, and dried at 200 ° C for 3 hours to prepare an oxidation state catalyst.
  • the ratio of the pore volume in the range of 2-4 nm in the alumina carrier to the total pore volume was 1.6%, and the ratio of the pore volume in the range of 4-6 nm to the total pore volume was measured.
  • the ratio of the pore volume in the range of 6-40 nm to the total pore volume was 85.0%, the pore volume in the range of 40-100 nm in the total pore volume was 3.9%, and the pore diameter was larger than 100 nm.
  • the content of molybdenum in the Cat1B' catalyst was 30.0% by weight, the content of nickel was 6.0% by weight, the content of P 2 O 5 was 5% by weight, and the balance was alumina, based on the dry weight of the catalyst.
  • the Cat1B' catalyst has a specific surface area of 210 m 2 /g, a total pore volume of 0.39 mL/g, an average pore diameter of 7.4 nm, a pore volume in the range of 2-4 nm, a ratio of pore volume to total pore volume of 5.8%, and a pore diameter of 4-
  • the ratio of the pore volume in the range of 6 nm to the total pore volume is 14.6%
  • the ratio of the pore volume in the range of 6-40 nm to the total pore volume is 77.8%
  • the ratio of the pore volume in the range of 40-100 nm to the total pore volume is 1.8%, without pores with a pore size greater than 100 nm.
  • the Cat1A' and Cat1B' catalysts were compounded in a volume ratio of 1:6. After the catalyst system was subjected to sulfurization and reaction tests, the obtained product had a sulfur content of 5.5 ppm, a nitrogen content of 1.1 ppm, and an aromatic hydrocarbon of 33.0% by weight.
  • This example is intended to illustrate a hydrofinishing catalyst system and a process for the preparation thereof according to the present invention.
  • the first bed catalyst (Cat2A') was prepared as follows by the procedure of Example II-2 as follows:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Nanotechnology (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

一种加氢精制催化剂,其包含:无机耐火组分,该无机耐火组分包含第一加氢脱硫催化活性组分和与其混合的选自氧化铝、氧化硅、氧化镁、氧化钙、氧化锆和氧化钛中至少一种的氧化物;第二加氢脱硫催化活性组分;和有机组分,该有机组分包含羧酸和任选的醇。加氢精制催化剂用在馏分油的加氢精制中显示出改善的性能。还公开了包含加氢精制催化剂的加氢精制催化剂体系,制备催化剂和催化剂体系的方法,以及使用该催化剂或催化剂体系进行馏分油的加氢精制的方法。

Description

加氢精制催化剂、其制备方法及应用
相关申请的交叉引用
本申请要求申请人于2018年4月10日向中国专利局提交的申请号为201810317849.X、名称为“加氢精制催化剂及其制备方法和应用以及馏分油的加氢精制方法”的专利申请的优先权,申请人于2018年4月10日向中国专利局提交的申请号为201810317845.1、名称为“加氢精制催化剂及其制备方法和应用以及馏分油的加氢精制方法”的专利申请的优先权,申请人于2018年4月10日向中国专利局提交的申请号为201810316695.2、名称为“加氢精制催化剂体系及其应用和制备方法以及馏分油的加氢精制方法”的专利申请的优先权,以及申请人于2018年4月10日向中国专利局提交的申请号为201810317848.5、名称为“加氢精制催化剂体系及其应用和制备方法以及馏分油的加氢精制方法”的专利申请的优先权,上述专利申请的内容经此引用全文并入本文。
技术领域
本发明涉及馏分油加氢精制的技术领域,具体涉及一种加氢精制催化剂、其制备方法及应用。
背景技术
加氢处理是现代炼油工业中的支柱技术,其在生产清洁燃料、提高产品质量、充分利用石油资源和原料预处理等方面发挥着重要作用。随着经济、环保和社会的发展,使得炼油企业对加氢处理催化剂的活性和稳定性不断提出更高的要求,加氢精制催化剂的活性和选择性需要不断提高。其中加氢脱硫活性是衡量加氢精制催化剂性能的一个重要指标。
通常来说,加氢精制催化剂以VIB族金属(Mo和/或W)的硫化物作为主活性组分,并以VIII族金属(Co和/或Ni)的硫化物作为助活性组分,催化剂中其余组分为载体。一般加氢精制催化剂的制备方法为浸渍法和混捏法。浸渍法一般包括如下步骤:(1)以拟薄水铝石粉为原料,加入助挤剂和粘合剂进行成型,成型后经过100-200℃干 燥和400-1000℃焙烧制备得到成型的氧化铝载体;(2)将包含活性金属组分的前驱体配制成浸渍溶液;(3)将浸渍溶液浸渍入成型的氧化铝载体,然后经过干燥、和/或焙烧步骤得到氧化态催化剂。混捏法一般包括如下步骤:(1)将拟薄水铝石粉、活性金属前驱体(或含前驱体的溶液)、助剂剂、粘合剂混合,获得粉末体;(2)将混合后的粉末体成型,成型后经过干燥、和/或焙烧获得氧化态催化剂。多年来,很多发明基于这两种制备方法,对制备过程的细节进行调变,使得催化剂的性能进一步提升。加氢催化剂的其他制备方法还有多步浸渍法、共沉淀法等,但由于这些制备方法较为复杂,并没有得到大规模的工业应用。然而,面对更为劣质的原料油,常规方法制备得到的催化剂的性能依然不能完全满足需求。
另外,研究表明催化剂的孔道结构对其反应性能有较大的影响,催化剂应该具有适宜的孔道结构以适应反应物的扩散。因此,很多专利和研究都涉及到了载体的开发与研究。随着加氢原料的劣质化,反应物分子的尺寸逐步增大,需要采用更大孔道结构的载体才能更好地满足反应物扩散的需求。增加孔径的常见方法主要包括将不同的拟薄水铝石混合(如CN1488441A)、使用扩孔剂(如CN1160602A、US4448896、CN1055877C等)等。例如,CN101450327A公开了将一水氧化铝在150-300℃温度下进行热处理,处理后再与选自石墨、硬脂酸、硬脂酸钠、硬脂酸铝中一种或多种的扩孔剂混合后捏合均匀,经过100-150℃干燥后再经过700-1000℃焙烧制备得到氧化铝。以上扩孔方法中,扩孔剂与拟薄水铝石混合不均匀导致扩孔效果不好,扩孔剂的加入也会增加成本。CN1087289A公开了一种大孔氧化铝载体的制备方法,该方法将室温下的含水拟薄水铝石瞬间升温至500-650℃的高温,并在此高温下恒温2-4小时。该方法利用高温下快速蒸发的水分对载体进行扩孔,但采用该载体制得的加氢催化剂的活性有待进一步提高。
此外,除硫化物外,馏分油还包含大量的氮化物和芳烃,这些物质可以与催化剂活性中心发生作用,抑制催化剂的活性。反应过程中逐渐生成的H 2S也可以与催化剂活性中心发生作用从而抑制催化剂的活性。另外,随着反应深度的不断加深,物流中硫化物、氮化物的含量和类型也会发生较大改变,针对不同反应阶段的油品性质选择合适 的加氢脱硫催化剂将可以更好地降低柴油中的杂质含量。
针对这个问题,很多专利采用特定的级配方案以组合催化剂的整体性能。CN101092573A公开了一种级配方案,在反应器中装填加氢保护剂、加氢精制催化剂I、加氢精制催化剂II和任选的加氢精制催化剂III,其中所述的加氢精制催化剂I为金属负载型催化剂,金属组分为第VIB族金属或第VIII族非贵金属或者它们的组合;所述的加氢精制催化剂II含氧化硅-氧化铝载体和氧化镍、氧化钼、氧化钨、氟和氧化磷等成分;所述的加氢精制催化剂III为金属负载型催化剂,金属组分为第VIB族金属或第VIII族非贵金属或者它们的组合。该方案充分发挥了各催化剂在不同脱硫阶段的优势作用,可以得到满足欧III标准和欧IV标准的低硫柴油。但是,由于对更高质量柴油的需求,催化剂的活性需要进一步提高。
CN101591566A公开了将反应器分成四个反应区,依次装填加氢保护剂、包含活性金属钴-钼的加氢精制催化剂I、加氢精制催化剂I和加氢精制催化剂II的混合物、包含活性金属镍-钨的加氢精制催化剂II。该催化剂体系通过各催化剂之间的协同作用,提高了整体催化剂活性。然而,该体系在较低的反应温度下不能生产更低硫含量的柴油。
CN102311759A公开了设置两个或两个以上由Mo-Co型催化剂和Mo-Ni型催化剂组成的混合催化剂床层,在这些混合床层中Mo-Ni催化剂的比例逐渐提高。
CN102876374A公开了将反应器分为四个反应区,在第一反应区内装填第一类催化剂,在第二反应区内装填第一类催化剂和第二类催化剂的混合物,在第三反应区内装填第二类催化剂,在第四反应区内装填第一类催化剂,其中第一类催化剂为Mo-Co催化剂,第二类催化剂为W-Mo-Ni催化剂或W-Ni。该专利申请通过不同催化剂的级配来实现对高硫、高氮劣质柴油进行处理。
为了应对更为严格的油品质量要求以及更为劣质的原料,加氢精制催化剂的脱硫、脱氮和脱芳烃性能需要更进一步的提升,而现有催化剂级配体系无法满足要求。
发明内容
本发明的一个目的是为了克服现有技术中存在的加氢精制催化剂 活性不足且孔径较小的问题,提供一种新型的加氢精制催化剂,该加氢精制催化剂具有高催化活性,并且具有孔径在100-300nm范围的孔,其中孔径在100-300nm范围的孔体积占总孔体积的比例至多可达到30%。
本发明的另一目的是为了克服现有技术中存在的加氢精制催化剂体系活性不足的问题,提供一种新型的加氢精制催化剂体系,其能够提高对劣质油的脱硫、脱氮和脱芳烃性能中的至少一者。
为了实现上述目的,本发明一方面提供了一种加氢精制催化剂,包含:
无机耐火组分,该无机耐火组分包含第一加氢脱硫催化活性组分和与其混合的选自氧化铝、氧化硅、氧化镁、氧化钙、氧化锆和氧化钛中至少一种的氧化物;
负载在无机耐火组分上的第二加氢脱硫催化活性组分;和
负载在无机耐火组分上的有机组分,该有机组分包含羧酸和任选的醇,
优选地,在400℃焙烧3h后测定,所述加氢精制催化剂具有孔径分别在2-40nm和100-300nm范围的孔,其中孔径在2-40nm范围的孔体积占总孔体积的约60-95%,且孔径在100-300nm范围的孔体积占总孔体积的约0.5-30%。
本发明另一方面提供了一种制备加氢精制催化剂的方法,包括如下步骤:
(1)将第一加氢脱硫催化活性组分的前驱体与选自氧化铝、氧化硅、氧化镁、氧化钙、氧化锆和氧化钛中至少一种的氧化物的前驱体混合并焙烧,得到无机耐火组分;
(2)将第二加氢脱硫催化活性组分的前驱体与有机组分和任选的含磷化合物混合,得到浸渍溶液,其中所述有机组分包含羧酸和任选的醇;
(3)将所述无机耐火组分与所述浸渍溶液混合,将所得混合物成型并干燥,得到所述加氢精制催化剂。
本发明又一方面提供了一种加氢精制催化剂体系,包含第一催化剂和第二催化剂,其中所述第一催化剂为根据本发明的加氢精制催化剂,所述第二催化剂包含第二无机耐火组分、负载在第二无机耐火组 分上的第三加氢脱硫催化活性组分和负载在第二无机耐火组分上的有机组分,其中所述第二无机耐火组分包含氧化铝,所述有机组分选自羧酸和醇,并且所述第二催化剂的孔径尺寸集中在2-100nm范围,其中所述第一催化剂与所述第二催化剂的体积比为约1∶1至约1∶8。
本发明再一方面提供了一种制备加氢精制催化剂体系的方法,该加氢精制催化剂体系包括第一催化剂和第二催化剂,所述方法包括:
(1)按照本发明的制备加氢精制催化剂的方法制备所述第一催化剂;
(2)制备所述第二催化剂,包括以下步骤:
(2a)将氧化铝前驱体与助挤剂和胶溶剂混合,并对所得混合物依次进行成型、干燥和焙烧,得到第二无机耐火组分;
(2b)将第三加氢脱硫催化活性组分的前驱体与有机组分和任选的含磷化合物混合,得到第二浸渍溶液,所述有机组分选自羧酸和醇;
(2c)将所述第二浸渍溶液与所述第二无机耐火组分混合后干燥,得到所述第二催化剂;以及
(3)将所述第一催化剂和第二催化剂按照约1∶1至约1∶8的体积比分别装填于第一催化剂床层和第二催化剂床层,得到所述加氢精制催化剂体系。
本发明再一方面提供了根据本发明的加氢精制催化剂或加氢精制催化剂体系在馏分油加氢精制中的应用。
本发明再一方面提供了一种馏分油的加氢精制方法,包括如下步骤:
对根据本发明的加氢精制催化剂或加氢精制催化剂体系进行硫化;然后
在加氢脱硫条件下使待加氢脱硫的馏分油与硫化后的所述加氢精制催化剂或加氢精制催化剂体系进行接触。
本发明的加氢精制催化剂和加氢精制催化剂体系、及其制备方法可以提供一个或多个以下的优点:
1、本发明的加氢精制催化剂的孔径尺寸分别集中在2-40nm之间和100-300nm之间。在劣质馏分油中,反应物分子的尺寸较大,势必需要较大的反应空间,催化剂中孔径尺寸在100-300nm范围的孔道可 以为反应物的扩散提供足够的场所,促进了反应物与活性中心的可接近性,从而提高催化剂的性能。
2、本发明提供的加氢精制催化剂的制备方法通过在挤出成型之前将载体的前驱体进行焙烧。一方面热处理可以减少载体前驱体粒子中羟基数量,降低孔道缩合的几率,增加催化剂的孔径;第二方面,成型后的催化剂不需要用较高的温度进行处理,载体孔壁不需要进行过多的缩合,提高了载体的利用率;第三方面,在成型前对载体前驱体进行热处理,部分次级粒子也会发生缩合,这会导致形成的氧化铝粒子的大小趋于单一,成型后的催化剂中孔道将更加均匀,有利于反应物的扩散。特别是针对较重和较为劣质的油品,比常规催化剂更为有效。
3、本发明将部分加氢脱硫催化活性组分,更优选将部分第VIII族金属混入载体前驱体中,通过焙烧而形成无机耐火粉末。然后再将包含剩余活性组分的浸渍溶液与无机耐火粉末混合,从而提高了催化剂中活性组分的含量,进一步提升了催化剂的加氢精制性能。
4、与现有技术相比,本发明提供的加氢精制催化剂制备方法的流程较短,可以较大地节省制备成本和制备时间。另一方面,本发明催化剂的制备方法中无需加入胶溶剂硝酸和助剂挤田菁粉,减少了有害物质(如NOx)的排放,降低了物质成本和环保成本,实现了催化剂的绿色制造。
5、本发明的催化剂体系中,第二催化剂的孔径尺寸集中在2-100nm,且在制备过程中使用少量的活性金属组分,并加入有机羧酸和/或醇化合物,使活性组分高度分散,充分利用了活性金属,使该催化剂达到了较高的活性,并大幅度降低了催化剂的成本。
6、本发明将第一催化剂与第二催化剂组合使用,且在第一催化剂床层中使用活性较高的第一催化剂,可以较大幅度地利用该催化剂的高活性,更好地脱除油品中的杂质。此外,由于第二催化剂床层的加氢精制反应温度较高,如果活性中心过于集中,将会释放出较多的热量,加大催化剂的结焦,而本发明的第二催化剂中的活性组分处于高度分散状态,且催化剂的孔径较大,反应释放的热量较为缓和,且可以较快地被反应物流带走,因而可以达到较好的反应效果。
附图说明
附图是用来帮助对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1显示了根据本发明实施例I-8制备的无机耐火组分与催化剂的XRD谱图。
具体实施方式
以下将通过具体的实施方式对本发明作出进一步的详细描述,应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,但不以任何方式限制本发明。
在本文中所披露的任何具体数值(包括数值范围的端点)都不限于该数值的精确值,而应当理解为还涵盖了接近该精确值的值。并且,对于所披露的数值范围而言,在该范围的端点值之间、端点值与范围内的具体点值之间,以及各具体点值之间可以任意组合而得到一个或多个新的数值范围,这些新的数值范围也应被视为在本文中具体公开。
除非另有说明,本文所用的术语具有与本领域技术人员通常所理解的相同的含义,如果术语在本文中有定义,且其定义与本领域的通常理解不同,则以本文的定义为准。
本申请中,除了明确说明的内容之外,未提到的任何事宜或事项均直接适用本领域已知的那些而无需进行任何改变。而且,本文描述的任何实施方式均可以与本文描述的一种或多种其他实施方式自由结合,由此形成的技术方案或技术思想均视为本发明原始公开或原始记载的一部分,而不应被视为是本文未曾披露或预期过的新内容,除非本领域技术人员认为该结合明显不合理。
在本文中提及的所有专利和非专利文献,包括但不限于教科书和期刊文章等,均通过引用方式全文并入本文。
在本申请中,术语“羧酸”是指由烃基和一个或多个羧基(-COOH)相连构成的具有通式R(COOH) n的有机化合物,其中n为大于或等于1的整数,优选1-5,R为取代或未取代的脂族烃基(包括脂环族烃基)或芳族烃基,对于该烃基上的取代基并没有特别限制,包括但不限于 烷基、卤素、羟基等。所述羧酸根据烃基的不同,可以包括脂肪(族)酸和芳香(族)酸;根据羧基数目的不同,可以包括一元酸、二元酸和多元酸;根据不饱和键的存在与否,可以包括饱和酸和不饱和酸。
在本申请中,术语“醇”是指由烃基和一个或多个羟基(-OH)相连构成的具有通式R(OH) n的有机化合物,其中n为大于或等于1的整数,优选1-5,R为取代或未取代的脂族烃基(包括脂环族烃基)或芳族烃基,对于该烃基上的取代基并没有特别限制,包括但不限于烷基、卤素等。所述醇根据烃基的不同,可以包括脂肪(族)醇和芳香(族)醇(包括酚);根据羟基数目的不同,可以包括一元醇、二元醇和多元醇;根据不饱和键的存在与否,可以包括饱和醇和不饱和醇。
在本申请中,除非另有说明,催化剂的比表面积、孔分布、孔径(包括平均孔径)和孔体积(包括总孔体积)是在400℃焙烧3h后测定的。
在本申请中,除非另有说明,催化剂的比表面积以及其中2-40nm孔径范围内的孔分布、孔径、孔体积采用低温氮气吸附法(按照GB/T5816-1995标准)测定,100-300nm孔径范围内的孔分布、孔径、孔体积采用压汞法测定(按照GB/T21650.1-2008)。催化剂中孔径小于100nm的孔体积采用低温氮气吸附法(按照GB/T5816-1995标准)测定,孔径在100nm以上的孔体积采用压汞法测定(按照GB/T21650.1-2008),催化剂的总孔体积为二者之和。催化剂的平均孔径按照圆柱形孔模型进行计算(平均孔径=总孔体积×4000/比表面积)。
在本申请中,除非另有说明,所述“孔径在2-4nm范围”、“孔径(为)2-4nm”或“2-4nm孔径”是指孔径大于等于2nm且小于4nm,所述“孔径在2-40nm范围”、“孔径(为)2-40nm”或“2-40nm孔径”是指孔径大于等于2nm且小于40nm,所述“孔径在100-300nm范围”、“孔径(为)100-300nm”或“100-300nm孔径”是指孔径大于等于100nm且小于300nm,所述“孔径在2-100nm范围”、“孔径(为)2-100nm”或“2-100nm孔径”是指孔径大于等于2nm且小于100nm。所述“平均孔径(为)5-25nm”是指催化剂的所有孔的孔径的平均值大于等于5nm且小于等于25nm。
在本申请中,所述“孔径尺寸集中在2-100nm范围”是指孔径尺寸在2-100nm范围的孔体积占总孔体积的比例为至少约90%,例如, 约91%、约92%、约93%、约94%、约95%、约96%、约97%、约98%、约99%、约100%,优选至少约95%,更优选至少约98%,特别优选至少约99.5%。
在本申请中,除非另有说明,所给出的无机耐火组分的用量(包括与其它组分的用量之间的比值)和含量分别是指,以干重计,所述无机耐火组分中除所述第一加氢脱硫催化活性组分外的其它组分的总用量和总含量。
在本申请中,除非另有说明,无机耐火粉末的干基重量是指通过将样品在600℃焙烧4h而测定的重量;而催化剂的干基重量则是指通过将样品在400℃焙烧3h而测定的重量。同时,需要说明的是,由于催化剂中包含的醇和有机羧酸在高温下会分解挥发掉,因此本申请中醇和有机羧酸的用量和含量不以干基计。
加氢精制催化剂
在第一方面,本发明提供了一种加氢精制催化剂,包含:
无机耐火组分,该无机耐火组分包含第一加氢脱硫催化活性组分和与其混合的选自氧化铝、氧化硅、氧化镁、氧化钙、氧化锆和氧化钛中至少一种的氧化物;
负载在无机耐火组分上的第二加氢脱硫催化活性组分;和
负载在无机耐火组分上的有机组分,该有机组分包含羧酸和任选的醇,
优选地,在400℃焙烧3h后测定,所述加氢精制催化剂具有孔径分别在2-40nm和100-300nm范围的孔,其中孔径在2-40nm范围的孔体积占总孔体积的约60-95%,且孔径在100-300nm范围的孔体积占总孔体积的约0.5-30%。
在具体的实施方式中,本发明催化剂中的所述无机耐火组分在负载所述第二加氢脱硫催化活性组分和有机组分之前经过焙烧处理,所述焙烧优选在如下条件下进行:焙烧温度为约300-900℃,优选为约400-700℃;焙烧时间为约1-15h,优选为约3-8h。
在某些具体实施方式中,本发明的催化剂不含扩孔剂,例如,炭黑、石墨、硬脂酸、硬脂酸钠和硬脂酸铝等,也不含表面活性剂等成分。
本发明的无机耐火组分中所用的氧化铝、氧化硅、氧化镁、氧化钙、氧化锆和氧化钛基本为惰性物质,很难与第VIII族元素结合形成结构稳定的化合物,因而可以提高第VIII族元素的利用率。另外,这些物质与催化剂中的其它活性组分的作用力较弱,有利于催化剂活性相的生长,进而增强催化剂的性能。
优选地,本发明催化剂中孔径在2-40nm范围的孔体积占总孔体积的约75-90%,孔径在100-300nm范围的孔体积占总孔体积的约5-15%。进一步优选地,孔径在2-4nm范围的孔体积占总孔体积的比例不超过约10%。
优选地,在400℃焙烧3h后测定,所述加氢精制催化剂的比表面积为约70-200m 2/g,优选为约90-180m 2/g,总孔体积为约0.15-0.6mL/g,优选为约0.2-0.4mL/g,平均孔径为5-25nm,优选为约8-15nm。
根据本发明,所述加氢脱硫催化活性组分可以为任何已知可在加氢精制催化剂中用作加氢脱硫活性组分的组分,例如,所述活性组分可以选自第VIII族金属元素和第VIB族金属元素。优选地,所述第一加氢脱硫催化活性组分包含选自第VIII族金属元素和第VIB族金属元素中至少一种的金属元素,且所述第二加氢脱硫催化活性组分包含至少一种第VIII族金属元素和至少一种第VIB族金属元素。进一步优选地,所述第VIII族金属元素选自铁、钴、镍、钌、铑和钯中的至少一种,和/或所述第VIB族金属元素选自铬、钼和钨中的至少一种。
在本发明的催化剂中,所述活性组分的含量可以在较宽的范围内进行变化。优选地,在所述加氢精制催化剂中,以催化剂的干基重量为基准并以氧化物计,第VIII族金属元素的总含量为约15-35重量%,优选为约20-30重量%;且第VIB族金属元素的总含量为约35-75重量%,优选为约40-65重量%。
本发明的发明人在研究中发现,通过将部分加氢脱硫催化活性组分,特别是部分第VIII族金属元素包含在无机耐火组分中,能够提高催化剂中活性组分的含量,进而提升催化剂的加氢精制性能。对于包含在无机耐火组分中的加氢脱硫催化活性组分,如第VIII族金属元素的量并没有特别的限制,其可以在较宽的范围内进行选择。优选地,包含在无机耐火组分中的所述第一加氢脱硫催化活性组分包含至少一 种第VIII族金属元素,其含量为所述加氢精制催化剂中第VIII族金属元素总含量的约60-90%。
优选地,以催化剂的干基重量为基准,所述无机耐火组分中除所述第一加氢脱硫催化活性组分外的其它组分的总含量为约5-40重量%,优选为约10-30重量%。
本发明的发明人在研究中发现,在加氢精制催化剂中引入羧酸化合物可以保护催化剂的活性组分和提高催化剂的活性,且进一步引入醇可以更有效地保护催化剂中的活性组分,两者共存的情况下,还能够起到协同的效应。优选地,在本发明的催化剂中,当所述有机组分仅包含羧酸时,所述羧酸的重量含量与所述无机耐火组分中除所述第一加氢脱硫催化活性组分外的其它组分的干基重量之间的比值为约0.1-0.8∶1,优选为约0.2-0.6∶1;或者,当所述有机组分同时包含羧酸和醇时,所述羧酸的重量含量与所述无机耐火组分中除所述第一加氢脱硫催化活性组分外的其它组分的干基重量之间的比值为约0.002-0.1∶1,优选为约0.02-0.06∶1;所述醇的摩尔含量与所述无机耐火组分中除所述第一加氢脱硫催化活性组分外的其它组分的干基重量之间的比值为约0.005-0.03∶1,优选为约0.01-0.02∶1。
在本申请中,对于所述羧酸并没有特别的限制。优选地,所述羧酸选自C 1-18的一元饱和羧酸,例如,C1、C2、C3、C4、C5、C6、C7、C8、C9、C10、C11、C12、C13、C14、C15、C16、C17和C18的一元饱和羧酸,包括但不限于甲酸、乙酸、丙酸、辛酸、戊酸、己酸、癸酸、戊酸、己酸、癸酸和十八酸等;C 7-10的苯基酸,例如,C7、C8、C9和C10的苯基酸,包括但不限于苯甲酸、苯乙酸、邻苯二甲酸和对苯二甲酸等;以及柠檬酸、己二酸、丙二酸、丁二酸、马来酸和酒石酸等中的至少一种。
在本申请中,对于所述醇并没有特别的限制。优选地,所述醇选自C 1-18的一元醇,优选C 1-10的一元醇,例如,C1、C2、C3、C4、C5、C6、C7、C8、C9和C10的一元醇,包括但不限于甲醇、乙醇、丙醇、异丙醇、丁醇、异丁醇、戊醇和庚醇等;乙二醇、聚乙二醇、丙三醇、聚丙三醇、丁四醇、季戊四醇、木糖醇、山梨醇和三羟甲基乙烷中的至少一种。
在本发明的某些优选实施方式中,为了进一步提高催化剂的性 能,所述加氢精制催化剂中还包含磷元素,所述磷元素优选以P 2O 5的形式存在。优选地,以催化剂的干基重量为基准并以P 2O 5计,所述磷元素的含量为约0.8-10重量%,更优选约1-8重量%。
根据本发明,优选地,所述加氢精制催化剂为成型催化剂,所述催化剂的形状优选为圆柱形、三叶草形、四叶草形或蜂窝形。
本发明催化剂的孔径尺寸分别集中在2-40nm和100-300nm之间,催化剂中孔径尺寸在100-300nm范围的孔道可以为反应物的扩散提供足够的场所,促进了反应物与活性中心的可接近性,从而提高催化剂的性能。
此外,由于本发明催化剂中的无机耐火组分经过焙烧处理,因此所述无机耐火组分和加氢精制催化剂的XRD谱图中具有与选自氧化铝、氧化硅、氧化镁、氧化钙、氧化锆和氧化钛中至少一种的氧化物的XRD特征峰相对应的特征峰,以及与作为所述第一加氢脱硫催化活性组分的金属元素,其优选选自第VIII族金属元素和第VIB族金属元素中至少一种,的氧化物的XRD特征峰相对应的特征峰。这些氧化物和金属氧化物的XRD特征峰可以参照它们的标准XRD图谱。
加氢精制催化剂的制备方法
在第二方面,本发明提供了一种制备加氢精制催化剂的方法,包括如下步骤:
(1)将第一加氢脱硫催化活性组分的前驱体与选自氧化铝、氧化硅、氧化镁、氧化钙、氧化锆和氧化钛中至少一种的氧化物的前驱体混合并焙烧,得到无机耐火组分;
(2)将第二加氢脱硫催化活性组分的前驱体与有机组分和任选的含磷化合物混合,得到浸渍溶液,其中所述有机组分包含羧酸和任选的醇;
(3)将所述无机耐火组分与所述浸渍溶液混合,将所得混合物成型并干燥,得到所述加氢精制催化剂。
优选地,所述第一加氢脱硫催化活性组分的前驱体包含选自第VIII族金属元素和第VIB族金属元素中至少一种的金属元素的前驱体,且所述第二加氢脱硫催化活性组分的前驱体包含至少一种第VIII族金属元素的前驱体和至少一种第VIB族金属元素的前驱体。
优选地,所述第一加氢脱硫催化活性组分的前驱体和所述第二加氢脱硫催化活性组分的前驱体的用量使得在所述加氢精制催化剂中,以催化剂的干基重量为基准并以氧化物计,第VIII族金属元素的总含量为约15-35重量%,优选为约20-30重量%,且第VIB族金属元素的总含量为约35-75重量%,优选为约40-65重量%。
进一步优选地,所述第VIII族金属元素选自铁、钴、镍、钌、铑和钯中的至少一种,和/或所述第VIB族金属元素选自铬、钼和钨中的至少一种。
根据本发明,在所述第一和第二加氢脱硫催化活性组分的前驱体中,所述铁元素的前驱体可以包括但不限于硝酸铁、氧化铁、碱式碳酸铁和乙酸铁中的一种或多种;所述钴元素的前驱体可以包括但不限于硝酸钴、碱式碳酸钴、乙酸钴和氧化钴中的一种或多种;所述镍元素的前驱体可以包括但不限于硝酸镍、碱式碳酸镍、乙酸镍和氧化镍中的一种或多种;所述钌元素的前驱体可以包括但不限于硝酸钌、乙酸钌、氧化钌和氢氧化钌中的一种或多种;所述铑元素的前驱体可以包括但不限于硝酸铑、氢氧化铑和氧化铑中的一种或多种;所述钯元素的前驱体可以包括但不限于硝酸钯、氧化钯和氢氧化钯中的一种或多种;所述铬元素的前驱体可以包括但不限于硝酸铬、氧化铬、氢氧化铬和醋酸铬中的一种或多种;所述钼元素的前驱体可以包括但不限于七钼酸铵、钼酸铵、磷钼酸铵和氧化钼中的一种或多种;所述钨元素的前驱体可以包括但不限于偏钨酸铵、乙基偏钨酸铵和氧化钨中的一种或多种。
本发明的发明人在研究中发现,通过将部分加氢脱硫催化活性组分的前驱体,特别是部分第VIII族金属元素的前驱体结合到无机耐火组分中,并将剩余加氢脱硫催化活性组分、如剩余第VIII族金属元素的前驱体和第VIB族金属元素的前驱体结合到浸渍溶液中对所述无机耐火组分进行浸渍,能够提高催化剂中活性组分的含量,进而提升催化剂的加氢精制性能。对于用于制备无机耐火组分的第一加氢脱硫催化活性组分的前驱体的用量并没有特别的限制,其可以在较宽的范围内进行选择。优选地,在步骤(1)中,所用第一加氢脱硫催化活性组分的前驱体包含至少一种第VIII族金属元素的前驱体,其用量为第VIII族金属元素的前驱体的总用量的约60-90%。
根据本发明,步骤(1)中,所述氧化铝、氧化硅、氧化镁、氧化钙、氧化锆和氧化钛的前驱体可以为任何已知的可以在焙烧条件下提供氧化铝、氧化硅、氧化镁、氧化钙、氧化锆和/或氧化钛的物质。例如,所述氧化铝的前驱体包括但不限于拟薄水铝石、氢氧化铝粉、硝酸铝、碳酸铝和柠檬酸铝等;所述氧化硅的前驱体包括但不限于硅溶胶、白炭黑和二氧化硅等;所述氧化镁的前驱体包括但不限于氢氧化镁、硝酸镁、碳酸镁、醋酸镁和氧化镁等;所述氧化钙的前驱体包括但不限于氢氧化钙、碳酸钙、草酸钙、硝酸钙、醋酸钙和氧化钙等;所述氧化锆前驱体包括但不限于氢氧化锆、碳酸锆、硝酸锆、醋酸锆和氧化锆等;所述氧化钛的前驱体包括但不限于氢氧化钛、硝酸钛、醋酸钛和氧化锆等。
优选地,在步骤(3)中,所述无机耐火组分的用量使得在所述加氢精制催化剂中,以所述加氢精制催化剂的干基重量为基准,所述无机耐火组分中除所述第一加氢脱硫催化活性组分外的其它组分的总含量为约5-40重量%,优选为约10-30重量%。
优选地,在步骤(2)中,当所述有机组分仅包含羧酸时,所用羧酸的重量与所述无机耐火组分中除所述第一加氢脱硫催化活性组分外的其它组分的干基重量之间的比值为约0.1-0.8∶1,优选为约0.2-0.6∶1;或者,当所述有机组分同时包含羧酸和醇时,所用羧酸的重量与所述无机耐火组分中除所述第一加氢脱硫催化活性组分外的其它组分的干基重量之间的比值为约0.002-0.1∶1,优选为约0.02-0.06∶1,且所述醇的摩尔用量与所述无机耐火组分中除所述第一加氢脱硫催化活性组分外的其它组分的干基重量之间的比值为约0.005-0.03∶1,优选为约0.01-0.02∶1。
根据本发明,在所述浸渍溶液中引入羧酸类物质可保护加氢脱硫催化活性组分,同时还能够促进催化剂的成型,而进一步引入醇则可更有效地保护加氢脱硫催化活性组分,从而有效提高催化剂的性能。
优选地,为了进一步提高最终制备的催化剂的性能,所用氧化铝、氧化硅、氧化镁、氧化钙、氧化锆和氧化钛前驱体的平均孔径不小于约10nm。更优选地,所述前驱体中孔径在2-6nm范围的孔体积占总孔体积的比例不大于约15%,孔径在6-40nm范围的孔体积占总孔体积的比例不小于约75%。
根据本发明,为了进一步提高配制的浸渍溶液中加氢脱硫催化活性组分的前驱体的溶解性,提高最终制备的催化剂的性能,在所述浸渍溶液的配制过程中还优选加入含磷化合物,所述含磷化合物优选为含磷的无机酸,进一步优选为磷酸、次磷酸、磷酸铵和磷酸二氢铵中的至少一种。进一步优选地,所述含磷化合物的用量使得最终制备的催化剂中,以干基重量为基准且以P 2O 5计,所述磷元素的含量为约0.8-10重量%,优选约1-8重量%,更优选约2-8重量%。
根据本发明,在配制所述浸渍溶液时,所述催化活性组分的前驱体、有机组分包括有机羧酸和任选的有机醇化合物、以及任选的含磷化合物的加入顺序并没有特别的要求。在一种优选实施方式中,在配制浸渍溶液时,首先将所述醇化合物与分别含第VIB族金属元素和含VIII族金属元素的前驱体加入含磷化合物的水溶液中,然后在约40-100℃下搅拌约1-8h,直到全部溶解。最后再加入有机羧酸,直到有机羧酸全部溶解。
根据本发明,步骤(1)中,所述焙烧的条件可以在较宽的范围内进行选择,优选地,所述焙烧温度为约300-900℃,优选为约400-700℃;焙烧时间为约1-15h,优选为约3-8h。
根据本发明,步骤(3)中,所述干燥的条件可以在较宽的范围内进行选择,优选地,干燥温度为约50-250℃,优选为约100-200℃;干燥时间为约2-10h,优选为约3-8h。
根据本发明,所述催化剂可以采用现有的各种成型方法成型,例如可以是挤条成型,也可以是滚球成型。所述挤条成型的方式可以参照现有技术进行,将待挤条成型的无机耐火组分与含金属组分的浸渍溶液混合均匀后挤出成所需形状,如圆柱形、三叶草形、四叶草形、蜂窝形等。
现有技术中,制备加氢精制催化剂的步骤一般包括:(1)将氧化铝前驱体(例如,拟薄水铝石)或者与含其它粉体、元素的前驱体混合后与胶溶剂和助剂挤混合,(2)通过挤条的方式制备成型,(3)将成型后的氧化铝前驱体焙烧制备得到氧化铝载体;(4)配制含金属组分的浸渍溶液;(5)将浸渍溶液均匀浸渍焙烧后的氧化铝载体制备成催化剂前驱体;(6)将催化剂前驱体干燥或焙烧制备得到加氢精制催化剂。可以看出,现有技术的催化剂制备流程较长,制造成本较 高。而如上所述,本发明提供的催化剂制备流程较短,可以较大地节省制备成本和制备时间。另一方面,本发明催化剂的制备中无需加入胶溶剂硝酸和助剂挤田菁粉,减少了有害物质(如NOx)的排放,降低了物质成本和环保成本,实现了催化剂的绿色制造。
同时,本发明的发明人在研究过程中发现,通常加氢催化剂的载体是通过将载体前驱体(如拟薄水铝石粉)与胶溶剂和助挤剂通过挤条成型,然后再经过干燥和焙烧获得。由于加氢反应需要催化剂具有较大的孔道结构,而焙烧前,一般孔道集中在2-12nm,因此,一般通过将成型后的载体进行焙烧处理来提高载体的孔道尺寸从而提高催化剂的孔道尺寸,焙烧后的载体的孔道一般集中在2-100nm,载体的平均孔径增加,而且一般认为焙烧温度越高,孔道尺寸越大。然而,本发明的发明人在研究中发现,随着焙烧温度的增加,载体的孔壁会发生坍塌缩合。虽然孔壁缩合可以使载体的平均孔径增加,但缩合的孔壁会降低氧化铝的利用率,从而降低催化剂的催化活性。本发明提供的加氢精制催化剂的制备方法通过在挤出成型之前将载体的前驱体进行焙烧,一方面热处理可以减少载体前驱体粒子中羟基数量,降低孔道缩合的几率,增加催化剂的孔径。第二方面,成型后的催化剂不需要用较高的温度进行处理,载体孔壁不需要进行过多的缩合,提高了载体的利用率。第三方面,在成型前对载体前驱体进行热处理,部分次级粒子也会发生缩合,这会导致形成的氧化铝粒子的大小趋于单一,成型后的催化剂中孔道将更加均匀,有利于反应物的扩散。特别是针对较重和较为劣质的油品,比常规催化剂更为有效。
另外,本发明的发明人研究发现,常规浸渍法制备的催化剂中金属的负载量不高,第VIII族金属的含量通常小于10%,第VIB族金属的含量通常小于35%。这就限制了催化剂活性金属中心的数量,催化剂的活性达不到更高的水平。而采用混捏法制备催化剂,可以将催化剂中活性金属负载量提高,但催化剂的加氢精制活性并不高,活性金属的利用率较低,目前催化剂的制备一般不采用这种方法。本发明将部分加氢脱硫催化活性组分,优选部分第VIII族金属的前驱体混入载体前驱体中,通过焙烧而形成无机耐火粉末;然后,再将包含剩余活性金属前驱体的浸渍溶液与无机耐火粉末混合,从而提高了催化剂中活性组分的含量,提升了催化剂的加氢精制性能。
此外,通过本发明方法制备的催化剂的孔径尺寸分别集中在2-40nm之间和100-300nm之间,其中孔径尺寸在100-300nm范围的孔道可以为反应物的扩散提供的较大的场所,促进了反应物与活性中心的可接近性,从而提高催化剂的性能。
此外,在本发明的加氢精制催化剂的制备方法中,由于所述无机耐火组分经过焙烧处理,因此所得无机耐火组分和加氢精制催化剂的XRD谱图中具有与选自氧化铝、氧化硅、氧化镁、氧化钙、氧化锆和氧化钛中至少一种的氧化物的XRD特征峰相对应的特征峰,以及与作为所述第一加氢脱硫催化活性组分的金属元素,其优选选自第VIII族金属元素和第VIB族金属元素中至少一种,的氧化物的XRD特征峰相对应的特征峰。这些氧化物和金属氧化物的XRD特征峰可以参照它们的标准XRD图谱。
加氢精制催化剂体系
在第三方面,本发明提供了一种加氢精制催化剂体系,包含第一催化剂和第二催化剂,其中:
所述第一催化剂为根据本发明的加氢精制催化剂或者通过本发明方法制备的加氢精制催化剂;
所述第二催化剂包含第二无机耐火组分、负载在第二无机耐火组分上的第三加氢脱硫催化活性组分和负载在第二无机耐火组分上的有机组分,其中所述第二无机耐火组分包含氧化铝,所述有机组分选自羧酸和醇,并且所述第二催化剂的孔径尺寸集中在2-100nm范围;
其中所述第一催化剂与所述第二催化剂的体积比为约1∶1至约1∶8,优选为约1∶2至约1∶6。
在具体的实施方式中,本发明的加氢精制催化剂体系包含位于第一催化剂床层内的第一催化剂和位于第二催化剂床层内的第二催化剂,其中:
所述第一催化剂包含:
第一无机耐火组分,该无机耐火组分包含第一加氢脱硫催化活性组分和与其混合的选自氧化铝、氧化硅、氧化镁、氧化钙、氧化锆和氧化钛中至少一种的氧化物;
负载在第一无机耐火组分上的第二加氢脱硫催化活性组分;和
负载在第一无机耐火组分上的有机组分,该有机组分包含羧酸和任选的醇,
优选地,在400℃焙烧3h后测定,所述第一催化剂具有孔径分别在2-40nm和100-300nm范围的孔,其中孔径在2-40nm范围的孔体积占总孔体积的约60-95%,孔径在100-300nm范围的孔体积占总孔体积的约0.5-30%;
所述第二催化剂包含第二无机耐火组分、负载在第二无机耐火组分上的第三加氢脱硫催化活性组分和负载在第二无机耐火组分上的有机组分,其中所述第二无机耐火组分包含氧化铝,所述有机组分选自羧酸和醇,并且所述第二催化剂的孔径尺寸集中在2-100nm范围;
其中所述第一催化剂与所述第二催化剂的体积比为约1∶1至约1∶8,优选为约1∶2至约1∶6。
第一催化剂
如上所述,本发明的所述第一催化剂包含:
第一无机耐火组分,该无机耐火组分包含第一加氢脱硫催化活性组分和与其混合的选自氧化铝、氧化硅、氧化镁、氧化钙、氧化锆和氧化钛中至少一种的氧化物;
负载在第一无机耐火组分上的第二加氢脱硫催化活性组分;和
负载在第一无机耐火组分上的有机组分,该有机组分包含羧酸和任选的醇,
优选地,在400℃焙烧3h后测定,所述第一催化剂具有孔径分别在2-40nm和100-300nm范围的孔,其中孔径在2-40nm范围的孔体积占总孔体积的约60-95%,孔径在100-300nm范围的孔体积占总孔体积的约0.5-30%。
在具体的实施方式中,所述第一催化剂中的所述第一无机耐火组分在负载所述第二加氢脱硫催化活性组分和有机组分之前经过焙烧处理,所述焙烧优选在如下条件下进行:焙烧温度为约300-900℃,优选为约400-700℃;焙烧时间为约1-15h,优选为约3-8h。
在某些具体实施方式中,本发明的第一催化剂不含扩孔剂,例如,炭黑、石墨、硬脂酸、硬脂酸钠和硬脂酸铝等,也不含表面活性剂等成分。
本发明的第一无机耐火组分中所用的氧化铝、氧化硅、氧化镁、氧化钙、氧化锆和氧化钛基本为惰性物质,很难与第VIII族元素结合形成结构稳定的化合物,因而可以提高第VIII族元素的利用率。另外,这些物质与催化剂中的其它活性组分的作用力较弱,有利于催化剂活性相的生长,进而增强第一催化剂的性能。
优选地,本发明的第一催化剂中孔径在2-40nm范围的孔体积占总孔体积的约75-90%,孔径在100-300nm范围的孔体积占总孔体积的约5-15%。进一步优选地,孔径在2-4nm范围的孔体积占总孔体积的比例不超过约10%。
优选地,在400℃焙烧3h后测定,所述第一催化剂的比表面积为约70-200m 2/g,优选为约90-180m 2/g,总孔体积为约0.15-0.6mL/g,优选为约0.2-0.4mL/g,平均孔径为5-25nm,优选为约8-15nm。
根据本发明,所述第一催化剂中的加氢脱硫催化活性组分可以为任何已知可在加氢精制催化剂中用作加氢脱硫活性组分的组分,例如,所述活性组分可以选自第VIII族金属元素和第VIB族金属元素。优选地,所述第一加氢脱硫催化活性组分包含选自第VIII族金属元素和第VIB族金属元素中至少一种的金属元素,且所述第二加氢脱硫催化活性组分包含至少一种第VIII族金属元素和至少一种第VIB族金属元素。进一步优选地,所述第VIII族金属元素选自铁、钴、镍、钌、铑和钯中的至少一种,和/或所述第VIB族金属元素选自铬、钼和钨中的至少一种。
在所述第一催化剂中,所述活性组分的含量可以在较宽的范围内进行变化。优选地,在所述第一催化剂中,以第一催化剂的干基重量为基准并以氧化物计,第VIII族金属元素的总含量为约15-35重量%,优选为约20-30重量%;且第VIB族金属元素的总含量为约35-75重量%,优选为约40-65重量%。
本发明的发明人在研究中发现,通过将部分加氢脱硫催化活性组分,特别是部分第VIII族金属元素包含在第一无机耐火组分中,能够提高第一催化剂中活性组分的含量,进而提升第一催化剂的加氢精制性能。对于包含在第一无机耐火组分中的加氢脱硫催化活性组分,如第VIII族金属元素的量并没有特别的限制,其可以在较宽的范围内进行选择。优选地,包含在第一无机耐火组分中的所述第一加氢脱硫催 化活性组分包含至少一种第VIII族金属元素,其含量为所述第一催化剂中第VIII族金属元素总含量的约60-90%。
优选地,以第一催化剂的干基重量为基准,所述第一无机耐火组分中除所述第一加氢脱硫催化活性组分外的其它组分的总含量为约5-40重量%,更优选为约10-30重量%。
本发明的发明人在研究中发现,在第一催化剂中引入羧酸化合物可以保护催化剂活性组分以及提高催化剂的活性,而进一步引入醇,优选有机醇化合物可以更有效地保护催化剂中的活性组分,两者共存的情况下,还能够起到协同的效应。优选地,在所述第一催化剂中,当所述有机组分仅包含羧酸时,所述羧酸的重量含量与所述第一无机耐火组分中除所述第一加氢脱硫催化活性组分外的其它组分的干基重量之间的比值为约0.1-0.8∶1,优选为约0.2-0.6∶1;或者当所述有机组分同时包含羧酸和醇时,所述羧酸的重量含量与所述第一无机耐火组分中除所述第一加氢脱硫催化活性组分外的其它组分的干基重量之间的比值为约0.002-0.1∶1,优选为约0.02-0.06∶1;所述醇的摩尔含量与所述第一无机耐火组分中除所述第一加氢脱硫催化活性组分外的其它组分的干基重量之间的比值为约0.005-0.03∶1,优选为约0.01-0.02∶1。
在本申请中,对于所述羧酸并没有特别的限制。优选地,所述羧酸选自C 1-18的一元饱和羧酸,例如,C1、C2、C3、C4、C5、C6、C7、C8、C9、C10、C11、C12、C13、C14、C15、C16、C17和C18的一元饱和羧酸,包括但不限于甲酸、乙酸、丙酸、辛酸、戊酸、己酸、癸酸、戊酸、己酸、癸酸和十八酸等;C 7-10的苯基酸,例如,C7、C8、C9和C10的苯基酸,包括但不限于苯甲酸、苯乙酸、邻苯二甲酸和对苯二甲酸等;以及柠檬酸、己二酸、丙二酸、丁二酸、马来酸和酒石酸等中的至少一种。
在本申请中,对于所述醇并没有特别的限制。优选地,所述醇选自C 1-18的一元醇,优选C 1-10的一元醇,例如,C1、C2、C3、C4、C5、C6、C7、C8、C9和C10的一元醇,包括但不限于甲醇、乙醇、丙醇、异丙醇、丁醇、异丁醇、戊醇和庚醇等;乙二醇、聚乙二醇、丙三醇、聚丙三醇、丁四醇、季戊四醇、木糖醇、山梨醇和三羟甲基乙烷中的至少一种。
在本发明的某些优选实施方式中,为了进一步提高催化剂的性 能,所述第一催化剂中还包含磷元素,所述磷元素优选以P 2O 5的形式存在。优选地,以第一催化剂的干基重量为基准并以P 2O 5计,所述磷元素的含量为约0.8-10重量%,更优选约1-8重量%。
根据本发明,优选地,所述第一催化剂为成型催化剂,所述催化剂的形状优选为圆柱形、三叶草形、四叶草形或蜂窝形。
本发明的所述第一催化剂的孔径尺寸分别集中在2-40nm和100-300nm之间,催化剂中孔径尺寸在100-300nm范围的孔道可以为反应物的扩散提供足够的场所,促进了反应物与活性中心的可接近性,从而提高催化剂的性能。
此外,在本发明的加氢精制催化剂体系的第一催化剂中,由于所述第一无机耐火组分经过焙烧处理,因此所述第一无机耐火组分和第一催化剂的XRD谱图中具有与选自氧化铝、氧化硅、氧化镁、氧化钙、氧化锆和氧化钛中至少一种的氧化物的XRD特征峰相对应的特征峰,以及与作为所述第一加氢脱硫催化活性组分的金属元素,其优选选自第VIII族金属元素和第VIB族金属元素中至少一种,的氧化物的XRD特征峰相对应的特征峰。这些氧化物和金属氧化物的XRD特征峰可以参照它们的标准XRD图谱。
第二催化剂
如上所述,本发明的所述第二催化剂包含第二无机耐火组分、负载在第二无机耐火组分上的第三加氢脱硫催化活性组分和负载在第二无机耐火组分上的有机组分,其中所述第二无机耐火组分包含氧化铝,所述有机组分选自羧酸和醇,并且所述第二催化剂的孔径尺寸集中在2-100nm范围。
根据本发明,第二催化剂的比表面积以及其中2-100nm孔径范围内的孔分布、孔径、孔体积采用低温氮气吸附法(按照GB/T5816-1995标准)测定。平均孔径按照圆柱形孔模型进行计算(平均孔径=总孔体积×4000/比表面积)。
优选地,在400℃焙烧3h后测定,所述第二催化剂的比表面积为约130-300m 2/g,优选为约160-270m 2/g,孔体积为约0.2-0.7mL/g,优选为约0.3-0.6mL/g,平均孔径为6-20nm,优选为约7-15nm。
根据本发明,所述第三氢脱硫催化活性组分可以为任何已知可在 加氢精制催化剂中用作加氢脱硫活性组分的组分,例如,所述活性组分可以选自第VIII族金属元素和第VIB族金属元素。优选地,所述第三加氢脱硫催化活性组分包含至少一种第VIII族金属元素和至少一种第VIB族金属元素。进一步优选地,所述第VIII族金属元素选自铁、钴、镍、钌、铑和钯中的至少一种,和/或所述第VIB族金属元素选自铬、钼和钨中的至少一种。
在所述第二催化剂中,所述活性组分的含量可以在较宽的范围内进行变化。优选地,在所述第二催化剂中,以第二催化剂的干基重量为基准并以氧化物计,第VIII族金属元素的总含量为约1-8重量%,优选为约2-6重量%;且第VIB族金属元素的总含量为约10-35重量%,优选为约15-30重量%。
根据本发明,优选地,以第二催化剂的干基重量为基准,所述第二无机耐火组分的含量为约60-85重量%,更优选为约70-80重量%。所述第二无机耐火组分优选为氧化铝,氧化铝与活性组分的作用力较强,从而保证了活性组分的高度分散,在较低活性组分含量的情况下产生较多数量的活性中心,从而提高第二催化剂的性能。
本发明的发明人在研究中发现,在第二催化剂中引入选自羧酸和醇的有机组分可以有效地保护催化活性组分,并使活性组分的分散更好,产生更多的活性中心。优选地,所述有机组分与第二催化剂中第VIII族元素的摩尔比为约0.5-8,优选为约1-5。
在本发明中,对于所述羧酸没有特别的要求。优选地,所述羧酸选自C 1-18的一元饱和羧酸,例如,C1、C2、C3、C4、C5、C6、C7、C8、C9、C10、C11、C12、C13、C14、C15、C16、C17和C18的一元饱和羧酸,包括但不限于甲酸、乙酸、丙酸、辛酸、戊酸、己酸、癸酸、戊酸、己酸、癸酸和十八酸等;C 7-10的苯基酸,例如,C7、C8、C9和C10的苯基酸,包括但不限于苯甲酸、苯乙酸、邻苯二甲酸和对苯二甲酸等;柠檬酸、己二酸、丙二酸、丁二酸、马来酸、和酒石酸等中的至少一种。
在本发明中,对于所述醇没有特别的要求。优选地,所述醇选自C 1-18的一元醇,优选C 1-10的一元醇,例如,C1、C2、C3、C4、C5、C6、C7、C8、C9和C10的一元醇,包括但不限于甲醇、乙醇、丙醇、异丙醇、丁醇、异丁醇、戊醇和庚醇等;乙二醇、聚乙二醇、丙 三醇、聚丙三醇、丁四醇、季戊四醇、木糖醇、山梨醇和三羟甲基乙烷中的至少一种。
在本发明的某些优选实施方式中,为了进一步提高催化剂的性能,所述第二催化剂中还包含磷元素,所述磷元素优选以P 2O 5的形式存在。优选地,以第二催化剂的干基重量为基准并以P 2O 5计,所述磷元素的含量为约0.8-10重量%,更优选约1-8重量%。
根据本发明,优选地,所述第二催化剂为成型催化剂,所述催化剂的形状优选为圆柱形、三叶草形、四叶草形或蜂窝形。
根据本发明,由于所述第一催化剂活性较高,在催化剂体系中的第一床层中使用少量的所述第一催化剂,可以降低整个催化剂体系的成本。所述第二催化剂中活性组分分散较好,可以应对第二床层苛刻的反应条件,且催化剂中活性金属用量较少,成本较低。将二者搭配组合,既可以达到提高催化活性的目的,又可以较好地控制催化剂体系的成本。
此外,在第一床层中使用活性较高的第一催化剂,可以充分利用该催化剂的高活性,更好地脱除油品中的杂质。同时,由于下层催化剂的加氢精制反应温度较高,如果活性中心过于集中,将会释放出较多的热量,加大催化剂的结焦,而本发明中所述第二催化剂中的活性组分处于高度分散状态,且催化剂的孔径较大,反应释放的热量较为缓和,且可以较快地被反应物流带走,因而可以达到较好的反应效果。
加氢精制催化剂体系的制备方法
在第四方面,本发明提供了一种制备加氢精制催化剂体系的方法,该加氢精制催化剂体系包括第一催化剂和第二催化剂,所述方法包括:
(1)按照本发明的制备加氢精制催化剂的方法制备所述第一催化剂;
(2)制备所述第二催化剂,包括以下步骤:
(2a)将氧化铝前驱体与助挤剂和胶溶剂混合,并对所得混合物依次进行成型、干燥和焙烧,得到第二无机耐火组分;
(2b)将第三加氢脱硫催化活性组分的前驱体与有机组分和 任选的含磷化合物混合,得到第二浸渍溶液,所述有机组分选自羧酸和醇;
(2c)将所述第二浸渍溶液与所述第二无机耐火组分混合后干燥,得到所述第二催化剂;以及
(3)将所述第一催化剂和第二催化剂按照约1∶1至约1∶8、优选约1∶2至约1∶6的体积比分别装填于第一催化剂床层和第二催化剂床层,得到所述加氢精制催化剂体系。
在具体的实施方式中,本发明的制备加氢精制催化剂体系的方法包括:
(1)制备所述第一催化剂,包括以下步骤:
(1a)将第一加氢脱硫催化活性组分的前驱体与选自氧化铝、氧化硅、氧化镁、氧化钙、氧化锆和氧化钛中至少一种的氧化物的前驱体混合并焙烧,得到第一无机耐火组分;
(1b)将第二加氢脱硫催化活性组分的前驱体与有机组分和任选的含磷化合物混合,得到第一浸渍溶液,其中所述有机组分包含羧酸和任选的醇;
(1c)将所述第一无机耐火组分与所述第一浸渍溶液混合,将所得混合物成型并干燥,得到所述第一催化剂;
(2)制备所述第二催化剂,包括以下步骤:
(2a)将氧化铝前驱体与助挤剂和胶溶剂混合,并对所得混合物依次进行成型、干燥和焙烧,得到第二无机耐火组分;
(2b)将第三加氢脱硫催化活性组分的前驱体与有机组分和任选的含磷化合物混合,得到第二浸渍溶液,所述有机组分选自羧酸和醇;
(2c)将所述第二浸渍溶液与所述第二无机耐火组分混合后干燥,得到所述第二催化剂;以及
(3)将所述第一催化剂和第二催化剂按照约1∶1至约1∶8、优选约1∶2至约1∶6的体积比分别装填于第一催化剂床层和第二催化剂床层,得到所述加氢精制催化剂体系。
第一催化剂的制备
如上所述,本发明的所述第一催化剂的制备包括以下步骤:
(1a)将第一加氢脱硫催化活性组分的前驱体与选自氧化铝、氧化硅、氧化镁、氧化钙、氧化锆和氧化钛中至少一种的氧化物的前驱体混合并焙烧,得到第一无机耐火组分;
(1b)将第二加氢脱硫催化活性组分的前驱体与有机组分和任选的含磷化合物混合,得到第一浸渍溶液,其中所述有机组分包含羧酸和任选的醇;以及
(1c)将所述第一无机耐火组分与所述第一浸渍溶液混合,将所得混合物成型并干燥,得到所述第一催化剂。
优选地,所述第一加氢脱硫催化活性组分的前驱体包含选自第VIII族金属元素和第VIB族金属元素中至少一种的金属元素的前驱体,且所述第二加氢脱硫催化活性组分的前驱体包含至少一种第VIII族金属元素的前驱体和至少一种第VIB族金属元素的前驱体。
优选地,所述第一加氢脱硫催化活性组分的前驱体和所述第二加氢脱硫催化活性组分的前驱体的用量使得在所述第一催化剂中,以催化剂的干基重量为基准并以氧化物计,第VIII族金属元素的总含量为约15-35重量%,优选为约20-30重量%,且第VIB族金属元素的总含量为约35-75重量%,优选为约40-65重量%。
进一步优选地,所述第VIII族金属元素选自铁、钴、镍、钌、铑和钯中的至少一种,和/或所述第VIB族金属元素选自铬、钼和钨中的至少一种。
根据本发明,在所述第一和第二加氢脱硫催化活性组分的前驱体中,所述铁元素的前驱体可以包括但不限于硝酸铁、氧化铁、碱式碳酸铁和乙酸铁中的一种或多种;所述钴元素的前驱体可以包括但不限于硝酸钴、碱式碳酸钴、乙酸钴和氧化钴中的一种或多种;所述镍元素的前驱体可以包括但不限于硝酸镍、碱式碳酸镍、乙酸镍和氧化镍中的一种或多种;所述钌元素的前驱体可以包括但不限于硝酸钌、乙酸钌、氧化钌和氢氧化钌中的一种或多种;所述铑元素的前驱体可以包括但不限于硝酸铑、氢氧化铑和氧化铑中的一种或多种;所述钯元素的前驱体可以包括但不限于硝酸钯、氧化钯和氢氧化钯中的一种或多种;所述铬元素的前驱体可以包括但不限于硝酸铬、氧化铬、氢氧化铬和醋酸铬中的一种或多种;所述钼元素的前驱体可以包括但不限于七钼酸铵、钼酸铵、磷钼酸铵和氧化钼中的一种或多种;所述钨元 素的前驱体可以包括但不限于偏钨酸铵、乙基偏钨酸铵和氧化钨中的一种或多种。
本发明的发明人在研究中发现,通过将部分加氢脱硫催化活性组分的前驱体,特别是部分第VIII族金属元素的前驱体结合到第一无机耐火组分中,并将剩余加氢脱硫催化活性组分、如剩余第VIII族金属元素的前驱体和第VIB族金属元素的前驱体结合到第一浸渍溶液中对所述第一无机耐火组分进行浸渍,能够提高第一催化剂中活性组分的含量,进而提升第一催化剂的加氢精制性能。对于用于制备第一无机耐火组分的第一加氢脱硫催化活性组分的前驱体的用量并没有特别的限制,其可以在较宽的范围内进行选择。优选地,在步骤(1a)中,所用第一加氢脱硫催化活性组分的前驱体包含至少一种第VIII族金属元素的前驱体,其用量为第VIII族金属元素的前驱体的总用量的约60-90%。
根据本发明,步骤(1a)中,所述氧化铝、氧化硅、氧化镁、氧化钙、氧化锆和氧化钛的前驱体可以为任何已知的可以在焙烧条件下提供氧化铝、氧化硅、氧化镁、氧化钙、氧化锆和/或氧化钛的物质。例如,所述氧化铝的前驱体包括但不限于拟薄水铝石、氢氧化铝粉、硝酸铝、碳酸铝和柠檬酸铝等;所述氧化硅的前驱体包括但不限于硅溶胶、白炭黑和二氧化硅等;所述氧化镁的前驱体包括但不限于氢氧化镁、硝酸镁、碳酸镁、醋酸镁和氧化镁等;所述氧化钙的前驱体包括但不限于氢氧化钙、碳酸钙、草酸钙、硝酸钙、醋酸钙和氧化钙等;所述氧化锆前驱体包括但不限于氢氧化锆、碳酸锆、硝酸锆、醋酸锆和氧化锆等;所述氧化钛的前驱体包括但不限于氢氧化钛、硝酸钛、醋酸钛和氧化锆等。
优选地,在步骤(1c)中,所述第一无机耐火组分的用量使得在所述第一催化剂中,以所述第一催化剂的干基重量为基准,所述第一无机耐火组分中除所述第一加氢脱硫催化活性组分外的其它组分的总含量为约5-40重量%,优选为约10-30重量%。
优选地,在步骤(1b)中,当所述有机组分仅包含羧酸时,所用羧酸的重量与所述第一无机耐火组分中除所述第一加氢脱硫催化活性组分外的其它组分的干基重量之间的比值为约0.1-0.8∶1,优选为约0.2-0.6∶1;或者,当所述有机组分同时包含羧酸和醇时,所用羧酸的重 量与所述第一无机耐火组分中除所述第一加氢脱硫催化活性组分外的其它组分的干基重量之间的比值为约0.002-0.1∶1,优选为约0.02-0.06∶1,且所述醇的摩尔用量与所述第一无机耐火组分中除所述第一加氢脱硫催化活性组分外的其它组分的干基重量之间的比值为约0.005-0.03∶1,优选为约0.01-0.02∶1。
根据本发明,在所述第一浸渍溶液中引入羧酸类物质可保护加氢脱硫催化活性组分,同时还能够促进催化剂的成型,而进一步引入醇则可更有效地保护加氢脱硫催化活性组分,从而有效提高第一催化剂的性能。
优选地,为了进一步提高最终制备的第一催化剂的性能,所用氧化铝、氧化硅、氧化镁、氧化钙、氧化锆和氧化钛前驱体的平均孔径不小于10nm。更优选地,所述前驱体中孔径在2-6nm范围的孔体积占总孔体积的比例不大于约15%,孔径在6-40nm范围的孔体积占总孔体积的比例不小于约75%。
根据本发明,为了进一步提高配制的第一浸渍溶液中加氢脱硫催化活性组分的前驱体的溶解性,提高最终制备的第一催化剂的性能,在所述第一浸渍溶液的配制过程中还优选加入含磷化合物,所述含磷化合物优选为含磷的无机酸,进一步优选为磷酸、次磷酸、磷酸铵和磷酸二氢铵中的至少一种。进一步优选地,所述含磷化合物的用量使得最终制备的第一催化剂中,以干基重量为基准且以P 2O 5计,所述磷元素的含量为约0.8-10重量%,优选约1-8重量%,更优选约2-8重量%。
根据本发明,在配制所述第一浸渍溶液时,所述催化活性组分的前驱体、有机组分包括有机羧酸和任选的有机醇化合物、以及任选的含磷化合物的加入顺序并没有特别的要求。在一种优选实施方式中,在配制第一浸渍溶液时,首先将所述醇化合物与分别含第VIB族金属元素和含VIII族金属元素的前驱体加入含磷化合物的水溶液中,然后在约40-100℃下搅拌约1-8h,直到全部溶解。最后再加入有机羧酸,直到有机羧酸全部溶解。
根据本发明,步骤(1a)中,所述焙烧的条件可以在较宽的范围内进行选择,优选地,所述焙烧温度为约300-900℃,优选为约400-700℃;焙烧时间为约1-15h,优选为约3-8h。
根据本发明,步骤(1c)中,所述干燥的条件可以在较宽的范围内进行选择,优选地,干燥温度为约50-250℃,优选为约100-200℃;干燥时间为约2-10h,优选为约3-8h。
根据本发明,所述第一催化剂可以采用现有的各种成型方法成型,例如可以是挤条成型,也可以是滚球成型。所述挤条成型的方式可以参照现有技术进行,将待挤条成型的第一无机耐火组分与含金属组分的第一浸渍溶液混合均匀后挤出成所需形状,如圆柱形、三叶草形、四叶草形、蜂窝形等。
本发明在第一催化剂的制备中,通过在挤出成型之前将载体的前驱体进行焙烧,一方面热处理可以减少载体前驱体粒子中羟基数量,降低孔道缩合的几率,增加催化剂的孔径。第二方面,成型后的催化剂不需要用较高的温度进行处理,载体孔壁不需要进行过多的缩合,提高了载体的利用率。第三方面,在成型前对载体前驱体进行热处理,部分次级粒子也会发生缩合,这会导致形成的氧化铝粒子的大小趋于单一,成型后的催化剂中孔道将更加均匀,有利于反应物的扩散。当与由常规方法获得的载体制备的催化剂组合使用时,特别是针对较重和较为劣质的油品,更为有效。
本发明在第一催化剂的制备中,将部分加氢脱硫催化活性组分,优选部分第VIII族金属的前驱体混入载体前驱体中,通过焙烧而形成无机耐火粉末;然后,再将包含剩余活性金属前驱体的浸渍溶液与无机耐火粉末混合,从而提高了催化剂中活性组分的含量,提升了催化剂的加氢精制性能。
进一步的,本发明的第一催化剂的制备流程较短,可以较大地节省制备成本和制备时间。另一方面,第一催化剂的制备中无需加入胶溶剂硝酸和助剂挤田菁粉,减少了有害物质(如NOx)的排放,降低了物质成本和环保成本,实现了催化剂的绿色制造。
此外,通过上述步骤制备的第一催化剂的孔径尺寸分别集中在2-40nm之间和100-300nm之间,其中孔径尺寸在100-300nm范围的孔道可以为反应物的扩散提供的较大的场所,促进了反应物与活性中心的可接近性,从而提高第一催化剂的性能。
此外,在本发明的加氢精制催化剂体系的制备方法中,由于所述第一催化剂中的第一无机耐火组分经过焙烧处理,因此所述第一无机 耐火组分和第一催化剂的XRD谱图中具有与选自氧化铝、氧化硅、氧化镁、氧化钙、氧化锆和氧化钛中至少一种的氧化物的XRD特征峰相对应的特征峰,以及与作为所述第一加氢脱硫催化活性组分的金属元素,其优选选自第VIII族金属元素和第VIB族金属元素中至少一种,的氧化物的XRD特征峰相对应的特征峰。这些氧化物和金属氧化物的XRD特征峰可以参照它们的标准XRD图谱。
第二催化剂的制备
如上所述,本发明的所述第二催化剂的制备包括以下步骤:
(2a)将氧化铝前驱体与助挤剂和胶溶剂混合,并对所得混合物依次进行成型、干燥和焙烧,得到第二无机耐火组分;
(2b)将第三加氢脱硫催化活性组分的前驱体与有机组分和任选的含磷化合物混合,得到第二浸渍溶液,所述有机组分选自羧酸和醇;以及
(2c)将所述第二浸渍溶液与所述第二无机耐火组分混合后干燥,得到所述第二催化剂。
根据本发明,所述第三加氢脱硫催化活性组分前驱体可以选自第VIII族金属元素和第VIB族金属元素的前驱体,优选包含至少一种第VIII族金属元素的前驱体和至少一种第VIB族金属元素的前驱体。优选地,所述第VIII族金属元素的前驱体和第VIB族金属元素的前驱体的用量使得,以第二催化剂的干基重量为基准并以氧化物计,第VIII族金属元素的总含量为约1-8重量%,优选为约2-6重量%;且第VIB族金属元素的总含量为约10-35重量%,优选为约15-30重量%。进一步优选地,所述第VIII族金属元素选自铁、钴、镍、钌、铑和钯中的至少一种,和/或所述第VIB族金属元素选自铬、钼和钨中的至少一种。
根据本发明,在所述第三加氢脱硫催化活性组分的前驱体中,所述铁元素的前驱体可以包括但不限于硝酸铁、氧化铁、碱式碳酸铁和乙酸铁中的一种或多种;所述钴元素的前驱体可以包括但不限于硝酸钴、碱式碳酸钴、乙酸钴和氧化钴中的一种或多种;所述镍元素的前驱体可以包括但不限于硝酸镍、碱式碳酸镍、乙酸镍和氧化镍中的一种或多种;所述钌元素的前驱体可以包括但不限于硝酸钌、乙酸钌、 氧化钌和氢氧化钌中的一种或多种;所述铑元素的前驱体可以包括但不限于硝酸铑、氢氧化铑和氧化铑中的一种或多种;所述钯元素的前驱体可以包括但不限于硝酸钯、氧化钯和氢氧化钯中的一种或多种;所述铬元素的前驱体可以包括但不限于硝酸铬、氧化铬、氢氧化铬和醋酸铬中的一种或多种;所述钼元素的前驱体可以包括但不限于七钼酸铵、钼酸铵、磷钼酸铵和氧化钼中的一种或多种;所述钨元素的前驱体可以包括但不限于偏钨酸铵、乙基偏钨酸铵和氧化钨中的一种或多种。
在步骤(2c)中,所述第二无机耐火组分的用量使得在所述第二催化剂中,以所述第二催化剂的干基重量为基准,所述第二无机耐火组分的含量为约60-85重量%,优选为约70-80重量%。所述第二无机耐火组分优选为氧化铝,氧化铝与活性组分的作用力较强,从而保证了活性组分的高度分散,在较低活性组分含量的情况下产生较多数量的活性中心,从而提高第二催化剂的性能。
在步骤(2a)中,所述氧化铝前驱体可以为拟薄水铝石、氢氧化铝粉、硝酸铝、碳酸铝和柠檬酸铝等中的一种或多种。优选地,所述氧化铝前驱体为拟薄水铝石粉,更优选所述拟薄水铝石粉的比表面积为约250-450m 2/g,优选为约280-400m 2/g,总孔体积为约0.85-1.4mL/g,优选为约0.9-1.2mL/g。进一步优选地,所述步骤(2a)的制备条件使所得第二无机耐火组分(优选氧化铝载体)中孔径在2-4nm范围的孔体积占总孔体积的约0-2%,孔径在4-6nm范围的孔体积占总孔体积的约2-15%,孔径在6-40nm的孔体积占总孔体积的约85-95%,其余孔的孔径在40-100nm范围,不含孔径在100nm以上的孔。
根据本发明,在步骤(2b)中,在所述第二浸渍溶液中引入选自羧酸和醇的有机组分可以促进活性组分的分散,增加活性中心的数量,进而提高催化剂的性能。优选地,所述有机组分的用量使得其与第二催化剂中第VIII族元素的摩尔比为约0.5-8,优选为约1-5。所述羧酸和醇的具体选择如上文对第二催化剂的描述中所述,在此不再赘述。
根据本发明,为了进一步提高第二浸渍溶液中加氢脱硫催化活性组分的前驱体的溶解性,提高最终制备的第二催化剂的性能,在所述 第二浸渍溶液的配制过程中还优选加入含磷化合物。所述含磷化合物优选为含磷的无机酸,进一步优选为磷酸、次磷酸、磷酸铵和磷酸二氢铵中的至少一种。进一步优选地,所述含磷化合物的用量使得最终制备的第二催化剂中,以干基重量为基准且以P 2O 5计,所述磷元素的含量为约0.8-10重量%,优选约1-8重量%,更优选约2-8重量%。
根据本发明,在配制所述第二浸渍溶液时,所述催化活性组分的前驱体、选自羧酸和醇的有机组分、以及任选的含磷化合物的加入顺序并没有特别的要求。在一种优选实施方式中,在配制第二浸渍溶液时,将醇化合物与分别含第VIB族金属元素和含VIII族金属元素的前驱体加入含磷化合物的水溶液中,然后在约40-100℃下搅拌约1-8h,直到全部溶解。
根据本发明,步骤(2a)中,所述焙烧的条件可以在较宽的范围内进行选择,优选地,焙烧温度为约400-1000℃,优选为约500-800℃;焙烧时间为约1-15h,优选为约3-8h。
根据本发明,步骤(2a)中,所述干燥的条件可以在较宽的范围内进行选择,优选地,干燥温度为约50-250℃,优选为约100-200℃;干燥时间为约2-10h,优选为约3-8h。
根据本发明,步骤(2a)中,所述助挤剂可以为田菁粉、甲基纤维素和淀粉中的一种或多种。所述胶溶剂可以为硝酸、柠檬酸和醋酸中的一种或多种。
根据本发明,所述第二催化剂可以采用现有的各种成型方法成型,例如可以是挤条成型,也可以是滚球成型。所述挤条成型的方式可以参照现有技术进行,将待挤条成型的无机耐火组分与含金属组分的浸渍溶液混合均匀后挤出成所需形状,如圆柱形、三叶草形、四叶草形、蜂窝形等。
本发明的第二催化剂的制备过程中仅使用了少量的活性金属组分,并且加入了有机组分,使得活性组分高度分散,从而充分利用了活性金属,使催化剂达到较高的活性,并大幅度降低了催化剂的成本。
此外,通过上述步骤制备的第二催化剂的孔径尺寸集中在2-100nm,且平均孔径也较大(6-20nm),可以达到促进反应物与活性中心可接近性的目的。
在第五方面,本发明提供了通过本发明方法制备的加氢精制催化剂。
在第六方面,本发明提供了通过本发明方法制备的加氢精制催化剂体系。
在第七方面,本发明提供了根据本发明的加氢精制催化剂或通过本发明方法制备的加氢精制催化剂在馏分油加氢精制中的应用。
在第八方面,本发明提供了根据本发明的加氢精制催化剂体系或通过本发明方法制备的加氢精制催化剂体系在馏分油加氢精制中的应用。
本发明提供的加氢精制催化剂和加氢精制催化剂体系、以及通过本发明方法制备的加氢精制催化剂和加氢精制催化剂体系特别适用于硫含量为5000-30000ppm,氮含量为50-3000ppm,芳烃含量为20-80重量%的馏分油的加氢精制。如下文记载的实施例所证实的,在340℃下,对硫含量为9100ppm、氮含量为532ppm、芳烃含量为55重量%的馏分油采用本发明的加氢精制催化剂或加氢精制催化剂体系进行加氢处理,硫含量能够降低至15ppm以下,氮含量降低至5.5ppm以下,脱硫率高达99.8%以上,脱氮率高达99.0%以上,芳烃含量降低至38.5重量%以下,脱芳烃率可高达30%。
在第九方面,本发明提供了一种馏分油的加氢精制方法,包括如下步骤:
对本发明的加氢精制催化剂或者根据本发明方法制备得到的加氢精制催化剂进行硫化;然后
在加氢脱硫条件下使待加氢脱硫的馏分油与硫化后的所述加氢精制催化剂进行接触。
在第十方面,本发明提供了一种馏分油的加氢精制方法,包括如下步骤:
对本发明的加氢精制催化剂体系或者根据本发明方法制备得到的加氢精制催化剂体系进行硫化;然后
在加氢脱硫条件下使待加氢脱硫的馏分油与硫化后的所述加氢精制催化剂体系进行接触。
根据本发明,所述加氢精制催化剂和加氢精制催化剂体系的硫化条件可以为已知的用于硫化加氢精制催化剂的条件。例如,硫化压力 为约0.1-15MPa,体积空速为约0.5-20h -1,氢油体积比为约100-2000∶1。硫化方式没有特别限制,可以为干法硫化或湿法硫化。
根据本发明,所述加氢脱硫的条件可以为已知的使用加氢精制催化剂进行加氢脱硫的条件。例如,压力为约0.1-8MPa,温度为约260-410℃,体积空速为约0.5-10h -1,氢油体积比为约200-1000∶1。
在某些特别优选的实施方式中,本申请提供了如下技术方案:
A1、一种加氢精制催化剂,包含:
无机耐火组分,该无机耐火组分包含第一加氢脱硫催化活性组分和与其混合的选自氧化铝、氧化硅、氧化镁、氧化钙、氧化锆和氧化钛中至少一种的氧化物;
负载在无机耐火组分上的第二加氢脱硫催化活性组分;和
负载在无机耐火组分上的有机组分,该有机组分包含羧酸和任选的醇,
优选地,在400℃焙烧3h后测定,所述加氢精制催化剂具有孔径分别在2-40nm和100-300nm范围的孔,其中孔径在2-40nm范围的孔体积占总孔体积的约60-95%,且孔径在100-300nm范围的孔体积占总孔体积的约0.5-30%,
优选地,所述无机耐火组分在负载所述第二加氢脱硫催化活性组分和有机组分之前经过焙烧处理,所述焙烧优选在如下条件下进行:焙烧温度为约300-900℃,优选为约400-700℃;焙烧时间为约1-15h,优选为约3-8h。
A2、根据项目A1所述的加氢精制催化剂,其中所述第一加氢脱硫催化活性组分包含选自第VIII族金属元素和第VIB族金属元素中至少一种的金属元素,且所述第二加氢脱硫催化活性组分包含至少一种第VIII族金属元素和至少一种第VIB族金属元素;
优选地,在所述加氢精制催化剂中,以催化剂的干基重量为基准并以氧化物计,第VIII族金属元素的总含量为约15-35重量%,优选为约20-30重量%,且第VIB族金属元素的总含量为约35-75重量%,优选为约40-65重量%;
优选地,所述第VIII族金属元素选自铁、钴、镍、钌、铑和钯中的至少一种,和/或所述第VIB族金属元素选自铬、钼和钨中的至少一 种。
A3、根据项目A2所述的加氢精制催化剂,其中所述第一加氢脱硫催化活性组分包含至少一种第VIII族金属元素,其含量为所述催化剂中第VIII族金属元素总含量的约60-90%。
A4、根据前述项目中任一项所述的加氢精制催化剂,其中孔径在2-40nm范围的孔体积占总孔体积的约75-90%,孔径在100-300nm范围的孔体积占总孔体积的约5-15%;
优选地,所述加氢精制催化剂为成型催化剂,所述加氢精制催化剂的形状优选为圆柱形、三叶草形、四叶草形或蜂窝形;
优选地,所述加氢精制催化剂的比表面积为约70-200m 2/g,总孔体积为约0.15-0.6mL/g,平均孔径为5-25nm;
优选地,在所述加氢精制催化剂中,孔径在2-4nm范围的孔体积不超过总孔体积的约10%。
A5、根据前述项目中任一项所述的加氢精制催化剂,其中以催化剂的干基重量为基准,所述无机耐火组分中除所述第一加氢脱硫催化活性组分外的其它组分的总含量为约5-40重量%,优选为约10-30重量%。
A6、根据前述项目中任一项所述的加氢精制催化剂,其中:
当所述有机组分仅包含羧酸时,所述羧酸的重量含量与所述无机耐火组分中除所述第一加氢脱硫催化活性组分外的其它组分的干基重量之间的比值为约0.1-0.8∶1,优选为约0.2-0.6∶1;或者
当所述有机组分同时包含羧酸和醇时,所述羧酸的重量含量与所述无机耐火组分中除所述第一加氢脱硫催化活性组分外的其它组分的干基重量之间的比值为约0.002-0.1∶1,优选为约0.02-0.06∶1;
优选地,所述羧酸选自C 1-18的一元饱和羧酸、C 7-10的苯基酸、柠檬酸、己二酸、丙二酸、丁二酸、马来酸、酒石酸及其组合。
A7、根据前述项目中任一项所述的加氢精制催化剂,其中当所述有机组分同时包含羧酸和醇时,所述醇的摩尔含量与所述无机耐火组分中除所述第一加氢脱硫催化活性组分外的其它组分的干基重量之间的比值为约0.005-0.03∶1,优选为约0.01-0.02∶1;
优选地,所述醇选自C 1-18的一元饱和醇、乙二醇、聚乙二醇、丙三醇、聚丙三醇、丁四醇、季戊四醇、木糖醇、山梨醇、三羟甲基乙 烷及其组合。
A8、根据前述项目中任一项所述的加氢精制催化剂,其中所述加氢精制催化剂还包含磷元素,以催化剂的干基重量为基准并以P 2O 5计,所述磷元素的含量为约0.8-10重量%,优选约1-8重量%。
A9、一种制备加氢精制催化剂的方法,包括如下步骤:
(1)将第一加氢脱硫催化活性组分的前驱体与选自氧化铝、氧化硅、氧化镁、氧化钙、氧化锆和氧化钛中至少一种的氧化物的前驱体混合并焙烧,得到无机耐火组分;
(2)将第二加氢脱硫催化活性组分的前驱体与有机组分和任选的含磷化合物混合,得到浸渍溶液,其中所述有机组分包含羧酸和任选的醇;
(3)将所述无机耐火组分与所述浸渍溶液混合,将所得混合物成型并干燥,得到所述加氢精制催化剂。
A10、根据项目A9所述的方法,其中所述第一加氢脱硫催化活性组分的前驱体包含选自第VIII族金属元素和第VIB族金属元素中至少一种的金属元素的前驱体,且所述第二加氢脱硫催化活性组分的前驱体包含至少一种第VIII族金属元素的前驱体和至少一种第VIB族金属元素的前驱体;
优选地,所述第一加氢脱硫催化活性组分的前驱体和所述第二加氢脱硫催化活性组分的前驱体的用量使得在所述加氢精制催化剂中,以催化剂的干基重量为基准并以氧化物计,第VIII族金属元素的总含量为约15-35重量%,优选为约20-30重量%,且第VIB族金属元素的总含量为约35-75重量%,优选为约40-65重量%;
优选地,所述第VIII族金属元素选自铁、钴、镍、钌、铑和钯中的至少一种,和/或所述第VIB族金属元素选自铬、钼和钨中的至少一种。
A11、根据项目A10所述的方法,其中所述第一加氢脱硫催化活性组分的前驱体包含至少一种第VIII族金属元素的前驱体,其用量为第VIII族金属元素的前驱体的总用量的约60-90%。
A12、根据项目A9至A11中任一项所述的方法,其中所述无机耐火组分的用量使得在所述加氢精制催化剂中,以所述加氢精制催化剂的干基重量为基准,所述无机耐火组分中除所述第一加氢脱硫催化活 性组分外的其它组分的总含量为约5-40重量%,优选为约10-30重量%。
A13、根据项目A9至A12中任一项所述的方法,其中:
当所述有机组分仅包含羧酸时,步骤(2)中所用羧酸的重量与所述无机耐火组分中除所述第一加氢脱硫催化活性组分外的其它组分的干基重量之间的比值为约0.1-0.8∶1,优选为约0.2-0.6∶1;或者
当所述有机组分同时包含羧酸和醇时,步骤(2)中所用羧酸的重量与所述无机耐火组分中除所述第一加氢脱硫催化活性组分外的其它组分的干基重量之间的比值为约0.002-0.1∶1,优选为约0.02-0.06∶1;
优选地,所述羧酸选自C 1-18的一元饱和羧酸、C 7-10的苯基酸、柠檬酸、己二酸、丙二酸、丁二酸、马来酸、酒石酸及其组合。
A14、根据项目A9至A13中任一项所述的方法,其中当所述有机组分同时包含羧酸和醇时,步骤(2)中所述醇的摩尔用量与所述无机耐火组分中除所述第一加氢脱硫催化活性组分外的其它组分的干基重量之间的比值为约0.005-0.03∶1,优选为约0.01-0.02∶1;
优选地,所述醇选自C 1-18的一元饱和醇、乙二醇、聚乙二醇、丙三醇、聚丙三醇、丁四醇、季戊四醇、木糖醇、山梨醇、三羟甲基乙烷及其组合。
A15、根据项目A9至A14中任一项所述的方法,其中步骤(2)中所述含磷化合物的用量使得,以所述加氢精制催化剂的干基重量为基准并以P 2O 5计,磷元素的含量为约0.8-10重量%,优选约1-8重量%;
优选地,所述含磷化合物选自磷酸、次磷酸、磷酸铵、磷酸二氢铵及其组合。
A16、根据项目A9至A15中任一项所述的方法,其中在步骤(1)中,所述焙烧在如下条件下进行:焙烧温度为约300-900℃,优选为约400-800℃;焙烧时间为约1-15h,优选为约3-8h。
A17、根据项目A9至A16中任一项所述的方法,其中在步骤(3)中,所述干燥在如下条件下进行:干燥温度为约50-250℃,优选为约100-200℃;干燥时间为2-10h,优选为约3-8h。
A18、根据项目A9至A17中任一项所述的方法,其中所述氧化铝的前驱体选自拟薄水铝石、氢氧化铝粉、硝酸铝、碳酸铝、柠檬酸铝 及其组合;所述氧化硅的前驱体选自硅溶胶、白炭黑、二氧化硅及其组合;所述氧化镁的前驱体选自氢氧化镁、硝酸镁、碳酸镁、醋酸镁、氧化镁及其组合;所述氧化钙的前驱体选自氢氧化钙、碳酸钙、草酸钙、硝酸钙、醋酸钙、氧化钙及其组合;所述氧化锆的前驱体选自氢氧化锆、碳酸锆、硝酸锆、醋酸锆、氧化锆及其组合;所述氧化钛的前驱体选自氢氧化钛、硝酸钛、醋酸钛、氧化锆及其组合;
优选地,所述氧化铝、氧化硅、氧化镁、氧化钙、氧化锆和氧化钛的前驱体的平均孔径均不小于约10nm,孔径在2-6nm范围的孔体积占总孔体积的比例均不大于约15%,孔径在6-40nm范围的孔体积占总孔体积的比例均不小于约75%。
A19、通过根据项目A9至A18中任一项所述的方法制备得到的加氢精制催化剂。
A20、根据项目A1至A8和A19中任一项所述的加氢精制催化剂在馏分油加氢精制中的应用。
A21、根据项目A20所述的应用,其中所述馏分油中的硫含量为约5000-30000ppm,氮含量为约50-3000ppm,芳烃含量为约20-80重量%。
A22、一种馏分油的加氢精制方法,包括如下步骤:
对根据项目A1至A8和A19中任一项所述的加氢精制催化剂进行硫化;然后
在加氢脱硫条件下使待加氢脱硫的馏分油与硫化后的所述加氢精制催化剂进行接触。
A23、一种加氢精制催化剂体系,包含位于第一催化剂床层内的第一催化剂和位于第二催化剂床层内的第二催化剂,其中:
所述第一催化剂包含:
第一无机耐火组分,该无机耐火组分包含第一加氢脱硫催化活性组分和与其混合的选自氧化铝、氧化硅、氧化镁、氧化钙、氧化锆和氧化钛中至少一种的氧化物;
负载在第一无机耐火组分上的第二加氢脱硫催化活性组分;和
负载在第一无机耐火组分上的有机组分,该有机组分包含羧酸和任选的醇,
优选地,在400℃焙烧3h后测定,所述第一催化剂具有孔径分别 在2-40nm和100-300nm范围的孔,其中孔径在2-40nm范围的孔体积占总孔体积的约60-95%,孔径在100-300nm范围的孔体积占总孔体积的约0.5-30%,
优选地,所述第一无机耐火组分在负载所述第二加氢脱硫催化活性组分和有机组分之前经过焙烧处理,所述焙烧优选在如下条件下进行:焙烧温度为约300-900℃,优选为约400-700℃;焙烧时间为约1-15h,优选为约3-8h;
所述第二催化剂包含第二无机耐火组分、负载在第二无机耐火组分上的第三加氢脱硫催化活性组分和负载在第二无机耐火组分上的有机组分,其中所述第二无机耐火组分包含氧化铝,所述有机组分选自羧酸和醇,并且所述第二催化剂的孔径尺寸集中在2-100nm范围;
其中所述第一催化剂与所述第二催化剂的体积比为约1∶1至约1∶8、优选约1∶2至约1∶6。
A24、根据项目A23所述的加氢精制催化剂体系,其中:
在所述第一催化剂中,所述第一加氢脱硫催化活性组分包含选自第VIII族金属元素和第VIB族金属元素中至少一种的金属元素,且所述第二加氢脱硫催化活性组分包含至少一种第VIII族金属元素和至少一种第VIB族金属元素;
优选地,以所述第一催化剂的干基重量为基准并以氧化物计,所述第一催化剂中第VIII族金属元素的总含量为约15-35重量%,优选为约20-30重量%,且第VIB族金属元素的含量为约35-75重量%,优选为约40-65重量%;和/或
在所述第二催化剂中,所述第三加氢脱硫催化活性组分包含至少一种第VIII族金属元素和至少一种第VIB族金属元素;
优选地,以所述第二催化剂的干基重量为基准并以氧化物计,所述第二催化剂中第VIII族金属元素的总含量为约1-8重量%,优选为约2-6重量%,且第VIB族金属元素的总含量为约10-35重量%,优选为约15-30重量%;
优选地,所述第VIII族金属元素选自铁、钴、镍、钌、铑和钯中的至少一种,和/或所述第VIB族金属元素选自铬、钼和钨中的至少一种。
A25、根据项目A24所述的加氢精制催化剂体系,其中在所述第 一催化剂中,所述第一加氢脱硫催化活性组分包含至少一种第VIII族金属元素,其含量为所述第一催化剂中第VIII族金属元素总含量的约60-90%。
A26、根据项目A23至A25中任一项所述的加氢精制催化剂体系,其中:
在所述第一催化剂中,孔径在2-40nm范围的孔体积占总孔体积的约75-90%,孔径在100-300nm范围的孔体积占总孔体积的约5-15%,且孔径在2-4nm范围的孔体积不超过总孔体积的约10%;
优选地,所述第一催化剂的比表面积为约70-200m 2/g,总孔体积为约0.15-0.6mL/g,平均孔径为5-25nm;和/或
所述第二催化剂的比表面积为约130-300m 2/g,总孔体积为约0.2-0.7mL/g,平均孔径为6-20nm;
优选地,所述第一催化剂和所述第二催化剂分别为成型催化剂体系,所述第一催化剂的形状和所述第二催化剂的形状各自独立地选自圆柱形、三叶草形、四叶草形和蜂窝形。
A27、根据项目A23至A26中任一项所述的加氢精制催化剂体系,其中:
在所述第一催化剂中,以第一催化剂的干基重量为基准,所述第一无机耐火组分中除所述第一加氢脱硫催化活性组分外的其它组分的总含量为约5-40重量%,优选为约10-30重量%;和/或
在所述第二催化剂中,以第二催化剂的干基重量为基准,所述第二无机耐火组分的含量为约60-85重量%,优选为约70-80重量%。
A28、根据项目A23至A27中任一项所述的加氢精制催化剂体系,其中:
在所述第一催化剂中,当所述有机组分仅包含羧酸时,所述羧酸的重量含量与所述第一无机耐火组分中除所述第一加氢脱硫催化活性组分外的其它组分的干基重量之间的比值为约0.1-0.8∶1,优选为约0.2-0.6∶1;或者
当所述有机组分同时包含羧酸和醇时,所述羧酸的重量含量与所述第一无机耐火组分中除所述第一加氢脱硫催化活性组分外的其它组分的干基重量之间的比值为约0.002-0.1∶1,优选为约0.02-0.06∶1;
优选地,所述羧酸选自C 1-18的一元饱和羧酸、C 7-10的苯基酸、柠 檬酸、己二酸、丙二酸、丁二酸、马来酸、酒石酸及其组合。
A29、根据项目A23至A28中任一项所述的加氢精制催化剂体系,其中:
在所述第一催化剂中,当所述有机组分同时包含羧酸和醇时,所述醇的摩尔含量与所述第一无机耐火组分中除所述第一加氢脱硫催化活性组分外的其它组分的干基重量之间的比值为约0.005-0.03∶1,优选为约0.01-0.02∶1;和/或
在所述第二催化剂中,所述有机组分与第二催化剂中包含的第VIII族金属元素的摩尔比为约0.5-8,优选为约1-5;
优选地,所述第一催化剂和第二催化剂中的所述羧酸独立地选自C 1-18的一元饱和羧酸、C 7-10的苯基酸、柠檬酸、己二酸、丙二酸、丁二酸、马来酸、酒石酸及其组合;
优选地,所述第一催化剂和第二催化剂中的所述醇独立地选自C 1-18的一元饱和醇、乙二醇、聚乙二醇、丙三醇、聚丙三醇、丁四醇、季戊四醇、木糖醇、山梨醇、三羟甲基乙烷及其组合。
A30、根据项目A23至A29中任一项所述的加氢精制催化剂体系,其中所述第一催化剂还包含磷元素,以第一催化剂的干基重量为基准并以P 2O 5计,所述磷元素的含量为约0.8-10重量%,优选约1-8重量%;和/或
所述第二催化剂还包含磷元素,以第二催化剂的干基重量为基准并以P 2O 5计,所述磷元素的含量为约0.8-10重量%,优选约1-8重量%。
A31、一种制备加氢精制催化剂体系的方法,该加氢精制催化剂体系包括位于第一催化剂床层内的第一催化剂和位于第二催化剂床层内的第二催化剂,所述方法包括:
(1)制备所述第一催化剂,包括以下步骤:
(1a)将第一加氢脱硫催化活性组分的前驱体与选自氧化铝、氧化硅、氧化镁、氧化钙、氧化锆和氧化钛中至少一种的氧化物的前驱体混合并焙烧,得到第一无机耐火组分;
(1b)将第二加氢脱硫催化活性组分的前驱体与有机组分和任选的含磷化合物混合,得到第一浸渍溶液,其中所述有机组分包含羧酸和任选的醇;
(1c)将所述第一无机耐火组分与所述第一浸渍溶液混合,将所得混合物成型并干燥,得到所述第一催化剂;
(2)制备所述第二催化剂,包括以下步骤:
(2a)将氧化铝前驱体与助挤剂和胶溶剂混合,并对所得混合物依次进行成型、干燥和焙烧,得到第二无机耐火组分;
(2b)将第三加氢脱硫催化活性组分的前驱体与有机组分和任选的含磷化合物混合,得到第二浸渍溶液,所述有机组分选自羧酸和醇;
(2c)将所述第二浸渍溶液与所述第二无机耐火组分混合后干燥,得到所述第二催化剂;以及
(3)将所述第一催化剂和第二催化剂按照约1∶1至约1∶8、优选约1∶2至约1∶6的体积比分别装填于第一催化剂床层和第二催化剂床层,得到所述加氢精制催化剂体系。
A32、根据项目A31所述的方法,其中:
在步骤(1)中,所述第一加氢脱硫催化活性组分的前驱体包含选自第VIII族金属元素和第VIB族金属元素中至少一种的金属元素的前驱体,且所述第二加氢脱硫催化活性组分的前驱体包含至少一种第VIII族金属元素的前驱体和至少一种第VIB族金属元素的前驱体;
优选地,所述第一加氢脱硫催化活性组分的前驱体和所述第二加氢脱硫催化活性组分的前驱体的用量使得在所述第一催化剂中,以第一催化剂的干基重量为基准并以氧化物计,第VIII族金属元素的总含量为约15-35重量%,优选为约20-30重量%,且第VIB族金属元素的总含量为约35-75重量%,优选为约40-65重量%;和/或
在步骤(2)中,所述第三加氢脱硫催化活性组分的前驱体包含至少一种第VIII族金属元素的前驱体和至少一种第VIB族金属元素的前驱体;
优选地,所述第三加氢脱硫催化活性组分的前驱体的用量使得在所述第二催化剂中,以第二催化剂的干基重量为基准并以氧化物计,第VIII族金属元素的总含量为约1-8重量%,优选为约2-6重量%;第VIB族金属元素的含量为约10-35重量%,优选为约15-30重量%;
优选地,所述第VIII族金属元素选自铁、钴、镍、钌、铑和钯中的至少一种,和/或所述第VIB族金属元素选自铬、钼和钨中的至少一 种。
A33、根据项目A32所述的方法,其中所述第一加氢脱硫催化活性组分的前驱体包含至少一种第VIII族金属元素的前驱体,其用量为所述第一催化剂制备中所用第VIII族金属元素前驱体的总用量的约60-90%。
A34、根据项目A31至A33中任一项所述的方法,其中在步骤(1)中,所述第一无机耐火组分的用量使得在所述第一催化剂中,以所述第一催化剂的干基重量为基准,所述第一无机耐火组分中除所述第一加氢脱硫催化活性组分外的其它组分的总含量为约5-40重量%,优选为约10-30重量%;和/或
在步骤(2)中,所述第二无机耐火组分的用量使得在所述第二催化剂中,以所述第二催化剂的干基重量为基准,所述第二无机耐火组分的含量为约60-85重量%,优选为约70-80重量%。
A35、根据项目A31至A34中任一项所述的方法,其中:
在步骤(1b)中,当所述有机组分仅包含羧酸时,所用羧酸的重量与所述无机耐火组分中除所述第一加氢脱硫催化活性组分外的其它组分的干基重量之间的比值为约0.1-0.8∶1,优选为约0.2-0.6∶1;或者
当所述有机组分同时包含羧酸和醇时,所用羧酸的重量与所述第一无机耐火组分中除所述第一加氢脱硫催化活性组分外的其它组分的干基重量的比值为约0.002-0.1∶1,优选为约0.02-0.06∶1;
优选地,所述羧酸选自C 1-18的一元饱和羧酸、C 7-10的苯基酸、柠檬酸、己二酸、丙二酸、丁二酸、马来酸、酒石酸及其组合。
A36、根据项目A31至A35中任一项所述的方法,其中在步骤(1b)中,当所述有机组分同时包含羧酸和醇时,所述醇的摩尔用量与所述第一所述无机耐火组分中除所述第一加氢脱硫催化活性组分外的其它组分的干基重量的比值为约0.005-0.03∶1,优选为约0.01-0.02∶1;和/或
在步骤(2b)中,所述有机组分与所述第二催化剂制备中所用第VIII族金属元素的摩尔比为约0.5-8,优选为约1-5;
优选地,步骤(1b)和步骤(2b)中所用的羧酸独立地选自C 1-18的一元饱和羧酸、C 7-10的苯基酸、柠檬酸、己二酸、丙二酸、丁二酸、马来酸、酒石酸及其组合;
优选地,步骤(1b)和步骤(2b)中所用的醇独立地选自C 1-18的一元饱和醇、乙二醇、聚乙二醇、丙三醇、聚丙三醇、丁四醇、季戊四醇、木糖醇、山梨醇、三羟甲基乙烷及其组合。
A37、根据项目A31至A36中任一项所述的方法,其中在步骤(1b)中,所述含磷化合物的用量使得,以所述第一催化剂的干基重量为基准并以P 2O 5计,磷元素的含量为约0.8-10重量%,优选约1-8重量%;和/或
在步骤(2b)中,所述含磷化合物的用量使得,以所述第二催化剂的干基重量为基准并以P 2O 5计,磷元素的含量为约0.8-10重量%,优选约1-8重量%;
优选地,步骤(1b)和步骤(2b)中所用的含磷化合物独立地选自磷酸、次磷酸、磷酸铵、磷酸二氢铵及其组合。
A38、根据项目A31至A37中任一项所述的方法,其中:
在步骤(1a)中,所述焙烧在如下条件下进行:焙烧温度为约300-900℃,优选为约400-800℃;焙烧时间为约1-15h,优选为约3-8h;和/或
在步骤(2a)中,所述焙烧在如下条件下进行:焙烧温度为约400-1000℃,优选为约500-800℃;焙烧时间为约1-15h,优选为约3-8h。
A39、根据项目A31至A38中任一项所述的方法,其中在步骤(1c)和步骤(2c)中,所述干燥各自独立地在如下条件下进行:干燥温度为约50-250℃,优选为约100-200℃;干燥时间为约2-10h,优选为约3-8h。
A40、根据项目A31至A39中任一项所述的方法,其中所述氧化铝的前驱体选自拟薄水铝石、氢氧化铝粉、硝酸铝、碳酸铝、柠檬酸铝及其组合;所述氧化硅的前驱体选自硅溶胶、白炭黑、二氧化硅及其组合;所述氧化镁的前驱体选自氢氧化镁、硝酸镁、碳酸镁、醋酸镁、氧化镁及其组合;所述氧化钙的前驱体选自氢氧化钙、碳酸钙、草酸钙、硝酸钙、醋酸钙、氧化钙及其组合;所述氧化锆的前驱体选自氢氧化锆、碳酸锆、硝酸锆、醋酸锆、氧化锆及其组合;所述氧化钛的前驱体选自氢氧化钛、硝酸钛、醋酸钛、氧化锆及其组合;
优选地,所述氧化铝、氧化硅、氧化镁、氧化钙、氧化锆和氧化 钛的前驱体的平均孔径均不小于约10nm,孔径在2-6nm范围的孔体积占总孔体积的比例均不大于约15%,孔径在6-40nm范围的孔体积占总孔体积的比例均不小于约75%。
A41、根据项目A31至A40中任一项所述的方法,其中在步骤(2a)中,所用的制备条件使得,在所得的第二无机耐火组分中,孔径在2-4nm范围的孔体积占总孔体积的约0-2%,孔径在4-6nm范围的孔体积占总孔体积的约2-15%,孔径在6-40nm范围的孔体积占孔总体积的约85-95%,其余孔的孔径在40-100nm的范围,不存在孔径为100nm以上的孔。
A42、通过根据项目A31至A41中任一项所述的方法制备得到的加氢精制催化剂体系。
A43、根据项目A23至A30和A42中任一项所述的加氢精制催化剂体系在馏分油加氢精制中的应用。
A44、根据项目A43所述的应用,其中所述馏分油中的硫含量为约5000-30000ppm,氮含量为约50-3000ppm,芳烃含量为约20-80重量%。
A45、一种馏分油的加氢精制方法,包括如下步骤:
对根据项目A23至A30和A42中任一项所述的加氢精制催化剂体系进行硫化;然后
在加氢脱硫条件下使待加氢脱硫的馏分油与硫化后的所述加氢精制催化剂体系进行接触。
A46、根据项目A1-A8和A19中任一项所述的加氢精制催化剂,其中所述无机耐火组分和所述加氢精制催化剂的XRD谱图中具有与选自氧化铝、氧化硅、氧化镁、氧化钙、氧化锆和氧化钛中至少一种的氧化物的XRD特征峰相对应的特征峰,以及与作为所述第一加氢脱硫催化活性组分的金属元素,其优选选自第VIII族金属元素和第VIB族金属元素中至少一种,的氧化物的XRD特征峰相对应的特征峰。
A47、根据项目A9至A18中任一项所述的方法,其中所得无机耐火组分和加氢精制催化剂的XRD谱图中具有与选自氧化铝、氧化硅、氧化镁、氧化钙、氧化锆和氧化钛中至少一种的氧化物的XRD特征峰相对应的特征峰,以及与作为所述第一加氢脱硫催化活性组分的金属元素,其优选选自第VIII族金属元素和第VIB族金属元素中至少一种, 的氧化物的XRD特征峰相对应的特征峰。
A48、根据项目A23至A30和A42中任一项所述的加氢精制催化剂体系,其中所述第一无机耐火组分和第一催化剂的XRD谱图中具有与选自氧化铝、氧化硅、氧化镁、氧化钙、氧化锆和氧化钛中至少一种的氧化物的XRD特征峰相对应的特征峰,以及与作为所述第一加氢脱硫催化活性组分的金属元素,其优选选自第VIII族金属元素和第VIB族金属元素中至少一种,的氧化物的XRD特征峰相对应的特征峰。
A49、根据项目A31至A41中任一项所述的方法,其中所得第一无机耐火组分和第一催化剂的XRD谱图中具有与选自氧化铝、氧化硅、氧化镁、氧化钙、氧化锆和氧化钛中至少一种的氧化物的XRD特征峰相对应的特征峰,以及与作为所述第一加氢脱硫催化活性组分的金属元素,其优选选自第VIII族金属元素和第VIB族金属元素中至少一种,的氧化物的XRD特征峰相对应的特征峰。
B1、一种加氢精制催化剂,其特征在于,该催化剂包含无机耐火组分、加氢脱硫催化活性组分、醇和羧酸;
其中所述无机耐火组分包含氧化硅、氧化镁、氧化钙、氧化锆和氧化钛中的至少一种和部分加氢脱硫催化活性组分;
所述催化剂具有孔径分别在2-40nm和100-300nm范围的孔,其中孔径在2-40nm的孔体积占总孔体积的60-95%,孔径在100-300nm的孔体积占总孔体积的0.5-30%。
B2、根据项目B1所述的加氢精制催化剂,其中所述加氢脱硫催化活性组分为第VIII族金属元素和第VIB族金属元素;
其中在所述加氢精制催化剂中,以催化剂的干基重量为基准并以氧化物计,第VIII族金属元素的含量为15-35重量%,优选为20-30重量%;第VIB族金属元素的含量为35-75重量%,优选为40-65重量%;
所述第VIII族金属元素优选选自铁、钴、镍、钌、铑和钯中的至少一种,所述第VIB族金属元素优选选自铬、钼和钨中的至少一种。
B3、根据项目B2所述的加氢精制催化剂,其中所述部分加氢脱硫催化活性组分为部分第VIII族金属元素,所述部分第VIII族金属元素的含量为第VIII族金属元素总含量的60-90%。
B4、根据项目B1或B2所述的加氢精制催化剂,其中孔径在2-40nm的孔体积占总孔体积的75-90%,孔径在100-300nm的孔体积占总孔体积的5-15%;
优选地,所述催化剂为成型催化剂,所述催化剂的形状优选为圆柱形、三叶草形、四叶草形或蜂窝形;
优选地,所述加氢精制催化剂的比表面积为70-200m 2/g,孔体积为0.15-0.6mL/g,平均孔径为5-25nm;
优选地,在所述加氢精制催化剂中,孔径在2-4nm范围的孔体积不超过总孔体积的10%。
B5、根据项目B1至B4中任意一项所述的加氢精制催化剂,其中以催化剂的干基重量为基准,所述无机耐火组分的含量为5-40重量%,优选为10-30重量%。
B6、根据项目B1至B5中任意一项所述的加氢精制催化剂,其中所述羧酸的含量与无机耐火组分的干基重量比为0.002-0.1∶1,优选为0.02-0.06∶1;
优选地,所述羧酸选自C 1-18的一元饱和羧酸、C 7-10的苯基酸、柠檬酸、己二酸、丙二酸、丁二酸、马来酸和酒石酸等中的至少一种。
B7、根据项目B1至B5中任意一项所述的加氢精制催化剂,其中所述醇的摩尔数与所述无机耐火组分的干基重量比为0.005-0.03∶1,优选为0.01-0.02∶1;
优选地,所述醇选自C 1-18的一元饱和醇、乙二醇、聚乙二醇、丙三醇、聚丙三醇、丁四醇、季戊四醇、木糖醇、山梨醇和三羟甲基乙烷中的至少一种。
B8、根据项目B1所述的加氢精制催化剂,其中所述加氢精制催化剂还包含磷元素,以催化剂的干基重量为基准并以P 2O 5计,所述磷元素的含量为0.8-10重量%,优选1-8重量%。
B9、一种加氢精制催化剂的制备方法,其特征在于,该方法包括:
(1)将氧化硅、氧化镁、氧化钙、氧化锆和氧化钛中至少一种的前驱体与部分加氢脱硫催化活性组分的前驱体混合并焙烧,得到无机耐火组分;
(2)将醇、羧酸以及剩余加氢脱硫催化活性组分的前驱体混合, 得到浸渍溶液;
(3)将所述无机耐火组分和所述浸渍溶液混合,将得到的混合物成型并干燥,得到所述加氢精制催化剂。
B10、根据项目B9所述的方法,其中所述加氢脱硫催化活性组分前驱体为第VIII族金属元素的前驱体和第VIB族金属元素的前驱体;
其中第VIII族金属元素的前驱体和第VIB族金属元素的前驱体的用量使得在所述加氢精制催化剂中,以催化剂的干基重量为基准并以氧化物计,第VIII族金属元素的含量为15-35重量%,优选为20-30重量%;第VIB族金属元素的含量为35-75重量%,优选为40-65重量%;
所述第VIII族金属元素优选选自铁、钴、镍、钌、铑和钯中的至少一种,所述第VIB族金属元素优选选自铬、钼和钨中的至少一种。
B11、根据项目B10所述的方法,其中所述部分加氢脱硫催化活性组分的前驱体为部分第VIII族金属元素的前驱体,所述部分第VIII族金属元素的前驱体的用量为第VIII族金属元素的前驱体的总用量的60-90%。
B12、根据项目B9至B11中任意一项所述的方法,其中所述无机耐火组分的用量使得在所述加氢精制催化剂中,以所述加氢精制催化剂的干基重量为基准,所述无机耐火组分的含量为5-40重量%,优选为10-30重量%。
B13、根据项目B9至B12中任意一项所述的方法,其中在步骤(2)中,所述羧酸的用量与无机耐火组分的干基重量比为0.002-0.1∶1,优选为0.02-0.06∶1;
优选地,所述羧酸选自C 1-18的一元饱和羧酸、C 7-10的苯基酸、柠檬酸、己二酸、丙二酸、丁二酸、马来酸和酒石酸等中的至少一种。
B14、根据项目B9至B12中任意一项所述的方法,其中所述醇的摩尔量与所述无机耐火组分的干基重量比为0.005-0.03∶1,优选为0.01-0.02∶1;
优选地,所述醇选自C 1-18的一元饱和醇、乙二醇、聚乙二醇、丙三醇、聚丙三醇、丁四醇、季戊四醇、木糖醇、山梨醇和三羟甲基乙烷中的至少一种。
B15、根据项目B9所述的方法,其中步骤(2)得到的浸渍溶液中 还包含含磷物质,所述含磷物质的用量使得以所述加氢精制催化剂的干基重量为基准并以P 2O 5计,所述磷元素的含量为0.8-10重量%,优选1-8重量%;
优选地,所述含磷物质选自磷酸、次磷酸、磷酸铵和磷酸二氢铵中的至少一种。
B16、根据项目B9所述的方法,其中步骤(1)中,所述焙烧的条件包括:焙烧的温度为300-900℃,优选为400-800℃;焙烧的时间为1-15h,优选为3-8h。
B17、根据项目B9所述的方法,其中步骤(3)中,所述干燥的条件包括:干燥的温度为50-250℃,优选为100-200℃;干燥的时间为2-10h,优选为3-8h。
B18、根据项目B9所述的方法,其中所述氧化硅前驱体为硅溶胶、白炭黑和二氧化硅中的至少一种;所述氧化镁前驱体为氢氧化镁、硝酸镁、碳酸镁、醋酸镁和氧化镁中的至少一种;所述氧化钙的前驱体为氢氧化钙、碳酸钙、草酸钙、硝酸钙、醋酸钙和氧化钙中的至少一种;所述氧化锆前驱体为氢氧化锆、碳酸锆、硝酸锆、醋酸锆和氧化锆中的至少一种;所述氧化钛的前驱体为氢氧化钛、硝酸钛、醋酸钛和氧化锆中的至少一种;
优选地,所述氧化硅、氧化镁、氧化钙、氧化锆和氧化钛前驱体的平均孔径均不小于10nm,孔径为2-6nm的孔体积占总孔体积的比例均不大于15%,孔径为6-40nm的孔体积占总孔体积的比例均不小于75%。
B19、项目B9至B18中任意一项所述的方法制备的加氢精制催化剂。
B20、项目B1至B8和B19中任意一项所述的加氢精制催化剂在馏分油加氢精制中的应用。
B21、根据项目B20所述的应用,其中所述馏分油中的硫含量为5000-30000ppm,氮含量为50-3000ppm,芳烃含量为20-80重量%。
B22、一种馏分油的加氢精制方法,其特征在于,该方法包括:将项目B1至B8和B19中任意一项所述的加氢精制催化剂进行硫化,然后通入待加氢脱硫馏分油,使待加氢脱硫馏分油在加氢脱硫条件下与所述硫化后加氢精制催化剂进行接触。
C1、一种加氢精制催化剂体系,其特征在于,该加氢精制催化剂体系包括第一催化剂床层和第二催化剂床层;
其中所述第一催化剂床层中包含的第一催化剂包含第一无机耐火组分、第一加氢脱硫催化活性组分、醇和羧酸;其中所述第一无机耐火组分包含氧化硅、氧化镁、氧化钙、氧化锆和氧化钛中的至少一种和部分第一加氢脱硫催化活性组分;
所述第一催化剂具有孔径分别在2-40nm和100-300nm范围的孔,其中孔径在2-40nm的孔体积占总孔体积的60-95%,孔径在100-300nm的孔体积占总孔体积的0.5-30%;
其中所述第二催化剂床层中包含的第二催化剂包含第二无机耐火组分、第二加氢脱硫催化活性组分和醇;其中所述第二无机耐火组分为氧化铝;所述第二催化剂的孔径尺寸集中在2-100nm;
其中所述第一催化剂与第二催化剂的体积比为1∶1-8。
C2、根据项目C1所述的加氢精制催化剂,其中
在第一催化剂中,所述第一加氢脱硫催化活性组分为第VIII族金属元素和第VIB族金属元素;
其中以催化剂的干基重量为基准并以氧化物计,第VIII族金属元素的含量为15-35重量%,优选为20-30重量%;第VIB族金属元素的含量为35-75重量%,优选为40-65重量%;和/或
在第二催化剂中,所述第二加氢脱硫催化活性组分为第VIII族金属元素和第VIB族金属元素;
其中以第二催化剂的干基重量为基准并以氧化物计,第VIII族金属元素的含量为1-8重量%,优选为2-6重量%;第VIB族金属元素的含量为10-35重量%,优选为15-30重量%;
优选地,所述第VIII族金属元素选自铁、钴、镍、钌、铑和钯中的至少一种,所述第VIB族金属元素选自铬、钼和钨中的至少一种。
C3、根据项目C2所述的加氢精制催化剂,其中在第一催化剂中,所述部分第一加氢脱硫催化活性组分为部分第VIII族金属元素,所述部分第第VIII族金属元素的含量为第VIII族金属元素总含量的60-90%。
C4、根据项目C1或C2所述的加氢精制催化剂,其中
在第一催化剂中,孔径在2-40nm的孔体积占总孔体积的75-90%,孔径在100-300nm的孔体积占总孔体积的5-15%,孔径在2-4nm范围的孔体积不超过总孔体积的10%;
优选地,所述第一催化剂的比表面积为70-200m 2/g,孔体积为0.15-0.6mL/g,平均孔径为5-25nm;和/或
在第二催化剂中,所述第二催化剂的比表面积为130-300m 2/g,孔体积为0.2-0.7mL/g,平均孔径为6-20nm;
优选地,所述第一催化剂和第二催化剂分别为成型催化剂体系,所述第一催化剂的形状和第二催化剂的形状各自独立的选自圆柱形、三叶草形、四叶草形和蜂窝形。
C5、根据项目C1至C4中任意一项所述的加氢精制催化剂,其中
在第一催化剂中,以第一催化剂的干基重量为基准,所述第一无机耐火组分的含量为5-40重量%,优选为10-30重量%;和/或
在第二催化剂中,以第二催化剂的干基重量为基准,所述第二无机耐火组分的含量为60-85重量%,优选为70-80重量%。
C6、根据项目C1至C5中任意一项所述的加氢精制催化剂,其中在第一催化剂中,所述羧酸的含量与第一无机耐火组分的干基重量比为0.002-0.1∶1,优选为0.02-0.06∶1;
优选地,所述羧酸选自C 1-18的一元饱和羧酸、C 7-10的苯基酸、柠檬酸、己二酸、丙二酸、丁二酸、马来酸、和酒石酸等中的至少一种。
C7、根据项目C1至C5中任意一项所述的加氢精制催化剂,其中第一催化剂中,所述醇的摩尔数与所述第一无机耐火组分的干基重量比为0.005-0.03∶1,优选为0.01-0.02∶1;和/或
在第二催化剂中,所述醇与第二催化剂中包含的第VIII族元素的摩尔比为0.5-8,优选为1-5;
优选地,所述醇选自C 1-18的一元饱和醇、乙二醇、聚乙二醇、丙三醇、聚丙三醇、丁四醇、季戊四醇、木糖醇、山梨醇和三羟甲基乙烷中的至少一种。
C8、根据项目C1所述的加氢精制催化剂,其中所述第一催化剂还包含磷元素,以第一催化剂的干基重量为基准并以P 2O 5计,所述磷元素的含量为0.8-10重量%,优选1-8重量%;和/或
所述第二催化剂还包含磷元素,以第二催化剂的干基重量为基准并以P 2O 5计,所述磷元素的含量为0.8-10重量%,优选1-8重量%。
C9、一种加氢精制催化剂体系的制备方法,该加氢精制催化剂体系包括第一催化剂床层和第二催化剂床层,其特征在于,该方法包括:
(1)制备第一催化剂床层中包含的第一催化剂,包括以下步骤:
(1a)将氧化硅、氧化镁、氧化钙、氧化锆和氧化钛中至少一种的前驱体与部分第一加氢脱硫催化活性组分的前驱体混合并第一焙烧,得到第一无机耐火组分;
(1b)将醇、羧酸以及剩余第一加氢脱硫催化活性组分的前驱体混合,得到第一浸渍溶液;
(1c)将所述第一无机耐火组分和所述第一浸渍溶液混合,将得到的混合物成型并干燥,得到所述第一催化剂;
(2)制备第二催化剂床层中包含的第二催化剂,包括以下步骤:
(2a)将氧化铝前驱体与助挤剂和胶溶剂混合,并将所得混合物依次进行成型、干燥和第二焙烧,制备得到氧化铝载体;
(2b)将醇以及第二加氢脱硫催化活性组分的前驱体混合,得到第二浸渍溶液;
(2c)将所述第二浸渍溶液与氧化铝载体混合后干燥,得到所述第二催化剂;
(3)将所述第一催化剂和第二催化剂按照体积比为1∶1-8分别装填于第一催化剂床层和第二催化剂床层,得到所述加氢精制催化剂体系。
C10、根据项目C9所述的方法,其中
在步骤(1)中,所述第一加氢脱硫催化活性组分的前驱体为第VIII族金属元素的前驱体和第VIB族金属元素的前驱体;
其中第VIII族金属元素的前驱体和第VIB族金属元素的前驱体的用量使得在所述第一催化剂中,以第一催化剂的干基重量为基准并以氧化物计,第VIII族金属元素的含量为15-35重量%,优选为20-30重量%;第VIB族金属元素的含量为35-75重量%,优选为40-65重量%;和/或
在步骤(2)中,所述第二加氢脱硫催化活性组分的前驱体为第 VIII族金属元素的前驱体和第VIB族金属元素的前驱体;
其中第VIII族金属元素的前驱体和第VIB族金属元素的前驱体的用量使得在所述第二催化剂中,以第二催化剂的干基重量为基准并以氧化物计,第VIII族金属元素的含量为1-8重量%,优选为2-6重量%;第VIB族金属元素的含量为10-35重量%,优选为15-30重量%;
优选地,所述第VIII族金属元素选自铁、钴、镍、钌、铑和钯中的至少一种,所述第VIB族金属元素选自铬、钼和钨中的至少一种。
C11、根据项目C10所述的方法,其中在步骤(1a)中,所述部分第一加氢脱硫催化活性组分的前驱体为部分第一催化剂制备中使用第VIII族金属元素的前驱体,所述部分第一催化剂制备中使用第VIII族金属元素的前驱体的用量为第一催化剂制备中使用第VIII族金属元素的前驱体总用量的60-90%。
C12、根据项目C9至C11中任意一项所述的方法,其中在步骤(1)中,所述第一无机耐火组分的用量使得在所述第一催化剂中,以所述第一催化剂的干基重量为基准,所述第一无机耐火组分的含量为5-40重量%,优选为10-30重量%;和/或
在步骤(2)中,所述第二无机耐火组分的用量使得在所述第二催化剂中,以所述第二催化剂的干基重量为基准,所述第二无机耐火组分的含量为60-85重量%,优选为70-80重量%。
C13、根据项目C9至C12中任意一项所述的方法,其中在步骤(1)中,所述羧酸的用量与第一无机耐火组分的干基重量比为0.002-0.1∶1,优选为0.02-0.06∶1;
优选地,所述羧酸选自C 1-18的一元饱和羧酸、C 7-10的苯基酸、柠檬酸、己二酸、丙二酸、丁二酸、马来酸、和酒石酸等中的至少一种。
C14、根据项目C9至C12中任意一项所述的方法,其中在步骤(1)中,所述醇的摩尔量与第一所述无机耐火组分的干基重量比为0.005-0.03∶1,优选为0.01-0.02∶1;和/或
在步骤(2)中,所述醇与第二催化剂制备中第VIII族元素的摩尔比为0.5-8,优选为1-5;
优选地,所述醇选自C 1-18的一元饱和醇、乙二醇、聚乙二醇、丙 三醇、聚丙三醇、丁四醇、季戊四醇、木糖醇、山梨醇和三羟甲基乙烷中的至少一种。
C15、根据项目C9所述的方法,其中所述第一浸渍溶液中还包含含磷物质,所述含磷物质的用量使得以所述第一催化剂的干基重量为基准并以P 2O 5计,所述磷元素的含量为0.8-10重量%,优选1-8重量%;和/或
所述第二浸渍溶液中还包含含磷物质,所述含磷物质的用量使得以所述第二催化剂的干基重量为基准并以P 2O 5计,所述磷元素的含量为0.8-10重量%,优选1-8重量%;
优选地,所述含磷物质选自磷酸、次磷酸、磷酸铵和磷酸二氢铵中的至少一种。
C16、根据项目C9所述的方法,其中
所述第一焙烧的条件包括:焙烧的温度为300-900℃,优选为400-800℃;焙烧的时间为1-15h,优选为3-8h;和/或
所述第二焙烧的条件包括:焙烧的温度为400-1000℃,优选为500-800℃;焙烧的时间为1-15h,优选为3-8h。
C17、根据项目C9所述的方法,其中步骤(1c)和步骤(2a)中,所述干燥的条件各自独立地包括:干燥的温度为50-250℃,优选为100-200℃;干燥的时间为2-10h,优选为3-8h。
C18、根据项目C9所述的方法,其中所述氧化硅前驱体为硅溶胶、白炭黑和二氧化硅中的至少一种;所述氧化镁前驱体为氢氧化镁、硝酸镁、碳酸镁、醋酸镁和氧化镁中的至少一种;所述氧化钙的前驱体为氢氧化钙、碳酸钙、草酸钙、硝酸钙、醋酸钙和氧化钙中的至少一种;所述氧化锆前驱体为氢氧化锆、碳酸锆、硝酸锆、醋酸锆和氧化锆中的至少一种;所述氧化钛的前驱体为氢氧化钛、硝酸钛、醋酸钛和氧化锆中的至少一种;
优选地,所述氧化硅、氧化镁、氧化钙、氧化锆和氧化钛前驱体的平均孔径均不小于10nm,孔径为2-6nm的孔体积占总孔体积的比例均不大于15%,孔径为6-40nm的孔体积占总孔体积的比例均不小于75%。
C19、根据项目C9所述的方法,其中步骤(2a)中,制备所述氧化铝载体的条件使得,在所述氧化铝载体中,孔径在2-4nm范围的孔 体积占总孔体积的0-2%,孔径在4-6nm的孔体积占总体积2-15%,孔径在6-40nm的孔体积占总体积85-95%,其余孔的孔径为40-100nm,不含孔径在100nm以上的孔。
C20、项目C9至C19中任意一项所述的方法制备的加氢精制催化剂体系。
C21、项目C1至C8和C20中任意一项所述的加氢精制催化剂体系在馏分油加氢精制中的应用。
C22、根据项目C21所述的应用,其中所述馏分油中的硫含量为5000-30000ppm,氮含量为50-3000ppm,芳烃含量为20-80重量%。
C23、一种馏分油的加氢精制方法,其特征在于,该方法包括:将项目C1至C8和C20中任意一项所述的加氢精制催化剂体系进行硫化,然后通入待加氢脱硫馏分油,使待加氢脱硫馏分油在加氢脱硫条件下与所述硫化后加氢精制催化剂进行接触。
D1、一种加氢精制催化剂,其特征在于,该催化剂包含无机耐火组分、加氢脱硫催化活性组分和羧酸;
其中所述无机耐火组分包含氧化硅、氧化镁、氧化钙、氧化锆和氧化钛中的至少一种和部分加氢脱硫催化活性组分;
所述催化剂具有孔径分别在2-40nm和100-300nm范围的孔,其中孔径在2-40nm的孔体积占总孔体积的60-95%,100-300nm的孔体积占总孔体积的0.5-30%。
D2、根据项目D1所述的加氢精制催化剂,其中所述加氢脱硫催化活性组分为第VIII族金属元素和第VIB族金属元素;
其中在所述加氢精制催化剂中,以催化剂的干基重量为基准并以氧化物计,第VIII族金属元素的含量为15-35重量%,优选为20-30重量%;第VIB族金属元素的含量为35-75重量%,优选为40-65重量%;
所述第VIII族金属元素优选选自铁、钴、镍、钌、铑和钯中的至少一种,所述第VIB族金属元素优选选自铬、钼和钨中的至少一种。
D3、根据项目D2所述的加氢精制催化剂,其中所述部分加氢脱硫催化活性组分为部分第VIII族金属元素,所述部分第VIII族金属元素的含量为第VIII族金属元素总含量的60-90%。
D4、根据项目D1或D2所述的加氢精制催化剂,其中孔径在2-40nm的孔体积占总孔体积的75-90%,孔径在100-300nm的孔体积占总孔体积的5-15%;
优选地,所述催化剂为成型催化剂,所述催化剂的形状优选为圆柱形、三叶草形、四叶草形或蜂窝形;
优选地,所述加氢精制催化剂的比表面积为70-200m 2/g,孔体积为0.15-0.6mL/g,平均孔径为5-25nm;
优选地,在所述加氢精制催化剂中,孔径在2-4nm范围的孔体积不超过总孔体积的10%。
D5、根据项目D1至D4中任一项所述的加氢精制催化剂,其中以催化剂的干基重量为基准,所述无机耐火组分的含量为5-40重量%,优选为10-30重量%。
D6、根据项目D1至D5中任一项所述的加氢精制催化剂,其中所述羧酸的含量与无机耐火组分的干基重量比为0.1-0.8∶1,优选为0.2-0.6∶1;
优选地,所述羧酸选自C 1-18的一元饱和羧酸、C 7-10的苯基酸、柠檬酸、己二酸、丙二酸、丁二酸、马来酸和酒石酸等中的至少一种。
D7、根据项目D1所述的加氢精制催化剂,其中所述加氢精制催化剂还包含磷元素,以催化剂的干基重量为基准并以P 2O 5计,所述磷元素的含量为0.8-10重量%,优选1-8重量%。
D8、一种加氢精制催化剂的制备方法,其特征在于,该方法包括:
(1)将氧化硅、氧化镁、氧化钙、氧化锆和氧化钛中至少一种的前驱体与部分加氢脱硫催化活性组分的前驱体混合并焙烧,得到无机耐火组分;
(2)将羧酸以及剩余加氢脱硫催化活性组分的前驱体混合,得到浸渍溶液;
(3)将所述无机耐火组分和所述浸渍溶液混合,将得到的混合物成型并干燥,得到所述加氢精制催化剂。
D9、根据项目D8所述的方法,其中所述加氢脱硫催化活性组分前驱体为第VIII族金属元素的前驱体和第VIB族金属元素的前驱体;
其中第VIII族金属元素的前驱体和第VIB族金属元素的前驱体的 用量使得在所述加氢精制催化剂中,以催化剂的干基重量为基准并以氧化物计,第VIII族金属元素的含量为15-35重量%,优选为20-30重量%;第VIB族金属元素的含量为35-75重量%,优选为40-65重量%;
所述第VIII族金属元素优选选自铁、钴、镍、钌、铑和钯中的至少一种,所述第VIB族金属元素优选选自铬、钼和钨中的至少一种。
D10、根据项目D9所述的方法,其中所述部分加氢脱硫催化活性组分的前驱体为部分第VIII族金属元素的前驱体,所述部分第VIII族金属元素的前驱体的用量为第VIII族金属元素的前驱体的总用量的60-90%。
D11、根据项目D8至D10中任一项所述的方法,其中所述无机耐火组分的用量使得在所述加氢精制催化剂中,以所述加氢精制催化剂的干基重量为基准,所述无机耐火组分的含量为5-40重量%,优选为10-30重量%。
D12、根据项目D8至D11中任一项所述的方法,其中在步骤(2)中,所述羧酸的用量与无机耐火组分的干基重量比为0.1-0.8∶1,优选为0.2-0.6∶1;
优选地,所述羧酸选自C 1-18的一元饱和羧酸、C 7-10的苯基酸、柠檬酸、己二酸、丙二酸、丁二酸、马来酸和酒石酸等中的至少一种。
D13、根据项目D8所述的方法,其中步骤(2)得到的浸渍溶液中还包含含磷物质,所述含磷物质的用量使得以所述加氢精制催化剂的干基重量为基准并以P 2O 5计,所述磷元素的含量为0.8-10重量%,优选1-8重量%;
优选地,所述含磷物质选自磷酸、次磷酸、磷酸铵和磷酸二氢铵中的至少一种。
D14、根据项目D8所述的方法,其中步骤(1)中,所述焙烧的条件包括:焙烧的温度为300-900℃,优选为400-800℃;焙烧的时间为1-15h,优选为3-8h。
D15、根据项目D8所述的方法,其中步骤(3)中,所述干燥的条件包括:干燥的温度为50-250℃,优选为100-200℃;干燥的时间为2-10h,优选为3-8h。
D16、根据项目D7所述的方法,其中所述氧化硅前驱体为硅溶 胶、白炭黑和二氧化硅中的至少一种;所述氧化镁前驱体为氢氧化镁、硝酸镁、碳酸镁、醋酸镁和氧化镁中的至少一种;所述氧化钙的前驱体为氢氧化钙、碳酸钙、草酸钙、硝酸钙、醋酸钙和氧化钙中的至少一种;所述氧化锆前驱体为氢氧化锆、碳酸锆、硝酸锆、醋酸锆和氧化锆中的至少一种;所述氧化钛的前驱体为氢氧化钛、硝酸钛、醋酸钛和氧化锆中的至少一种;
优选地,所述氧化硅、氧化镁、氧化钙、氧化锆和氧化钛前驱体的平均孔径均不小于10nm,孔径为2-6nm的孔体积占总孔体积的比例均不大于15%,孔径在6-40nm范围的孔体积占总孔体积的比例均不小于75%。
D17、项目D8至D16中任一项所述的方法制备的加氢精制催化剂。
D18、项目D1至D7和D17中任一项所述的加氢精制催化剂在馏分油加氢精制中的应用。
D19、根据项目D18所述的应用,其中所述馏分油中的硫含量为5000-30000ppm,氮含量为50-3000ppm,芳烃含量为20-80重量%。
D20、一种馏分油的加氢精制方法,其特征在于,该方法包括:将项目D1至D7和D17中任一项所述的加氢精制催化剂进行硫化,然后通入待加氢脱硫馏分油,使待加氢脱硫馏分油在加氢脱硫条件下与所述硫化后加氢精制催化剂进行接触。
E1、一种加氢精制催化剂体系,其特征在于,该加氢精制催化剂体系包括第一催化剂床层和第二催化剂床层;
其中所述第一催化剂床层中包含的第一催化剂包含第一无机耐火组分、第一加氢脱硫催化活性组分和羧酸;其中所述第一无机耐火组分包含氧化硅、氧化镁、氧化钙、氧化锆和氧化钛中的至少一种和部分第一加氢脱硫催化活性组分;
所述第一催化剂具有孔径分别在2-40nm和100-300nm范围的孔,其中孔径在2-40nm的孔体积占总孔体积的60-95%,100-300nm的孔体积占总孔体积的0.5-30%;
其中所述第二催化剂床层中包含的第二催化剂包含第二无机耐火组分、第二加氢脱硫催化活性组分和羧酸;其中所述第二无机耐火组 分为氧化铝;所述第二催化剂的孔径尺寸集中在2-100nm;
其中所述第一催化剂与第二催化剂的体积比为1∶1-8。
E2、根据项目E1所述的加氢精制催化剂,其中
在第一催化剂中,所述第一加氢脱硫催化活性组分为第VIII族金属元素和第VIB族金属元素;
其中以催化剂的干基重量为基准并以氧化物计,第VIII族金属元素的含量为15-35重量%,优选为20-30重量%;第VIB族金属元素的含量为35-75重量%,优选为40-65重量%;和/或
在第二催化剂中,所述第二加氢脱硫催化活性组分为第VIII族金属元素和第VIB族金属元素;
其中以第二催化剂的干基重量为基准并以氧化物计,第VIII族金属元素的含量为1-8重量%,优选为2-6重量%;第VIB族金属元素的含量为10-35重量%,优选为15-30重量%;
优选地,所述第VIII族金属元素选自铁、钴、镍、钌、铑和钯中的至少一种,所述第VIB族金属元素选自铬、钼和钨中的至少一种。
E3、根据项目E2所述的加氢精制催化剂,其中在第一催化剂中,所述部分第一加氢脱硫催化活性组分为部分第VIII族金属元素,所述部分第VIII族金属元素的含量为第VIII族金属元素总含量的60-90%。
E4、根据项目E1或E2所述的加氢精制催化剂,其中
在第一催化剂中,孔径在2-40nm的孔体积占总孔体积的75-90%,孔径在100-300nm的孔体积占总孔体积的5-15%,孔径在2-4nm范围的孔体积不超过总孔体积的10%;
优选地,所述第一催化剂的比表面积为70-200m 2/g,孔体积为0.15-0.6mL/g,平均孔径为5-25nm;和/或
在第二催化剂中,所述第二催化剂的比表面积为130-300m 2/g,孔体积为0.2-0.7mL/g,平均孔径为6-20nm;
优选地,所述第一催化剂和第二催化剂分别为成型催化剂体系,所述第一催化剂的形状和第二催化剂的形状各自独立的选自圆柱形、三叶草形、四叶草形和蜂窝形。
E5、根据项目E1至E4中任一项所述的加氢精制催化剂,其中
在第一催化剂中,以第一催化剂的干基重量为基准,所述第一无 机耐火组分的含量为5-40重量%,优选为10-30重量%;和/或
在第二催化剂中,以第二催化剂的干基重量为基准,所述第二无机耐火组分的含量为60-85重量%,优选为70-80重量%。
E6、根据项目E1至E5中任一项所述的加氢精制催化剂,其中在第一催化剂中,所述羧酸的含量与第一无机耐火组分的干基重量比为0.1-0.8∶1,优选为0.2-0.6∶1;和/或
在第二催化剂中,所述羧酸与第VIII族元素的摩尔比为0.5-8,优选为1-5;
优选地,所述羧酸选自C 1-18的一元饱和羧酸、C 7-10的苯基酸、柠檬酸、己二酸、丙二酸、丁二酸、马来酸和酒石酸等中的至少一种。
E7、根据项目E1所述的加氢精制催化剂,其中所述第一催化剂还包含磷元素,以第一催化剂的干基重量为基准并以P 2O 5计,所述磷元素的含量为0.8-10重量%,优选1-8重量%;和/或
所述第二催化剂还包含磷元素,以第二催化剂的干基重量为基准并以P 2O 5计,所述磷元素的含量为0.8-10重量%,优选1-8重量%。
E8、一种加氢精制催化剂体系的制备方法,该加氢精制催化剂体系包括第一催化剂床层和第二催化剂床层,其特征在于,该方法包括:
(1)制备第一催化剂床层中包含的第一催化剂,包括以下步骤:
(1a)将氧化硅、氧化镁、氧化钙、氧化锆和氧化钛中至少一种的前驱体与部分第一加氢脱硫催化活性组分的前驱体混合并第一焙烧,得到第一无机耐火组分;
(1b)将羧酸以及剩余第一加氢脱硫催化活性组分的前驱体混合,得到第一浸渍溶液;
(1c)将所述第一无机耐火组分和所述第一浸渍溶液混合,将得到的混合物成型并干燥,得到所述第一催化剂;
(2)制备第二催化剂床层中包含的第二催化剂,包括以下步骤:
(2a)将氧化铝前驱体与助挤剂和胶溶剂混合,并将所得混合物依次进行成型、干燥和第二焙烧,制备得到氧化铝载体;
(2b)将羧酸以及第二加氢脱硫催化活性组分的前驱体混合,得到第二浸渍溶液;
(2c)将所述第二浸渍溶液与氧化铝载体混合后干燥,得到所 述第二催化剂;
(3)将所述第一催化剂和第二催化剂按照体积比为1∶1-8分别装填于第一催化剂床层和第二催化剂床层,得到所述加氢精制催化剂体系。
E9、根据项目E8所述的方法,其中
在步骤(1)中,所述第一加氢脱硫催化活性组分的前驱体为第VIII族金属元素的前驱体和第VIB族金属元素的前驱体;
其中第VIII族金属元素的前驱体和第VIB族金属元素的前驱体的用量使得在所述第一催化剂中,以第一催化剂的干基重量为基准并以氧化物计,第VIII族金属元素的含量为15-35重量%,优选为20-30重量%;第VIB族金属元素的含量为35-75重量%,优选为40-65重量%;和/或
在步骤(2)中,所述第二加氢脱硫催化活性组分的前驱体为第VIII族金属元素的前驱体和第VIB族金属元素的前驱体;
其中第VIII族金属元素的前驱体和第VIB族金属元素的前驱体的用量使得在所述第二催化剂中,以第二催化剂的干基重量为基准并以氧化物计,第VIII族金属元素的含量为1-8重量%,优选为2-6重量%;第VIB族金属元素的含量为10-35重量%,优选为15-30重量%;
优选地,所述第VIII族金属元素选自铁、钴、镍、钌、铑和钯中的至少一种,所述第VIB族金属元素选自铬、钼和钨中的至少一种。
E10、根据项目E9所述的方法,其中在步骤(1a)中,所述部分第一加氢脱硫催化活性组分的前驱体为部分第一催化剂制备中使用第VIII族金属元素的前驱体,所述部分第一催化剂制备中使用第VIII族金属元素的前驱体的用量为第一催化剂制备中使用第VIII族金属元素的前驱体总用量的60-90%。
E11、根据项目E8至E10中任一项所述的方法,其中在步骤(1)中,所述第一无机耐火组分的用量使得在所述第一催化剂中,以所述第一催化剂的干基重量为基准,所述第一无机耐火组分的含量为5-40重量%,优选为10-30重量%;和/或
在步骤(2)中,所述第二无机耐火组分的用量使得在所述第二催化剂中,以所述第二催化剂的干基重量为基准,所述第二无机耐火组 分的含量为60-85重量%,优选为70-80重量%。
E12、根据项目E8至E11中任一项所述的方法,其中在步骤(1)中,所述羧酸和第二无机耐火组分的用量使得所述羧酸的用量与第一无机耐火组分的干基重量比为0.1-0.8∶1,优选为0.2-0.6∶1;和/或
在步骤(2)中,所述羧酸与第VIII族元素的用量摩尔比为0.5-8,优选为1-5;
优选地,所述羧酸选自C 1-18的一元饱和羧酸、C 7-10的苯基酸、柠檬酸、己二酸、丙二酸、丁二酸、马来酸、和酒石酸等中的至少一种。
E13、根据项目E8所述的方法,其中所述第一浸渍溶液中还包含含磷物质,所述含磷物质的用量使得以所述第一催化剂的干基重量为基准并以P 2O 5计,所述磷元素的含量为0.8-10重量%,优选1-8重量%;和/或
所述第二浸渍溶液中还包含含磷物质,所述含磷物质的用量使得以所述第二催化剂的干基重量为基准并以P 2O 5计,所述磷元素的含量为0.8-10重量%,优选1-8重量%;
优选地,所述含磷物质选自磷酸、次磷酸、磷酸铵和磷酸二氢铵中的至少一种。
E14、根据项目E8所述的方法,其中
所述第一焙烧的条件包括:焙烧的温度为300-900℃,优选为400-800℃;焙烧的时间为1-15h,优选为3-8h;和/或
所述第二焙烧的条件包括:焙烧的温度为400-1000℃,优选为500-800℃;焙烧的时间为1-15h,优选为3-8h。
E15、根据项目E8所述的方法,其中步骤(1c)和步骤(2a)中,所述干燥的条件各自独立地包括:干燥的温度为50-250℃,优选为100-200℃;干燥的时间为2-10h,优选为3-8h。
E16、根据项目E8所述的方法,其中所述氧化硅前驱体为硅溶胶、白炭黑和二氧化硅中的至少一种;所述氧化镁前驱体为氢氧化镁、硝酸镁、碳酸镁、醋酸镁和氧化镁中的至少一种;所述氧化钙的前驱体为氢氧化钙、碳酸钙、草酸钙、硝酸钙、醋酸钙和氧化钙中的至少一种;所述氧化锆前驱体为氢氧化锆、碳酸锆、硝酸锆、醋酸锆和氧化锆中的至少一种;所述氧化钛的前驱体为氢氧化钛、硝酸钛、 醋酸钛和氧化锆中的至少一种;
优选地,所述氧化硅、氧化镁、氧化钙、氧化锆和氧化钛前驱体的平均孔径均不小于10nm,孔径为2-6nm的孔体积占总孔体积的比例均不大于15%,孔径在6-40nm范围的孔体积占总孔体积的比例均不小于75%。
E17、根据项目E8所述的方法,其中步骤(2a)中,制备所述氧化铝载体的条件使得,在所述氧化铝载体中,孔径在2-4nm范围的孔体积占总孔体积的0-2%,孔径在4-6nm的孔体积占总体积2-15%,孔径在6-40nm的孔体积占总体积85-95%,其余孔的孔径为40-100nm,不含孔径在100nm以上的孔。
E18、项目E8至E17中任一项所述的方法制备的加氢精制催化剂体系。
E19、项目E1至E7和E18中任一项所述的加氢精制催化剂体系在馏分油加氢精制中的应用。
E20、根据项目E19所述的应用,其中所述馏分油中的硫含量为5000-30000ppm,氮含量为50-3000ppm,芳烃含量为20-80重量%。
E21、一种馏分油的加氢精制方法,其特征在于,该方法包括:将项目E1至E7和E19中任一项所述的加氢精制催化剂体系进行硫化,然后通入待加氢脱硫馏分油,使待加氢脱硫馏分油在加氢脱硫条件下与所述硫化后加氢精制催化剂进行接触。
实施例
下面通过实施例对本发明做进一步的说明,但并不因此而限制本发明的内容。
以下实施例I-II系列和对比例I-II系列中,催化剂的加氢脱硫性能在20mL高压加氢脱硫反应装置上进行测定,直接采用程序升温硫化法将氧化态催化剂转化为硫化态催化剂。硫化条件包括:硫化压力为6.4MPa,硫化油为含CS 22%重量的煤油,体积空速为2h -1,氢油比为300v/v,首先在230℃/h恒温6h,然后再升温至360℃硫化8h,每个阶段的升温速率为10℃/h。硫化后切换反应原料进行加氢脱硫活性测试,反应原料是硫含量为9100ppm、氮含量为532ppm、芳烃含量为55wt%的高氮高芳烃馏分油。测试条件包括:压力为6.4MPa,体积空 速为1.5h -1,氢油比为300v/v,反应温度为340℃。反应稳定7天后分析产物的硫含量。
催化剂的组成根据制备过程中的投料量计算得到。使用硫氮分析仪(赛默飞世尔出品,型号为TN/TS3000)分析产物中的硫和氮的质量分数,产物中的芳烃含量采用Thermo Scientific公司生产的Antaris II分析仪通过近红外光谱法分析得到。催化剂的比表面积以及其中的2-40nm孔径范围内的孔分布、孔径和孔体积采用低温氮气吸附法测定(按照GB/T5816-1995),100-300nm孔径范围内的孔分布、孔径和孔体积采用压汞法测定(按照GB/T21650.1-2008)。催化剂的平均孔径按照圆柱形孔模型进行计算(平均孔径=总孔体积×4000/比表面积)。
在本申请的以下实施例和对比例中,无机耐火组分和催化剂的XRD谱图是采用PANalytical公司的EMPYREAN型号XRD衍射仪记录的,其中2θ为10-70°,扫描速度为5°/min。
除非另有说明,以下实施例I-II系列和对比例I-II系列中,所给出的无机耐火组分的用量(包括与其它组分用量之间的比值)和含量分别是指所述无机耐火组分中除所述加氢脱硫催化活性组分外的其它组分的总用量和总含量。
实施例I-1
本实施例用于说明根据本发明的加氢精制催化剂及其制备方法。
(1)将市售白炭黑(购自国药集团化学试剂有限公司,比表面积为220m 2/g,平均孔径为12.7nm)、碱式碳酸钴(购自国药集团化学试剂有限公司,分析纯)粉末混合均匀,然后在400℃下焙烧3h,获得含钴的无机耐火粉末。
其中碱式碳酸钴的用量对应催化剂中钴(以氧化钴计)的含量为22.0重量%。
(2)将一定量的MoO 3(购自国药集团化学试剂有限公司,分析纯)、碱式碳酸钴、丙醇(购自国药集团化学试剂有限公司,分析纯)分别加入含磷酸(购自国药集团化学试剂有限公司,分析纯)的水溶液中,在加热搅拌下至完全溶解,然后加入一定量的柠檬酸(购自国药集团化学试剂有限公司,分析纯),至完全溶解,获得含活性金属的浸渍溶液。
其中丙醇的摩尔数与无机耐火组分的质量的比值为0.01,柠檬酸质量与无机耐火组分质量的比值为0.02。
(3)将浸渍溶液与所述无机耐火组分混合均匀,然后将其挤条成型。经过在200℃下干燥3h,制备得到粒径为1.6mm的氧化态催化剂。
其中浸渍溶液与所述含钴的无机耐火粉末的混合比例使得,以催化剂的干基重量为基准并以氧化物计,催化剂中氧化钼的含量为55.0重量%,氧化钴的含量为30.0重量%,P 2O 5的含量为5重量%,无机耐火组分的含量为10.0重量%。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔径分布。催化剂的比表面积为93.0m 2/g,孔径主要分布在2-40nm和100-300nm,其中孔径在2-40nm范围的孔体积占总孔体积的比例为88.5%(其中孔径在2-4nm范围的孔体积占总孔体积的比例为8.9%),孔径在100-300nm范围的孔体积占总孔体积的比例为6.3%,总孔体积为0.22mL/g,平均孔径为9.5nm。
催化剂经过硫化和反应测试后,所得产品中的硫含量为9.3ppm,氮含量为1.8ppm,芳烃为36.6wt%。
实施例I-2
本实施例用于说明根据本发明的加氢精制催化剂及其制备方法。
(1)将市售白炭黑(比表面积为220m 2/g,平均孔径为12.7nm)、碱式碳酸镍(购自国药集团化学试剂有限公司,分析纯)粉末混合均匀,然后在700℃下焙烧4h,获得含镍的无机耐火粉末。
其中碱式碳酸镍的用量对应催化剂中镍(以氧化镍计)的含量为15.0重量%。
(2)将一定量的MoO 3、碱式碳酸镍、乙二醇(购自国药集团化学试剂有限公司,分析纯)分别加入含磷酸的水溶液中,在加热搅拌下至完全溶解,然后加入一定量的乙酸(购自国药集团化学试剂有限公司,分析纯),至完全溶解,获得含活性金属的浸渍溶液。
其中乙二醇的摩尔数与无机耐火组分的质量的比值为0.015,乙酸质量与无机耐火组分质量的比值为0.03。
(3)将浸渍溶液与所述无机耐火组分混合均匀,然后将其挤条成 型。经过在200℃下干燥5h,制备得到粒径为1.6mm的氧化态催化剂。
其中浸渍溶液与所述含镍的无机耐火粉末的混合比例使得,以催化剂的干基重量为基准并以氧化物计,催化剂中氧化钼的含量为46.0重量%,氧化镍的含量为20.0重量%,P 2O 5的含量为4重量%,无机耐火组分的含量为30.0重量%。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔径分布。催化剂的比表面积为145m 2/g,孔径主要分布在2-40nm和100-300nm,其中孔径在2-40nm范围的孔体积占总孔体积的比例为85.5%(其中孔径在2-4nm范围的孔体积占总孔体积的比例为7.6%),孔径在100-300nm范围的孔体积占总孔体积的比例为13.2%,总孔体积为0.36mL/g,平均孔径为9.9nm。
催化剂经过硫化和反应测试后,所得产品中的硫含量为9.8ppm,氮含量为1.9ppm,芳烃为34.8wt%。
实施例I-3
本实施例用于说明根据本发明的加氢精制催化剂及其制备方法。
(1)将市售白炭黑(比表面积为220m 2/g,平均孔径为12.7nm)、碱式碳酸镍粉末混合均匀,然后在500℃下焙烧3h,获得含镍的无机耐火粉末。
其中碱式碳酸镍的用量对应催化剂中镍(以氧化镍计)的含量为16.0重量%。
(2)将一定量的MoO 3、碱式碳酸镍、丁醇(购自国药集团化学试剂有限公司,分析纯)分别加入含磷酸的水溶液中,在加热搅拌下至完全溶解,然后加入一定量的酒石酸(购自国药集团化学试剂有限公司,分析纯),至完全溶解,获得含活性金属的浸渍溶液。
其中丁醇的摩尔数与无机耐火组分的质量的比值为0.02,酒石酸质量与无机耐火组分质量的比值为0.05。
(3)将浸渍溶液与所述无机耐火组分混合均匀,然后将其挤条成型。经过在150℃下干燥8h,制备得到粒径为1.6mm的氧化态催化剂。
其中浸渍溶液与所述含镍的无机耐火粉末的混合比例使得,以催 化剂的干基重量为基准并以氧化物计,催化剂中氧化钼的含量为47.0重量%,氧化镍的含量为25.0重量%,P 2O 5的含量为8.0重量%,无机耐火组分的含量为20.0重量%。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔径分布。催化剂的比表面积为155m 2/g,孔径主要分布在2-40nm和100-300nm,其中孔径在2-40nm范围的孔体积占总孔体积的比例为89.3%(其中孔径在2-4nm范围的孔体积占总孔体积的比例为6.7%),孔径在100-300nm范围的孔体积占总孔体积的比例为7.4%,总孔体积为0.31mL/g,平均孔径为8.0nm。
催化剂经过硫化和反应测试后,所得产品中的硫含量为6.4ppm,氮含量为0.8ppm,芳烃为33.5wt%。
实施例I-4
本实施例用于说明根据本发明的加氢精制催化剂及其制备方法。
(1)将市售白炭黑(比表面积为220m 2/g,平均孔径为12.7nm)、碱式碳酸镍粉末混合均匀,然后在600℃下焙烧8h,获得含镍的无机耐火粉末。
其中碱式碳酸镍的用量对应催化剂中镍(以氧化镍计)的含量为20.0重量%。
(2)将一定量的MoO 3、偏钨酸铵(购自国药集团化学试剂有限公司,分析纯)、碱式碳酸镍、乙二醇分别加入含磷酸的水溶液中,在加热搅拌下至完全溶解,然后加入一定量的乙酸,至完全溶解,获得含活性金属的浸渍溶液。
其中乙二醇的摩尔数与无机耐火组分的质量的比值为0.012,乙酸质量与无机耐火组分质量的比值为0.06。
(3)将浸渍溶液与所述无机耐火组分混合均匀,然后将其挤条成型。经过在300℃下干燥3h,制备得到粒径为1.6mm的氧化态催化剂。
其中浸渍溶液与所述含镍的无机耐火粉末的混合比例使得,以催化剂的干基重量为基准并以氧化物计,催化剂中氧化钼的含量为22.5重量%,氧化钨的含量为22.5%,氧化镍的含量为27.0重量%,P 2O 5的含量为4.0重量%,无机耐火组分的含量为15.0重量%。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔径分布。催化剂的比表面积为120m 2/g,孔径主要分布在2-40nm和100-300nm,其中孔径在2-40nm范围的孔体积占总孔体积的比例为76.9%(其中孔径在2-4nm范围的孔体积占总孔体积的比例为9.5%),孔径在100-300nm范围的孔体积占总孔体积的比例为20.3%,总孔体积为0.26mL/g,平均孔径为8.7nm。
催化剂经过硫化和反应测试后,所得产品中的硫含量为9.1ppm,氮含量为1.8ppm,芳烃为36.2wt%。
实施例I-5
本实施例用于说明根据本发明的加氢精制催化剂及其制备方法。
(1)将市售氢氧化锆粉(购自国药集团化学试剂有限公司,分析纯,比表面积为180m 2/g,平均孔径为13.3nm)、碱式碳酸镍粉末混合均匀,然后在400℃下焙烧3h,获得含镍的无机耐火粉末。
其中碱式碳酸镍的用量对应催化剂中镍(以氧化镍计)的含量为28.0重量%。
(2)将一定量的偏钨酸铵、碱式碳酸镍、丙三醇(购自国药集团化学试剂有限公司,分析纯)分别加入含磷酸的水溶液中,在加热搅拌下至完全溶解,然后加入一定量的己酸(购自国药集团化学试剂有限公司,分析纯),至完全溶解,获得含活性金属的浸渍溶液。
其中丙三醇的摩尔数与无机耐火组分的质量的比值为0.01,己酸质量与无机耐火组分质量的比值为0.025。
(3)将浸渍溶液与所述无机耐火组分混合均匀,然后将其挤条成型。经过在180℃下干燥5h,制备得到粒径为1.6mm的氧化态催化剂。
其中浸渍溶液与所述含镍的无机耐火粉末的混合比例使得,以催化剂的干基重量为基准并以氧化物计,催化剂中氧化钨的含量为45.0%,氧化镍的含量为32.0重量%,P 2O 5的含量为3.0重量%,无机耐火组分的含量为20.0重量%。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔径分布。催化剂的比表面积为109m 2/g,孔径主要分布在2-40nm和100-300nm,其中孔径在2-40nm范围的孔体积占总孔体积的比例为 85.6%(其中孔径在2-4nm范围的孔体积占总孔体积的比例为6.8%),孔径在100-300nm范围的孔体积占总孔体积的比例为12.3%,总孔体积为0.29mL/g,平均孔径为10.6nm。
催化剂经过硫化和反应测试后,所得产品中的硫含量为7.5ppm,氮含量为0.4ppm,芳烃为34.8wt%。
实施例I-6
本实施例用于说明根据本发明的加氢精制催化剂及其制备方法。
(1)将市售白炭黑(比表面积为220m 2/g,平均孔径为12.7nm)、硝酸镁(购自国药集团化学试剂有限公司,分析纯)、碱式碳酸镍粉末混合均匀,然后在400℃下焙烧3h,获得含镍、氧化硅、氧化镁的无机耐火粉末。
其中碱式碳酸镍的用量对应催化剂中镍(以氧化镍计)的含量为21.0重量%。
(2)将一定量的偏钨酸铵、硝酸镍(购自国药集团化学试剂有限公司,分析纯)、丙三醇分别加入水溶液中,在加热搅拌下至完全溶解,然后加入一定量的柠檬酸,至完全溶解,获得含活性金属的浸渍溶液。
其中丙三醇的摩尔数与无机耐火组分的质量的比值为0.008,柠檬酸质量与无机耐火组分质量的比值为0.08。
(3)将浸渍溶液与所述无机耐火组分混合均匀,然后将其挤条成型。经过在180℃下干燥5h,制备得到粒径为1.6mm的氧化态催化剂。
其中浸渍溶液与所述含镍的无机耐火粉末的混合比例使得,以催化剂的干基重量为基准并以氧化物计,催化剂中氧化钨的含量为53.0重量%,氧化镍的含量为25.0重量%,无机耐火组分的含量为22.0重量%(其中二氧化硅的含量为15重量%,氧化镁的含量为7.0重量%)。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔径分布。催化剂的比表面积为165m 2/g,孔径主要分布在2-40nm和100-300nm,其中孔径在2-40nm范围的孔体积占总孔体积的比例为87.5%(其中孔径在2-4nm范围的孔体积占总孔体积的比例为8.7%),孔径在100-300nm范围的孔体积占总孔体积的比例为7.8%,总孔体积 为0.32mL/g,平均孔径为7.8nm。
催化剂经过硫化和反应测试后,所得产品中的硫含量为9.9ppm,氮含量为2.1ppm,芳烃为37.2wt%。
实施例I-7
本实施例用于说明根据本发明的加氢精制催化剂及其制备方法。
基本按照实施例I-6的方法制备催化剂,不同之处是在步骤(1)中引入第VIII族和第VIB族元素,总量不变。
(1)将市售白炭黑(比表面积为220m 2/g,平均孔径为12.7nm)、硝酸镁(购自国药集团化学试剂有限公司,分析纯)、偏钨酸铵、碱式碳酸镍粉末混合均匀,然后在400℃下焙烧3h,获得含钨、镍、二氧化硅、氧化镁的无机耐火粉末。
其中偏钨酸铵的用量对应催化剂中钨(以氧化钨计)的含量为3.0重量%,碱式碳酸镍的用量对应催化剂中镍(以氧化镍计)的含量为18.0重量%。
(2)将一定量的偏钨酸铵、硝酸镍(购自国药集团化学试剂有限公司,分析纯)、丙三醇分别加入水溶液中,在加热搅拌下至完全溶解,然后加入一定量的柠檬酸,至完全溶解,获得含活性金属的浸渍溶液。
其中丙三醇的摩尔数与无机耐火组分的质量的比值为0.008,柠檬酸质量与无机耐火组分质量的比值为0.08。
(3)将浸渍溶液与所述无机耐火组分混合均匀,然后将其挤条成型。经过在180℃下干燥5h,制备得到粒径为1.6mm的氧化态催化剂。
其中浸渍溶液与所述含钨、镍的无机耐火粉末的混合比例使得,以催化剂的干基重量为基准并以氧化物计,催化剂中氧化钨的含量为53.0重量%,氧化镍的含量为25.0重量%,无机耐火组分的含量为22.0重量%(其中二氧化硅的含量为15重量%,氧化镁的含量为7.0重量%)。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔径分布。催化剂的比表面积为162m 2/g,孔径主要分布在2-40nm和100-300nm,其中孔径在2-40nm范围的孔体积占总孔体积的比例为 85.6%(其中孔径在2-4nm范围的孔体积占总孔体积的比例为8.7%),孔径在100-300nm范围的孔体积占总孔体积的比例为8.3%,总孔体积为0.33mL/g,平均孔径为7.9nm。
催化剂经过硫化和反应测试后,所得产品中的硫含量为15.3ppm,氮含量为5.7ppm,芳烃为38.9wt%。
实施例I-8
本实施例用于说明根据本发明的加氢精制催化剂及其制备方法。
基本按照实施例I-2的方法制备催化剂,不同之处在于将白炭黑替换成拟薄水铝石粉。
(1)将市售拟薄水铝石粉(购自中国石化长岭催化剂厂,比表面积为350m 2/g,平均孔径为12.5nm)、碱式碳酸镍粉末混合均匀,然后在700℃下焙烧4h,获得含镍的无机耐火粉末。
其中碱式碳酸镍的用量对应催化剂中镍(以氧化镍计)的含量为15.0重量%。
(2)将一定量的MoO 3、碱式碳酸镍、乙二醇分别加入含磷酸的水溶液中,在加热搅拌下至完全溶解,然后加入一定量的乙酸,至完全溶解,获得含活性金属的浸渍溶液。
其中乙二醇的摩尔数与无机耐火组分的质量的比值为0.015,乙酸质量与无机耐火组分质量的比值为0.03。
(3)将浸渍溶液与所述无机耐火组分混合均匀,然后将其挤条成型。经过在200℃下干燥5h,制备得到粒径为1.6mm的氧化态催化剂。
其中浸渍溶液与所述含镍的无机耐火粉末的混合比例使得,以催化剂的干基重量为基准并以氧化物计,催化剂中氧化钼的含量为46.0重量%,氧化镍的含量为20.0重量%,P 2O 5的含量为4重量%,无机耐火组分的含量为30.0重量%。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔径分布。催化剂的比表面积为167m 2/g,孔径主要分布在2-40nm和100-300nm,其中孔径在2-40nm范围的孔体积占总孔体积的比例为89.0%(其中孔径在2-4nm范围的孔体积占总孔体积的比例为7.9%),孔径在100-300nm范围的孔体积占总孔体积的比例为7.3%,总孔体积 为0.37mL/g,平均孔径为8.9nm。
催化剂经过硫化和反应测试后,所得产品中的硫含量为28.5ppm,氮含量为7.3ppm,芳烃为40.1wt%。
图1显示了根据本实施例制备得到的无机耐火组分和加氢精制催化剂的XRD谱图,其中2θ在37.1°、43.1°和62.6°的峰对应氧化镍的特征峰,2θ在45.5°和65.8°的峰对应氧化铝的特征峰。从图中可以看出,所得催化剂的XRD谱图呈现出与所得无机耐火组分近似的特征谱峰。
对比例I-1
本对比例用于说明非本发明的加氢精制催化剂及其制备方法。
将市售白炭黑(比表面积为220m 2/g,平均孔径为12.7nm)、碱式碳酸钴粉末混合均匀,不经过焙烧步骤,获得含钴的无机耐火粉末。其中碱式碳酸钴的用量对应催化剂中钴(以氧化钴计)的含量为22.0重量%。然后按照实施例I-1的步骤(2)配制浸渍溶液,并按照实施例I-1的步骤(3)制备催化剂。所得催化剂中无机耐火组分以及各金属组分的含量与实施例I-1得到的催化剂相同。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔径分布。催化剂的比表面积为172m 2/g,孔径主要分布在2-40nm和100-300nm,其中孔径在2-40nm范围的孔体积占总孔体积的比例为90.2%(其中孔径在2-4nm范围的孔体积占总孔体积的比例为12.5%),孔径在100-300nm范围的孔体积占总孔体积的比例为2.5%,总孔体积为0.31mL/g,平均孔径为7.2nm。
催化剂经过硫化和反应测试后,所得产品中的硫含量为45.6ppm,氮含量为8.7ppm,芳烃为42.1wt%。
对比例I-2
本对比例用于说明非本发明的加氢精制催化剂及其制备方法。
将与实施例I-2中所用相同的无机耐火材料前驱体、活性组分前驱体以及有机醇和有机羧酸以与实施例I-2中相同的用量混合、挤条并干燥得到催化剂,所得催化剂中无机耐火组分以及各金属组分的含量与实施例I-2得到的催化剂相同。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔径分布。催化剂的比表面积为122m 2/g,孔径主要分布在2-40nm和100-300nm,其中孔径在2-40nm范围的孔体积占总孔体积的比例为91.5%(其中孔径在2-4nm范围的孔体积占总孔体积的比例为10.2),孔径在100-300nm范围的孔体积占总孔体积的比例为2.2%,总孔体积为0.29mL/g,平均孔径为9.5nm。
催化剂经过硫化和反应测试后,所得产品中的硫含量为60.2ppm,氮含量为13.5ppm,芳烃为43.5wt%。
对比例I-3
本对比例用于说明非本发明的加氢精制催化剂及其制备方法。
基本按照实施例I-6的方法制备催化剂,不同之处在于在配制浸渍溶液时不加入有机醇和有机羧酸。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔径分布。催化剂的比表面积为115m 2/g,孔径主要分布在2-40nm和100-300nm,其中孔径在2-40nm范围的孔体积占总孔体积的比例为80.3%(其中孔径在2-4nm范围的孔体积占总孔体积的比例为7.3%),孔径在100-300nm范围的孔体积占总孔体积的比例为19.5%,总孔体积为0.38mL/g,平均孔径为13.2nm。
催化剂经过硫化和反应测试后,所得产品中的硫含量为32.5ppm,氮含量为6.8ppm,芳烃为40.3wt%。
对比例I-4
本对比例用于说明非本发明的加氢精制催化剂及其制备方法。
基本按照实施I-6的方法制备催化剂,不同之处在于在步骤(1)中不引入第VIII族金属元素,第VIII族金属元素完全在步骤(2)中引入。
(1)将市售白炭黑(比表面积为220m 2/g,平均孔径为12.7nm)、硝酸镁混合均匀,然后在400℃下焙烧3h,获得含二氧化硅、氧化镁的无机耐火粉末。
(2)将一定量的偏钨酸铵、硝酸镍、丙三醇分别加入水溶液中,在加热搅拌下至完全溶解,然后加入一定量的柠檬酸,至完全溶解, 获得含活性金属的浸渍溶液。
其中丙三醇的摩尔数与无机耐火组分的质量的比值为0.008,柠檬酸质量与无机耐火组分质量的比值为0.08。
(3)将浸渍溶液与所述无机耐火组分混合均匀,然后将其挤条成型。经过在180℃下干燥5h,制备得到粒径为1.6mm的氧化态催化剂。
其中浸渍溶液与无机耐火粉末的混合比例使得,以催化剂的干基重量为基准并以氧化物计,催化剂中氧化钨的含量为53.0重量%,氧化镍的含量为25.0重量%,无机耐火组分的含量为22.0重量%(其中二氧化硅的含量为15重量%,氧化镁的含量为7.0重量%)。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔径分布。催化剂的比表面积为178m 2/g,孔径主要分布在2-40nm和100-300nm,其中孔径在2-40nm范围的孔体积占总孔体积的比例为92.5%(其中孔径在2-4nm范围的孔体积占总孔体积的比例为9.8%),孔径在100-300nm范围的孔体积占总孔体积的比例为4.5%,总孔体积为0.30mL/g,平均孔径为6.74nm。
催化剂经过硫化和反应测试后,所得产品中的硫含量为37.5ppm,氮含量为7.6ppm,芳烃为41.8wt%。
对比例I-5
本对比例用于说明非本发明的加氢精制催化剂及其制备方法。
(1)将拟薄水铝石(购自中国石化长岭催化剂厂,比表面积为300m 2/g,平均孔径为12nm,孔径为2-6nm的孔体积占总孔体积的比例为8.9%,孔径为6-40nm的孔体积占总孔体积的比例为76.5%)与适量的田菁粉和硝酸混合,以挤条的方式制备得到粒径为1.6mm氧化铝载体前驱体,将前驱体在120℃干燥3h,然后在500℃下焙烧6h,获得氧化铝载体作为无机耐火组分。
(2)将一定量的MoO 3、碱式碳酸钴、丙醇分别加入含磷酸的水溶液中,在加热搅拌下至完全溶解,然后加入一定量的柠檬酸,至完全溶解,获得含活性金属的浸渍溶液。
其中丙醇的摩尔数与氧化钴的摩尔数的比值为1∶1,柠檬酸质量与氧化铝质量的比值为0.02。
(3)按照孔饱和浸渍法浸渍载体,并在120℃干燥3h,制备得到粒径为1.6mm的氧化态催化剂。
以催化剂的干基重量为基准并以氧化物计,催化剂中氧化钼的含量为25.5重量%,氧化钴的含量为5.6重量%,无机耐火组分的含量为68.9%。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔径分布。催化剂的比表面积为158.0m 2/g,孔径主要分布在2-40nm,不含100-300nm的孔道。总孔体积为0.42mL/g,平均孔径为10.6nm。
催化剂经过硫化和反应测试后,所得产品中的硫含量为48.3ppm,氮含量为6.1ppm,芳烃为43.8wt%。
表I 实施例I系列和对比例I系列的实验结果
实施例编号 硫含量(ppm) 氮含量(ppm) 芳烃含量(wt%)
实施例I-1 9.3 1.8 36.6%
实施例I-2 9.8 1.9 34.8%
实施例I-3 6.4 0.8 33.5%
实施例I-4 9.1 1.8 36.2%
实施例I-5 7.5 0.4 34.8%
实施例I-6 9.9 2.1 37.2%
实施例I-7 15.3 5.7 38.9%
实施例I-8 28.5 7.3 40.1%
对比例I-1 45.6 8.7 42.1%
对比例I-2 60.2 13.5 43.5%
对比例I-3 32.5 6.8 40.3%
对比例I-4 37.5 7.6 41.8%
对比例I-5 48.3 6.1 43.8%
从以上实施例I系列和对比例I系列的结果比较可以看出,根据本发明的催化剂具有较好的性能,与非本发明的催化剂相比不仅催化剂性能得到提升,而且缩短了催化剂制备流程,降低了催化剂制备成本,具有很好的工业应用前景。
实施例II-1
本实施例用于说明根据本发明的加氢精制催化剂及其制备方法。
(1)将市售白炭黑(比表面积为220m 2/g,平均孔径为12.7nm)、碱式碳酸钴粉末混合均匀,然后在400℃下焙烧3h,获得含钴的无机耐火粉末。
其中碱式碳酸钴的用量对应催化剂中钴(以氧化钴计)的含量为22.0重量%。
(2)将一定量的MoO 3、碱式碳酸钴、柠檬酸分别加入含磷酸的水溶液中,在加热搅拌下至完全溶解,获得含活性金属的浸渍溶液。
其中柠檬酸质量与无机耐火组分质量的比值为0.2。
(3)将浸渍溶液与所述无机耐火组分混合均匀,然后将其挤条成型。经过在200℃下干燥3h,制备得到粒径为1.6mm的氧化态催化剂。
其中浸渍溶液与所述含钴的无机耐火粉末的混合比例使得,以催化剂的干基重量为基准并以氧化物计,催化剂中氧化钼的含量为55.0重量%,氧化钴的含量为30.0重量%,P 2O 5的含量为5重量%,无机耐火组分的含量为10.0重量%。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔径分布。催化剂的比表面积为96.0m 2/g,孔径主要分布在2-40nm和100-300nm,其中孔径在2-40nm范围的孔体积占总孔体积的比例为86.6%(其中孔径在2-4nm范围的孔体积占总孔体积的比例为9.5%),孔径在100-300nm范围的孔体积占总孔体积的比例为7.2%,总孔体积为0.26mL/g,平均孔径为10.8nm。
催化剂经过硫化和反应测试后,所得产品中的硫含量为6.4ppm,氮含量为1.2ppm,芳烃为36.1wt%。
实施例II-2
本实施例用于说明根据本发明的加氢精制催化剂及其制备方法。
(1)将市售白炭黑(比表面积为220m 2/g,平均孔径为12.7nm)、碱式碳酸镍粉末混合均匀,然后在700℃下焙烧4h,获得含镍的无机耐火粉末。
其中碱式碳酸镍的用量对应催化剂中镍(以氧化镍计)的含量为15.0重量%。
(2)将一定量的MoO 3、碱式碳酸镍、乙酸分别加入含磷酸的水溶液中,在加热搅拌下至完全溶解,获得含活性金属的浸渍溶液。
其中乙酸质量与无机耐火组分质量的比值为0.3。
(3)将浸渍溶液与所述无机耐火组分混合均匀,然后将其挤条成型。经过在200℃下干燥5h,制备得到粒径为1.6mm的氧化态催化剂。
其中浸渍溶液与所述含镍的无机耐火粉末的混合比例使得,以催化剂的干基重量为基准并以氧化物计,催化剂中氧化钼的含量为46.0重量%,氧化镍的含量为20.0重量%,P 2O 5的含量为4重量%,无机耐火组分的含量为30.0重量%。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔径分布。催化剂的比表面积为149m 2/g,孔径主要分布在2-40nm和100-300nm,其中孔径在2-40nm范围的孔体积占总孔体积的比例为88.5%(其中孔径在2-4nm范围的孔体积占总孔体积的比例为6.3%),孔径在100-300nm范围的孔体积占总孔体积的比例为10.0%,总孔体积为0.33mL/g,平均孔径为8.9nm。
催化剂经过硫化和反应测试后,所得产品中的硫含量为5.4ppm,氮含量为0.9ppm,芳烃为33.9wt%。
实施例II-3
本实施例用于说明根据本发明的加氢精制催化剂及其制备方法。
(1)将市售白炭黑(比表面积为220m 2/g,平均孔径为12.7nm)、碱式碳酸镍粉末混合均匀,然后在500℃下焙烧3h,获得含镍的无机耐火粉末。
其中碱式碳酸镍的用量对应催化剂中镍(以氧化镍计)的含量为16.0重量%。
(2)将一定量的MoO 3、碱式碳酸镍、酒石酸分别加入含磷酸的水溶液中,在加热搅拌下至完全溶解,获得含活性金属的浸渍溶液。
其中酒石酸质量与无机耐火组分质量的比值为0.5。
(3)将浸渍溶液与所述无机耐火组分混合均匀,然后将其挤条成 型。经过在150℃下干燥8h,制备得到粒径为1.6mm的氧化态催化剂。
其中浸渍溶液与所述含镍的无机耐火粉末的混合比例使得,以催化剂的干基重量为基准并以氧化物计,催化剂中氧化钼的含量为47.0重量%,氧化镍的含量为25.0重量%,P 2O 5的含量为8.0重量%,无机耐火组分的含量为20.0重量%。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔径分布。催化剂的比表面积为151m 2/g,孔径主要分布在2-40nm和100-300nm,其中孔径在2-40nm范围的孔体积占总孔体积的比例为90.0%(其中孔径在2-4nm范围的孔体积占总孔体积的比例为7.6%),孔径在100-300nm范围的孔体积占总孔体积的比例为6.1%,总孔体积为0.28mL/g,平均孔径为7.4nm。
催化剂经过硫化和反应测试后,所得产品中的硫含量为4.5ppm,氮含量为0.6ppm,芳烃为32.9wt%。
实施例II-4
本实施例用于说明根据本发明的加氢精制催化剂及其制备方法。
(1)将市售白炭黑(比表面积为220m 2/g,平均孔径为12.7nm)、碱式碳酸镍粉末混合均匀,然后在600℃下焙烧8h,获得含镍的无机耐火粉末。
其中碱式碳酸镍的用量对应催化剂中镍(以氧化镍计)的含量为20.0重量%。
(2)将一定量的MoO 3、偏钨酸铵、碱式碳酸镍、乙酸分别加入含磷酸的水溶液中,在加热搅拌下至完全溶解,获得含活性金属的浸渍溶液。
其中乙酸质量与无机耐火组分质量的比值为0.25。
(3)将浸渍溶液与所述无机耐火组分混合均匀,然后将其挤条成型。经过在300℃下干燥3h,制备得到粒径为1.6mm的氧化态催化剂。
其中浸渍溶液与所述含镍的无机耐火粉末的混合比例使得,以催化剂的干基重量为基准并以氧化物计,催化剂中氧化钼的含量为22.5重量%,氧化钨的含量为22.5%,氧化镍的含量为27.0重量%,P 2O 5 的含量为4.0重量%,无机耐火组分的含量为15.0重量%。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔径分布。催化剂的比表面积为132m 2/g,孔径主要分布在2-40nm和100-300nm,其中孔径在2-40nm范围的孔体积占总孔体积的比例为81.1%(其中孔径在2-4nm范围的孔体积占总孔体积的比例为7.9%),孔径在100-300nm范围的孔体积占总孔体积的比例为16.5%,总孔体积为0.27mL/g,平均孔径为8.2nm。
催化剂经过硫化和反应测试后,所得产品中的硫含量为6.9ppm,氮含量为1.2ppm,芳烃为36.3wt%。
实施例II-5
本实施例用于说明根据本发明的加氢精制催化剂及其制备方法。
(1)将市售氢氧化锆粉(比表面积为180m 2/g,平均孔径为13.3nm)、碱式碳酸镍粉末混合均匀,然后在400℃下焙烧3h,获得含镍的无机耐火粉末。
其中碱式碳酸镍的用量对应催化剂中镍(以氧化镍计)的含量为28.0重量%。
(2)将一定量的偏钨酸铵、碱式碳酸镍、己酸分别加入含磷酸的水溶液中,在加热搅拌下至完全溶解,获得含活性金属的浸渍溶液。
其中己酸质量与无机耐火组分质量的比值为0.6。
(3)将浸渍溶液与所述无机耐火组分混合均匀,然后将其挤条成型。经过在180℃下干燥5h,制备得到粒径为1.6mm的氧化态催化剂。
其中浸渍溶液与所述含镍的无机耐火粉末的混合比例使得,以催化剂的干基重量为基准并以氧化物计,催化剂中氧化钨的含量为45.0%,氧化镍的含量为32.0重量%,P 2O 5的含量为3.0重量%,无机耐火组分的含量为20.0重量%。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔径分布。催化剂的比表面积为104m 2/g,孔径主要分布在2-40nm和100-300nm,其中孔径在2-40nm范围的孔体积占总孔体积的比例为82.2%(其中孔径在2-4nm范围的孔体积占总孔体积的比例为6.0%),孔径在100-300nm范围的孔体积占总孔体积的比例为14.5%,总孔体 积为0.34mL/g,平均孔径为13.1nm。
催化剂经过硫化和反应测试后,所得产品中的硫含量为4.2ppm,氮含量为0.3ppm,芳烃为33.2wt%。
实施例II-6
本实施例用于说明根据本发明的加氢精制催化剂及其制备方法。
(1)将市售白炭黑(比表面积为220m 2/g,平均孔径为12.7nm)、硝酸镁、碱式碳酸镍粉末混合均匀,然后在400℃下焙烧3h,获得含镍、二氧化硅、氧化镁的无机耐火粉末。
其中碱式碳酸镍的用量对应催化剂中镍(以氧化镍计)的含量为21.0重量%。
(2)将一定量的偏钨酸铵、硝酸镍、柠檬酸分别加入水溶液中,在加热搅拌下至完全溶解,获得含活性金属的浸渍溶液。
其中柠檬酸质量与无机耐火组分质量的比值为0.3。
(3)将浸渍溶液与所述无机耐火组分混合均匀,然后将其挤条成型。经过在180℃下干燥5h,制备得到粒径为1.6mm的氧化态催化剂。
其中浸渍溶液与所述含镍的无机耐火粉末的混合比例使得,以催化剂的干基重量为基准并以氧化物计,催化剂中氧化钨的含量为53.0重量%,氧化镍的含量为25.0重量%,无机耐火组分的含量为22.0重量%(其中二氧化硅的含量为15重量%,氧化镁的含量为7.0重量%)。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔径分布。催化剂的比表面积为143m 2/g,孔径主要分布在2-40nm和100-300nm,其中孔径在2-40nm范围的孔体积占总孔体积的比例为85.3%(其中孔径在2-4nm范围的孔体积占总孔体积的比例为7.8%),孔径在100-300nm范围的孔体积占总孔体积的比例为9.4%,总孔体积为0.35mL/g,平均孔径为9.8nm。
催化剂经过硫化和反应测试后,所得产品中的硫含量为6.7ppm,氮含量为1.1ppm,芳烃为35.4wt%。
实施例II-7
本实施例用于说明根据本发明的加氢精制催化剂及其制备方法。
基本按照实施例II-6的方法制备催化剂,不同之处是在步骤(1)中引入第VIII族和第VIB族元素,总量不变。
(1)将市售白炭黑(比表面积为220m 2/g,平均孔径为12.7nm)、硝酸镁、偏钨酸铵、碱式碳酸镍粉末混合均匀,然后在400℃下焙烧3h,获得含钨、镍、二氧化硅、氧化镁的无机耐火粉末。
其中偏钨酸铵的用量对应催化剂中钨(以氧化钨计)的含量为3.0重量%,碱式碳酸镍的用量对应催化剂中镍(以氧化镍计)的含量为18.0重量%。
(2)将一定量的偏钨酸铵、硝酸镍、柠檬酸分别加入水溶液中,在加热搅拌下至完全溶解,获得含活性金属的浸渍溶液。
其中柠檬酸质量与无机耐火组分质量的比值为0.3。
(3)将浸渍溶液与所述无机耐火组分混合均匀,然后将其挤条成型。经过在180℃下干燥5h,制备得到粒径为1.6mm的氧化态催化剂。
其中浸渍溶液与所述含镍的无机耐火粉末的混合比例使得,以催化剂的干基重量为基准并以氧化物计,催化剂中氧化钨的含量为53.0重量%,氧化镍的含量为25.0重量%,无机耐火组分的含量为22.0重量%(其中二氧化硅的含量为15重量%,氧化镁的含量为7.0重量%)。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔径分布。催化剂的比表面积为152m 2/g,孔径主要分布在2-40nm和100-300nm,其中孔径在2-40nm范围的孔体积占总孔体积的比例为91.2%(其中孔径在2-4nm范围的孔体积占总孔体积的比例为8.5%),孔径在100-300nm范围的孔体积占总孔体积的比例为8.2%,总孔体积为0.33mL/g,平均孔径为8.7nm。
催化剂经过硫化和反应测试后,所得产品中的硫含量为11.2ppm,氮含量为4.6ppm,芳烃为38.4wt%。
实施例II-8
本实施例用于说明根据本发明的加氢精制催化剂及其制备方法。
基本按照实施例II-2的方法制备催化剂,不同之处在于将白炭黑替换成拟薄水铝石粉。
(1)将市售拟薄水铝石(比表面积为350m 2/g,平均孔径为12.5 nm)、碱式碳酸镍粉末混合均匀,然后在700℃下焙烧4h,获得含镍的无机耐火粉末。
其中碱式碳酸镍的用量对应催化剂中镍(以氧化镍计)的含量为15.0重量%。
(2)将一定量的MoO 3、碱式碳酸镍、乙酸分别加入含磷酸的水溶液中,在加热搅拌下至完全溶解,获得含活性金属的浸渍溶液。
其中乙酸质量与无机耐火组分质量的比值为0.3。
(3)将浸渍溶液与所述无机耐火组分混合均匀,然后将其挤条成型。经过在200℃下干燥5h,制备得到粒径为1.6mm的氧化态催化剂。
其中浸渍溶液与所述含镍的无机耐火粉末的混合比例使得,以催化剂的干基重量为基准并以氧化物计,催化剂中氧化钼的含量为46.0重量%,氧化镍的含量为20.0重量%,P 2O 5的含量为4重量%,无机耐火组分的含量为30.0重量%。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔径分布。催化剂的比表面积为154m 2/g,孔径主要分布在2-40nm和100-300nm,其中孔径在2-40nm范围的孔体积占总孔体积的比例为92.1%(其中孔径在2-4nm范围的孔体积占总孔体积的比例为8.2%),孔径在100-300nm范围的孔体积占总孔体积的比例为6.2%,总孔体积为0.31mL/g,平均孔径为8.1nm。
催化剂经过硫化和反应测试后,所得产品中的硫含量为26.2ppm,氮含量为6.0ppm,芳烃为39.7wt%。
对比例II-1
本对比例用于说明非本发明的加氢精制催化剂及其制备方法。
将市售白炭黑(比表面积为220m 2/g,平均孔径为12.7nm)、碱式碳酸钴粉末混合均匀,不经过焙烧步骤,获得含钴的无机耐火粉末。其中碱式碳酸钴的用量对应催化剂中钴(以氧化钴计)的含量为22.0重量%。然后按照实施例II-1的步骤(2)配制浸渍溶液,并按照实施例II-1的步骤(3)制备催化剂。所得催化剂中无机耐火组分以及各金属组分的含量与实施例II-1中得到的催化剂相同。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔 径分布。催化剂的比表面积为103m 2/g,孔径主要分布在2-40nm和100-300nm,其中孔径在2-40nm范围的孔体积占总孔体积的比例为89.2%(其中孔径在2-4nm范围的孔体积占总孔体积的比例为10.2%),孔径在100-300nm范围的孔体积占总孔体积的比例为3.5%,总孔体积为0.25mL/g,平均孔径为9.7nm。
催化剂经过硫化和反应测试后,所得产品中的硫含量为39.5ppm,氮含量为7.9ppm,芳烃为41.6wt%。
对比例II-2
本对比例用于说明非本发明的加氢精制催化剂及其制备方法。
将与实施例2中所用相同的无机耐火材料前驱体、活性组分前驱体以及有机羧酸以与实施例II-2中相同的用量混合、挤条并干燥得到催化剂,所得催化剂中无机耐火组分以及各金属组分的含量与实施例II-2得到的催化剂相同。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔径分布。催化剂的比表面积为152m 2/g,孔径主要分布在2-40nm和100-300nm,其中孔径在2-40nm范围的孔体积占总孔体积的比例为92.2%(其中孔径在2-4nm范围的孔体积占总孔体积的比例为8.1%),孔径在100-300nm范围的孔体积占总孔体积的比例为2.1%,总孔体积为0.32mL/g,平均孔径为8.4nm。
催化剂经过硫化和反应测试后,所得产品中的硫含量为52.7ppm,氮含量为10.1ppm,芳烃为42.2wt%。
对比例II-3(同对比例I-3)
本对比例用于说明非本发明的加氢精制催化剂及其制备方法。
基本按照实施例II-6的方法制备催化剂,不同之处在于在配制浸渍溶液时不加入有机羧酸。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔径分布。催化剂的比表面积为115m 2/g,孔径主要分布在2-40nm和100-300nm,其中孔径在2-40nm范围的孔体积占总孔体积的比例为80.3%(其中孔径在2-4nm范围的孔体积占总孔体积的比例为7.3%),孔径在100-300nm范围的孔体积占总孔体积的比例为18.5%,总孔体 积为0.38mL/g,平均孔径为13.2nm。
催化剂经过硫化和反应测试后,所得产品中的硫含量为32.5ppm,氮含量为6.8ppm,芳烃为40.3wt%。
对比例II-4
本对比例用于说明非本发明的加氢精制催化剂及其制备方法。
基本按照实施II-6的方法制备催化剂,不同之处在于在步骤(1)中不引入第VIII族金属元素,第VIII族金属元素完全在步骤(2)中引入。
(1)将市售白炭黑(比表面积为220m 2/g,平均孔径为12.7nm)、硝酸镁混合均匀,然后在400℃下焙烧3h,获得含二氧化硅、氧化镁的无机耐火粉末。
(2)将一定量的偏钨酸铵、硝酸镍、柠檬酸分别加入水溶液中,在加热搅拌下至完全溶解,获得含活性金属的浸渍溶液。
其中柠檬酸质量与无机耐火组分质量的比值为0.3。
(3)将浸渍溶液与所述无机耐火组分混合均匀,然后将其挤条成型。经过在180℃下干燥5h,制备得到粒径为1.6mm的氧化态催化剂。
其中浸渍溶液与所述含镍的无机耐火粉末的混合比例使得,以催化剂的干基重量为基准并以氧化物计,催化剂中氧化钨的含量为53.0重量%,氧化镍的含量为25.0重量%,无机耐火组分的含量为22.0重量%(其中二氧化硅的含量为15重量%,氧化镁的含量为7.0重量%)。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔径分布。催化剂的比表面积为148m 2/g,孔径主要分布在2-40nm和100-300nm,其中孔径在2-40nm范围的孔体积占总孔体积的比例为93.0%(其中孔径在2-4nm范围的孔体积占总孔体积的比例为8.2%),孔径在100-300nm范围的孔体积占总孔体积的比例为5.2%,总孔体积为0.33mL/g,平均孔径为8.9nm。
催化剂经过硫化和反应测试后,所得产品中的硫含量为30.8ppm,氮含量为6.3ppm,芳烃为40.1wt%。
表II 实施例II系列和对比例II系列的实验结果
实施例编号 硫含量(ppm) 氮含量(ppm) 芳烃含量(wt%)
实施例II-1 6.4 1.2 36.1%
实施例II-2 5.4 0.9 33.9%
实施例II-3 4.5 0.6 32.9%
实施例II-4 6.9 1.2 36.3%
实施例II-5 4.2 0.3 33.2%
实施例II-6 6.7 1.1 35.4%
实施例II-7 11.2 4.6 38.4%
实施例II-8 26.2 6.0 39.7%
对比例II-1 39.5 7.9 41.6%
对比例II-2 52.7 10.1 42.2%
对比例II-3 32.5 6.8 40.3%
对比例II-4 30.8 6.3 40.1%
从以上实施例II系列和对比例II系列的结果比较可以看出,根据本发明的催化剂具有较好的性能,与非本发明的催化剂相比不仅催化剂性能得到提升,而且缩短了催化剂制备流程,降低了催化剂制备成本,具有很好的工业应用前景。
以下实施例III-IV系列和对比例III-IV系列中,催化剂体系的加氢脱硫性能在20mL高压加氢脱硫反应装置上进行测定,直接采用程序升温硫化法将氧化态催化剂转化为硫化态催化剂。硫化条件包括:硫化压力为6.4MPa,硫化油为含CS 22%重量的煤油,体积空速为2h -1,氢油比为300v/v,首先在230℃/h恒温6h,然后再升温至360℃硫化8h,每个阶段的升温速率为10℃/h。硫化后切换反应原料进行加氢脱硫活性测试,反应原料是硫含量为9100ppm、氮含量为532ppm、芳烃含量为55wt%的高氮高芳烃馏分油。测试条件包括:压力为6.4MPa,体积空速为2.0h -1,氢油比为300v/v,反应温度为340℃。反应稳定7天后分析产物的硫含量。
催化剂的组成根据制备过程中的投料量计算得到。使用硫氮分析 仪(赛默飞世尔出品,型号为TN/TS3000)分析产物中的硫和氮的质量分数,产物中的芳烃含量采用Thermo Scientific公司生产的Antaris II分析仪通过近红外光谱法分析得到。氧化铝载体和催化剂的比表面积以及其中100nm孔径以下的孔分布、孔径和孔体积采用低温氮气吸附法测定(按照GB/T5816-1995),100-300nm孔径范围内的孔分布、孔径和孔体积采用压汞法测定(按照GB/T21650.1-2008)。催化剂的平均孔径按照圆柱形孔模型进行计算(平均孔径=总孔体积×4000/比表面积)。
在本申请的以下实施例和对比例中,无机耐火组分和催化剂的XRD谱图是采用PANalytical公司的EMPYREAN型号XRD衍射仪记录的,其中2θ为10-70°,扫描速度为5°/min。
除非另有说明,以下实施例III-IV系列和对比例III-IV系列中,所给出的无机耐火组分的用量(包括与其它组分用量之间的比值)和含量分别是指所述无机耐火组分中除所述加氢脱硫催化活性组分外的其它组分的总用量和总含量。
实施例III-1
本实施例用于说明根据本发明的加氢精制催化剂体系及其制备方法。
参照实施例I-1的方法按如下步骤制备第一床层催化剂(Cat1A):
(1)将市售白炭黑(比表面积为220m 2/g,平均孔径为12.7nm)、碱式碳酸钴粉末混合均匀,然后在400℃下焙烧3h,获得含钴的无机耐火粉末。
其中碱式碳酸钴的用量对应催化剂中钴(以氧化钴计)的含量为22.0重量%。
(2)将一定量的MoO 3、碱式碳酸钴、丙醇分别加入含磷酸的水溶液中,在加热搅拌下至完全溶解,然后加入一定量的柠檬酸,至完全溶解,获得含活性金属的浸渍溶液。
其中丙醇的摩尔数与无机耐火组分的质量的比值为0.01,柠檬酸质量与无机耐火组分质量的比值为0.02。
(3)将浸渍溶液与所述无机耐火组分混合均匀,然后将其挤条成型。经过在200℃下干燥3h,制备得到粒径为1.6mm的氧化态催化 剂。
其中浸渍溶液与所述含钴的无机耐火粉末的混合比例使得,以催化剂的干基重量为基准并以氧化物计,Cat1A催化剂中氧化钼的含量为55.0重量%,氧化钴的含量为30.0重量%,P 2O 5的含量为5重量%,无机耐火组分的含量为10.0重量%。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔径分布。Cat1A催化剂的比表面积为93.0m 2/g,孔径主要分布在2-40nm和100-300nm,其中孔径在2-40nm范围的孔体积占总孔体积的比例为88.5%(其中孔径在2-4nm范围的孔体积占总孔体积的比例为8.9%),孔径在100-300nm范围的孔体积占总孔体积的比例为6.3%,总孔体积为0.22mL/g,平均孔径为9.5nm。
按如下步骤制备第二床层催化剂(Cat1B):
(1)将拟薄水铝石(比表面积为295m 2/g,总孔体积为1.05mL/g,平均孔径为14.2nm)与适量的田菁粉(购自中国石化长岭催化剂厂,工业纯)和硝酸(购自国药集团化学试剂有限公司,分析纯)混合,以挤条的方式制备得到粒径为1.6mm氧化铝载体前驱体,将前驱体在120℃干燥3h,然后在500℃焙烧3h,获得氧化铝载体作为无机耐火组分;
(2)将一定量的MoO 3、碱式碳酸镍、丙醇分别加入含磷酸的水溶液中,在加热搅拌下至完全溶解,获得含活性金属的浸渍溶液,其中丙醇与镍原子的摩尔比为4∶1;
(3)将氧化铝载体与上述浸渍溶液混合均匀,并在200℃下干燥3h,制备得到氧化态催化剂。
采用低温氮气吸附法和压汞法,测得氧化铝载体中孔径在2-4nm范围的孔体积占总孔体积的比例为1.6%,孔径在4-6nm范围的孔体积占总孔体积的比例为9.5%,孔径在6-40nm范围的孔体积占总孔体积的比例为85.0%,孔径在40-100nm范围的孔体积占总孔体积的比例为3.9%,不含孔径大于100nm的孔。
以催化剂的干基重量为基准并以氧化物计,Cat1B催化剂中钼的含量为30.0重量%,镍的含量为6.0重量%,P 2O 5的含量为5重量%,其余为氧化铝。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔 径分布。Cat1B催化剂的比表面积为205m 2/g,总孔体积为0.39mL/g,平均孔径为7.6nm,孔径在2-4nm范围的孔体积占总孔体积的比例为5.6%,孔径在4-6nm范围的孔体积占总孔体积的比例为14.3%,孔径在6-40nm范围的孔体积占总孔体积的比例为76.8%,孔径在40-100nm范围的孔体积占总孔体积的比例为3.3%,不含孔径大于100nm的孔。
将Cat1A和Cat1B催化剂按照体积比1∶6的方案复配装填,催化剂体系经过硫化和反应测试后,所得产品中的硫含量为9.3ppm,氮含量为1.5ppm,芳烃为33.8wt%。
实施例III-2
本实施例用于说明根据本发明的加氢精制催化剂体系及其制备方法。
参照实施例I-2按如下步骤制备第一床层催化剂(Cat2A):
(1)将市售白炭黑(比表面积为220m 2/g,平均孔径为12.7nm)、碱式碳酸镍粉末混合均匀,然后在700℃下焙烧4h,获得含镍的无机耐火粉末。
其中碱式碳酸镍的用量对应催化剂中镍(以氧化镍计)的含量为15.0重量%。
(2)将一定量的MoO 3、碱式碳酸镍、乙二醇分别加入含磷酸的水溶液中,在加热搅拌下至完全溶解,然后加入一定量的乙酸,至完全溶解,获得含活性金属的浸渍溶液。
其中乙二醇的摩尔数与无机耐火组分的质量的比值为0.015,乙酸质量与无机耐火组分质量的比值为0.03。
(3)将浸渍溶液与所述无机耐火组分混合均匀,然后将其挤条成型。经过在200℃下干燥5h,制备得到粒径为1.6mm的氧化态催化剂。
其中浸渍溶液与所述含镍的无机耐火粉末的混合比例使得,以催化剂的干基重量为基准并以氧化物计,Cat2A催化剂中氧化钼的含量为46.0重量%,氧化镍的含量为20.0重量%,P 2O 5的含量为4重量%,无机耐火组分的含量为30.0重量%。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔 径分布。Cat2A催化剂的比表面积为145m 2/g,孔径主要分布在2-40nm和100-300nm,其中孔径在2-40nm范围的孔体积占总孔体积的比例为85.5%(其中孔径在2-4nm范围的孔体积占总孔体积的比例为7.6%),孔径在100-300nm范围的孔体积占总孔体积的比例为13.2%,总孔体积为0.36mL/g,平均孔径为9.9nm。
按如下步骤制备第二床层催化剂(Cat2B):
(1)将拟薄水铝石(比表面积为295m 2/g,总孔体积为1.05mL/g,平均孔径为14.2nm)与适量的甲基纤维素(购自国药集团化学试剂有限公司,分析纯)和柠檬酸混合,以挤条的方式制备得到粒径为1.6mm氧化铝载体前驱体,将前驱体在150℃干燥4h,然后在600℃焙烧4h,获得氧化铝载体作为无机耐火组分;
(2)将一定量的MoO 3、碱式碳酸镍、乙二醇分别加入含磷酸的水溶液中,在加热搅拌下至完全溶解,获得含活性金属的浸渍溶液,其中乙二醇与镍原子的摩尔比为3∶1;
(3)将氧化铝载体与上述浸渍溶液混合均匀,并在150℃下干燥4h,制备得到氧化态催化剂。
采用低温氮气吸附法和压汞法,测得氧化铝载体中孔径在2-4nm范围的孔体积占总孔体积的比例为0.4%,孔径在4-6nm范围的孔体积占总孔体积的比例为5.8%,孔径在6-40nm范围的孔体积占总孔体积的比例为88.5%,孔径在40-100nm范围的孔体积占总孔体积的比例为5.3%,不含孔径大于100nm的孔。
以催化剂的干基重量为基准并以氧化物计,Cat2B催化剂中钼的含量为26.0重量%,镍的含量为4.8重量%,P 2O 5的含量为6.5重量%,其余为氧化铝。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔径分布。Cat2B催化剂的比表面积为196m 2/g,总孔体积为0.42mL/g,平均孔径为8.6nm,孔径在2-4nm范围的孔体积占总孔体积的比例为3.5%,孔径在4-6nm范围的孔体积占总孔体积的比例为12.3%,孔径在6-40nm范围的孔体积占总孔体积的比例为79.0%,孔径在40-100nm范围的孔体积占总孔体积的比例为5.2%,不含孔径大于100nm的孔。
将Cat2A和Cat2B催化剂按照体积比1∶3的方案复配装填,催化 剂体系经过硫化和反应测试后,所得产品中的硫含量为6.5ppm,氮含量为0.8ppm,芳烃为34.2wt%。
实施例III-3
本实施例用于说明根据本发明的加氢精制催化剂体系及其制备方法。
参照实施例I-3的方法按如下步骤制备第一床层催化剂(Cat3A):
(1)将市售白炭黑(比表面积为220m 2/g,平均孔径为12.7nm)、碱式碳酸镍粉末混合均匀,然后在500℃下焙烧3h,获得含镍的无机耐火粉末。
其中碱式碳酸镍的用量对应催化剂中镍(以氧化镍计)的含量为16.0重量%。
(2)将一定量的MoO 3、碱式碳酸镍、丁醇分别加入含磷酸的水溶液中,在加热搅拌下至完全溶解,然后加入一定量的酒石酸,至完全溶解,获得含活性金属的浸渍溶液。
其中丁醇的摩尔数与无机耐火组分的质量的比值为0.02,酒石酸质量与无机耐火组分质量的比值为0.05。
(3)将浸渍溶液与所述无机耐火组分混合均匀,然后将其挤条成型。经过在150℃下干燥8h,制备得到粒径为1.6mm的氧化态催化剂。
其中浸渍溶液与所述含镍的无机耐火粉末的混合比例使得,以催化剂的干基重量为基准并以氧化物计,Cat3A催化剂中氧化钼的含量为47.0重量%,氧化镍的含量为25.0重量%,P 2O 5的含量为8.0重量%,无机耐火组分的含量为20.0重量%。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔径分布。Cat3A催化剂的比表面积为155m 2/g,孔径主要分布在2-40nm和100-300nm,其中孔径在2-40nm范围的孔体积占总孔体积的比例为89.3%(其中孔径在2-4nm范围的孔体积占总孔体积的比例为6.7%),孔径在100-300nm范围的孔体积占总孔体积的比例为7.4%,总孔体积为0.31mL/g,平均孔径为8.0nm。
按如下步骤制备第二床层催化剂(Cat3B):
(1)将拟薄水铝石(比表面积为295m 2/g,总孔体积为1.05mL/g, 平均孔径为14.2nm)与适量的淀粉(购自国药集团化学试剂有限公司,分析纯)和醋酸(购自国药集团化学试剂有限公司,分析纯)混合,以挤条的方式制备得到粒径为1.6mm氧化铝载体前驱体,将前驱体在190℃干燥4h,然后在800℃焙烧3h,获得氧化铝载体作为无机耐火组分;
(2)将一定量的MoO 3、碱式碳酸镍、丁醇分别加入含磷酸的水溶液中,在加热搅拌下至完全溶解,获得含活性金属的浸渍溶液,其中丁醇与镍原子的摩尔比为2∶1;
(3)将氧化铝载体与上述浸渍溶液混合均匀,并在120℃下干燥8h,制备得到氧化态催化剂。
采用低温氮气吸附法和压汞法,测得氧化铝载体中孔径在2-4nm范围的孔体积占总孔体积的比例为0.2%,孔径在4-6nm范围的孔体积占总孔体积的比例为3.4%,孔径在6-40nm范围的孔体积占总孔体积的比例为89.8%,孔径在40-100nm范围的孔体积占总孔体积的比例为6.6%,不含孔径大于100nm的孔。
以催化剂的干基重量为基准并以氧化物计,Cat3B催化剂中钼的含量为30.0重量%,镍的含量为3.0重量%,P 2O 5的含量为5.5重量%,其余为氧化铝。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔径分布。Cat3B催化剂的比表面积为162m 2/g,总孔体积为0.46mL/g,平均孔径为11.4nm,孔径在2-4nm范围的孔体积占总孔体积的比例为1.4%,孔径在4-6nm范围的孔体积占总孔体积的比例为9.5%,孔径在6-40nm范围的孔体积占总孔体积的比例为83.0%,孔径在40-100nm范围的孔体积占总孔体积的比例为6.1%,不含孔径大于100nm的孔。
将Cat3A和Cat3B催化剂按照体积比1∶2的方案复配装填,催化剂体系经过硫化和反应测试后,所得产品中的硫含量为4.4ppm,氮含量为0.5ppm,芳烃为33.1wt%。
实施例III-4
本实施例用于说明根据本发明的加氢精制催化剂体系及其制备方法。
参照实施例I-4的方法按如下步骤制备第一床层催化剂(Cat4A):
(1)将市售白炭黑(比表面积为220m 2/g,平均孔径为12.7nm)、碱式碳酸镍粉末混合均匀,然后在600℃下焙烧8h,获得含镍的无机耐火粉末。
其中碱式碳酸镍的用量对应催化剂中镍(以氧化镍计)的含量为20.0重量%。
(2)将一定量的MoO 3、偏钨酸铵、碱式碳酸镍、乙二醇分别加入含磷酸的水溶液中,在加热搅拌下至完全溶解,然后加入一定量的乙酸,至完全溶解,获得含活性金属的浸渍溶液。
其中乙二醇的摩尔数与无机耐火组分的质量的比值为0.012,乙酸质量与无机耐火组分质量的比值为0.06。
(3)将浸渍溶液与所述无机耐火组分混合均匀,然后将其挤条成型。经过在300℃下干燥3h,制备得到粒径为1.6mm的氧化态催化剂。
其中浸渍溶液与所述含镍的无机耐火粉末的混合比例使得,以催化剂的干基重量为基准并以氧化物计,Cat4A催化剂中氧化钼的含量为22.5重量%,氧化钨的含量为22.5%,氧化镍的含量为27.0重量%,P 2O 5的含量为4.0重量%,无机耐火组分的含量为15.0重量%。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔径分布。Cat4A催化剂的比表面积为120m 2/g,孔径主要分布在2-40nm和100-300nm,其中孔径在2-40nm范围的孔体积占总孔体积的比例为76.9%(其中孔径在2-4nm范围的孔体积占总孔体积的比例为9.5%),孔径在100-300nm范围的孔体积占总孔体积的比例为20.3%,总孔体积为0.26mL/g,平均孔径为8.7nm。
按如下步骤制备第二床层催化剂(Cat4B):
(1)将拟薄水铝石(比表面积为385m 2/g,总孔体积为0.85mL/g,平均孔径为8.8nm)与适量的田菁粉和硝酸混合,以挤条的方式制备得到粒径为1.6mm氧化铝载体前驱体,将前驱体在150℃干燥8h,然后在550℃焙烧3h,获得氧化铝载体作为无机耐火组分;
(2)将一定量的MoO 3、碱式碳酸钴、乙二醇分别加入含磷酸的水溶液中,在加热搅拌下至完全溶解,获得含活性金属的浸渍溶液,其中乙二醇与钴原子的摩尔比为2∶1;
(3)将氧化铝载体与上述浸渍溶液混合均匀,并在100℃下干燥8h,制备得到氧化态催化剂。
采用低温氮气吸附法和压汞法,测得氧化铝载体中孔径在2-4nm范围的孔体积占总孔体积的比例为1.4%,孔径在4-6nm范围的孔体积占总孔体积的比例为10.3%,孔径在6-40nm范围的孔体积占总孔体积的比例为86.5%,孔径在40-100nm范围的孔体积占总孔体积的比例为1.8%,不含孔径大于100nm的孔。
以催化剂的干基重量为基准并以氧化物计,Cat4B催化剂中钼的含量为35.0重量%,钴的含量为2.9重量%,P 2O 5的含量为4.5重量%,其余为氧化铝。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔径分布。Cat4B催化剂的比表面积为220m 2/g,总孔体积为0.34mL/g,平均孔径为6.2nm,孔径在2-4nm范围的孔体积占总孔体积的比例为6.7%,孔径在4-6nm范围的孔体积占总孔体积的比例为15.9%,孔径在6-40nm范围的孔体积占总孔体积的比例为74.2%,孔径在40-100nm范围的孔体积占总孔体积的比例为3.2%,不含孔径大于100nm的孔。
将Cat4A和Cat4B催化剂按照体积比1∶1的方案复配装填,催化剂体系经过硫化和反应测试后,所得产品中的硫含量为9.0ppm,氮含量为1.9ppm,芳烃为36.1wt%。
实施例III-5
本实施例用于说明根据本发明的加氢精制催化剂体系及其制备方法。
参照实施例I-5的方法按如下步骤制备第一床层催化剂(Cat5A):
(1)将市售氢氧化锆粉(比表面积为180m 2/g,平均孔径为13.3nm)、碱式碳酸镍粉末混合均匀,然后在400℃下焙烧3h,获得含镍的无机耐火粉末。
其中碱式碳酸镍的用量对应催化剂中镍(以氧化镍计)的含量为28.0重量%。
(2)将一定量的偏钨酸铵、碱式碳酸镍、丙三醇分别加入含磷酸的水溶液中,在加热搅拌下至完全溶解,然后加入一定量的己酸,至 完全溶解,获得含活性金属的浸渍溶液。
其中丙三醇的摩尔数与无机耐火组分的质量的比值为0.01,己酸质量与无机耐火组分质量的比值为0.025。
(3)将浸渍溶液与所述无机耐火组分混合均匀,然后将其挤条成型。经过在180℃下干燥5h,制备得到粒径为1.6mm的氧化态催化剂。
其中浸渍溶液与所述含镍的无机耐火粉末的混合比例使得,以催化剂的干基重量为基准并以氧化物计,Cat5A催化剂中氧化钨的含量为45.0%,氧化镍的含量为32.0重量%,P 2O 5的含量为3.0重量%,无机耐火组分的含量为20.0重量%。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔径分布。Cat5A催化剂的比表面积为109m 2/g,孔径主要分布在2-40nm和100-300nm,其中孔径在2-40nm范围的孔体积占总孔体积的比例为85.6%(其中孔径在2-4nm范围的孔体积占总孔体积的比例为6.8%),孔径在100-300nm范围的孔体积占总孔体积的比例为12.3%,总孔体积为0.29mL/g,平均孔径为10.6nm。
按如下步骤制备第二床层催化剂(Cat5B):
(1)将拟薄水铝石(比表面积为275m 2/g,总孔体积为1.2mL/g,平均孔径为17.5nm)与适量的田菁粉和硝酸混合,以挤条的方式制备得到粒径为1.6mm氧化铝载体前驱体,将前驱体在200℃干燥2h,然后在400℃焙烧8h,获得氧化铝载体作为无机耐火组分;
(2)将一定量的MoO 3、偏钨酸铵、碱式碳酸镍、乙二醇分别加入含磷酸的水溶液中,在加热搅拌下至完全溶解,获得含活性金属的浸渍溶液,其中丙三醇与镍原子的摩尔比为2.5∶1;
(3)将氧化铝载体与上述浸渍溶液混合均匀,并在180℃下干燥5h,制备得到氧化态催化剂。
采用低温氮气吸附法和压汞法,测得氧化铝载体中孔径在2-4nm范围的孔体积占总孔体积的比例为0.9%,孔径在4-6nm范围的孔体积占总孔体积的比例为7.9%,孔径在6-40nm范围的孔体积占总孔体积的比例为85.3%,孔径在40-100nm范围的孔体积占总孔体积的比例为5.9%,不含孔径大于100nm的孔。
以催化剂的干基重量为基准并以氧化物计,Cat5B催化剂中钨的 含量为30重量%,钼的含量为5.0重量%,镍的含量为3.5重量%,P 2O 5的含量为3.0重量%,其余为氧化铝。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔径分布。Cat5B催化剂的比表面积为185m 2/g,总孔体积为0.47mL/g,平均孔径为10.2nm,孔径在2-4nm范围的孔体积占总孔体积的比例为1.3%,孔径在4-6nm范围的孔体积占总孔体积的比例为8.8%,孔径在6-40nm范围的孔体积占总孔体积的比例为85.4%,孔径在40-100nm范围的孔体积占总孔体积的比例为4.5%,不含孔径大于100nm的孔
将Cat5A和Cat5B催化剂按照体积比1∶7的方案复配装填,催化剂体系经过硫化和反应测试后,所得产品中的硫含量为7.0ppm,氮含量为0.2ppm,芳烃为34.1wt%。
实施例III-6
本实施例用于说明根据本发明的加氢精制催化剂体系及其制备方法。
参照实施例I-6的方法按如下步骤制备第一床层催化剂(Cat6A):
(1)将市售白炭黑(比表面积为220m 2/g,平均孔径为12.7nm)、硝酸镁、碱式碳酸镍粉末混合均匀,然后在400℃下焙烧3h,获得含镍、二氧化硅、氧化镁的无机耐火粉末。
其中碱式碳酸镍的用量对应催化剂中镍(以氧化镍计)的含量为21.0重量%。
(2)将一定量的偏钨酸铵、硝酸镍、丙三醇分别加入水溶液中,在加热搅拌下至完全溶解,然后加入一定量的柠檬酸,至完全溶解,获得含活性金属的浸渍溶液。
其中丙三醇的摩尔数与无机耐火组分的质量的比值为0.008,柠檬酸质量与无机耐火组分质量的比值为0.08。
(3)将浸渍溶液与所述无机耐火组分混合均匀,然后将其挤条成型。经过在180℃下干燥5h,制备得到粒径为1.6mm的氧化态催化剂。
其中浸渍溶液与所述含镍的无机耐火粉末的混合比例使得,以催化剂的干基重量为基准并以氧化物计,Cat6A催化剂中氧化钨的含量 为53.0重量%,氧化镍的含量为25.0重量%,无机耐火组分的含量为22.0重量%(其中二氧化硅的含量为15重量%,氧化镁的含量为7.0重量%)。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔径分布。Cat6A催化剂的比表面积为165m 2/g,孔径主要分布在2-40nm和100-300nm,其中孔径在2-40nm范围的孔体积占总孔体积的比例为87.5%(其中孔径在2-4nm范围的孔体积占总孔体积的比例为8.7%),孔径在100-300nm范围的孔体积占总孔体积的比例为7.8%,总孔体积为0.32mL/g,平均孔径为7.8nm。
按如下步骤制备第二床层催化剂(Cat6B):
(1)将拟薄水铝石(比表面积为320m 2/g,总孔体积为1.0mL/g,平均孔径为12.5nm)与适量的田菁粉和硝酸混合,以挤条的方式制备得到粒径为1.6mm氧化铝载体前驱体,将前驱体在140℃干燥5h,然后在600℃焙烧3h,获得氧化铝载体作为无机耐火组分;
(2)将一定量的MoO 3、碱式碳酸钴、丙三醇分别加入含磷酸的水溶液中,在加热搅拌下至完全溶解,获得含活性金属的浸渍溶液,其中丙三醇与钴原子的摩尔比为4∶1;
(3)将氧化铝载体与上述浸渍溶液混合均匀,并在170℃下干燥5h,制备得到氧化态催化剂。
采用低温氮气吸附法和压汞法,测得氧化铝载体中孔径在2-4nm范围的孔体积占总孔体积的比例为1.3%,孔径在4-6nm范围的孔体积占总孔体积的比例为10.0%,孔径在6-40nm范围的孔体积占总孔体积的比例为83.4%,孔径在40-100nm范围的孔体积占总孔体积的比例为5.3%,不含孔径大于100nm的孔。
以催化剂的干基重量为基准并以氧化物计,Cat6B催化剂中钼的含量为15.0重量%,镍的含量为5.5重量%,P 2O 5含量为6.0重量%,其余为氧化铝。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔径分布。Cat6B催化剂的比表面积为235m 2/g,总孔体积为0.55mL/g,平均孔径为9.4nm,孔径在2-4nm范围的孔体积占总孔体积的比例为2.5%,孔径在4-6nm范围的孔体积占总孔体积的比例为10.4%,孔径在6-40nm范围的孔体积占总孔体积的比例为84.5%,孔径在40-100 nm范围的孔体积占总孔体积的比例为2.6%,不含孔径大于100nm的孔。
将Cat6A和Cat6B催化剂按照体积比1∶2的方案复配装填,催化剂体系经过硫化和反应测试后,所得产品中的硫含量为8.4ppm,氮含量为1.1ppm,芳烃为35.2wt%。
实施例III-7
本实施例用于说明根据本发明的加氢精制催化剂体系及其制备方法。
第一床层催化剂Cat7A使用实施例I-7中制得的催化剂,而第二床层催化剂Cat7B使用实施例III-6中制得的催化剂Cat6B。
参照实施例III-6,将Cat7A和Cat7B催化剂按照体积比1∶2的方案复配装填,催化剂体系经过硫化和反应测试后,所得产品中的硫含量为13.1ppm,氮含量为4.0ppm,芳烃为37.2wt%。
实施例III-8
本实施例用于说明根据本发明的加氢精制催化剂体系及其制备方法。
第一床层催化剂Cat8A采用实施例I-8中制得的催化剂,而第二床层催化剂Cat8B使用实施例III-2中制得的催化剂Cat2B。
参照实施例III-2,将Cat8A和Cat8B催化剂按照体积比1∶3的方案复配装填,催化剂体系经过硫化和反应测试后,所得产品中的硫含量为25.4ppm,氮含量为5.4ppm,芳烃为39.2wt%。
对比例III-1
本对比例用于说明使用非本发明的加氢精制催化剂体系的效果。。
第一床层催化剂Cat-D1A采用对比例I-1中制得的催化剂,而第二床层催化剂Cat-D1B使用实施例III-1中制得的催化剂Cat1B。
参照实施例III-1,将Cat-D1A和Cat-D1B催化剂按照体积比1∶6的方案复配装填,催化剂体系经过硫化和反应测试后,所得产品中的硫含量为45.2ppm,氮含量为8.3ppm,芳烃为41.5wt%。
对比例III-2
本对比例用于说明使用非本发明的加氢精制催化剂体系的效果。。
第一床层催化剂Cat-D2A采用对比例I-2中制得的催化剂,而第二床层催化剂Cat-D2B使用实施例III-2中制得的催化剂Cat2B。
参照实施例III-2,将Cat-D2A和Cat-D2B催化剂按照体积比1∶3的方案复配装填,催化剂体系经过硫化和反应测试后,所得产品中的硫含量为59.5ppm,氮含量为12.9ppm,芳烃为42.7wt%。
对比例III-3
本对比例用于说明使用非本发明的加氢精制催化剂体系的效果。。
第一床层催化剂Cat-D3A采用对比例I-3中制得的催化剂,而第二床层催化剂Cat-D3B使用实施例III-6中制得的催化剂Cat6B。
参照实施例III-6,将Cat-D3A和Cat-D3B催化剂按照体积比1∶2的方案复配装填,催化剂体系经过硫化和反应测试后,所得产品中的硫含量为31.5ppm,氮含量为5.8ppm,芳烃为39.9wt%。
对比例III-4
本对比例用于说明使用非本发明的加氢精制催化剂体系的效果。。
第一床层催化剂Cat-D4A采用对比例I-4中制得的催化剂,而第二床层催化剂Cat-D4B使用实施例III-6中制得的催化剂Cat6B。
参照实施例III-6,将Cat-D4A和Cat-D4B催化剂按照体积比1∶2的方案复配装填,催化剂体系经过硫化和反应测试,催化剂体系经过硫化和反应测试后,所得产品中的硫含量为35.0ppm,氮含量为6.3ppm,芳烃为40.4wt%。
对比例III-5
本对比例用于说明使用非本发明的加氢精制催化剂体系的效果。
第一床层催化剂Cat-D5A采用对比例I-1中制得的催化剂。第二床 层催化剂Cat-D5B基本参照实施例III-1中催化剂Cat1B的制备方法制备,不同之处在于在其制备过程中不使用有机醇。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔径分布。Cat-D5B催化剂的比表面积为202m 2/g,总孔体积为0.38mL/g,平均孔径为7.5nm,孔径在2-4nm范围的孔体积占总孔体积的比例为6.8%,孔径在4-6nm范围的孔体积占总孔体积的比例为14.8%,孔径在6-40nm范围的孔体积占总孔体积的比例为75.2%,孔径在40-100nm范围的孔体积占总孔体积的比例为3.0%,不含孔径大于100nm的孔。
参照实施例III-1,将Cat-D5A和Cat-D5B催化剂按照体积比1∶6的方案复配装填,催化剂体系经过硫化和反应测试后,所得产品中的硫含量为73.5ppm,氮含量为14.8ppm,芳烃为45.2wt%。
从以上实施例III系列和对比例III系列的结果比较可以看出,根据本发明的催化剂体系具有较好的性能,与非本发明的催化剂体系相比不仅性能得到提升,而且缩短了催化剂制备流程,降低了催化剂制备成本,具有很好的工业应用前景。
对比例III-6
本对比例用于说明使用非本发明的加氢精制催化剂体系的效果。
第一床层催化剂Cat-D6A采用对比例I-5中制得的催化剂,而第二床层催化剂Cat-D6B使用实施例III-1中制得的催化剂Cat1B。
参照实施例III-1,将Cat-D6A和Cat-D6B催化剂按照体积比1∶6的方案复配装填,催化剂体系经过硫化和反应测试后,所得产品中的硫含量为45.7ppm,氮含量为8.3ppm,芳烃为38.2wt%。
对比例III-7
本对比例用于说明使用非本发明的加氢精制催化剂体系的效果。
第一床层催化剂Cat-D7A采用对比例I-5中制得的催化剂,而第二床层催化剂Cat-D7B采用如下方式制备:
(1)将拟薄水铝石(购自中国石化长岭催化剂厂,比表面积为295m 2/g,总孔体积为1.05mL/g,平均孔径为14.2nm)与适量的田菁粉和硝酸混合,以挤条的方式制备得到粒径为1.6mm氧化铝载体前驱 体,将前驱体在120℃干燥3h,然后在600℃焙烧3h,获得氧化铝载体作为无机耐火组分;
(2)将一定量的MoO 3、碱式碳酸镍分别加入含磷酸的水溶液中,在加热搅拌下至完全溶解,获得含活性金属的浸渍溶液;
(3)将氧化铝载体与上述浸渍溶液混合均匀,并在120℃下干燥3h,制备得到氧化态催化剂。
采用低温氮气吸附法和压汞法,测得氧化铝载体中孔径在2-4nm范围的孔体积占总孔体积的比例为1.2%,孔径在4-6nm范围的孔体积占总孔体积的比例为7.8%,孔径在6-40nm范围的孔体积占总孔体积的比例为86.5%,孔径在40-100nm范围的孔体积占总孔体积的比例为4.5%,不含孔径大于100nm的孔。
以催化剂的干基重量为基准并以氧化物计,Cat-D7B催化剂中钼的含量为18.0重量%,镍的含量为3.3重量%,P 2O 5的含量为3.0重量%,其余为氧化铝。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔径分布。Cat-D7B催化剂的比表面积为189m 2/g,总孔体积为0.42mL/g,平均孔径为8.8nm,孔径在2-4nm范围的孔体积占总孔体积的比例为2.6%,孔径在4-6nm范围的孔体积占总孔体积的比例为15.5%,孔径在6-40nm范围的孔体积占总孔体积的比例为78.9%,孔径在40-100nm范围的孔体积占总孔体积的比例为3.0%,不含孔径大于100nm的孔。
将Cat-D7A和Cat-D7B催化剂按照体积比1∶3的方案复配装填,催化剂体系经过硫化和反应测试后,所得产品中的硫含量为46.5ppm,氮含量为7.6ppm,芳烃为40.2wt%。
表III 实施例III系列和对比例III系列的实验结果
实施例编号 硫含量(ppm) 氮含量(ppm) 芳烃含量(wt%)
实施例III-1 9.3 1.5 33.8%
实施例III-2 6.5 0.8 34.2%
实施例III-3 4.4 0.5 33.1%
实施例III-4 9.0 1.9 36.1%
实施例III-5 7.0 0.2 34.1%
实施例III-6 8.4 1.1 35.2%
实施例III-7 13.1 4.0 37.2%
实施例III-8 25.4 5.4 39.2%
对比例III-1 45.2 8.3 41.5%
对比例III-2 59.5 12.9 42.7%
对比例III-3 31.5 5.8 39.9%
对比例III-4 35.0 6.3 40.4%
对比例III-5 73.5 14.8 45.2%
对比例III-6 45.7 8.3 38.2%
对比例III-7 46.5 7.6 40.2%
从以上实施例III系列和对比例III系列的结果比较可以看出,根据本发明的催化剂体系具有较好的性能,与非本发明的催化剂体系相比不仅性能得到提升,而且缩短了催化剂制备流程,降低了催化剂制备成本,具有很好的工业应用前景。
实施例IV-1
本实施例用于说明根据本发明的加氢精制催化剂体系及其制备方法。
参照实施例II-1的方法按如下步骤制备第一床层催化剂(Cat1A′):
(1)将市售白炭黑(比表面积为220m 2/g,平均孔径为12.7nm)、碱式碳酸钴粉末混合均匀,然后在400℃下焙烧3h,获得含钴的无机耐火粉末。
其中碱式碳酸钴的用量对应催化剂中钴(以氧化钴计)的含量为22.0重量%。
(2)将一定量的MoO 3、碱式碳酸钴、柠檬酸分别加入含磷酸的水溶液中,在加热搅拌下至完全溶解,获得含活性金属的浸渍溶液。
其中柠檬酸质量与无机耐火组分质量的比值为0.2。
(3)将浸渍溶液与所述无机耐火组分混合均匀,然后将其挤条成型。经过在200℃下干燥3h,制备得到粒径为1.6mm的氧化态催化剂。
其中浸渍溶液与所述含钴的无机耐火粉末的混合比例使得,以催化剂的干基重量为基准并以氧化物计,Cat1A′催化剂中氧化钼的含量为55.0重量%,氧化钴的含量为30.0重量%,P 2O 5的含量为5重量%,无机耐火组分的含量为10.0重量%。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔径分布。Cat1A′催化剂的比表面积为96.0m 2/g,孔径主要分布在2-40nm和100-300nm,其中孔径在2-40nm范围的孔体积占总孔体积的比例为86.6%(其中孔径在2-4nm范围的孔体积占总孔体积的比例为9.5%),孔径在100-300nm范围的孔体积占总孔体积的比例为7.2%,总孔体积为0.26mL/g,平均孔径为10.8nm。
按如下步骤制备第二床层催化剂(Cat1B’):
(1)将拟薄水铝石(比表面积为295m 2/g,总孔体积为1.05mL/g,平均孔径为14.2nm)与适量的田菁粉和硝酸混合,以挤条的方式制备得到粒径为1.6mm氧化铝载体前驱物,将前驱物在120℃干燥3h,然后在500℃焙烧3h,获得氧化铝载体作为无机耐火组分;
(2)将一定量的MoO 3、碱式碳酸镍、柠檬酸分别加入含磷酸的水溶液中,在加热搅拌下至完全溶解,获得含活性金属的浸渍溶液,其中柠檬酸与镍原子的摩尔比为4∶1;
(3)将氧化铝载体与上述浸渍溶液混合均匀,并在200℃下干燥3h,制备得到氧化态催化剂。
采用低温氮气吸附法和压汞法,测得氧化铝载体中孔径在2-4nm范围的孔体积占总孔体积的比例为1.6%,孔径在4-6nm范围的孔体积占总孔体积的比例为9.5%,孔径在6-40nm范围的孔体积占总孔体积的比例为85.0%,孔径在40-100nm范围的孔体积占总孔体积的比例为 3.9%,不含孔径大于100nm的孔。
以催化剂的干基重量为基准并以氧化物计,Cat1B′催化剂中钼的含量为30.0重量%,镍的含量为6.0重量%,P 2O 5的含量为5重量%,其余为氧化铝。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔径分布。Cat1B′催化剂的比表面积为210m 2/g,总孔体积为0.39mL/g,平均孔径为7.4nm,孔径在2-4nm范围的孔体积占总孔体积的比例为5.8%,孔径在4-6nm范围的孔体积占总孔体积的比例为14.6%,孔径在6-40nm范围的孔体积占总孔体积的比例为77.8%,孔径在40-100nm范围的孔体积占总孔体积的比例为1.8%,不含孔径大于100nm的孔。
将Cat1A′和Cat1B′催化剂按照体积比1∶6的方案复配装填,催化剂体系经过硫化和反应测试后,所得产品中的硫含量为5.5ppm,氮含量为1.1ppm,芳烃为33.0wt%。
实施例IV-2
本实施例用于说明根据本发明的加氢精制催化剂体系及其制备方法。
参照实施例II-2的方法按如下步骤制备第一床层催化剂(Cat2A’):
(1)将市售白炭黑(比表面积为220m 2/g,平均孔径为12.7nm)、碱式碳酸镍粉末混合均匀,然后在700℃下焙烧4h,获得含镍的无机耐火粉末。
其中碱式碳酸镍的用量对应催化剂中镍(以氧化镍计)的含量为15.0重量%。
(2)将一定量的MoO 3、碱式碳酸镍、乙酸分别加入含磷酸的水溶液中,在加热搅拌下至完全溶解,获得含活性金属的浸渍溶液。
其中乙酸质量与无机耐火组分质量的比值为0.3。
(3)将浸渍溶液与所述无机耐火组分混合均匀,然后将其挤条成型。经过在200℃下干燥5h,制备得到粒径为1.6mm的氧化态催化剂。
其中浸渍溶液与所述含镍的无机耐火粉末的混合比例使得,以催 化剂的干基重量为基准并以氧化物计,Cat2A′催化剂中氧化钼的含量为46.0重量%,氧化镍的含量为20.0重量%,P 2O 5的含量为4重量%,无机耐火组分的含量为30.0重量%。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔径分布。Cat2A′催化剂的比表面积为149m 2/g,孔径主要分布在2-40nm和100-300nm,其中孔径在2-40nm范围的孔体积占总孔体积的比例为88.5%(其中孔径在2-4nm范围的孔体积占总孔体积的比例为6.3%),孔径在100-300nm范围的孔体积占总孔体积的比例为10.0%,总孔体积为0.33mL/g,平均孔径为8.9nm。
按如下步骤制备第二床层催化剂(Cat2B′):
(1)将拟薄水铝石(比表面积为295m 2/g,总孔体积为1.05mL/g,平均孔径为14.2nm)与适量的甲基纤维素和柠檬酸混合,以挤条的方式制备得到粒径为1.6mm氧化铝载体前驱物,将前驱物在150℃干燥4h,然后在600℃焙烧4h,获得氧化铝载体作为无机耐火组分;
(2)将一定量的MoO 3、碱式碳酸镍、乙酸分别加入含磷酸的水溶液中,在加热搅拌下至完全溶解,获得含活性金属的浸渍溶液,其中乙酸与镍原子的摩尔比为3∶1;
(3)将氧化铝载体与上述浸渍溶液混合均匀,并在150℃下干燥4h,制备得到氧化态催化剂。
采用低温氮气吸附法和压汞法,测得氧化铝载体中孔径在2-4nm范围的孔体积占总孔体积的比例为0.4%,孔径在4-6nm范围的孔体积占总孔体积的比例为5.8%,孔径在6-40nm范围的孔体积占总孔体积的比例为88.5%,孔径在40-100nm范围的孔体积占总孔体积的比例为5.3%,不含孔径大于100nm的孔。
以催化剂的干基重量为基准并以氧化物计,Cat2B′催化剂中钼的含量为26.0重量%,镍的含量为4.8重量%,P 2O 5的含量为6.5重量%,其余为氧化铝。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔径分布。Cat2B′催化剂的比表面积为201m 2/g,总孔体积为0.42mL/g,平均孔径为8.4nm,孔径在2-4nm范围的孔体积占总孔体积的比例为3.9%,孔径在4-6nm范围的孔体积占总孔体积的比例为12.9%,孔径在6-40nm范围的孔体积占总孔体积的比例为80.5%,孔径在40-100 nm范围的孔体积占总孔体积的比例为2.7%,不含孔径大于100nm的孔。
将Cat2A’和Cat2B′催化剂按照体积比1∶3的方案复配装填,催化剂体系经过硫化和反应测试后,所得产品中的硫含量为4.9ppm,氮含量为0.5ppm,芳烃为33.0wt%。
实施例IV-3
本实施例用于说明根据本发明的加氢精制催化剂体系及其制备方法。
参照实施例II-3的方法按如下步骤制备第一床层催化剂(Cat3A’):
(1)将市售白炭黑(比表面积为220m 2/g,平均孔径为12.7nm)、碱式碳酸镍粉末混合均匀,然后在500℃下焙烧3h,获得含镍的无机耐火粉末。
其中碱式碳酸镍的用量对应催化剂中镍(以氧化镍计)的含量为16.0重量%。
(2)将一定量的MoO 3、碱式碳酸镍、酒石酸分别加入含磷酸的水溶液中,在加热搅拌下至完全溶解,获得含活性金属的浸渍溶液。
其中酒石酸质量与无机耐火组分质量的比值为0.5。
(3)将浸渍溶液与所述无机耐火组分混合均匀,然后将其挤条成型。经过在150℃下干燥8h,制备得到粒径为1.6mm的氧化态催化剂。
其中浸渍溶液与所述含镍的无机耐火粉末的混合比例使得,以催化剂的干基重量为基准并以氧化物计,Cat3A′催化剂中氧化钼的含量为47.0重量%,氧化镍的含量为25.0重量%,P 2O 5的含量为8.0重量%,无机耐火组分的含量为20.0重量%。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔径分布。Cat3A′催化剂的比表面积为151m 2/g,孔径主要分布在2-40nm和100-300nm,其中孔径在2-40nm范围的孔体积占总孔体积的比例为90.0%(其中孔径在2-4nm范围的孔体积占总孔体积的比例为7.6%),孔径在100-300nm范围的孔体积占总孔体积的比例为6.1%,总孔体积为0.28mL/g,平均孔径为7.4nm。
按如下步骤制备第二床层催化剂(Cat3B′):
(1)将拟薄水铝石(比表面积为295m 2/g,总孔体积为1.05mL/g,平均孔径为14.2nm)与适量的淀粉和醋酸混合,以挤条的方式制备得到粒径为1.6mm氧化铝载体前驱物,将前驱物在190℃干燥4h,然后在800℃焙烧3h,获得氧化铝载体作为无机耐火组分;
(2)将一定量的MoO 3、碱式碳酸镍、酒石酸分别加入含磷酸的水溶液中,在加热搅拌下至完全溶解,获得含活性金属的浸渍溶液,其中酒石酸与镍原子的摩尔比为2∶1;
(3)将氧化铝载体与上述浸渍溶液混合均匀,并在120℃下干燥8h,制备得到氧化态催化剂。
采用低温氮气吸附法和压汞法,测得氧化铝载体中孔径在2-4nm范围的孔体积占总孔体积的比例为0.2%,孔径在4-6nm范围的孔体积占总孔体积的比例为3.4%,孔径在6-40nm范围的孔体积占总孔体积的比例为89.8%,孔径在40-100nm范围的孔体积占总孔体积的比例为6.6%,不含孔径大于100nm的孔。
以催化剂的干基重量为基准并以氧化物计,Cat3B′催化剂中钼的含量为30.0重量%,镍的含量为3.0重量%,P 2O 5的含量为5.5重量%,其余为氧化铝。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔径分布。Cat3B′催化剂的比表面积为169m 2/g,总孔体积为0.46mL/g,平均孔径为10.9nm,孔径在2-4nm范围的孔体积占总孔体积的比例为1.7%,孔径在4-6nm范围的孔体积占总孔体积的比例为9.9%,孔径在6-40nm范围的孔体积占总孔体积的比例为85.2%,孔径在40-100nm范围的孔体积占总孔体积的比例为3.2%,不含孔径大于100nm的孔。
将Cat3A′和Cat3B′催化剂按照体积比1∶2的方案复配装填,催化剂体系经过硫化和反应测试后,所得产品中的硫含量为3.2ppm,氮含量为0.3ppm,芳烃为32.4wt%。
实施例IV-4
本实施例用于说明根据本发明的加氢精制催化剂体系及其制备方法。
参照实施例II-4的方法按如下步骤制备第一床层催化剂(Cat4A′):
(1)将市售白炭黑(比表面积为220m 2/g,平均孔径为12.7nm)、碱式碳酸镍粉末混合均匀,然后在600℃下焙烧8h,获得含镍的无机耐火粉末。
其中碱式碳酸镍的用量对应催化剂中镍(以氧化镍计)的含量为20.0重量%。
(2)将一定量的MoO 3、偏钨酸铵、碱式碳酸镍、乙酸分别加入含磷酸的水溶液中,在加热搅拌下至完全溶解,获得含活性金属的浸渍溶液。
其中乙酸质量与无机耐火组分质量的比值为0.25。
(3)将浸渍溶液与所述无机耐火组分混合均匀,然后将其挤条成型。经过在300℃下干燥3h,制备得到粒径为1.6mm的氧化态催化剂。
其中浸渍溶液与所述含镍的无机耐火粉末的混合比例使得,以催化剂的干基重量为基准并以氧化物计,Cat4A′催化剂中氧化钼的含量为22.5重量%,氧化钨的含量为22.5%,氧化镍的含量为27.0重量%,P 2O 5的含量为4.0重量%,无机耐火组分的含量为15.0重量%。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔径分布。Cat4A′催化剂的比表面积为132m 2/g,孔径主要分布在2-40nm和100-300nm,其中孔径在2-40nm范围的孔体积占总孔体积的比例为81.1%(其中孔径在2-4nm范围的孔体积占总孔体积的比例为7.9%),孔径在100-300nm范围的孔体积占总孔体积的比例为16.5%,总孔体积为0.27mL/g,平均孔径为8.2nm。
按如下步骤制备第二床层催化剂(Cat4B′):
(1)将拟薄水铝石(比表面积为385m 2/g,总孔体积为0.85mL/g,平均孔径为8.8nm)与适量的田菁粉和硝酸混合,以挤条的方式制备得到粒径为1.6mm氧化铝载体前驱物,将前驱物在150℃干燥8h,然后在550℃焙烧3h,获得氧化铝载体作为无机耐火组分;
(2)将一定量的MoO 3、碱式碳酸钴、乙酸分别加入含磷酸的水溶液中,在加热搅拌下至完全溶解,获得含活性金属的浸渍溶液,其中乙酸与钴原子的摩尔比为2∶1;
(3)将氧化铝载体与上述浸渍溶液混合均匀,并在100℃下干燥8h,制备得到氧化态催化剂。
采用低温氮气吸附法和压汞法,测得氧化铝载体中孔径在2-4nm范围的孔体积占总孔体积的比例为1.4%,孔径在4-6nm范围的孔体积占总孔体积的比例为10.3%,孔径在6-40nm范围的孔体积占总孔体积的比例为86.5%,孔径在40-100nm范围的孔体积占总孔体积的比例为1.8%,不含孔径大于100nm的孔。
以催化剂的干基重量为基准并以氧化物计,Cat4B′催化剂中钼的含量为35.0重量%,钴的含量为2.9重量%,P 2O 5的含量为4.5重量%,其余为氧化铝。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔径分布。Cat4B′催化剂的比表面积为224m 2/g,总孔体积为0.34mL/g,平均孔径为6.1nm,孔径在2-4nm范围的孔体积占总孔体积的比例为7.4%,孔径在4-6nm范围的孔体积占总孔体积的比例为16.2%,孔径在6-40nm范围的孔体积占总孔体积的比例为75.9%,孔径在40-100nm范围的孔体积占总孔体积的比例为0.5%,不含孔径大于100nm的孔。
将Cat4A′和Cat4B′催化剂按照体积比1∶1的方案复配装填,催化剂体系经过硫化和反应测试后,所得产品中的硫含量为6.3ppm,氮含量为1.0ppm,芳烃为35.9wt%。
实施例IV-5
本实施例用于说明根据本发明的加氢精制催化剂体系及其制备方法。
参照实施例II-5的方法按如下步骤制备第一床层催化剂(Cat5A′):
(1)将市售氢氧化锆粉(比表面积为180m 2/g,平均孔径为13.3nm)、碱式碳酸镍粉末混合均匀,然后在400℃下焙烧3h,获得含镍的无机耐火粉末。
其中碱式碳酸镍的用量对应催化剂中镍(以氧化镍计)的含量为28.0重量%。
(2)将一定量的偏钨酸铵、碱式碳酸镍、己酸分别加入含磷酸的 水溶液中,在加热搅拌下至完全溶解,获得含活性金属的浸渍溶液。
其中己酸质量与无机耐火组分质量的比值为0.6。
(3)将浸渍溶液与所述无机耐火组分混合均匀,然后将其挤条成型。经过在180℃下干燥5h,制备得到粒径为1.6mm的氧化态催化剂。
其中浸渍溶液与所述含镍的无机耐火粉末的混合比例使得,以催化剂的干基重量为基准并以氧化物计,Cat5A′催化剂中氧化钨的含量为45.0%,氧化镍的含量为32.0重量%,P 2O 5的含量为3.0重量%,无机耐火组分的含量为20.0重量%。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔径分布。Cat5A′催化剂的比表面积为104m 2/g,孔径主要分布在2-40nm和100-300nm,其中孔径在2-40nm范围的孔体积占总孔体积的比例为82.2%(其中孔径在2-4nm范围的孔体积占总孔体积的比例为6.0%),孔径在100-300nm范围的孔体积占总孔体积的比例为14.5%,总孔体积为0.34mL/g,平均孔径为13.1nm。。
按如下步骤制备第二床层催化剂(Cat5B′):
(1)将拟薄水铝石(比表面积为275m 2/g,总孔体积为1.2mL/g,平均孔径为17.5nm)与适量的田菁粉和硝酸混合,以挤条的方式制备得到粒径为1.6mm氧化铝载体前驱物,将前驱物在200℃干燥2h,然后在400℃焙烧8h,获得氧化铝载体作为无机耐火组分;
(2)将一定量的MoO 3、偏钨酸铵、碱式碳酸镍、己酸分别加入含磷酸的水溶液中,在加热搅拌下至完全溶解,获得含活性金属的浸渍溶液,其中己酸与镍原子的摩尔比为2.5∶1;
(3)将氧化铝载体与上述浸渍溶液混合均匀,并在180℃下干燥5h,制备得到氧化态催化剂。
采用低温氮气吸附法和压汞法,测得氧化铝载体中孔径在2-4nm范围的孔体积占总孔体积的比例为0.9%,孔径在4-6nm范围的孔体积占总孔体积的比例为7.9%,孔径在6-40nm范围的孔体积占总孔体积的比例为85.3%,孔径在40-100nm范围的孔体积占总孔体积的比例为5.9%,不含孔径大于100nm的孔。
以催化剂的干基重量为基准并以氧化物计,Cat5B′催化剂中钨的含量为30重量%,钼的含量为5.0重量%,镍的含量为3.5重量%, P 2O 5的含量为3.0重量%,其余为氧化铝。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔径分布。Cat5B′催化剂的比表面积为189m 2/g,总孔体积为0.47mL/g,平均孔径为9.9nm,孔径在2-4nm范围的孔体积占总孔体积的比例为1.9%,孔径在4-6nm范围的孔体积占总孔体积的比例为9.5%,孔径在6-40nm范围的孔体积占总孔体积的比例为86.5%,孔径在40-100nm范围的孔体积占总孔体积的比例为2.1%,不含孔径大于100nm的孔
将Cat5A′和Cat5B′催化剂按照体积比1∶7的方案复配装填,催化剂体系经过硫化和反应测试后,所得产品中的硫含量为3.2ppm,氮含量为0.2ppm,芳烃为32.7wt%。
实施例IV-6
本实施例用于说明根据本发明的加氢精制催化剂及其制备方法。
参照实施例II-6的方法按如下步骤制备第一床层催化剂(Cat6A′):
(1)将市售白炭黑(比表面积为220m 2/g,平均孔径为12.7nm)、硝酸镁、碱式碳酸镍粉末混合均匀,然后在400℃下焙烧3h,获得含镍、二氧化硅、氧化镁的无机耐火粉末。
其中碱式碳酸镍的用量对应催化剂中镍(以氧化镍计)的含量为21.0重量%。
(2)将一定量的偏钨酸铵、硝酸镍、柠檬酸分别加入水溶液中,在加热搅拌下至完全溶解,获得含活性金属的浸渍溶液。
其中柠檬酸质量与无机耐火组分质量的比值为0.8。
(3)将浸渍溶液与所述无机耐火组分混合均匀,然后将其挤条成型。经过在180℃下干燥5h,制备得到粒径为1.6mm的氧化态催化剂。
其中浸渍溶液与所述含镍的无机耐火粉末的混合比例使得,以催化剂的干基重量为基准并以氧化物计,Cat6A′催化剂中氧化钨的含量为53.0重量%,氧化镍的含量为25.0重量%,无机耐火组分的含量为22.0重量%(其中二氧化硅的含量为15重量%,氧化镁的含量为7.0重量%)。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔 径分布。Cat6A′催化剂的比表面积为143m 2/g,孔径主要分布在2-40nm和100-300nm,其中孔径在2-40nm范围的孔体积占总孔体积的比例为85.3%,孔径在100-300nm范围的孔体积占总孔体积的比例为9.4%,总孔体积为0.35mL/g,平均孔径为9.8nm。
按如下步骤制备第二床层催化剂(Cat6B′):
(1)将拟薄水铝石(比表面积为320m 2/g,总孔体积为1.0mL/g,平均孔径为12.5nm)与适量的田菁粉和硝酸混合,以挤条的方式制备得到粒径为1.6mm氧化铝载体前驱物,将前驱物在140℃干燥5h,然后在600℃焙烧3h,获得氧化铝载体作为无机耐火组分;
(2)将一定量的MoO 3、碱式碳酸钴、柠檬酸分别加入含磷酸的水溶液中,在加热搅拌下至完全溶解,获得含活性金属的浸渍溶液,其中柠檬酸与钴原子的摩尔比为4∶1;
(3)将氧化铝载体与上述浸渍溶液混合均匀,并在170℃下干燥5h,制备得到氧化态催化剂。
采用低温氮气吸附法和压汞法,测得氧化铝载体中孔径在2-4nm范围的孔体积占总孔体积的比例为1.3%,孔径在4-6nm范围的孔体积占总孔体积的比例为10.0%,孔径在6-40nm范围的孔体积占总孔体积的比例为83.4%,孔径在40-100nm范围的孔体积占总孔体积的比例为5.3%,不含孔径大于100nm的孔。
以催化剂的干基重量为基准并以氧化物计,Cat6B′催化剂中钼的含量为15.0重量%,镍的含量为5.5重量%,P 2O 5的含量为6.0重量%,其余为氧化铝。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔径分布。Cat6B′催化剂的比表面积为240m 2/g,总孔体积为0.55mL/g,平均孔径为9.2nm,孔径在2-4nm范围的孔体积占总孔体积的比例为3.1%,孔径在4-6nm范围的孔体积占总孔体积的比例为11.3%,孔径在6-40nm范围的孔体积占总孔体积的比例为84.0%,孔径在40-100nm范围的孔体积占总孔体积的比例为1.6%,不含孔径大于100nm的孔。
将Cat6A′和Cat6B′催化剂按照体积比1∶2的方案复配装填,催化剂体系经过硫化和反应测试后,所得产品中的硫含量为5.6ppm,氮含量为0.6ppm,芳烃为34.8wt%。
实施例IV-7
本实施例用于说明根据本发明的加氢精制催化剂体系及其制备方法。
第一床层催化剂Cat7A′使用实施例II-7中制得的催化剂,而第二床层催化剂Cat7B′使用实施例IV-6中制得的催化剂Cat6B′。
参照实施例IV-6,将Cat7A′和Cat7B′催化剂按照体积比1∶2的方案复配装填,催化剂体系经过硫化和反应测试后,所得产品中的硫含量为10.5ppm,氮含量为3.8ppm,芳烃为36.8wt%。
实施例IV-8
本实施例用于说明根据本发明的加氢精制催化剂体系及其制备方法。
第一床层催化剂Cat8A′采用实施例II-8中制得的催化剂,而第二床层催化剂Cat8B′使用实施例IV-2中制得的催化剂Cat2B′。
参照实施例IV-2,将Cat8A′和Cat8B′催化剂按照体积比1∶3的方案复配装填,催化剂体系经过硫化和反应测试后,所得产品中的硫含量为20.5ppm,氮含量为4.6ppm,芳烃为39.0wt%。
对比例IV-1
本对比例用于说明使用非本发明的加氢精制催化剂体系的效果。
第一床层催化剂Cat-D1A′采用对比例II-1中制得的催化剂,而第二床层催化剂Cat-D1B使用实施例IV-1中制得的催化剂Cat1B′。
参照实施例IV-1,将Cat-D1A′和Cat-D1B′催化剂按照体积比1∶6的方案复配装填,催化剂体系经过硫化和反应测试后,所得产品中的硫含量为38.6ppm,氮含量为7.2ppm,芳烃为40.5wt%。
对比例IV-2
本对比例用于说明使用非本发明的加氢精制催化剂体系的效果。
第一床层催化剂Cat-D2A′采用对比例II-2中制得的催化剂,而第二床层催化剂Cat-D2B′使用实施例IV-2中制得的催化剂Cat2B′。
参照实施例IV-2,将Cat-D2A′和Cat-D2B′催化剂按照体积比1∶3 的方案复配装填,催化剂体系经过硫化和反应测试后,所得产品中的硫含量为51.2ppm,氮含量为9.5ppm,芳烃为41.2wt%。
对比例IV-3
本对比例用于说明使用非本发明的加氢精制催化剂体系的效果。
第一床层催化剂Cat-D3A′采用对比例II-3中制得的催化剂,而第二床层催化剂Cat-D3B′使用实施例IV-6中制得的催化剂Cat6B。
参照实施例IV-2,将Cat-D3A’和Cat-D3B′催化剂按照体积比1∶3的方案复配装填,催化剂体系经过硫化和反应测试后,所得产品中的硫含量为28.9ppm,氮含量为5.2ppm,芳烃为39.2wt%。
对比例IV-4
本对比例用于说明使用非本发明的加氢精制催化剂体系的效果。
第一床层催化剂Cat-D4A′采用对比例II-4中制得的催化剂,而第二床层催化剂Cat-D4B′使用实施例IV-6中制得的催化剂Cat6B′。
参照实施例IV-6,将Cat-D4A′和Cat-D4B′催化剂按照体积比1∶2的方案复配装填,催化剂体系经过硫化和反应测试后,所得产品中的硫含量为29.7ppm,氮含量为5.2ppm,芳烃为39.9wt%。
对比例IV-5
本对比例用于说明使用非本发明的加氢精制催化剂体系的效果。
第一床层催化剂Cat-D5A′采用对比例II-1中制得的催化剂。第二床层催化剂Cat-D5B′基本参照实施例IV-1中催化剂Cat1B′的制备方法制备,不同之处在于在其制备过程中不使用有机羧酸。
催化剂经400℃焙烧3h后,利用低温氮气吸附和压汞法分析其孔径分布。Cat-D5B′催化剂的比表面积为214m 2/g,总孔体积为0.38mL/g,平均孔径为7.1nm,孔径在2-4nm范围的孔体积占总孔体积的比例为6.9%,孔径在4-6nm范围的孔体积占总孔体积的比例为15.4%,孔径在6-40nm范围的孔体积占总孔体积的比例为75.8%,孔径在40-100nm范围的孔体积占总孔体积的比例为2.0%,不含孔径大于100nm的孔。
参照实施例IV-1,将Cat-D5A′和Cat-D5B′催化剂按照体积比1∶6 的方案复配装填,催化剂体系经过硫化和反应测试后,所得产品中的硫含量为65.6ppm,氮含量为12.3ppm,芳烃为44.3wt%。
表IV 实施例IV系列和对比例IV系列的实验结果
实施例编号 硫含量(ppm) 氮含量(ppm) 芳烃含量(wt%)
实施例IV-1 5.5 1.1 33.0%
实施例IV-2 4.9 0.5 33.0%
实施例IV-3 3.2 0.3 32.4%
实施例IV-4 6.3 1.0 35.9%
实施例IV-5 3.2 0.2 32.7%
实施例IV-6 5.6 0.6 34.8%
实施例IV-7 10.5 3.8 36.8%
实施例IV-8 20.5 4.6 39.0%
对比例IV-1 38.6 7.2 40.5%
对比例IV-2 51.2 9.5 41.2%
对比例IV-3 28.9 5.2 39.2%
对比例IV-4 29.7 5.2 39.9%
对比例IV-5 65.6 12.3 44.3%
从以上实施例IV系列和对比例IV系列的结果比较可以看出,根据本发明的催化剂体系具有较好的性能,与非本发明的催化剂体系相比不仅性能得到提升,而且缩短了催化剂制备流程,降低了催化剂制备成本,具有很好的工业应用前景。
上文详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明, 但这种组合同样落入本发明的范围内。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本申请所公开的内容。

Claims (18)

  1. 一种加氢精制催化剂,包含:
    无机耐火组分,该无机耐火组分包含第一加氢脱硫催化活性组分和与其混合的选自氧化铝、氧化硅、氧化镁、氧化钙、氧化锆和氧化钛中至少一种的氧化物;
    负载在无机耐火组分上的第二加氢脱硫催化活性组分;和
    负载在无机耐火组分上的有机组分,该有机组分包含羧酸和任选的醇,
    优选地,在400℃焙烧3h后测定,所述加氢精制催化剂具有孔径分别在2-40nm和100-300nm范围的孔,其中孔径在2-40nm范围的孔体积占总孔体积的约60-95%,优选约75-90%,且孔径在100-300nm范围的孔体积占总孔体积的约0.5-30%,优选约5-15%。
  2. 根据权利要求1所述的加氢精制催化剂,其中所述第一加氢脱硫催化活性组分包含选自第VIII族金属元素和第VIB族金属元素中至少一种的金属元素,且所述第二加氢脱硫催化活性组分包含至少一种第VIII族金属元素和至少一种第VIB族金属元素;
    优选地,所述第一加氢脱硫催化活性组分包含至少一种第VIII族金属元素,其含量为所述加氢精制催化剂中第VIII族金属元素总含量的约60-90%;
    优选地,在所述加氢精制催化剂中,以催化剂的干基重量为基准并以氧化物计,第VIII族金属元素的总含量为约15-35重量%,优选为约20-30重量%,且第VIB族金属元素的总含量为约35-75重量%,优选为约40-65重量%;
    优选地,所述第VIII族金属元素选自铁、钴、镍、钌、铑和钯中的至少一种,和/或所述第VIB族金属元素选自铬、钼和钨中的至少一种;
    优选地,以催化剂的干基重量为基准,所述无机耐火组分中除所述第一加氢脱硫催化活性组分外的其它组分的总含量为约5-40重量%,优选为约10-30重量%。
  3. 根据前述权利要求中任一项所述的加氢精制催化剂,其中所述加氢精制催化剂的比表面积为约70-200m 2/g,总孔体积为约 0.15-0.6mL/g,平均孔径为5-25nm;
    优选地,在所述加氢精制催化剂中,孔径在2-4nm范围的孔体积不超过总孔体积的约10%;
    优选地,所述无机耐火组分和所述加氢精制催化剂的XRD谱图中具有与选自氧化铝、氧化硅、氧化镁、氧化钙、氧化锆和氧化钛中至少一种的氧化物的XRD特征峰相对应的特征峰,以及与作为所述第一加氢脱硫催化活性组分的金属元素的氧化物的XRD特征峰相对应的特征峰。
  4. 根据前述权利要求中任一项所述的加氢精制催化剂,其中:
    当所述有机组分仅包含羧酸时,所述羧酸的重量含量与所述无机耐火组分中除所述第一加氢脱硫催化活性组分外的其它组分的干基重量之间的比值为约0.1-0.8∶1,优选为约0.2-0.6∶1;或者
    当所述有机组分同时包含羧酸和醇时,所述羧酸的重量含量与所述无机耐火组分中除所述第一加氢脱硫催化活性组分外的其它组分的干基重量之间的比值为约0.002-0.1∶1,优选为约0.02-0.06∶1;所述醇的摩尔含量与所述无机耐火组分中除所述第一加氢脱硫催化活性组分外的其它组分的干基重量之间的比值为约0.005-0.03∶1,优选为约0.01-0.02∶1;
    优选地,所述羧酸选自C 1-18的一元饱和羧酸、C 7-10的苯基酸、柠檬酸、己二酸、丙二酸、丁二酸、马来酸、酒石酸及其组合;
    优选地,所述醇选自C 1-18的一元饱和醇、乙二醇、聚乙二醇、丙三醇、聚丙三醇、丁四醇、季戊四醇、木糖醇、山梨醇、三羟甲基乙烷及其组合;
    优选地,所述加氢精制催化剂还包含磷元素,以催化剂的干基重量为基准并以P 2O 5计,所述磷元素的含量为约0.8-10重量%,优选约1-8重量%。
  5. 一种制备加氢精制催化剂的方法,包括如下步骤:
    (1)将第一加氢脱硫催化活性组分的前驱体与选自氧化铝、氧化硅、氧化镁、氧化钙、氧化锆和氧化钛中至少一种的氧化物的前驱体混合并焙烧,得到无机耐火组分;
    (2)将第二加氢脱硫催化活性组分的前驱体与有机组分和任选的含磷化合物混合,得到浸渍溶液,其中所述有机组分包含羧酸和任选 的醇;
    (3)将所述无机耐火组分与所述浸渍溶液混合,将所得混合物成型并干燥,得到所述加氢精制催化剂。
  6. 根据权利要求5所述的方法,其中所述第一加氢脱硫催化活性组分的前驱体包含选自第VIII族金属元素和第VIB族金属元素中至少一种的金属元素的前驱体,且所述第二加氢脱硫催化活性组分的前驱体包含至少一种第VIII族金属元素的前驱体和至少一种第VIB族金属元素的前驱体;
    优选地,所述第一加氢脱硫催化活性组分的前驱体包含至少一种第VIII族金属元素的前驱体,其用量为第VIII族金属元素的前驱体的总用量的约60-90%;
    优选地,所述第一加氢脱硫催化活性组分的前驱体和所述第二加氢脱硫催化活性组分的前驱体的用量使得在所述加氢精制催化剂中,以催化剂的干基重量为基准并以氧化物计,第VIII族金属元素的总含量为约15-35重量%,优选为约20-30重量%,且第VIB族金属元素的总含量为约35-75重量%,优选为约40-65重量%;
    优选地,所述第VIII族金属元素选自铁、钴、镍、钌、铑和钯中的至少一种,和/或所述第VIB族金属元素选自铬、钼和钨中的至少一种;
    优选地,所述无机耐火组分的用量使得在所述加氢精制催化剂中,以所述加氢精制催化剂的干基重量为基准,所述无机耐火组分中除所述第一加氢脱硫催化活性组分外的其它组分的总含量为约5-40重量%,优选为约10-30重量%。
  7. 根据权利要求5或6所述的方法,其中:
    当所述有机组分仅包含羧酸时,步骤(2)中所用羧酸的重量与所述无机耐火组分中除所述第一加氢脱硫催化活性组分外的其它组分的干基重量之间的比值为约0.1-0.8∶1,优选为约0.2-0.6∶1;或者
    当所述有机组分同时包含羧酸和醇时,步骤(2)中所用羧酸的重量与所述无机耐火组分中除所述第一加氢脱硫催化活性组分外的其它组分的干基重量之间的比值为约0.002-0.1∶1,优选为约0.02-0.06∶1,且所述醇的摩尔用量与所述无机耐火组分中除所述第一加氢脱硫催化活性组分外的其它组分的干基重量之间的比值为约0.005-0.03∶1,优选为 约0.01-0.02∶1;
    优选地,所述羧酸选自C 1-18的一元饱和羧酸、C 7-10的苯基酸、柠檬酸、己二酸、丙二酸、丁二酸、马来酸、酒石酸及其组合;
    优选地,所述醇选自C 1-18的一元饱和醇、乙二醇、聚乙二醇、丙三醇、聚丙三醇、丁四醇、季戊四醇、木糖醇、山梨醇、三羟甲基乙烷及其组合;
    优选地,步骤(2)中所述含磷化合物的用量使得,以所述加氢精制催化剂的干基重量为基准并以P 2O 5计,磷元素的含量为约0.8-10重量%,优选约1-8重量%;
    优选地,所述含磷化合物选自磷酸、次磷酸、磷酸铵、磷酸二氢铵及其组合。
  8. 根据权利要求5-7中任一项所述的方法,其中:
    在步骤(1)中,所述焙烧在如下条件下进行:焙烧温度为约300-900℃,优选为约400-800℃;焙烧时间为约1-15h,优选为约3-8h;和/或
    在步骤(3)中,所述干燥在如下条件下进行:干燥温度为约50-250℃,优选为约100-200℃;干燥时间为2-10h,优选为约3-8h;
    优选地,所得无机耐火组分和加氢精制催化剂的XRD谱图中具有与选自氧化铝、氧化硅、氧化镁、氧化钙、氧化锆和氧化钛中至少一种的氧化物的XRD特征峰相对应的特征峰,以及与作为所述第一加氢脱硫催化活性组分的金属元素的氧化物的XRD特征峰相对应的特征峰。
  9. 根据权利要求5-8中任一项所述的方法,其中所述氧化铝的前驱体选自拟薄水铝石、氢氧化铝粉、硝酸铝、碳酸铝、柠檬酸铝及其组合;所述氧化硅的前驱体选自硅溶胶、白炭黑、二氧化硅及其组合;所述氧化镁的前驱体选自氢氧化镁、硝酸镁、碳酸镁、醋酸镁、氧化镁及其组合;所述氧化钙的前驱体选自氢氧化钙、碳酸钙、草酸钙、硝酸钙、醋酸钙、氧化钙及其组合;所述氧化锆的前驱体选自氢氧化锆、碳酸锆、硝酸锆、醋酸锆、氧化锆及其组合;所述氧化钛的前驱体选自氢氧化钛、硝酸钛、醋酸钛、氧化锆及其组合;
    优选地,所述氧化铝、氧化硅、氧化镁、氧化钙、氧化锆和氧化钛的前驱体的平均孔径均不小于10nm,孔径在2-6nm范围的孔体积 占总孔体积的比例均不大于约15%,孔径在6-40nm范围的孔体积占总孔体积的比例均不小于约75%。
  10. 通过根据权利要求5-9中任一项所述的方法制备得到的加氢精制催化剂。
  11. 一种加氢精制催化剂体系,包含第一催化剂和第二催化剂,其中:
    所述第一催化剂为根据权利要求1-4或10中任一项所述的加氢精制催化剂;
    所述第二催化剂包含第二无机耐火组分、负载在第二无机耐火组分上的第三加氢脱硫催化活性组分和负载在第二无机耐火组分上的有机组分,其中所述第二无机耐火组分包含氧化铝,所述有机组分选自羧酸和醇,并且所述第二催化剂的孔径尺寸集中在2-100nm范围;
    其中所述第一催化剂与所述第二催化剂的体积比为约1∶1至约1∶8、优选约1∶2至约1∶6。
  12. 根据权利要求11所述的加氢精制催化剂体系,其中:
    在所述第二催化剂中,所述第三加氢脱硫催化活性组分包含至少一种第VIII族金属元素和至少一种第VIB族金属元素;
    优选地,以所述第二催化剂的干基重量为基准并以氧化物计,所述第二催化剂中第VIII族金属元素的总含量为约1-8重量%,优选为约2-6重量%,且第VIB族金属元素的总含量为约10-35重量%,优选为约15-30重量%;
    优选地,所述第VIII族金属元素选自铁、钴、镍、钌、铑和钯中的至少一种,和/或所述第VIB族金属元素选自铬、钼和钨中的至少一种;
    优选地,在所述第二催化剂中,以第二催化剂的干基重量为基准,所述第二无机耐火组分的含量为约60-85重量%,优选为约70-80重量%。
  13. 根据权利要求11或12所述的加氢精制催化剂体系,其中:
    所述第二催化剂的比表面积为约130-300m 2/g,总孔体积为约0.2-0.7mL/g,平均孔径为6-20nm;
    优选地,在所述第二催化剂中,所述有机组分与第二催化剂中包含的第VIII族金属元素的摩尔比为约0.5-8,优选为约1-5;
    优选地,所述第二催化剂中的所述羧酸选自C 1-18的一元饱和羧酸、C 7-10的苯基酸、柠檬酸、己二酸、丙二酸、丁二酸、马来酸、酒石酸及其组合;
    优选地,所述第二催化剂中的所述醇选自C 1-18的一元饱和醇、乙二醇、聚乙二醇、丙三醇、聚丙三醇、丁四醇、季戊四醇、木糖醇、山梨醇、三羟甲基乙烷及其组合;
    优选地,所述第二催化剂还包含磷元素,以第二催化剂的干基重量为基准并以P 2O 5计,所述磷元素的含量为约0.8-10重量%,优选约1-8重量%。
  14. 一种制备加氢精制催化剂体系的方法,该加氢精制催化剂体系包括第一催化剂和第二催化剂,所述方法包括:
    (1)按照权利要求5-9中任一项所述的方法制备所述第一催化剂;
    (2)制备所述第二催化剂,包括以下步骤:
    (2a)将氧化铝前驱体与助挤剂和胶溶剂混合,并对所得混合物依次进行成型、干燥和焙烧,得到第二无机耐火组分;
    (2b)将第三加氢脱硫催化活性组分的前驱体与有机组分和任选的含磷化合物混合,得到第二浸渍溶液,所述有机组分选自羧酸和醇;
    (2c)将所述第二浸渍溶液与所述第二无机耐火组分混合后干燥,得到所述第二催化剂;以及
    (3)将所述第一催化剂和第二催化剂按照约1∶1至约1∶8、优选约1∶2至约1∶6的体积比分别装填于第一催化剂床层和第二催化剂床层,得到所述加氢精制催化剂体系;
    优选地,在步骤(2)中,所述第三加氢脱硫催化活性组分的前驱体包含至少一种第VIII族金属元素的前驱体和至少一种第VIB族金属元素的前驱体;
    优选地,所述第三加氢脱硫催化活性组分的前驱体的用量使得在所述第二催化剂中,以第二催化剂的干基重量为基准并以氧化物计,第VIII族金属元素的总含量为约1-8重量%,优选为约2-6重量%;第VIB族金属元素的含量为约10-35重量%,优选为约15-30重量%;
    优选地,在步骤(2)中,所述第二无机耐火组分的用量使得在所 述第二催化剂中,以所述第二催化剂的干基重量为基准,所述第二无机耐火组分的含量为约60-85重量%,优选为约70-80重量%;
    优选地,所述第VIII族金属元素选自铁、钴、镍、钌、铑和钯中的至少一种,和/或所述第VIB族金属元素选自铬、钼和钨中的至少一种。
  15. 根据权利要求14所述的方法,其中:
    在步骤(2b)中,所述有机组分与所述第二催化剂制备中所用第VIII族金属元素的摩尔比为约0.5-8,优选为约1-5;
    优选地,步骤(2b)中所用的羧酸选自C 1-18的一元饱和羧酸、C 7-10的苯基酸、柠檬酸、己二酸、丙二酸、丁二酸、马来酸、酒石酸及其组合;
    优选地,步骤(2b)中所用的醇选自C 1-18的一元饱和醇、乙二醇、聚乙二醇、丙三醇、聚丙三醇、丁四醇、季戊四醇、木糖醇、山梨醇、三羟甲基乙烷及其组合;
    优选地,在步骤(2b)中,所述含磷化合物的用量使得,以所述第二催化剂的干基重量为基准并以P 2O 5计,磷元素的含量为约0.8-10重量%,优选约1-8重量%;
    优选地,步骤(2b)中所用的含磷化合物选自磷酸、次磷酸、磷酸铵、磷酸二氢铵及其组合。
  16. 根据权利要求14或15所述的方法,其中:
    在步骤(2a)中,所述焙烧在如下条件下进行:焙烧温度为约400-1000℃,优选为约500-800℃;焙烧时间为约1-15h,优选为约3-8h;和/或
    在步骤(2c)中,所述干燥在如下条件下进行:干燥温度为约50-250℃,优选为约100-200℃;干燥时间为约2-10h,优选为约3-8h;
    优选地,在步骤(2a)中,所用的制备条件使得,在所得的第二无机耐火组分中,孔径在2-4nm范围的孔体积占总孔体积的约0-2%,孔径在4-6nm范围的孔体积占总孔体积的约2-15%,孔径在6-40nm范围的孔体积占孔总体积的约85-95%,其余孔的孔径在40-100nm的范围,不存在孔径大于100nm的孔。
  17. 根据权利要求1-4和10中任一项所述的加氢精制催化剂或者 根据权利要求11所述的加氢精制催化剂体系在馏分油加氢精制中的应用。
  18. 一种馏分油的加氢精制方法,包括如下步骤:
    对根据权利要求1-4和10中任一项所述的加氢精制催化剂或者根据权利要求11所述的加氢精制催化剂体系进行硫化;然后
    在加氢脱硫条件下使待加氢脱硫的馏分油与硫化后的所述加氢精制催化剂或加氢精制催化剂体系进行接触。
PCT/CN2019/081915 2018-04-10 2019-04-09 加氢精制催化剂、其制备方法及应用 WO2019196836A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/044,817 US11439989B2 (en) 2018-04-10 2019-04-09 Hydrofining catalyst, its preparation and application thereof
EP19785814.5A EP3778021A4 (en) 2018-04-10 2019-04-09 HYDRORAFFINING CATALYST, ASSOCIATED PREPARATION PROCESS AND CORRESPONDING USE
SG11202009693XA SG11202009693XA (en) 2018-04-10 2019-04-09 Hydrofining catalyst, its preparation and application thereof

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201810317845 2018-04-10
CN201810316695.2 2018-04-10
CN201810316695 2018-04-10
CN201810317848.5 2018-04-10
CN201810317848 2018-04-10
CN201810317845.1 2018-04-10
CN201810317849.X 2018-04-10
CN201810317849 2018-04-10

Publications (1)

Publication Number Publication Date
WO2019196836A1 true WO2019196836A1 (zh) 2019-10-17

Family

ID=68162800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/081915 WO2019196836A1 (zh) 2018-04-10 2019-04-09 加氢精制催化剂、其制备方法及应用

Country Status (5)

Country Link
US (1) US11439989B2 (zh)
EP (1) EP3778021A4 (zh)
SG (1) SG11202009693XA (zh)
TW (1) TWI802675B (zh)
WO (1) WO2019196836A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113042057A (zh) * 2021-02-10 2021-06-29 中国海洋石油集团有限公司 一种用于碳四叠合产物加氢的催化剂及其制备方法
CN114433058A (zh) * 2020-10-31 2022-05-06 中国石油化工股份有限公司 一种液相加氢催化剂组合物

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115368213A (zh) * 2021-05-18 2022-11-22 中国石油化工股份有限公司 一种粗乙二醇加氢精制剂及其制备方法和应用
CN115501873B (zh) * 2021-06-23 2024-01-05 中国石油化工股份有限公司 催化剂及其制备方法和应用、混合芳烃选择性加氢脱烯烃的方法
CN115501741B (zh) * 2022-08-30 2023-11-03 四川轻化工大学 一种基于改性载体的高活性氧化铁脱硫剂及其制备方法和应用

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4448896A (en) 1981-06-02 1984-05-15 Mitsubishi Chemical Ind., Ltd. Hydrogenation catalyst for desulfurization and removal of heavy metals
CN1087289A (zh) 1992-11-24 1994-06-01 中国石油化工总公司抚顺石油化工研究院 大孔氧化铝载体制备方法
CN1160602A (zh) 1996-03-26 1997-10-01 中国石油化工总公司抚顺石油化工研究院 大孔径氧化铝载体及其制备方法
CN1325942A (zh) * 2000-05-26 2001-12-12 中国石油化工集团公司 烃类加氢精制催化剂及其制备方法
CN1488441A (zh) 2002-10-10 2004-04-14 中国石油化工股份有限公司 一种氧化铝载体的制备方法
JP2007152324A (ja) * 2005-12-08 2007-06-21 Nippon Kecchen Kk 炭化水素油の水素化処理触媒およびその製造方法、並びに炭化水素油の水素化処理方法
CN101092573A (zh) 2006-06-22 2007-12-26 中国石油化工股份有限公司 一种生产低硫柴油的加氢方法
CN101450327A (zh) 2007-11-29 2009-06-10 南化集团研究院 一种氧化铝载体的制备方法
CN101591566A (zh) 2008-05-29 2009-12-02 中国石油化工股份有限公司 一种柴油深度加氢脱硫的催化剂级配方法
CN102311759A (zh) 2010-07-07 2012-01-11 中国石油化工股份有限公司 一种柴油加氢脱硫方法
CN102876374A (zh) 2011-07-11 2013-01-16 中国石油化工股份有限公司 一种劣质柴油加氢脱硫方法
CN104338538A (zh) * 2013-08-02 2015-02-11 中国石油化工股份有限公司 一种重油加氢脱金属催化剂及其制备与应用
CN104437517A (zh) * 2013-09-22 2015-03-25 中国石油化工股份有限公司 一种重油加氢处理催化剂及其制备与应用
CN104437518A (zh) * 2013-09-22 2015-03-25 中国石油化工股份有限公司 一种选择性加氢脱硫催化剂及其制备和应用
CN105985799A (zh) * 2015-02-12 2016-10-05 中国石油化工股份有限公司 加氢脱硫催化剂体系和硫化态加氢脱硫催化剂体系及柴油的加氢脱硫方法
CN109718866A (zh) * 2017-10-27 2019-05-07 中国石油化工股份有限公司 加氢精制催化剂体系及其应用以及加氢精制催化剂的制备方法和馏分油的加氢精制方法
CN109718867A (zh) * 2017-10-27 2019-05-07 中国石油化工股份有限公司 加氢精制催化剂体系及其应用以及加氢精制催化剂的制备方法和馏分油的加氢精制方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2848376A (en) * 1953-08-17 1958-08-19 Basf Ag Two-stage hydrogenation process for the production of gasoline from hydrocarbon oils
FR1287439A (fr) 1961-01-30 1962-03-16 Exxon Research Engineering Co Amélioration des catalyseurs d'hydroraffinage
US20130178670A1 (en) * 2012-01-06 2013-07-11 Celanese International Corporation Hydrogenation catalysts with bulk multiple oxidated supports
PH12013000353B1 (en) * 2012-12-05 2015-06-01 Cosmo Oil Co Ltd Hydrodesufurization catalyst for hydrocarbon oil
FR3013720B1 (fr) * 2013-11-28 2015-11-13 IFP Energies Nouvelles Procede d'hydrotraitement de distillat sous vide mettant en oeuvre un enchainement de catalyseurs
JP6284403B2 (ja) * 2014-03-27 2018-02-28 Jxtgエネルギー株式会社 炭化水素油の水素化脱硫触媒
US10376873B2 (en) 2014-04-24 2019-08-13 Advanced Refining Technologies Llc Method of preparing high activity hydrotreating catalysts
KR102463310B1 (ko) * 2015-05-27 2022-11-04 니끼 쇼꾸바이 카세이 가부시키가이샤 탄화수소유의 수소화 처리 촉매, 그의 제조 방법 및 수소화 처리 방법

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4448896A (en) 1981-06-02 1984-05-15 Mitsubishi Chemical Ind., Ltd. Hydrogenation catalyst for desulfurization and removal of heavy metals
CN1087289A (zh) 1992-11-24 1994-06-01 中国石油化工总公司抚顺石油化工研究院 大孔氧化铝载体制备方法
CN1160602A (zh) 1996-03-26 1997-10-01 中国石油化工总公司抚顺石油化工研究院 大孔径氧化铝载体及其制备方法
CN1055877C (zh) 1996-03-26 2000-08-30 中国石油化工总公司抚顺石油化工研究院 大孔径氧化铝载体及其制备方法
CN1325942A (zh) * 2000-05-26 2001-12-12 中国石油化工集团公司 烃类加氢精制催化剂及其制备方法
CN1488441A (zh) 2002-10-10 2004-04-14 中国石油化工股份有限公司 一种氧化铝载体的制备方法
JP2007152324A (ja) * 2005-12-08 2007-06-21 Nippon Kecchen Kk 炭化水素油の水素化処理触媒およびその製造方法、並びに炭化水素油の水素化処理方法
CN101092573A (zh) 2006-06-22 2007-12-26 中国石油化工股份有限公司 一种生产低硫柴油的加氢方法
CN101450327A (zh) 2007-11-29 2009-06-10 南化集团研究院 一种氧化铝载体的制备方法
CN101591566A (zh) 2008-05-29 2009-12-02 中国石油化工股份有限公司 一种柴油深度加氢脱硫的催化剂级配方法
CN102311759A (zh) 2010-07-07 2012-01-11 中国石油化工股份有限公司 一种柴油加氢脱硫方法
CN102876374A (zh) 2011-07-11 2013-01-16 中国石油化工股份有限公司 一种劣质柴油加氢脱硫方法
CN104338538A (zh) * 2013-08-02 2015-02-11 中国石油化工股份有限公司 一种重油加氢脱金属催化剂及其制备与应用
CN104437517A (zh) * 2013-09-22 2015-03-25 中国石油化工股份有限公司 一种重油加氢处理催化剂及其制备与应用
CN104437518A (zh) * 2013-09-22 2015-03-25 中国石油化工股份有限公司 一种选择性加氢脱硫催化剂及其制备和应用
CN105985799A (zh) * 2015-02-12 2016-10-05 中国石油化工股份有限公司 加氢脱硫催化剂体系和硫化态加氢脱硫催化剂体系及柴油的加氢脱硫方法
CN109718866A (zh) * 2017-10-27 2019-05-07 中国石油化工股份有限公司 加氢精制催化剂体系及其应用以及加氢精制催化剂的制备方法和馏分油的加氢精制方法
CN109718867A (zh) * 2017-10-27 2019-05-07 中国石油化工股份有限公司 加氢精制催化剂体系及其应用以及加氢精制催化剂的制备方法和馏分油的加氢精制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3778021A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114433058A (zh) * 2020-10-31 2022-05-06 中国石油化工股份有限公司 一种液相加氢催化剂组合物
CN114433058B (zh) * 2020-10-31 2023-11-07 中国石油化工股份有限公司 一种液相加氢催化剂组合物
CN113042057A (zh) * 2021-02-10 2021-06-29 中国海洋石油集团有限公司 一种用于碳四叠合产物加氢的催化剂及其制备方法
CN113042057B (zh) * 2021-02-10 2023-06-23 中国海洋石油集团有限公司 一种用于碳四叠合产物加氢的催化剂及其制备方法

Also Published As

Publication number Publication date
TW201943457A (zh) 2019-11-16
US11439989B2 (en) 2022-09-13
EP3778021A1 (en) 2021-02-17
TWI802675B (zh) 2023-05-21
EP3778021A4 (en) 2021-11-17
SG11202009693XA (en) 2020-10-29
US20210094023A1 (en) 2021-04-01

Similar Documents

Publication Publication Date Title
WO2019196836A1 (zh) 加氢精制催化剂、其制备方法及应用
US8883673B2 (en) Catalyst and process for the manufacture of ultra-low sulfur distillate product
EP2915868B1 (en) Selective catalysts for naphtha hydrodesulfurization
US11325108B2 (en) Hydroprocessing catalyst composition containing a heterocyclic polar compound, a method of making such a catalyst, and a process of using such catalyst
US9546327B2 (en) Process for upgrading a high endpoint gas oil containing high concentrations of thiophenes and nitrogen and providing for a reduced hydrogen consumption rate
US9404053B2 (en) Low-pressure process utilizing a stacked-bed system of specific catalysts for the hydrotreating of a gas oil feedstock
TW201422803A (zh) 加氫處理催化劑、其製造方法及其應用
CN109718866B (zh) 加氢精制催化剂体系及其应用以及加氢精制催化剂的制备方法和馏分油的加氢精制方法
US8197672B2 (en) Hydroprocessing of naphtha streams at moderate conditions
CN113862027B (zh) 重油加氢处理催化剂级配方法和重油加氢处理方法
US20210114012A1 (en) Hydroprocessing catalyst having an organic additive with metals incorporated using chelant and method of making and using such catalyst
JP4938178B2 (ja) 炭化水素の水素化処理方法
JP2001334150A (ja) 軽油留分の水素化脱硫触媒
CN109718818A (zh) 加氢精制催化剂及其制备方法和应用以及馏分油的加氢精制方法
CN109718858A (zh) 加氢精制催化剂及其制备方法和应用以及馏分油的加氢精制方法
WO2024012422A1 (zh) 加氢催化剂、及其制备和应用
JP2001040368A (ja) 軽油の水素化処理方法
CN116037174A (zh) 适用于高温段的加氢催化剂及其制备方法与应用、加氢脱硫方法
CN116060051A (zh) 加氢精制催化剂级配方法与加氢精制方法
CN116037087A (zh) 含改性氧化铝载体的加氢催化剂及其制备方法与应用、加氢脱氮方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19785814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019785814

Country of ref document: EP

Effective date: 20201110