WO2019194662A1 - 전극, 상기 전극을 포함하는 이차 전지, 및 상기 전극의 제조 방법 - Google Patents

전극, 상기 전극을 포함하는 이차 전지, 및 상기 전극의 제조 방법 Download PDF

Info

Publication number
WO2019194662A1
WO2019194662A1 PCT/KR2019/004127 KR2019004127W WO2019194662A1 WO 2019194662 A1 WO2019194662 A1 WO 2019194662A1 KR 2019004127 W KR2019004127 W KR 2019004127W WO 2019194662 A1 WO2019194662 A1 WO 2019194662A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
carbon nanotube
weight
polyvinylidene fluoride
active material
Prior art date
Application number
PCT/KR2019/004127
Other languages
English (en)
French (fr)
Inventor
김슬기
김태곤
김제영
정왕모
유정우
이상욱
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190040100A external-priority patent/KR102285981B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2021502684A priority Critical patent/JP7164244B2/ja
Priority to EP24151176.5A priority patent/EP4329032A3/en
Priority to PL19781670.5T priority patent/PL3761417T3/pl
Priority to CN202410043050.1A priority patent/CN117913278A/zh
Priority to US17/043,362 priority patent/US11831006B2/en
Priority to CN201980024445.4A priority patent/CN111954949B/zh
Priority to EP19781670.5A priority patent/EP3761417B1/en
Publication of WO2019194662A1 publication Critical patent/WO2019194662A1/ko
Priority to US18/381,475 priority patent/US20240079554A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode, a secondary battery comprising the same, and a method for manufacturing the electrode, wherein the electrode includes an electrode active material layer, and the electrode active material layer comprises: an electrode active material; Polyvinylidene fluoride; And a conductive material, wherein the conductive material includes a carbon nanotube structure in which two to 5,000 single-walled carbon nanotube units are bonded to each other, and the carbon nanotube structure is 0.01 wt% to 0.5 wt% in the electrode active material layer. May be included as a%.
  • a representative example of the electrochemical device using the electrochemical energy is a secondary battery, the use area is gradually increasing.
  • portable devices such as portable computers, portable telephones, cameras, and the like
  • secondary batteries high energy density, that is, high capacity lithium secondary batteries
  • a secondary battery is composed of a positive electrode, a negative electrode, an electrolyte, and a separator.
  • the positive electrode and the negative electrode generally consist of an electrode current collector and an electrode active material layer formed on the electrode current collector, and the electrode active material layer applies an electrode slurry composition including an electrode active material, a conductive material, a binder, and the like onto the electrode current collector. It is prepared by drying and rolling.
  • a viscous conductive material such as carbon black was mainly used as a conductive material for a secondary battery, but in the case of such a viscous conductive material, there was a problem that the effect of improving electrical conductivity was not sufficient.
  • linear conductive materials such as carbon nanotubes (CNT) and carbon nanofibers (CNF) and planar conductive materials such as graphene. It is becoming.
  • the conductive material is uniformly dispersed throughout the electrode can improve the electrical conductivity of the electrode and the input characteristics, the output characteristics of the battery, excellent electrode adhesion can improve the life characteristics of the battery It is to provide an electrode and a manufacturing method of the electrode.
  • Another object of the present invention is to provide a secondary battery including the electrode.
  • an electrode active material layer wherein the electrode active material layer, an electrode active material; Polyvinylidene fluoride; And a conductive material, wherein the conductive material includes a carbon nanotube structure in which two to 5,000 single-walled carbon nanotube units are bonded to each other, and the carbon nanotube structure is 0.01 wt% to 0.5 wt% in the electrode active material layer.
  • the electrode active material layer an electrode active material
  • Polyvinylidene fluoride Polyvinylidene fluoride
  • a conductive material wherein the conductive material includes a carbon nanotube structure in which two to 5,000 single-walled carbon nanotube units are bonded to each other, and the carbon nanotube structure is 0.01 wt% to 0.5 wt% in the electrode active material layer.
  • in% is an electrode.
  • preparing a mixture by adding a bundle-type single-walled carbon nanotubes and polyvinylidene fluoride to the dispersion medium Ultrasonically crushing the mixture to prepare a conductive material dispersion including carbon nanotube structures in which 2 to 5,000 single-walled carbon nanotube units are bonded to each other; And forming an electrode slurry including the conductive material dispersion and the electrode active material, wherein the carbon nanotube structure is included in the solid content of the electrode slurry in an amount of 0.01% by weight to 0.5% by weight.
  • a secondary battery including the electrode is provided.
  • the electrode according to the present invention is manufactured through a conductive material dispersion in which the bundle-type single-walled carbon nanotubes are properly dispersed together with polyvinylidene fluoride, so that the carbon nanotube structures in the form of ropes in the electrode ( Long fiber form) can be connected to each other to form a network (network) structure.
  • the network structure can be formed to enable the conductive connection between the primary active particles in the electrode active material as well as the conductive active material in the form of secondary particles (relatively long distance), the conductive path in the electrode Formation can be effected effectively. Accordingly, even in a very small amount of conductive material, it is possible to greatly improve the electrical conductivity in the electrode.
  • the electrode active material layer is firmly fixed by the carbon nanotube structures forming the network structure has the effect of improving the electrode adhesion.
  • the electrode slurry includes the carbon nanotube structure
  • the powder resistance of the electrode slurry is reduced compared to the prior art, thereby reducing the electrode resistance can be obtained.
  • FIG. 2 is an SEM photograph of the electrode of Example 1.
  • FIG. 3 is an SEM photograph of the electrode of Example 2.
  • FIG. 4 is an SEM photograph of the electrode of Example 3.
  • FIG. 6 is an SEM photograph of the electrode of Comparative Example 2.
  • FIG. 8 is an SEM photograph of the electrode of Comparative Example 4.
  • the terms “comprise”, “comprise” or “have” are intended to indicate that there is a feature, number, step, component, or combination thereof, that is, one or more other features, It should be understood that it does not exclude in advance the possibility of the presence or addition of numbers, steps, components, or combinations thereof.
  • % means weight percent unless otherwise indicated.
  • specific surface area is measured by the BET method, and specifically, it can be calculated from the amount of nitrogen gas adsorption under liquid nitrogen temperature (77K) using BELSORP-mini II manufactured by BEL Japan.
  • An electrode according to the present invention includes an electrode active material layer, and the electrode active material layer includes an electrode active material; Polyvinylidene fluoride; And a conductive material, wherein the conductive material includes a carbon nanotube structure in which two to 5,000 single-walled carbon nanotube units are bonded to each other, and the carbon nanotube structure is 0.01 wt% to 0.5 wt% in the electrode active material layer. May be included as a%.
  • the electrode may include an electrode active material layer.
  • the electrode may further include a current collector, in which case the electrode active material layer may be disposed on one or both surfaces of the current collector.
  • the current collector is not particularly limited as long as it is a conductive material without causing chemical changes in the battery.
  • copper, stainless steel, aluminum, nickel, titanium, alloys thereof, and carbon, nickel, titanium on their surfaces Surface treated with silver, silver, or the like, or calcined carbon may be used.
  • the current collector may generally have a thickness of 3 ⁇ m to 500 ⁇ m, and may form fine irregularities on the surface of the current collector to enhance the bonding force of the negative electrode active material.
  • the electrode current collector may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven fabric, and the like.
  • the electrode active material layer is an electrode active material; Polyvinylidene fluoride; And it may include a conductive material.
  • the electrode active material may be a positive electrode active material or negative electrode active materials generally used in the art, and the type thereof is not particularly limited.
  • a lithium oxide containing lithium and one or more metals such as cobalt, manganese, nickel or aluminum may be used.
  • the lithium oxide may be a lithium-manganese oxide (eg, LiMnO 2 , LiMn 2 O, etc.), a lithium-cobalt oxide (eg, LiCoO 2, etc.), a lithium-nickel oxide (eg, For example, LiNiO 2, etc., lithium-nickel-manganese oxides (eg, LiNi 1-Y1 Mn Y1 O 2 (here, 0 ⁇ Y1 ⁇ 1), LiNi Z1 Mn 2-Z1 O 4 (here, 0 ⁇ Z1 ⁇ 2) and the like, lithium-nickel-cobalt-based oxide (for example, LiNi 1-Y2 Co Y2 O 2 (here, 0 ⁇ Y2 ⁇ 1) and the like), lithium-manganese-cobalt-based oxide ( For example, LiCo
  • a negative electrode active material For example, carbonaceous materials, such as artificial graphite, natural graphite, graphitized carbon fiber, amorphous carbon; Metallic compounds capable of alloying with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloys, Sn alloys or Al alloys; Metal oxides capable of doping and undoping lithium, such as SiO v (0 ⁇ v ⁇ 2), SnO 2 , vanadium oxide, lithium vanadium oxide; Or a composite including the metallic compound and the carbonaceous material, such as a Si-C composite or a Sn-C composite, and any one or a mixture of two or more thereof may be used.
  • a metal lithium thin film may be used as the anode active material.
  • the carbon material both low crystalline carbon and high crystalline carbon can be used.
  • the electrode active material as described above may be included in 70% by weight to 99.5% by weight, preferably 80% by weight to 99% by weight based on the total weight of the electrode active material layer.
  • the content of the electrode active material satisfies the above range, it is possible to implement excellent energy density, electrode adhesion and electrical conductivity.
  • the conductive material may include a carbon nanotube structure.
  • the carbon nanotube structure may include a plurality of single-walled carbon nanotube units.
  • the carbon nanotube structure may be a carbon nanotube structure in which 2 to 5,000 single-walled carbon nanotube units are bonded to each other, and more specifically, the carbon nanotube structure may be 2 to 4,500 single-walled carbon nanoparticles.
  • the tube unit may be a carbon nanotube structure bonded to each other. More specifically, in consideration of the dispersibility of the carbon nanotube structure and the durability of the electrode, the carbon nanotube structure is most preferably a carbon nanotube structure in which 2 to 50 single-walled carbon nanotube units are bonded to each other. .
  • the single-walled carbon nanotube units may be arranged side by side in the carbon nanotube structure to be bonded to each other (cylindrical structure having the long axis of the units coupled in parallel to each other to have flexibility) to form the carbon nanotube structure.
  • the carbon nanotube structures in the electrode may be connected to each other to represent a network structure.
  • Conventional electrodes comprising carbon nanotubes are generally bundled or entangled carbon nanotubes (either single-walled carbon nanotube units or multi-walled carbon nanotube units attached or entangled together. ) Is dispersed in a dispersion medium to prepare a conductive material dispersion, and then prepared using the conductive material dispersion. At this time, the carbon nanotubes are completely dispersed in the conventional conductive material dispersion, so that the carbon nanotube units having a single strand form exist as a conductive material dispersion. In the conventional conductive material dispersion, the carbon nanotube units are easily cut by the excessive dispersion process to have a shorter length than the initial stage. In addition, the carbon nanotube units can be easily cut in the rolling process of the electrode.
  • the carbon nanotube unit When the battery is driven, the carbon nanotube unit is cut off according to the volume change of the electrode active material. Thereby, there exists a problem that the electroconductivity of an electrode falls and the input characteristic, output characteristic, and lifetime characteristic of a battery fall. Moreover, in the case of multi-walled carbon nanotube units, structural defects are high due to the mechanism of node growth (the nodes exist due to defects occurring during the growth process, not smooth linearity). Therefore, the multi-walled carbon nanotube units are more easily cleaved, and shorter cuts of the multi-walled carbon nanotube units by ⁇ - ⁇ stacking by the carbon of the unit tend to be aggregated with each other. As a result, it is difficult to be more uniformly dispersed in the electrode slurry.
  • the conductivity of the electrode may be increased to significantly improve the input characteristics, the output characteristics, and the life characteristics of the battery.
  • the carbon nanotube structures in the electrode may be connected to each other to have a network structure, it is possible to prevent excessive volume change of the electrode active material and to secure a strong conductive path, and to suppress detachment of the electrode active material. Adhesion can be greatly improved.
  • the average diameter of the single-walled carbon nanotube unit may be 0.5nm to 10nm, specifically 1nm to 9nm, may be more specifically 1nm to 6nm.
  • the average diameter corresponds to the average value of the top 100 single-walled carbon nanotubes and the bottom 100 single-walled carbon nanotubes having a large average diameter when the prepared electrode is observed through a TEM.
  • the average length of the single-walled carbon nanotube unit may be 1 ⁇ m to 100 ⁇ m, and specifically 5 ⁇ m to 50 ⁇ m.
  • the average length corresponds to the average value of the top 100 single-walled carbon nanotubes and the bottom 100 single-walled carbon nanotubes having a large average length when the prepared electrode is observed through a TEM.
  • the specific surface area of the single-walled carbon nanotube unit may be 500m 2 / g to 1,000m 2 / g, specifically 600m 2 / g to 800m 2 / g.
  • the specific surface area of the single-walled carbon nanotube unit may be specifically calculated from the nitrogen gas adsorption amount under liquid nitrogen temperature (77K) using BELSORP-mini II manufactured by BEL Japan.
  • the average diameter of the carbon nanotube structure may be 1nm to 300nm, specifically 3nm to 150nm. When satisfying the above range, it is effective to form a conductive network (network), it is advantageous to connect between the active material can implement excellent electrical conductivity.
  • the average length corresponds to an average value of diameters of the upper 100 carbon nanotube structures and the lower 100 carbon nanotube structures having a larger average length when the prepared electrode is observed through SEM.
  • the carbon nanotube structure may have an average length of 1 ⁇ m to 100 ⁇ m, and specifically 5 ⁇ m to 50 ⁇ m. When satisfying the above range, it is effective to form a conductive network (network), it is advantageous to connect between the active material can implement excellent electrical conductivity.
  • the average length corresponds to the average value of the length of the top 100 carbon nanotube structures and the bottom 100 carbon nanotube structures having a large average length when the prepared electrode is observed through SEM.
  • the carbon nanotube structure may be included in the electrode active material layer in an amount of 0.01 wt% to 0.5 wt%, and specifically, 0.02 wt% to 0.2 wt%.
  • the conductive path of the electrode is secured so that the life characteristics of the battery can be improved while maintaining a low level of electrode resistance.
  • the carbon nanotube structure does not occur or inadvertently occurs when the bundle-type carbon nanotubes are completely dispersed (dispersing as many strands of carbon nanotube units as possible from each other as a general dispersion method). Very small amounts (eg, 0.0005% by weight). That is, the content range can never be achieved by the general method.
  • the electrode includes multi-walled carbon nanotube units
  • a high content (eg, more than 0.5% by weight) of multi-walled carbon nanotube units has to be used to compensate for the low conductivity of the multi-walled carbon nanotube units.
  • the single-walled carbon nanotube units may be used in a low content due to the problem that the single-walled carbon nanotube units are cut.
  • the single-walled carbon nanotube units may be used in a low content due to the problem that the single-walled carbon nanotube units are cut.
  • the carbon nanotube structure included in the electrode of the present invention has a form in which two to 5,000 single-walled carbon nanotube units are coupled to each other side by side. Therefore, even when the battery is driven, the length can be smoothly maintained without cutting, thereby maintaining the conductivity of the electrode, and the conductivity of the electrode can be smoothly ensured based on the high conductivity of the single-walled carbon nanotube unit. Accordingly, even when the content of the carbon nanotube structure is low in the electrode, the input characteristics, output characteristics, and lifespan characteristics of the battery may be excellent.
  • the single-walled carbon nanotube unit may be surface-treated through an oxidation treatment or nitriding treatment to improve the affinity of polyvinylidene fluoride.
  • the polyvinylidene fluoride may be a material that starts to be included in the electrode from the conductive material dispersion necessary for preparing the electrode slurry (in some cases, may be additionally added to reinforce the binder role in preparing the electrode slurry).
  • the polyvinylidene fluoride serves to facilitate the dispersion of the bundled carbon nanotubes in the conductive material dispersion.
  • the weight average molecular weight of the polyvinylidene fluoride may be 10,000g / mol to 1,000,000g / mol, specifically may be 100,000g / mol to 900,000g / mol.
  • the weight average molecular weight of the polyvinylidene fluoride may be 10,000g / mol to 1,000,000g / mol, specifically may be 100,000g / mol to 900,000g / mol.
  • the polyvinylidene fluoride may be included in the electrode active material layer 0.1% to 10.0% by weight, specifically 0.2% to 5.0% by weight, more specifically 0.2% to 2.5% by weight.
  • the carbon nanotube structure may be uniformly dispersed, the energy density of the electrode may be high, and the electrode adhesion may be excellent.
  • the polyvinylidene fluoride may include a modified polyvinylidene fluoride modified with a hydrophilic functional group to improve affinity with single-walled carbon nanotube units.
  • the polyvinylidene fluoride may include a modified polyvinylidene fluoride including at least one functional group of an acid functional group and an ester functional group.
  • the functional groups of the modified polyvinylidene fluoride may interact with the single-walled carbon nanotube unit to further improve electrode adhesion while improving dispersibility of the carbon nanotube structure.
  • the functional group may be included in the modified polyvinylidene fluoride 0.1% to 5% by weight, specifically 0.3% to 3% by weight.
  • the electrode adhesion can be further improved while further improving the dispersibility of the carbon nanotube structure.
  • the modified polyvinylidene fluoride may be included in an amount of 1% by weight to 100% by weight based on the total weight of the polyvinylidene fluoride, specifically 1% by weight to 50% by weight, and more specifically 1% by weight. % To 20% by weight.
  • the dispersibility of the carbon nanotube structure may be further improved, the electrode adhesion may be further improved.
  • the electrode active material layer may further include a binder.
  • the binder is to secure the adhesive force between the electrode active materials or between the electrode active material and the current collector, and general binders used in the art may be used, and the type thereof is not particularly limited.
  • the binder for example, vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethyl cellulose (CMC), starch , Hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene butadiene rubber (SBR) , Fluororubbers, or various copolymers thereof, and the like, or one or more of these may be used.
  • PVDF-co-HFP vinylidene fluoride-he
  • the binder may be included in less than 10% by weight based on the total weight of the electrode active material layer, preferably from 0.1% to 5% by weight. When the content of the binder satisfies the above range, excellent electrode adhesion may be realized while minimizing increase of electrode resistance.
  • the electrode of the present invention configured as described above is excellent in electrode adhesion.
  • the electrode according to the present invention may have an adhesive force of 20.2 gf / 20 mm or more, preferably 21 gf / 20 mm or more, as measured by a 90 ° peel test.
  • Electrode manufacturing method of the present invention (1) preparing a mixture by adding a bundle-type single-walled carbon nanotubes and polyvinylidene fluoride to the dispersion medium; (2) performing ultrasonic crushing on the mixture to prepare a conductive material dispersion including carbon nanotube structures in which 2 to 5,000 single-walled carbon nanotube units are bonded to each other; And (3) forming an electrode slurry including the conductive material dispersion and the electrode active material, wherein the carbon nanotube structure is included in the solid content of the electrode slurry in an amount of 0.01 wt% to 0.5 wt%.
  • the mixture may be prepared by adding bundled carbon nanotubes and polyvinylidene fluoride to a dispersion medium.
  • the bundled carbon nanotubes are in the form of bundles in which the single-walled carbon nanotube units described above are combined and usually include two or more, substantially 500 or more, such as 5,000 or more single-walled carbon nanotube units.
  • the bundled single-walled carbon nanotubes may be included in the mixture of 0.1% by weight to 1.0% by weight, specifically, 0.2% by weight to 0.5% by weight.
  • the bundle-type single-walled carbon nanotubes are dispersed at an appropriate level, so that an appropriate level of carbon nanotube structures can be formed, and dispersion stability can be improved.
  • the polyvinylidene fluoride may be included in the mixture at 0.1% by weight to 20% by weight, specifically 1% by weight to 10% by weight.
  • the bundle-type single-walled carbon nanotubes are dispersed at an appropriate level, so that an appropriate level of carbon nanotube structures can be formed, and dispersion stability can be improved.
  • polyvinylidene fluoride is the same as the polyvinylidene fluoride of the above-described embodiment, description thereof is omitted.
  • the weight ratio of the bundled carbon nanotubes and the polyvinylidene fluoride in the conductive material dispersion may be 1: 0.1 to 1:10, specifically 1: 1 to 1:10.
  • the bundle-type single-walled carbon nanotubes may be dispersed at an appropriate level, so that an appropriate level of carbon nanotube structures may be formed, and dispersion stability may be improved.
  • dispersion medium examples include amide polar organic solvents such as dimethylformamide (DMF), diethyl formamide, dimethyl acetamide (DMAc), and N-methyl pyrrolidone (NMP); Methanol, ethanol, 1-propanol, 2-propanol (isopropyl alcohol), 1-butanol (n-butanol), 2-methyl-1-propanol (isobutanol), 2-butanol (sec-butanol), 1-methyl Alcohols such as 2-propanol (tert-butanol), pentanol, hexanol, heptanol or octanol; Glycols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,5-pentanediol, or hexylene glycol; Polyhydric alcohols such as glycerin, trimer
  • Solids content in the mixture may be 0.1% to 20% by weight, specifically 1% to 10% by weight.
  • the bundle-type single-walled carbon nanotubes may be dispersed at an appropriate level, so that an appropriate level of carbon nanotube structures may be formed, and dispersion stability may be improved.
  • the electrode slurry may have a viscosity and elasticity suitable for the electrode manufacturing process, and also contribute to increasing the solids content of the electrode slurry.
  • the process of dispersing the bundled carbon nanotubes in the mixture may include ultrasonication, homogenization, bead mills, ball mills, basket mills, attrition mills, universal stirrers, clear mixers, spike mills or TK mixers. It may be carried out using a mixing device such as. Among these, ultrasonic crushing may be preferable. Ultrasonic fracturing results in numerous vacuum bubbles created by extreme vibrations when powerful ultrasonic waves are released into a solution, and these bubbles may instantly clump together or become larger, but immediately react to subsequent vibrations. By violently and serially crushing.
  • the ultrasonic crushing method enables nano-level fine dispersion without longitudinal cutting of single-walled carbon nanotubes in bundled carbon nanotubes. For this reason, the ultrasonic crushing method is preferable.
  • the ultrasonic crushing method may be as follows. Ultrasonic waves may be applied to the mixture to disperse solids in the mixture.
  • the conditions under which the ultrasonic crushing method is performed are as follows.
  • the ultrasonic crushing may be performed at an output of 800W to 1,500W, and specifically, may be performed at an output of 800W to 1,200W.
  • the ultrasonic crushing may be performed for 0.5 hours to 5 hours, and specifically for 1 hour to 3 hours.
  • the bundled carbon nanotubes may be separated to an appropriate level to form the carbon nanotube structure. Since the execution time refers to the total time that the ultrasonic crushing is applied, it means the total time of several times if, for example, several ultrasonic crushing has been performed.
  • the above conditions are to form a carbon nanotube structure in which the bundled carbon nanotubes are dispersed at an appropriate level, so that two to 5,000 single-walled carbon nanotube units are bonded to each other side by side in the prepared conductive material dispersion. This can only be achieved when the composition of the mixture, ultrasonic crushing conditions and the like are strictly controlled.
  • an electrode active material is mixed with the conductive material dispersion to form an electrode slurry.
  • the electrode active materials described above may be used as the electrode active material.
  • the electrode slurry may further include a binder and a solvent as necessary.
  • the binder of the above-described embodiment may be used as the binder.
  • the solvent include amide polar organic solvents such as dimethylformamide (DMF), diethyl formamide, dimethyl acetamide (DMAc), and N-methyl pyrrolidone (NMP); Methanol, ethanol, 1-propanol, 2-propanol (isopropyl alcohol), 1-butanol (n-butanol), 2-methyl-1-propanol (isobutanol), 2-butanol (sec-butanol), 1-methyl Alcohols such as 2-propanol (tert-butanol), pentanol, hexanol, heptanol or octanol; Glycols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, 1,3-propanediol, 1,3-but
  • the solvent may be the same as or different from the dispersion medium used in the linear dispersion, and preferably N-methylpyrrolidone (NMP, N-methylpyrrolidone).
  • the electrode active material may be included in an amount of 70 wt% to 99.5 wt%, preferably 80 wt% to 99 wt%, based on the total solids content in the electrode slurry.
  • the content of the electrode active material satisfies the above range, it is possible to implement excellent energy density, electrode adhesion and electrical conductivity.
  • the binder when the binder is additionally included, the binder may be included in an amount of 10 wt% or less, specifically 0.1 wt% to 5 wt%, based on the total solid content in the electrode slurry.
  • Solid content in the electrode slurry may be 60% to 80% by weight, specifically, may be 65% to 75% by weight.
  • migration of the conductive material and the binder by evaporation of the solvent may be suppressed when the electrode slurry is coated and then dried, and an electrode having excellent electrode adhesion and electrical conductivity may be manufactured. Furthermore, a high quality electrode with less deformation of the electrode during rolling can be produced.
  • the carbon nanotube structure may be included in 0.01% by weight to 0.5% by weight in the solid content of the electrode slurry, specifically, may be included in 0.02% by weight to 0.2% by weight.
  • the conductive path of the electrode is secured so that the life characteristics of the battery can be improved while maintaining a low level of electrode resistance.
  • the electrode slurry prepared as described above is applied and dried to form an electrode active material layer.
  • the electrode active material layer is coated with an electrode slurry on an electrode current collector, followed by drying, or by applying an electrode slurry on a separate support, and then peeling the film from the support onto the electrode current collector. It can be formed through the method of lamination. If necessary, a step of forming an electrode active material layer through the above-described method and then rolling may be further performed.
  • the secondary battery according to the present invention includes the electrode of the present invention described above.
  • the electrode may be at least one of a positive electrode and a negative electrode.
  • the secondary battery according to the present invention may include a positive electrode, a negative electrode, a separator and an electrolyte interposed between the positive electrode and the negative electrode, wherein at least one of the positive electrode and the negative electrode is the electrode of the present invention, that is,
  • the electrode may include an electrode active material layer including an electrode active material and a carbon nanotube structure.
  • the electrode of the present invention may be an anode. Since the electrode according to the present invention has been described above, a detailed description thereof will be omitted and only the remaining components will be described below.
  • the separator is to separate the negative electrode and the positive electrode and to provide a passage for the movement of lithium ions, and can be used without particular limitation as long as the separator is used as a separator in a secondary battery.
  • the separator is a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer, ethylene / methacrylate copolymer, etc.
  • a polymer film or a laminated structure of two or more thereof may be used.
  • porous nonwoven fabrics such as nonwoven fabrics made of high melting point glass fibers, polyethylene terephthalate fibers and the like may be used.
  • a coated separator including a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may be optionally used as a single layer or a multilayer structure.
  • Examples of the electrolyte include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, a molten inorganic electrolyte, and the like, which can be used in manufacturing a lithium secondary battery, but are not limited thereto.
  • the electrolyte may include a non-aqueous organic solvent and a metal salt.
  • non-aqueous organic solvent for example, N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butylo lactone, 1,2-dime Methoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolon, formamide, dimethylformamide, dioxoron, acetonitrile, nitromethane, methyl formate, Methyl acetate, phosphate triester, trimethoxy methane, dioxorone derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, ethers, pyrion
  • An aprotic organic solvent such as methyl acid or ethyl
  • ethylene carbonate and propylene carbonate which are cyclic carbonates among the carbonate-based organic solvents, may be preferably used as high viscosity organic solvents because they dissociate lithium salts well, such as dimethyl carbonate and diethyl carbonate.
  • high viscosity organic solvents because they dissociate lithium salts well, such as dimethyl carbonate and diethyl carbonate.
  • the metal salt may be a lithium salt
  • the lithium salt is a material that is readily soluble in the non-aqueous electrolyte, for example, is in the lithium salt anion F -, Cl -, I - , NO 3 -, N (CN ) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF - , (CF 3) 6 P - , CF 3 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2 ) 2 CH -, (SF 5) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 -, CF 3 CO 2 -, CH 3 CO 2 -
  • the electrolyte includes, for example, haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, tri, etc. for the purpose of improving battery life characteristics, suppressing battery capacity reduction, and improving battery discharge capacity.
  • haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, tri, etc.
  • Ethyl phosphite triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N, N-substituted imida
  • One or more additives such as zolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol or aluminum trichloride may be included.
  • the electrode adhesion is superior to the conventional secondary battery, and has excellent life characteristics at high temperatures.
  • bundled carbon nanotubes (specific surface area 650m 2 / g) and polyvinylidene fluoride (weight average molecular weight: 685,000g) consisting of single-walled carbon nanotube units having an average diameter of 1.5 nm and an average length of 5 ⁇ m.
  • 2.0 parts by weight of standard homopolymer (Mol) was mixed with 97.8 parts by weight of N-methylpyrrolidone (NMP) as a dispersion medium to prepare a mixture such that the solid content was 2.2% by weight.
  • NMP N-methylpyrrolidone
  • the mixture was stirred by an ultrasonic crushing method to disperse the bundled carbon nanotubes in a dispersion medium to prepare a conductive material dispersion. At this time, ultrasonic crushing was performed for 1.5 hours at 1,000W output.
  • the conductive material dispersion included a carbon nanotube structure in which two to 5,000 single-walled carbon nanotube units were combined side by side. In the conductive material dispersion, the carbon nanotube structure was 0.2% by weight, and the polyvinylidene fluoride was 2.0% by weight.
  • a conductive material dispersion was prepared in the same manner as in Preparation Example 1, except that the polyvinylidene fluoride was a modified polyvinylidene fluoride (weight average molecular weight 880,000 g / mol) containing an acid functional group at 2.1% by weight. .
  • 0.8 parts by weight of fluoride (weight average molecular weight 880,000 g / mol) was mixed with 95.2 parts by weight of N-methylpyrrolidone (NMP) as a dispersion medium to prepare a mixture such that the solid content was 4.8% by weight.
  • NMP N-methylpyrrolidone
  • the mixture was stirred by an ultrasonic crushing method to disperse the bundled carbon nanotubes in a dispersion medium to prepare a conductive material dispersion. At this time, ultrasonic crushing was performed for 1.5 hours at 1,000W output.
  • the conductive material dispersion the multi-walled carbon nanotube unit was 4.0 wt%, and the polyvinylidene fluoride was 0.8 wt%.
  • the mixture was stirred by an ultrasonic crushing method to disperse the bundled carbon nanotubes in a dispersion medium to prepare a conductive material dispersion. At this time, ultrasonic crushing was performed for 5 hours at 2,000W output.
  • the bundled carbon nanotubes were 0.2 wt% and the polyvinylidene fluoride was 4.0 wt%.
  • NCM622 LiNi 0.6 Co 0.2 Mn 0.2 O 2
  • modified polyvinylidene fluoride modified PVDF, KF9700, weight average molecular weight: 880,000 g / mol, acid functional group in 2.1% by weight
  • NMP N-methylpyrrolidone
  • the LiNi 0.6 Co 0.2 Mn 0.2 O 2 (NCM622) is 97.6 wt%
  • the polyvinylidene fluoride is 2.3 wt%
  • the carbon nanotube structure is included as 0.1 wt%.
  • the content of the modified polyvinylidene fluoride was 1.8 wt% based on the total weight of the polyvinylidene fluoride.
  • a positive electrode was manufactured in the same manner as in Example 1, except that the conductive material dispersion of Preparation Example 2 was used instead of the conductive material dispersion of Preparation Example 1.
  • the polyvinylidene fluorides contained in the positive electrode were all modified polyvinylidene fluorides.
  • NCM622 LiNi 0.6 Co 0.2 Mn 0.2 O 2
  • modified polyvinylidene fluoride modified PVDF, KF9700, weight average molecular weight: 880,000 g / mol, acid functional group contained in 2.1 wt%
  • NMP N-methylpyrrolidone
  • the positive electrode slurry was applied onto an Al thin film current collector having a thickness of 20 ⁇ m, dried at 130 ° C., and rolled to prepare a positive electrode including a positive electrode active material layer.
  • the LiNi 0.6 Co 0.2 Mn 0.2 O 2 (NCM622) is 97.9 wt%
  • the polyvinylidene fluoride is 2.05 wt%
  • the carbon nanotube structure is included as 0.05 wt%.
  • the polyvinylidene fluorides contained in the positive electrode were all modified polyvinylidene fluorides.
  • N-methylpyrrolidone as a solvent with carbon black having a specific surface area of 240 m 2 / g and modified polyvinylidene fluoride (modified PVDF, KF9700, weight average molecular weight: 880,000 g / mol, containing 2.1 wt% of acid functional groups) (N-Methylpyrrolidone: NMP) was mixed to prepare a mixture so that the solid content was 72.0% by weight.
  • modified PVDF modified polyvinylidene fluoride
  • KF9700 weight average molecular weight: 880,000 g / mol, containing 2.1 wt% of acid functional groups
  • the mixture was stirred by an ultrasonic crushing method to disperse the bundled carbon nanotubes in a dispersion medium to prepare a conductive material dispersion. At this time, ultrasonic crushing was performed for 1.5 hours at 1,000W output.
  • the carbon black was 15% by weight and the modified polyvinylidene fluoride was 1.5% by weight in the conductive material dispersion.
  • NCM622 LiNi 0.6 Co 0.2 Mn 0.2 O 2
  • modified polyvinylidene fluoride modified PVDF, KF9700, weight average molecular weight: 880,000 g / mol, acid functional group containing 2.1 wt%
  • NMP N-methylpyrrolidone
  • the positive electrode slurry was applied onto an Al thin film current collector having a thickness of 20 ⁇ m, dried at 130 ° C., and rolled to prepare a positive electrode including a positive electrode active material layer.
  • LiNi 0.6 Co 0.2 Mn 0.2 O 2 (NCM622) is 96.35% by weight, the modified polyvinylidene fluoride is 2.15% by weight, the carbon black is included in the positive electrode active material layer 1.5% by weight.
  • NCM622 LiNi 0.6 Co 0.2 Mn 0.2 O 2
  • modified polyvinylidene fluoride modified PVDF, KF9700, weight average molecular weight: 880,000 g / mol, acid functional group in 2.1 wt%
  • NMP N-methylpyrrolidone
  • the positive electrode slurry was applied onto an Al thin film current collector having a thickness of 20 ⁇ m, dried at 130 ° C., and rolled to prepare a positive electrode including a positive electrode active material layer.
  • LiNi 0.6 Co 0.2 Mn 0.2 O 2 (NCM622) is 97.48% by weight, the polyvinylidene fluoride is 1.92% by weight, the multi-walled carbon nanotube unit in the positive electrode active material layer is 0.6% by weight.
  • NCM622 LiNi 0.6 Co 0.2 Mn 0.2 O 2
  • modified polyvinylidene fluoride modified PVDF, KF9700, weight average molecular weight: 880,000 g / mol, acid functional group in 2.1 wt%
  • NMP N-methylpyrrolidone
  • the positive electrode slurry was applied onto an Al thin film current collector having a thickness of 20 ⁇ m, dried at 130 ° C., and rolled to prepare a positive electrode including a positive electrode active material layer.
  • the LiNi 0.6 Co 0.2 Mn 0.2 O 2 (NCM622) is 97.04 wt%, the polyvinylidene fluoride is 2.16 wt%, and the multi-walled carbon nanotube unit is included as 0.8 wt%.
  • a positive electrode was prepared in the same manner as in Example 3, except that the conductive material dispersion of Preparation Example 4 was used instead of the conductive material dispersion of Preparation Example 2.
  • the LiNi 0.6 Co 0.2 Mn 0.2 O 2 (NCM622) is 97.9 wt%
  • the polyvinylidene fluoride is 2.05 wt%
  • the carbon nanotube structure is included as 0.05 wt%.
  • the content of the modified polyvinylidene fluoride was 2.05 wt% based on the total weight of the polyvinylidene fluoride.
  • the active material layers of the positive electrodes prepared in Examples 1 to 3 and Comparative Examples 1 to 4 were observed through a scanning electron microscope.
  • 2 to 4 show SEM photographs of electrodes (in order) of Examples 1 to 3, respectively
  • FIGS. 5 to 8 show SEM photographs of electrodes (in order) of Comparative Examples 1 to 4, respectively. Is shown.
  • the carbon nanotube structure in which the single-walled carbon nanotube units are bonded to each other 2 to 10 side by side has a rope shape.
  • the carbon nanotube structures were not formed. Instead, it can be confirmed that the conductive materials are aggregated on the surface of the active material layer.
  • Powders were prepared by vacuum drying the cathode slurry used in the cathode production of Examples 1 to 3 and Comparative Examples 1 to 4 at a temperature of 130 ° C. for 3 hours and then grinding. Thereafter, using a Loresta GP equipment manufactured by Mitsubishi Chem Analytic, pellets were prepared under a load of 9.8 MPa under 25 ° C. and a relative humidity of 50%. Thereafter, powder resistance was measured by the 4-probe method. The measurement results are shown in Table 1 below.
  • the cathode slurry formed during the production of the anodes of Examples 1 to 3 and Comparative Examples 1 to 4 was filled in at least 2/3 volumes in a 250 mL bottle, and then subjected to viscosity at 12 rpm and spindle 63 (LV-03) using a Brookfield DV2T LV TJ0 model equipment at room temperature. Was measured. The measurement results are shown in Table 1 below.
  • a double-sided tape is attached to the slide glass, and a punched electrode 20 mm x 180 mm is placed on the slide glass, reciprocated and bonded 10 times with a 2 kg roller, and then pulled at 200 mm / min using a UTM machine from the slide glass. The peeling force was measured. At this time, the measurement angle of the slide glass and the electrode was 90 degrees. The measurement results are shown in Table 1 below.
  • Monocells were prepared by combining the positive electrodes of Examples 1 to 3 and Comparative Examples 1 to 4, the negative electrode, and the polyethylene-based separator having a thickness of 15 ⁇ m.
  • the negative electrode was prepared by mixing graphite, SBR / CMC, and a conductive material in a weight ratio of 96.5: 2.5: 1 to prepare a negative electrode slurry, which was coated on 10 ⁇ m copper foil and dried at 100 ° C.
  • Example 1 Example 2 Example 3 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Conductor specific surface area (m 2 / g) 650 650 650 240 185 185 650 Conductive material content (% by weight) 0.1 (carbon nanotube structure) 0.1 (carbon nanotube structure) 0.05 (carbon nanotube structure) 1.5 (carbon black) 0.6 (multi-walled carbon nanotube unit) 0.8 (multi-walled carbon nanotube units) 0.05 (fully dispersed carbon nanotube unit) Polyvinylidene Fluoride Content (% by weight) 1.8 1.8 1.8 2.0 1.8 2.0 1.8 Anode Slurry Solids (wt%) 70.1 70.1 70.1 72.0 72.1 72.0 70.1 Anode Slurry Viscosity (cPs) 22,600 24,700 15,900 11,900 21,500 32,250 18,500 Anode Slurry Powder Resistance ( ⁇ cm) 28.5 41.5 53.8 154.1 72.6 29.7 1,590 Anode Adhesion (gf / 20mm) 21.6 22.8 22.4 19.8 14.
  • Example 1 in Examples 1 to 3 including the carbon nanotube structure, it can be seen that the anode adhesion and life characteristics are excellent.
  • the content of the carbon nanotube structure was very small, the slurry powder resistance was slightly increased, but it was enough to drive the cell, and the life characteristics were excellent.
  • Comparative Example 3 the powder resistance characteristics were good, but the viscosity of the positive electrode slurry was too high, resulting in poor processability at the time of manufacturing the electrode, and compared with the examples, the electrode adhesion and life characteristics were also inferior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 전극 활물질층을 포함하고, 상기 전극 활물질층은, 전극 활물질; 폴리비닐리덴 플루오라이드; 및 도전재를 포함하며, 상기 도전재는 2개 내지 5,000개의 단일벽 탄소 나노 튜브 단위체가 서로 결합된 탄소 나노 튜브 구조체를 포함하며, 상기 탄소 나노 튜브 구조체는 상기 전극 활물질층 내에 0.91중량% 내지 0.5중량%로 포함되는, 전극, 이를 포함하는 이차 전지, 및 상기 전극의 제조 방법에 관한 것이다.

Description

전극, 상기 전극을 포함하는 이차 전지, 및 상기 전극의 제조 방법
관련출원과의 상호인용
본 출원은 2018년 4월 6일자 출원된 한국 특허 출원 제10-2018-0040574호 및 2019년 4월 5일자 출원된 한국 특허 출원 제10-2019-0040100호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 전극, 이를 포함하는 이차 전지, 및 상기 전극의 제조 방법에 관한 것으로, 상기 전극은, 전극 활물질층을 포함하고, 상기 전극 활물질층은, 전극 활물질; 폴리비닐리덴 플루오라이드; 및 도전재를 포함하며, 상기 도전재는 2개 내지 5,000개의 단일벽 탄소 나노 튜브 단위체가 서로 결합된 탄소 나노 튜브 구조체를 포함하며, 상기 탄소 나노 튜브 구조체는 상기 전극 활물질층 내에 0.01중량% 내지 0.5중량%로 포함될 수 있다.
전기화학적 에너지를 이용하는 전기화학 소자의 대표적인 예로 이차 전지를 들 수 있으며, 점점 더 그 사용 영역이 확대되고 있는 추세이다. 최근에는 휴대용 컴퓨터, 휴대용 전화기, 카메라 등의 휴대용 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있고, 그러한 이차 전지 중 높은 에너지 밀도, 즉 고용량의 리튬 이차전지에 대해 많은 연구가 행해져 왔고, 또한 상용화되어 널리 사용되고 있다.
일반적으로 이차 전지는 양극, 음극, 전해질, 및 분리막으로 구성된다. 양극 및 음극은 일반적으로 전극 집전체와, 전극 집전체 상에 형성된 전극 활물질층으로 이루어지며, 상기 전극 활물질층은 전극 활물질, 도전재, 바인더 등을 포함하는 전극 슬러리 조성물을 전극 집전체 상에 도포, 건조한 후 압연하는 방식으로 제조된다.
한편, 종래에는 이차 전지용 도전재로 카본 블랙과 같은 점형 도전재가 주로 사용되었으나, 이러한 점형 도전재의 경우 전기 전도성 향상 효과가 충분하지 않다는 문제점이 있었다. 이와 같은 문제점을 개선하기 위해 탄소 나노튜브(Carbon NanoTube, CNT)나 탄소 나노파이버(Carbon NanoFiber, CNF)와 같은 선형 도전재 및 그래핀과 같은 면형 도전재를 적용하는 방안에 대한 연구들이 활발하게 진행되고 있다.
그러나, 탄소 나노튜브나 탄소나노파이버와 같은 선형 도전재의 경우, 전기 전도성은 우수하지만, 번들 타입 또는 인탱글 타입으로 성장하는 소재 자체의 특성상 슬러리 내에서의 분산성이 떨어져 코팅성 및 공정성이 떨어지고, 전극 활물질층 내에서 고르게 분포하지 않는다는 문제점이 있다. 이와 같은 문제점을 개선하기 위해, 선형 도전재에 관능기 등을 도입하여 분산성을 향상시키고자 하는 시도들이 잇었으나, 이 경우, 관능기 존재에 의해 표면 부반응이 발생하여 전기화학 특성이 떨어진다는 문제점이 있다.
한편, 그래핀과 같은 면형 도전재의 경우에도 전기 전도성은 우수하지만, 얇은 두께를 갖는 단일층(single layer)의 그래핀은 제조가 어렵다는 문제점이 있으며, 두께가 두꺼운 그래핀을 사용할 경우, 전지 효율이 저하된다는 문제점이 있다. 또한, 면형 도전재의 경우 넓은 면형 접촉으로 인해 전지 내에서 전해액의 이동성이 제한을 받는다는 문제점이 있다.
따라서, 전기 전도도가 우수하면서도 전극 내에서 균일하게 분포할 수 있는 도전재가 적용한 전극의 개발이 요구되고 있다.
본 발명이 해결하고자 하는 일 과제는 도전재가 전극 전체에 균일하게 분산되어 전극의 전기 전도도 및 전지의 입력 특성, 출력 특성이 개선될 수 있고, 전극 접착력이 우수하여 전지의 수명 특성이 개선될 수 있는 전극 및 상기 전극의 제조 방법을 제공하는 것이다.
본 발명이 해결하고자 하는 다른 과제는 상기 전극을 포함하는 이차 전지를 제공하는 것이다.
본 발명의 일 실시예에 따르면, 전극 활물질층을 포함하고, 상기 전극 활물질층은, 전극 활물질; 폴리비닐리덴 플루오라이드; 및 도전재를 포함하며, 상기 도전재는 2개 내지 5,000개의 단일벽 탄소 나노 튜브 단위체가 서로 결합된 탄소 나노 튜브 구조체를 포함하며, 상기 탄소 나노 튜브 구조체는 상기 전극 활물질층 내에 0.01중량% 내지 0.5중량%로 포함되는, 전극이 제공된다.
본 발명의 다른 실시예에 따르면, 번들형 단일벽 탄소 나노 튜브 및 폴리비닐리덴 플루오라이드를 분산매에 투입하여 혼합물을 준비하는 단계; 상기 혼합물에 대해 초음파 파쇄를 진행하여, 2개 내지 5,000개의 단일벽 탄소 나노 튜브 단위체가 서로 결합된 탄소 나노 튜브 구조체를 포함하는 도전재 분산액을 제조하는 단계; 및 상기 도전재 분산액 및 전극 활물질을 포함하는 전극 슬러리를 형성하는 단계;를 포함하며, 상기 탄소 나노 튜브 구조체는 상기 전극 슬러리의 고형분 내에 0.01중량% 내지 0.5중량%로 포함되는, 전극의 제조 방법이 제공된다.
본 발명의 또 다른 실시예에 따르면, 상기 전극을 포함하는 이차 전지가 제공된다.
본 발명에 따른 전극은, 번들형의 단일벽 탄소 나노 튜브를 폴리비닐리덴 플루오라이드와 함께 적절하게 분산시킨 도전재 분산액을 통해 제조되므로, 전극 내에서 로프(rope) 형태의 탄소 나노 튜브 구조체들(긴 섬유 형태)이 서로 연결되어 망(network) 구조를 이룰 수 있다. 특히 전극 활물질 내의 1차 입자들 간의 도전성 연결 뿐만 아니라, 2차 입자 형태의 전극 활물질들 간(상대적으로 긴 거리)의 도전성 연결이 가능하도록 망 구조가 형성될 수 있으므로, 전극 내 도전성 경로(path) 형성이 효과적으로 이루어질 수 있다. 이에 따라 극소량의 도전재 함량으로도 전극 내 전기 전도도를 크게 개선시킬 수 있다. 또한, 상기 망 구조를 이루는 탄소 나노 튜브 구조체들에 의해 전극 활물질층이 단단하게 고정되어 전극 접착력이 향상되는 효과를 갖는다.
또한, 전극 슬러리가 상기 탄소 나노 튜브 구조체를 포함하게 될 시, 종래에 비해 전극 슬러리의 분체 저항이 감소하며, 이로 인해 전극 저항이 감소하는 효과를 얻을 수 있다.
상기와 같은 전극을 이차 전지에 적용할 경우, 전지의 전기화학 성능 및 수명 특성 측면에서 우수한 효과를 얻을 수 있다.
도 1은 제조예 1의 TEM 사진(a, b) 및 제조예 4의 TEM 사진(c, d)이다.
도 2는 실시예 1의 전극을 촬영한 SEM 사진이다.
도 3은 실시예 2의 전극을 촬영한 SEM 사진이다.
도 4는 실시예 3의 전극을 촬영한 SEM 사진이다.
도 5는 비교예 1의 전극을 촬영한 SEM 사진이다.
도 6은 비교예 2의 전극을 촬영한 SEM 사진이다.
도 7은 비교예 3의 전극을 촬영한 SEM 사진이다.
도 8은 비교예 4의 전극을 촬영한 SEM 사진이다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 안 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 명세서에서, "%"는 명시적인 다른 표시가 없는 한 중량%를 의미한다.
본 명세서에서, "비표면적"은 BET법에 의해 측정한 것으로서, 구체적으로는 BEL Japan사의 BELSORP-mini II를 이용하여 액체 질소 온도 하(77K)에서의 질소가스 흡착량으로부터 산출될 수 있다.
이하, 본 발명에 대해 구체적으로 설명한다.
전극
본 발명에 따른 전극은, 전극 활물질층을 포함하고, 상기 전극 활물질층은, 전극 활물질; 폴리비닐리덴 플루오라이드; 및 도전재를 포함하며, 상기 도전재는 2개 내지 5,000개의 단일벽 탄소 나노 튜브 단위체가 서로 결합된 탄소 나노 튜브 구조체를 포함하며, 상기 탄소 나노 튜브 구조체는 상기 전극 활물질층 내에 0.01중량% 내지 0.5중량%로 포함될 수 있다.
상기 전극은 전극 활물질층을 포함할 수 있다. 상기 전극은 집전체를 더 포함할 수 있으며, 그러한 경우 상기 전극 활물질층은 상기 집전체의 일면 또는 양면 상에 배치될 수 있다.
상기 집전체는 전지에 화학적 변화를 유발하지 않으면서도 도전성을 가진 소재라면 특별히 제한되지 않으며, 예를 들어 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 이들의 합금, 이들의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것 또는 소성 탄소 등이 사용될 수 있다.
상기 집전체는 통상적으로 3㎛ 내지 500㎛의 두께를 가질 수 있으며, 집전체 표면에 미세한 요철을 형성하여 음극활물질의 결합력을 강화시킬 수도 있다. 또한, 상기 전극 집전체는 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 전극 활물질층은 전극 활물질; 폴리비닐리덴 플루오라이드; 및 도전재를 포함할 수 있다.
상기 전극 활물질은 당해 기술 분야에서 일반적으로 사용되는 양극 활물질 또는 음극 활물질들일 수 있으며, 그 종류가 특별히 한정되는 것은 아니다.
예를 들면, 양극 활물질로는, 코발트, 망간, 니켈 또는 알루미늄과 같은 1종 이상의 금속과 리튬을 포함하는 리튬 산화물이 사용될 수 있다. 보다 구체적으로, 상기 리튬 산화물은 리튬-망간계 산화물(예를 들면, LiMnO2, LiMn2O 등), 리튬-코발트계 산화물(예를 들면, LiCoO2 등), 리튬-니켈계 산화물(예를 들면, LiNiO2 등), 리튬-니켈-망간계 산화물(예를 들면, LiNi1-Y1MnY1O2(여기에서, 0<Y1<1), LiNiZ1Mn2-Z1O4(여기에서, 0<Z1<2) 등), 리튬-니켈-코발트계 산화물(예를 들면, LiNi1-Y2CoY2O2(여기에서, 0<Y2<1) 등), 리튬-망간-코발트계 산화물(예를 들면, LiCo1-Y3MnY3O2(여기에서, 0<Y3<1), LiMn2-Z2CoZ2O4(여기에서, 0<Z2<2) 등), 리튬-니켈-코발트-망간계 산화물(예를 들면, Li(NiP1CoQ1MnR1)O2(여기에서, 0<P1<1, 0<Q1<1, 0<R1<1, P1+Q1+R1=1) 또는 Li(NiP2CoQ2MnR2)O4(여기에서, 0<P2<2, 0<Q2<2, 0<R2<2, P2+Q2+R2=2) 등), 또는 리튬-니켈-코발트-망간-기타금속(M) 산화물(예를 들면, Li(NiP3CoQ3MnR3M1 S)O2(여기에서, M1은 Al, Cu, Fe, V, Cr, Ti, Zr, Zn, Ta, Nb, Mg, B, W 및 Mo로 이루어지는 군으로부터 선택되고, P3, Q3, R3 및 S는 각각 독립적인 원소들의 원자분율로서, 0<P3<1, 0<Q3<1, 0<R3<1, 0<S<1, P3+Q3+R3+S=1이다) 등) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 화합물이 포함될 수 있다.
한편, 음극 활물질로는, 예를 들면, 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOv(0<v<2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 또, 탄소재료는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다.
상기와 같은 전극 활물질은 전극 활물질층 전체 중량을 기준으로, 70중량% 내지 99.5중량%, 바람직하게는 80중량% 내지 99중량%로 포함될 수 있다. 전극 활물질의 함량이 상기 범위를 만족할 때, 우수한 에너지 밀도, 전극 접착력 및 전기 전도도를 구현할 수 있다.
상기 도전재는 탄소 나노 튜브 구조체를 포함할 수 있다.
상기 탄소 나노 튜브 구조체는 복수의 단일벽 탄소 나노 튜브 단위체를 포함할 수 있다. 구체적으로, 상기 탄소 나노 튜브 구조체는 2개 내지 5,000개의 단일벽 탄소 나노 튜브 단위체가 서로 결합된 탄소 나노 튜브 구조체일 수 있으며, 보다 구체적으로 상기 탄소 나노 튜브 구조체는 2개 내지 4,500개의 단일벽 탄소 나노 튜브 단위체가 서로 결합된 탄소 나노 튜브 구조체일 수 있다. 보다 더 구체적으로, 상기 탄소 나노 튜브 구조체의 분산성과 전극의 내구성을 고려하여, 상기 탄소 나노 튜브 구조체는 2개 내지 50개의 단일벽 탄소 나노 튜브 단위체가 서로 결합된 탄소 나노 튜브 구조체인 것이 가장 바람직하다.
상기 탄소 나노 튜브 구조체 내에서 상기 단일벽 탄소 나노 튜브 단위체들이 나란하게 배열되어 결합되어(단위체들의 장축이 서로 평행하게 결합하여 유연성을 가지는 원통형의 구조) 상기 탄소 나노 튜브 구조체를 형성하는 것일 수 있다. 상기 전극 내에서 상기 탄소 나노 튜브 구조체들은 서로 연결되어 망(network) 구조를 나타낼 수 있다.
탄소 나노 튜브를 포함하는 종래의 전극들은, 일반적으로 번들형(bundle type) 또는 인탱글형(entangled type) 탄소 나노 튜브(단일벽 탄소 나노 튜브 단위체 또는 다중벽 탄소 나노 튜브 단위체가 서로 붙어있거나 얽혀있는 형태)를 분산매에서 분산시켜 도전재 분산액을 제조한 뒤, 상기 도전재 분산액을 사용하여 제조된다. 이 때, 종래의 도전재 분산액 내에서 상기 탄소 나노 튜브는 완전하게 분산되어, 한 가닥 형태의 탄소 나노 튜브 단위체들이 분산된 도전재 분산액으로 존재한다. 상기 종래의 도전재 분산액은 지나친 분산 공정에 의해, 상기 탄소 나노 튜브 단위체들이 쉽게 절단되어 초기 대비 짧은 길이를 가지게 된다. 또한, 전극의 압연 공정 과정에서도 상기 탄소 나노 튜브 단위체들이 쉽게 절단될 수 있고. 전지의 구동 시 전극 활물질의 부피 변화에 따라 상기 탄소 나노 튜브 단위체들이 절단되는 문제가 추가적으로 발생하게 된다. 이에 따라, 전극의 도전성이 저하되어, 전지의 입력 특성, 출력 특성, 및 수명 특성이 저하되는 문제가 있다. 더구나, 다중벽 탄소 나노 튜브 단위체의 경우, 마디 성장(매끄러운 선형이 아니라 성장 과정에서 발생하는 결함에 의해 마디들이 존재)하는 메커니즘에 의해 구조의 결함이 높다. 따라서, 분산 과정 상기 다중벽 탄소 나노 튜브 단위체는 더욱 쉽게 절단 되며, 상기 단위체의 탄소에 의한 π-π stacking에 의해 짧게 절단된 다중벽 탄소 나노 튜브 단위체들이 서로 응집(aggregation)되기 쉽다. 이에 따라 전극 슬러리 내에서 더욱 더 균일하게 분산되어 존재하기 어렵다.
이와 달리, 본 발명의 전극에 포함된 탄소 나노 튜브 구조체의 경우, 상대적으로 구조적 결함이 없이 높은 결정성을 유지하는 단일벽 탄소 나노 튜브 단위체들 2개 내지 5,000개가 서로 나란히 결합된 형태를 가지고 있으므로, 전지의 구동 시에도 절단되지 않고 길이를 원활하게 유지할 수 있어서 전극의 도전성을 유지할 수 있다. 또한, 높은 결정성을 가지는 단일벽 탄소 나노 튜브 단위체의 높은 도전성에 기하여 전극의 도전성을 높여 전지의 입력 특성, 출력 특성 및 수명 특성이 크게 개선될 수 있다. 또한, 상기 전극 내에서 상기 탄소 나노 튜브 구조체들은 서로 연결되어 망 구조를 가질 수 있으므로, 전극 활물질의 지나친 부피 변화를 억제함과 동시에 강한 도전성 경로를 확보할 수 있으며, 전극 활물질의 탈리를 억제하여 전극 접착력이 크게 향상될 수 있다.
상기 탄소 나노 튜브 구조체에 있어서, 상기 단일벽 탄소 나노 튜브 단위체의 평균 직경은 0.5nm 내지 10nm일 수 있으며, 구체적으로 1nm 내지 9nm일 수 있고, 보다 구체적으로 1nm 내지 6nm일 수 있다. 상기 평균 직경을 만족할 시, 극소량의 도전재 함량으로도 전극 내 도전성을 극대화할 수 있는 효과가 있다. 상기 평균 직경은 제조된 전극을 TEM을 통해 관찰했을 시, 평균 직경이 큰 상위 100개의 단일벽 탄소 나노 튜브와 하위 100개의 단일벽 탄소 나노 튜브들의 평균값에 해당한다.
상기 탄소 나노 튜브 구조체에 있어서, 상기 단일벽 탄소 나노 튜브 단위체의 평균 길이는 1㎛ 내지 100㎛일 수 있으며, 구체적으로 5㎛ 내지 50㎛일 수 있다. 상기 평균 길이를 만족할 시, 상기 전극 활물질들 간의 도전성 연결을 위한 긴 도전성 경로가 형성될 수 있고, 특유의 망 구조가 형성될 수 있으므로, 극소량의 도전재 함량으로도 전극 내 도전성을 극대화할 수 있는 효과가 있다. 상기 평균 길이는 제조된 전극을 TEM을 통해 관찰했을 시, 평균 길이가 큰 상위 100개의 단일벽 탄소 나노 튜브와 하위 100개의 단일벽 탄소 나노 튜브들의 평균값에 해당한다.
상기 단일벽 탄소 나노 튜브 단위체의 비표면적은 500m2/g 내지 1,000m2/g일 수 있으며, 구체적으로 600m2/g 내지 800m2/g일 수 있다. 상기 범위를 만족할 시, 넓은 비표면적에 의해 전극 내 도전성 경로가 원활하게 확보될 수 있으므로, 극소량의 도전재 함량으로도 전극 내 도전성을 극대화할 수 있는 효과가 있다. 상기 단일벽 탄소 나노 튜브 단위체의 비표면적은 구체적으로 BEL Japan사의 BELSORP-mini II를 이용하여 액체 질소 온도 하(77K)에서의 질소 가스 흡착량으로부터 산출될 수 있다.
상기 탄소 나노 튜브 구조체의 평균 직경은 1nm 내지 300nm일 수 있으며, 구체적으로 3nm 내지 150nm일 수 있다. 상기 범위를 만족할 시, 도전성 망 구조(network) 형성에 효과적이며, 활물질들 사이를 연결하는데 유리하여 우수한 전기 전도성을 구현할 수 있다. 상기 평균 길이는 제조된 전극을 SEM을 통해 관찰했을 시, 평균 길이가 큰 상위 100개의 탄소 나노 튜브 구조체와 하위 100개의 탄소 나노 튜브 구조체들 직경의 평균값에 해당한다.
상기 탄소 나노 튜브 구조체의 평균 길이는 1㎛ 내지 100㎛일 수 있으며, 구체적으로 5㎛ 내지 50㎛일 수 있다. 상기 범위를 만족할 시, 도전성 망 구조(network) 형성에 효과적이며, 활물질들 사이를 연결하는데 유리하여 우수한 전기 전도성을 구현할 수 있다. 상기 평균 길이는 제조된 전극을 SEM을 통해 관찰했을 시, 평균 길이가 큰 상위 100개의 탄소 나노 튜브 구조체와 하위 100개의 탄소 나노 튜브 구조체들 길이의 평균값에 해당한다.
상기 탄소 나노 튜브 구조체는 상기 전극 활물질층 내에 0.01중량% 내지 0.5중량%로 포함될 수 있으며, 구체적으로 0.02중량% 내지 0.2중량%로 포함될 수 있다. 상기 범위를 만족할 시, 전극의 도전성 경로가 확보되어 전극 저항이 낮은 수준을 유지하면서도 전지의 수명 특성이 개선될 수 있다. 도전재 분산액 제조 시, 번들형 탄소 나노 튜브를 완전히 분산(일반적인 분산 방법으로써 최대한 한가닥의 탄소 나노 튜브 단위체들이 서로 떨어지도록 분산)할 경우에는 상기 탄소 나노 튜브 구조체가 발생하지 않거나, 의도치 않게 발생하더라도 매우 적은 양(예컨대, 0.0005중량%)으로 발생하게 된다. 즉, 상기 함량 범위는 일반적인 방법으로는 결코 달성될 수 없다.
전극이 다중벽 탄소 나노 튜브 단위체를 포함하는 종래 기술의 경우, 다중벽 탄소 나노 튜브 단위체의 낮은 도전성을 보완하고자 높은 함량(예컨대 0.5중량% 초과)의 다중벽 탄소 나노 튜브 단위체를 사용할 수 밖에 없었다. 또한, 단일벽 탄소 나노 튜브 단위체가 완전히 분산된 도전재 분산액을 통해 전극을 제조하는 경우에도, 상기 단일벽 탄소 나노 튜브 단위체들이 절단되는 문제에 의해, 상기 단일벽 탄소 나노 튜브 단위체를 낮은 함량으로 사용할 수 없었다.
반면, 본 발명의 전극에 포함되는 탄소 나노 튜브 구조체는 2개 내지 5,000개의 단일벽 탄소 나노 튜브 단위체가 서로 나란히 결합된 형태를 가지고 있다. 따라서, 전지의 구동 시에도 절단되지 않고 길이를 원활하게 유지할 수 있어서 전극의 도전성을 유지할 수 있으며, 단일벽 탄소 나노 튜브 단위체가 가지는 높은 도전성에 기하여 전극의 도전성이 원활하게 확보될 수 있다. 이에 따라, 전극 내에서 탄소 나노 튜브 구조체의 함량이 낮은 수준이더라도, 전지의 입력 특성, 출력 특성, 및 수명 특성이 우수할 수 있다.
한편, 필수적인 것은 아니나, 상기 단일벽 탄소 나노 튜브 단위체는 폴리비닐리덴 플루오라이드의 친화성을 향상을 위해 산화 처리 또는 질화 처리 등을 통해 표면처리된 것일 수도 있다.
상기 폴리비닐리덴 플루오라이드는 전극 슬러리 제조에 필요한 도전재 분산액으로부터 전극에 포함되기 시작하는 물질일 수 있다(경우에 따라 전극 슬러리 제조 시 바인더 역할을 보강 위해 추가적으로 투입될 수도 있다). 상기 폴리비닐리덴 플루오라이드는 상기 도전재 분산액 내에서 번들형의 탄소 나노 튜브의 분산이 원활하게 이루어지는 것을 돕는 역할을 한다.
상기 폴리비닐리덴 플루오라이드의 중량평균분자량은 10,000g/mol 내지 1,000,000g/mol일 수 있으며, 구체적으로 100,000g/mol 내지 900,000g/mol일 수 있다. 상기 범위를 만족하는 경우, 상기 폴리비닐리덴 플루오라이드가 번들형의 탄소 나노 튜브 내의 단일벽 탄소 나노 튜브 단위체들 사이에 용이하게 침투될 수 있으므로, 상기 번들형 탄소 나노 튜브의 적절한 분산이 가능하며, 상기 도전재 분산액의 상 안정성이 개선될 수 있다.
상기 폴리비닐리덴 플루오라이드는 상기 전극 활물질층 내에 0.1중량% 내지 10.0중량%로 포함될 수 있으며, 구체적으로 0.2중량% 내지 5.0중량%, 보다 구체적으로 0.2중량% 내지 2.5중량%로 포함될 수 있다. 상기 범위를 만족하는 경우, 상기 탄소 나노 튜브 구조체가 균일하게 분산되며, 전극의 에너지 밀도가 높으며, 전극 접착력이 우수할 수 있다.
상기 폴리비닐리덴 플루오라이드는 단일벽 탄소 나노 튜브 단위체와의 친화성을 향상시키기 위해 친수성 작용기로 변성된 변성 폴리비닐리덴 플루오라이드를 포함할 수 있다. 구체적으로, 상기 폴리비닐리덴 플루오라이드는 산 작용기 및 에스테르 작용기 중 적어도 하나의 작용기를 포함하는 변성 폴리비닐리덴 플루오라이드를 포함할 수 있다. 상기 변성 폴리비닐리덴 플루오라이드의 상기 작용기들은 단일벽 탄소 나노 튜브 단위체와 상호 작용하여, 상기 탄소 나노 튜브 구조체의 분산성을 개선시키면서, 전극 접착력을 더욱 향상시킬 수 있다.
상기 작용기는 상기 변성 폴리비닐리덴 플루오라이드 내에 0.1중량% 내지 5중량%로 포함될 수 있으며, 구체적으로 0.3중량% 내지 3중량%로 포함될 수 있다. 상기 범위를 만족하는 경우, 상기 탄소 나노 튜브 구조체의 분산성을 더욱 개선시키면서, 전극 접착력을 보다 더욱 향상시킬 수 있다.
상기 변성 폴리비닐리덴 플루오라이드는 상기 폴리비닐리덴 플루오라이드 전체 중량을 기준으로 1중량% 내지 100중량%로 포함될 수 있으며, 구체적으로 1중량% 내지 50중량%로 포함될 수 있고, 보다 구체적으로 1중량% 내지 20중량%일 수 있다. 상기 범위를 만족하는 경우, 상기 탄소 나노 튜브 구조체의 분산성이 더욱 높아지면서 전극 접착력이 더욱 개선될 수 있다.
상기 전극 활물질층은 바인더를 더 포함할 수 있다. 상기 바인더는 전극 활물질들 간 또는 전극 활물질과 집전체와의 접착력을 확보하기 위한 것으로, 당해 기술 분야에서 사용되는 일반적인 바인더들이 사용될 수 있으며, 그 종류가 특별히 한정되는 것은 아니다. 상기 바인더로는, 예를 들면, 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.
상기 바인더는 전극 활물질층 전체 중량에 대하여 10중량% 이하로 포함될 수 있으며, 바람직하게는 0.1중량% 내지 5중량%로 포함될 수 있다. 바인더의 함량이 상기 범위를 만족할 경우, 전극 저항 증가를 최소화하면서 우수한 전극 접착력을 구현할 수 있다.
상기와 같이 구성된 본 발명의 전극은 전극 접착력이 우수하다. 구체적으로는, 본 발명에 따른 전극은 90° 필 테스트(Peel Test)로 측정한 접착력이 20.2gf/20mm 이상, 바람직하게는 21gf/20mm 이상일 수 있다.
전극 제조 방법
다음으로 본 발명의 전극 제조 방법에 대해서 설명한다.
본 발명의 전극 제조 방법은, (1) 번들형 단일벽 탄소 나노 튜브 및 폴리비닐리덴 플루오라이드를 분산매에 투입하여 혼합물을 준비하는 단계; (2) 상기 혼합물에 대해 초음파 파쇄를 진행하여, 2개 내지 5,000개의 단일벽 탄소 나노 튜브 단위체가 서로 결합된 탄소 나노 튜브 구조체를 포함하는 도전재 분산액을 제조하는 단계; 및 (3) 상기 도전재 분산액 및 전극 활물질을 포함하는 전극 슬러리를 형성하는 단계;를 포함하며, 상기 탄소 나노 튜브 구조체는 상기 전극 슬러리의 고형분 내에 0.01중량% 내지 0.5중량%로 포함된다. 상기 방법에 의해, 상술한 실시예의 전극이 제조될 수 있다.
(1) 혼합물을 준비하는 단계
상기 혼합물은 번들형 탄소 나노 튜브 및 폴리비닐리덴 플루오라이드를 분산매에 투입하여 제조될 수 있다. 상기 번들형 탄소 나노 튜브는 상술한 단일벽 탄소 나노 튜브 단위체들이 결합되어 다발 형태로 존재하는 것으로, 보통 2개 이상, 실질적으로 500개 이상, 예컨대 5,000개 이상의 단일벽 탄소 나노 튜브 단위체들을 포함한다.
상기 번들형 단일벽 탄소 나노 튜브는 상기 혼합물 내에 0.1중량% 내지 1.0중량%로 포함될 수 있으며, 구체적으로 0.2중량% 내지 0.5중량%로 포함될 수 있다. 상기 범위를 만족할 시 상기 번들형 단일벽 탄소 나노 튜브가 적당한 수준으로 분산되어, 적절 수준의 탄소 나노 튜브 구조체가 형성될 수 있으며, 분산 안정성이 개선될 수 있다.
상기 폴리비닐리덴 플루오라이드는 상기 혼합물 내에 0.1중량% 내지 20중량%로 포함 될 수 있으며, 구체적으로 1중량% 내지 10중량%로 포함될 수 있다. 상기 범위를 만족할 시 상기 번들형 단일벽 탄소 나노 튜브가 적당한 수준으로 분산되어, 적절 수준의 탄소 나노 튜브 구조체가 형성될 수 있으며, 분산 안정성이 개선될 수 있다.
상기 폴리비닐리덴 플루오라이드는 상술한 실시예의 폴리비닐리덴 플루오라이드와 동일한 바, 설명을 생략한다.
상기 도전재 분산액 내에서 상기 번들형 탄소 나노 튜브와 상기 폴리비닐리덴 플루오라이드의 중량비는 1:0.1 내지 1:10일 수 있으며, 구체적으로 1:1 내지 1:10일 수 있다. 상기 범위를 만족하는 경우, 상기 번들형 단일벽 탄소 나노 튜브가 적당한 수준으로 분산되어, 적절 수준의 탄소 나노 튜브 구조체가 형성될 수 있으며, 분산 안정성이 개선될 수 있다.
상기 분산매로는, 예를 들면, 디메틸포름아미드(DMF), 디에틸 포름아미드, 디메틸 아세트아미드(DMAc), N-메틸 피롤리돈(NMP) 등의 아미드계 극성 유기 용매; 메탄올, 에탄올, 1-프로판올, 2-프로판올(이소프로필 알코올), 1-부탄올(n-부탄올), 2-메틸-1-프로판올(이소부탄올), 2-부탄올(sec-부탄올), 1-메틸-2-프로판올(tert-부탄올), 펜탄올, 헥산올, 헵탄올 또는 옥탄올 등의 알코올류; 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌 글리콜, 프로필렌 글리콜, 1,3-프로판디올, 1,3-부탄디올, 1,5-펜탄디올, 또는 헥실렌글리콜 등의 글리콜류; 글리세린, 트리메티롤프로판, 펜타에리트리톨, 또는 소르비톨 등의 다가 알코올류; 에틸렌글리콜모노 메틸에테르, 디에틸렌글리콜모노 메틸에테르, 트리에틸렌글리콜 모노 메틸에테르, 테트라 에틸렌글리콜모노 메틸에테르, 에틸렌글리콜모노 에틸에테르, 디에틸렌글리콜모노 에틸에테르, 트리에틸렌글리콜 모노 에틸에테르, 테트라 에틸렌글리콜모노 에틸에테르, 에틸렌글리콜모노 부틸 에테르, 디에틸렌글리콜모노 부틸 에테르, 트리에틸렌글리콜 모노 부틸 에테르, 또는 테트라 에틸렌글리콜모노 부틸 에테르 등의 글리콜 에테르류; 아세톤, 메틸 에틸 케톤, 메틸프로필 케톤, 또는 사이클로펜타논 등의 케톤류; 초산에틸, γ-부틸 락톤, 및 ε-프로피오락톤 등의 에스테르류 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있으나, 이에 한정되는 것은 아니다. 보다 구체적으로, 상기 분산매는 N-메틸 피롤리돈(NMP)일 수 있다.
상기 혼합물 내에서 고형분 함량은 0.1중량% 내지 20중량%일 수 있으며, 구체적으로 1중량% 내지 10중량%일 수 있다. 상기 범위를 만족하는 경우, 상기 번들형 단일벽 탄소 나노 튜브가 적당한 수준으로 분산되어, 적절 수준의 탄소 나노 튜브 구조체가 형성될 수 있으며, 분산 안정성이 개선될 수 있다. 또한, 전극 슬러리가 전극 제조 공정에 적합한 점도와 탄성을 가질 수 있으며, 전극 슬러리의 고형분 함량을 높이는 것에도 기여한다.
(2) 도전재 분산액을 제조하는 단계
상기 혼합물 내에서 상기 번들형 탄소 나노 튜브를 분산시키는 공정은, 초음파 파쇄법(sonification), 호모게나이져, 비즈밀, 볼밀, 바스켓 밀, 어트리션밀, 만능 교반기, 클리어 믹서, 스파이크 밀 또는 TK믹서 등과 같은 혼합 장치를 이용하여 수행될 수 있다. 그 중에서도, 초음파 파쇄법이 바람직할 수 있다. 초음파 파쇄법은 강력한 세기의 초음파가 용액 속으로 방출 될 때, 극한 진동에 의해서 수많은 진공 상태의 버블(bubble)이 생기게 되고, 이러한 버블들은 순간적으로 서로 뭉치기도 또는 커지기도 하지만, 즉시 뒤이은 진동에 의해 격렬하게 연쇄적으로 파쇄하게 된다. 이렇게 버블의 연속적인 파쇄가 진행 될 때 용액의 격한 흐름, 또는 소용돌이 현상에 의해 강력한 충격파가 발생이 되며, 이러한 충격파의 에너지를 통해, 번들형 탄소 나노 튜브를 분산(Debundling)시킬 수 있게 된다. 상기 초음파 파쇄법은 번들형 탄소 나노 튜브 내 단일벽 탄소 나노 튜브의 길이 방향의 절단 없이, 나노 수준의 미세한 분산을 가능하게 한다. 이러한 이유로 초음파 파쇄법 방식이 바람직하다.
상기 초음파 파쇄법은 다음과 같을 수 있다. 상기 혼합물에 대해 초음파를 가하여 상기 혼합물 내 고형분을 분산시킬 수 있다.
이 때, 상기 초음파 파쇄법이 수행되는 조건은 다음과 같다.
상기 초음파 파쇄는 800W 내지 1,500W의 출력으로 수행될 수 있으며, 구체적으로 800W 내지 1,200W 의 출력으로 수행될 수 있다. 상기 초음파 파쇄는 0.5시간 내지 5시간 동안 수행될 수 있으며, 구체적으로 1시간 내지 3시간 동안 수행될 수 있다. 상기 범위를 만족할 시, 상기 번들형 탄소 나노 튜브가 적정 수준으로 분리되어 상기 탄소 나노 튜브 구조체가 형성될 수 있다. 상기 수행 시간은 초음파 파쇄가 적용되는 총 시간을 의미하므로, 예컨대 몇 회의 초음파 파쇄를 수행했다면 그 몇 회에 걸친 총 시간을 의미한다.
상기 조건들은 상기 번들형 탄소 나노 튜브가 적절한 수준으로 분산되어, 제조된 도전재 분산액 내에서 2개 내지 5,000개의 단일벽 탄소 나노 튜브 단위체가 서로 나란히 결합되어 있는 탄소 나노 튜브 구조체를 형성하기 위한 것이다. 이는 혼합물의 조성, 초음파 파쇄 조건 등이 엄격히 조절되는 경우에 있어서만 달성될 수 있다.
(3) 전극 슬러리 형성 단계
상기와 같은 과정을 통해 도전재 분산액이 제조되면, 상기 도전재 분산액에 전극 활물질을 혼합하여 전극 슬러리를 형성한다. 이때, 상기 전극 활물질로는 상술한 전극 활물질들이 사용될 수 있다.
또한, 상기 전극 슬러리에는 필요에 따라, 바인더 및 용매가 더 포함될 수 있다. 이때, 상기 바인더로는 상술한 실시예의 바인더가 사용될 수 있다. 상기 용매로는, 예를 들면, 디메틸포름아미드(DMF), 디에틸 포름아미드, 디메틸 아세트아미드(DMAc), N-메틸 피롤리돈(NMP) 등의 아미드계 극성 유기 용매; 메탄올, 에탄올, 1-프로판올, 2-프로판올(이소프로필 알코올), 1-부탄올(n-부탄올), 2-메틸-1-프로판올(이소부탄올), 2-부탄올(sec-부탄올), 1-메틸-2-프로판올(tert-부탄올), 펜탄올, 헥산올, 헵탄올 또는 옥탄올 등의 알코올류; 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌 글리콜, 프로필렌 글리콜, 1,3-프로판디올, 1,3-부탄디올, 1,5-펜탄디올, 또는 헥실렌글리콜 등의 글리콜류; 글리세린, 트리메티롤프로판, 펜타에리트리톨, 또는 소르비톨 등의 다가 알코올류; 에틸렌글리콜모노 메틸에테르, 디에틸렌글리콜모노 메틸에테르, 트리에틸렌글리콜 모노 메틸에테르, 테트라 에틸렌글리콜모노 메틸에테르, 에틸렌글리콜모노 에틸에테르, 디에틸렌글리콜모노 에틸에테르, 트리에틸렌글리콜 모노 에틸에테르, 테트라 에틸렌글리콜모노 에틸에테르, 에틸렌글리콜모노 부틸 에테르, 디에틸렌글리콜모노 부틸 에테르, 트리에틸렌글리콜 모노 부틸 에테르, 또는 테트라 에틸렌글리콜모노 부틸 에테르 등의 글리콜 에테르류; 아세톤, 메틸 에틸 케톤, 메틸프로필 케톤, 또는 사이클로펜타논 등의 케톤류; 초산에틸, γ-부틸 락톤, 및 ε-프로피오락톤 등의 에스테르류 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있으나, 이에 한정되는 것은 아니다. 상기 용매는 선 분산액에 사용된 분산매와 동일하거나 상이할 수 있으며, 바람직하게는 N-메틸피롤리돈(NMP, N-methylpyrrolidone일 수 있다.
한편, 이때, 상기 전극 활물질은 전극 슬러리 내의 전체 고형분 함량을 기준으로 70중량% 내지 99.5중량%, 바람직하게는 80중량% 내지 99중량%로 포함될 수 있다. 전극 활물질의 함량이 상기 범위를 만족할 때, 우수한 에너지 밀도, 전극 접착력 및 전기 전도도를 구현할 수 있다.
또한, 바인더가 추가적으로 포함될 경우, 상기 바인더는 전극 슬러리 내의 전체 고형분 함량을 기준으로 10중량% 이하, 구체적으로 0.1중량% 내지 5중량%로 포함될 수 있다.
상기 전극 슬러리 내에서 고형분 함량은 60중량% 내지 80중량%일 수 있으며, 구체적으로 65중량% 내지 75중량%일 수 있다. 상기 범위를 만족하는 경우, 전극 슬러리 도포 후 건조 시, 용매의 증발에 의한 도전재, 바인더의 마이그레이션(migration)이 억제될 수 있으며, 전극 접착력과 전기 전도도가 우수한 전극이 제조될 수 있다. 나아가, 압연 시 전극의 변형이 적은 고품질의 전극이 제조될 수 있다.
상기 탄소 나노 튜브 구조체는 상기 전극 슬러리의 고형분 내에 0.01중량% 내지 0.5중량%로 포함될 수 있으며, 구체적으로 0.02중량% 내지 0.2중량%로 포함될 수 있다. 상기 범위를 만족할 시, 전극의 도전성 경로가 확보되어 전극 저항이 낮은 수준을 유지하면서도 전지의 수명 특성이 개선될 수 있다.
다음으로, 상기와 같이 제조된 전극 슬러리를 도포하고, 건조시켜 전극 활물질층을 형성한다. 구체적으로는, 상기 전극 활물질층은 전극 집전체 상에 전극 슬러리를 도포한 후, 건조하는 방법, 또는 전극 슬러리를 별도의 지지체 상에 도포한 다음, 이 지지체로부터 박리하여 얻은 필름을 전극 집전체 상에 라미네이션하는 방법을 통해 형성할 수 있다. 필요에 따라, 상기와 같은 방법을 통해 전극 활물질층이 형성한 다음, 압연하는 공정을 추가로 실시할 수 있다.
이때, 건조 및 압연을 최종적으로 제조하고자 하는 전극의 물성을 고려하여 적절한 조건에서 수행될 수 있으며, 특별히 한정되지 않는다.
이차 전지
다음으로, 본 발명에 따른 이차 전지에 대해 설명한다.
본 발명에 따른 이차 전지는, 상술한 본 발명의 전극을 포함한다. 이때, 상기 전극은 양극 및 음극 중 적어도 하나일 수 있다. 구체적으로는 본 발명에 따른 이차 전지는 양극, 음극, 상기 양극 및 음극 사이에 게재된 분리막 및 전해질을 포함할 수 있으며, 이때, 상기 양극 및 음극 중 적어도 하나 이상이 상술한 본 발명의 전극, 즉, 전극 활물질 및 탄소 나노 튜브 구조체를 포함하는 전극 활물질층을 포함하는 전극일 수 있다. 바람직하게는, 본 발명의 전극은 양극일 수 있다. 본 발명에 따른 전극에 대해서는 상술하였으므로, 구체적인 설명은 생략하고, 이하에서는 나머지 구성요소들에 대해서만 설명하기로 한다.
상기 분리막은 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 이차 전지에서 분리막으로 사용되는 것이라면 특별한 제한 없이 사용가능하다. 구체적으로는, 상기 분리막으로 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
상기 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 비수계 유기용매와 금속염을 포함할 수 있다.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카보네이트, 에틸렌 카보네이트, 부틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
특히, 상기 카보네이트계 유기 용매 중 고리형 카보네이트인 에틸렌 카보네이트 및 프로필렌 카보네이트는 고점도의 유기 용매로서 유전율이 높아 리튬염을 잘 해리시키므로 바람직하게 사용될 수 있으며, 이러한 고리형 카보네이트에 디메틸카보네이트 및 디에틸카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 갖는 전해질을 만들 수 있어 더욱 바람직하게 사용될 수 있다.
상기 금속염은 리튬염을 사용할 수 있고, 상기 리튬염은 상기 비수 전해액에 용해되기 좋은 물질로서, 예를 들어, 상기 리튬염의 음이온으로는 F-, Cl-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택되는 1종 이상을 사용할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다.
상기와 같은 본 발명에 따른 이차전지는, 종래의 이차전지에 비해 전극 접착력이 우수하며, 고온에서 우수한 수명 특성을 갖는다.
이하, 구체적인 실시예를 통해 본 발명을 더 자세히 설명한다.
제조예 1: 도전재 분산액의 제조
평균 직경이 1.5nm이며 평균 길이가 5㎛인 단일벽 탄소나노튜브 단위체로 이루어진 번들형 탄소나노튜브(비표면적이 650m2/g) 0.2중량부와 폴리비닐리덴 플루오라이드(중량평균분자량: 685,000g/mol. Standard Homo-polymer) 2.0중량부를 분산매인 N-메틸피롤리돈(NMP, N-methylpyrrolidone) 97.8중량부에 혼합하여, 고형분이 2.2중량%가 되도록 혼합물을 제조하였다.
상기 혼합물을 초음파 파쇄 방법으로 교반하여 번들형 탄소나노튜브를 분산매 내에 분산시켜 도전재 분산액을 제조하였다. 이 때, 초음파 파쇄는 1,000W 출력으로 1.5시간 동안 수행되었다. 상기 도전재 분산액은 2개 내지 5,000개의 단일벽 탄소나노튜브 단위체들이 나란히 결합된 형태의 탄소 나노 튜브 구조체를 포함하였다. 상기 도전재 분산액 내에서 상기 탄소 나노 튜브 구조체는 0.2중량%, 상기 폴리비닐리덴 플루오라이드는 2.0중량%였다.
제조예 2: 도전재 분산액의 제조
상기 폴리비닐리덴 플루오라이드가 산 작용기를 2.1중량%로 포함하는 변성 폴리비닐리덴 플루오라이드(중량평균분자량 880,000g/mol)인 것을 제외하고는, 제조예 1과 동일한 방법으로 도전재 분산액을 제조하였다.
제조예 3: 도전재 분산액의 제조
평균 직경이 10nm이며 평균 길이가 1㎛인 다중벽 탄소나노튜브 단위체로 이루어진 번들형 탄소나노튜브(비표면적이 185m2/g) 4.0중량부와 산 작용기를 2.1중량%로 포함하는 변성 폴리비닐리덴 플루오라이드(중량평균분자량 880,000g/mol) 0.8중량부를 분산매인 N-메틸피롤리돈(NMP, N-methylpyrrolidone) 95.2중량부에 혼합하여, 고형분이 4.8중량%가 되도록 혼합물을 제조하였다.
상기 혼합물을 초음파 파쇄 방법으로 교반하여 번들형 탄소나노튜브를 분산매 내에 분산시켜 도전재 분산액을 제조하였다. 이 때, 초음파 파쇄는 1,000W 출력으로 1.5시간 동안 수행되었다. 상기 도전재 분산액 내에서 상기 다중벽 탄소 나노 튜브 단위체는 4.0중량%, 상기 폴리비닐리덴 플루오라이드는 0.8중량%였다.
제조예 4: 도전재 분산액의 제조
평균 직경이 1.5nm이며 평균 길이가 5㎛ 이상인 단일벽 탄소나노튜브 단위체로 이루어진 번들형 탄소나노튜브(비표면적이 650m2/g) 0.2중량부와 폴리비닐리덴 플루오라이드(중량평균분자량: 220,000g/mol, Standard Homo-polymer) 4.0중량부를 분산매인 N-메틸피롤리돈(NMP, N-methylpyrrolidone) 95.8중량부에 혼합하여, 고형분이 4.2중량%가 되도록 혼합물을 제조하였다.
상기 혼합물을 초음파 파쇄 방법으로 교반하여 번들형 탄소나노튜브를 분산매 내에 분산시켜 도전재 분산액을 제조하였다. 이 때, 초음파 파쇄는 2,000W 출력으로 5시간 동안 수행되었다.
상기 도전재 분산액 내에서 상기 번들형 탄소나노튜브는 0.2중량%, 상기 폴리비닐리덴 플루오라이드는 4.0중량%였다.
도 1을 참조하면, 제조예 1의 도전재 분산액 내에서는 2 내지 5,000개의 단일벽 탄소 나노 튜브 단위체가 서로 나란히 결합된 탄소 나노 튜브 구조체가 도전재의 대부분을 구성하면서 존재한다(도 1의 (a), (b) 참조). 반면, 제조예 4의 도전재 분산액 내에서는 대부분의 단일벽 탄소 나노 튜브 단위체가 한가닥씩 존재하는 것을 알 수 있다(도 1의 (c), (d) 참조).
실시예 및 비교예
실시예 1: 양극의 제조
제조예 1의 도전재 분산액에 LiNi0.6Co0.2Mn0.2O2(NCM622), 변성 폴리비닐리덴 플루오라이드(변성 PVDF, KF9700, 중량평균분자량: 880,000g/mol, 산 작용기를 2.1중량%로 포함)를 투입하고, N-메틸피롤리돈(NMP, N-methylpyrrolidone)을 추가로 투입하여 고형분 함량이 70.1중량%인 양극 슬러리를 제조하였다. 상기 양극 슬러리를 20㎛ 두께의 Al 박막 집전체 상에 도포한 후, 130℃에서 건조시키고 압연하여 양극 활물질층을 포함하는 양극을 제조하였다.
상기 양극 활물질층에서 상기 LiNi0.6Co0.2Mn0.2O2(NCM622)은 97.6중량%, 상기 폴리비닐리덴 플루오라이드는 2.3중량%, 상기 탄소나노튜브 구조체는 0.1중량%로 포함된다. 상기 폴리비닐리덴 플루오라이드 전체 중량을 기준으로 상기 변성 폴리비닐리덴 플루오라이드의 함량은 1.8중량%였다.
실시예 2: 양극의 제조
제조예 1의 도전재 분산액 대신, 제조예 2의 도전재 분산액을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 양극을 제조하였다. 상기 양극에 포함된 폴리비닐리덴 플루오라이드는 모두 변성 폴리비닐리덴 플루오라이드였다.
실시예 3: 양극의 제조
제조예 2의 도전재 분산액에 LiNi0.6Co0.2Mn0.2O2(NCM622), 변성 폴리비닐리덴 플루오라이드(변성 PVDF, KF9700, 중량평균분자량: 880,000g/mol, 산 작용기를 2.1중량%로 포함)를 투입하고, N-메틸피롤리돈(NMP, N-methylpyrrolidone)을 추가로 투입하여 고형분 함량이 70.1중량%인 양극 슬러리를 제조하였다. 상기 양극 슬러리를 20㎛ 두께의 Al 박막 집전체 상에 도포한 후, 130℃에서 건조시키고 압연하여 양극 활물질층을 포함하는 양극을 제조하였다.
상기 양극 활물질층에서 상기 LiNi0.6Co0.2Mn0.2O2(NCM622)은 97.9중량%, 상기 폴리비닐리덴 플루오라이드는 2.05중량%, 상기 탄소나노튜브 구조체는 0.05중량%로 포함된다. 상기 양극에 포함된 폴리비닐리덴 플루오라이드는 모두 변성 폴리비닐리덴 플루오라이드였다.
비교예 1: 양극의 제조
(1) 도전재 분산액의 제조
비표면적이 240m2/g인 카본 블랙과 변성 폴리비닐리덴 플루오라이드(변성 PVDF, KF9700, 중량평균분자량: 880,000g/mol, 산 작용기를 2.1중량%로 포함)를 용매인 N-메틸피롤리돈(N-Methylpyrrolidone: NMP)에 혼합하여, 고형분이 72.0중량%가 되도록 혼합물을 제조하였다.
상기 혼합물을 초음파 파쇄 방법으로 교반하여 번들형 탄소나노튜브를 분산매 내에 분산시켜 도전재 분산액을 제조하였다. 이 때, 초음파 파쇄는 1,000W 출력으로 1.5시간 동안 수행되었다. 상기 도전재 분산액 내에서 상기 카본 블랙은 15중량%, 상기 변성 폴리비닐리덴 플루오라이드는 1.5중량%였다.
(2) 양극의 제조
상기 도전재 분산액에 LiNi0.6Co0.2Mn0.2O2(NCM622), 변성 폴리비닐리덴 플루오라이드(변성 PVDF, KF9700, 중량평균분자량: 880,000g/mol, 산 작용기를 2.1중량%로 포함)를 투입하고, N-메틸피롤리돈(NMP, N-methylpyrrolidone)를 추가로 투입하여 고형분 함량이 72.0중량%인 양극 슬러리를 제조하였다. 상기 양극 슬러리를 20㎛ 두께의 Al 박막 집전체 상에 도포한 후, 130℃에서 건조시키고 압연하여 양극 활물질층을 포함하는 양극을 제조하였다.
상기 양극 활물질층에서 상기 LiNi0.6Co0.2Mn0.2O2(NCM622)은 96.35중량%, 상기 변성 폴리비닐리덴 플루오라이드는 2.15중량%, 상기 카본 블랙은 1.5중량%로 포함된다.
비교예 2: 양극의 제조
제조예 3의 도전재 분산액에 LiNi0.6Co0.2Mn0.2O2(NCM622), 변성 폴리비닐리덴 플루오라이드(변성 PVDF, KF9700, 중량평균분자량: 880,000g/mol, 산 작용기를 2.1중량%로 포함)를 투입하고, N-메틸피롤리돈(NMP, N-methylpyrrolidone)을 추가로 투입하여 고형분 함량이 72.1중량%인 양극 슬러리를 제조하였다. 상기 양극 슬러리를 20㎛ 두께의 Al 박막 집전체 상에 도포한 후, 130℃에서 건조시키고 압연하여 양극 활물질층을 포함하는 양극을 제조하였다.
상기 양극 활물질층에서 상기 LiNi0.6Co0.2Mn0.2O2(NCM622)은 97.48중량%, 상기 폴리비닐리덴 플루오라이드는 1.92중량%, 상기 다중벽 탄소나노튜브 단위체는 0.6중량%으로 포함된다.
비교예 3: 양극의 제조
제조예 3의 도전재 분산액에 LiNi0.6Co0.2Mn0.2O2(NCM622), 변성 폴리비닐리덴 플루오라이드(변성 PVDF, KF9700, 중량평균분자량: 880,000g/mol, 산 작용기를 2.1중량%로 포함)를 투입하고, N-메틸피롤리돈(NMP, N-methylpyrrolidone)을 추가로 투입하여 고형분 함량이 72.0중량%인 양극 슬러리를 제조하였다. 상기 양극 슬러리를 20㎛ 두께의 Al 박막 집전체 상에 도포한 후, 130℃에서 건조시키고 압연하여 양극 활물질층을 포함하는 양극을 제조하였다.
상기 양극 활물질층에서 상기 LiNi0.6Co0.2Mn0.2O2(NCM622)은 97.04중량%, 상기 폴리비닐리덴 플루오라이드는 2.16중량%, 상기 다중벽 탄소나노튜브 단위체는 0.8중량%으로 포함된다.
비교예 4: 양극의 제조
제조예 2의 도전재 분산액 대신, 제조예 4의 도전재 분산액을 사용한 것을 제외하고는, 실시예 3과 동일한 방법으로 양극을 제조하였다. 상기 양극 활물질층에서 상기 LiNi0.6Co0.2Mn0.2O2(NCM622)은 97.9중량%, 상기 폴리비닐리덴 플루오라이드는 2.05중량%, 상기 탄소나노튜브 구조체는 0.05중량%로 포함된다. 상기 폴리비닐리덴 플루오라이드 전체 중량을 기준으로 상기 변성 폴리비닐리덴 플루오라이드의 함량은 2.05중량%였다.
실험예 1: 양극의 관찰
실시예 1 내지 3 및 비교예 1 내지 4에 의해 제조된 양극의 활물질층을 주사전자 현미경을 통해 관찰하였다. 도 2 내지 도 4에는 각각 실시예 1 내지 3의 전극(순서대로)을 촬영한 SEM 사진이 도시되어 있으며, 도 5 내지 8에는 각각 비교예 1 내지 4의 전극(순서대로)을 촬영한 SEM 사진이 도시되어 있다.
도 2 내지 도 4의 양극을 보면, 단일벽 탄소 나노 튜브 단위체가 2 내지 10개씩 나란히 결합된 탄소 나노 튜브 구조체가 로프(rope) 형태를 가지는 것을 확인할 수 있다. 그러나, 카본 블랙 또는 다중벽 탄소 나노 튜브 또는 완전히 분산된 단일벽 탄소 나노 튜브를 사용한 비교예 1 내지 4의 전극의 경우, 도 5 내지 도 8에 도시된 바와 같이, 상기 탄소 나노 튜브 구조체가 형성되지 않고, 활물질층 표면에 도전재들이 응집되어 있음을 확인할 수 있다.
실험예 2: 양극 슬러리의 분체 저항 측정
실시예 1 내지 3 및 비교예 1 내지 4의 양극 제조에 사용된 양극 슬러리를 130℃의 온도에서 3시간 동안 진공 건조시킨 뒤, 분쇄하여 분말을 제조하였다. 이 후, Mitsubishi Chem Analytic사의 Loresta GP 장비를 이용하여, 25℃, 상대습도 50% 분위기에서 하중 9.8MPa 조건으로 펠렛으로 제조하였다. 이 후, 4-probe 법으로 분체 저항을 측정하였다. 측정 결과는 하기 표 1에 나타내었다.
실험예 3: 양극 슬러리의 점도 측정
실시예 1 내지 3 및 비교예 1 내지 4의 양극 제조 시 형성된 양극 슬러리를 250mL 병에 2/3 부피 이상 채운 다음, 상온에서 Brookfield DV2T LV TJ0 모델 장비로 12rpm, spindle 63(LV-03)으로 점도를 측정하였다. 측정 결과는 하기 표 1에 나타내었다.
실험예 4: 양극 접착력 측정
실시예 1 내지 3 및 비교예 1 내지 4의 양극의 접착력을 90° 필 테스트(Peel Test) 방법으로 측정하였다.
구체적으로는, 슬라이드 글라스에 양면 테이프를 붙이고 그 위에 20mm×180mm로 타발한 전극을 올려 2kg 롤러로 10회 왕복하여 접착시킨 후, UTM(TA 社) 기기를 이용하여 200mm/min으로 당겨 슬라이드 글라스로부터 박리되는 힘을 측정하였다. 이때, 슬라이드 글라스와 전극의 측정각도는 90°였다. 측정 결과는 하기 표 1에 나타내었다.
실험예 5: 전지 수명 특성 평가
실시예 1 내지 3 및 비교예 1 내지 4의 양극과, 음극, 15㎛ 두께의 폴리에틸렌계 분리막을 조합하여 모노셀을 제조하였다. 이때, 상기 음극은 흑연과 SBR/CMC, 도전재를 중량비 96.5 : 2.5 : 1의 비율로 혼합하여 음극 슬러리를 제조하고, 이를 10㎛ 구리 호일에 코팅하여, 100℃에서 건조하여 제조하였다. 그런 다음, 디메틸카보네이트(DEC)와 에틸렌 카보네이트(EC)의 혼합용매(DEC:EC=1:1)에 1M의 LiPF6를 용해시킨 전해액을 주입하여 리튬 이차전지를 제작하였다.
상기와 같이 제조된 리튬 이차 전지를 45℃에서 0.33C/0.33C 조건으로 60회 동안 충방전한 후, 측정된 충방전 효율로 수명 특성을 측정하였다. 측정 결과는 하기 표 1에 나타내었다.
실시예 1 실시예 2 실시예 3 비교예 1 비교예 2 비교예 3 비교예 4
도전재 비표면적(m2/g) 650 650 650 240 185 185 650
도전재 함량(중량%) 0.1(탄소 나노 튜브 구조체) 0.1(탄소 나노 튜브 구조체) 0.05(탄소 나노 튜브 구조체) 1.5(카본블랙) 0.6(다중벽 탄소 나노 튜브 단위체) 0.8(다중벽 탄소 나노 튜브 단위체) 0.05(완전 분산된 탄소 나노 튜브 단위체)
폴리 비닐리덴 플루오라이드 함량(중량%) 1.8 1.8 1.8 2.0 1.8 2.0 1.8
양극 슬러리 고형분(중량%) 70.1 70.1 70.1 72.0 72.1 72.0 70.1
양극 슬러리 점도(cPs) 22,600 24,700 15,900 11,900 21,500 32,250 18,500
양극 슬러리 분체 저항(Ω·cm) 28.5 41.5 53.8 154.1 72.6 29.7 1,590
양극 접착력(gf/20mm) 21.6 22.8 22.4 19.8 14.2 19.1 3.2
수명 특성(%) 97.5 96.9 96.4 93.7 94.6 95.3 85.6
상기 표 1을 참조하면, 탄소 나노 튜브 구조체를 포함하는 실시예 1 내지 3의 경우, 양극 접착력과 수명 특성이 우수한 것을 알 수 있다. 실시예 3의 경우, 탄소 나노 튜브 구조체의 함량이 매우 적어 슬러리 분체 저항이 다소 상승하는 것으로 나타났으나, 셀을 구동하기에 무리가 없는 정도였으며, 수명 특성이 우수하게 나타났다.
한편, 비교예 1의 경우, 양극 슬러리의 점도가 너무 낮아 전극 활물질층이 균일하게 코팅되기 어렵고, 분체 저항 및 전극 접착력 특성이 매우 나쁘게 나타났으며, 이로 인해 전지 적용 시에 수명 특성도 저하되는 것으로 나타났다.
비교예 2의 경우, 양극 슬러리의 점도 특성은 양호하게 나타났으나, 분체 저항 및 전극 접착력 특성이 떨어지고, 이로 인해 전지 적용 시에 수명 특성도 저하되는 것으로 나타났다.
비교예 3의 경우, 분체 저항 특성은 양호하게 나타났으나, 양극 슬러리의 점도가 너무 높아 전극 제조 시에 공정성이 떨어지며, 실시예들과 비교했을 때, 전극 접착력 특성 및 수명 특성도 떨어지는 것으로 나타났다.
비교예 4의 경우, 단일벽 탄소 나노 튜브 단위체가 지나치게 분산되어 양극 슬러리의 분체 저항이 지나치게 높았으며, 접착력과 수명 특성이 매우 낮은 것을 알 수 있다.

Claims (18)

  1. 전극 활물질층을 포함하고,
    상기 전극 활물질층은,
    전극 활물질;
    폴리비닐리덴 플루오라이드; 및
    도전재를 포함하며,
    상기 도전재는 2개 내지 5,000개의 단일벽 탄소 나노 튜브 단위체가 서로 결합된 탄소 나노 튜브 구조체를 포함하며,
    상기 탄소 나노 튜브 구조체는 상기 전극 활물질층 내에 0.01중량% 내지 0.5중량%로 포함되는, 전극.
  2. 청구항 1에 있어서,
    상기 전극 내에서, 상기 탄소 나노 튜브 구조체들은 서로 연결되어 망 구조를 나타내는, 전극.
  3. 청구항 1에 있어서,
    상기 탄소 나노 튜브 구조체 내에서,
    상기 단일벽 탄소 나노 튜브 단위체들이 나란하게 배열되어 결합되어 있는, 전극.
  4. 청구항 1에 있어서,
    상기 단일벽 탄소 나노 튜브 단위체의 평균 직경은 0.5nm 내지 10nm인, 전극.
  5. 청구항 1에 있어서,
    상기 단일벽 탄소 나노 튜브 단위체의 평균 길이는 1㎛ 내지 100㎛인, 전극.
  6. 청구항 1에 있어서,
    상기 탄소 나노 튜브 구조체의 평균 직경은 1nm 내지 300nm인, 전극.
  7. 청구항 1에 있어서,
    상기 단일벽 탄소 나노 튜브 단위체의 비표면적은 500m2/g 내지 1000m2/g인, 전극.
  8. 청구항 1에 있어서,
    상기 폴리비닐리덴 플루오라이드의 중량평균분자량은 10,000g/mol 내지 1,000,000g/mol인, 전극.
  9. 청구항 1에 있어서,
    상기 폴리비닐리덴 플루오라이드는 산 작용기 및 에스테르 작용기 중 적어도 하나의 작용기를 포함하는 변성 폴리비닐리덴 플루오라이드를 포함하는, 전극.
  10. 청구항 9에 있어서,
    상기 작용기는 상기 변성 폴리비닐리덴 플루오라이드 내에 0.1중량% 내지 5중량%로 포함되는, 전극.
  11. 청구항 9에 있어서,
    상기 변성 폴리비닐리덴 플루오라이드는 상기 폴리비닐리덴 플루오라이드 전체 중량을 기준으로 1중량% 내지 100중량%로 포함되는, 전극.
  12. 청구항 1에 있어서,
    상기 전극은 90°필 테스트(Peel Test)로 측정한 접착력이 20.2gf/20mm 이상인, 전극.
  13. 청구항 1에 있어서,
    상기 전극은 양극인, 전극.
  14. 번들형 단일벽 탄소 나노 튜브 및 폴리비닐리덴 플루오라이드를 분산매에 투입하여 혼합물을 준비하는 단계;
    상기 혼합물에 대해 초음파 파쇄를 진행하여, 2개 내지 5,000개의 단일벽 탄소 나노 튜브 단위체가 서로 결합된 탄소 나노 튜브 구조체를 포함하는 도전재 분산액을 제조하는 단계; 및
    상기 도전재 분산액 및 전극 활물질을 포함하는 전극 슬러리를 형성하는 단계;를 포함하며,
    상기 탄소 나노 튜브 구조체는 상기 전극 슬러리의 고형분 내에 0.01중량% 내지 0.5중량%로 포함되는, 전극의 제조 방법.
  15. 청구항 14에 있어서,
    상기 초음파 파쇄는 800W 내지 1500W의 출력으로 0.5시간 내지 5시간 동안 진행되는, 전극의 제조 방법.
  16. 청구항 14에 있어서,
    상기 번들형 단일벽 탄소 나노 튜브는 상기 혼합물 내에 0.1중량% 내지 1.0중량%로 포함되는, 전극의 제조 방법.
  17. 청구항 14에 있어서,
    상기 폴리비닐리덴 플루오라이드는 상기 혼합물 내에 0.1중량% 내지 20중량%로 포함되는, 전극의 제조 방법.
  18. 청구항 1 내지 13 중 어느 하나의 전극을 포함하는, 이차 전지.
PCT/KR2019/004127 2018-04-06 2019-04-08 전극, 상기 전극을 포함하는 이차 전지, 및 상기 전극의 제조 방법 WO2019194662A1 (ko)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2021502684A JP7164244B2 (ja) 2018-04-06 2019-04-08 電極、該電極を含む二次電池、および該電極の製造方法
EP24151176.5A EP4329032A3 (en) 2018-04-06 2019-04-08 Electrode, secondary battery including the electrode, and method of preparing the electrode
PL19781670.5T PL3761417T3 (pl) 2018-04-06 2019-04-08 Elektroda, bateria akumulatorowa zawierająca tę elektrodę oraz sposób wytwarzania tej elektrody
CN202410043050.1A CN117913278A (zh) 2018-04-06 2019-04-08 电极、包括所述电极的二次电池和制备所述电极的方法
US17/043,362 US11831006B2 (en) 2018-04-06 2019-04-08 Electrode, secondary battery including the electrode, and method of preparing the electrode
CN201980024445.4A CN111954949B (zh) 2018-04-06 2019-04-08 电极、包括所述电极的二次电池和制备所述电极的方法
EP19781670.5A EP3761417B1 (en) 2018-04-06 2019-04-08 Electrode, secondary battery comprising same electrode, and method for manufacturing same electrode
US18/381,475 US20240079554A1 (en) 2018-04-06 2023-10-18 Electrode, Secondary Battery Including the Electrode, and Method of Preparing the Electrode

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180040574 2018-04-06
KR10-2018-0040574 2018-04-06
KR10-2019-0040100 2019-04-05
KR1020190040100A KR102285981B1 (ko) 2018-04-06 2019-04-05 전극, 상기 전극을 포함하는 이차 전지, 및 상기 전극의 제조 방법

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/043,362 A-371-Of-International US11831006B2 (en) 2018-04-06 2019-04-08 Electrode, secondary battery including the electrode, and method of preparing the electrode
US18/381,475 Continuation US20240079554A1 (en) 2018-04-06 2023-10-18 Electrode, Secondary Battery Including the Electrode, and Method of Preparing the Electrode

Publications (1)

Publication Number Publication Date
WO2019194662A1 true WO2019194662A1 (ko) 2019-10-10

Family

ID=68100854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/004127 WO2019194662A1 (ko) 2018-04-06 2019-04-08 전극, 상기 전극을 포함하는 이차 전지, 및 상기 전극의 제조 방법

Country Status (1)

Country Link
WO (1) WO2019194662A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114730868A (zh) * 2020-04-22 2022-07-08 株式会社Lg新能源 硅-碳复合负极活性材料、包括硅-碳复合负极活性材料的负极、和包括负极的二次电池
JP2023502611A (ja) * 2020-04-22 2023-01-25 エルジー エナジー ソリューション リミテッド 負極及びそれを含む二次電池
JP2023512389A (ja) * 2021-03-19 2023-03-27 積水化学工業株式会社 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
JP7466982B2 (ja) 2020-08-28 2024-04-15 エルジー エナジー ソリューション リミテッド 負極および前記負極を含む二次電池

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130132550A (ko) * 2010-12-21 2013-12-04 바이엘 인텔렉쳐 프로퍼티 게엠베하 분말형 중합체/탄소 나노튜브 혼합물의 제조 방법
KR20150033439A (ko) * 2013-09-24 2015-04-01 삼성에스디아이 주식회사 2차전지용 바인더 조성물, 이를 채용한 양극과 리튬전지
WO2015053411A1 (ja) 2013-10-08 2015-04-16 日本ゼオン株式会社 金属複合材料およびその製造方法
KR20160066498A (ko) * 2014-12-02 2016-06-10 주식회사 엘지화학 이차전지용 바인더 및 이를 포함하는 이차전지
JP2017008475A (ja) 2010-10-14 2017-01-12 フェアテック インヴェストメント リミテッド 不織布のニードルパンチフェルト生地、その製造方法、および、それにより作られたフィルター
KR20170037458A (ko) * 2015-09-25 2017-04-04 주식회사 엘지화학 탄소 나노튜브 분산액 및 이의 제조방법
KR20170118968A (ko) * 2013-05-31 2017-10-25 쇼와 덴코 가부시키가이샤 리튬 이온 2차전지용 부극재
US20170338468A1 (en) 2015-01-13 2017-11-23 Lg Chem, Ltd. Method of preparing composition for forming positive electrode of lithium secondary battery, and positive electrode and lithium secondary battery manufactured by using the composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017008475A (ja) 2010-10-14 2017-01-12 フェアテック インヴェストメント リミテッド 不織布のニードルパンチフェルト生地、その製造方法、および、それにより作られたフィルター
KR20130132550A (ko) * 2010-12-21 2013-12-04 바이엘 인텔렉쳐 프로퍼티 게엠베하 분말형 중합체/탄소 나노튜브 혼합물의 제조 방법
KR20170118968A (ko) * 2013-05-31 2017-10-25 쇼와 덴코 가부시키가이샤 리튬 이온 2차전지용 부극재
KR20150033439A (ko) * 2013-09-24 2015-04-01 삼성에스디아이 주식회사 2차전지용 바인더 조성물, 이를 채용한 양극과 리튬전지
WO2015053411A1 (ja) 2013-10-08 2015-04-16 日本ゼオン株式会社 金属複合材料およびその製造方法
KR20160066498A (ko) * 2014-12-02 2016-06-10 주식회사 엘지화학 이차전지용 바인더 및 이를 포함하는 이차전지
US20170338468A1 (en) 2015-01-13 2017-11-23 Lg Chem, Ltd. Method of preparing composition for forming positive electrode of lithium secondary battery, and positive electrode and lithium secondary battery manufactured by using the composition
KR20170037458A (ko) * 2015-09-25 2017-04-04 주식회사 엘지화학 탄소 나노튜브 분산액 및 이의 제조방법

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KRESTININ A. V., DREMOVA N. N., KNEREL’MAN E. I., BLINOVA L. N., ZHIGALINA V. G., KISELEV N. A.: "Characterization of SWCNT products manufactured in Russia and the prospects for their industrial application", NANOTECHNOLOGIES IN RUSSIA, MAIK NAUKA - INTERPERIODICA, RU, vol. 10, no. 7-8, 1 July 2015 (2015-07-01), RU , pages 537 - 548, XP093015566, ISSN: 1995-0780, DOI: 10.1134/S1995078015040096
KUSUMOTO CHEMICALS CO., LTD.: "Single layer carbon nanotube -TUBALL™BATT, TUBALL™ FOIL series-", JETI, vol. 65, no. 5, 1 January 2017 (2017-01-01), pages 51 - 53, XP093015581
MIKHAIL PREDTECHENSKIY, ALEXANDER BEZRODNY, OLEG BOBRENOK, ANDREY KOCHNEV, ANDREY KOSOLAPOV, NINA KRECHETOVA, VLADIMIR SAIK: "SWCNT vs MWCNT and Nanofibers. Applications in Lithium-Ion Batteries and Transparent Conductive Films", ADVANCED MATERIALS: TECHCONNECT BRIEF, 1 June 2015 (2015-06-01), pages 115 - 117, XP093015561
See also references of EP3761417A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114730868A (zh) * 2020-04-22 2022-07-08 株式会社Lg新能源 硅-碳复合负极活性材料、包括硅-碳复合负极活性材料的负极、和包括负极的二次电池
JP2023502611A (ja) * 2020-04-22 2023-01-25 エルジー エナジー ソリューション リミテッド 負極及びそれを含む二次電池
JP7466982B2 (ja) 2020-08-28 2024-04-15 エルジー エナジー ソリューション リミテッド 負極および前記負極を含む二次電池
JP2023512389A (ja) * 2021-03-19 2023-03-27 積水化学工業株式会社 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
JP7323713B2 (ja) 2021-03-19 2023-08-08 積水化学工業株式会社 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム

Similar Documents

Publication Publication Date Title
WO2021020939A1 (ko) 음극, 상기 음극을 포함하는 이차 전지, 및 상기 음극의 제조 방법
WO2021066554A1 (ko) 전극 및 이를 포함하는 이차 전지
WO2021066560A1 (ko) 양극 및 이를 포함하는 이차 전지
WO2020197344A1 (ko) 전극 및 이를 포함하는 이차 전지
WO2019194662A1 (ko) 전극, 상기 전극을 포함하는 이차 전지, 및 상기 전극의 제조 방법
KR20190117387A (ko) 전극, 상기 전극을 포함하는 이차 전지, 및 상기 전극의 제조 방법
WO2021034145A1 (ko) 탄소나노튜브 분산액, 이를 포함하는 음극 슬러리, 음극 및 리튬 이차 전지
WO2021215830A1 (ko) 음극 및 이를 포함하는 이차 전지
WO2022086289A1 (ko) 음극 및 이를 포함하는 이차 전지
WO2016200223A1 (ko) 양극 합제 및 이를 포함하는 이차전지
WO2020184938A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2021066494A1 (ko) 전극 및 이를 포함하는 이차 전지
WO2021025349A1 (ko) 음극, 이의 제조방법 및 이를 포함하는 이차전지
WO2021066557A1 (ko) 전극 및 이를 포함하는 이차 전지
WO2019103526A1 (ko) 이차전지용 양극 슬러리 조성물, 이를 이용하여 제조된 이차전지용 양극 및 이차전지
WO2021066495A1 (ko) 전극 및 이를 포함하는 이차 전지
WO2020040545A1 (ko) 도전재 분산액, 이를 이용하여 제조된 전극 및 리튬 이차전지
WO2017171372A1 (ko) 전극 활물질 슬러리 및 이를 포함하는 리튬 이차전지
WO2019147093A1 (ko) 도전재, 이를 포함하는 전극 형성용 슬러리, 전극 및 이를 이용하여 제조되는 리튬 이차 전지
WO2021251663A1 (ko) 음극 및 이를 포함하는 이차전지
WO2021020805A1 (ko) 복합 음극 활물질, 이의 제조방법, 이를 포함하는 음극, 및 이차전지
WO2023059015A1 (ko) 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극, 음극을 포함하는 리튬 이차 전지 및 음극 조성물의 제조 방법
WO2022231325A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2022050651A1 (ko) 분리막 및 이를 포함하는 이차 전지
WO2022197158A1 (ko) 전극 및 상기 전극을 포함하는 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19781670

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021502684

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019781670

Country of ref document: EP

Effective date: 20200930