WO2019192629A1 - 一种阴离子型热增黏水溶性聚合物及其制备方法和应用 - Google Patents

一种阴离子型热增黏水溶性聚合物及其制备方法和应用 Download PDF

Info

Publication number
WO2019192629A1
WO2019192629A1 PCT/CN2019/090167 CN2019090167W WO2019192629A1 WO 2019192629 A1 WO2019192629 A1 WO 2019192629A1 CN 2019090167 W CN2019090167 W CN 2019090167W WO 2019192629 A1 WO2019192629 A1 WO 2019192629A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
anionic
polymer
emulsion
soluble polymer
Prior art date
Application number
PCT/CN2019/090167
Other languages
English (en)
French (fr)
Inventor
冯玉军
王蒙蒙
Original Assignee
四川大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川大学 filed Critical 四川大学
Priority to US16/769,718 priority Critical patent/US10947334B2/en
Publication of WO2019192629A1 publication Critical patent/WO2019192629A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/32Polymerisation in water-in-oil emulsions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F287/00Macromolecular compounds obtained by polymerising monomers on to block polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/062Polyethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/588Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids

Definitions

  • the invention belongs to the field of intelligent water-soluble polymer and oil and gas exploitation, and particularly relates to a heat-viscosity water-soluble polymer, a preparation method and application thereof.
  • HPAM partially hydrolyzed polyacrylamide
  • HPAM has a strong viscosity-increasing ability in fresh water due to electrostatic repulsion between carboxylates on its main chain.
  • a monovalent inorganic salt such as Na + or K + in the polymer formulation water or formation water, the electrostatic repulsion between the HPAM molecular chain and the molecular chain is shielded, resulting in shrinkage of the polymer coil and a large viscosity-increasing ability of the polymer.
  • two methods are mainly used at present: one is to increase the molecular weight of the polymer as much as possible, so as to obtain a higher viscosity retention rate after being subjected to high temperature and high salt; second, in the acrylamide group.
  • a temperature-resistant, salt-resistant group is introduced into the polymer.
  • it is more susceptible to shear and tensile degradation.
  • Increasing the temperature-resistant salt-tolerant group not only affects the molecular weight of the polymer, but also increases the cost.
  • thermosifying polymer or “thermothickening polymer” (D.Hourdet, et al. Polymer, 1994, 35: 2624).
  • thermally tackifying polymer is to introduce a side chain with a low critical solution temperature (LCST) into the water-soluble polymer.
  • the preparation methods of the thermally tackifying polymer include graft modification, solution polymerization, bulk polymerization, dispersion polymerization and the like.
  • Patent EP0583814B1 describes O-(in the presence of N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) or dicyclohexylcarbodiimide (DCCI).
  • EDC N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride
  • DCCI dicyclohexylcarbodiimide
  • 2-Aminoethyl)-O'-methylpolyvinyl alcohol (POE) is grafted onto the polyacrylic acid chain, the medium is water, and the graft ratio is 30%-35%.
  • the molecular weight of the obtained polymer is only 7 ⁇ 10 5 g ⁇ mol -1 , so the polymer concentration must be higher than 2% (w/w) to have a significant thermal thickening phenomenon.
  • Existing methods for preparing thermally viscosified polymers by graft modification are generally complicated,
  • Patent CN102070754A prepared a novel temperature-sensitive macromonomer, which was polymerized from diacetone acrylamide and acrylamide by a two-step method to obtain a temperature sensitive macromonomer MPAD. Dissolving the temperature sensitive macromonomer, nonionic water soluble monomer (such as acrylamide), anionic water soluble monomer (such as sodium acrylate, 2-acrylamido-2-methylpropanesulfonic acid AMPS, etc.) Water, after passing nitrogen for a certain period of time, adding a water-soluble initiator, reacting for 12-24 hours, and obtaining a transparent colloidal transparent polymer product by solution polymerization.
  • nonionic water soluble monomer such as acrylamide
  • anionic water soluble monomer such as sodium acrylate, 2-acrylamido-2-methylpropanesulfonic acid AMPS, etc.
  • Patent CN102464782A provides a method for preparing a thermally tackified polymer, which comprises dissolving sodium 2-acrylamide-2-methyl-1-propanesulfonate, acrylamide, methoxypolyethylene glycol maleamide in water, After passing N 2 for 30 min, a certain amount of potassium persulfate, urea, 2,2-azobis(2-midylpropyl) dihydrochloride (V50) was added in sequence, and after cooling for 8 hours, the temperature was lowered, discharged, and cut. Freeze-dried, pulverized, and sieved to obtain a powdery heat-adhesive terpolymer.
  • V50 2,2-azobis(2-midylpropyl) dihydrochloride
  • Patent CN102464781A describes the solution polymerization process of a thermally thickened terpolymer.
  • a macromonomer is prepared in a methanol medium by a two-step process, and then the macromonomer, acrylamide, 2-acrylamide-2-methyl is prepared.
  • Sodium 1-propane sulfonate is dissolved in water, and after passing N 2 for 30 min, a certain amount of potassium persulfate, urea, 2,2-azobis(2-midylpropyl) dihydrochloride (V50) is sequentially added. ), reacted for 2 h to obtain a thermally tackified polymer.
  • V50 2,2-azobis(2-midylpropyl) dihydrochloride
  • Patent CN102464797A describes a process for preparing an olefinic monomer and a water-soluble thermally tackifying polymer.
  • the olefinic intermediate is prepared by using allyl glycidyl ether, polyethylene glycol monomethyl ether and triethylamine in tetrahydrofuran solvent. Then, it was dissolved in chloroform, and then chlorosulfonic acid and acetic acid were added to synthesize and purify to obtain an alkenyl monomer.
  • the prepared enol monomer and acrylamide are dissolved in water, and the initiator 2,2-azobis(2-midylpropyl) dihydrochloride (V50) is added, and after 20 hours, water-soluble heat-adhesive is obtained.
  • V50 2,2-azobis(2-midylpropyl) dihydrochloride
  • polymer The existing method for preparing thermal-adhesive polymerization by solution polymerization has the problems that the preparation process of the monomer is extremely complicated, the molecular weight of the macromonomer is difficult to control, and a large amount of time is consumed and the environment is greatly harmed.
  • the Bromberg Group (L. Bromberg. J. Phys. Chem. B. 1998, 102: 1956) synthesized the thermally tackified polymer by bulk polymerization. Dissolve 3.0 g of Pluronic copolymer in 5.0 mL of AA, add N 2 8 h at 20 ° C, add ammonium persulfate aqueous solution, warm to 75 ° C and keep for a while, then quickly add 2,2,6,6-tetra A ketone-1-oxo-piperidine polymerization inhibitor was placed in liquid nitrogen to give a polymer.
  • This method prepares Pluronic-PAA polymer in one step, does not use a large amount of solvent, and has little environmental pollution, but bulk polymerization has poor heat dissipation, easy to condense, temperature is not suitable for control, and the Pluronic copolymer used is high (37.5 wt%), and the cost is high. .
  • the key is that the polymer has a low molecular weight (up to 3.1 ⁇ 10 6 g ⁇ mol -1 ) and needs to have a thermal viscosity-increasing ability at a high concentration (1%, w/v).
  • the conventional synthesis of thermally thickened polymers by bulk polymerization also has the problems of low molecular weight and high application cost.
  • Patent US7273891 describes a process for the preparation of a dispersion polymerization of a thermally tackified polymer by dissolving 35 g of Pluronic in 40 g of sodium acrylate monomer having a degree of neutralization of 6 mol%, and adding a positive solution in which V216 (alkylated polyvinylpyrrolidone) is dissolved.
  • V216 alkylated polyvinylpyrrolidone
  • Dioxane, ammonium persulfate is used as initiator.
  • the temperature is raised to 70 ° C for 1 h, and the temperature is naturally lowered to 20 ° C.
  • the white solid is collected by filtration, washed with excess n-hexane and dried under vacuum at 40 ° C to obtain heat-adhesive.
  • the method uses a high content of Pluronic temperature-sensitive macromolecules (47%, w/w), and the cost is high.
  • the viscosity of the solution obtained in the later stage is too large, it is not easy to be post-treated, and the obtained dry powder is dissolved in water for 2 days. It takes a long time.
  • the existing preparation of the thermally thickened polymer by dispersion polymerization also has the problems of high preparation cost, unsuitable post-treatment, and long time.
  • thermal-adhesive polymers with different structures and properties can be prepared at present, the prepared thermally-adhesive polymers have low molecular weight, have high heat-increasing ability at high concentrations, and have high preparation and application costs. It has a long dissolution time during use, which is not conducive to the industrial application of the polymer.
  • Patent No. 20030204014A1 describes the preparation of an inverse emulsion of a thermally tackified polymer, selecting a sorbitol fatty acid ester, and a polyvinyl alcohol fatty acid ester as a compound emulsifier, the thermally viscosifying polymer consisting of 2-acrylamido-2 - Methyl methacrylate, sodium acrylate and double bond modified polyether polymerized, the molecular weight is 2 ⁇ 10 6 g ⁇ mol -1 , the solid content is 30 wt%, but the obtained polymer solution is 0.5% ( w/w) has good thermal viscosity and salt viscosity-increasing effect, and the polyether monomer modified by double bond is synthesized separately, and its molecular weight and repeatability are not good.
  • polyacrylamide polymer In the practical application of polymer flooding tertiary recovery, the highest concentration of polyacrylamide polymer can be used in consideration of the input-output ratio of 0.2% (w/w), so these have thermal thickening at high concentrations. Behavioral polymers are difficult to obtain industrial applications.
  • the object of the present invention is to provide an anionic hot-viscosity water-soluble polymer which has a higher molecular weight and can achieve a good thermal viscosity-increasing effect at a low concentration and is in use in view of the deficiencies of the prior art.
  • the invention can be quickly dissolved in water in the emulsion state, which is beneficial to reduce the practical application cost; the invention also provides a preparation method which is convenient, high-efficiency and low in production cost for industrial application, and provides the anion.
  • An application example of a type of thermally tackifying water-soluble polymer is an application example of a type of thermally tackifying water-soluble polymer.
  • the method of the invention utilizes acrylamide, acrylic acid and Pluronic triblock polymer for inverse emulsion polymerization, and high reaction by acrylamide
  • the active and inverse emulsion polymerization increases the molecular weight of the thermally tackified polymer, and at a low concentration, it can produce a significant thermal viscosity-increasing effect, which can reduce the application cost; the obtained polymer emulsion dissolves at a significantly faster rate than the polymer dry powder.
  • the dissolution rate; the obtained emulsion diluent has a strong thermal viscosity-increasing behavior after adding a small amount of the reverse phase agent again.
  • the emulsion dilution has different thermal viscosity-increasing behavior with the increase of the amount of the reverse phase agent.
  • the preparation method of the anionic hot-viscosity water-soluble polymer of the invention comprises the following steps:
  • the mass percentage of each component in the aqueous phase is: 20% to 50% of the acrylamide monomer, 5% to 15% of the anionic monomer, 1% to 20% of the temperature sensitive macromonomer, and the inorganic salt 1 % ⁇ 10%; the percentage of emulsifier in the oil phase is 1%-20%;
  • polymerization to obtain an inverse emulsion by precipitation, washing, centrifugation, and drying to obtain an anionic hot-viscosity water-soluble polymer dry powder; or adding a reverse phase agent to the obtained inverse emulsion to obtain an anionic hot-viscosity water-soluble
  • the polymer emulsion is diluted in water to obtain an emulsion diluent.
  • the acrylamide monomer is further optimized to be an acrylamide monomer or a mixture of an acrylamide monomer and other monomers, and the other monomers are methacrylamide, N,N'-dimethylpropene.
  • One of an amide, methyl acrylate, ethyl acrylate, methyl methacrylate, ethyl methacrylate, N-vinylpyrrolidone, and the mass percentage of the acrylamide monomer in the mixture is greater than 50%.
  • the anion monomer is a salt neutralized with acrylic acid, methacrylic acid and 2-acrylamide-2-methylpropanesulfonic acid, and the base used for the neutralization is ammonia water and hydrogen. At least one of sodium oxide, potassium hydroxide, sodium carbonate, and sodium hydrogencarbonate.
  • the temperature sensitive macromolecule is a triblock polymer of polyoxyethylene-polyoxypropylene-polyoxyethylene, and the structural formula is:
  • the structure and properties of the temperature sensitive macromolecule vary with the values of m and n.
  • Commonly used macromonomers are F127, F108, F98, F88, F68, F38, P123, P105, P104, P103, P65, L121, L92, L81, L64 and the like.
  • the inorganic salt is further optimized to be at least one of sodium chloride, sodium acetate, sodium nitrate, and potassium nitrate.
  • the emulsifier is a triblock polymeric emulsifier of long-chain fatty acid-polyoxyethylene-long-chain fatty acid, such as Hymerper B246 (HB246), Hymerper B206 (HB206), and the like.
  • the oil is at least one of a cycloparaffin, an aromatic hydrocarbon, and a linear saturated or unsaturated hydrocarbon having 6 to 30 carbon atoms, such as mineral oil, kerosene, or the like.
  • the aqueous phase and the oil phase are preferably mixed in the step (1) by a percentage of the aqueous phase in the total mass of the aqueous phase and the oil phase of 40% to 60%.
  • the initiator is further optimized to be at least one of a hydrogen peroxide-based initiator, an azo-based initiator, and a benzoin-based initiator.
  • the hydrogen peroxide-based initiator is ammonium peroxide (APS) or potassium peroxide (KPS)
  • the azo initiator is azodiisopropylimidazoline hydrochloride (AIBI, Va-044).
  • the initiation temperature is 25 to 35 ° C), azobisisobutyronitrile (AIBN, initiation temperature of 40 to 60 ° C or photoinitiation of 365 nm).
  • the benzoin series initiator is benzoin dimethyl ether (DMPA or BDK, photoinitiated 365 nm).
  • the initiator content is from 0.006% to 0.3% of the total mass of the monomers.
  • the step (2) is further processed, and the obtained inverse emulsion is poured into acetone for demulsification, and washed repeatedly with n-hexane and acetone three times, and after centrifugation, in a vacuum oven at 40 ° C. After drying for two days, the hot-viscous water-soluble polymer white powder was obtained.
  • the anionic hot-viscosity water-soluble polymer dry powder and polymer emulsion prepared by the above method provided by the invention can be expressed as follows:
  • the molecular weight of the polymer can be as high as 8.6 ⁇ 10 6 g ⁇ mol-1, and the aqueous polymer solution at a lower concentration has obvious thermal viscosity-increasing effect, and has the potential to be applied to the tertiary oil recovery of polymer flooding.
  • the anionic hot-viscosity water-soluble polymer can be prepared into a dry powder by freeze drying and spray drying, dissolved in water, and stirred until dissolved. It is also possible to directly add a reverse phase agent to the inverse anionic emulsion of the anionic hot-viscosity water-soluble polymer obtained by polymerization, stir it evenly, and dilute it with water to form a diluted emulsion.
  • the reverse viscosity can be added to the diluted emulsion and the thermal viscosity-increasing behavior of the resulting solution will vary, as shown in Figure 8.
  • the reverse phase agent can be used with Hypinvert 3110 in an amount of from 1 to 10% by mass of the inverse emulsion.
  • the mixing time of the reverse phase agent and the inverse emulsion is 2 to 120 minutes, and the stirring rate is 50 to 200 rpm.
  • the reversed emulsion was dissolved in water for 5 to 120 minutes, and the stirring rate was 200 to 800 rpm. If the reverse phase agent is added to the diluted emulsion, the amount of the reverse phase agent is 0.1 to 5% of the total mass of the emulsion diluent, and the mixing time is 5 to 120 minutes.
  • the present invention has the following beneficial effects:
  • the anionic hot-viscosity water-soluble polymer prepared by inverse emulsion polymerization of the present invention has a molecular weight of up to 8.6 ⁇ 10 6 g ⁇ mol-1.
  • Good thermal viscosity-increasing behavior the polymer dry powder aqueous solution concentration of 0.20% (w / w) has a hot viscosity-increasing behavior, which can reduce the application cost.
  • the polymer inverse emulsion prepared by the invention can be quickly dissolved in water after adding the reverse phase agent, the dissolution time is less than 10 min, and there is no insoluble matter, no large dissolving equipment is needed, and the on-site production efficiency is improved.
  • the inversion emulsion of the anionic polyether thermally viscous water-soluble polymer synthesized by inverse emulsion polymerization has a solid content of 30% (w/w), high conversion rate, low residual monomer content, and is obtained after polymerization.
  • the emulsion has a low viscosity and is easy to handle.
  • the anionic hot-viscosity water-soluble polymer emulsion prepared by the method of the invention has a long storage time, and can reach more than 3 months at normal temperature, and the emulsion stability is good.
  • the method of the invention has simple production process, mild reaction condition, low energy consumption, low preparation cost, and is beneficial to industrial application.
  • the emulsion diluted solution prepared by the invention has a strong thermal viscosity-increasing behavior after adding a small amount of the reverse phase agent again. With the increase of the amount of the reversed-phase agent, the emulsion diluent has different thermal viscosity-increasing behavior, as shown in the figure. 8.
  • the invention provides an anionic hot-viscosity water-soluble polymer by inverse emulsion polymerization, and the thermal viscosity-increasing behavior can be carried out by changing the type and content of the temperature-sensitive macromolecule, the content of the reversed agent, the concentration of the polymer, and the composition of the brine. Adjustment, its thermal viscosity-increasing performance and corresponding aging and core flooding experimental results are shown in the attached drawings.
  • 1 is a viscosity-temperature curve of an aqueous solution prepared by TVP-P1 and TVP-P2 dry powder obtained in Examples 19 and 20 at a concentration of 0.20%.
  • 5 is a viscosity-temperature curve of an aqueous solution (0.20%) prepared by TVP-P1(a) and PAMA(b) dry powders obtained in Examples 19 and 24, respectively, in different brine concentrations.
  • Example 7 is a viscosity-temperature curve (pure water, the aqueous solution prepared by the ETVP-P1 emulsion diluted solution obtained in Example 19, the TVP-P1 dry powder, and the unpolymerized emulsion diluted solution (0.20%). ).
  • Figure 8 is a viscosity-temperature curve (pure water, ETVP-P1 emulsion dilution (0.20%) obtained in Example 19 under different conditions of addition of the reversed agent. ).
  • Figure 9 is a viscosity-temperature curve (pure water, water solution (0.20%) of the EPAMA emulsion diluted solution obtained in Example 24 and the PAMA dry powder. ).
  • Figure 10 is a dissolution rate curve of an aqueous solution prepared by the TVP-P1 dry powder obtained in Examples 29 and 30, and an ETVP-P1 emulsion diluted solution (0.20%) (pure water, 25 ° C, ).
  • R Recovery factor, recovery factor
  • F Pore pressure, pressure in the porous medium during the flow of the polymer.
  • the mass percentage of each component of the aqueous phase is 100% of the total mass of the aqueous phase
  • the mass percentage of the oil phase is 100% by mass of the total phase of the oil phase.
  • the molecular weight of the polymer in the following examples was determined by static light scattering.
  • the initial viscosity of the polymer solution used in the subsequent aging, flow and simulated flooding experiments in the following examples was consistent.
  • the following table explores the best inverse emulsion ratio from the emulsifier type, oil-water ratio, monomer ratio, and presence or absence of NaAA to obtain the best anionic thermal adhesion-promoting polymer.
  • a ⁇ represents that no inverse emulsion was prepared, and ⁇ represents the preparation of an inverse emulsion.
  • a ⁇ represents that no inverse emulsion was prepared, and ⁇ represents the preparation of an inverse emulsion.
  • a ⁇ represents that the prepared polymer dry powder has no heat-adhesive property
  • represents that the prepared polymer dry powder has thermal tackifying properties
  • a ⁇ represents that the prepared polymer dry powder has a long dissolution time, and ⁇ represents that the prepared polymer dry powder can be quickly dissolved in water.
  • the mixture was transferred to a 250 mL four-necked flask equipped with a stirring, a nitrogen tube, and a digital thermometer, and the temperature was raised to 45 ° C in a water bath. After a certain period of time was passed through the nitrogen, the initiator AIBN was added, and the polymerization was started. The thermometer shows that after the temperature rise, it is kept for 2 hours.
  • the inverse emulsion ETVP-P1 of an anionic hot-viscosity water-soluble polymer is obtained, and the obtained inverse emulsion is precipitated, washed, centrifuged, and freeze-dried to obtain a dry powder of TVP-P1, and the molecular weight of the polymer is 7.8. ⁇ 106 g ⁇ mol-1.
  • the mixture was transferred to a 250 mL four-necked flask equipped with a stirring, a nitrogen tube, and a digital thermometer, and the temperature was raised to 45 ° C in a water bath. After a certain period of time was passed through the nitrogen, the initiator AIBN was added, and the polymerization was started. The thermometer shows that after the temperature rise, it is kept for 2 hours.
  • the inverse emulsion ETVP-P2 of an anionic hot-viscosity water-soluble polymer is obtained, and the obtained inverse emulsion is precipitated, washed, centrifuged, and freeze-dried to obtain a dry powder of TVP-P2, and the molecular weight of the polymer is 7.4. ⁇ 106 g ⁇ mol-1.
  • the mixture was transferred to a 250 mL four-necked flask equipped with a stirring, a nitrogen tube, and a digital thermometer, and the temperature was raised to 45 ° C in a water bath. After a certain period of time was passed through the nitrogen, the initiator AIBN was added, and the polymerization was started. The thermometer shows that after the temperature rise, it is kept for 2 hours.
  • the inverse emulsion ETVP-P3 of an anionic hot-viscosity water-soluble polymer is obtained, and the obtained inverse emulsion is precipitated, washed, centrifuged, and freeze-dried to obtain a dry powder of TVP-P3, and the molecular weight of the polymer is 7.5. ⁇ 106 g ⁇ mol-1.
  • the mixture was transferred to a 250 mL four-necked flask equipped with a stirring, a nitrogen tube, and a digital thermometer, and the temperature was raised to 45 ° C in a water bath. After a certain period of time was passed through the nitrogen, the initiator AIBN was added, and the polymerization was started. The thermometer shows that after the temperature rise, it is kept for 2 hours.
  • the inverse emulsion ETVP-P4 of an anionic hot-viscosity water-soluble polymer is obtained, and the obtained inverse emulsion is precipitated, washed, centrifuged, and freeze-dried to obtain a dry powder of TVP-P4, and the molecular weight of the polymer is 8.3. ⁇ 106 g ⁇ mol-1.
  • the mixture was transferred to a 250 mL four-necked flask equipped with a stirring, a nitrogen tube, and a digital thermometer, and the temperature was raised to 45 ° C in a water bath. After a certain period of time was passed through the nitrogen, the initiator AIBN was added, and the polymerization was started. The thermometer shows that after the temperature rise, it is kept for 2 hours.
  • the inverse emulsion ETVP-P5 of an anionic hot-viscosity water-soluble polymer is obtained, and the obtained inverse emulsion is precipitated, washed, centrifuged, and freeze-dried to obtain a dry powder of TVP-P5, and the molecular weight of the polymer is 5.2. ⁇ 106 g ⁇ mol-1.
  • the mixture was transferred to a 250 mL four-necked flask equipped with a stirring, a nitrogen tube, and a digital thermometer, and the temperature was raised to 45 ° C in a water bath. After a certain period of time was passed through the nitrogen, the initiator AIBN was added, and the polymerization was started. The thermometer shows that after the temperature rise, it is kept for 2 hours.
  • the inverse emulsion Emamide of anionic hot-viscosity water-soluble polymer is obtained, and the obtained inverse emulsion is precipitated, washed, centrifuged, and freeze-dried to obtain a dry powder which is PAMA, and the molecular weight of the polymer is 8.6 ⁇ 10 6 g ⁇ mol. -1.
  • the obtained hot-adhesive polymer dry powder has significant thermal viscosity-increasing effect in both pure water and brine, and the obtained polymer emulsion diluent also has a remarkable thermal viscosity-increasing effect, and The amount of phase agent increases, and the effect of heat-growth is more obvious.
  • the mixture was transferred to a 250 mL four-necked flask equipped with a stirring, a nitrogen tube, and a digital thermometer, and the temperature was raised to 45 ° C in a water bath. After a certain period of time was passed through the nitrogen, the initiator AIBN was added, and the polymerization was started. The thermometer shows that after the temperature rise, it is kept for 2 hours.
  • the inverse emulsion ETVP-P6 of an anionic hot-viscosifying water-soluble polymer was obtained, and the obtained polymer dry powder was TVP-P6.
  • the mixture was transferred to a 250 mL four-necked flask equipped with a stirring, a nitrogen tube, and a digital thermometer, and the temperature was raised to 45 ° C in a water bath. After a certain period of time was passed through the nitrogen, the initiator AIBN was added, and the polymerization was started. The thermometer shows that after the temperature rise, it is kept for 2 hours.
  • the inverse emulsion ETVP-P7 of an anionic hot-viscosifying water-soluble polymer was obtained, and the obtained polymer dry powder was TVP-P7.
  • the mixture was transferred to a 250 mL four-necked flask equipped with a stirring, a nitrogen tube, and a digital thermometer, and the temperature was raised to 45 ° C in a water bath. After a certain period of time was passed through the nitrogen, the initiator AIBN was added, and the polymerization was started. The thermometer shows that after the temperature rise, it is kept for 2 hours.
  • the inverse emulsion ETVP-P8 of an anionic hot-viscosifying water-soluble polymer was obtained, and the obtained polymer dry powder was TVP-P8.
  • the mixture was transferred to a 250 mL four-necked flask equipped with a stirring, a nitrogen tube, and a digital thermometer, and the temperature was raised to 45 ° C in a water bath. After a certain period of time was passed through the nitrogen, the initiator AIBN was added, and the polymerization was started. The thermometer shows that after the temperature rise, it is kept for 2 hours.
  • the inverse emulsion ETVP-P9 of an anionic hot-viscosity water-soluble polymer was obtained, and the obtained polymer dry powder was TVP-P9.
  • Example 19 0.20 g of the polymer TVP-P1 dry powder obtained in Example 19 was separately added, 99.80 g of water was added, mechanical stirring was started, the rotation speed was 600 rpm, and sampling was carried out in a continuous stirring process, and the MCR 302 Anton Paar rheometer was used. Corresponding viscosity test until the emulsion diluent viscosity is almost constant.
  • Example 19 50 g of the inverse emulsion ETVP-P1 obtained in Example 19 was added, 1.5 g of a reverse phase agent Hypinvert 3110 was added, and the mixture was shaken for 1 hour in a shaker and uniformly mixed.
  • the gauge is subjected to a corresponding viscosity test until the emulsion diluent viscosity is almost constant.
  • Example 29 The relationship between the viscosity of Example 29 and Example 30 as a function of temperature is shown in Figure 10. It shows that the polymer in the emulsion state can be quickly dissolved in water in 10 minutes, while the polymer in the dry powder state needs 120 minutes to dissolve in water.
  • the inverse emulsion obtained by the emulsion polymerization method can be directly dissolved in water in the form of an emulsion, which is more suitable for practical production.
  • Example 19 0.75 g of the polymer TVP-P1 dry powder obtained in Example 19 was dissolved in 499.25 g of a 0.45% NaCl (w/w) aqueous solution at a stirring rate of 100 rpm and a dissolution time of 24 hours.
  • the prepared TVP-P1 dry powder solution is fully nitrogen-passed, it is placed in a glove box for further deoxidation to ensure that the oxygen content of the solution is less than 2 ppm, and then the solution is transferred to a stainless steel sealed bottle and dried in an oven at 45 ° C. Ageing.
  • the glove box is periodically sampled, and the corresponding viscosity test is performed using the MCR 302 Anton Paar rheometer to obtain the corresponding TVP-P1 dry powder solution aging curve.
  • Example 24 1.00 g of the polymer PAMA dry powder obtained in Example 24 was dissolved in 499.00 g of a 0.45% NaCl (w/w) aqueous solution at a stirring rate of 100 rpm and a dissolution time of 24 hours.
  • the prepared PAMA dry powder solution is fully nitrogen-passed, it is placed in a glove box for further oxygen removal to ensure that the oxygen content of the solution is less than 2 ppm, and then the solution is transferred to a stainless steel sealed bottle for long-term aging in an oven at 45 ° C. Stability test.
  • the glove box is periodically sampled, and the corresponding viscosity test is performed using the MCR 302 Anton Paar rheometer to obtain the corresponding PAMA dry powder solution aging curve.
  • Example 31 The comparison of the aging curves corresponding to Example 31 and Example 32 is shown in Fig. 11.
  • the viscosity of the polymer solution is the same at the initial stage of aging, but the aging resistance of the TVP-P1 dry powder solution is higher than that of the PAMA solution with time.
  • the glove box is periodically sampled, and the corresponding viscosity test is performed using the MCR302 Anton Paar rheometer to obtain the corresponding aging curve of the ETVP-P1 emulsion dilution.
  • Example 31 The comparison of the aging curves corresponding to Example 31 and Example 33 is shown in Figure 12.
  • the viscosity of the polymer solution is the same at the initial aging, but the aging resistance of the TVP-P1 dry powder solution is higher than that of the TVP-P1 emulsion over time. Diluent.
  • Example 19 0.75 g of the polymer TVP-P1 dry powder obtained in Example 19 was dissolved in 499.25 g of a 0.45% (w/w) NaCl aqueous solution at a stirring rate of 100 rpm and a dissolution time of 24 hours.
  • the prepared TVP-P1 dry powder solution was filtered through a G3 glass sand funnel to avoid clogging the core in subsequent experiments. After placing the core saturated with 0.45% NaCl water, the temperature in the system was constant at 45 °C.
  • Example 24 1.00 g of the polymer PAMA dry powder obtained in Example 24 was dissolved in 499.00 g of a 0.45% (w/w) NaCl aqueous solution at a stirring rate of 100 rpm and a dissolution time of 24 hours.
  • the prepared PAMA dry powder solution was filtered through a G3 glass sand funnel to avoid clogging the core in subsequent experiments. After placing the core saturated with 0.45% NaCl water, the temperature in the system was constant at 45 °C.
  • Example 34 The comparison of the core flow curves of Example 34 and Example 35 is shown in Figure 13.
  • the resistance coefficient and residual resistance coefficient of TVP-P1 polymer solution are higher than the resistance coefficient and residual resistance coefficient of PAMA dry powder solution, indicating TVP-P1 dry powder.
  • the sweep coefficient of the solution when injected into the core is higher than that of the PAMA dry powder solution.
  • the oil displacement efficiency of the TVP-P1 in the simulated flooding experiment may be higher.
  • the comparison of the core flow curves corresponding to Example 34 and Example 36 is shown in Figure 14.
  • the resistance coefficient and residual resistance coefficient of TVP-P1 polymer solution are slightly higher than the resistance coefficient and residual resistance coefficient of TVP-P1 emulsion dilution, indicating TVP.
  • the sweeping coefficient of the -P1 dry powder solution when injected into the core is higher than that of the TVP-P1 emulsion dilution.
  • the oil displacement efficiency of the TVP-P1 dry powder solution in the simulated flooding experiment may be higher.
  • Example 19 0.75 g of the polymer TVP-P1 dry powder obtained in Example 19 was dissolved in 499.25 g of a 0.45% (w/w) NaCl aqueous solution at a stirring rate of 100 rpm and a dissolution time of 24 hours.
  • the prepared TVP-P1 dry powder solution was filtered through a G3 glass sand funnel to avoid clogging the core in subsequent experiments.
  • the temperature in the system was constant at 45 °C.
  • crude oil is injected to carry out saturation of core crude oil.
  • the core was sprayed with 0.45% NaCl water at a rate of 1 mL/min until the water content at the tail end was 98% or more.
  • the TVP-P1 dry powder solution was injected at a rate of 1 mL/min to displace the core, the volume of the solution was 0.5 PV; finally, 1 mL/ The rate of min was injected into the core by spraying 0.45% NaCl water for subsequent water flooding until the water content at the end was 98% or more.
  • the pressure value obtained in the experiment, the oil recovery rate and the corresponding injection volume amount are plotted as a graph, which is the core flooding experimental curve of the TVP-P1 dry powder solution.
  • the PAMA dry powder solution was injected at a rate of 1 mL/min to displace the core, the volume of the solution was 0.5 PV; finally, at 1 mL/min. Rate injection of 0.45% NaCl water to displace the core for subsequent water flooding until the water content at the end is more than 98%.
  • the pressure values obtained in the experiment, the oil recovery rate and the corresponding injection volume are plotted as a graph, which is the core flooding experimental curve of the PAMA dry powder solution.
  • the ETVP-P1 emulsion dilution solution was injected at a rate of 1 mL/min to displace the core, the volume of the solution was 0.5 PV; At a rate of /min, 0.45% NaCl water was injected to displace the core for subsequent water flooding until the water content at the end was 98% or more.
  • the pressure values obtained in the experiment, the oil recovery rate and the corresponding injection volume are plotted as a curve, which is the core displacement curve of the ETVP-P1 emulsion dilution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Cosmetics (AREA)

Abstract

提供一种阴离子型热增黏水溶性聚合物及其制备方法,包括以下步骤:利用丙烯酰胺、丙烯酸与聚氧乙烯-聚氧丙烯-聚氧乙烯三嵌段聚合物进行反相乳液聚合,通过丙烯酰胺的高反应活性和反相乳液聚合提高热增黏聚合物的分子量,在低浓度下即可产生明显的热增黏效果,可降低应用成本;所得到的聚合物乳液的溶解速度明显快于聚合物干粉的溶解速度;所得到的乳液稀释液再次加入少量反相剂后,具有较强的热增黏行为,随着反相剂加入量的增加,乳液稀释液有不同的热增黏行为。

Description

一种阴离子型热增黏水溶性聚合物及其制备方法和应用 技术领域
本发明属于智能水溶性高分子领域及油气开采领域,具体涉及一种热增黏水溶性聚合物及其制备方法和应用。
背景技术
随着我国经济的高速发展,对石油、天然气的依赖逐渐增大。聚合物驱三次采油是一种有效提高原油采收率的手段。水溶性聚合物特别是部分水解聚丙烯酰胺(HPAM)由于具有易得、价廉、良好的水溶性、极强的增黏性而在三次采油中得到了广泛的应用。但随着油气开采转向深井、高温、高盐储层,以及现场采用采出污水配制聚合物溶液,HPAM表现出了耐温抗盐性差的缺陷。
国内外大量的研究表明,HPAM由于其主链上羧酸根之间的静电排斥,所以其在淡水中具有极强的增黏能力。但如果聚合物配制用水或地层水存在Na +、K +等一价无机盐时,HPAM分子链内和分子链间的静电排斥被屏蔽,导致聚合物线团收缩,聚合物增黏能力大幅度削弱;在Ca 2+、Mg 2+等高价阳离子存在时,羧酸根与其络合,形成沉淀,导致聚合物溶液分相而丧失增黏能力(S.Peng,et al.Macromolecules,1999,32:585;J.
Figure PCTCN2019090167-appb-000001
et al.Polymer,1997,38:6115)。随着井深加大,井底温度升高。通常聚合物溶液遵从阿伦尼乌斯定律,其溶液黏度随着温度升高而降低,即“热变稀”。在温度高于75℃时,HPAM分子结构中的酰胺基团进一步水解为羧酸根,如果溶液中含有Ca 2+、Mg 2+等高价阳离子,则会加速分相,彻底丧失增黏能力(K.S.Sorbie.Polymer-improved Oil Recovery.CRC Press,Boca Raton,1991)。
为克服上述缺陷,目前主要采用两种方法:一是尽可能增大聚合物的分子量,以期在经过高温、高盐的作用后,仍能获得较高的黏度保留率;二是在丙烯酰胺基聚合物中引入耐温、抗盐基团。但增大聚合物分子量后,其更容易受到剪切和拉伸降解。而增加耐温抗盐基团,不仅会使聚合物的分子量收到影响,而且也会 增大成本。
为改以上现状,法国科学家Hourdet小组提出了“热增黏聚合物”(thermoviscosifying polymer)或“热增稠聚合物”(thermothickening polymer)的概念(D.Hourdet,et al.Polymer,1994,35:2624)。与传统HPAM不同,该类聚合物的水溶液黏度不仅不会随着温度升高而降低,相反却会随着温度升高而相应升高。“热增黏聚合物”的基本原理是:在水溶性聚合物中引入具有低临界溶解温度(LCST)的侧链,当温度T>LCST时,聚合物侧链疏水性增强,聚合物表现出两亲性,当聚合物浓度高于临界交叠浓度时,侧链之间通过范德华力相互作用缔合形成三维网络状聚集体,使聚合物链之间、聚合物与溶剂之间的摩擦力增大,从而宏观上表现出“热增黏”的特性。
目前,热增黏聚合物的制备方法有接枝改性、溶液聚合、本体聚合、分散聚合等。
专利EP0583814B1介绍了在N-(3-二甲氨基丙基)-N′-乙基碳二亚胺盐酸盐(EDC)或二环己基碳二亚胺(DCCI)存在下,将O-(2-氨乙基)-O′-甲基聚乙烯醇(POE)接枝在聚丙烯酸链上,介质为水,接枝率为30%—35%。所得聚合物分子量仅有7×10 5g·mol -1,因此聚合物浓度必须在高于2%(w/w)时才有明显的热增黏现象。现有采用接枝改性制备热增黏聚合物方法通常较为复杂,支链分布不均匀,所得聚合物分子量低,并且偶联剂的使用对环境造成的污染很大。
专利CN102070754A制备了一种新型温敏大分子单体,采用两步法,由双丙酮丙烯酰胺与丙烯酰胺聚合得到温敏大分子单体MPAD。将该温敏大分子单体、非离子水溶性单体(如丙烯酰胺等)、阴离子水溶性单体(如丙烯酸钠、2-丙烯酰胺基-2-甲基丙磺酸AMPS等)溶于水,通氮气一定时间后,加入水溶性引发剂,反应12—24h,通过溶液聚合得到透明的胶状透明聚合物产物。专利CN102464782A提供了一种热增黏聚合物的制备方法,将2-丙烯酰胺-2-甲基-1-丙磺酸钠、丙烯酰胺、甲氧基聚乙二醇马来酰胺溶于水中,通N 2 30min后,依次加入一定量的过硫酸钾、尿素、2,2-偶氮二(2-咪基丙基)二盐酸盐(V50),反应8h 后,降温、出料、切割、冷冻干燥、粉碎、筛分,得到粉末状热增黏三元共聚物。专利CN102464781A描述了热增黏三元共聚物的溶液聚合过程,首先采用两步法在甲醇介质中制备大分子单体,然后将该大分子单体、丙烯酰胺、2-丙烯酰胺-2-甲基-1-丙磺酸钠溶于水中,通N 2 30min后,依次加入一定量的过硫酸钾、尿素、2,2-偶氮二(2-咪基丙基)二盐酸盐(V50),反应2h,得到热增黏聚合物。专利CN102464797A介绍了烯醚系单体和水溶性热增黏聚合物的制备方法,采用烯丙基缩水甘油醚、聚乙二醇单甲醚、三乙胺在四氢呋喃溶剂中制备烯醚系中间体,然后用氯仿溶解后,加入氯磺酸和醋酸,合成纯化后得到烯醚系单体。将制备的烯醚系单体和丙烯酰胺溶于水中,加入引发剂2,2-偶氮二(2-咪基丙基)二盐酸盐(V50),反应20h后得到水溶性热增黏聚合物。现有采用溶液聚合制备热增黏聚合的方法存在单体制备过程极为复杂,大分子单体的分子量不易控制,消耗大量时间并对环境造成巨大危害等问题。
Bromberg小组(L.Bromberg.J.Phys.Chem.B.1998,102:1956)采用本体聚合的方式合成热增黏聚合物。将3.0g Pluronic共聚物溶于5.0mL AA中,在20℃通N 2 8h后,加入过硫酸铵水溶液,升温至75℃并保持一段时间后,迅速加入2,2,6,6-四甲基-1-氧-哌啶阻聚剂,置于液氮中得到聚合物。此法一步制备出Pluronic-PAA聚合物,不使用大量溶剂,对环境污染小,但是本体聚合散热差,易爆聚,温度不宜掌控,所用的Pluronic共聚物含量高(37.5wt%),成本大。关键是聚合物分子量低(最高为3.1×10 6g·mol -1),需要在高浓度(1%,w/v)下才具有热增黏能力。现有采用本体聚合的方式合成热增黏聚合物也存在分子量低,应用成本高的问题。
专利US7273891描述了热增黏聚合物的分散聚合制备方法,将35g Pluronic溶于中和度为6mol%的40g丙烯酸钠单体中,加入溶有V216(烷基化聚乙烯基吡咯烷酮)的正十二烷,过硫酸铵为引发剂,通氮气一定时间后,升温至70℃保温1h,自然降温至20℃,过滤收集白色固体,使用过量的正己烷洗涤,40℃真空干燥,得到热增黏聚合物。该方法使用的Pluronic温敏大分子含量高(47%, w/w),所带来的成本高,后期得到的溶液黏度太大,不易后处理,而且得到的干粉溶于水需要2天,耗时长。现有采用分散聚合制备热增黏聚合物同样存在制备成本高,不宜后处理,耗时长等问题。
综上所述,目前虽然能够制备出结构和性能不同的热增黏聚合物,但是存在制备的热增黏聚合物分子量低,在高浓度下才具有热增黏能力,制备和应用成本较高,在使用时溶解时间长,这不利于聚合物的工业化应用。
专利20030204014A1描述了热增黏聚合物的反相乳液制备过程,选择山梨醇脂肪酸酯、和聚乙烯醇脂肪酸酯作为复配乳化剂,该热增黏聚合物由2-丙烯酰胺基-2-甲基丙磺酸钠、丙烯酸钠和双键修饰过的聚醚聚合而成,所得分子量为2×10 6g·mol -1,固含量达到30wt%,但所得聚合物溶液在0.5%(w/w)下才具有良好的热增黏和盐增黏效果,并且由于双键修饰过的聚醚单体为单独合成,其分子量和重复性不好。而在聚合物驱三次采油的实际应用中,考虑到投入产出比,聚丙烯酰胺类聚合物能使用的最高浓度是0.2%(w/w),所以这些在高浓度下才具有热增黏行为的聚合物难以得到工业化应用。
发明内容
本发明的目的在于针对现有技术的不足,提供一种阴离子型热增黏水溶性聚合物,该聚合物具有更高的分子量,在低浓度下即可达到良好的热增黏效果并在使用其乳液状态下可快溶于水中,利于降低实际应用成本;本发明同时提供一种热增黏聚合物的方便高效,生产成本低的利于工业化应用的制备方法;本发明还提供了所述阴离子型热增黏水溶性聚合物的应用实例。
与现有Bromberg的利用丙烯酸和三嵌段聚合物Pluronic直接本体聚合或分散聚合相比,本发明方法利用丙烯酰胺、丙烯酸与Pluronic三嵌段聚合物进行反相乳液聚合,通过丙烯酰胺的高反应活性和反相乳液聚合提高热增黏聚合物的分子量,在低浓度下即可产生明显的热增黏效果,可降低应用成本;所得到的聚合物乳液的溶解速度明显快于聚合物干粉的溶解速度;所得到的乳液稀释液再次加入少量反相剂后,具有较强的热增黏行为,随着反相剂加入量的增加,乳液稀释液有不同的热增黏行为。
本发明所述阴离子型热增黏水溶性聚合物的制备方法,包括以下步骤:
(1)将丙烯酰胺类单体、阴离子单体、温敏大分子、无机盐加入去离子水中,调节pH在6.5~7.5之间,配制得到水相;将乳化剂加入油中形成油相;按水相在水相和油相总质量百分比10%~90%,将水相与油相混合搅拌均匀后进行乳化,或在乳化的同时将水相逐渐加入油相;在惰性气体氛围下,向乳液中加入引发剂,加热至40~60℃引发聚合或用光引发聚合,或不加引发剂加热至40~60℃聚合,聚合结束后保温2~6h,得到阴离子型热增黏水溶性聚合物反相乳液;
其中,水相中各组分质量百分含量为:丙烯酰胺类单体20%~50%,阴离子单体5%~15%,温敏性大分子单体1%~20%,无机盐1%~10%;油相中乳化剂的百分含量为1%~20%;
(2)聚合得到反相乳液经沉淀、洗涤、离心、干燥,得阴离子型热增黏水溶性聚合物干粉;或向所得反相乳液中加入反相剂反相得到阴离子型热增黏水溶性聚合物乳液,溶于水稀释得到乳液稀释液。
本发明的技术方案,进一步优化的,丙烯酰胺类单体为丙烯酰胺单体或丙烯酰胺单体与其他单体的混合物,其他单体为甲基丙烯酰胺、N,N′-二甲基丙烯酰胺、丙烯酸甲酯、丙烯酸乙酯、甲基丙烯酸甲酯、甲基丙烯酸乙酯、N-乙烯基吡咯烷酮中的一种,且混合物中丙烯酰胺单体的质量百分比大于50%。
本发明的技术方案,进一步优化的,所述阴离子单体为丙烯酸、甲基丙烯酸、2-丙烯酰胺-2-甲基丙磺酸中和成的盐,中和所使用的碱为氨水、氢氧化钠、氢氧化钾、碳酸钠、碳酸氢钠中的至少一种。
本发明的技术方案,进一步优化的,所述温敏大分子为聚氧乙烯-聚氧丙烯-聚氧乙烯的三嵌段聚合物,其结构通式为:
Figure PCTCN2019090167-appb-000002
其中,其中,温敏大分子中结构和性能随着m和n值的变化而变化。常用大分子单体有F127、F108、F98、F88、F68、F38、P123、P105、P104、P103、P65、L121、L92、L81、L64等。
本发明的技术方案,进一步优化的,所述无机盐为氯化钠、醋酸钠、硝酸钠、硝酸钾中的至少一种。
本发明的技术方案,进一步优化的,所述乳化剂为长链脂肪酸-聚氧乙烯-长链脂肪酸的三嵌段高分子乳化剂,比如Hymerper B246(HB246),Hymerper B206(HB206)等。
本发明的技术方案,进一步优化的,所述油为环烷烃、芳香烃、碳原子数为6~30的直链饱和或不饱和烃中的至少一种,比如矿物油、煤油等。
本发明的技术方案,进一步优化的,步骤(1)中最好按水相在水相和油相总质量中的百分比40%~60%将水相与油相混合。
本发明的技术方案,进一步优化的,所述引发剂为过氧化氢类引发剂、偶氮类引发剂、安息香系列引发剂中的至少一种。所述的过氧化氢类引发剂为过氧化铵(APS)或过氧化钾(KPS),所述的偶氮类引发剂为偶氮二异丙基咪唑啉盐酸盐(AIBI,Va-044,引发温度为25~35℃),偶氮二异丁腈(AIBN,引发温度为40~60℃或光引发365nm)。所述的安息香系列引发剂为安息香二甲醚(DMPA或BDK,光引发365nm)。引发剂含量为单体总质量的0.006%~0.3%。
本发明的技术方案,进一步优化的,步骤(2)后处理将所得反相乳液倒入丙酮中进行破乳,使用正己烷、丙酮分别反复洗涤3次,离心后,在真空烘箱中40℃条件下干燥保持两天,得热增黏水溶性聚合物白色粉末。
本发明提供的上述方法制备的阴离子型热增黏水溶性聚合物干粉及聚合物乳液。聚合物结构式可表示如下:
Figure PCTCN2019090167-appb-000003
该聚合物分子量可高达8.6×106g·mol-1,较低浓度下的聚合物水溶液即具有明显的热增黏效果,具有应用于聚合物驱三次采油的潜力。
使用时,可将阴离子型热增黏水溶性聚合物通过冷冻干燥、喷雾干燥制备成 干粉,再溶解于水中,搅拌至溶解。也可直接在聚合所得的阴离子型热增黏水溶性聚合物反相乳液中加入反相剂,搅拌均匀,用水稀释成稀释乳液使用。可在稀释后的乳液中再加入反相剂后使用,所得到的溶液的热增黏行为会有所差别,见图8。反相剂可使用Hypinvert 3110,用量为反相乳液质量的1~10%。反相剂与反相乳液的混合时间为2~120min,搅拌速率为50~200rpm。反相后的乳液溶于水中的时间为5~120min,搅拌速率为200~800rpm。如需在稀释后乳液加入的反相剂,反相剂的添加量为乳液稀释液总质量的0.1~5%,混合时间为5~120min。
与现有技术相比,本发明具有以下有益效果:
1、相对现有其他合成方法得到的热增黏水溶性聚合物干粉,本发明采用反相乳液聚合制备的阴离子型热增黏水溶性聚合物分子量可达8.6×106g·mol-1,具有较好的热增黏行为,聚合物干粉水溶液浓度在0.20%(w/w)即具有热增黏行为,可降低应用成本。
2、本发明制得的聚合物反相乳液在加入反相剂后可快速溶于水中,溶解时间小于10min,且无不溶物,不需要大型的溶解设备,提高了现场生产效率。
3、本发明采用反相乳液聚合合成的阴离子型聚醚热增黏水溶性聚合物反相乳液固含量达到30%(w/w),转化率高,残余单体含量低,且聚合后得到的乳液黏度低,便于后处理。
4、本发明方法制备的阴离子型热增黏水溶性聚合物乳液存放时间长,常温下可达3个月以上,乳液稳定性好。
5、本发明方法生产工艺简单,反应条件温和、能耗低,制备成本低,利于工业化实际应用。
6、本发明所制备的乳液稀释液再次加入少量反相剂后,具有较强的热增黏行为,随着反相剂加入量的增加,乳液稀释液有不同的热增黏行为,见图8。
7、本发明通过反相乳液聚合的阴离子型热增黏水溶性聚合物,热增黏行为可通过改变温敏大分子的种类和含量、反相剂含量、聚合物浓度、盐水组成等条件进行调节,其热增黏性能及相应的老化和岩心驱替实验结果见附图。
附图说明
图1为实施例19、20分别得到的TVP-P1、TVP-P2干粉所配制的水溶液在浓 度为0.20%下的黏度—温度曲线
Figure PCTCN2019090167-appb-000004
图2为实施例19、22分别得到的TVP-P1、TVP-P4干粉所配制的水溶液在浓度为0.20%下的黏度—温度曲线
Figure PCTCN2019090167-appb-000005
图3为实施例19、20、21、24分别得到的TVP-P1(a)、TVP-P2(b)、TVP-P3(c)、PAMA(d)干粉所配制的水溶液不同浓度下的黏度—剪切速率曲线(T=45℃)。
图4为实施例19、24分别得到的TVP-P1(a)、PAMA(b)干粉所配制的水溶液在不同浓度下的黏度—温度曲线
Figure PCTCN2019090167-appb-000006
图5为实施例19、24分别得到的TVP-P1(a)、PAMA(b)干粉所配制的水溶液(0.20%)在不同盐水浓度中的黏度—温度曲线
Figure PCTCN2019090167-appb-000007
图6为实施例19、24分别得到的TVP-P1(a)、PAMA(b)干粉所配制的水溶液在盐水中不同浓度下的黏度—温度曲线(0.45%NaCl盐溶液,
Figure PCTCN2019090167-appb-000008
)。
图7为实施例19得到的ETVP-P1乳液稀释液、TVP-P1干粉所配制的水溶液及未聚合的乳液稀释液(0.20%)的黏度—温度曲线(纯水,
Figure PCTCN2019090167-appb-000009
)。
图8为实施例19得到的ETVP-P1乳液稀释液(0.20%)在不同反相剂加量条件下的黏度—温度曲线(纯水,
Figure PCTCN2019090167-appb-000010
)。
图9为实施例24得到的EPAMA乳液稀释液、PAMA干粉所配制的水溶液(0.20%)的黏度—温度曲线(纯水,
Figure PCTCN2019090167-appb-000011
)。
图10为实施例29、30得到的TVP-P1干粉所配制的水溶液、ETVP-P1乳液稀释液(0.20%)的溶解速度曲线(纯水,25℃,
Figure PCTCN2019090167-appb-000012
)。
图11为实施例31、32分别得到的TVP-P1(0.15%)、PAMA干粉所配制的水溶液(0.20%)的老化曲线(0.45%NaCl盐溶液,T=45℃,
Figure PCTCN2019090167-appb-000013
)。
图12为实施例31、33分别得到的TVP-P1干粉所配制的水溶液(0.15%)、ETVP-P1乳液稀释液(0.10%)的老化曲线(0.45%NaCl盐溶液,T=45℃,
Figure PCTCN2019090167-appb-000014
Figure PCTCN2019090167-appb-000015
)。
图13为实施例34、35分别得到的TVP-P1(0.15%)、PAMA干粉所配制的水 溶液(0.20%)的流动实验曲线(0.45%NaCl盐溶液,T=45℃)。
图14为实施例34、36分别得到的TVP-P1干粉所配制的水溶液(0.15%)、ETVP-P1乳液稀释液(0.10%)的流动实验曲线(0.45%NaCl盐溶液,T=45℃)。
图15为实施例37、38分别得到的TVP-P1(0.15%)、PAMA干粉所配制的水溶液(0.20%)的岩心驱替曲线(0.45%NaCl盐溶液,T=45℃)(R,Recovery factor,采收率;F,Pore pressure,聚聚合物流动过程中多孔介质中的压力)。
图16为实施例37、39分别得到的TVP-P1干粉所配制的水溶液(0.15%)、ETVP-P1乳液稀释液(0.10%)的岩心驱替曲线(0.45%NaCl盐溶液T=45℃)(R,Recovery factor,采收率;F,Pore pressure,聚聚合物流动过程中多孔介质中的压力)。
具体实施方法
下面的实施例是对本发明的进一步详细描述。以下实施例可以使本专业技术人员更全面的理解本发明,但不以任何方式限制本发明。
以下实施例中,水相各组分的质量百分数以水相总质量为100%,油相的质量百分比组成以油相总质量为100%。
以下实施例中的聚合物的分子量是通过静态光散射法测定的。
以下实施例中后续的老化、流动和模拟驱替实验中采用的聚合物溶液的初始黏度保持一致。所述乳液稀释液的浓度以阴离子型热增黏水溶性聚合物的浓度为计量,在稀释时候应计算乳液固含量,乳液固含量=阴离子型热增黏水溶性聚合物质量/乳液质量。
实施例1-18
以下表格分别从乳化剂种类、油水比、单体比例、有无NaAA四个方面探究最佳的反相乳液配比,以得到最优阴离子型热增黏聚合物。
表1乳化剂种类对乳液状态的影响
Figure PCTCN2019090167-appb-000016
Figure PCTCN2019090167-appb-000017
a×代表没有制备出反相乳液,√代表制备出反相乳液。
表2油水比对乳液状态的影响
Figure PCTCN2019090167-appb-000018
a×代表没有制备出反相乳液,√代表制备出反相乳液。
表3单体比例对聚合物性质的影响
Figure PCTCN2019090167-appb-000019
a×代表所制备的聚合物干粉没有热增黏的性质,√代表所制备的聚合物干粉具有热增黏的性质。
表4有无NaAA单体对聚合物性质的影响
Figure PCTCN2019090167-appb-000020
a×代表所制备的聚合物干粉溶解时间长,√代表所制备的聚合物干粉可以快速溶于水中。
以实施例18为例,将31.6%(w/w,下同)的丙烯酰胺、9.5%的丙烯酸钠、8.6%的F127、5.0%的氯化钠,溶于45.2%的去离子水中,调节pH=7.0,配制成水相。将14%的乳化剂HB246溶于86%的矿物油中,加热至50℃溶解后,按质量比油相:水相=4.5:5.5的比例,依次将油相和水相加入乳化机中,搅拌均匀高速乳化。所得乳液为稳定的W/O乳液。
实施例19
将31.7%(w/w,下同)的丙烯酰胺、9.5%的丙烯酸钠、8.6%的F127、5.0%的氯化钠,溶于45.2%的去离子水中,调节pH=7.0,配制成水相。将14.0%的乳化剂HB246溶于86.0%的矿物油中,加热至50℃溶解后,按质量比油相:水相= 4.5:5.5的比例,依次将油相和水相加入乳化机中,搅拌均匀后乳化。乳化完成后,转移至装有搅拌、氮气管、数显温度计的250mL四口烧瓶中,用水浴升温至45℃,通氮气一定时间后,加入引发剂AIBN,聚合开始。温度计显示升温结束后,保温2h。即得阴离子型热增黏水溶性聚合物的反相乳液ETVP-P1,所得反相乳液经沉淀、洗涤、离心、冷冻干燥,得到的干粉即为TVP-P1,测得该聚合物分子量为7.8×106g·mol-1。
实施例20
将31.7%(w/w,下同)的丙烯酰胺、9.5%的丙烯酸钠、8.6%的F108、5.0%的氯化钠,溶于45.2%的去离子水中,调节pH=7.0,配制成水相。将14.0%的乳化剂HB246溶于86.0%的矿物油中,加热至45℃溶解后,按质量比油相:水相=4.5:5.5的比例,依次将油相和水相加入乳化机中,搅拌均匀后乳化。乳化完成后,转移至装有搅拌、氮气管、数显温度计的250mL四口烧瓶中,用水浴升温至45℃,通氮气一定时间后,加入引发剂AIBN,聚合开始。温度计显示升温结束后,保温2h。即得阴离子型热增黏水溶性聚合物的反相乳液ETVP-P2,所得反相乳液经沉淀、洗涤、离心、冷冻干燥,得到的干粉即为TVP-P2,测得该聚合物分子量为7.4×106g·mol-1。
实施例21
将31.7%(w/w,下同)的丙烯酰胺、9.5%的丙烯酸钠、8.6%的F68、5.0%的氯化钠,溶于45.2%的去离子水中,调节pH=7.0,配制成水相。将14.0%的乳化剂HB246溶于86.0%的矿物油中,加热至45℃溶解后,按质量比油相:水相=4.5:5.5的比例,依次将油相和水相加入乳化机中,搅拌均匀后乳化。乳化完成后,转移至装有搅拌、氮气管、数显温度计的250mL四口烧瓶中,用水浴升温至45℃,通氮气一定时间后,加入引发剂AIBN,聚合开始。温度计显示升温结束后,保温2h。即得阴离子型热增黏水溶性聚合物的反相乳液ETVP-P3,所得反相乳液经沉淀、洗涤、离心、冷冻干燥,得到的干粉即为TVP-P3,测得该聚合物分子量为7.5×106g·mol-1。
实施例22
将36.8%(w/w,下同)的丙烯酰胺、9.5%的丙烯酸钠、3.3%的F127、5.0%的 氯化钠,溶于45.2%的去离子水中,调节pH=7.0,配置成水相。将14.0%的乳化剂HB246溶于86.0%的矿物油中,加热至50℃溶解后,按质量比油相:水相=4.5:5.5的比例,依次将油相和水相加入乳化机中,搅拌均匀后乳化。乳化完成后,转移至装有搅拌、氮气管、数显温度计的250mL四口烧瓶中,用水浴升温至45℃,通氮气一定时间后,加入引发剂AIBN,聚合开始。温度计显示升温结束后,保温2h。即得阴离子型热增黏水溶性聚合物的反相乳液ETVP-P4,所得反相乳液经沉淀、洗涤、离心、冷冻干燥,得到的干粉即为TVP-P4,测得该聚合物分子量为8.3×106g·mol-1。
实施例23
将23.7%(w/w,下同)的丙烯酰胺、9.5%的丙烯酸钠、16.6%的F127、5.0%的氯化钠,溶于45.2%的去离子水中,调节pH=7.0,配置成水相。将14.0%的乳化剂HB246溶于86.0%的矿物油中,加热至50℃溶解后,按质量比油相:水相=4.5:5.5的比例,依次将油相和水相加入乳化机中,搅拌均匀后乳化。乳化完成后,转移至装有搅拌、氮气管、数显温度计的250mL四口烧瓶中,用水浴升温至45℃,通氮气一定时间后,加入引发剂AIBN,聚合开始。温度计显示升温结束后,保温2h。即得阴离子型热增黏水溶性聚合物的反相乳液ETVP-P5,所得反相乳液经沉淀、洗涤、离心、冷冻干燥,得到的干粉即为TVP-P5,测得该聚合物分子量为5.2×106g·mol-1。
实施例24
将40.3%的丙烯酰胺(w/w,下同)、9.5%的丙烯酸钠、5.0%的氯化钠,溶于45.2%的去离子水中,调节pH=7.0,配置成水相。将14.0%的乳化剂HB246溶于86.0%的矿物油中,加热至50℃溶解后,按质量比油相:水相=4.5:5.5的比例,依次将油相和水相加入乳化机中,搅拌均匀后乳化。乳化完成后,转移至装有搅拌、氮气管、数显温度计的250mL四口烧瓶中,用水浴升温至45℃,通氮气一定时间后,加入引发剂AIBN,聚合开始。温度计显示升温结束后,保温2h。即得阴离子型热增黏水溶性聚合物的反相乳液EPAMA,所得反相乳液经沉淀、洗涤、离心、冷冻干燥,得到的干粉即为PAMA,测得该聚合物分子量为8.6×106g·mol-1。
对实施例19-24制备得到的反相乳液、聚合物干粉水溶液,通过变温度和变剪切速率的方式,测定溶液黏度随温度或剪切速率的变化,以及在不同浓度的盐水中、同一浓度盐水中不同聚合物浓度条件下的黏度-温度曲线,以及在稀释后的乳液中再添加不同量的反相剂条件下的黏度-温度曲线。结果见图1-图9。从图1-图9看出,所得的热增黏聚合物干粉在纯水和盐水中都有显著的热增黏效果,所得聚合物乳液稀释液也有显著的热增黏效果,并随着反相剂加量的增多,热增黏效果越明显。
实施例25
将26.6%(w/w,下同)的丙烯酰胺、5.1%的N-乙烯基吡咯烷酮、13.5%的丙烯酸钠、8.6%的F127、2.0%的氯化钠,溶于44.2%的去离子水中,调节pH=7.0,配制成水相。将14.0%的乳化剂HB246溶于86.0%的矿物油中,加热至50℃溶解后,按质量比油相:水相=4.5:5.5的比例,依次将油相和水相加入乳化机中,搅拌均匀后乳化。乳化完成后,转移至装有搅拌、氮气管、数显温度计的250mL四口烧瓶中,用水浴升温至45℃,通氮气一定时间后,加入引发剂AIBN,聚合开始。温度计显示升温结束后,保温2h。即得阴离子型热增黏水溶性聚合物的反相乳液ETVP-P6,所得聚合物干粉为TVP-P6。
实施例26
将31.7%(w/w,下同)的丙烯酰胺、9.5%的丙烯酸钠、8.6%的F127、5.0%的氯化钠,溶于45.2%的去离子水中,调节pH=7.0,配制成水相。将14.0%的乳化剂HB206溶于86.0%的矿物油中,加热至50℃溶解后,按质量比油相:水相=4.5:5.5的比例,依次将油相和水相加入乳化机中,搅拌均匀后乳化。乳化完成后,转移至装有搅拌、氮气管、数显温度计的250mL四口烧瓶中,用水浴升温至45℃,通氮气一定时间后,加入引发剂AIBN,聚合开始。温度计显示升温结束后,保温2h。即得阴离子型热增黏水溶性聚合物的反相乳液ETVP-P7,所得聚合物干粉为TVP-P7。
实施例27
将31.7%(w/w,下同)的丙烯酰胺、7.5%的2-丙烯酰胺-2-甲基丙磺酸钠、8.6%的F127、7.0%的氯化钠,溶于45.2%的去离子水中,调节pH=7.0,配制成水相。 将14.0%的乳化剂HB246溶于86.0%的矿物油中,加热至50℃溶解后,按质量比油相:水相=4.5:5.5的比例,依次将油相和水相加入乳化机中,搅拌均匀后乳化。乳化完成后,转移至装有搅拌、氮气管、数显温度计的250mL四口烧瓶中,用水浴升温至45℃,通氮气一定时间后,加入引发剂AIBN,聚合开始。温度计显示升温结束后,保温2h。即得阴离子型热增黏水溶性聚合物的反相乳液ETVP-P8,所得聚合物干粉为TVP-P8。
实施例28
将31.7%(w/w,下同)的丙烯酰胺、9.5%的丙烯酸钠、8.6%的F127、5.0%的醋酸钠,溶于45.2%的去离子水中,调节pH=7.0,配制成水相。将14.0%的乳化剂HB246溶于86.0%的矿物油中,加热至50℃溶解后,按质量比油相:水相=4.5:5.5的比例,依次将油相和水相加入乳化机中,搅拌均匀后乳化。乳化完成后,转移至装有搅拌、氮气管、数显温度计的250mL四口烧瓶中,用水浴升温至45℃,通氮气一定时间后,加入引发剂AIBN,聚合开始。温度计显示升温结束后,保温2h。即得阴离子型热增黏水溶性聚合物的反相乳液ETVP-P9,所得聚合物干粉为TVP-P9。
实施例29
分别取实施例19得到的聚合物TVP-P1干粉0.20g,加入99.80g水中,打开机械搅拌,调转速为600rpm,在连续搅拌过程中定时间取样,并使用MCR 302安东帕流变仪进行对应的黏度测试,直到乳液稀释液黏度几乎不变为止。
实施例30
取实施例19得到的反相乳液ETVP-P1 50g,加入1.5g反相剂Hypinvert 3110,在摇床中振荡1h,混合均匀。在烧杯中加入106.0g水,打开机械搅拌,调转速为600rpm,取混合均匀后的乳液2.0g,直接滴入正在搅拌的水中,在连续搅拌过程中定时间取样,并使用MCR302安东帕流变仪进行对应的黏度测试,直到乳液稀释液黏度几乎不变为止。
实施例29和实施例30对应的黏度随温度变化关系见图10,表明乳液状态的聚合物可以在10min内快速溶于水中,而干粉状态的聚合物需要120min才能溶于水中,说明通过反相乳液聚合方法得到的反相乳液可直接以乳液的形式溶于水, 会更适宜于实际生产中。
实施例31
取实施例19得到的聚合物TVP-P1干粉0.75g,溶于499.25g 0.45%NaCl(w/w)水溶液中,搅拌速率为100rpm,溶解时间24h。将制备好的TVP-P1干粉溶液充分通氮后,放入手套箱中做进一步除氧,保证溶液的含氧量低于2ppm,然后将溶液转移至不锈钢密封瓶中,在45℃烘箱中进行老化。为保证溶液中不进入氧气,在手套箱中定期取样,并使用MCR 302安东帕流变仪进行对应的黏度测试,得到对应的TVP-P1干粉溶液老化曲线。
实施例32
取实施例24得到的聚合物PAMA干粉1.00g,溶于499.00g 0.45%NaCl(w/w)水溶液中,搅拌速率为100rpm,溶解时间24h。将制备好的PAMA干粉溶液充分通氮后,放入手套箱中做进一步除氧,保证溶液的含氧量低于2ppm,然后将溶液转移至不锈钢密封瓶中,在45℃烘箱中进行长期老化稳定性实验。为保证溶液中不进入氧气,在手套箱中定期取样,并使用MCR 302安东帕流变仪进行对应的黏度测试,得到对应的PAMA干粉溶液老化曲线。
实施例31和实施例32对应的老化曲线对比图见图11,老化初始时,聚合物溶液黏度相同,但随着时间的延长,TVP-P1干粉溶液的耐老化性要高于PAMA溶液。
实施例33
取实施例30得到的加入反相剂的反相乳液ETVP-P1 2.50g(需考虑聚合物的固含量),溶于497.50g 0.45%(w/w)NaCl水溶液中,搅拌速率为600rpm,溶解时间10min。将制备好的ETVP-P1乳液稀释液充分通氮后,放入手套箱中做进一步除氧,保证溶液的含氧量低于2ppm,然后将溶液转移至不锈钢密封瓶中,在45℃烘箱中进行老化。为保证溶液中不进入氧气,在手套箱中定期取样,并使用MCR302安东帕流变仪进行对应的黏度测试,得到对应的ETVP-P1乳液稀释液老化曲线。
实施例31和实施例33对应的老化曲线对比图见图12,老化初始时,聚合物溶液黏度相同,但随着时间的延长,TVP-P1干粉溶液的耐老化性要高于TVP-P1 乳液稀释液。
实施例34
取实施例19得到的聚合物TVP-P1干粉0.75g,溶于499.25g 0.45%(w/w)NaCl水溶液中,搅拌速率为100rpm,溶解时间24h。用G3玻砂漏斗过滤制备好的TVP-P1干粉溶液,以免在后续实验中堵塞岩心。将0.45%NaCl水饱和后的岩心放置好后,体系内温度恒定在45℃。以1mL/min的速率注入0.45%NaCl水驱替岩心,待所测压力恒定后;然后以1mL/min的速率注入TVP-P1干粉溶液驱替岩心,等待压力增加到恒定后结束;最后以1mL/min的速率注入0.45%NaCl水驱替岩心,直到压力恒定。将实验中所得压力值和对应的注入体积量绘制成曲线图,即为TVP-P1干粉溶液的流动曲线图。
实施例35
取实施例24得到的聚合物PAMA干粉1.00g,溶于499.00g 0.45%(w/w)NaCl水溶液中,搅拌速率为100rpm,溶解时间24h。用G3玻砂漏斗过滤制备好的PAMA干粉溶液,以免在后续实验中堵塞岩心。将0.45%NaCl水饱和后的岩心放置好后,体系内温度恒定在45℃。以1mL/min的速率注入0.45%NaCl水驱替岩心,待所测压力恒定后;然后以1mL/min的速率注入PAMA干粉溶液驱替岩心,等待压力增加到恒定后结束;最后以1mL/min的速率注入0.45%NaCl水驱替岩心,直到压力恒定。将实验中所得压力值和对应的注入体积量绘制成曲线图,即为PAMA干粉溶液的流动曲线图。
实施例34和实施例35对应的岩心流动曲线对比图见图13,TVP-P1聚合物溶液的阻力系数和残余阻力系数要高于PAMA干粉溶液的阻力系数和残余阻力系数,说明TVP-P1干粉溶液在注入岩心时的波及系数要高于PAMA干粉溶液,TVP-P1在模拟驱油实验时的驱油效率有可能要高一些。
实施例36
取实施例30得到的加入反相剂的反相乳液ETVP-P1 2.50g(需考虑聚合物的固含量),溶于497.50g 0.45%(w/w)NaCl水溶液中,搅拌速率为600rpm,溶解时间10min。用G3玻砂漏斗过滤制备好的ETVP-P1乳液稀释液,以免在后续实验中堵塞岩心。将0.45%NaCl水饱和后的岩心放置好后,体系内温度恒定在45℃。 以1mL/min的速率注入0.45%NaCl水驱替岩心,待所测压力恒定后;然后以1mL/min的速率注入ETVP-P1乳液稀释液驱替岩心,等待压力增加到恒定后结束;最后以1mL/min的速率注入0.45w/w%NaCl水驱替岩心,直到压力恒定。将实验中所得压力值和对应的注入体积量绘制成曲线图,即为ETVP-P1乳液稀释液的流动曲线图。
实施例34和实施例36对应的岩心流动曲线对比图见图14,TVP-P1聚合物溶液的阻力系数和残余阻力系数要略高于TVP-P1乳液稀释液的阻力系数和残余阻力系数,说明TVP-P1干粉溶液在注入岩心时的波及系数要高于TVP-P1乳液稀释液,TVP-P1干粉溶液在模拟驱油实验时的驱油效率有可能要高一些。
实施例37
取实施例19得到的聚合物TVP-P1干粉0.75g,溶于499.25g 0.45%(w/w)NaCl水溶液中,搅拌速率为100rpm,溶解时间24h。用G3玻砂漏斗过滤制备好的TVP-P1干粉溶液,以免在后续实验中堵塞岩心。将0.45%NaCl水饱和后的岩心放置好后,体系内温度恒定在45℃。首先注入原油,进行岩心原油饱和。以1mL/min的速率注入0.45%NaCl水驱替岩心,直至尾端含水率98%以上;然后以1mL/min的速率注入TVP-P1干粉溶液驱替岩心,溶液体积0.5PV;最后以1mL/min的速率注入0.45%NaCl水驱替岩心,进行后续水驱,直到尾端含水率98%以上。将实验中所得压力值、原油采收率及对应的注入体积量绘制成曲线图,即为TVP-P1干粉溶液的岩心驱替实验曲线。
实施例38
取实施例24得到的聚合物PAMA干粉1.00g,溶于499.00g 0.45%NaCl水溶液中,搅拌速率为100rpm,溶解时间24h。用G3玻砂漏斗过滤制备好的PAMA干粉溶液,以免在后续实验中堵塞岩心。将0.45%NaCl水饱和后的岩心放置好后,体系内温度恒定在45℃。首先注入原油,进行岩心原油饱和。以1mL/min的速率注入0.45%NaCl水驱替岩心,直至尾端含水率98%以上;然后以1mL/min的速率注入PAMA干粉溶液驱替岩心,溶液体积0.5PV;最后以1mL/min的速率注入0.45%NaCl水驱替岩心,进行后续水驱,直到尾端含水率98%以上。将实验中所得压力值、原油采收率及对应的注入体积量绘制成曲线图,即为PAMA干粉溶 液的岩心驱替实验曲线。
实施例37和实施例38对应的岩心驱替实验对比图见图15,TVP-P1干粉溶液注入岩心后,采油效率提升了10.0%,而PAMA干粉溶液的采油效率提升7.9%,说明TVP-P1干粉溶液用于驱油时采油的高效性。
实施例39
取实施例30得到的加入反相剂的反相乳液ETVP-P1 2.50g(需考虑聚合物的固含量),溶于497.50g 0.45%(w/w)NaCl水溶液中,搅拌速率为600rpm,溶解时间10min。用G3玻砂漏斗过滤制备好的ETVP-P1乳液稀释液,以免在后续实验中堵塞岩心。将0.45%NaCl水饱和后的岩心放置好后,体系内温度恒定在45℃。首先注入原油,进行岩心原油饱和。以1mL/min的速率注入0.45%NaCl水驱替岩心,直至尾端含水率98%以上;然后以1mL/min的速率注入ETVP-P1乳液稀释液驱替岩心,溶液体积0.5PV;最后以1mL/min的速率注入0.45%NaCl水驱替岩心,进行后续水驱,直到尾端含水率98%以上。将实验中所得压力值、原油采收率及对应的注入体积量绘制成曲线图,即为ETVP-P1乳液稀释液的岩心驱替曲线。
实施例37和实施例39对应的岩心驱替实验对比图见图16,TVP-P1干粉溶液注入岩心后,采油效率提升了10.0%,而TVP-P1乳液驱替液的采油效率提升7.9%,说明TVP-P1干粉溶液用于驱油时采油的高效性。

Claims (10)

  1. 一种阴离子型热增黏水溶性聚合物的制备方法,其特征在于包括以下步骤:
    (1)将丙烯酰胺类单体、阴离子单体、温敏大分子、无机盐加入去离子水中,调节pH在6.5~7.5之间,配制得到水相;将乳化剂加入油中形成油相;按水相在水相和油相总质量百分比10%~90%,将水相与油相混合搅拌均匀后进行乳化,或在乳化的同时将水相逐渐加入油相;在惰性气体氛围下,向乳液中加入引发剂,加热至40~60℃引发聚合或用光引发聚合,或不加引发剂加热至40~60℃聚合,聚合结束后保温2~6h,得到阴离子型热增黏水溶性聚合物反相乳液;
    其中,水相中各组分质量百分含量为:丙烯酰胺类单体20%~50%,阴离子单体5%~15%,温敏性大分子单体1%~20%,无机盐1%~10%;油相中乳化剂的百分含量为1%~20%;
    (2)步骤(1)所得反相乳液经沉淀、洗涤、离心、干燥,得阴离子型热增黏水溶性聚合物干粉;或向所得反相乳液中加入反相剂反相后得到阴离子型热增黏水溶性聚合物乳液,溶于水得到乳液稀释液。
  2. 根据权利要求1所述阴离子型热增黏水溶性聚合物的制备方法,其特征在于所述丙烯酰胺类单体为丙烯酰胺单体或丙烯酰胺单体与其他单体的混合物,其他单体为甲基丙烯酰胺、N,N′-二甲基丙烯酰胺、丙烯酸甲酯、丙烯酸乙酯、甲基丙烯酸甲酯、甲基丙烯酸乙酯、N-乙烯基吡咯烷酮中的一种,且混合物中丙烯酰胺单体的质量百分比大于50%。
  3. 根据权利要求1所述阴离子型热增黏水溶性聚合物的制备方法,其特征在于所述阴离子单体为丙烯酸、甲基丙烯酸、2-丙烯酰胺-2-甲基丙磺酸中和成的盐,中和所使用的碱为氨水、氢氧化钠、氢氧化钾、碳酸钠、碳酸氢钠中的至少一种。
  4. 根据权利要求1所述阴离子型热增黏水溶性聚合物的制备方法,其特征在于所述温敏大分子为聚氧乙烯-聚氧丙烯-聚氧乙烯的三嵌段聚合物,其结构通式为:
    Figure PCTCN2019090167-appb-100001
    其中,温敏大分子中结构和性能随着m和n值的变化而变化。
  5. 根据权利要求1所述阴离子型热增黏水溶性聚合物的制备方法,其特征在于所述无机盐为氯化钠、醋酸钠、硝酸钠、硝酸钾中的至少一种。
  6. 根据权利要求1所述阴离子型热增黏水溶性聚合物的制备方法,其特征在于所述乳化剂为长链脂肪酸-聚氧乙烯-长链脂肪酸的三嵌段高分子乳化剂。
  7. 根据权利要求1所述阴离子型热增黏水溶性聚合物的制备方法,其特征在于所述油为环烷烃、芳香烃、直链饱和或不饱和烃中的至少一种。
  8. 根据权利要求1所述阴离子型热增黏水溶性聚合物的制备方法,其特征在于所述引发剂为过氧化氢类引发剂、偶氮类引发剂、安息香系列引发剂中的至少一种;所述过氧化氢类引发剂为过氧化铵或过氧化钾,所述偶氮类引发剂为偶氮二异丙基咪唑啉盐酸盐或偶氮二异丁腈,所述安息香系列引发剂为安息香二甲醚;引发剂用量占丙烯酰胺、阴离子单体、温敏大分子总质量的0.006%~0.3%。
  9. 权利要求1-8中任一权利要求所述方法制备的阴离子型热增黏水溶性聚合物及阴离子型热增黏水溶性聚合物乳液。
  10. 权利要求9所述阴离子型热增黏水溶性聚合物在聚合物驱三次采油中的应用。
PCT/CN2019/090167 2018-04-07 2019-06-05 一种阴离子型热增黏水溶性聚合物及其制备方法和应用 WO2019192629A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/769,718 US10947334B2 (en) 2018-04-07 2019-06-05 Anionic thermoviscosifying water-soluble polymers, preparation method and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810303492.X 2018-04-07
CN201810303492.XA CN108586671B (zh) 2018-04-07 2018-04-07 一种阴离子型热增黏水溶性聚合物及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2019192629A1 true WO2019192629A1 (zh) 2019-10-10

Family

ID=63624566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090167 WO2019192629A1 (zh) 2018-04-07 2019-06-05 一种阴离子型热增黏水溶性聚合物及其制备方法和应用

Country Status (3)

Country Link
US (1) US10947334B2 (zh)
CN (1) CN108586671B (zh)
WO (1) WO2019192629A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116731250A (zh) * 2023-06-16 2023-09-12 广汉市华星新技术开发研究所(普通合伙) 一种耐高温酸液胶凝剂的制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108586671B (zh) * 2018-04-07 2019-06-04 四川大学 一种阴离子型热增黏水溶性聚合物及其制备方法和应用
CN111892512A (zh) * 2019-05-05 2020-11-06 石家庄圣泰化工有限公司 甜菜碱型两性离子的合成方法
CN111253925B (zh) * 2020-02-18 2021-02-02 四川大学 热增黏乳液聚合物的用途及基于热增黏乳液聚合物的压裂液携砂剂和滑溜水减阻剂
CN116286091B (zh) * 2023-05-22 2023-08-11 新疆科力新技术发展股份有限公司 油田采出液复合处理药剂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0583814A1 (en) * 1992-08-20 1994-02-23 Sofitech N.V. Thermoviscosifying polymers, their synthesis and their uses in particular in the oil industry
US20020198328A1 (en) * 2001-05-16 2002-12-26 L'oreal Water-soluble polymers with a water-soluble backbone and side units with a lower critical solution temperature, process for preparing them, aqueous compositions containing them and cosmetic use thereof
CN106084144A (zh) * 2016-05-31 2016-11-09 四川大学 基于聚醚接枝改性的热增黏聚合物及其制备方法
CN107759738A (zh) * 2016-08-17 2018-03-06 中国石油化工股份有限公司 一种水溶性热增黏共聚物、制备方法及应用
CN108586671A (zh) * 2018-04-07 2018-09-28 四川大学 一种阴离子型热增黏水溶性聚合物及其制备方法和应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1141032B1 (en) * 1998-12-14 2004-11-03 Rhodia Inc. Polymers which exhibit thermothickening properties and process making same
US7273891B1 (en) 2002-01-17 2007-09-25 B L Partnership Stable copolymers
CN101302267A (zh) * 2007-05-11 2008-11-12 中国科学院成都有机化学有限公司 一种非离子热增粘水溶性聚合物
CN102070754A (zh) 2009-11-23 2011-05-25 中国科学院成都有机化学有限公司 一种新型阴离子型热增粘水溶性聚合物
CN102464797B (zh) 2010-11-05 2013-07-03 中国石油化工股份有限公司 烯醚系单体和水溶性热增稠共聚物及制备方法与应用
CN102464782B (zh) 2010-11-05 2013-02-27 中国石油化工股份有限公司 热增稠水溶性三元共聚物及其制法和应用
CN102464781B (zh) 2010-11-05 2013-02-27 中国石油化工股份有限公司 一种热增稠三元共聚物及其制法和应用
CN104449617B (zh) * 2014-11-26 2018-05-08 胜利油田胜利化工有限责任公司 一种阴离子聚丙烯酰胺水包水乳液堵水调剖剂及其制备方法和使用用法
CN104403054A (zh) * 2014-11-27 2015-03-11 胜利油田胜利化工有限责任公司 一种疏水缔合阴离子聚丙烯酰胺水包水乳液及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0583814A1 (en) * 1992-08-20 1994-02-23 Sofitech N.V. Thermoviscosifying polymers, their synthesis and their uses in particular in the oil industry
US20020198328A1 (en) * 2001-05-16 2002-12-26 L'oreal Water-soluble polymers with a water-soluble backbone and side units with a lower critical solution temperature, process for preparing them, aqueous compositions containing them and cosmetic use thereof
CN106084144A (zh) * 2016-05-31 2016-11-09 四川大学 基于聚醚接枝改性的热增黏聚合物及其制备方法
CN107759738A (zh) * 2016-08-17 2018-03-06 中国石油化工股份有限公司 一种水溶性热增黏共聚物、制备方法及应用
CN108586671A (zh) * 2018-04-07 2018-09-28 四川大学 一种阴离子型热增黏水溶性聚合物及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, MENGMENG ET AL.,: "Viscosifying Water-soluble Polymers Synthesized through Inverse Emulsion Polymerization", ABSTRACT BOOK 16TH NATIONAL CCS CONFERENCE ON COLLOID AND INTERFACE CHEMISTRY-SIXTH BRANCH; APPLICATION AND INTERFACE CHEMISTRY, 24 July 2017 (2017-07-24), pages 81 - 82 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116731250A (zh) * 2023-06-16 2023-09-12 广汉市华星新技术开发研究所(普通合伙) 一种耐高温酸液胶凝剂的制备方法
CN116731250B (zh) * 2023-06-16 2024-03-05 广汉市华星新技术开发研究所(普通合伙) 一种耐高温酸液胶凝剂的制备方法

Also Published As

Publication number Publication date
CN108586671A (zh) 2018-09-28
CN108586671B (zh) 2019-06-04
US20200369818A1 (en) 2020-11-26
US10947334B2 (en) 2021-03-16

Similar Documents

Publication Publication Date Title
WO2019192629A1 (zh) 一种阴离子型热增黏水溶性聚合物及其制备方法和应用
CN103865008B (zh) 聚酰胺-胺杂化纳米二氧化硅超支化聚合物及其制备方法
US4709759A (en) Enhanced oil recovery with hydrophobically associating polymers containing N-vinyl-pyrrolidone functionality
CN105153375B (zh) 一种用raft法合成聚羧酸减水剂的方法
CN102703042B (zh) 一种耐碱聚合物型调剖剂及其制备方法
CN109666097A (zh) 疏水缔合聚合物凝胶微球调剖剂及其制备方法
WO2019024476A1 (zh) 一种稠油活化剂及其制备方法与应用
CN103525379A (zh) 一种聚合物纳米二氧化硅抗温耐盐降失水剂及其制备方法
CN1125094C (zh) 一种耐温耐盐共聚物增稠剂
CN104109219A (zh) 一种耐高温酸性交联聚合物稠化剂及其制备方法和应用
CN102965094B (zh) 一种树枝聚合物/SiO2纳米驱油剂及其制备方法
CN113527576B (zh) 一种包覆表面活性剂的聚合物微球及其制备方法
CN108546316A (zh) 一种接枝改性疏水缔合聚合物的制备方法
CN114702632A (zh) 一种水基钻井液用降滤失剂及其制备方法
CN115975106B (zh) 盐敏增黏聚合物驱油剂及其制备方法与应用
CN110357995A (zh) 一种末端功能改性的低分子量聚合物及其制备方法
CN113563510B (zh) 钻井泥浆膨润土抗温抗盐梳型聚合物降滤失剂
CN115466348A (zh) 一种两性聚合物乳液土壤固化剂的制备及其应用
CN114426635B (zh) 用于稠油仿水驱开发的降粘驱油剂及其制备方法
Wu et al. Hyper-branched structure—an active carrier for copolymer with surface activity, anti-polyelectrolyte effect and hydrophobic association in enhanced oil recovery
CN114456332A (zh) 一种纳米颗粒修饰的聚合物及其制备方法和应用
CN106957398A (zh) 一种八臂树状超支化聚羧酸超塑化剂及其制备方法和应用
CN113831482B (zh) 一种基于叔胺基团的co2响应增粘聚合物及其制备方法和应用
CN114426650B (zh) 一种用于稠油冷采聚合物型降粘剂及其制备方法
GB2213850A (en) Enhanced oil recovery process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19782399

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19782399

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19782399

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03.05.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19782399

Country of ref document: EP

Kind code of ref document: A1