WO2019188468A1 - 微細繊維状セルロースおよびその樹脂組成物 - Google Patents

微細繊維状セルロースおよびその樹脂組成物 Download PDF

Info

Publication number
WO2019188468A1
WO2019188468A1 PCT/JP2019/011051 JP2019011051W WO2019188468A1 WO 2019188468 A1 WO2019188468 A1 WO 2019188468A1 JP 2019011051 W JP2019011051 W JP 2019011051W WO 2019188468 A1 WO2019188468 A1 WO 2019188468A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
fine fibrous
acid
group
fibrous cellulose
Prior art date
Application number
PCT/JP2019/011051
Other languages
English (en)
French (fr)
Inventor
達也 難波
洋介 後居
和人 神野
Original Assignee
第一工業製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一工業製薬株式会社 filed Critical 第一工業製薬株式会社
Publication of WO2019188468A1 publication Critical patent/WO2019188468A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B11/00Preparation of cellulose ethers
    • C08B11/02Alkyl or cycloalkyl ethers
    • C08B11/04Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals
    • C08B11/10Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals substituted with acid radicals
    • C08B11/12Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals substituted with acid radicals substituted with carboxylic radicals, e.g. carboxymethylcellulose [CMC]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • C08B15/04Carboxycellulose, e.g. prepared by oxidation with nitrogen dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B7/00Preparation of cellulose esters of both organic and inorganic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/184Carboxylic acids; Anhydrides, halides or salts thereof
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/18Highly hydrated, swollen or fibrillatable fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/06Cellulose acetate, e.g. mono-acetate, di-acetate or tri-acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B5/00Preparation of cellulose esters of inorganic acids, e.g. phosphates

Definitions

  • the present invention relates to fine fibrous cellulose and a resin composition thereof.
  • Fine fibrous cellulose has various characteristics such as high strength, high elastic modulus, thermal dimensional stability, and high transparency. Therefore, various functionalities can be imparted to the resin by using fine fibrous cellulose as a filler of the resin.
  • cellulose has three hydroxyl groups per repeating unit in its molecule. As a result, the cohesive force due to hydrogen bonding is strong between cellulose molecules, and the fine fibrous cellulose is not easily dispersed in the resin, and a function cannot be imparted to the resin.
  • Patent Document 1 in the case of TEMPO-oxidized cellulose, a technique for suppressing hydrogen bonding force by introducing a bulky amine compound via an ionic bond into a carboxylic acid group at the C6 position is described.
  • Patent Documents 2 and 3 describe a technique for suppressing the hydrogen bonding force of cellulose molecules by introducing an acyl group into the hydroxyl group of sugar chains constituting cellulose and blocking the hydroxyl groups of cellulose molecules. Yes.
  • it can be dispersed in various resins, and it is possible to impart high strength and low thermal expansion coefficient to the resin.
  • Patent Document 1 since many hydroxyl groups remain on the fine fibrous cellulose and the cellulose fibers partially aggregate in the resin, the resin has a high strength and a low thermal expansion coefficient as expected. Has not yet been granted. In addition, since it is necessary to introduce a very bulky amine compound, the amine compound works plastically, preventing improvement in strength and thermal expansion coefficient due to cellulose fibers. In Patent Documents 2 and 3, since the fine fibrous cellulose does not have an ionic functional group, the fiber diameter is large even if it is made into nanofibers, and the high strength expected here has not been imparted to the resin.
  • the present invention provides a fine fibrous cellulose that can be well dispersed in a resin and can impart high strength and a low thermal expansion coefficient to the blended resin, and a resin composition containing the fine fibrous cellulose.
  • the present invention provides the following [1] to [10].
  • [1] A fine fibrous cellulose characterized by satisfying the following conditions (A) to (E).
  • (A) Number average fiber diameter of 2 nm to 500 nm
  • [2] The fine fibrous cellulose as described in [1], wherein an organic base is bonded to the (D) anionic functional group.
  • [3] The fine fibrous form according to [1] or [2], wherein the organic base is one or more selected from primary amines, secondary amines, and tertiary amines cellulose.
  • Step (1) Step of converting hydroxyl group of cellulose fiber into anionic functional group
  • Step (2) Step of introducing acyl group into hydroxyl group of cellulose fiber having anionic functional group
  • step (3) A step of modifying the anionic group of the cellulose fiber introduced with the acyl group with an organic base
  • step (4) a step of defibrating the modified cellulose fiber, Production method.
  • the fine fibrous cellulose of the present invention is well dispersed in the resin, and has the effect of imparting high strength and low thermal expansion coefficient to the blended resin.
  • the number average fiber diameter of the fine fibrous cellulose is 2 nm or more and 500 nm or less, preferably 150 nm or less, more preferably 100 nm or less, and particularly preferably 80 nm or less. If the number average fiber diameter is less than 2 nm, the fine fibrous cellulose dissolves and the crystal structure is lost. Therefore, when blended in the resin, the resin strength and thermal expansion coefficient may not be improved. When the number average fiber diameter exceeds 500 nm, the aspect ratio of the fine fibrous cellulose is small, and therefore, when blended in the resin, the strength and thermal expansion coefficient of the resin may not be improved.
  • the number average fiber diameter of the fine fibrous cellulose can be measured, for example, as follows. That is, a fine fibrous cellulose dispersion having a solid content of 0.05 to 0.1% by mass was prepared, and the dispersion was cast on a carbon film-coated grid that had been subjected to a hydrophilic treatment, and a transmission electron microscope. (TEM) observation sample. In addition, when the fiber of a big fiber diameter is included, you may observe the scanning electron microscope (SEM) image of the surface cast on glass. Then, observation with an electron microscope image is performed at a magnification of 5000 times, 10000 times, or 50000 times depending on the size of the constituent fibers.
  • SEM scanning electron microscope
  • the average aspect ratio of the fine fibrous cellulose is from 10 to 1,000, preferably from 100 to 1,000, and more preferably from 200 to 1,000. If the average aspect ratio is less than 10, when blended in the resin, sufficient effects as a filler are not exhibited, and thus the strength and thermal expansion coefficient of the resin may not be improved.
  • the average aspect ratio of the fine fibrous cellulose can be measured, for example, by the following method. That is, after the fine fibrous cellulose is cast on a carbon film-coated grid that has been hydrophilized, the average aspect ratio is 2% uranyl acetate. From the negative-stained TEM image (magnification: 5000 times or 10,000 times), the number average fiber width of the short width and the number average fiber width of the long width of the cellulose nanofiber were observed. That is, the number average fiber width of the short width and the number average fiber width of the long width were calculated according to the methods described above, and the aspect ratio was calculated according to the following formula using these values.
  • Average aspect ratio long-width number-average fiber width (nm) / short-width number-average fiber width (nm) (1)
  • the fine fibrous cellulose is a fiber obtained by refining a naturally-derived cellulose raw material having an I-type crystal structure. That is, in the process of biosynthesis of natural cellulose, nanofibers called microfibrils are first formed almost without exception, and these form a multi-bundle to form a higher order solid structure.
  • the fine fibrous cellulose has an anionic functional group.
  • a method of introducing carboxyl into cellulose a method of reacting at least one selected from the group consisting of a compound having a carboxyl group at the hydroxyl group of cellulose, an acid anhydride of a compound having a carboxyl group and derivatives thereof, a hydroxyl group of cellulose
  • the method of converting into a carboxyl group by oxidizing is mentioned.
  • a halogenated acetic acid is mentioned, As a halogenated acetic acid, chloroacetic acid, bromoacetic acid, iodoacetic acid etc. are mentioned.
  • the acid anhydride of the compound having a carboxyl group is not particularly limited, but acid anhydrides of dicarboxylic acid compounds such as maleic anhydride, succinic anhydride, phthalic anhydride, glutaric anhydride, adipic anhydride, itaconic anhydride, and the like. Can be mentioned.
  • the derivative of the compound having a carboxyl group is not particularly limited, and examples thereof include an acid anhydride imidized compound of a compound having a carboxyl group and an acid anhydride derivative of a compound having a carboxyl group.
  • the acid anhydride imidized product of the compound having a carboxyl group is not particularly limited, and examples thereof include imidized products of dicarboxylic acid compounds such as maleimide, succinimide, and phthalimide.
  • the acid anhydride derivative of the compound having a carboxyl group is not particularly limited, but at least one of the acid anhydrides of the compound having a carboxyl group, such as dimethylmaleic anhydride, diethylmaleic anhydride, diphenylmaleic anhydride and the like. And those in which a part of the hydrogen atoms are substituted with a substituent (for example, an alkyl group, a phenyl group, etc.).
  • a substituent for example, an alkyl group, a phenyl group, etc.
  • the method for oxidizing the hydroxyl group of cellulose is not particularly limited, and specific examples include a method in which an N-oxyl compound is used as an oxidation catalyst and a co-oxidant is allowed to act.
  • a method for introducing a carboxyl group into cellulose a method of oxidizing the hydroxyl group of cellulose is preferable because of excellent hydroxyl group selectivity on the fiber surface and mild reaction conditions.
  • cellulose having a carboxyl group introduced by oxidation of a hydroxyl group is referred to as oxidized cellulose.
  • the oxidized cellulose uses natural cellulose as a raw material, uses an N-oxyl compound as an oxidation catalyst in water, and reacts with a co-oxidant to oxidize the natural cellulose to obtain reactant fibers, removing impurities.
  • a production method including a purification step of obtaining a reactant fiber impregnated with water and a dispersion step of dispersing the reactant fiber impregnated with water in a solvent.
  • a method for introducing a phosphate group into cellulose as one embodiment, the following method may be mentioned. That is, a method of mixing phosphoric acid or phosphoric acid derivative powder or aqueous solution into a dried or wet cellulose fiber raw material, a method of adding an aqueous solution of phosphoric acid or phosphoric acid derivative to a dispersion of cellulose fiber raw material, etc. It is done. In these methods, dehydration treatment, heat treatment, and the like are usually performed after mixing or adding a powder or aqueous solution of phosphoric acid or phosphoric acid derivative.
  • examples of phosphoric acid or phosphoric acid derivatives include at least one compound selected from oxo acids, polyoxo acids or derivatives thereof containing a phosphorus atom.
  • the compound or salt thereof containing a phosphate group at the hydroxyl group of the glucose unit constituting cellulose undergoes a dehydration reaction to form a phosphate ester, and the phosphate group or salt thereof is introduced.
  • the amount of anionic functional group of the fine fibrous cellulose of the present invention is preferably 0.5 mmol / g or more, more preferably 1.5 mmol / g or more, preferably in the range of 2.5 mmol / g or less, 2.0 mmol / g. g or less is more preferable. If the amount of anionic functional group is within the above range, it is preferable in that fine fibrous cellulose can be obtained.
  • the amount of carboxyl groups in the oxidized cellulose for example, 60 ml of a 0.5 to 1% by weight slurry is prepared from a cellulose sample precisely weighed in dry weight, and the pH is adjusted to about 2.5 with 0.1 M hydrochloric acid aqueous solution. Then, 0.05M sodium hydroxide aqueous solution is dripped and electrical conductivity measurement is performed. The measurement is continued until the pH is about 11.
  • the amount of carboxyl groups can be determined from the amount of sodium hydroxide consumed in the neutralization step of the weak acid with a slow change in electrical conductivity (V) according to the following equation (2).
  • the amount of anionic functional group of the fine fibrous cellulose is measured by the following method when the anionic functional group is a carboxymethyl group, for example. That is, the above-mentioned fine fibrous cellulose is prepared in a 0.6% by mass slurry, and 0.1M hydrochloric acid aqueous solution is added to adjust the pH to 2.4, and then 0.05N sodium hydroxide aqueous solution is dropped to adjust the pH to 11.
  • the electrical conductivity is measured until the amount of carboxyl groups is measured from the amount of sodium hydroxide consumed in the neutralization step of the weak acid where the change in electrical conductivity is slow, and can be calculated using the following equation.
  • Carboxymethyl group amount (mmol / g) [162 ⁇ C] / [1-58 ⁇ C] ⁇ 1000 (3)
  • the amount of carboxyl groups can be adjusted by controlling the amount of addition of the co-oxidant used in the natural cellulose oxidation step and the reaction time, as will be described later.
  • the oxidized cellulose is preferably reduced with a reducing agent after the oxidative modification. As a result, part or all of the aldehyde group and the ketone group are reduced to return to the hydroxyl group. Note that the carboxyl group is not reduced. Then, by the reduction, the total content of aldehyde groups and ketone groups as measured by the semicarbazide method of the oxidized cellulose is preferably 0.3 mmol / g or less, particularly preferably 0.1 mmol / g or less, most preferably Preferably it is substantially 0 mmol / g. Thereby, the molecular weight fall of fine fibrous cellulose is suppressed and the high aspect ratio of fine fibrous cellulose can be maintained for a long time.
  • the oxidized cellulose is oxidized using a co-oxidant in the presence of an N-oxyl compound such as 2,2,6,6-tetramethylpiperidine (TEMPO), and an aldehyde group generated by the oxidation reaction.
  • N-oxyl compound such as 2,2,6,6-tetramethylpiperidine (TEMPO)
  • TEMPO 2,2,6,6-tetramethylpiperidine
  • the ketone group is reduced with a reducing agent because the oxidized cellulose can be easily obtained.
  • reduction with the reducing agent the is by hydrogenation sodium borohydride (NaBH 4), more preferable from the viewpoint of cost.
  • the amount of carbonyl groups (total content of aldehyde groups and ketone groups) can be determined.
  • Semicarbazide reacts with an aldehyde group or a ketone group to form a Schiff base (imine), but does not react with a carboxyl group. Therefore, it is considered that only the aldehyde group and the ketone group can be quantified by the above measurement.
  • Carbonyl group amount (mmol / g) [D ⁇ B] ⁇ f ⁇ [0.125 / w] (4)
  • D Sample titration (ml)
  • B Titrate of blank test (ml)
  • f Factor of 0.1N sodium thiosulfate solution
  • w Sample amount (g)
  • the hydroxyl group at the C6 position of each glucose unit in the cellulose molecule on the fiber surface is selectively oxidized and modified to be either an aldehyde group or a carboxyl group. Whether the hydroxyl group at the C6 position of the glucose unit on the surface of the fine fibrous cellulose is selectively oxidized can be confirmed by, for example, a 13 C-NMR chart.
  • a 62 ppm peak corresponding to the C6 position of the primary hydroxyl group of the glucose unit which can be confirmed by a 13 C-NMR chart of cellulose before oxidation, disappears after the oxidation reaction, and instead a peak derived from a carboxyl group or the like (178 ppm)
  • the peak of is a peak derived from a carboxyl group). In this way, it can be confirmed that only the C6 hydroxyl group of the glucose unit is oxidized to a carboxyl group or the like.
  • the detection of the aldehyde group in the oxidized cellulose can also be performed using, for example, a Faring reagent. That is, after adding a Fering reagent (mixed solution of sodium potassium tartrate and sodium hydroxide and an aqueous solution of copper sulfate pentahydrate) to the dried sample, the supernatant is blue when heated at 80 ° C. for 1 hour. When the oxidized cellulose portion is amber, it can be determined that the aldehyde group is not detected, and when the supernatant is yellow and the oxidized cellulose portion is red, it can be determined that the aldehyde group is detected.
  • a Fering reagent mixed solution of sodium potassium tartrate and sodium hydroxide and an aqueous solution of copper sulfate pentahydrate
  • Organic base It is preferable that an organic base is bonded to the anionic functional group.
  • examples of the organic base include primary amines, secondary amines, tertiary amines, quaternary onium salts, diamines, hydrazide compounds, and the like.
  • the primary amine is not particularly limited, and examples thereof include aminomethane, aminoethane, 1-aminopropane, 1-aminobutane, 1-aminopentane, isoamylamine, 1-aminohexane, 1-aminoheptane, and 1-aminooctane.
  • the secondary amine is not particularly limited.
  • the tertiary amine is not particularly limited, and examples thereof include N, N, N-trimethylamine, N, N, N-triethylamine, N-ethyl-N, N-dimethylamine, and N, N, N-tripropylamine.
  • the quaternary onium salt is not particularly limited, and various tetraalkylammonium salts can be mentioned.
  • the tetraalkylammonium salt is not particularly limited, and specifically, dodecyltrimethylammonium, tetradecyltrimethylammonium, hexadecyltrimethylammonium, octadecyltrimethylammonium, oleyltrimethylammonium, didodecyldimethylammonium, ditetradecyldimethylammonium, Dihexadecyldimethylammonium, dioctadecyldimethylammonium, dioleyldimethylammonium, dodecyldimethylbenzylammonium, tetradecyldimethylbenzylammonium, hexadecyldimethylbenzylammonium, octadecyldimethylbenzylammonium,
  • organic phosphonium salt examples include tetraethylphosphonium, triethylbenzylphosphonium, tetrabutylphosphonium, tetraoctylphosphonium, trimethyldecylphosphonium, trimethyldodecylphosphonium, trimethylhexadecylphosphonium, trimethyloctadecylphosphonium, tributylmethylphosphonium, tributyldodecylphosphonium, Selected from tributyloctadecylphosphonium, trioctylethylphosphonium, tributylhexadecylphosphonium, methyltriphenylphosphonium, ethyltriphenylphosphonium, diphenyldioctylphosphonium, triphenyloctadecylphosphonium, tetraphenylphosphonium, tributylallylphosphonium Such as one
  • the diamine is not particularly limited.
  • the hydrazide compound is not particularly limited. Examples include maleic acid dihydrazide, fumaric acid dihydrazide, itaconic acid dihydrazide, phthalic acid dihydrazide, carbonic acid dihydrazide, carbodihydrazide, thiocarbodihydrazide, oxalyl dihydrazide, and polyacrylic acid hydrazide.
  • the organic base is preferably one or more selected from primary amines, secondary amines, and tertiary amines.
  • the acyl group is saturated fatty acid, unsaturated carboxylic acid, monounsaturated fatty acid, diunsaturated fatty acid, triunsaturated fatty acid, tetraunsaturated fatty acid, pentaunsaturated fatty acid, hexaunsaturated fatty acid, aromatic carboxylic acid, dicarboxylic acid , Amino acids, maleimide compounds:
  • saturated fatty acids examples include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, pivalic acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, undecylic acid, lauric acid, tridecylic acid, myristic acid, pentadecyl Acid, palmitic acid, margaric acid, stearic acid, nonadecylic acid and arachidic acid are preferred.
  • unsaturated carboxylic acid acrylic acid, methacrylic acid and the like are preferable.
  • monounsaturated fatty acid crotonic acid, myristoleic acid, palmitoleic acid, oleic acid, ricinoleic acid and the like are preferable.
  • diunsaturated fatty acid sorbic acid, linoleic acid, eicosadienoic acid and the like are preferable.
  • triunsaturated fatty acid linolenic acid, pinolenic acid, eleostearic acid and the like are preferable.
  • the tetraunsaturated fatty acid is preferably selected from stearidonic acid and arachidonic acid.
  • boseopentaenoic acid As the pentaunsaturated fatty acid, boseopentaenoic acid, eicosapentaenoic acid and the like are preferable.
  • hexaunsaturated fatty acid docosahexaenoic acid, nisic acid and the like are preferable.
  • Aromatic carboxylic acids include benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, salicylic acid, gallic acid (3,4,5-trihydroxybenzenecarboxylic acid), cinnamic acid (3-phenylprop-2-enoic acid) Etc.) are preferred.
  • dicarboxylic acid oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, fumaric acid, maleic acid and the like are preferable.
  • amino acid glycine, ⁇ -alanine, ⁇ -aminocaproic acid (6-aminohexanoic acid) and the like are preferable.
  • the fine fibrous cellulose used in the present invention has a fine structure in which the hydroxyl group of the fine fibrous cellulose is substituted with a lower alkanoyl group having 5 or less carbon atoms. Fibrous cellulose is preferred because it is easy to produce.
  • the fine fibrous cellulose used in the present invention is more preferably fine fibrous cellulose in which the hydroxyl group is modified with an acetyl group.
  • the fine fibrous cellulose of the present invention is preferably acylated in a state where the hydroxyl group of the raw material cellulose retains the crystal structure of the cellulose present in the raw material cellulose fiber as much as possible. That is, it is preferable that the fine fibrous cellulose of the present invention acylates a hydroxyl group present on the surface of the raw cellulose fiber so as not to break the cellulose crystal structure present in the raw cellulose fiber. Thereby, fine fibrous cellulose having excellent mechanical properties inherent to cellulose can be obtained, and dispersion of the fine fibrous cellulose in the resin is promoted, and the reinforcing effect of the fine fibrous cellulose on the resin is improved.
  • the amount of acyl groups in the fine fibrous cellulose of the present invention is preferably 0.3 mmol / g or more, more preferably 1.0 mmol / g or more. Moreover, 2.5 mmol / g or less is preferable. When the amount of acyl group is within the above range, it is preferable from the viewpoint of mechanical properties of fine fibrous cellulose and dispersibility in resin.
  • the amount of the acyl group can be measured, for example, by the neutralization titration method described in Examples described later.
  • the acyl group amount / anionic functional group amount which is the ratio of the acyl group amount and the anionic functional group amount, is preferably 0.10 or more, and more preferably 0.20 or more. Moreover, 5.0 or less is preferable and 3.0 or less is more preferable. When the ratio is within this range, it is preferable because the mechanical properties of the fine fibrous cellulose and the dispersibility in the resin are more excellent.
  • the fine fibrous cellulose of the present invention is preferred because it can be produced more efficiently according to the production method comprising the following steps (1) to (4).
  • the fine fibrous cellulose is preferably produced by the following steps. Step (1): Step of converting hydroxyl group of cellulose fiber into anionic functional group Step (2): Step of introducing acyl group into hydroxyl group of cellulose fiber having anionic functional group Step (3): Acyl group above Step of modifying the anionic group of cellulose fiber introduced with an organic base Step (4): Step of defibrating the modified cellulose fiber
  • Step (1) is a step of converting a hydroxyl group of cellulose having a cellulose I-type crystal structure into an anionic functional group by oxidation or the like.
  • Natural cellulose is usually used as cellulose having a cellulose I-type crystal structure.
  • the natural cellulose means purified cellulose isolated from a biosynthetic system of cellulose such as plants, animals, and bacteria-producing gels. More specifically, cotton pulp such as softwood pulp, hardwood pulp, cotton linter and cotton lint, non-wood pulp such as straw pulp and bagasse pulp, bacterial cellulose (BC), cellulose isolated from sea squirt, seaweed Cellulose isolated from Among these, softwood pulp, hardwood pulp, cotton pulp such as cotton linter and cotton lint, and non-wood pulp such as straw pulp and bagasse pulp are preferable.
  • the natural cellulose is preferably subjected to a treatment for increasing the surface area such as beating, because the reaction efficiency can be increased and the productivity can be increased.
  • Examples of the cellulose in which the hydroxyl group on the surface of the cellulose fiber is converted to an anionic functional group include oxidized cellulose, carboxymethyl cellulose, polyvalent carboxymethyl cellulose, phosphorylated cellulose, sulfated cellulose, or a salt thereof.
  • oxidized cellulose using an N-oxyl compound as an oxidizing agent which has excellent selectivity for hydroxyl groups on the fiber surface and mild reaction conditions, is preferred.
  • the oxidized cellulose is oxidized in the presence of the natural cellulose, the N-oxyl compound, and a co-oxidant to obtain cellulose fibers containing a carboxy group.
  • the dispersion medium of cellulose in the oxidation reaction is water, and the concentration of cellulose in the reaction aqueous solution is arbitrary as long as the cellulose can be sufficiently diffused. Usually, it is about 5% or less based on the weight of the reaction aqueous solution, but the reaction concentration can be increased by using a device having a strong mechanical stirring force.
  • N-oxyl compound examples include compounds having a nitroxy radical generally used as an oxidation catalyst.
  • the N-oxyl compound is preferably a water-soluble compound, more preferably a piperidine nitroxyoxy radical, particularly a 2,2,6,6-tetramethylpiperidinooxy radical, or 4-acetamido-2,2, The 6,6-tetramethylpiperidinooxy radical is preferred.
  • the N-oxyl compound is added in a catalytic amount, preferably 0.1 to 4 mmol / l, more preferably 0.2 to 2 mmol / l.
  • the co-oxidant is not a substance that directly oxidizes the hydroxyl group of cellulose, but a substance that oxidizes an N-oxyl compound used as an oxidation catalyst.
  • examples thereof include hypohalous acid or a salt thereof, halous acid or a salt thereof, perhalogenic acid or a salt thereof, hydrogen peroxide, a perorganic acid, and the like. These may be used alone or in combination of two or more.
  • alkali metal hypohalites such as sodium hypochlorite and sodium hypobromite are preferable.
  • the addition amount of the alkali metal bromide is about 1 to 40 times mol, preferably about 10 to 20 times mol for the N-oxyl compound.
  • the pH of the aqueous reaction solution is preferably maintained in the range of about 8-11.
  • the temperature of the aqueous solution is arbitrary at about 4 to 40 ° C., but the reaction can be performed at room temperature (25 ° C.), and the temperature is not particularly required to be controlled.
  • the degree of oxidation is controlled by the amount of co-oxidant added and the reaction time.
  • purification is performed for the purpose of removing unreacted co-oxidant (such as hypochlorous acid) and various by-products.
  • co-oxidant such as hypochlorous acid
  • the pH of the reaction mixture is adjusted to about 2 with various acids, and solid-liquid separation is performed with a centrifuge while sprinkling purified water to obtain cake-like oxidized cellulose. Solid-liquid separation is performed until the electric conductivity of the filtrate is 5 mS / m or less.
  • Step (2) is a step of introducing an acyl group into the hydroxyl group of the cellulose fiber having the anionic functional group.
  • the acylation reaction which introduce
  • the acylation reaction is carried out by dispersing the oxidized cellulose in an anhydrous aprotic polar solvent capable of swelling the oxidized cellulose, such as N-methylpyrrolidone, N, N-dimethylformamide, dimethyl sulfoxide, and the above-mentioned vinyl carboxylate compound. And preferably in the presence of a base.
  • acylation reaction As the base used in this acylation reaction, pyridine, N, N-dimethylaniline, sodium carbonate, sodium hydrogen carbonate, potassium carbonate and the like are preferable.
  • This acylation reaction is preferably performed with stirring at room temperature to 100 ° C., for example.
  • Step (3) is a step of modifying the oxidized cellulose introduced with the acyl group with an organic base. Specifically, it can be carried out by dispersing oxidized cellulose introduced with an acyl group in a predetermined solvent, adjusting to a predetermined solid content concentration, adding an organic base and stirring.
  • the amount of the organic base added is preferably 0.5 equivalents or more and more preferably 0.8 equivalents or more with respect to the carboxyl group of oxidized cellulose. Moreover, it is 1 equivalent or less.
  • the addition amount of the organic base is within the above range, it is preferable because fine and uniform fine fibrous cellulose can be obtained. *
  • Organic solvent is not particularly limited.
  • Step (4) is a step of defibrating the acylated oxidized cellulose modified with the organic base. Specifically, the acylated cellulose modified with the organic base obtained in the step (3) is diluted with the organic solvent, adjusted to a predetermined concentration, and subjected to dispersion treatment. The viscosity increases with the treatment, and a fibrillated fine fibrous cellulose dispersion can be obtained.
  • Dispersers used in the above defibration include homomixers under high speed rotation, high pressure homogenizers, ultra high pressure homogenizers, ultrasonic dispersion processors, beaters, disc type refiners, conical type refiners, double disc type refiners, grinders, etc. Use of a powerful and beating-capable device is preferable in that a more efficient and advanced downsizing is possible, and a viscous composition can be obtained economically advantageously.
  • the disperser include a screw mixer, paddle mixer, disper mixer, turbine mixer, disper, propeller mixer, kneader, blender, homogenizer, ultrasonic homogenizer, colloid mill, pebble mill, and bead mill grinder. It may be used. Two or more types of dispersers may be used in combination.
  • the treatment condition by the homogenizer of the present invention is not particularly limited, but the pressure condition is 30 MPa or more, preferably 100 MPa or more, more preferably 140 MPa or more.
  • a pretreatment can be performed using a known mixing, stirring, emulsifying, and dispersing apparatus such as a high-speed shear mixer, if necessary.
  • the reaction product fiber after the oxidation reaction is dispersed in purified water, the pH of the aqueous dispersion is adjusted to about 10, and the reduction reaction is performed with various reducing agents.
  • reducing agent a common one can be used, and preferred examples include LiBH 4 , NaBH 3 CN, NaBH 4 and the like. Of these, NaBH 4 is preferable from the viewpoint of cost and availability.
  • the amount of the reducing agent is preferably in the range of 0.1 to 4% by mass, particularly preferably in the range of 1 to 3% by mass, based on the reactant fiber.
  • the reaction is usually carried out at room temperature or slightly higher than room temperature, usually for 10 minutes to 10 hours, preferably 30 minutes to 2 hours.
  • the resin composition of the present invention contains the fine fibrous cellulose and the resin.
  • the resin is not particularly limited, and examples thereof include a thermosetting resin and a thermoplastic resin.
  • thermosetting resin that can be suitably used in the present invention is not particularly limited, but urethane resin, epoxy resin, phenol resin, melamine resin, urea resin, unsaturated polyester resin, polyester resin, silicone resin, polyimide resin, furan resin. Diallyl phthalate resin, vinyl ester resin, oxetane resin, silicon resin and the like. These thermosetting resins can be used alone or in combination of two or more. Among these thermosetting resins, it is particularly preferable to use a urethane resin and an epoxy resin from the viewpoint of further improving the uniform dispersibility with fine fibrous cellulose.
  • the urethane resin is a resin produced by condensation of a polyisocyanate containing an isocyanate group and a polyol containing a hydroxyl group.
  • polyol examples include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,3-butylene glycol, 2,3-butylene glycol, 1,4-butanediol, and 2,2′-dimethyl.
  • 1,3-propanediol diethylene glycol, triethylene glycol, 1,5-pentamethylene glycol, dipropylene glycol, neopentyl glycol, 1,6-hexamethylene glycol, cyclohexane-1,4-diol, cyclohexane-1, Diols such as 4-dimethanol, 2-butene-1,4-diol, 2,2,4-trimethyl-1,3-pentanediol, triols such as trimethylolpropane, tetraols such as pentaerythritol, dipentaerythritol Etc. Xaol. These can be used alone or in combination of two or more.
  • polyisocyanate examples include 2,4-tolylene diisocyanate, dimer of 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, p-xylylene diisocyanate, m-xylylene diisocyanate, 4,4 Aromatic diisocyanate compounds such as' -diphenylmethane diisocyanate, 1,5-naphthylene diisocyanate, 3,3'-dimethylbiphenyl-4,4'-diisocyanate; hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, dimer diisocyanate, etc.
  • An aliphatic diisocyanate compound isophorone diisocyanate, 4,4′-methylenebis (cyclohexyl isocyanate), methylcyclohexane-2,4- (or 2,6 And alicyclic diisocyanate compounds such as diisocyanate and 1,3- (isocyanatomethyl) cyclohexane.
  • diisocyanates can be used alone or in combination of two or more. You may use a chain extender etc. as needed.
  • the epoxy resin is not particularly limited, and a conventionally known epoxy resin can be used, and examples thereof include the epoxy resins shown below. These epoxy resins may be used independently and 2 or more types may be used together. These epoxy resins are epoxy compounds of thermosetting resin prepolymers, and by using a curing agent, a cured epoxy resin that is a cured product of the epoxy resin can be obtained.
  • bisphenol A type epoxy resin bisphenol F type epoxy resin, bisphenol AD type epoxy resin, bisphenol type epoxy resin such as bisphenol S type epoxy resin, phenol novolac type epoxy resin, novolak type epoxy resin such as cresol novolak type epoxy resin, Aromatic epoxy resins such as trisphenol methane triglycidyl ether and their water additives and bromides can be mentioned.
  • 1,4-butanediol diglycidyl ether 1,6-hexanediol diglycidyl ether, glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether
  • Aliphatic epoxy resins such as glycidyl ethers, polyglycidyl ethers of long-chain polyols containing polyoxyalkylene glycols containing 2 to 9 (preferably 2 to 4) carbon atoms alkylene groups, polytetramethylene ether glycols, etc. It is done.
  • glycidyl ester type epoxy such as diglycidyl phthalate, diglycidyl tetrahydrophthalate, diglycidyl hexahydrophthalate, diglycidyl-p-oxybenzoic acid, glycidyl ether-glycidyl ester of salicylic acid, dimer acid glycidyl ester, etc.
  • examples thereof include resins and hydrogenated products thereof.
  • triglycidyl isocyanurate N, N′-diglycidyl derivative of cyclic alkylene urea, N, N, O-triglycidyl derivative of p-aminophenol, N, N, O-triglycidyl derivative of m-aminophenol, etc.
  • examples thereof include glycidylamine type epoxy resins and hydrogenated products thereof.
  • the copolymer etc. of radical polymerizable monomers such as glycidyl (meth) acrylate, ethylene, vinyl acetate, (meth) acrylic acid ester, etc. are mentioned.
  • the content of fine fibrous cellulose in the resin composition containing the thermosetting resin is preferably 0.1% by mass or more, and more preferably 1% by mass or more. Moreover, 20 mass% or less is preferable and 10 mass% or less is more preferable. When content is in the said range, it is preferable at the point of the intensity
  • thermosetting resin composition The resin composition containing the thermosetting resin of the present invention can be produced by the following production method including the steps (A) to (C).
  • the fine fibrous cellulose dispersion in the above step (A) is an organic solvent dispersion of the fibrillated fine fibrous cellulose fibers obtained in the above step (4).
  • the thermosetting resin prepolymer before curing is generally insoluble in water but soluble in an organic solvent. Therefore, the fine fibrous cellulose dispersed in the organic solvent has good compatibility with the thermosetting resin prepolymer. Therefore, the fine fibrous cellulose dispersion and the thermosetting resin prepolymer can be uniformly mixed.
  • the content of fine fibrous cellulose contained in the mixture in the step (A) is preferably 0.1% by mass or more, more preferably 1.0% by mass or more, further preferably 1.5% by mass or more, It is preferably at most 10 mass%, more preferably at most 10 mass%, further preferably at most 5 mass%.
  • the content of the thermosetting resin prepolymer is preferably 50% by mass or more, more preferably 80% by mass or more, further preferably 90% by mass or more, preferably 99.9% by mass or less, and 99% by mass. The following is more preferable, and it is further more preferable that it is 98.5 mass% or less.
  • a curing agent of a thermosetting resin prepolymer is added to the mixture as necessary.
  • curing agent the thing similar to what has been used until now in the technical field of a thermosetting resin can be used.
  • curing agent can be suitably selected according to a desired physical property, with respect to 100 mass parts of total amounts of the said thermosetting resin prepolymer and a hardening
  • the removal of the organic solvent is preferably performed at least before the step (C), and more preferably performed before the above-described curing agent is added to the mixture.
  • the removal of the organic solvent can be performed, for example, by allowing the mixture to stand under reduced pressure and volatilizing the organic solvent.
  • step (B) is performed, and the mixture is formed into a predetermined shape to obtain a formed body.
  • the shape of the molded body is preferably the same as the shape of the target thermosetting resin composition.
  • the shape of the molded body may be a plate corresponding to the shape.
  • the semi-curing treatment can be performed, for example, by hot pressing the mixture formed into a predetermined shape. What is necessary is just to set the temperature and pressure of a hot press suitably according to the kind of thermosetting resin prepolymer, and the kind of hardening
  • thermosetting resin prepolymer contained in the molded body is cured.
  • Curing can generally be performed by heating. What is necessary is just to set a heating temperature suitably according to the kind of thermosetting resin prepolymer, and the kind of hardening
  • thermoplastic resin Although it does not specifically limit as said thermoplastic resin, Specifically, acrylic ester resin, methacrylic ester resin, polystyrene resin, polycarbonate resin, styrene methyl methacrylate copolymer, styrene acrylonitrile copolymer, and polyethylene terephthalate (PET) Etc.
  • the acrylate resin is a polymer composed of an acrylate monomer.
  • the above-mentioned methacrylic ester resin is a polymer composed of a methacrylic ester monomer and an acrylate monomer, for example, polymethylmethacrylate (abbreviated as PMMA).
  • acrylate monomer and methacrylate ester monomer examples include methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, n-butyl acrylate, methyl acrylate, ethyl acrylate, and isopropyl acrylate.
  • the body is chosen.
  • polycarbonate resins polystyrene resins, acrylic resins, and methacrylic resins are preferred.
  • the content of fine fibrous cellulose in the resin composition containing the thermoplastic resin is preferably 0.1% by mass or more, and more preferably 1% by mass or more. Moreover, 20 mass% or less is preferable and 10 mass% or less is more preferable. When content is in the said range, it is preferable at the point of the intensity
  • the resin composition containing the said thermoplastic resin can be manufactured with a manufacturing method provided with the following processes.
  • Step (D) A step of mixing the fine fibrous cellulose and the thermoplastic resin to obtain a uniform mixture.
  • the form of the fine fibrous cellulose used in the resin composition containing the thermoplastic resin of the present invention in consideration of the thermoplastic resin used together with the fine fibrous cellulose, the apparatus used for kneading, etc., powder form (however, It can be arbitrarily selected from a powder form in which fine fibrous cellulose is aggregated and does not mean cellulose particles), a dispersion form (a visually transparent or opaque liquid).
  • the powdered fine fibrous cellulose examples include, for example, a dried product obtained by directly drying a fine fibrous cellulose dispersion; a powder obtained by pulverizing the dried product by mechanical processing; and a known fine fibrous cellulose dispersion. Examples thereof include those obtained by pulverizing by a dry method; those obtained by pulverizing a dispersion of fine fibrous cellulose by a known freeze-drying method, and the like.
  • the spray-drying method is a method in which the fine fibrous cellulose dispersion is sprayed in the air and dried.
  • a fine fibrous cellulose dispersion can be used as it is, or a powdery cellulose nanofiber dispersed in an arbitrary medium can be used. it can.
  • a medium is appropriately selected depending on a resin to be mixed, a mixing and molding method described later, and for example, alcohol can be used.
  • thermoplastic resin of the present invention As a method for producing a resin composition containing the thermoplastic resin of the present invention, the above-described fine fibrous cellulose is added to a thermoplastic resin that has been heated and melted, and the resin is maintained in a molten state. They can be produced by a method of kneading them and forming a homogeneous mixture thus obtained (hereinafter also referred to as a melt kneading method).
  • the kneading device for example, a known device such as a single-screw kneading extruder, a twin-screw kneading extruder, or a pressure kneader can be used.
  • a known device such as a single-screw kneading extruder, a twin-screw kneading extruder, or a pressure kneader
  • these are kneaded using a biaxial kneader to obtain resin pellets, and the resin pellets are heated and compressed, A cured product of the sheet-like resin composition is obtained.
  • a cured product of a resin composition having a block shape or other three-dimensional shape using a known plastic molding method specifically injection molding, cast molding, extrusion molding, blow molding, stretch molding, foam molding, etc. Can be obtained.
  • the uniform mixture of the fine fibrous cellulose and the thermoplastic resin of the present invention provides a dispersion in which the fine fibrous cellulose is dispersed in the organic solvent, and the thermoplastic resin or the thermoplastic resin is obtained in the dispersion.
  • a solvent in this uniform mixture (slurry) the above-mentioned organic solvent may be used, and a mixture of these solvents can also be used suitably.
  • the solid content concentration of the uniform mixture is preferably 2% by mass or less from the viewpoint of facilitating dispersion.
  • Examples of the disperser used for preparing the slurry include a disaggregator, a beater, a low pressure homogenizer, a high pressure homogenizer, a grinder, a cutter mill, a ball mill, a jet mill, a short shaft extruder, a twin screw extruder, and an ultrasonic stirrer.
  • a home juicer mixer or the like can be used.
  • the cured resin composition containing the thermoplastic resin of the present invention can be molded into any shape, and is provided as a thin product such as a film or sheet, a block shape such as a rectangular parallelepiped or a cube, or other three-dimensional shapes.
  • 0.1N hydrochloric acid was added for neutralization, followed by solid-liquid separation with a centrifuge, and pure water was added to prepare a 4% solid content slurry. Thereafter, the pH of the slurry was adjusted to 10 with a 24% NaOH aqueous solution. The temperature of the slurry was raised to 30 ° C., 0.2 mmol / g of sodium borohydride was added to the cellulose fiber, and the mixture was reacted for 2 hours for reduction treatment. After the reaction, 0.1N hydrochloric acid was added for neutralization, and the cellulose fiber A1 was obtained by purification by repeating filtration and washing with water.
  • Cellulose fiber A2 was obtained according to the preparation method of cellulose fiber A1, except that the amount of sodium hypochlorite aqueous solution added was 12.0 mmol / g with respect to 1.0 g of the pulp.
  • the pH is adjusted to about 2.5 with 0.1 N hydrochloric acid, and 0.05 N sodium hydroxide aqueous solution is added dropwise to conduct electrical Degree measurement was performed. The measurement was continued until the pH was 11.
  • the amount of carboxyl groups was determined from the amount of sodium hydroxide consumed (V) in accordance with the following formula in the neutralization step of a weak acid with a gradual change in electrical conductivity.
  • Carboxyl group amount (mmol / g) V (ml) ⁇ [0.05 / cellulose weight] (2)
  • the cellulose fiber is diluted with ion-exchanged water to a solid content concentration of 0.6%, 0.1N hydrochloric acid is added to adjust the pH to 2.4, and 0.05N sodium hydroxide is added dropwise to adjust the pH to 11.
  • the electrical conductivity is measured until the amount of carboxyl groups is measured from the amount of sodium hydroxide consumed in the neutralization step of the weak acid where the change in electrical conductivity is slow, and can be calculated using the following equation.
  • ⁇ Measurement of phosphate group amount> The cellulose fiber was diluted with ion-exchanged water to a solid content concentration of 0.2%, and then measured by treatment with an ion-exchange resin and titration with an alkali.
  • an ion exchange resin 1/10 by volume of a strongly acidic ion exchange resin (Amberjet 1024; Organo Co., Ltd., conditioned) is added to a slurry containing 0.2% fine cellulose fibers and shaken for 1 hour. went. Thereafter, the mixture was poured onto a mesh having an opening of 90 ⁇ m to separate the resin and the slurry.
  • Carbonyl group amount (mmol / g) [D ⁇ B] ⁇ f ⁇ [0.125 / w] (4)
  • D Sample titration (ml)
  • B Titrate of blank test (ml)
  • f Factor of 0.1N sodium thiosulfate solution
  • w Sample amount (g)
  • Example 1 [Fine fibrous cellulose dispersion] Acetone was added to the cellulose fiber A1, filtered, washed with acetone repeatedly, and dried. To 20 g of dried cellulose fiber A1, 700 ml of DMSO and 8 g of potassium carbonate were added, and after sufficiently stirring and dispersing, vinyl acetate was added so that the amount of vinyl acetate was 100 mmol / g with respect to 1.0 g of cellulose fiber A1. In addition, the temperature was raised to 90 ° C. and the reaction was carried out for 1 hour. After completion of the reaction, DMSO was removed by filtration, and pure water was added to prepare a 1% slurry. The obtained slurry was neutralized with 1N hydrochloric acid, and then solid-liquid separation was performed by filtration. Then, acetone was added and filtered, and acetone washing was repeated and then dried to obtain acylated cellulose fibers.
  • acylated cellulose fiber To the acylated cellulose fiber, methanol and trioctylamine in an amount equal to the carboxyl group amount of the cellulose fiber A1 are added to dilute the cellulose fiber concentration to 2%, and a high-pressure homogenizer (manufactured by Sugino Machine, Starbur) was used once at a pressure of 100 MPa to obtain a gel-like fine fibrous cellulose dispersion.
  • a high-pressure homogenizer manufactured by Sugino Machine, Starbur
  • a resin composition was obtained by stirring at 8000 rpm ⁇ 10 minutes using a homomixer (manufactured by PRIMIX). The resin composition was poured between two iron plates and dried at 80 ° C. overnight to obtain a cured product of the resin composition.
  • the cured product of the fine fibrous cellulose dispersion and the resin composition was evaluated according to the following criteria. The evaluation results are shown in Table 2.
  • ⁇ Measurement of number average fiber diameter and aspect ratio> The number average fiber diameter and fiber length of the cellulose fibers of the gel composition were observed using a transmission electron microscope (TEM, JEM-1400 manufactured by JEOL Ltd.). That is, the number average fiber diameter and fiber length were calculated from a TEM image (magnification: 10000 times) negatively stained with 2% uranyl acetate after each cellulose fiber was cast on a hydrophilized carbon film-coated grid. . Furthermore, the aspect ratio was calculated according to the following formula using these values.
  • Aspect ratio number average fiber length [nm] / number average fiber diameter [nm] (1)
  • thermosetting resin composition was cut into a dumbbell shape, and the strength [MPa] was measured using a universal testing machine (manufactured by Instron Japan, Model 5581), and evaluated according to the following criteria.
  • Examples 2 to 4, 9 to 15 A fine fibrous cellulose dispersion, a resin composition, and a cured product thereof in the same manner as in Example 1 except that the types and blending ratios of cellulose fiber, organic base, main component, and curing agent were changed as shown in Table 2 below. Were prepared and evaluated for each characteristic.
  • Example 5 A fine fibrous cellulose dispersion, a resin composition, and a cured product thereof were prepared in the same manner as in Example 2 except that vinyl acetate was changed to vinyl laurate, and each characteristic was evaluated.
  • Example 6 A fine fibrous cellulose dispersion, a resin composition, and a cured product thereof were prepared in the same manner as in Example 2 except that vinyl acetate was changed to vinyl benzoate, and each characteristic was evaluated.
  • Example 7 To 20 g of dried cellulose fiber A1, 700 ml of DMSO and 8 g of potassium carbonate were added, and after sufficiently stirring and dispersing, vinyl acetate was added so that the amount of vinyl acetate was 100 mmol / g with respect to 1.0 g of cellulose fiber A1.
  • the fine fibrous cellulose dispersion, the resin composition, and the cured product thereof were prepared in the same manner as in Example 2 except that the temperature was raised to 90 ° C. and the reaction for 1 hour was changed to 30 minutes. Each characteristic was evaluated.
  • Example 8 To 20 g of dried cellulose fiber A1, 700 ml of DMSO and 8 g of potassium carbonate were added, and after sufficiently stirring and dispersing, vinyl acetate was added so that the amount of vinyl acetate was 100 mmol / g with respect to 1.0 g of cellulose fiber A1.
  • a fine fibrous cellulose dispersion, a resin composition, and a cured product thereof were prepared in the same manner as in Example 2 except that the temperature was raised to 90 ° C and the reaction for 1 hour was changed to 2 hours. Each characteristic was evaluated.
  • a polyol (Daiichi Kogyo Seiyaku Co., Ltd., Aimflex EF318A) is added to the fine fibrous cellulose dispersion, and methanol is distilled off by a rotary evaporator (manufactured by Tokyo Rika Kikai Co., Ltd.). Replaced. Thereafter, a polyol as a main agent and polyisocyanate (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., Aimflex EF318B) as a curing agent are added.
  • a resin composition was obtained by stirring at 8000 rpm ⁇ 10 minutes using a homomixer (manufactured by PRIMIX). The resin composition was poured between two iron plates and dried at 80 ° C. overnight to prepare a cured product of the resin composition, and each property was evaluated.
  • Comparative Examples 2 and 3 A fine fibrous cellulose dispersion, a resin composition, and a cured product thereof in the same manner as in Comparative Example 1 except that the types and blending ratios of cellulose fiber, organic base, main component, and curing agent were changed as shown in Table 2 below. Were prepared and evaluated for each characteristic.
  • Example 4 A fine fibrous cellulose dispersion, a resin composition, and curing thereof in the same manner as in Example 2 except that the types and blending ratios of cellulose fiber, organic base, main component, and curing agent were changed as shown in Table 2 below. A product was prepared and each characteristic was evaluated.
  • a polyol as a main agent and polyisocyanate (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., Aimflex EF318B) as a curing agent are added.
  • K By stirring at 8000 rpm ⁇ 10 minutes using a homomixer (manufactured by PRIMIX), a resin composition in which the blending ratio of the fine fibrous cellulose, the main agent and the curing agent was adjusted as shown in Table 2 was obtained.
  • Cellulose fiber A6 was diluted by adding water and freeze-dried. To the lyophilized product, methanol and trioctylamine in an amount equal to the amount of carboxyl groups of the cellulose fiber A6 are added to dilute to 2%, and 1 using a high-pressure homogenizer (Sugino Machine, Starburst) at a pressure of 100 MPa. The fine fiber cellulose dispersion was obtained by performing the treatment once.
  • a high-pressure homogenizer Sudno Machine, Starburst
  • a polyol (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., Aimflex EF318A) was added to the fine fibrous cellulose dispersion, and methanol was distilled off by a rotary evaporator (manufactured by Tokyo Rika Kikai Co., Ltd.) to replace the dispersion solvent with the polyol. . Thereafter, a polyol as a main agent and polyisocyanate (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., Aimflex EF318B) as a curing agent are added. K.
  • Comparative Example 2 a bulky amine such as a polyetheramine was used and could be sufficiently fibrillated, but since no acyl group was introduced, aggregation due to hydrogen bonding can be completely suppressed. Due to the failure, good results could not be obtained in terms of the strength and linear expansion coefficient of the cured product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Textile Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

樹脂に良好に分散し、配合した樹脂へ高い強度、低い熱膨張係数を付与できる微細繊維状セルロースおよび上記微細セルロース繊維を含有する樹脂組成物を提供する。 下記条件(A)ないし(E)を満たすことを特徴とする微細繊維状セルロース。 (A)数平均繊維径が2nm以上500nm以下 (B)平均アスペクト比が10以上1000以下 (C)セルロースI型結晶構造を有する (D)アニオン性官能基を有する (E)アシル基を有する

Description

微細繊維状セルロースおよびその樹脂組成物
 本発明は、微細繊維状セルロースおよびその樹脂組成物に関するものである。
 微細繊維状セルロースは、高強度、高弾性率、熱寸法安定性、高透明性など様々な特徴を有する。そのため、微細繊維状セルロースを樹脂のフィラーとすることで、樹脂に様々な機能性を付与できる。しかしながらセルロースは、その分子に繰り返し単位あたり3個の水酸基を有する。その結果、セルロース分子間で水素結合による凝集力が強くなっており、微細繊維状セルロースは樹脂中に容易に分散せず、また樹脂へ機能を付与することができない。
 特許文献1には、TEMPO酸化セルロースの場合、C6位のカルボン酸基にイオン結合を介して嵩高いアミン化合物を導入するなどして、水素結合力を抑制する手法が記載されている。また特許文献2、3には、セルロースを構成する糖鎖の水酸基部分に、アシル基を導入し、セルロース分子の水酸基を封鎖することで、セルロース分子の水素結合力を抑制する手法が記載されている。上記の手法で、各種樹脂に分散させることができ、樹脂に高い強度、低い熱膨張係数を付与することが可能である。
特開2015―14333号公報 特開2016―176052号公報 特開2017―25338号公報
 しかしながら、特許文献1では微細繊維状セルロース上に多くの水酸基が残存しており、樹脂中で部分的にセルロース繊維同士が凝集してしまうため、期待するような高い強度、低い熱膨張係数を樹脂に付与するには至っていない。また非常に嵩高いアミン化合物を導入する必要があるため、そのアミン化合物が可塑的に働き、セルロース繊維による強度、熱膨張係数の向上を妨げている。特許文献2、3では微細繊維状セルロースがイオン性官能基をもたないため、ナノファイバー化しても繊維径が太く、こちらも期待するような高い強度を樹脂に付与するには至っていない。
 今回、アニオン性官能基を有するセルロースの残存している水酸基をアシル化することで、樹脂中への分散性が向上、それによって樹脂の強度、熱膨張係数を向上させることに成功した。さらに、水酸基をアシル化したことにより、水酸基による凝集力が低下し、嵩高いアミン化合物を必要としなくなった。そのため、さらなる応力、熱膨張係数の向上に成功した。
 本発明は、樹脂に良好に分散し、配合した樹脂へ高い強度、低い熱膨張係数を付与できる微細繊維状セルロースおよび上記微細繊維状セルロースを含有する樹脂組成物を提供するものである。
本発明は、以下の[1]ないし[10]を提供するものである。
[1]下記条件(A)ないし(E)を満たすことを特徴とする微細繊維状セルロース。
(A)数平均繊維径が2nm以上500nm以下
(B)平均アスペクト比が10以上1000以下
(C)セルロースI型結晶構造を有する
(D)アニオン性官能基を有する
(E)アシル基を有する
[2] 上記(D)アニオン性官能基に有機塩基が結合していることを特徴とする[1]に記載の微細繊維状セルロース。
[3]上記有機塩基が第1級アミン、第2級アミン、第3級アミンから選択された1種または2種以上であることを特徴とする[1]または[2]記載の微細繊維状セルロース。
[4]上記(D)アニオン性官能基がカルボキシル基であることを特徴とする[1]ないし[3]のいずれか1項に記載の微細繊維状セルロース。
[5]上記(D)アニオン性官能基量が0.5mmol/g以上2.5mmol/g以下であることを特徴とする[1]ないし[4]のいずれか1項に記載の微細繊維状セルロース。
[6]上記(E)アシル基がアセチル基であることを特徴とする[1]ないし[5]のいずれか1項に記載の微細繊維状セルロース。
[7]上記(E)アシル基量が0.3mmol/g以上2.5mmol/g以下であることを特徴とする[1]ないし[6]のいずれか1項に記載の微細繊維状セルロース。
[8]上記(E)アシル基量/(D)アニオン性官能基量=0.1~5.0であること特徴とする[1]ないし[7]のいずれか1項に記載の微細繊維状セルロース。
[9] 工程(1):セルロース繊維の水酸基をアニオン性官能基に変換する工程、工程(2):上記アニオン性官能基を有するセルロース繊維の水酸基にアシル基を導入する工程、工程(3):上記アシル基が導入されたセルロース繊維のアニオン性基を有機塩基で変性する工程、工程(4):上記変性されたセルロース繊維を解繊する工程を備えることを特徴とする微細繊維状セルロースの製造方法。
[10] [1]ないし[8]のいずれか1項に記載の微細繊維状セルロースを含有する樹脂組成物。
 本発明の微細繊維状セルロースは、樹脂に良好に分散し、配合した樹脂へ高い強度、低い熱膨張係数を付与できるという効果を奏する。
 つぎに、本発明の実施の形態を詳しく説明する。
(A)数平均繊維径
上記微細繊維状セルロースの数平均繊維径は2nm以上500nm以下であるが、好ましくは150nm以下であり、より好ましくは100nm以下であり、特に好ましくは80nm以下である。上記数平均繊維径が2nm未満であると、微細繊維状セルロースが溶解することにより、結晶構造が失われるため、樹脂に配合した際に、樹脂の強度、熱膨張係数を向上できないおそれがあり、上記数平均繊維径が500nmを超える場合、微細繊維状セルロースのアスペクト比が小さくなるため、樹脂に配合した際に、樹脂の強度、熱膨張係数を向上できないおそれがある。
 上記微細繊維状セルロースの数平均繊維径は、例えば、つぎのようにして測定することができる。すなわち、固形分率で0.05~0.1質量%の微細繊維状セルロース分散体を調製し、その分散体を、親水化処理済みのカーボン膜被覆グリッド上にキャストして、透過型電子顕微鏡(TEM)の観察用試料とする。なお、大きな繊維径の繊維を含む場合には、ガラス上へキャストした表面の走査型電子顕微鏡(SEM)像を観察してもよい。そして、構成する繊維の大きさに応じて5000倍、10000倍あるいは50000倍のいずれかの倍率で電子顕微鏡画像による観察を行う。その際に、得られた画像内に縦横任意の画像幅の軸を想定し、その軸に対し、20本以上の繊維が交差するよう、試料および観察条件(倍率等)を調節する。そして、この条件を満たす観察画像を得た後、この画像に対し、1枚の画像当たり縦横2本ずつの無作為な軸を引き、軸に交錯する繊維の繊維径を目視で読み取っていく。このようにして、最低3枚の重複しない表面部分の画像を、電子顕微鏡で撮影し、各々2つの軸に交錯する繊維の繊維幅の値を読み取る(したがって、最低20本×2×3=120本の繊維幅の情報が得られる)。このようにして得られた繊維幅のデータにより、短幅の数平均繊維径を算出する。
(B)平均アスペクト比
上記微細繊維状セルロースの平均アスペクト比は10以上1000以下であるが、好ましくは100以上1000以下、より好ましくは200以上1000以下である。平均アスペクト比が10未満であると、樹脂に配合した際に、フィラーとしての十分な効果が発揮されないため、樹脂の強度、熱膨張係数を向上できないおそれがある。
 上記微細繊維状セルロースの平均アスペクト比は、例えば、以下の方法で測定することができる、すなわち、微細繊維状セルロースを親水化処理済みのカーボン膜被覆グリッド上にキャストした後、2%ウラニルアセテートでネガティブ染色したTEM像(倍率:5000倍または10000倍)から、セルロースナノファイバーの短幅の数平均繊維幅、長幅の数平均繊維幅を観察した。すなわち、各先に述べた方法に従い、短幅の数平均繊維幅、および長幅の数平均繊維幅を算出し、これらの値を用いてアスペクト比を下記の式に従い算出した。
 平均アスペクト比=長幅の数平均繊維幅(nm)/短幅の数平均繊維幅(nm)…(1)
(C)セルロースI型結晶構造
上記微細繊維状セルロースは、I型結晶構造を有する天然由来のセルロース原料を微細化した繊維である。すなわち、天然セルロースの生合成の過程においては、ほぼ例外なくミクロフィブリルと呼ばれるナノファイバーがまず形成され、これらが多束化して高次な固体構造を構成する。上記微細繊維状セルロースを構成するセルロースがI型結晶構造を有することは、例えば、広角X線回折像測定により得られる回折プロファイルにおいて、2シータ=14~17°付近と、2シータ=22~23°付近の2つの位置に典型的なピークをもつことから同定することができる。
(D)アニオン性官能基
 上記微細繊維状セルロースはアニオン性官能基を有する。
 上記アニオン性官能基としては特に制限されないが、具体的には、カルボキシル基、リン酸基、硫酸基が挙げられるが、これらの内、微細繊維状セルロースへのアニオン性官能基の導入の容易さという理由からカルボキシル基が好ましい。
 セルロースにカルボキシルを導入する方法としては、セルロースの水酸基にカルボキシル基を有する化合物、カルボキシル基を有する化合物の酸無水物およびそれらの誘導体からなる群から選ばれる少なくとも1種を反応させる方法、セルロースの水酸基を酸化する事によりカルボキシル基に変換する方法が挙げられる。上記カルボキシル基を有する化合物としては特に限定されないが、具体的にはハロゲン化酢酸が挙げられ、ハロゲン化酢酸としては、クロロ酢酸、ブロモ酢酸、ヨード酢酸等が挙げられる。
 上記カルボキシル基を有する化合物の酸無水物としては特に限定されないが、無水マレイン酸、無水コハク酸、無水フタル酸、無水グルタル酸、無水アジピン酸、無水イタコン酸等のジカルボン酸化合物の酸無水物が挙げられる。
 上記カルボキシル基を有する化合物の誘導体としては特に限定されないが、カルボキシル基を有する化合物の酸無水物のイミド化物、カルボキシル基を有する化合物の酸無水物の誘導体が挙げられる。
 カルボキシル基を有する化合物の酸無水物のイミド化物としては特に限定されないが、マレイミド、コハク酸イミド、フタル酸イミド等のジカルボン酸化合物のイミド化物が挙げられる。
 カルボキシル基を有する化合物の酸無水物の誘導体としては特に限定されないが、ジメチルマレイン酸無水物、ジエチルマレイン酸無水物、ジフェニルマレイン酸無水物等の、カルボキシル基を有する化合物の酸無水物の少なくとも一部の水素原子が置換基(例えば、アルキル基、フェニル基等)で置換されたものが挙げられる。
 上記セルロースの水酸基を酸化する方法としては特に制限されないが、具体的には、N-オキシル化合物を酸化触媒とし、共酸化剤を作用させる方法が挙げられる。本発明において、セルロースにカルボキシル基を導入する方法としては、繊維表面の水酸基の選択性に優れており、反応条件も穏やかであることから、セルロースの水酸基を酸化する方法が好ましい。以下、水酸基の酸化によりカルボキシル基が導入されたセルロースを酸化セルロースという。
 上記酸化セルロースは、天然セルロースを原料とし、水中においてN-オキシル化合物を酸化触媒とし、共酸化剤を作用させることにより該天然セルロースを酸化して反応物繊維を得る酸化反応工程、不純物を除去して水を含浸させた反応物繊維を得る精製工程、および水を含浸させた反応物繊維を溶媒に分散させる分散工程を含む製造方法により得ることができる。
 また、一実施形態としてセルロースにリン酸基を導入する方法としては、以下の方法が挙げられる。すなわち、乾燥した、あるいは湿潤状態のセルロース繊維原料にリン酸またはリン酸誘導体の粉末や水溶液を混合する方法、セルロース繊維原料の分散液にリン酸またはリン酸誘導体の水溶液を添加する方法等が挙げられる。これら方法においては、通常、リン酸またはリン酸誘導体の粉末や水溶液を混合または添加した後に、脱水処理、加熱処理等を行う。ここで、リン酸またはリン酸誘導体としては、リン原子を含有するオキソ酸、ポリオキソ酸あるいはそれらの誘導体から選ばれる少なくとも1種の化合物が挙げられる。これにより、セルロースを構成するグルコースユニットの水酸基にリン酸基を含む化合物またはその塩が脱水反応してリン酸エステルが形成され、リン酸基又はその塩が導入される。
 本発明の微細繊維状セルロースのアニオン性官能基量は0.5mmol/g以上が好ましく、より好ましくは1.5mmol/g以上であり、2.5mmol/g以下の範囲が好ましく、2.0mmol/g以下がより好ましい。アニオン性官能基量が上記範囲内であれば、微細な繊維状セルロースが得られる点で好ましい。
 上記酸化セルロースのカルボキシル基量の測定は、例えば、乾燥重量を精秤したセルロース試料から0.5~1重量%スラリーを60ml調製し、0.1Mの塩酸水溶液によってpHを約2.5とした後、0.05Mの水酸化ナトリウム水溶液を滴下して、電気伝導度測定を行う。測定はpHが約11になるまで続ける。電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(V)から、下記の式(2)に従い、カルボキシル基量を求めることができる。
カルボキシル基量(mmol/g)=V(ml)×〔0.05/セルロース重量〕…(2)
 上記微細繊維状セルロースのアニオン性官能基量は、例えば、アニオン性官能基がカルボキシメチル基の場合は以下の方法で測定する。すなわち、上記微細繊維状セルロースを0.6質量%スラリーに調製し、0.1M塩酸水溶液を加えてpH2.4とした後、0.05Nの水酸化ナトリウム水溶液を滴下してpHが11になるまで電気伝導度を測定し、電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量からカルボキシル基量を測定し、下式を用いて算出することが出来る。
 カルボキシメチル基量(mmol/g)=〔162×C〕/〔1-58×C〕×1000……(3)
 C:カルボキシル基量(mol/g)
 なお、カルボキシル基量の調整は、後述するように、天然セルロースの酸化工程で用いる共酸化剤の添加量や反応時間を制御することにより行うことができる。
 上記酸化セルロースは、上記酸化変性後、還元剤により還元させることが好ましい。これにより、アルデヒド基およびケトン基の一部ないし全てが還元され、水酸基に戻る。なお、カルボキシル基は還元されない。そして、上記還元により、上記酸化セルロースの、セミカルバジド法による測定でのアルデヒド基とケトン基の合計含量を、0.3mmol/g以下とすることが好ましく、特に好ましくは0.1mmol/g以下、最も好ましくは実質的に0mmol/gである。これにより、微細繊維状セルロースの分子量低下が抑制され、微細繊維状セルロースの高アスペクト比を長期間維持することができる。
 上記酸化セルロースが、2,2,6,6-テトラメチルピペリジン(TEMPO)等のN-オキシル化合物の存在下、共酸化剤を用いて酸化されたものであり、上記酸化反応により生じたアルデヒド基およびケトン基が、還元剤により還元されたものであると、上記酸化セルロースを容易に得ることができるようになるため好ましい。また、上記還元剤による還元が、水素化ホウ素ナトリウム(NaBH4)によるものであると、コストの観点からより好ましい。
 セミカルバジド法による、アルデヒド基とケトン基との合計含量の測定は、例えば、つぎのようにして行われる。すなわち、乾燥させた試料に、リン酸緩衝液によりpH=5に調整したセミカルバジド塩酸塩3g/l水溶液を正確に50ml加え、密栓し、二日間振とうする。つぎに、この溶液10mlを正確に100mlビーカーに採取し、5N硫酸を25ml、0.05Nヨウ素酸カリウム水溶液5mlを加え、10分間撹拌する。その後、5%ヨウ化カリウム水溶液10mlを加えて、直ちに自動滴定装置を用いて、0.1Nチオ硫酸ナトリウム溶液にて滴定し、その滴定量等から、下記の式(4)に従い、試料中のカルボニル基量(アルデヒド基とケトン基との合計含量)を求めることができる。なお、セミカルバジドは、アルデヒド基やケトン基と反応しシッフ塩基(イミン)を形成するが、カルボキシル基とは反応しないことから、上記測定により、アルデヒド基とケトン基のみを定量できると考えられる。
 カルボニル基量(mmol/g)=〔D-B〕×f×〔0.125/w〕…(4)
  D:サンプルの滴定量(ml)
  B:空試験の滴定量(ml)
  f:0.1Nチオ硫酸ナトリウム溶液のファクター
  w:試料量(g)
 上記酸化セルロースは、繊維表面上のセルロース分子中の各グルコースユニットのC6位の水酸基が選択的に酸化変性されてアルデヒド基、またはカルボキシル基のいずれかとなっている。この微細繊維状セルロース表面上のグルコースユニットのC6位の水酸基が選択的に酸化されているかどうかは、例えば、13C-NMRチャートにより確認することができる。すなわち、酸化前のセルロースの13C-NMRチャートで確認できるグルコース単位の1級水酸基のC6位に相当する62ppmのピークが、酸化反応後は消失し、代わりにカルボキシル基等に由来するピーク(178ppmのピークはカルボキシル基に由来するピーク)が現れる。このようにして、グルコース単位のC6位水酸基のみがカルボキシル基等に酸化されていることを確認することができる。
 また、上記酸化セルロースにおけるアルデヒド基の検出は、例えば、フェーリング試薬により行うこともできる。すなわち、乾燥させた試料に、フェーリング試薬(酒石酸ナトリウムカリウムと水酸化ナトリウムとの混合溶液と、硫酸銅五水和物水溶液)を加えた後、80℃で1時間加熱したとき、上澄みが青色、酸化セルロース部分が紺色を呈するものは、アルデヒド基は検出されなかったと判断することができ、上澄みが黄色、酸化セルロース部分が赤色を呈するものは、アルデヒド基は検出されたと判断することができる。
(有機塩基)
 上記アニオン性官能基に有機塩基が結合していることが好ましい。上記有機塩基としては、第1級アミン、第2級アミン、第3級アミン、第4級オニウム塩、ジアミン、ヒドラジド化合物等が挙げられる。
 上記1級アミンとしては、特に限定されないが、例えば、アミノメタン、アミノエタン、1-アミノプロパン、1-アミノブタン、1-アミノペンタン、イソアミルアミン、1-アミノヘキサン、1-アミノヘプタン、1-アミノオクタン、1-アミノノナン、1-アミノデカン、1-アミノドデカン(ラウリルアミン)、1-アミノトリデカン、1-アミノヘキサデカン、1-アミノテトラデカン(ミリスチルアミン)、1-アミノペンタデカン、セチルアミン、オレイルアミン、ココアルキルアミン、牛脂アルキルアミン、硬化牛脂アルキルアミン、アリルアミン、ステアリルアミン、アミノシクロプロパン、アミノシクロブタン、アミノシクロペンタン、アミノシクロヘキサン、アミノシクロドデカン、1-アミノ-2-エチルヘキサン、1-アミノ-2-メチルプロパン、3-アミノ-1-プロペン、3-アミノメチルヘプタン、3-イソプロポキシプロピルアミン、3-ブトキシプロピルアミン、3-イソブトキシプロピルアミン、2-エチルヘキシロキシプロピルアミン、3-デシルオキシプロピルアミン、3-ラウリルオキシプロピルアミン、2-アミノメチルテトラヒドロフラン、アニリン、o-アミノトルエン、m-アミノトルエン、p-アミノトルエン、o-ベンジルアニリン、p-ベンジルアニリン、1-アニリノナフタレン、1-アミノアントラキノン、2-アミノアントラキノン、1-アミノアントラセン、2-アミノアントラセン、5-アミノイソキノリン、o-アミノジフェニル、4-アミノジフェニルエーテル、2-アミノベンゾフェノン、4-アミノベンゾフェノン、o-アミノアセトフェノン、m-アミノアセトフェノン、p-アミノアセトフェノン、ベンジルアミン、α-フェニルエチルアミン、フェネシルアミン、p-メトキシフェネシルアミン、p-アミノアゾベンゼン、m-アミノフェノール、p-アミノフェノール、およびこれらのポリオキシアルキレン誘導体等が挙げられる。
 上記2級アミンとしては、特に限定されないが、例えば、N,N-ジメチルアミン、N,N-ジエチルアミン、N-メチル-N-エチルアミン、N-メチル-N-イソプロピルアミン、N-メチル-N-ヘキシルアミン、N,N-ジイソプロピルアミン、N,N-ジプロピルアミン、N,N-ジブチルアミン、N,N-ジsec-ブチルアミン、N-エチル-N-(1,2-ジメチル)プロピルアミン、ピペリジン、2-ピペコリン、3-ピペコリン、4-ピペコリン、3-ピペリジンメタノール、2-ピペリジンエタノール、4-ピペリジンエタノール、4-ピペリジノール、ピロリジン、3-アミノピロリジン、3-ピロリジノール、ジアミルアミン、N-メチルアニリン、N-エチルアニリン、N,N-ジベンジルアミン、N,N-ジフェニルアミン、N,N-ジココアルキルアミン、N,N-ジ硬化牛脂アルキルアミン、N,N-ジステアリルアミン、モルホリン、2-アミノプロパン、2-アミノブタン、2-アミノペンタン、3-アミノペンタン、2-アミノヘプタン、2-アミノ-2-メチルプロパン等およびこれらのポリオキシアルキレン誘導体が挙げられる。
 上記3級アミンとしては、特に限定されないが、例えば、N,N,N-トリメチルアミン、N,N,N-トリエチルアミン、N-エチル-N,N-ジメチルアミン、N,N,N-トリプロピルアミン、N,N,N-トリブチルアミン、N,N,N-トリオクチルアミン、N,N-ジエチル-N-イソプロピルアミン、N,N-ジメチル-N-ココナットアミン、N,N-ジメチル-N-オクチルアミン、N,N-ジメチル-N-デシルアミン、N,N-ジメチル-N-ラウリルアミン、N,N-ジメチル-N-ミリスチルアミン、N,N-ジメチル-N-パルミチルアミン、N,N-ジメチル-N-ステアリルアミン、N,N-ジメチル-N-ベヘニルアミン、N,N-ジラウリル-N-メチルアミン、N,N-ジメチルエタノールアミン、N,N-ジメチルイソプロパノールアミン、N-メチルジエタノールアミン、N-メチルピロリジン、N-エチルピロリジン、N-メチルピペリジン、N-エチルピペリジン、N-ブチルピペリジン、N-メチルヘキサメチレンイミン、N-エチルヘキサメチレンイミン、N-メチルモルホリン、N-ブチルモルホリン、およびこれらのポリオキシアルキレン誘導体等が挙げられる。
 また、上記第4級オニウム塩としては、特に制限されないが、各種のテトラアルキルアンモニウム塩が挙げられる。テトラアルキルアンモニウム塩としては、特に制限されないが、具体的には、ドデシルトリメチルアンモニウム、テトラデシルトリメチルアンモニウム、ヘキサデシルトリメチルアンモニウム、オクタデシルトリメチルアンモニウム、オレイルトリメチルアンモニウム、ジドデシルジメチルアンモニウム、ジテトラデシルジメチルアンモニウム、ジヘキサデシルジメチルアンモニウム、ジオクタデシルジメチルアンモニウム、ジオレイルジメチルアンモニウム、ドデシルジメチルベンジルアンモニム、テトラデシルジメチルベンジルアンモニウム、ヘキサデシルジメチルベンジルアンモニウム、オクタデシルジメチルベンジルアンモニウム、オレイルジメチルベンジル、ヒドロキシポリオキシエチレンドデシルジメチルアンモニウム、ヒドロキシポリオキシエチレンテトラデシルジメチルアンモニウム、ヒドロキシポリオキシエチレンヘキサデシルジメチルアンモニウム、ヒドロキシポリオキシエチレンオクタデシルジメチルアンモニウム、ヒドロキシポリオキシエチレンオレイルジメチルアンモニウム、ジヒドロキシポリオキシエチレンドデシルメチルアンモニウム、ジヒドロキシポリオキシエチレンテトラデシルメチルアンモニウム、ジヒドロキシポリオキシエチレンヘキサデシルメチルアンモニウム、ジヒドロキシポリオキシエチレンオクタデシルメチルアンモニウム、ジヒドロキシポリオキシエチレンオレイルメチルアンモニウムから選択された1種と1価のアニオンからなる塩が挙げられる。上記1価のアニオンとしては塩化物イオン、臭化物イオン、ヨウ化物イオン、水酸化物イオン、等が挙げられる。
 有機ホスホニウム塩としては、具体例としてはテトラエチルホスホニウム、トリエチルベンジルホスホニウム、テトラブチルホスホニウム、テトラオクチルホスホニウム、トリメチルデシルホスホニウム、トリメチルドデシルホスホニウム、トリメチルヘキサデシルホスホニウム、トリメチルオクタデシルホスホニウム、トリブチルメチルホスホニウム、トリブチルドデシルホスホニウム、トリブチルオクタデシルホスホニウム、トリオクチルエチルホスフォニウム、トリブチルヘキサデシルホスフォニウム、メチルトリフェニルホスホニウム、エチルトリフェニルホスホニウム、ジフェニルジオクチルホスホニウム、トリフェニルオクタデシルホスホニウム、テトラフェニルホスホニウム、トリブチルアリルホスフォニウムから選択された1種と上記1価のアニオンからなる塩などが挙げられる。これらの第4級オニウム塩は、単独でも組み合わせても用いることができる。
 上記ジアミンとしては、特に限定されないが、例えば、エチレンジアミン、プロピレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、2-メチル-1,3-プロパンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、2,2-ジメチル-1,3-プロパンジアミン、2,2,4-トリメチルヘキサメチレンジアミン、イソホロンジアミン、ダイマージアミン、ジシクロヘキシルメタン-4,4'-ジアミン、ジエチレングリコールビス(3-アミノプロピル)エーテル、ポリオキシアルキレングリコールジアミン(アルキレングリコールの付加モル数は2~50の任意の整数)、フェニレンジアミン、キシリレンジアミン、ジシクロヘキシルメタン-4,4’-ジアミン、2,4-トリレンジアミン、2,6-トリレンジアミン、ジエチルトルエンジアミン,3,3’-ジクロロ-4,4’-ジアミノジフェニルメタン、4,4’-ビス-(sec-ブチル)ジフェニルメタン、N,N’-ジメチルエチレンジアミン、N,N’-ジエチルエチレンジアミン、N,N’-ジ-tert-ブチルエチレンジアミン、ピペラジン等が挙げられる。
 上記ヒドラジド化合物としては、特に限定されないが、例えば、シュウ酸ジヒドラジド、マロン酸ジヒドラジド、コハク酸ジヒドラジド、グルタル酸ジヒドラジド、アジピン酸ジヒドラジド、セバシン酸ジヒドラジド、ドデカン二酸ジヒドラジド、ヘキサデカンジヒドラジド、エイコサン二酸ジヒドラジド、マレイン酸ジヒドラジド、フマル酸ジヒドラジド、イタコン酸ジヒドラジド、フタル酸ジヒドラジド、炭酸ジヒドラジド、カルボジヒドラジド、チオカルボジヒドラジド、オキサリルジヒドラジド、ポリアクリル酸ヒドラジド等が挙げられる。
 有機塩基が第1級アミン、第2級アミン、第3級アミンから選択された1種または2種以上であることが好ましい。
(E)アシル基
 上記微細繊維状セルロースはアシル基を有する。
 上記アシル基は、飽和脂肪酸、不飽和カルボン酸、モノ不飽和脂肪酸、ジ不飽和脂肪酸、トリ不飽和脂肪酸、テトラ不飽和脂肪酸、ペンタ不飽和脂肪酸、ヘキサ不飽和脂肪酸、芳香族カルボン酸、ジカルボン酸、アミノ酸、マレイミド化合物:  
Figure JPOXMLDOC01-appb-C000001
フタルイミド化合物:     
Figure JPOXMLDOC01-appb-C000002
からなる群から選ばれる少なくとも一種の化合物のカルボキシ基から水酸基を除去した残基である。
 上記の飽和脂肪酸としては、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、ピバル酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、マルガリン酸、ステアリン酸、ノナデシル酸及びアラキジン酸等が好ましい。
 上記の不飽和カルボン酸としては、アクリル酸、メタクリル酸等が好ましい。
 モノ不飽和脂肪酸としては、クロトン酸、ミリストレイン酸、パルミトレイン酸、オレイン酸、リシノール酸等が好ましい。
 上記のジ不飽和脂肪酸としては、ソルビン酸、リノール酸、エイコサジエン酸等が好ましい。
 上記のトリ不飽和脂肪酸としては、リノレン酸、ピノレン酸、エレオステアリン酸等が好ましい。
 上記のテトラ不飽和脂肪酸としては、ステアリドン酸及びアラキドン酸から選ばれる等が好ましい。
 ペンタ不飽和脂肪酸としては、ボセオペンタエン酸、エイコサペンタエン酸等が好ましい。
 上記のヘキサ不飽和脂肪酸としては、ドコサヘキサエン酸、ニシン酸等が好ましい。
 芳香族カルボン酸としては、安息香酸、フタル酸、イソフタル酸、テレフタル酸、サリチル酸、没食子酸(3,4,5-トリヒドロキシベンゼンカルボン酸)、ケイ皮酸(3-フェニルプロパ-2-エン酸)等が好ましい。
 上記のジカルボン酸としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、フマル酸、マレイン酸等が好ましい。
 上記のアミノ酸としては、グリシン、β-アラニン、ε-アミノカプロン酸(6-アミノヘキサン酸)等が好ましい。
 上記の各種カルボン酸でアシル化された微細繊維状セルロースのうち、本発明に使用する微細繊維状セルロースには、微細繊維状セルロースの水酸基が炭素数5以下の低級アルカノイル基で置換されている微細繊維状セルロースが、製造が容易で好ましい。
 さらに製造コストの点から、本発明で使用する微細繊維状セルロースには、水酸基がアセチル基で修飾されている微細繊維状セルロースがより好ましい。
 本発明の微細繊維状セルロースは、原料セルロースの水酸基が、原料セルロース繊維中に存在していたセルロースの結晶構造が出来る限り保持された状態で、アシル化されていることが好ましい。すなわち、本発明の微細繊維状セルロースは、原料セルロース繊維中に存在するセルロース結晶構造を壊さないように原料セルロース繊維の表面に存在する水酸基をアシル化することが好ましい。これによりセルロース本来の優れた力学的特性を持つ微細繊維状セルロースを得ることができるとともに、樹脂中での微細繊維状セルロースの分散が促進され、樹脂に対する微細繊維状セルロースの補強効果が向上する。
 本発明の微細繊維状セルロースのアシル基量は0.3mmol/g以上が好ましく、1.0mmol/g以上がより好ましい。また2.5mmol/g以下が好ましい。アシル基量が上記範囲内であると、微細繊維状セルロースの力学特性と樹脂への分散性の点で好ましい。
 上記アシル基量は、例えば、後述の実施例に記載の中和滴定法により測定することができる。
本発明の微細繊維状セルロースにおける、上記アシル基量とアニオン性官能基量の比率である、アシル基量/アニオン性官能基量は0.10以上が好ましく、0.20以上がより好ましい。また、5.0以下が好ましく、3.0以下がより好ましい。上記比率がこの範囲内である場合、微細繊維状セルロースの力学特性および樹脂への分散性がより優れたものとなるため好ましい。
[微細繊維状セルロースの製造方法]
 本発明の微細繊維状セルロースは、下記工程(1)ないし(4)を備える製造方法によればより効率的に製造できるため好ましく、具体的には以下の各工程により製造することが好ましい。
 工程(1):セルロース繊維の水酸基を、アニオン性官能基に変換する工程
 工程(2):上記アニオン性官能基を有するセルロース繊維の水酸基にアシル基を導入する工程
 工程(3):上記アシル基が導入されたセルロース繊維のアニオン性基を有機塩基で変性する工程
 工程(4):上記変性されたセルロース繊維を解繊する工程
 工程(1)は、セルロースI型結晶構造を有するセルロースの水酸基を、酸化等によりアニオン性官能基に変換する工程である。 
 セルロースI型結晶構造を有するセルロースとしては、通常、天然セルロースが用いられる。ここで、天然セルロースとは、植物、動物、バクテリア産生ゲル等のセルロースの生合成系から単離した精製セルロースを意味する。より具体的には、針葉樹系パルプ、広葉樹系パルプ、コットンリンター、コットンリント等の綿系パルプ、麦わらパルプ,バガスパルプ等の非木材系パルプ、バクテリアセルロース(BC)、ホヤから単離されるセルロース、海草から単離されるセルロース等が挙げられる。なかでも、針葉樹系パルプ、広葉樹系パルプ、コットンリンター、コットンリント等の綿系パルプ、麦わらパルプ,バガスパルプ等の非木材系パルプが好ましい。上記天然セルロースは、叩解等の表面積を高める処理を施すと、反応効率を高めることができ、生産性を高めることができるため好ましい。
 セルロースがI型結晶構造を有することは、例えば、広角X線回折像測定により得られる回折プロファイルにおいて、2シータ=14~17°付近と、2シータ=22~23°付近の2つの位置に典型的なピークをもつことから同定することができる。
 上記セルロース繊維表面の水酸基がアニオン性官能基に変換されたセルロースとしては、例えば、酸化セルロース、カルボキシメチルセルロース、多価カルボキシメチルセルロース、リン酸化セルロース、硫酸化セルロースあるいは、その塩、等があげられる。なかでも、繊維表面の水酸基の選択性に優れており、反応条件も穏やかである、N-オキシル化合物を酸化剤として用いた酸化セルロースが好ましい。
 上記の通り、本発明のカルボキシル基を有する微細繊維状セルロースの内、より好適に選択できるN-オキシル化合物を酸化剤として用いて酸化セルロースを得る方法について、以下に詳述する。
 上記酸化セルロースは上記天然セルロースと、N-オキシル化合物と、共酸化剤の存在下で酸化処理をして、カルボキシ基を含有するセルロース繊維を得られる。
 上記酸化反応におけるセルロースの分散媒体は水であり、反応水溶液中のセルロース濃度は、セルロースの充分な拡散が可能な濃度であれば任意である。通常は、反応水溶液の重量に対して約5%以下であるが、機械的撹拌力の強い装置を使用することにより反応濃度を上げることができる。
 上記N-オキシル化合物としては、例えば、一般に酸化触媒として用いられるニトロキシラジカルを有する化合物があげられる。上記N-オキシル化合物は、水溶性の化合物が好ましく、なかでもピペリジンニトロキシオキシラジカルが好ましく、特に2,2,6,6-テトラメチルピペリジノオキシラジカル、または4-アセトアミド-2,2,6,6-テトラメチルピペリジノオキシラジカルが好ましい。上記N-オキシル化合物の添加は、触媒量で充分であり、好ましくは0.1~4mmol/l、さらに好ましくは0.2~2mmol/lの範囲で反応水溶液に添加する。
 上記共酸化剤とは、直接的にセルロースの水酸基を酸化する物質ではなく、酸化触媒として用いられるN-オキシル化合物を酸化する物質のことである。例えば、次亜ハロゲン酸またはその塩、亜ハロゲン酸またはその塩、過ハロゲン酸またはその塩、過酸化水素、過有機酸等があげられる。これらは単独でもしくは二種以上併せて用いられる。なかでも、次亜塩素酸ナトリウム、次亜臭素酸ナトリウム等のアルカリ金属次亜ハロゲン酸塩が好ましい。そして、上記次亜塩素酸ナトリウムを使用する場合は、臭化ナトリウム等の臭化アルカリ金属の存在下で反応を進めることが、反応速度の点において好ましい。上記臭化アルカリ金属の添加量は、上記N-オキシル化合物に対して約1~40倍モル量、好ましくは約10~20倍モル量である。
 上記反応水溶液のpHは約8~11の範囲で維持されることが好ましい。水溶液の温度は約4~40℃において任意であるが、反応は室温(25℃)で行うことが可能であり、特に温度の制御は必要としない。
 目的とするカルボキシル基量等を得るために、酸化の程度を共酸化剤の添加量と反応時間により制御する。
 上記酸化反応終了後に、未反応の共酸化剤(次亜塩素酸等)や、各種副生成物等を除く目的で精製を行う。具体的には、各種の酸により反応混合物のpHを約2に調整し、精製水をふりかけながら遠心分離機で固液分離を行い、ケーキ状の酸化セルロースを得る。固液分離は濾液の電気伝導度が5mS/m以下となるまで行う。
 工程(2)は上記アニオン性官能基を有するセルロース繊維の水酸基にアシル基を導入する工程である。具体的には、精製した酸化セルロースを非プロトン性極性溶媒中でアシル基を導入するアシル化反応を行う。前記アシル化反応は、酸化セルロースを膨潤させることのできる無水非プロトン性極性溶媒、例えばN-メチルピロリドン、N, N-ジメチルホルムアミド、ジメチルスルホキシド中に酸化セルロースを分散し、上述したカルボン酸ビニル化合物で、塩基の存在下で行うのが好ましい。このアシル化反応で用いる塩基としては、ピリジン、N, N-ジメチルアニリン、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム等が好ましい。このアシル化反応は、例えば、室温~100℃で撹拌しながら行うことが好ましい。
 工程(3)は上記アシル基が導入された酸化セルロースを有機塩基で変性する工程である。具体的には、アシル基が導入された酸化セルロースを所定の溶媒に分散し所定の固形分濃度に調整し、有機塩基を添加し攪拌することにより行うことができる。上記有機塩基の添加量は酸化セルロースのカルボキシル基と0.5当量以上が好ましく、0.8当量以上がより好ましい。また1当量以下である。上記有機塩基の添加量が上記範囲内である場合、微細で均一な微細繊維状セルロースが得られるため好ましい。 
(有機溶媒)
 上記有機溶媒は、特に限定するものではない。例えば、メタノール、エタノール、イソプロピルアルコール、2-ブタノール、1-ペンタノール、オクチルアルコール、デシルアルコール、ラウリルアルコール、ミリスチルアルコール、ステアリルアルコール、グリセリン、エチレングリコール、プロピレングリコール、エチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、2-メチル-1-プロパノールグリセリン等のアルコール類、酢酸、プロピオン酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン、オレイン酸、リノレン酸、乳酸、安息香酸、コハク酸、マレイン酸、フマル酸等のカルボン酸類、ヘキサン、ヘプタン、オクタン、デカン、流動パラフィン等の炭化水素類、トルエン、キシレン、エチルベンゼン、ナフタレン等の芳香族炭化水素類、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、アセトアニリド等のアミド類、アセトン、メチルエチルケトン、ジエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ベンゾフェノン等のケトン類、塩化メチレン、クロロホルム、四塩化炭素、トリクロロエチレン、テトラクロロエチレン等のハロゲン類、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート等のカーボネート類、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酪酸メチル、アジピン酸ジ2-エチルヘキシル、アジピン酸ジイソノニル、アジピン酸ジイソデシル、セバシン酸ジ2-エチルヘキシル、アゼライン酸ジ2-エチルヘキシル、4-シクロヘキセン-1, 2-ジカルボン酸ビス(2-エチルヘキシル)、リン酸トリクレジル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、グリセリン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル等のエステル類、ポリエチレングリコール、ポリテトラメチレンオキシド、ポリオキシエチレンアルキルエーテル等のポリエーテル類、ポリジメチルシロキサン等のシリコーンオイル類、アセトニトリル、プロピオニトリル、エステル油、軽油、灯油、原油、サラダ油、大豆油、ヒマシ油、トリグリセライド、ポリイソプレン、フッ素変性油等があげられる。これらは単独でもしくは二種以上併せて用いられる。
 工程(4)は上記有機塩基で変性されたアシル化酸化セルロースを解繊する工程である。具体的には、上記(3)工程にて得られた有機塩基で変性されたアシル化酸化セルロースを上記有機溶媒で希釈し所定の濃度に調整し分散処理を行う。処理に伴って粘度が上昇し、解繊された微細繊維状セルロースの分散体を得ることができる。
 上記解繊で使用する分散機としては、高速回転下でのホモミキサー、高圧ホモジナイザー、超高圧ホモジナイザー、超音波分散処理機、ビーター、ディスク型レファイナー、コニカル型レファイナー、ダブルディスク型レファイナー、グラインダー等の強力で叩解能力のある装置を使用することにより、より効率的かつ高度なダウンサイジングが可能となり、経済的に有利に粘性組成物を得ることが出来る点で好ましい。なお、上記分散機としては、例えば、スクリュー型ミキサー、パドルミキサー、ディスパー型ミキサー、タービン型ミキサー、ディスパー、プロペラミキサー、ニーダー、ブレンダー、ホモジナイザー、超音波ホモジナイザー、コロイドミル、ペブルミル、ビーズミル粉砕機等を用いても良い。また、2種類以上の分散機を組み合わせて用いても良い。
 本発明のホモジナイザーによる処理条件としては、特に限定されるものではないが、圧力条件としては、30MPa以上、好ましくは100MPa以上、さらに好ましくは140MPa以上である。また、高圧ホモジナイザーでの解繊・分散処理に先立って、必要に応じて、高速せん断ミキサーなどの公知の混合、攪拌、乳化、分散装置を用いて、予備処理を施すことも可能である。
 本発明の微細繊維状セルロースの製造において、工程(1)の後に還元反応を行うことが好ましい。具体的には、酸化反応後の反応物繊維を精製水に分散し、水分散体のpHを約10に調整し、各種還元剤により還元反応を行う。
 上記還元剤としては、一般的なものを使用することが可能であるが、好ましくは、LiBH4、NaBH3CN、NaBH4等があげられる。なかでも、コストや利用可能性の点から、NaBH4が好ましい。
 上記還元剤の量は、反応物繊維を基準として、0.1~4質量%の範囲が好ましく、特に好ましくは1~3質量%の範囲である。反応は、室温または室温より若干高い温度で、通常、10分~10時間、好ましくは30分~2時間行う。
 本発明の樹脂組成物は、上記微細繊維状セルロースおよび樹脂を含有する。
 上記樹脂としては特に限定されないが、熱硬化性樹脂、熱可塑性樹脂等が挙げられる。
(熱硬化性樹脂)
 本発明に好適に使用できる熱硬化性樹脂としては、特に限定されないが、ウレタン樹脂、エポキシ樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル樹脂、ポリエステル樹脂、 シリコーン樹脂、 ポリイミド樹脂、フラン樹脂、ジアリルフタレート樹脂、ビニルエステル樹脂、オキセタン樹脂、ケイ素樹脂などが挙げられる。これらの熱硬化性樹脂は1種を単独で又は2種類以上を組み合わせて用いることができる。これらの熱硬化性樹脂のうち、特にウレタン樹脂、およびエポキシ樹脂を用いることが、微細繊維状セルロースとの均一な分散性がより向上する点から好ましい。
  上記ウレタン樹脂は、イソシアネート基を含有するポリイソシアネートと、水酸基を含有するポリオールとの縮合により生成される樹脂である。
  ポリオールとしては、例えば、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,3-ブチレングリコール、2,3-ブチレングリコール、1,4-ブタンジオール、2,2’-ジメチル-1,3-プロパンジオール、ジエチレングリコール、トリエチレングリコール、1,5-ペンタメチレングリコール、ジプロピレングリコール、ネオペンチルグリコール、1,6-ヘキサメチレングリコール、シクロヘキサン-1,4-ジオール、シクロヘキサン-1,4-ジメタノール、2-ブテン-1,4-ジオール、2,2,4-トリメチル-1,3-ペンタンジオール等のジオール、トリメチロールプロパン等のトリオール、ペンタエリスリトール等のテトラオール、ジペンタエリスリトール等のヘキサオールが挙げられる。これらは単独で、または2種類以上を組み合わせて用いることができる。
  ポリイソシアネートとしては、例えば、2,4-トリレンジイソシアネート、2,4-トリレンジイソシアネートの二量体、2,6-トリレンジイソシアネート、p-キシリレンジイソシアネート、m-キシリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、1,5-ナフチレンジイソシアネート、3,3’-ジメチルビフェニル-4,4’-ジイソシアネート等の芳香族ジイソシアネート化合物;ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、ダイマー酸ジイソシアネート等の脂肪族ジイソシアネート化合物;イソホロンジイソシアネート、4,4’-メチレンビス(シクロヘキシルイソシアネート)、メチルシクロヘキサン-2,4-(又は2,6)ジイソシアネート、1,3-(イソシアネートメチル)シクロヘキサン等の脂環族ジイソシアネート化合物等が挙げられる。これらのジイソシアネートは1種または2種以上を組み合わせて用いることができる。必要に応じて鎖延長剤等を使用してもよい。
  上記エポキシ樹脂としては特に限定されず、従来公知のエポキシ樹脂を用いることができ、例えば、以下に示したエポキシ樹脂等が挙げられる。これらのエポキシ樹脂は、単独で用いられてもよく、2種以上が併用されてもよい。これらエポキシ樹脂は熱硬化性樹脂プレポリマーのエポキシ化合物であり、硬化剤を用いることにより、エポキシ樹脂の硬化物である硬化エポキシ樹脂が得られる。
  例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等のビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂、トリスフェノールメタントリグリシジルエーテル等の芳香族エポキシ樹脂及びこれらの水添加物や臭素化物等が挙げられる。また、3,4-エポキシシクロへキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、3,4-エポキシ-2-メチルシクロヘキシルメチル-3,4-エポキシ-2-メチルシクロヘキサンカルボキシレート、ビス(3,4-エポキシシクロヘキシル)アジペート、ビス(3,4-エポキシシクロヘキシルメチル)アジペート、ビス(3,4-エポキシ-6-メチルシクロヘキシルメチル)アジペート、2-(3,4-エポキシシクロヘキシル-5,5-スピロ-3,4-エポキシシクロヘキサノン-メタ-ジオキサン、ビス(2,3-エポキシシクロペンチル)エーテル等の脂環族エポキシ樹脂等が挙げられる。
  また、1,4-ブタンジオールのジグリシジルエーテル、1,6-へキサンジオールのジグリシジルエーテル、グリセリンのトリグリシジルエーテル、トリメチロールプロパンのトリグリシジルエーテル、ポリエチレングリコールのジグリシジルエーテル、ポリプロピレングリコールのジグリシジルエーテル、炭素数が2~9(好ましくは2~4)のアルキレン基を含むポリオキシアルキレングリコールやポリテトラメチレンエーテルグリコール等を含む長鎖ポリオールのポリグリシジルエーテル等の脂肪族エポキシ樹脂等が挙げられる。また、フタル酸ジグリシジルエステル、テトラヒドロフタル酸ジグリシジルエステル、へキサヒドロフタル酸ジグリシジルエステル、ジグリシジル-p-オキシ安息香酸、サリチル酸のグリシジルエーテル-グリシジルエステル、ダイマー酸グリシジルエステル等のグリシジルエステル型エポキシ樹脂及びこれらの水添化物等が挙げられる。また、トリグリシジルイソシアヌレート、環状アルキレン尿素のN,N’-ジグリシジル誘導体、p-アミノフェノールのN,N,O-トリグリシジル誘導体、m-アミノフェノールのN,N,O-トリグリシジル誘導体等のグリシジルアミン型エポキシ樹脂及びこれらの水添化物等が挙げられる。また、グリシジル(メタ)アクリレートと、エチレン、酢酸ビニル、(メタ)アクリル酸エステル等のラジカル重合性モノマーとの共重合体等が挙げられる。
 上記熱硬化性樹脂を含有する樹脂組成物における微細繊維状セルロースの含有量は0.1質量%以上が好ましく、1質量%以上がより好ましい。また、20質量%以下が好ましく、10質量%以下がより好ましい。含有量が上記範囲内の場合、樹脂組成物の硬化物の強度と熱膨張係数の点で好ましい。
(熱硬化性樹脂組成物の製造方法)
 本発明の熱硬化性樹脂を含有する樹脂組成物は以下の、工程(A)ないし工程(C)を備える製造方法により製造することができる
 工程(A)微細繊維状セルロース分散体と熱硬化前の熱硬化性樹脂プレポリマーとを混合して混合物を得る工程。
 工程(B)上記混合物を所定の形状に成形して成形体を得る工程。
 工程(C)上記成形体中の前記プレポリマーを熱硬化させる工程。
  上記工程(A)における微細繊維状セルロース分散体とは、上記工程(4)で得られた解繊された微細繊維状セルロース繊維の有機溶剤分散体である。  硬化前の熱硬化性樹脂プレポリマーは、一般に水には不溶であるが有機溶剤には可溶である。したがって、有機溶剤中に分散している微細繊維状セルロースは、熱硬化性樹脂プレポリマーとの相溶性が良好である。それゆえ、微細繊維状セルロース分散体と熱硬化性樹脂プレポリマーとは、均一混合することが可能である。
  上記工程(A)における混合物に含まれる微細繊維状セルロースの含有量は0.1質量%以上が好ましく、1.0質量%以上がより好ましく、1.5質量%以上であることさらに好ましく、20質量%以下であることが好ましく、10質量%以下であることがより好ましく、5質量%以下であることがさらに好ましい。一方、熱硬化性樹脂プレポリマーの含有量は50質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上であることがさらに好ましく、99.9質量%以下が好ましく、99質量%以下がより好ましく、98.5質量%以下であることがさらに好ましい。各成分の含有率が上記範囲内である場合、強度と熱膨張係数に優れた樹脂硬化物を得ることができる。
  次に、上記混合物に対して、必要に応じて熱硬化性樹脂プレポリマーの硬化剤を添加する。硬化剤としては、熱硬化性樹脂の技術分野でこれまで用いられてきたものと同様のものを用いることができる。硬化剤の添加量は、所望の物性に応じて適宜選択できるが、上記熱硬化性樹脂プレポリマーと硬化剤の合計量100質量部に対し、0.1質量部以上50質量部以下の範囲とすることができる。
 上記混合物より微細繊維状セルロース分散体に用いた有機溶剤を除去することが好ましい。有機溶剤の除去は、少なくとも工程(C)の前に行うことが好ましく、特に上述の硬化剤を上記混合物に添加する前に行うことがより好ましい。有機溶剤の除去は、例えば混合物を減圧状態下に静置して有機溶剤を揮発させることで行うことができる。
  硬化剤の添加が終了したら、工程(B)を行い、上記混合物を所定の形状に成形して成形体を得る。成形体の形状は、目的とする熱硬化性樹脂組成物の形状と同様にすることが好ましい。例えば板状の熱硬化性樹脂組成物を製造したい場合には、成形体の形状もそれに対応した板状とすればよい。上記混合物から成形体を成形するに際しては、上記混合物を予備加熱してこれらの混合物を半硬化させることが好ましい。このような半硬化処理を行うことで、成形体の保形性が高まるとともに、熱硬化性樹脂プレポリマーの硬化を首尾よく行うことができる。半硬化処理は、例えば所定の形状に成形した上記混合物を、熱プレスする等して行うことができる。熱プレスの温度や圧力は、熱硬化性樹脂プレポリマーの種類や、硬化剤の種類に応じ適切に設定すればよい。
  このようにして成形体が得られたら、工程(C)において、この成形体に含まれる熱硬化性樹脂プレポリマーの硬化を行う。硬化は一般に加熱によって行うことができる。加熱温度は、熱硬化性樹脂プレポリマーの種類や、硬化剤の種類に応じ適切に設定すればよい。
(熱可塑性樹脂) 
 上記熱可塑性樹脂として特に限定するものではないが、具体的には、アクリル酸エステル樹脂、メタクリル酸エステル樹脂、ポリスチレン樹脂、ポリカーボネート樹脂、スチレンメチルメタクリレートコポリマー、スチレンアクリロニトリルコポリマー、およびポリエチレンテレフタラート(PET)等が挙げられる。
 上記アクリル酸エステル樹脂とは、アクリル酸エステル単量体からなるポリマーである。上述したメタクリル酸エステル樹脂とは、メタクリル酸エステル単量体とアクリル酸エステル単量体とからなるポリマーであり、例えばポリメチルメタクリレート(polymethylmethacrylate、略称PMMA)である。
 上記アクリル酸エステル単量体およびメタクリル酸エステル単量体としては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピルなどの単量体が選ばれる。
 これらの内、ポリカーボネート樹脂、ポリスチレン樹脂、アクリル樹脂、及びメタクリル樹脂から選択された1種又は2種以上が好ましい。
 上記熱可塑性樹脂を含有する樹脂組成物における微細繊維状セルロースの含有量は0.1質量%以上が好ましく、1質量%以上がより好ましい。また、20質量%以下が好ましく、10質量%以下がより好ましい。含有量が上記範囲内の場合、樹脂組成物の硬化物の強度と熱膨張係数の点で好ましい。
 上記熱可塑性樹脂を含有する樹脂組成物は以下の工程を備える製造方法により製造することができる。
 工程(D)微細繊維状セルロースと熱可塑性樹脂とを混合して均一混合物を得る工程。
 工程(E)均一混合物を任意の形状に成形する工程。
 本発明の熱可塑性樹脂を含有する樹脂組成物に用いる微細繊維状セルロースの形態としては、微細繊維状セルロースと共に併用される熱可塑性樹脂や混錬に用いる装置等を考慮し、粉末状(但し、微細繊維状セルロースが凝集した粉末状であり、セルロース粒子を意味するものではない)、分散体状(目視的に無色透明又は不透明な液)などから任意に選択できる。
 粉末状の微細繊維状セルロースとしては、例えば、微細繊維状セルロースの分散体をそのまま乾燥させた乾燥物;該乾燥物を機械処理で粉末化したもの;微細繊維状セルロースの分散体を公知のスプレードライ法により粉末化したもの;微細繊維状セルロースの分散体を公知のフリーズドライ法により粉末化したもの等が挙げられる。上記スプレードライ法は、上記微細繊維状セルロースの分散体を気中で噴霧し乾燥させる方法である。
 また、分散体状の微細繊維状セルロースとしては、微細繊維状セルロースの分散体をそのまま使用することもできるし、あるいは粉末状のセルロースナノファイバーを任意の媒体に分散させたものを使用することもできる。かかる媒体は、混合される樹脂や後述する混合、成形の方法によって適宜選択され、例えば、アルコール等を用いることができる。
 本発明の熱可塑性樹脂を含有する樹脂組成物の製造方法としては、加熱されて溶融状態の熱可塑性樹脂に上述した形態の微細繊維状セルロースを添加し、該樹脂が溶融状態を維持しているうちにこれらを混錬し、こうして得られた均一混合物を成形する方法(以下、溶融混錬法ともいう)により製造することができる。
 その場合、混練装置としては、例えば単軸混練押出機、二軸混練押出機、加圧ニーダー等の公知の装置が使用できる。例えば、粉末状の微細繊維状セルロースを溶融状態の熱可塑性樹脂中に添加した後、二軸混錬機を用いてこれらを混練して樹脂ペレットを得、該樹脂ペレットを加熱圧縮することにより、シート状の樹脂組成物の硬化物が得られる。あるいは、公知のプラスチック成形法、具体的には射出成形、注形成形、押出成形、ブロー成形、延伸成形、発泡成形等を利用して、ブロック状その他の立体形状を有する樹脂組成物の硬化物を得ることができる。
 また、本発明の微細繊維状セルロースと熱可塑性樹脂の均一混合物は、上述の有機溶媒中に微細繊維状セルロースを分散させた分散体を得て、当該分散体に、熱可塑性樹脂または熱可塑性樹脂を適当な溶媒に溶解もしくは分散させた液を添加する方法によっても得られる。この均一混合物(スラリー)における溶媒としては、上述の有機溶媒を使用しても良く、これらの溶媒の混合物も好適に使用できる。また、均一混合物の固形分濃度は、分散を容易にする観点から、2質量%以下が好ましい。また、スラリーの調製に使用する分散機としては、例えば、離解機、叩解機、低圧ホモジナイザー、高圧ホモジナイザー、グラインダー、カッターミル、ボールミル、ジェットミル、短軸押出機、2軸押出機、超音波攪拌機、家庭用ジューサーミキサー等を用いることができる。
 本発明の熱可塑性樹脂を含有する樹脂組成物硬化物は任意の形状に成形可能であり、例えばフィルムやシート等の薄状物、直方体や立方体等のブロック状その他の立体形状として提供される。
 つぎに、実施例について比較例とあわせて説明する。ただし、本発明はこれらの実施例に限定されるものではない。なお、例中、「%」とあるのは、特に限定のない限り質量基準を意味する。
[セルロース繊維A1の調製]
 針葉樹パルプ2gに、水150ml、臭化ナトリウム0.25g、TEMPO 0.025gを加え、充分撹拌して分散させた後、13%次亜塩素酸ナトリウム水溶液を、上記パルプ1.0gに対して次亜塩素酸ナトリウム量が5.2mmol/gとなるように加え、反応を行った。反応の進行に伴いpHが低下するため、pHを10~11に保持するように0.5N水酸化ナトリウム水溶液を滴下しながら、pHの変化が見られなくなるまで反応した(反応時間:120分)。反応終了後、0.1N塩酸を添加して中和した後、遠心分離機で固液分離し、純水を加えて固形分濃度4%スラリーを調製した。その後、24%NaOH水溶液にてスラリーのpHを10に調整した。スラリーの温度を30℃に昇温し、水素化ホウ素ナトリウムをセルロース繊維に対して0.2mmol/g加え、2時間反応させることで還元処理した。反応後、0.1N塩酸を添加して中和し、ろ過と水洗を繰り返して精製することで、セルロース繊維A1を得た。
〔セルロース繊維A2の調製〕
 次亜塩素酸ナトリウム水溶液の添加量を、上記パルプ1.0gに対して12.0mmol/gとした以外は、セルロース繊維A1の調製法に準じて、セルロース繊維A2を得た。
〔セルロース繊維A3の調製〕
針葉樹パルプ100gを、イソプロパノール(IPA) 435gと水65gとNaOH9.9gの混合液中にいれ、30℃で1時間撹拌した。このスラリー系に50%モノクロル酢酸のIPA 溶液23.0gを加え、70℃に昇温し、1.5時間反応させた。得られた反応物を80%メタノールで洗浄した後、メタノールで置換し乾燥させた。さらに、水を加え、固形分1%に希釈し、T.K.ホモミクサー(PRIMIX社製)を用いて8000rpm×10分間撹拌しながら、溶液のpHが2になるまで1N塩酸を加えた。その後ろ過と水洗を繰り返して精製することで、セルロース繊維A3を得た。
〔セルロース繊維A4の調製〕
尿素20g、リン酸二水素ナトリウム二水和物12g、リン酸水素二ナトリウム8gを20gの水に溶解させてリン酸化剤を調製し、家庭用ミキサーで粉砕した針葉樹パルプ(LBKP)20gをニーダーで攪拌しながらスプレー噴霧し、リン酸化剤含浸パルプを得た。次いで、リン酸化剤含浸パルプを140℃に加熱したダンパー付きの送風乾燥機内で60分間、加熱処理してリン酸化パルプを得た。得られたリン酸化パルプに水を加えて固形分濃度2%とし、攪拌、混合して均一に分散させた後、ろ過、脱水の操作を2回繰り返した。次いで、得られた回収パルプに、水を加えて、固形分濃度2%とし、攪拌しながら、1N水酸化ナトリウム水溶液を少しずつ添加し、pH12~13のパルプスラリーを得た。続いて、このパルプスラリーをろ過、脱水し、更に水を加えてろ過、脱水の操作を2回繰り返した後、メタノールで置換し乾燥させた。さらに、水を加え、固形分1%に希釈し、T.K.ホモミクサー(PRIMIX社製)を用いて8000rpm×10分間撹拌しながら、溶液のpHが2になるまで1N塩酸を加えた。その後ろ過と水洗を繰り返して精製することで、セルロース繊維A4を得た。
〔セルロース繊維A5の調製〕
 針葉樹漂白クラフトパルプ(NBKP)50gを水4950gに分散させ、パルプ濃度2%の分散液を調製した。この分散液をセレンディピターMKCA6-3(増幸産業社製)で30回処理し、セルロース繊維A5を得た。
〔セルロース繊維A6の調製〕
 原料の針葉樹パルプに替えて再生セルロースを使用するとともに、次亜塩素酸ナトリウム水溶液の添加量を、再生セルロース1.0gに対して27.0mmol/gとした以外は、セルロース繊維A1の調製法に準じて、セルロース繊維A6を調製した。
[セルロース繊維の評価]
上記セルロース繊維を用いて、下記評価方法に従い、各特性の評価を行った。評価結果を表1に示す。
<カルボキシル基量の測定>
 上記セルロース繊維0.25gを水に分散させたセルロース水分散体60mlを調製し、0.1N塩酸によってpHを約2.5とした後、0.05N水酸化ナトリウム水溶液を滴下して、電気伝導度測定を行った。測定はpHが11になるまで続けた。電気伝導度の変化が緩やかな弱酸の中和段階において、消費された水酸化ナトリウム量(V)から、下記式に従いカルボキシル基量を求めた。
 カルボキシル基量(mmol/g)=V(ml)×[0.05/セルロース重量]…(2)
<カルボキシメチル基量の測定>
 上記セルロース繊維をイオン交換水で固形分濃度0.6%となるように希釈し、0.1N塩酸加えてpH2.4とした後、0.05N水酸化ナトリウムを滴下してpHが11になるまで電気伝導度を測定し、電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量からカルボキシル基量を測定し、下式を用いて算出することができる。
 カルボキシメチル基量(mmol/g)=[162×C]/[1-58×C]×1000…(3)
 C=カルボキシ基量(mol/g)
<リン酸基量の測定>
 上記セルロース繊維をイオン交換水で固形分濃度0.2%となるように希釈した後、イオン交換樹脂による処理、アルカリを用いた滴定によって測定した。イオン交換樹脂による処理では、0.2%微細セルロース繊維含有スラリーに体積で1/10の強酸性イオン交換樹脂(アンバージェット1024;オルガノ株式会社、コンディショング済)を加え、1時間振とう処理を行った。その後、目開き90μmのメッシュ上に注ぎ、樹脂とスラリーを分離した。アルカリを用いた滴定では、イオン交換後の微細セルロース繊維水分散体に、0.1Nの水酸化ナトリウム水溶液を加えながら、水分散体が示す電気伝導度の値の変化を計測した。すなわち、電気伝導度の値が最も小さくなるまでに加えたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除して、リン酸基量(mmol/g)とした。
<カルボニル基量の測定>
 上記セルロース繊維を約0.2g精秤し、これに、リン酸緩衝液によりpH=5に調整したセミカルバジド塩酸塩3g/l水溶液を正確に50ml加え、密栓し、二日間振とうした。つぎに、この溶液10mlを正確に100mlビーカーに採取し、5N硫酸25ml、0.05Nヨウ素酸カリウム水溶液5mlを加え、10分間撹拌した。その後、5%ヨウ化カリウム水溶液10mlを加え、直ちに自動滴定装置を用いて、0.1Nチオ硫酸ナトリウム溶液にて滴定し、その滴定量等から、下記式に従い、試料中のカルボニル基量(アルデヒド基とケトン基との合計含量)を求めた。
 カルボニル基量(mmol/g)=[D-B]×f×[0.125/w]…(4)
  D:サンプルの滴定量(ml)
  B:空試験の滴定量(ml)
  f:0.1Nチオ硫酸ナトリウム溶液のファクター
  w:試料量(g)
Figure JPOXMLDOC01-appb-T000003
*検出限界以下
〔実施例1〕
[微細繊維状セルロース分散体]
 上記セルロース繊維A1にアセトンを加えてろ過し、アセトン洗浄を繰り返した後、乾燥した。乾燥したセルロース繊維A1 20gに、DMSO700ml、炭酸カリウム8gを加え、充分撹拌して分散させた後、酢酸ビニルを、上記セルロース繊維A1 1.0gに対して酢酸ビニル量が100mmol/gとなるように加え、90℃に昇温し、1時間反応を行った。反応終了後、ろ過によってDMSOを取り除き、純水を加えて1%スラリーに調整した。得られた上記スラリーに1N塩酸を添加して中和した後、ろ過によって固液分離した。その後、アセトンを加えてろ過し、アセトン洗浄を繰り返した後乾燥して、アシル化セルロース繊維を得た。
 上記アシル化セルロース繊維にメタノールと、上記セルロース繊維A1のカルボキシル基量と等量のトリオクチルアミンとを加えて、セルロース繊維濃度を2%になるように希釈し、高圧ホモジナイザー(スギノマシン社製、スターバースト)を用いて圧力100MPaで1回処理し、ゲル状の微細繊維状セルロース分散体を得た。
[樹脂組成物およびその硬化物]
 上記微細繊維状セルロース分散体(固形分2%)25質量部にポリオール(第一工業製薬社製、エイムフレックスEF318A)59.6質量部を加えて、ロータリーエバポレーター(東京理化機器社製)によりメタノールを留去することで、分散溶剤をポリオールに置換した。その後、主剤として上記ポリオールと硬化剤としてポリイソシアネート(第一工業製薬社製、エイムフレックスEF318B)39.7質量部を加え、T.K.ホモミクサー(PRIMIX社製)を用いて8000rpm×10分間撹拌することにより、樹脂組成物を得た。上記樹脂組成物を2枚の鉄板の間に流し込み、80℃で一晩乾燥させることで、樹脂組成物の硬化物を得た。
 上記微細繊維状セルロース分散体および樹脂組成物の硬化物を以下の基準により評価を行った。評価結果を表2に示す。
<アシル基量の測定>
 微細繊維状セルロース分散体5g(固形分:0.1g)に、エタノール50mL、5N水酸化ナトリウム水溶液50mL(0.25mmol)を加え、3~4時間攪拌した後、ろ過、水洗、乾燥し、ろ紙上の試料のFTIR測定を行い、エステル結合のカルボニルに基づく吸収ピークが消失していること、つまりエステル結合が加水分解されていることを確認した。その後、2N塩酸でろ液に含まれる過剰に加えた水酸化ナトリウムの中和滴定を行った。そして、下記式からアシル基のモル数(C)を算出し、アシル基量を算出した。
 アシル基量=C/0.1…(5)
 アシル基のモル数C=0.025mmol-[HClの滴下量×1]-[アニオン性官能基量×0.1]
<結晶構造>
 X線回折装置(リガク社製、RINT-Ultima3)を用いて、セルロース繊維の回折プロファイルを測定し、2シータ=14~17°付近と、2シータ=22~23°付近の2つの位置に典型的なピークが見られる場合は結晶構造(I型結晶構造)が「あり」と評価し、ピークが見られない場合は「なし」と評価した。
<数平均繊維径、アスペクト比の測定>
 上記ゲル状組成物のセルロース繊維の数平均繊維径、および繊維長を、透過型電子顕微鏡(TEM、日本電子社製JEM-1400)を用いて観察した。すなわち、各セルロース繊維を親水化処理済みのカーボン膜被覆グリッド上にキャストした後、2%ウラニルアセテートでネガティブ染色したTEM像(倍率:10000倍)から、数平均繊維径、および繊維長を算出した。さらに、これらの値を用いてアスペクト比を下記式に従い、算出した。
アスペクト比=数平均繊維長[nm]/数平均繊維径[nm]…(1)
<弾性率の評価>
JIS K6251に準じて、上記熱硬化樹脂組成物をダンベル型に切り抜き、万能試験機(インストロンジャパン社製、5581型)を用いて、強度[MPa]を測定し、以下の基準で評価した。
 ◎:強度が10MPa以上。
 ○:5MPa以上10MPa未満。
 △:1MPa以上5MPa未満。
 ×:1MPa未満
<線膨張係数の評価>
 JIS K7197に準じて、上記熱硬化樹脂組成物から試験片を切り抜き、熱機械分析装置TMA(リガク社製、TMA8311)を用いて、線膨張係数[ppm]を測定し、以下の基準で評価した。
 ○:線膨張係数が100ppm未満。
 △:100ppm以上150ppm未満。
 ×:150ppm以上。
〔実施例2~4、9~15〕
 セルロース繊維、有機塩基、主剤、硬化剤の種類および配合比率を、下記表2のように変更した以外は実施例1と同様の手法で微細繊維状セルロース分散体、樹脂組成物、およびその硬化物を調製し、各特性の評価を行った。
〔実施例5〕
 酢酸ビニルをラウリン酸ビニルに変更した以外は、実施例2と同様の手法で微細繊維状セルロース分散体、樹脂組成物、およびその硬化物を調製し、各特性の評価を行った。
〔実施例6〕
 酢酸ビニルを安息香酸ビニルに変更した以外は、実施例2と同様の手法で微細繊維状セルロース分散体、樹脂組成物、およびその硬化物を調製し、各特性の評価を行った。
〔実施例7〕
 乾燥したセルロース繊維A1 20gに、DMSO700ml、炭酸カリウム8gを加え、充分撹拌して分散させた後、酢酸ビニルを、セルロース繊維A1 1.0gに対して酢酸ビニル量が100mmol/gとなるように加え、90℃に昇温し、1時間反応を行うところを30分間に変更した以外は、実施例2と同様の手法で微細繊維状セルロース分散体、樹脂組成物、およびその硬化物を調製し、各特性の評価を行った。
〔実施例8〕
 乾燥したセルロース繊維A1 20gに、DMSO700ml、炭酸カリウム8gを加え、充分撹拌して分散させた後、酢酸ビニルを、上記セルロース繊維A1 1.0gに対して酢酸ビニル量が100mmol/gとなるように加え、90℃に昇温し、1時間反応を行うところを2時間に変更した以外は、実施例2と同様の手法で微細繊維状セルロース分散体、樹脂組成物、およびその硬化物を調製し、各特性の評価を行った。
〔比較例1〕
 上記セルロース繊維A2にメタノールを加えてろ過し、メタノール洗浄を繰り返して、上記セルロース繊維に含まれる水をメタノールに置換した。その後、メタノールと、上記セルロース繊維A2のカルボキシル基量と等量のトリオクチルアミンとを加えて、セルロース繊維濃度を2%になるように希釈し、高圧ホモジナイザー(スギノマシン社製、スターバースト)を用いて圧力100MPaで1回処理し、微細繊維状セルロース分散体を得た。さらに、上記微細繊維状セルロース分散体にポリオール(第一工業製薬社製、エイムフレックスEF318A)を加えて、ロータリーエバポレーター(東京理化機器社製)によりメタノールを留去することで、分散溶剤をポリオールに置換した。その後、主剤としてポリオールと硬化剤としてポリイソシアネート(第一工業製薬社製、エイムフレックスEF318B)を加え、T.K.ホモミクサー(PRIMIX社製)を用いて8000rpm×10分間撹拌することにより樹脂組成物を得た。上記樹脂組成物を2枚の鉄板の間に流し込み、80℃で一晩乾燥させることで、樹脂組成物の硬化物を調製し、各特性の評価を行った。
[比較例2、3〕
 セルロース繊維、有機塩基、主剤、硬化剤の種類および配合比率を、下記表2のように変更した以外は比較例1と同様の手法で微細繊維状セルロース分散体、樹脂組成物、およびその硬化物を調製し、各特性の評価を行った。
〔比較例4〕
 セルロース繊維、有機塩基、主剤、硬化剤の種類および配合比率を、下記表2のように変更した以外は、実施例2と同様の手法で微細繊維状セルロース分散体、樹脂組成物、およびその硬化物を調製し、各特性の評価を行った。
〔比較例5〕
 セルロース繊維A5にメタノールを加え、ろ過し、メタノールで繰り返して洗浄することでセルロース繊維に含まれる水をメタノールに溶剤置換し、微細繊維状セルロース分散体を得た。上記微細繊維状セルロース分散体にポリオール(第一工業製薬社製、エイムフレックスEF318A)を加えて、ロータリーエバポレーター(東京理化機器社製)によりメタノールを留去することで、分散溶剤をポリオールに置換した。その後、主剤としてポリオールと硬化剤としてポリイソシアネート(第一工業製薬社製、エイムフレックスEF318B)を加え、T.K.ホモミクサー(PRIMIX社製)を用いて8000rpm×10分間撹拌することにより、微細繊維状セルロース、主剤、硬化剤の配合比率を表2のように調整した樹脂組成物を得た。
〔比較例6〕
 セルロース繊維A6に水を加えて希釈し、凍結乾燥を行った。凍結乾燥物にメタノールと、上記セルロース繊維A6のカルボキシル基量と等量のトリオクチルアミンとを加えて2%に希釈し、高圧ホモジナイザー(スギノマシン社製、スターバースト)を用いて圧力100MPaで1回処理し、微細繊維状セルロース分散体を得た。上記微細繊維状セルロース分散体にポリオール(第一工業製薬社製、エイムフレックスEF318A)を加えて、ロータリーエバポレーター(東京理化機器社製)によりメタノールを留去することで、分散溶剤をポリオールに置換した。その後、主剤としてポリオールと硬化剤としてポリイソシアネート(第一工業製薬社製、エイムフレックスEF318B)を加え、T.K.ホモミクサー(PRIMIX社製)を用いて8000rpm×10分間撹拌することにより、微細繊維状セルロース、有機塩基、主剤、硬化剤の配合比率を表2のように調整した樹脂組成物を得た。上記樹脂組成物を2枚の鉄板の間に流し込み、80℃で一晩乾燥させることで、熱硬化樹脂組成物を得た。上記硬化物を用いて、実施例1と同様の評価方法で、各特性の評価を行った。
〔比較例7〕
 下記表2に記載のポリオールとポリイソシアネートを使用し、ポリオールを60質量部、ポリイソシアネートを40質量部に調整した樹脂組成物を得た。上記樹脂組成物を2枚の鉄板の間に流し込み、80℃で一晩乾燥させることで、硬化物を得た。上記硬化物を用いて、実施例1と同様の評価方法で、各特性の評価を行った。
Figure JPOXMLDOC01-appb-T000004
※1 HUNTSMAN社製、JEFFAMINE M-1000
※2 HUNTSMAN社製、JEFFAMINE M-2070
※3 数平均繊維径が1nm以下であるため測定不可
 上記表2の結果より、実施例の樹脂組成物の硬化物は、比較例の樹脂組成物の硬化物よりも強度、線膨張係数の点で良好な結果が得られた。
 比較例1、3では、アシル基が導入されておらず、トリオクチルアミン、トリエチルアミンといった嵩高さが不十分なアミンによる中和では水素結合による凝集を抑制できなかったことが原因となり、解繊が不十分であったため、硬化物の強度、線膨張係数の点で良好な結果が得られなかった。
 比較例2では、ポリエーテルアミンといった嵩高いアミンを使用しており、十分に解繊することができたが、アシル基が導入されていないことから、水素結合による凝集を完全に抑制することができなかったことが原因となり、硬化物の強度、線膨張係数の点で良好な結果が得られなかった。
 また比較例4、5ではアニオン性官能基による電荷反発が無いために、樹脂組成物中で微細繊維状セルロースが沈降し、均一な樹脂組成物を得ることができない、もしくは硬化物を調製できたとしても、硬化物の強度、線膨張係数の点で良好な結果が得られなかった。
 比較例6では微細繊維状セルロースは凝集することなく溶剤中に分散したが、微細繊維状セルロースがI型結晶構造を有さないために、硬化物の強度、線膨張係数の点で良好な結果は得られなかった。
 

Claims (10)

  1. 下記条件(A)ないし(E)を満たすことを特徴とする微細繊維状セルロース。
    (A)数平均繊維径が2nm以上500nm以下
    (B)平均アスペクト比が10以上1000以下
    (C)セルロースI型結晶構造を有する
    (D)アニオン性官能基を有する
    (E)アシル基を有する
  2.  上記(D)アニオン性官能基に有機塩基が結合していることを特徴とする請求項1に記載の微細繊維状セルロース。
  3.  上記有機塩基が第1級アミン、第2級アミン、第3級アミンから選択された1種または2種以上であることを特徴とする請求項2記載の微細繊維状セルロース。
  4.  上記(D)アニオン性官能基がカルボキシル基であることを特徴とする請求項1ないし3のいずれか1項に記載の微細繊維状セルロース。
  5.  上記(D)アニオン性官能基量が0.5mmol/g以上2.5mmol/g以下であることを特徴とする請求項1ないし4のいずれか1項に記載の微細繊維状セルロース。
  6.  上記(E)アシル基がアセチル基であることを特徴とする請求項1ないし5のいずれか1項に記載の微細繊維状セルロース。
  7.  上記(E)アシル基量が0.3mmol/g以上2.5mmol/g以下であることを特徴とする1ないし6のいずれか1項に記載の微細繊維状セルロース。
  8.  上記(E)アシル基量/上記(D)アニオン性官能基量=0.1~5.0であること特徴とする請求項1ないし7のいずれか1に記載の微細繊維状セルロース。
  9. 工程(1):上記セルロース繊維の上記水酸基をアニオン性官能基に変換する工程、
    工程(2):上記アニオン性官能基を有する上記セルロース繊維の水酸基にアシル基を導入する工程、
    工程(3):上記アシル基が導入されたセルロース繊維のアニオン性基を有機塩基で変性する工程、
    工程(4):上記変性された上記セルロース繊維を解繊する工程
    を備えることを特徴とする微細繊維状セルロースの製造方法。
  10.  請求項1ないし8のいずれか1項に記載の微細繊維状セルロースを含有する樹脂組成物
PCT/JP2019/011051 2018-03-30 2019-03-18 微細繊維状セルロースおよびその樹脂組成物 WO2019188468A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-067649 2018-03-30
JP2018067649A JP2019178216A (ja) 2018-03-30 2018-03-30 微細繊維状セルロースおよびその樹脂組成物

Publications (1)

Publication Number Publication Date
WO2019188468A1 true WO2019188468A1 (ja) 2019-10-03

Family

ID=68058872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011051 WO2019188468A1 (ja) 2018-03-30 2019-03-18 微細繊維状セルロースおよびその樹脂組成物

Country Status (3)

Country Link
JP (1) JP2019178216A (ja)
TW (1) TW201942141A (ja)
WO (1) WO2019188468A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7108727B1 (ja) * 2021-02-03 2022-07-28 日本製紙株式会社 樹脂複合体の製造方法、及びセルロース繊維予備解繊物
JP7260074B1 (ja) * 2021-10-12 2023-04-18 星光Pmc株式会社 樹脂組成物及びその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036035A (ja) * 2011-07-14 2013-02-21 Mitsubishi Chemicals Corp 微細セルロース繊維分散液の製造方法
JP2013177540A (ja) * 2012-02-08 2013-09-09 Mitsubishi Chemicals Corp ゴム改質材、ゴムラテックス分散液及びゴム組成物
JP2016145356A (ja) * 2016-02-10 2016-08-12 王子ホールディングス株式会社 繊維状セルロース、樹脂組成物及びセルロース懸濁液
JP2017082188A (ja) * 2015-10-27 2017-05-18 大阪瓦斯株式会社 修飾セルロース微細繊維及びその製造方法
JP2017190437A (ja) * 2016-04-15 2017-10-19 大阪瓦斯株式会社 修飾セルロース微細繊維及びその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126592A1 (ja) * 2005-05-24 2006-11-30 Fujifilm Corporation セルロースアシレートフィルム、並びに、これを用いた偏光板、光学補償フィルムおよび液晶表示装置
JP2010007009A (ja) * 2008-06-30 2010-01-14 Sanyo Chem Ind Ltd カルボキシメチルセルロースアシル化物の製造方法
US20140234640A1 (en) * 2011-08-31 2014-08-21 Konica Minolta, Inc. Gas barrier film, manufacturing method thereof, and substrate for electronic element using the same
JP6136594B2 (ja) * 2013-06-03 2017-05-31 王子ホールディングス株式会社 微細セルロース繊維の製造方法
JP6091589B2 (ja) * 2015-03-19 2017-03-08 国立大学法人京都大学 化学修飾セルロースナノファイバー及び熱可塑性樹脂を含有する繊維強化樹脂組成物
JP6833268B2 (ja) * 2015-10-22 2021-02-24 第一工業製薬株式会社 親水性樹脂組成物
JP5939695B1 (ja) * 2015-12-16 2016-06-22 第一工業製薬株式会社 粘性水系組成物およびその製造方法
JP5996082B1 (ja) * 2015-12-25 2016-09-21 第一工業製薬株式会社 セルロースナノファイバーおよび樹脂組成物
JP5976249B1 (ja) * 2016-03-30 2016-08-23 第一工業製薬株式会社 水分散体およびコーティング材
JP6815691B2 (ja) * 2016-09-16 2021-01-20 第一工業製薬株式会社 コーティング剤
JP6796437B2 (ja) * 2016-09-16 2020-12-09 第一工業製薬株式会社 微粒子含有組成物
JP2017133037A (ja) * 2017-04-26 2017-08-03 王子ホールディングス株式会社 微細セルロース繊維の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036035A (ja) * 2011-07-14 2013-02-21 Mitsubishi Chemicals Corp 微細セルロース繊維分散液の製造方法
JP2013177540A (ja) * 2012-02-08 2013-09-09 Mitsubishi Chemicals Corp ゴム改質材、ゴムラテックス分散液及びゴム組成物
JP2017082188A (ja) * 2015-10-27 2017-05-18 大阪瓦斯株式会社 修飾セルロース微細繊維及びその製造方法
JP2016145356A (ja) * 2016-02-10 2016-08-12 王子ホールディングス株式会社 繊維状セルロース、樹脂組成物及びセルロース懸濁液
JP2017190437A (ja) * 2016-04-15 2017-10-19 大阪瓦斯株式会社 修飾セルロース微細繊維及びその製造方法

Also Published As

Publication number Publication date
TW201942141A (zh) 2019-11-01
JP2019178216A (ja) 2019-10-17

Similar Documents

Publication Publication Date Title
JP6833268B2 (ja) 親水性樹脂組成物
JP5976249B1 (ja) 水分散体およびコーティング材
TWI838354B (zh) 微細化疏水變性纖維素纖維之製造方法、樹脂組合物及樹脂成形體
JP5872098B1 (ja) セルロースエステル水性分散体
JP5872099B1 (ja) セルロースエステル水性分散体
JP6700805B2 (ja) ポリウレタン樹脂組成物の製造方法
JP6105139B1 (ja) 油性インク組成物
JP2017115047A (ja) セルロースナノファイバーおよび樹脂組成物
JP6910703B2 (ja) 熱硬化性樹脂組成物
JP2017025206A (ja) セルロースエステル水性分散体
WO2019188468A1 (ja) 微細繊維状セルロースおよびその樹脂組成物
JP2017043750A (ja) セルロースエステル水性分散体
JP2018044100A (ja) 塗料組成物
JP6815691B2 (ja) コーティング剤
JP7208784B2 (ja) 微細化疎水変性セルロース繊維の製造方法
JP2019119984A (ja) 微細化疎水変性セルロース繊維の製造方法
JP7457551B2 (ja) 塗料組成物
JP7393268B2 (ja) 絶縁性ペースト
JP6429978B2 (ja) 樹脂組成物及びその製造方法
JP7250821B2 (ja) 改質セルロース繊維粉末
TW202231773A (zh) 氯乙烯樹脂組合物及其製造方法、以及成形體
WO2021153699A1 (ja) セルロース繊維複合体
JP2017043751A (ja) セルロースエステル水性分散体
JP2017025283A (ja) セルロースエステル水性分散体
JP7344825B2 (ja) 接着剤組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776598

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19776598

Country of ref document: EP

Kind code of ref document: A1