WO2019184981A1 - 一种用于硅钢的水溶性环保自粘结绝缘涂料 - Google Patents

一种用于硅钢的水溶性环保自粘结绝缘涂料 Download PDF

Info

Publication number
WO2019184981A1
WO2019184981A1 PCT/CN2019/080095 CN2019080095W WO2019184981A1 WO 2019184981 A1 WO2019184981 A1 WO 2019184981A1 CN 2019080095 W CN2019080095 W CN 2019080095W WO 2019184981 A1 WO2019184981 A1 WO 2019184981A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
silicon steel
coating
insulating coating
steel according
Prior art date
Application number
PCT/CN2019/080095
Other languages
English (en)
French (fr)
Other versions
WO2019184981A8 (zh
Inventor
李登峰
王波
李国保
郭建国
肖盼
沈科金
谢世殊
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to JP2020551491A priority Critical patent/JP7153739B2/ja
Priority to EP19774870.0A priority patent/EP3770226A4/en
Priority to KR1020207029039A priority patent/KR102490495B1/ko
Publication of WO2019184981A1 publication Critical patent/WO2019184981A1/zh
Publication of WO2019184981A8 publication Critical patent/WO2019184981A8/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/02Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D123/04Homopolymers or copolymers of ethene
    • C09D123/08Copolymers of ethene
    • C09D123/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C09D123/0853Vinylacetate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the invention relates to a water-soluble environmental self-bonding insulating coating for silicon steel.
  • the modern mass-produced motor core stacking mainly consists of bolting, welding, riveting and bonding.
  • the bonding method can assemble the silicon steel sheets by surface fixing, so that the stacking process has pollution-free, iron.
  • the core has high fixing strength, low magnetic vibration and high core efficiency, and is especially suitable for other fixing methods which may cause distortion or insufficient rigidity and inconvenience in riveting or welding.
  • the self-bonding coating on the surface of the silicon steel sheet is a common method for fixing the silicon steel sheets in a bonding manner, but at the same time, the following problems exist: the imported self-bonding coated silicon steel has high use cost and the iron core is stacked. The process is troublesome and the work efficiency is low. The relatively thick self-bonding coating causes coating overflow phenomenon on the end surface of the silicon steel sheet during the secondary curing, resulting in a large difference in the thickness of the iron core, a decrease in the lamination factor, and even an increase in the iron core. Additional processes such as edge grinding have led to the current market acceptance of silicon steel self-bonding coating products.
  • the existing self-bonding coatings mainly comprise a thermosetting epoxy emulsion and a curing agent (or accelerator) thereof, and the coating product has a large bonding strength, and has good rust resistance and cold adhesion resistance.
  • current representative products such as Remsol EB546/547/548/549 series of paint products produced by Rembrandtin.
  • the bond strength of such conventional self-bonding coatings is positively correlated with the film thickness of the coating. In order to ensure excellent bonding strength, insulation and corrosion resistance, it is generally required that the coating dry film thickness per surface is high.
  • the organic resin When the core is re-solidified at 4 ⁇ m, the organic resin is crosslinked to form an exothermic reaction, so that there are various problems such as a decrease in the lamination factor, a large difference in the thickness of the iron core, and a hot pressure overflow at the side, which limits the problem.
  • End-user acceptance of self-bonding coating products Moreover, the conventional self-bonding coating requires 180 to 250 ° C in the secondary curing process of the iron core, and the temperature is maintained for 1 to 4 hours, and the load needs to be 6 to 30 Bar. Therefore, the user generally reflects the iron core stack. The assembly process is demanding and the work efficiency is low.
  • the self-bonding coating component is mainly organic
  • a sol or dispersion of inorganic particles such as silicon/aluminum/titanium or metal oxide on the basis of a conventional self-bonding coating.
  • a composite salt of a substance and a borosilicate, or a phosphate, or an inorganic filler may be industrially applied, and the production of the remaining inorganic additives is difficult to implement on a large scale, even if the dispersion of the inorganic salt is added to the coating, the self-adhesive is only moderately improved.
  • the heat resistance of the junction coating cannot withstand the high temperatures of the core annealing and bluing processes. Therefore, the development of temperature-resistant self-adhesive coatings may only be used in specific applications for individual users.
  • the object of the present invention is to provide a water-soluble environmentally-friendly self-bonding insulating coating for silicon steel, which solves the problems of overflow of the hot-pressed edge portion of the coating and poor longitudinal thickness of the iron core due to the high coating film thickness.
  • the coating can produce thin, sticky, high-insulation, self-adhesive coating products without edge overflow, improve the user's use conditions such as temperature, time and load force in the core curing process, and expand the self-bonding insulating coating of silicon steel.
  • the breadth and depth of application of the product is to provide a water-soluble environmentally-friendly self-bonding insulating coating for silicon steel, which solves the problems of overflow of the hot-pressed edge portion of the coating and poor longitudinal thickness of the iron core due to the high coating film thickness.
  • the coating can produce thin, sticky, high-insulation, self-adhesive coating products without edge overflow, improve the user's use conditions such as temperature, time and load force in the core curing process, and expand the self-
  • a water-soluble environmental self-bonding insulating coating for silicon steel comprising a thermosetting aqueous film-forming resin, a thermoplastic aqueous film-forming resin, inorganic nanoparticles, an auxiliary agent, a solvent and pure water, and the thermosetting water-based
  • the solid weight of the film-forming resin accounts for 0.1-50% of the total weight of the coating
  • the solid weight of the thermoplastic aqueous film-forming resin accounts for 0.1-60% of the total weight of the coating
  • the solid weight of the inorganic nanoparticles accounts for the total weight of the coating.
  • the auxiliary agent and solvent weigh 5-25% of the total weight of the coating, and the rest is pure water.
  • thermosetting aqueous film-forming resin has a solid weight of 5-20% by weight based on the total weight of the coating.
  • thermoplastic aqueous film-forming resin has a solid weight of 20-40% by weight based on the total weight of the coating.
  • the solid weight of the thermoplastic aqueous film-forming resin accounts for 20 to 95%, preferably 65 to 85%, of the total weight of the thermosetting aqueous film-forming resin + thermoplastic aqueous film-forming resin.
  • the inorganic nanoparticles have a solids weight of from 2 to 6% by weight based on the total weight of the coating.
  • the auxiliary agent and the solvent contain ethylene glycol, and the amount of the ethylene glycol is 0.1 to 3.5% of the total weight of the water-soluble environmentally-friendly self-bonding insulating coating.
  • thermosetting aqueous film-forming resin includes an epoxy resin and a curing agent.
  • the solid weight of the epoxy resin is from 80 to 99%, preferably from 91 to 98% by weight based on the weight of the thermosetting aqueous film-forming resin.
  • the epoxy resin has an epoxy equivalent of 100 to 2000 g/eq, a weight average molecular weight Mw of 200 to 4000, and a functionality of 2-3.
  • the curing agent is one or more of dicyandiamide, amino resin, imidazole, and polyisocyanate.
  • thermoplastic aqueous film-forming resin is a copolymer of one or more of polyvinyl acetate, polyurethane, and polyacrylate.
  • thermoplastic aqueous film-forming resin is a polyurethane copolymer elastomer.
  • the preparation method of the polyurethane copolymer elastomer of the invention is as follows: the polyester diol and the dimethylol propionic acid (DMPA) are dehydrated at a temperature of 100 to 110 ° C and a vacuum of 0.085 to 0.095 MPa. After 1 h, the temperature is lowered to 10 to 60 ° C, and the dried hydrophilic functional monomer diisocyanate is added, and the reaction is carried out at 60 to 90 ° C for 1 to 4 hours to obtain a prepolymer; then, neopentyl glycol and trishydroxyl are added at this temperature.
  • DMPA dimethylol propionic acid
  • Methylpropane (TMP) is subjected to chain extension, and the chain extension reaction time is 2 to 5 hours, and a polyurethane copolymer elastomer having a molecular weight of 20,000 to 80,000, a film formation temperature of from room temperature to 200 ° C, and a ring opening temperature of from 120 to 180 ° C is obtained. .
  • NMP N-methylpyrrolidone
  • the molar ratio of the hydrophilic functional monomer diisocyanate to dimethylolpropionic acid is 1:0.5-1.
  • the hydrophilic functional monomer diisocyanate is toluene diisocyanate (TDI), hexamethylene diisocyanate (HDI) or isophorone diisocyanate.
  • the molar ratio of the hydrophilic functional monomer diisocyanate to dimethylolpropionic acid is 1:0.5-1, which ensures that each dimethylolpropionic acid molecule has two activities during the prepolymerization reaction.
  • the reaction site participates in the chain extension reaction and is not blocked by a hydrophilic functional monomer (a tertiary amino group compound containing only one reactive functional group).
  • the polyester diol has a hydroxyl value of from 100 to 200 mgKOH/g, and the molar ratio of the isocyanate NCO group of the diisocyanate to the hydroxyl group of the product of the polyester diol and the dimethylolpropionic acid dehydrated product 4:3 to 5:4, the carboxyl group content of dimethylolpropionic acid is 2.1 to 2.5% by weight of the prepolymer.
  • the molar ratio of the hydroxyl group of the glycol in the chain extension reaction to the blocked isocyanate group in the prepolymer is from 0.9 to 1:1.
  • Another preparation method of the polyurethane copolymer elastomer of the present invention is as follows: the polyester diol and the functional monomer dimethylolpropionic acid (DMPA) are at 100-110 ° C, and the degree of vacuum is 0.085-0.095. After dehydration at MPa for 0.5 to 1 hour, the temperature is lowered to 10 to 60 ° C, diisocyanate is added, and the reaction is carried out at 60 to 90 ° C for 1 to 4 hours to obtain an NCO-terminated prepolymer.
  • DMPA functional monomer dimethylolpropionic acid
  • the prepolymer is further added to an aqueous solution in which the neutralizing agent triethylamine and the chain extender trimethylolpropane (TMP) are dissolved under stirring, and the reaction time is carried out at 60 to 90 ° C for 2 to 5 hours.
  • TMP trimethylolpropane
  • the mass of the dimethylolpropionic acid accounts for 4 to 8% of the total mass of the prepolymer monomer (the total mass of the polyester diol, dimethylolpropionic acid and diisocyanate) .
  • the hydrophilic functional monomer diisocyanate is toluene diisocyanate, or hexamethylene diisocyanate, or isophorone diisocyanate or the like.
  • the polyester diol has a hydroxyl value of from 100 to 200 mgKOH/g.
  • the molar ratio of the isocyanate NCO group of the diisocyanate to the hydroxyl group of the product of dehydration of the polyester diol and dimethylolpropionic acid is from 4:3 to 5:4, so that prepolymerization terminated by isocyanate can be obtained. For subsequent chain extension.
  • the ratio of the number of moles of isocyanate NCO groups in the prepolymer to the number of moles of hydroxyl groups contained in trimethylolpropane was 1:1.
  • the ratio of the number of moles of the neutralizing agent triethylamine to the number of moles of dihydroxymethylpropionic acid in the prepolymer monomer is from 1 to 1.1:1, and a slight excess of the neutralizing agent ensures complete neutralization.
  • the amount of water used is from 1.8 to 2:1 by weight to the prepolymer.
  • the inorganic nanoparticles are at least one of TiO 2 , ZnO, SiO 2 , Al 2 O 3 , ZrO 2 , Fe 3 O 4 , CaCO 3 , and Cr 2 O 3 .
  • the auxiliary agent is at least one of an antifoaming agent, a wetting agent, a leveling agent, a thickener, an anti-settling agent, and a flash rust inhibitor.
  • the solvent comprises ethylene glycol, and further comprises glycerin, propylene oxide, n-butanol, isobutanol, isopropanol, ethylene glycol methyl ether, ethylene glycol butyl ether, propylene glycol methyl ether, propylene glycol At least one of butyl ether, triethylene glycol ethyl ether, and propylene glycol methyl ether acetate.
  • thermosetting aqueous film-forming resin is separately coated on a silicon steel coil and baked to form a film, and part of the epoxy resin and the latent curing agent are thermally reacted and crosslinked to form a film, and the residual active epoxy is deposited.
  • the resin and the curing group have not been reacted; when the two or two coated sheets are heated and pressed by the iron core, the active epoxy resin and the curing group remaining in the coating are heated and then cross-linked to form a three-dimensional network structure film.
  • the layer thereby creating cohesiveness, forms a thermoset self-bonding coating.
  • the thermosetting self-bonding coating has excellent mechanical protection, corrosion resistance, solvent resistance and insulation, and has certain heat resistance and bonding strength. However, the coating must ensure a certain thickness (>4 ⁇ m) in order to obtain a strong bond strength, and the cross-linking curing of such a coating is an exothermic reaction, so the edge overflow of the coated steel sheet cannot be avoided.
  • thermoplastic aqueous film-forming resin is separately coated on a silicon steel coil and baked to remove moisture and a solvent, and then densely deposited to form a film.
  • the resin chain-like groups are stretched, and when they are cooled, they are linked to each other, thereby forming a binding force.
  • the thermoplastic self-bonding coating film has excellent bonding strength, and the drying and curing processes are endothermic reactions, which can greatly improve or even eliminate the edge overflow phenomenon of the coated steel sheet.
  • such coatings are soft, and their mechanical protection and corrosion resistance are relatively insufficient.
  • the present invention uses these two types of resins in combination.
  • the present inventors have found that adding a thermosetting film-forming resin to a film-forming resin and controlling the solid weight of the thermoplastic-type aqueous film-forming resin accounts for the weight of the thermosetting aqueous film-forming resin + the thermoplastic water-based film-forming resin. 20 to 95%, preferably 65 to 85%, brings about the following effects: a) the resulting coating has strong adhesion under film conditions due to the addition of the thermoplastic film-forming resin component; b) thermoplastic in the coating The higher the proportion of the resin component, the coating is applied to the surface of the silicon steel sheet for fixed molding to obtain the iron core.
  • thermoplastic film formation is an endothermic reaction combined with a thinner coating film thickness and lower load pressure. The overflow phenomenon of the end face of the iron core after secondary curing is easily controlled or even eliminated.
  • the coating of the present invention also needs to add a reactive inorganic nanoparticle to form a physical/chemical crosslinking point with the thermosetting/thermoplastic film-forming resin functional group, thereby introducing ROR and/or into the resin functional group molecular chain.
  • the ROC bond (R represents a metal element such as Si/Al/Ti/Zr/Zn) forms a network structure.
  • the solid nanoparticle has a solid weight of 0.1-10%, preferably 2-6%. If the content is too small, the above-mentioned effects are not exhibited. If the content is too large, the overall stability of the coating liquid is poor, and the bond strength between the coating sheets is lowered. .
  • inorganic nanoparticles of the present invention When the inorganic nanoparticles of the present invention are heated and pressed between the coated sheets in the form of iron core, whether it is a three-dimensional network structure formed by thermo-solid crosslinking or a mixed molecular chain formed by thermoplastic stretching, It is similar to the "nail riveting" anti-deformation effect, and exerts the structural reinforcing effect, which is beneficial to the improvement of the bond strength of the coating.
  • inorganic nanoparticles can improve the mechanical protection, insulation, heat resistance and compactness of the coating, and provide basic guarantee for the required properties of the film coating.
  • the main function of the auxiliary agent in the coating of the invention is to ensure the coating workability of the water-based paint on the high-speed roll coating, and to prevent possible coating defects such as wetting, leveling, flash rust, air bubbles and flash rust.
  • the organic solvent in the coating is mainly used to increase the solubility of the organic resin and the auxiliary agent in water, and at the same time, the surface tension of the solution can be lowered, and defects such as shrinkage cavities and leakage coating can be prevented during the baking process of the coating, and both Bubble action.
  • the auxiliary agent and the solvent preferably contain ethylene glycol, and have a moisturizing effect at a dose of 0.1 to 3.5%.
  • the main purpose is to prevent the film from being dried and dried at a low temperature to make it difficult to rinse off with water.
  • the addition of pure water to the coating of the present invention can adjust the solid content of the final coating to 30-55%, and the coating viscosity is controlled to 15-60 seconds in order to achieve precise control of the target coating film thickness.
  • the silicon steel coated with the self-adhesive coating double-coated by the present invention is dried at a coil temperature of 180 to 260 ° C, and the dry film thickness per side is controlled to be 1 to 4 ⁇ m.
  • the secondary curing process is: the core pressure load is 0.1-8 Bar, and the temperature is maintained at 120 to 200 ° C for 0.5 to 4 hours, preferably the pressure load is 0.5 to 4 Bar. The temperature is maintained at 150 to 200 ° C for 0.5 to 2 hours. Therefore, the use of the self-bonding coating of the present invention can reduce the requirements of secondary curing temperature, time and load pressure in the iron core forming process, and improve user use conditions such as temperature, time and load force in the iron core solidification molding process.
  • the invention provides a self-bonding insulating coating by adding a thermoplastic aqueous film-forming resin, and the self-bonding coating film prepared has a high bond strength (2 to 4.2 N/mm) and a high film thickness of 1 to 4 ⁇ m. Insulation (surface insulation resistance ⁇ 30 ⁇ .cm 2 / piece), so a higher self-bonding coating film can achieve higher bond strength on the basis of ensuring basic properties such as insulation, heat resistance and corrosion resistance. And in the case of secondary curing after the iron core is stacked, there is no self-bonding coating overflow phenomenon at the silicon steel sheet end; when the iron core is stacked and post-cured, no excessive pressure, excessive temperature, and shortening are required. The curing time reduces the user's use conditions and improves the core processing efficiency.
  • the coating of the invention is based on a water-soluble epoxy/polyurethane film-forming resin, and uses a low-toxicity and low-harming solvent, and the obtained coating is a non-hazardous chemical, and the VOC emission is low, and the environment is completely green.
  • the water-soluble environmentally-friendly insulating coating can be applied to the surface of silicon steel sheets used in various fields such as micro-motors, servo motors, automobile motors, etc., and has excellent bonding strength and insulation, and solves the conventional self-bonding.
  • the overflowing side of the coated product is troubled, the user's use condition is improved, the utility is obvious, and the space for commercial application is very large.
  • Figure 1 is a graph showing the relationship between film thickness and bond strength in Example 3 of the present invention.
  • Fig. 2 is a view showing the relationship between the thickness of the coating film and the phenomenon of edge overflow in Example 3 of the present invention.
  • Figure 3 is a graph showing the relationship between curing temperature and bond strength in Example 3 of the present invention.
  • Figure 4 is a graph showing the relationship between load pressure and bond strength in Example 3 of the present invention.
  • thermosetting aqueous film-forming resins consisting of thermosetting aqueous film-forming resins, thermoplastic aqueous film-forming resins, inorganic nanoparticles, auxiliaries and solvents, and water.
  • the various components are mixed and stirred uniformly to prepare a coating solution (in which the inorganic nanoparticles can be first dispersed in pure water at a high speed and then added as a dispersion).
  • the preparation method of the copolymer elastomer I in Table 1 is as follows: 0.26 mol of a polyester diol having a molecular weight of 1000 (Shichao Chemical CT-EP1000) and 0.14 mol of dimethylolpropionic acid at 105 ° C under a vacuum of 0.09 MPa. Dehydration for 1 h, cooling to 30 ° C, adding dry isophorone diisocyanate (IPDI) 0.5 mol, reacting at 70 ° C for 4 h, adding the prepolymer to 0.147 mol of triethylamine and 0.667 under stirring.
  • IPDI dry isophorone diisocyanate
  • TMP trimethylolpropane
  • the amount of water is 776 ml, and further maintained under stirring at 80 ° C for 3.5 h to obtain an aqueous polyurethane copolymer elastomer having a molecular weight of about 7
  • the film forming temperature is about 100 ° C and the ring opening temperature is about 150 ° C.
  • the solid content of all coating liquids was controlled to 40 to 50%, and the coating was applied to 4 cups of viscosity for 20 to 30 seconds.
  • the coating liquid is applied to the surface of the M300-35A high-grade silicon steel coil by a two-roll or three-roll roll coater, and is baked and cured at a plate temperature of 180-260 ° C in an open flame baking oven or an infrared drying oven.
  • the single-sided dry film thickness of the control coating was 3 ⁇ m.
  • Example 1 epoxy resin, trade name DER TM 915, purchased from DOW; modified amine, trade name JH-6311M, purchased from Jiadida new material; alumina, trade name 640 ZX, purchased from Evonik; leveling agent BYK-348 was purchased from BYK Chemical, and anti-flash rusting agent ZT-709 was purchased from Haichuan Chemical.
  • Example 2 Epoxy resin, trade name Epikote 6520, available from HEXION; dicyandiamide, trade name Purchased from American gas; silica, trade name Purchased from Wacker Chemical; leveling agent BYK-346 and defoamer BYK-025 were purchased from BYK Chemical.
  • Example 3 Epoxy resin, trade name CT-E600, purchased from Shichao Chemical; dicyandiamide, trade name Purchased from American gas; silica, trade name Purchased from Evonik; defoamer BYK-025 was purchased from BYK Chemical, and wetting agent Tego 245 was purchased from Digo.
  • Example 4 Epoxy resin, trade name Epikote 6520, available from HEXION; modified amine, trade name JH-6311M, purchased from Jeddah new material; polyurethane, trade name CT-1406, purchased from Shichao Chemical; Silica, trade name It was purchased from Wacker Chemical; the defoamer BYK-025 was purchased from BYK Chemical, and the wetting agent Tego 245 was purchased from Digao.
  • Example 5 Epoxy resin, trade name DERTM 915, available from DOW; dicyandiamide, trade name US gas; vinyl acetate-ethylene copolymer, trade name Purchased from Celanese; silica, trade name Purchased from Evonik; leveling agent BYK-346 was purchased from BYK Chemical.
  • Comparative Example 1 Epoxy resin, trade name CT-E600, purchased from Shicha Chemical; amino resin, trade name Cymel 325, purchased from Zhanxin, USA; silica, trade name CAB-O-SIL EH-5, purchased From Cabot; the leveling agent BYK-346 was purchased from BYK Chemical, and the anti-flash rusting agent ZT-709 was purchased from Haichuan Chemical.
  • Comparative Example 2 Titanium dioxide, trade name 740 X, purchased from Evonik; leveling agent BYK-348 and defoamer BYK-025 were purchased from BYK Chemical.
  • the evaluation results of the coating properties are shown in Table 3.
  • the evaluation symbols in Table 3 are excellent in ⁇ ; ⁇ is good; ⁇ general; ⁇ deviation; ⁇ difference is unacceptable.
  • thermosetting coatings (Comparative Example 1 and Comparative Example 3) have good barrier properties, but have poor bonding properties as self-bonding coatings; and pure thermoplastic coatings (Comparative Examples) 2) Although the bonding characteristics are the best, the coating protection and heat resistance are not even acceptable; and the thermoplastic/thermosetting hybrid coatings of Examples 1 to 5 have better overall performance, of which examples 3 It is a preferred embodiment to obtain both excellent bonding characteristics and other coating properties.
  • Example 3 and Comparative Example 3 were selected, and the coating liquid was applied to the surface of the M300-35A high-grade silicon steel plate roll by a two-roll or three-roll roll coater, using an open flame baking oven or an infrared drying oven at 180-260. After baking at a plate temperature of °C, the film was cured once and cured, and different coating film thickness plates were adjusted. The secondary curing is carried out by an external curing process of the mold, and a pressure load of 4 Bar is applied, and the temperature is maintained at 200 ° C for 1.5 hours.
  • the insulation is measured by ASTM A717 standard, and the surface insulation resistance is ⁇ 30 ⁇ cm 2 /piece, which has high insulation.
  • Fig. 1 The relationship between the coating bond strength (tested by the ISO 11339 T-peel method, the same below) and the film thickness is shown in Fig. 1.
  • Fig. 2 The relationship between the film thickness and the edge overflow phenomenon is shown in Fig. 2.
  • the self-bonding coating film obtained by the coating material of Example 3 of the present invention has a strong bond strength of 2.6-4.2 N/mm when the film thickness is 1 to 4 ⁇ m, and has strong strong adhesion;
  • the self-bonding coating film obtained had a better bond strength than Comparative Example 3 at a film thickness of ⁇ 4 ⁇ m.
  • the film obtained by the coating material of Example 3 of the present invention showed no overflow in the range of 0 to 7 ⁇ m in thickness, but the coating obtained in Comparative Example 3 had a serious edge overflow phenomenon when the film thickness was thick.
  • Example 3 and Comparative Example 3 were selected, and the coating liquid was applied to the surface of the M300-35A high-grade silicon steel plate roll by a two-roll or three-roll roll coater, using an open flame baking oven or an infrared drying oven at 180-260.
  • the film was cured at a temperature of °C to form a film, and the thickness of the single-sided dry film of the coating was controlled to be 3 to 3.5 ⁇ m.
  • the external secondary curing process is used: a) the load pressure is 6 Bar, and the curing time is 1.5 hours, but the curing temperature is given, the relationship between curing temperature and bond strength is shown in Figure 3; b) 200 ° C for 1.5 hours However, given the different pressure loads, the relationship between load pressure and bond strength is shown in Figure 4.
  • the coating liquid of the third embodiment of the present invention can obtain a higher bonding strength when the curing temperature is ⁇ 200° C., and the coating provided by the invention can be used in the secondary curing. Higher bond strength at lower curing temperatures.
  • the coating liquid of the third embodiment of the present invention can obtain a higher bonding strength under the load pressure ⁇ 4 Bar when the film is formed into a film by secondary curing, indicating that the coating provided by the present invention can be further cured during the secondary curing. Higher bond strength at low pressure loads.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Soft Magnetic Materials (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

一种用于硅钢的水溶性环保自粘结绝缘涂料,包括热固型水性成膜树脂、热塑型水性成膜树脂、无机纳米颗粒、助剂、溶剂和纯水,热固型水性成膜树脂的固体重量占涂料总重量的0.1-50%,热塑型水性成膜树脂的固体重量占涂料总重量的0.1-10%,助剂和溶剂重量占涂料总重量的5-25%。该涂料可生产出薄而粘、绝缘、无边部溢出的自粘结涂层产品,在铁芯叠装后二次固化成型时,无需负载过高压力和温度,缩短固化时间,提高了铁芯加工效率。

Description

一种用于硅钢的水溶性环保自粘结绝缘涂料 技术领域
本发明涉及一种用于硅钢的水溶性环保自粘结绝缘涂料。
背景技术
现代化量产的电机铁芯叠装成型主要有螺栓连接、焊接、铆接和粘结等方式,其中粘结方式能将硅钢片间通过面固定方式组装成型,使得叠装成型工序具有无污染、铁芯固定强度高、磁振噪音小、铁芯效率高等优点,尤其适合于其他固定方式会导致扭曲或刚性不足以及不便于铆接或焊接等情况。
在硅钢片表面涂覆自粘结涂层,是以粘结方式实现硅钢片间固定成型的常见方法,但同时也存在如下问题:进口自粘结涂层硅钢使用成本高,铁芯叠装成型工序麻烦且工效低,相对较厚的自粘结涂层在二次固化时使硅钢片端面存在涂层溢出现象,导致铁芯积厚差值较大、叠片系数降低、甚至需增加铁芯边缘打磨等额外工序等,导致当前的硅钢自粘结涂层产品市场接受程度不高。
现有自粘结涂料主要以热固型环氧乳液及其固化剂(或促进剂)为典型成份,其涂层产品的粘结强度较大,抗锈蚀性和抗冷粘结性较好,满足用户的使用需求,当前代表性商品如Rembrandtin公司生产的Remisol EB546/547/548/549系列涂料产品。但是,这类常规自粘结涂层的粘结强度随涂层膜厚成正相关性,为保证优秀的粘结强度和绝缘、耐蚀等性能,一般要求每表面的涂层干膜厚度需高于4μm,且铁芯二次固化成型时,有机树脂交联成膜为放热反应,故出现叠片系数降低、铁芯积厚差值较大、边部热压溢出等种种困扰,限制了终端用户对自粘结涂层产品的认可程度。不仅如此,常规自粘结涂层在铁芯二次固化过程中需要的工艺条件为180~250℃、保温1~4小时,且需负载6~30Bar的压力,因此,用户普遍反映铁芯叠装成型工序要求高且工效低。
目前,鉴于自粘结涂层组分主要为有机物,为改善耐热性,技术人员 在常规自粘结涂料的基础上,加入无机颗粒如硅/铝/钛的溶胶或分散体,或金属氧化物与硅硼化物的复合盐,或磷酸盐、或无机填料等。但实际上,仅有硅化物、铝化物、钛化物的分散体存在工业应用可能,其余无机添加物的生产很难规模化实施,即使涂料中加入无机盐的分散体,也只是适度改善自粘结涂层的耐热性,并不能承受铁芯退火、发蓝等工艺下的高温。因此开发出的耐温自粘结涂层,可能只是在个别用户处得到特殊应用,目前在硅钢生产厂没有相关推广和应用信息,也并未解决常规自粘结涂层所固有的上述使用缺陷。
发明内容
本发明的目的在于提供一种用于硅钢的水溶性环保自粘结绝缘涂料,解决现有涂层膜厚较高所致涂层热压边部溢出、铁芯纵向积厚差不良等问题,该涂料可生产出薄而粘、高绝缘、无边部溢出的自粘结涂层产品,改善铁芯固化成型工序中的温度、时间和负载力等用户使用条件,拓展硅钢自粘结绝缘涂层产品的应用广度和深度。
为达到上述目的,本发明的技术方案是:
一种用于硅钢的水溶性环保自粘结绝缘涂料,包括热固型水性成膜树脂、热塑型水性成膜树脂、无机纳米颗粒、助剂、溶剂和纯水,所述热固型水性成膜树脂的固体重量占涂料总重量的0.1-50%,所述热塑型水性成膜树脂的固体重量占涂料总重量的0.1-60%,所述无机纳米颗粒的固体重量占涂料总重量的0.1-10%,所述助剂和溶剂重量占涂料总重量的5-25%,其余为纯水。
优选的,所述热固型水性成膜树脂的固体重量占涂料总重量的5-20%。
优选的,所述热塑型水性成膜树脂的固体重量占涂料总重量的20-40%。
优选的,所述热塑型水性成膜树脂的固体重量占热固型水性成膜树脂+热塑型水性成膜树脂重量之和的20~95%,优选65~85%。
优选的,所述无机纳米颗粒的固体重量占涂料总重量的2-6%。
所述助剂和溶剂中含有乙二醇,乙二醇用量为所述水溶性环保自粘结绝缘涂料总重量的0.1~3.5%。
所述热固型水性成膜树脂包括环氧树脂和固化剂。
优选的,所述环氧树脂的固体重量占热固型水性成膜树脂重量的80-99%,优选91-98%。
更优选的,所述环氧树脂的环氧当量为100-2000g/eq,重均分子量Mw为200-4000,官能度为2-3。
所述固化剂为双氰胺、氨基树脂、咪唑、聚异氰酸酯中的一种或多种。
优选的,所述热塑型水性成膜树脂为聚醋酸乙烯酯、聚氨基甲酸酯、聚丙烯酸酯中的一种或多种的共聚物。
更优选的,所述热塑型水性成膜树脂为聚氨基甲酸酯共聚弹性体。
本发明所述聚氨基甲酸酯共聚弹性体的一种制备方法如下:将聚酯二元醇和二羟甲基丙酸(DMPA)在100~110℃、真空度0.085~0.095MPa下脱水0.5~1h后,降温至10~60℃,加入经干燥的亲水功能单体二异氰酸酯,在60~90℃下反应1~4h,得到预聚物;再在此温度下加入新戊二醇和三羟甲基丙烷(TMP)进行扩链,扩链反应时间为2~5h,得到分子量2~8万、成膜温度常温~200℃、开环温度120~180℃的聚氨基甲酸酯共聚弹性体。
进一步,上述制备方法中,加入亲水功能单体二异氰酸酯的同时适当加入少量N-甲基吡咯烷酮(NMP)用以降低粘度。
所述亲水功能单体二异氰酸酯与二羟甲基丙酸的摩尔比为1:0.5~1。
所述亲水功能单体二异氰酸酯为甲苯二异氰酸酯(TDI)、六亚甲基二异氰酸酯(HDI)或异佛尔酮二异氰酸酯等。
再,所述的亲水功能单体二异氰酸酯与二羟甲基丙酸的摩尔比为1:0.5~1,保证了每个二羟甲基丙酸分子在预聚反应过程中有两个活性反应点参与扩链反应,不会被亲水功能单体(仅含有一个活性官能团的叔胺基化合物)封闭。
所述聚酯二元醇的羟值为100~200mgKOH/g,所述的二异氰酸酯的异氰酸酯NCO基团与聚酯二元醇和二羟甲基丙酸脱水后的产物的羟基基团的摩尔比4:3~5:4,二羟甲基丙酸的羧基含量是预聚物重量的2.1~2.5%。
又,所述扩链反应中二元醇的羟基和预聚物中封端异氰酸酯基团的摩尔比为0.9~1:1。
本发明所述聚氨基甲酸酯共聚弹性体的又一种制备方法如下:将聚酯 二元醇和功能性单体二羟甲基丙酸(DMPA)在100~110℃、真空度0.085~0.095MPa下脱水0.5~1h后,降温至10~60℃,加入二异氰酸酯,在60~90℃下反应1~4h,得到NCO封端的预聚物。再在搅拌条件下将此预聚物加入溶有中和剂三乙胺和扩链剂三羟甲基丙烷(TMP)的水溶液中,在60~90℃条件下进行反应时间为2~5h,得到分子量2~8万、成膜温度常温~200℃、开环温度120~180℃的聚氨基甲酸酯共聚弹性体。
进一步,上述制备方法中,所述二羟甲基丙酸的质量占预聚物单体总质量(聚酯二元醇,二羟甲基丙酸和二异氰酸酯的总质量)的4~8%。
所述亲水功能单体二异氰酸酯为甲苯二异氰酸酯,或六亚甲基二异氰酸酯,或异佛尔酮二异氰酸酯等。
所述聚酯二元醇的羟值为100~200mgKOH/g。
所述二异氰酸酯的异氰酸酯NCO基团与聚酯二元醇和二羟甲基丙酸脱水后的产物的羟基基团的摩尔比为4:3~5:4,这样可以得到由异氰酸酯封端的预聚物,用于后续扩链使用。
所述预聚物中的异氰酸酯NCO基团的摩尔数与三羟甲基丙烷的所含羟基的摩尔数比例为1:1。
所述中和剂三乙胺的摩尔数与预聚物单体中的二羟基甲基丙酸的摩尔数比例为1~1.1:1,中和剂少许过量可以保证完全中和。水的用量为与预聚物重量比例为1.8~2:1。
优选的,所述无机纳米颗粒为TiO 2、ZnO、SiO 2、Al 2O 3、ZrO 2、Fe 3O 4、CaCO 3、Cr 2O 3中的至少一种。
优选的,所述助剂为消泡剂、润湿剂、流平剂、增稠剂、防沉剂、防闪锈剂中的至少一种。
优选的,所述溶剂包含乙二醇,还包含丙三醇、环氧丙烷、正丁醇、异丁醇、异丙醇、乙二醇甲醚、乙二醇丁醚、丙二醇甲醚、丙二醇丁醚、三甘醇乙醚、丙二醇甲醚醋酸酯中的至少一种。
本发明研究发现,将所述热固型水性成膜树脂单独涂布在硅钢卷材上经烘烤成膜,部分环氧树脂与潜伏性固化剂受热反应交联成膜,存余活性环氧树脂与固化基团尚未反应;当加工成铁芯后两两涂层片间受热受压时,涂层内存余的活性环氧树脂与固化基团受热后继续反应交联形成三维 网状结构膜层,由此产生粘结性,形成热固型自粘结涂层。该热固型自粘结涂层具有优良的机械防护性、耐蚀性、耐溶剂性和绝缘性,同时具备一定的耐热性和粘结强度。但涂层必须保证一定厚度(>4μm),才能获得较强的粘结强度,并且此类涂层交联固化属放热性反应,故涂层钢片的边部溢出现象无法避免。
本发明研究发现,将所述热塑型水性成膜树脂单独涂布在硅钢卷材上经烘烤去除水分和溶剂后密实堆积成膜。当加工成铁芯后两两涂层片间受热受压时,树脂链状基团伸展,当其冷却后相互勾连,故此形成粘结力。热塑型自粘结涂层薄膜具有优异的粘结强度,且烘干和固化过程都属于吸热性反应,能极大改善甚至杜绝涂层钢片的边部溢出现象。但该类涂层偏软,其机械防护性、耐蚀性等相对不足。
鉴于热固型/热塑型成膜树脂的各自性能差异,本发明将这两类树脂配合使用。本发明研究发现,在成膜树脂中添加热固型成膜树脂,并控制所述热塑型水性成膜树脂的固体重量占热固型水性成膜树脂+热塑型水性成膜树脂重量之和的20~95%,优选65~85%,带来如下效果:a)由于添加热塑型成膜树脂组分,所得涂层在薄膜条件下具有强粘结性;b)涂料中热塑型树脂成分比例越高,将涂料涂覆在硅钢片表面进行固定成型得到铁芯,在铁芯一次固化后的涂层整体硬度就越低,则在铁芯二次固化时所需负载压力就越小,甚至可以实现仅凭铁芯自重而无需额外加压就能实现固化粘结;c)因热塑型成膜属于吸热反应,结合较薄的涂层膜厚和较低的负载压力,二次固化后铁芯端面的溢出现象很容易得到控制甚至杜绝。
本发明所述涂料还需要添加具备反应活性的无机纳米颗粒物,可与热固型/热塑型成膜树脂官能团间形成物理/化学交联点,从而在树脂官能团分子链中引入R-O-R和/或R-O-C键(R代表Si/Al/Ti/Zr/Zn等金属元素)而成为网状结构。无机纳米颗粒物的固体重量占0.1-10%,优选2-6%,含量过少则发挥不出上述作用,含量过多则易导致涂液整体稳定性不良,反而降低涂层片间粘结强度。
本发明所述无机纳米颗粒在铁芯形态的涂层片间受热受压固化时,不论是对热固交联形成的三维网状结构还是对热塑伸展勾连形成的混合分子链,均能起到类似“钉铆”抗变形作用,发挥结构补强效果,有利于涂 层粘结强度的提高。另外,无机纳米颗粒还能提高涂层机械防护性、绝缘性、耐热性、致密性,为薄膜涂层所需性能提供基本保障。
本发明所述涂料中助剂的主要作用是保证水性涂料对高速辊涂的涂敷作业性,防止可能存在的润湿、流平、闪锈、气泡、闪锈等涂层缺陷。所述涂料中有机溶剂主要用来增加有机树脂和助剂在水中的溶解性,同时可以降低溶液的表面张力,防止在涂层烘烤过程中形成缩孔、漏涂等缺陷,并兼具消泡作用。助剂和溶剂中优选含有乙二醇,起到保湿效果,剂量为0.1~3.5%,主要目的是防止涂料风干后低温成膜导致较难用水冲洗掉。
本发明所述涂料中加入纯水可将最终涂料的固含量调整为30-55%,涂层粘度控制为15-60秒,以便实现目标涂层膜厚的精确控制。
使用本发明提供的自粘结涂料双面涂层的硅钢经过180~260℃的板卷温度烘干,每面干膜厚度控制为1~4μm。当涂层硅钢片经过剪冲加工后叠装成铁芯,二次固化工艺为:铁芯压力负载0.1~8Bar,在120~200℃温度下维持0.5~4小时,优选压力负载0.5~4Bar,150~200℃温度维持0.5~2小时。因此,本发明所述自粘结涂料的使用可降低铁芯成型工序中二次固化温度、时间和负载压力的要求,改善铁芯固化成型工序中温度、时间和负载力等用户使用条件。
本发明的有益效果:
本发明添加热塑型水性成膜树脂制备自粘结绝缘涂料,制得的自粘结涂层膜在膜厚为1~4μm时,具有高粘结强度(2~4.2N/mm)和高绝缘性(表面绝缘电阻≥30Ω.cm 2/片),因此以较薄的自粘结涂层膜在保证绝缘、耐热、耐蚀等基本性能的基础上,获得了更高的粘结强度;且在铁芯叠装后二次固化成型时,硅钢片端不存在自粘结涂层溢出现象;在铁芯叠装后二次固化成型时,无需负载过高压力、过高温度,且缩短固化时间,降低了用户使用条件,提高了铁芯加工效率。
本发明所述涂料以水溶性环氧/聚氨酯等成膜树脂为基础,选用低毒低危害溶剂,所获涂料为非危险化学品,VOC排放低,完全绿色环保。该水溶性环保绝缘涂料可涂覆于各类电机尤其是微特电机、伺服电机、汽车电机等新兴领域用的硅钢片表面,具有优异的粘结强度和绝缘性,同时解决了常规自粘结涂层产品存在的溢出边困扰,改善用户使用条件,具有明显 的实用性,商业化应用的空间非常大。
附图说明
图1为本发明实施例3中涂层膜厚和粘结强度的关系图。
图2为本发明实施例3中涂层膜厚与边部溢出现象的关系图。
图3为本发明实施例3中固化温度与粘结强度的关系图。
图4为本发明实施例3中负载压力和粘结强度的关系图。
具体实施方式
下面结合实施例和附图对本发明做进一步说明。
实施例(一)
由热固型水性成膜树脂、热塑型水性成膜树脂、无机纳米颗粒、助剂和溶剂、和水组成的涂料配方参见表1~2。将各类组分混合搅拌均匀即制得涂液备用(其中无机纳米颗粒可先将其高速分散于纯水中,再以分散液形式加入)。
表1中共聚弹性体I的制备方法如下:将0.26mol分子量1000的聚酯二元醇(十朝化工CT-EP1000)和0.14mol的二羟甲基丙酸在105℃,真空度0.09MPa下脱水1h,降温至30℃,加入干燥的异佛尔酮二异氰酸酯(IPDI)0.5mol,在70℃下反应4h,在搅拌的条件下将预聚物加入到溶有0.147mol三乙胺和0.667mol的三羟甲基丙烷(TMP)的水溶液中,水的量为776ml,再在80℃搅拌条件下保持3.5h,得到水性聚氨基甲酸酯共聚弹性体,该共聚弹性体的分子量约7万、成膜温度约100℃、开环温度约150℃。为便于比较,将所有涂液固含量控制为40~50%,涂料涂4杯粘度20~30秒。涂液被两辊或三辊式辊涂机涂敷于M300-35A高牌号硅钢板卷表面,采用明火烘烤炉或红外干燥炉在180~260℃板温条件下烘烤一次固化成膜,控制涂层单面干膜厚度为3μm。
其中,实施例1:环氧树脂,商品名D.E.R. TM 915,购自DOW;改性胺,商品名JH-6311M,购自佳迪达新材;氧化铝,商品名
Figure PCTCN2019080095-appb-000001
640 ZX,购自赢创;流平剂BYK-348购自毕克化学,防闪锈剂ZT-709购自海川化工。
实施例2:环氧树脂,商品名Epikote 6520,购自HEXION;双氰胺,商品名
Figure PCTCN2019080095-appb-000002
购自美国气体;二氧化硅,商品名
Figure PCTCN2019080095-appb-000003
购自瓦克化学;流平剂BYK-346和消泡剂BYK-025购自毕克化学。
实施例3:环氧树脂,商品名CT-E600,购自十朝化工;双氰胺,商品名
Figure PCTCN2019080095-appb-000004
购自美国气体;二氧化硅,商品名
Figure PCTCN2019080095-appb-000005
购自赢创;消泡剂BYK-025购自毕克化学,润湿剂Tego 245购自迪高。
实施例4:环氧树脂,商品名Epikote 6520,购自HEXION;改性胺,商品名JH-6311M,购自佳迪达新材;聚氨酯,商品名CT-1406,购自十朝化工;二氧化硅,商品名
Figure PCTCN2019080095-appb-000006
购自瓦克化学;消泡剂BYK-025购自毕克化学,润湿剂Tego 245购自迪高。
实施例5:环氧树脂,商品名D.E.R.TM 915,购自DOW;双氰胺,商品名
Figure PCTCN2019080095-appb-000007
购自美国气体;醋酸乙烯-乙烯共聚物,商品名
Figure PCTCN2019080095-appb-000008
购自塞拉尼斯;二氧化硅,商品名
Figure PCTCN2019080095-appb-000009
购自赢创;流平剂BYK-346购自毕克化学。
比较例1:环氧树脂,商品名CT-E600,购自十朝化工;氨基树脂,商品名Cymel 325,购自美国湛新;二氧化硅,商品名CAB-O-SIL EH-5,购自卡博特;流平剂BYK-346购自毕克化学,防闪锈剂ZT-709购自海川化工。
比较例2:二氧化钛,商品名
Figure PCTCN2019080095-appb-000010
740 X,购自赢创;流平剂BYK-348和消泡剂BYK-025购自毕克化学。
涂层性能评价结果如表3所示,表3中评价符号为◎优秀;⊙良好;○一般;△偏差;×差而不可接受。
由表3可知,纯热固型涂层(比较例1和比较例3)的防护性很好,但作为自粘结涂层的粘结特性不好;而纯热塑型涂层(比较例2)的粘结特性虽是最好,但涂层防护性和耐热性不良甚至不可接受;而实施例1~5的热塑/热固型混合涂层的综合性能较好,其中实施例3既能获得优异的粘结特性,又能兼顾其他涂层性能,是最佳实施例。
实施例(二)比较不同膜厚对涂层加工使用性能的影响
选用实施例3和比较例3的涂料配方,涂液被两辊或三辊式辊涂机涂 敷于M300-35A高牌号硅钢板卷表面,采用明火烘烤炉或红外干燥炉在180~260℃板温条件下烘烤一次固化成膜,调整得到不同的涂层膜厚板。二次固化选用模外常规固化工艺,给予4Bar压力负载,200℃保温1.5小时。
膜厚3μm情况下采用ASTM A717标准测绝缘性,表面绝缘电阻≥30Ω.cm 2/片,具有高绝缘性。
涂层粘结强度(采用ISO 11339标准T剥离法来检测,下同)和膜厚的关系如图1所示,涂层膜厚与边部溢出现象的关系如图2所示。
由图1可知,本发明实施例3涂料得到的自粘结涂层膜在膜厚为1~4μm时粘结强度达到2.6~4.2N/mm,具有较强的强粘结力;本发明制得的自粘结涂层膜在膜厚<4μm时,粘结强度均优于对比例3。
由图2可知,本发明实施例3的涂料得到的薄膜在厚度0~7μm范围内均无溢出现象,但是比较例3所得涂层在膜厚较厚时的边部溢出现象严重。
实施例(三)比较不同的二次固化工艺对涂层加工使用性能的影响
选用实施例3和比较例3的涂料配方,涂液被两辊或三辊式辊涂机涂敷于M300-35A高牌号硅钢板卷表面,采用明火烘烤炉或红外干燥炉在180~260℃板温条件下烘烤一次固化成膜,控制涂层单面干膜厚度为3~3.5μm。选用模外常规二次固化工艺:a)负载压力为6Bar,固化保温时间为1.5小时,但给予不同固化温度,固化温度与粘结强度的关系如图3所示;b)200℃保温1.5小时,但给予不同压力负载,负载压力和粘结强度的关系如图4所示。
由图3可知,本发明实施例3涂液在二次固化成膜时,在固化温度≤200℃下即可获得较高的粘结强度,说明本发明提供的涂料在二次固化时可在更低的固化温度下,实现更高的粘结强度。
由图4可知,本发明实施例3涂液在二次固化成膜时,在负载压力≤4Bar下即可获得较高的粘结强度,说明本发明提供的涂料在二次固化时可在更低的压力负载下,实现更高的粘结强度。
Figure PCTCN2019080095-appb-000011
Figure PCTCN2019080095-appb-000012

Claims (23)

  1. 一种用于硅钢的水溶性环保自粘结绝缘涂料,其特征在于,包括热固型水性成膜树脂、热塑型水性成膜树脂、无机纳米颗粒、助剂、溶剂和纯水,所述热固型水性成膜树脂的固体重量占涂料总重量的0.1-50%,所述热塑型水性成膜树脂的固体重量占涂料总重量的0.1-60%,所述无机纳米颗粒的固体重量占涂料总重量的0.1-10%,所述助剂和溶剂重量占涂料总重量的5-25%,其余为纯水。
  2. 根据权利要求1所述的用于硅钢的水溶性环保自粘结绝缘涂料,其特征在于,所述热固型水性成膜树脂的固体重量占涂料总重量的5-20%。
  3. 根据权利要求1所述的用于硅钢的水溶性环保自粘结绝缘涂料,其特征在于,所述热塑型水性成膜树脂的固体重量占涂料总重量的20-40%。
  4. 根据权利要求1所述的用于硅钢的水溶性环保自粘结绝缘涂料,其特征在于,所述热塑型水性成膜树脂的固体重量占热固型水性成膜树脂+热塑型水性成膜树脂重量之和的20~95%,优选65~85%。
  5. 根据权利要求1所述的用于硅钢的水溶性环保自粘结绝缘涂料,其特征在于,所述无机纳米颗粒的固体重量占涂料总重量的2-6%。
  6. 根据权利要求1或2所述的用于硅钢的水溶性环保自粘结绝缘涂料,其特征在于,所述热固型水性成膜树脂包括环氧树脂和固化剂。
  7. 根据权利要求6所述的用于硅钢的水溶性环保自粘结绝缘涂料,其特征在于,所述环氧树脂的固体重量占热固型水性成膜树脂重量的80-99%,优选91-98%。
  8. 根据权利要求6或7所述的用于硅钢的水溶性环保自粘结绝缘涂料,其特征在于,所述环氧树脂的环氧当量为100-2000g/eq,重均分子量Mw为200-4000,官能度为2-3。
  9. 根据权利要求6所述的用于硅钢的水溶性环保自粘结绝缘涂料,其特征在于,所述固化剂为双氰胺、氨基树脂、咪唑、聚异氰酸酯中的一种或多种。
  10. 根据权利要求1或3或4所述的用于硅钢的水溶性环保自粘结绝缘涂料,其特征在于,所述热塑型水性成膜树脂为聚醋酸乙烯酯、聚氨基甲酸酯、聚丙烯酸酯中的一种或多种的共聚物。
  11. 根据权利要求1所述的用于硅钢的水溶性环保自粘结绝缘涂料,其特征在于,所述热塑型水性成膜树脂为聚氨基甲酸酯共聚弹性体。
  12. 根据权利要求11所述的用于硅钢的水溶性环保自粘结绝缘涂料,其特征在于,所述聚氨基甲酸酯共聚弹性体的制备方法如下:
    将聚酯二元醇和功能性单体二羟甲基丙酸在100~110℃、真空度0.085~0.095MPa下脱水0.5~1h后,降温至10~60℃,加入经干燥的亲水功能单体二异氰酸酯,在60~90℃下进行预聚反应1~4h;得到异氰酸酯基团NCO封端的预聚物,再在搅拌的条件下将此预聚物加入溶有中和剂三乙胺和扩链剂三羟甲基丙烷(TPM)的水溶液中,在60~90℃的条件下进行反应,时间为2~5h,得到水性聚氨基甲酸酯共聚弹性体。
  13. 根据权利要求12所述的用于硅钢的水溶性环保自粘结绝缘涂料,其特征在于,所述聚氨基甲酸酯共聚弹性体的重均分子量2~8万、成膜温度为常温~200℃、开环温度为120~180℃。
  14. 根据权利要求12所述的用于硅钢的水溶性环保自粘结绝缘涂料,其特征在于,所述二羟甲基丙酸的质量占所述聚酯二元醇、二羟甲基丙酸和二异氰酸酯质量之和的4~8%。
  15. 根据权利要求12所述的用于硅钢的水溶性环保自粘结绝缘涂料,其特征在于,所述亲水功能单体二异氰酸酯为甲苯二异氰酸酯、六亚甲基二异氰酸酯或异佛尔酮二异氰酸酯。
  16. 根据权利要求12所述的用于硅钢的水溶性环保自粘结绝缘涂料,其特征在于,所述聚酯二元醇的羟值为100~200mgKOH/g。
  17. 根据权利要求12所述的用于硅钢的水溶性环保自粘结绝缘涂料,其特征在于,所述二异氰酸酯的异氰酸酯基团与聚酯二元醇和二羟甲基丙酸脱水后的产物的羟基基团的摩尔比为4:3~5:4。
  18. 根据权利要求12所述的用于硅钢的水溶性环保自粘结绝缘涂料,预聚物中的异氰酸酯基团与三羟甲基丙烷的所含羟基基团的摩尔比为1:1。
  19. 根据权利要求12所述的用于硅钢的水溶性环保自粘结绝缘涂料,其特征在于,中和剂三乙胺的摩尔数与预聚物单体中的二羟基甲基丙酸的摩尔数比例为1~1.1:1,水的用量为与预聚物重量比例为1.8~2:1。
  20. 根据权利要求1所述的用于硅钢的水溶性环保自粘结绝缘涂料,其特 征在于,所述无机纳米颗粒为TiO 2、ZnO、SiO 2、Al 2O 3、ZrO 2、Fe 3O 4、CaCO 3、Cr 2O 3中的至少一种。
  21. 根据权利要求1所述的用于硅钢的水溶性环保自粘结绝缘涂料,其特征在于,所述助剂和溶剂中含有乙二醇,乙二醇用量为涂料总重量的0.1~3.5%。
  22. 根据权利要求1或21所述的用于硅钢的水溶性环保自粘结绝缘涂料,其特征在于,所述助剂为消泡剂、润湿剂、流平剂、增稠剂、防沉剂、防闪锈剂中的至少一种。
  23. 根据权利要求1或21所述的用于硅钢的水溶性环保自粘结绝缘涂料,其特征在于,所述溶剂包含乙二醇,还包含丙三醇、环氧丙烷、正丁醇、异丁醇、异丙醇、乙二醇甲醚、乙二醇丁醚、丙二醇甲醚、丙二醇丁醚、三甘醇乙醚、丙二醇甲醚醋酸酯中的至少一种。
PCT/CN2019/080095 2018-03-30 2019-03-28 一种用于硅钢的水溶性环保自粘结绝缘涂料 WO2019184981A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020551491A JP7153739B2 (ja) 2018-03-30 2019-03-28 ケイ素鋼用の水溶性環境保全型自己接着絶縁塗料
EP19774870.0A EP3770226A4 (en) 2018-03-30 2019-03-28 ENVIRONMENTALLY FRIENDLY WATER-SOLUBLE SELF-ADHESIVE INSULATING COATING FOR SILICON STEEL
KR1020207029039A KR102490495B1 (ko) 2018-03-30 2019-03-28 실리콘 스틸용 수성 친환경 자기-접착 절연 코팅재

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810275197.8 2018-03-30
CN201810275197.8A CN110317532B (zh) 2018-03-30 2018-03-30 一种用于硅钢的水溶性环保自粘结绝缘涂料

Publications (2)

Publication Number Publication Date
WO2019184981A1 true WO2019184981A1 (zh) 2019-10-03
WO2019184981A8 WO2019184981A8 (zh) 2020-10-01

Family

ID=68060967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080095 WO2019184981A1 (zh) 2018-03-30 2019-03-28 一种用于硅钢的水溶性环保自粘结绝缘涂料

Country Status (5)

Country Link
EP (1) EP3770226A4 (zh)
JP (1) JP7153739B2 (zh)
KR (1) KR102490495B1 (zh)
CN (1) CN110317532B (zh)
WO (1) WO2019184981A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021256531A1 (ja) * 2020-06-17 2021-12-23 日本製鉄株式会社 電磁鋼板用コーティング組成物、電磁鋼板、積層コア及び回転電機
CN116144240A (zh) * 2021-11-22 2023-05-23 宝山钢铁股份有限公司 一种轻粘性硅钢环保绝缘涂料、硅钢板及其制造方法
CN116285561A (zh) * 2023-03-22 2023-06-23 六安江淮电机有限公司 一种水溶性半无机硅钢片漆
RU2801189C1 (ru) * 2020-06-17 2023-08-03 Ниппон Стил Корпорейшн Покрывающая композиция для листа электротехнической стали, лист электротехнической стали, шихтованный сердечник и электродвигатель

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110846576B (zh) * 2019-11-18 2021-06-15 武汉钢铁有限公司 一种具有自粘结性能的取向硅钢及其制备方法
CN114989691B (zh) * 2022-07-21 2023-04-25 宁波腾光新材料有限公司 一种硅钢自粘接涂层及工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621274B2 (ja) * 1987-08-19 1994-03-23 大日本塗料株式会社 水系熱接着型被覆組成物
CN1362436A (zh) * 2002-01-18 2002-08-07 段友芦 用作胶粘剂和涂料的水性聚氨酯分散液及其制备
CN1690143A (zh) * 2004-04-28 2005-11-02 宝山钢铁股份有限公司 电工钢用水性自粘接涂料
CN101040022A (zh) * 2004-10-18 2007-09-19 新日本制铁株式会社 耐热粘合性绝缘涂层,具有此种涂层的电工钢板,使用此种电工钢板的磁芯及其制备方法
CN101848964A (zh) * 2007-06-12 2010-09-29 纳幕尔杜邦公司 用于电工钢的绝缘涂料组合物
CN102746725A (zh) * 2012-06-29 2012-10-24 宝山钢铁股份有限公司 硅钢水溶性环保极厚绝缘涂层及其制备方法
CN105131750A (zh) * 2015-08-31 2015-12-09 马鞍山市鸿翮实业有限公司 一种电工钢用环保型自粘结涂料及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735385A (en) * 1980-07-04 1982-02-25 Japan Atom Energy Res Inst Supercryogenic device
WO2005113652A2 (en) * 2004-05-14 2005-12-01 Cytec Technology Corp. Self-adhesive prepreg
CN103450438A (zh) * 2013-09-03 2013-12-18 山东天庆科技发展有限公司 一种高固含量水性聚氨酯树脂及其合成方法
CN104559752B (zh) * 2015-01-09 2017-12-12 溧阳市佳禾电子材料有限公司 一种耐热型自粘漆包线漆及其制备方法
CN105111868A (zh) * 2015-09-23 2015-12-02 徐�明 一种自粘结高压电机铁芯硅钢片涂料及其制备方法
CN107118666A (zh) * 2017-06-22 2017-09-01 合肥佳洋电子科技有限公司 一种油烟机外壳的防锈涂层及其制备方法
CN107760113A (zh) * 2017-11-20 2018-03-06 广西融辰建设工程有限公司 一种杀菌涂料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621274B2 (ja) * 1987-08-19 1994-03-23 大日本塗料株式会社 水系熱接着型被覆組成物
CN1362436A (zh) * 2002-01-18 2002-08-07 段友芦 用作胶粘剂和涂料的水性聚氨酯分散液及其制备
CN1690143A (zh) * 2004-04-28 2005-11-02 宝山钢铁股份有限公司 电工钢用水性自粘接涂料
CN101040022A (zh) * 2004-10-18 2007-09-19 新日本制铁株式会社 耐热粘合性绝缘涂层,具有此种涂层的电工钢板,使用此种电工钢板的磁芯及其制备方法
CN101848964A (zh) * 2007-06-12 2010-09-29 纳幕尔杜邦公司 用于电工钢的绝缘涂料组合物
CN102746725A (zh) * 2012-06-29 2012-10-24 宝山钢铁股份有限公司 硅钢水溶性环保极厚绝缘涂层及其制备方法
CN105131750A (zh) * 2015-08-31 2015-12-09 马鞍山市鸿翮实业有限公司 一种电工钢用环保型自粘结涂料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3770226A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021256531A1 (ja) * 2020-06-17 2021-12-23 日本製鉄株式会社 電磁鋼板用コーティング組成物、電磁鋼板、積層コア及び回転電機
JPWO2021256531A1 (zh) * 2020-06-17 2021-12-23
TWI782582B (zh) * 2020-06-17 2022-11-01 日商日本製鐵股份有限公司 電磁鋼板用塗覆組成物、電磁鋼板、積層鐵芯及旋轉電機
RU2801189C1 (ru) * 2020-06-17 2023-08-03 Ниппон Стил Корпорейшн Покрывающая композиция для листа электротехнической стали, лист электротехнической стали, шихтованный сердечник и электродвигатель
JP7401820B2 (ja) 2020-06-17 2023-12-20 日本製鉄株式会社 電磁鋼板用コーティング組成物、電磁鋼板、積層コア及び回転電機
CN116144240A (zh) * 2021-11-22 2023-05-23 宝山钢铁股份有限公司 一种轻粘性硅钢环保绝缘涂料、硅钢板及其制造方法
CN116144240B (zh) * 2021-11-22 2024-04-05 宝山钢铁股份有限公司 一种轻粘性硅钢环保绝缘涂料、硅钢板及其制造方法
CN116285561A (zh) * 2023-03-22 2023-06-23 六安江淮电机有限公司 一种水溶性半无机硅钢片漆
CN116285561B (zh) * 2023-03-22 2024-03-29 六安江淮电机有限公司 一种水溶性半无机硅钢片漆

Also Published As

Publication number Publication date
EP3770226A4 (en) 2022-01-19
CN110317532B (zh) 2021-07-16
KR20200128739A (ko) 2020-11-16
JP2021517198A (ja) 2021-07-15
JP7153739B2 (ja) 2022-10-14
KR102490495B1 (ko) 2023-01-19
CN110317532A (zh) 2019-10-11
WO2019184981A8 (zh) 2020-10-01
EP3770226A1 (en) 2021-01-27

Similar Documents

Publication Publication Date Title
WO2019184981A1 (zh) 一种用于硅钢的水溶性环保自粘结绝缘涂料
WO2014010524A1 (ja) 硬化性導電性接着剤組成物、電磁波シールドフィルム、導電性接着フィルム、接着方法及び回路基板
JP6613649B2 (ja) 接着剤組成物、積層シート、太陽電池用裏面保護シート
TW201714998A (zh) 黏著薄膜
JP2011111519A (ja) 積層シート用接着剤組成物
KR20110128886A (ko) 폴리우레탄 디스퍼젼 및 그의 제조방법
JP2008098592A (ja) 太陽電池バックシート及びそれを用いてなる太陽電池モジュール
JP6404977B2 (ja) 耐熱接着性絶縁被膜用組成物および絶縁被膜付き電磁鋼板
TW201402749A (zh) 用於層壓板之黏膠
JP6368733B2 (ja) 耐熱接着性絶縁被膜用組成物および絶縁被膜付き電磁鋼板
JP6383582B2 (ja) 接着構造体
CN114929827A (zh) 耐高温可b阶化环氧粘合剂和由其制造的制品
WO2017027231A1 (en) Polyurethane/urea silicon carbide nanocomposite
JP2953952B2 (ja) 加熱接着用表面被覆電磁鋼板およびその製造方法
US20240043723A1 (en) Adhesive coating composition for electrical steel sheet, electrical steel sheet laminate, and method for manufacturing same
CN114752333A (zh) 一种常温固化高强高韧耐高温环氧结构胶粘剂及制备方法
EP1568724A1 (en) Process for the production of electrical steel sheet cores
JPH11193475A (ja) 接着強度、耐食性及び耐ブロッキング性に優れた接着鉄芯用電磁鋼板の製造方法
KR20100081634A (ko) 무방향성 전기강판용 절연코팅제 조성물 및 그의 제조 방법
JPH02235978A (ja) 接着剤組成物
JP7402712B2 (ja) 複層塗膜の製造方法
JP7458545B1 (ja) ポリエステル基材用離型コート剤、離型シート及び積層体
WO2023088466A1 (zh) 一种轻粘性硅钢环保绝缘涂料、硅钢板及其制造方法
JP5683152B2 (ja) 金属表面処理剤、表面処理金属材料、および金属表面処理方法
JP2002254437A (ja) 樹脂ベースプリント基板用離型材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19774870

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020551491

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207029039

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019774870

Country of ref document: EP

Effective date: 20201023