WO2019181903A1 - 被覆層を有するプラスチックレンズの製造方法 - Google Patents

被覆層を有するプラスチックレンズの製造方法 Download PDF

Info

Publication number
WO2019181903A1
WO2019181903A1 PCT/JP2019/011336 JP2019011336W WO2019181903A1 WO 2019181903 A1 WO2019181903 A1 WO 2019181903A1 JP 2019011336 W JP2019011336 W JP 2019011336W WO 2019181903 A1 WO2019181903 A1 WO 2019181903A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating layer
plastic lens
light
lens
uncured coating
Prior art date
Application number
PCT/JP2019/011336
Other languages
English (en)
French (fr)
Inventor
竹中 潤治
百田 潤二
義広 浅原
孝 田向
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to JP2020507817A priority Critical patent/JP7246373B2/ja
Priority to CN201980020944.6A priority patent/CN111936890B/zh
Priority to US16/982,725 priority patent/US20210003867A1/en
Priority to AU2019237487A priority patent/AU2019237487A1/en
Priority to MX2020009708A priority patent/MX2020009708A/es
Priority to KR1020207026824A priority patent/KR102533969B1/ko
Priority to EP19770844.9A priority patent/EP3770648A4/en
Publication of WO2019181903A1 publication Critical patent/WO2019181903A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
    • G02C7/102Photochromic filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/06Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain multicolour or other optical effects
    • B05D5/065Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain multicolour or other optical effects having colour interferences or colour shifts or opalescent looking, flip-flop, two tones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00432Auxiliary operations, e.g. machines for filling the moulds
    • B29D11/00442Curing the lens material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00634Production of filters
    • B29D11/00653Production of filters photochromic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00865Applying coatings; tinting; colouring
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/23Photochromic filters
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses

Definitions

  • the present invention relates to a method for producing a plastic lens covered with a coating layer having photochromic properties. More specifically, the present invention relates to a simple and reliable method for producing a plastic lens such as an eyeglass lens having a coating layer on the surface.
  • Photochromism is a reversible action that quickly changes color when a compound is irradiated with light containing ultraviolet light, such as sunlight or light from a mercury lamp, and returns to its original color when light is turned off and placed in a dark place. It is applied to various uses.
  • photochromism is applied also in the field of spectacle lenses, and a plastic lens having photochromic properties is obtained by curing a polymerizable monomer to which various photochromic compounds having the above properties are added.
  • photochromic compounds fulgimide compounds, spirooxazine compounds, chromene compounds and the like that can be suitably used for such applications have been found.
  • a method of manufacturing a plastic lens having photochromic properties a method of impregnating a surface of a plastic lens not having photochromic properties with a photochromic compound (hereinafter referred to as an impregnation method) or a coating layer having photochromic properties is provided on the surface of the plastic lens.
  • a method hereinafter referred to as a coating method
  • a method of directly obtaining a photochromic lens by dissolving a photochromic compound in a monomer and polymerizing it hereinafter referred to as a kneading method
  • a coating method for example, a method is proposed in which a coating agent in which a photochromic compound is dissolved in a urethane oligomer is applied onto a lens and then thermally cured at 140 ° C. for 40 minutes using infrared rays (see Patent Document 1). ).
  • a method of applying a coating agent in which a photochromic compound is dissolved to a monomer composition composed of only a combination of two or more types of bifunctional (meth) acrylic monomers on a lens has been proposed (see Patent Document 4).
  • the lens surface temperature is 145 to 200 ° C.
  • the coating agent application surface of the plastic lens coated with the photocurable coating agent is held on the upper surface.
  • photopolymerization was performed using strong light, it was confirmed that there was a problem that a plastic lens having a thin central portion was deformed.
  • Such a problem is caused by the plastic lens being softened by the heat derived from the light source used for curing, so that the coating agent is deformed without being able to withstand the stress generated when it is cured. This is remarkable when the thickness of the portion is less than 2 mm and the peripheral portion is a plastic lens thicker than the center portion.
  • Patent Document 6 a method of suppressing the deformation of the lens by holding the plastic lens with an elastic body or a plastic deformable material has been proposed (see Patent Document 6).
  • the photocuring time of the coating agent becomes longer, which is not only problematic in terms of productivity. Since it is necessary to control the light intensity and the light irradiation time according to the center thickness of the lens, the operation is complicated. In addition, it was possible to shorten the photocuring time to some extent by using a method of cooling the plastic lens by contacting a tube or the like in which cold water was circulated on the back surface and further the side surface of the plastic lens. In addition, the structure of the apparatus is complicated, and there is a problem that spots are generated in the cooling effect between the contact portion and the non-contact portion of the tube and the plastic lens.
  • Patent Document 7 requires the operation of attaching the hydrogel to the back surface and the operation of removing the hydrogel from the cured plastic lens, and has the disadvantage that it is not necessarily suitable for mass production. It was.
  • a metal halide lamp an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a medium pressure mercury lamp, a sterilization lamp, a xenon lamp, a carbon arc, a tungsten lamp, etc.
  • An electroded lamp or an electrodeless lamp is used as a light source.
  • the spectrum overlaps with the absorption region of the photochromic compound, so it is necessary to irradiate excess light to cure the photocurable coating agent, resulting in a temperature rise and plastic lens deformation.
  • causes problems Furthermore, since the curing proceeds in a non-uniform manner, there arises a problem that the photochromic characteristics are deteriorated, in particular, the fading speed is decreased.
  • LED is used as the light source in Patent Document 8, there is no description about the characteristics, and there is still room for improvement, such as a method of manufacturing a lens itself such as using a glass mold, which is complicated. .
  • the present invention applies a photocurable coating agent to the surface of the plastic lens and cures it to produce a plastic lens having a coating layer, without requiring a special cooling device, and It is an object of the present invention to provide a method capable of producing a target object with high productivity without causing deformation even for plastic lenses having various shapes.
  • the present inventors have used a specific LED as a light source for light irradiation, thereby suppressing an increase in the temperature of the plastic lens and without deforming the lens. It has been found that photocuring of the cured coating layer can be performed, and the present invention has been completed. That is, the present invention provides an uncured coating comprising a photocurable coating composition comprising at least a) a photochromic compound, b) a radical polymerizable monomer, and c) a photopolymerization initiator on one surface of a plastic lens.
  • the half width of the light emission peak of the LED is less than 30 nm.
  • the emission angle of the light emitted from the LED from the LED irradiation device is 120 degrees or less.
  • the irradiation intensity of light on the irradiation surface of the LED is 2 W / cm 2 or more at the emission peak wavelength.
  • the irradiation intensity of light on the outer surface of the uncured coating layer of the plastic lens on which the uncured coating layer is formed is 100 mW / cm 2 or more at the emission peak wavelength.
  • the ratio of the minimum irradiation intensity to the maximum irradiation intensity of light is 70% or more on the outer surface of the uncured coating layer of the plastic lens in which the plastic lens is a convex lens and the uncured coating layer is formed.
  • the maximum value of the accumulated light quantity of light is 2 J / cm 2 or more and less than 50 J / cm 2 on the outer surface of the uncured coating layer of the plastic lens on which the uncured coating layer is formed.
  • the uncured coating layer is cured so that the surface temperature of the coating layer is 100 ° C. or lower.
  • the plastic lens is a plastic lens having a central portion having a thickness of less than 2 mm and a peripheral portion being thicker than the central portion.
  • the uncured coating lens is uncured.
  • the uncured coating layer is cured by irradiating light from above the outer surface of the uncured coating layer of the plastic lens on which the coating layer is formed with an LED having an emission peak wavelength of 350 nm or more and less than 450 nm.
  • color development of the photochromic compound can be suppressed as compared with the case of using a conventional light source that emits light having a wide wavelength over 200 nm to 600 nm. Therefore, the photocurable coating composition can be cured with a minimum amount of light.
  • the LED has a characteristic of hardly emitting infrared rays.
  • the temperature rise of a plastic lens can be suppressed and a deformation
  • transformation of a plastic lens can be suppressed.
  • it does not contain ultraviolet light of less than 350 nm that decomposes the photochromic compound, so the color density is high, and further, there is no need to irradiate excessive light, so the fading speed is also high.
  • the photochromic characteristics are also excellent.
  • the uncured coating layer can be cured while suppressing the temperature rise of the plastic lens, so the back surface of the plastic lens, that is, the outer surface without the uncured coating layer. Furthermore, there is no need for a special cooling device for cooling the plastic lens by contacting a tube or the like in which cold water is circulated on the side surface. Therefore, there is an advantage that the manufacturing apparatus can be reduced in cost and size. . Furthermore, it is not necessary to attach an elastic body or a hydrogel for releasing heat generated on the back surface of the plastic lens, and a plastic lens having a coating layer can be manufactured by a simple operation.
  • a plastic lens having a coating layer is produced by forming a coating layer made of a cured product of a photocurable resin on the surface of the plastic lens.
  • the basic manufacturing process in the manufacturing method of the present invention is the same as that in the case of manufacturing a conventional “plastic lens having a coating layer made of a cured product of a photocurable resin”, on one surface of the plastic lens.
  • a first step of forming an uncured coating layer comprising a photocurable composition and a second step of curing the uncured coating layer by irradiating light from above the outer surface of the uncured coating layer of the plastic lens.
  • the surface on which the uncured coating layer is formed is described as “front surface”
  • the surface on which the uncured coating layer is not formed is described as “back surface”.
  • the surface above the uncured coating layer is formed on the plastic lens having the uncured coating layer obtained in the first step.
  • the uncured coating layer is cured by irradiating light with an LED having an emission peak wavelength.
  • the plastic lens to be used is not particularly limited, and a commonly used plastic lens can be used.
  • a plastic lens having a shape in which the thickness of the central portion is less than 2 mm and the peripheral portion is thicker than the central portion is particularly preferable in that the effect of the present invention is highly achieved.
  • a concave meniscus lens for correcting myopia in a general-purpose plastic lens for spectacles often satisfies such a condition because the thickness of the peripheral portion with respect to the central portion gradually increases as the minus power increases. Since such a plastic lens has a thin central portion, it tends to be easily subjected to physical deformation or heat deformation.
  • the method for producing a plastic lens having a coating layer according to the present invention is applied to such a plastic lens. It is particularly effective to do.
  • the shape of the plastic lens targeted by the manufacturing method of the present invention may be either flat or a curved surface having a convex lens surface side.
  • the material of the plastic lens in the present invention is not particularly limited.
  • known materials such as (meth) acrylic resins, polycarbonate resins, allyl resins, thiourethane resins, urethane resins, and thioepoxy resins. Resin can be used.
  • the photocurable coating agent that constitutes the uncured coating layer will be described.
  • the photocurable composition used in the first step is a so-called photocurable coating agent, and (a) a photochromic compound, (b) radical polymerization as an essential component. And a photopolymerization initiator (c).
  • a photochromic compound used for a plastic lens having photochromic properties such as a fulgide compound, a fulgimide compound, a spiropyran compound, a spirooxazine compound, a chromene compound, and a diarylethene compound can be used without particular limitation.
  • photochromic compounds may be used alone or in combination of two or more. It is particularly preferable to use a chromene compound from the viewpoint of exhibiting particularly excellent photochromic properties.
  • chromene compounds chromene having a molar extinction coefficient at 400 nm of 3000 L / (mol ⁇ cm) or more and an average molar extinction coefficient in the range of 350 to 450 nm of 3000 L / (mol ⁇ cm) or more. It is particularly preferred to use a compound.
  • a chromene compound that satisfies the above-described properties is an excellent compound that develops color with high sensitivity outdoors and can protect eyes from harmful light such as ultraviolet rays and high-energy visible light indoors.
  • a compound having indeno [2,1-f] naphtho [1,2-b] pyran as a main skeleton exhibits particularly excellent photochromic properties.
  • indenonaphthopyran compound a compound having 3H-naphtho [2,1-b] pyran represented by CornYellow as a main skeleton, and having 2H-naphtho [1,2-b] pyran represented by BerryRed as a main skeleton.
  • the compound described in Patent Document 8 has a molar extinction coefficient at 400 nm of 3000 L / (mol ⁇ cm) or more, and an average molar extinction coefficient in the range of 350 to 450 nm is also 3000 L / (mol ⁇ cm). ) There is no example using the above chromene compound.
  • the indenonaphthopyran compound contained in the photo-curable coating agent has a molar extinction coefficient at 400 nm of 3000 L / (mol ⁇ cm) as the usefulness of the plastic lens and the effect of the present invention are remarkably exhibited. More preferably, the average molar extinction coefficient in the range of 350 to 450 nm is 3000 L / (mol ⁇ cm) or more.
  • the upper limit values of the molar extinction coefficient at 400 nm and the average molar extinction coefficient at 350 to 450 nm are not particularly limited. However, if it is too large, the color is developed indoors. Therefore, the upper limit of the molar extinction coefficient at 400 nm is preferably 10,000 L / (mol ⁇ cm).
  • the molar extinction coefficient at 400 nm is in the range of 3000 to 10,000 L / (mol ⁇ cm), and the average molar extinction coefficient in the range of 350 to 450 nm is 3000 to 10,000 L / (mol ⁇ cm).
  • the molar extinction coefficient at 400 nm is in the range of 3500-7500 L / (mol ⁇ cm), and the average molar extinction coefficient in the range of 350 nm to 450 nm is particularly preferably 3500-7500 L / (mol ⁇ cm).
  • the method of the present invention exhibits particularly excellent effects.
  • the molar extinction coefficient at 400 nm and the average molar extinction coefficient in the range of 350 to 450 nm are values measured according to the following method.
  • Molar extinction coefficient at 400 nm (L / (mol ⁇ cm)), and average molar extinction coefficient in the range of 350 to 450 nm (L / (mol ⁇ cm)); toluene solution of photochromic compound (concentration 2.0 ⁇ 10 ⁇ 4) mol / L) was prepared and allowed to stand in a quartz cell having a cell length of 1 cm in a dark place at 23 ° C. for 1 hour, and then an absorption spectrum was measured in the range of 300 to 800 nm using an ultraviolet-visible spectrophotometer.
  • the molar extinction coefficient at 400 nm was calculated. Further, the molar extinction coefficient was calculated in the unit of 1 nm in the range of 350 to 450 nm, and the integrated value was divided by the data number 101 to calculate the average molar extinction coefficient in the range of 350 to 450 nm.
  • the photocurable coating agent used in the present invention is not particularly limited, but the content of the photochromic compound is 0.1 to 20 masses with respect to 100 mass parts of all radical polymerizable monomers described later. Part, more preferably 0.5 to 15 parts by weight, particularly preferably 2.5 to 5 parts by weight.
  • Examples of the radically polymerizable monomer (b) include radically polymerizable monomers having radically polymerizable groups such as (meth) acryloyl group, (meth) acryloyloxy group, vinyl group, allyl group, and styryl group. Preferably used. Among these, a radically polymerizable monomer having a (meth) acryloyl group or a (meth) acryloyloxy group is more preferably used because of its easy availability and good curability. These radically polymerizable monomers can be used by appropriately mixing two or more kinds in consideration of the cured product characteristics such as solvent resistance, hardness and heat resistance after curing of the photocurable coating agent.
  • radical polymerizable monomer conventionally used photo-curing properties depending on the purpose such as improvement of surface hardness, improvement of impact resistance, improvement of adhesion to hard coat layer or antireflection layer, etc.
  • a coating agent can be used without any particular limitation.
  • a composition containing three or more radical polymerizable monomers and / or organic-inorganic hybrid monomers is preferably used.
  • a “photocurable coating agent containing a photochromic compound” as disclosed in Patent Document 5 more specifically, a high hardness monomer (mainly 3 in the molecule).
  • Monomer having at least one radical polymerizable group) and low-hardness monomer mainly a monomer having two radical polymerizable groups in the molecule, the structure between the polymer groups being a long hydrocarbon chain, a polyethylene oxide chain
  • numerator can also be used as needed.
  • This monofunctional monomer is preferably a monomer having one (meth) acryloyl group and a reactive group such as a glycidyl group, an oxetanyl group, or an alkoxysilyl group.
  • a reactive group such as a glycidyl group, an oxetanyl group, or an alkoxysilyl group.
  • the high-hardness monomer it is preferable to use a monomer having three or more (meth) acryloyl groups in the molecule.
  • the low hardness monomer has two (meth) acryloyl groups in the molecule, A hydrocarbon chain with a molecular weight in the range of 100-700, A long chain selected from a polyethylene oxide chain having a molecular weight in the range of 100 to 2500 and optionally having a bisphenol skeleton, and a polypropylene oxide chain having a molecular weight in the range of 100 to 3000 and optionally having a bisphenol skeleton. It is preferable to use a monomer in which the two (meth) acryloyl groups are bonded to each other.
  • the blending amount of each monomer is in the following range. Specifically, it is preferable that the high-hardness monomer is 20 to 60 parts by mass, the low-hardness monomer is 20 to 80 parts by mass, and the monofunctional monomer is 0 to 60 parts by mass. Furthermore, it is preferable to set it as 20 mass parts or more and 50 mass parts or less of the said high hardness monomer, 40 mass parts or more and 70 mass parts or less of the said low hardness monomer, and 1 mass part or more and 40 mass parts or less of the said monofunctional monomer.
  • an amine compound such as triethanolamine may be added to the “photocurable coating agent containing a photochromic compound” in order to improve the adhesion between the coating layer and the plastic lens.
  • an amine compound it is not particularly limited.
  • the “photocurable coating agent containing a photochromic compound” includes 0.1 to 10 mass of amine compound when the total mass of the monomers (total mass of all radical polymerizable monomers) is 100 mass parts. It is preferable to mix part, and it is more preferable to mix 0.5 to 5 parts by mass of the amine compound.
  • a layer made of a urethane primer may be formed between the coating layer and the plastic lens.
  • Benzoin photopolymerization initiators such as benzoin, benzoin methyl ether, benzoin butyl ether, and 4,4′-dichlorobenzophenone;
  • Benzyl ketal photoinitiators such as 2,2-dimethoxy-1,2-diphenylethane-1-one (IRGACURE 651 “registered trademark”); 1-hydroxycyclohexyl phenyl ketone (IRGACURE 184 “registered trademark”), 2-hydroxy-2-methyl-1-phenylpropan-1-one (IRGACURE 1173 “registered trademark”), 1- [4- (2-hydroxyethoxy) ) Phenyl] -2-hydroxy-2-methyl-1-propan-1-one (IRGACURE 2959 “registered trademark”), 2-hydroxy-1- ⁇ 4- [4- (2-hydroxy-2-methylpropionyl) ⁇ -hydroxyacetophenone photo
  • Benzoin photopolymerization initiators such as benzoin, benzoin
  • acylphosphine oxide-based photopolymerization initiators are used from the viewpoint of being easily decomposed by absorbing light irradiated by the LED having the above wavelength and capable of efficiently curing the uncured coating layer. It is preferable to use it.
  • These photopolymerization initiators may be used alone or in combination of a plurality of photopolymerization initiators.
  • an acylphosphine oxide photopolymerization initiator and other photopolymerization initiators may be used in combination.
  • the photopolymerization initiator is preferably used in the range of 0.001 to 5 parts by mass with respect to 100 parts by mass of all radical polymerizable monomers.
  • thermal polymerization initiator in addition to the above-mentioned photopolymerization initiator.
  • Preferred examples of the thermal polymerization initiator include diacyl peroxide, peroxy ester, percarbonate and azo compound.
  • photocurable coating agent containing a photochromic compound prevention of yellowing of the coating layer and improvement of moldability, further improvement of durability of the photochromic compound when a photochromic compound is added, improvement of color development speed, Surfactant, antioxidant, radical scavenger, UV stabilizer, UV absorber, mold release agent, anti-coloring agent, antistatic agent, fluorescent dye, dye, pigment, fragrance, You may add additives, such as a plasticizer.
  • the basic manufacturing process in the method for manufacturing a plastic lens having a coating layer of the present invention is a first step of forming an uncured coating layer made of a photocurable composition on one surface of the plastic lens, And a second step of curing the uncured coating layer by irradiating the plastic lens with light having an emission peak wavelength in the range of 350 nm to less than 450 nm from above the outer surface of the uncured coating layer.
  • the first step will be described.
  • (First step) In the method for producing a plastic lens having a coating layer of the present invention, in the first step, in order to form an uncured coating layer made of a photocurable coating agent on the surface of the raw plastic lens substrate, What is necessary is just to apply
  • coat a photocurable coating agent As a coating method, well-known coating methods, such as spin coating, spray coating, dip coating, dip-spin coating, are applicable, for example.
  • the thickness of the coating layer in the present invention is preferably 5 microns or more and 300 microns or less, more preferably 10 microns or more and 150 microns or less, and particularly preferably 20 microns or more and 50 microns or less.
  • a plastic lens for the purpose of improving the adhesiveness of the coating layer finally obtained and a base material before application
  • the pretreatment examples include chemical treatment using a basic aqueous solution or acidic aqueous solution, polishing treatment using an abrasive, plasma treatment using atmospheric pressure plasma and low pressure plasma, corona discharge treatment, or UV ozone treatment. it can.
  • a basic aqueous solution or acidic aqueous solution polishing treatment using an abrasive
  • plasma treatment using atmospheric pressure plasma and low pressure plasma corona discharge treatment
  • UV ozone treatment UV ozone treatment.
  • two or more different types of processing may be used in combination.
  • another coating layer hereinafter also referred to as a primer layer
  • a primer layer is provided on the surface of the raw material lens substrate in advance. It may be formed.
  • a primer layer is not specifically limited, As an example used suitably, a polyurethane resin, an epoxy resin, or a polyacetal resin etc. are mentioned.
  • the method for forming a primer layer made of a polyurethane resin is not particularly limited, but a method of applying and curing a coating agent made of a moisture-curable polyurethane resin is preferable because it shows particularly excellent adhesion. Next, the second step will be described.
  • the uncured coating layer is formed by irradiating light with an LED having an emission peak wavelength in the range of 350 nm to less than 450 nm from the upper surface of the uncured coating layer of the plastic lens on which the uncured coating layer is formed.
  • an inert gas such as nitrogen, argon, or helium.
  • nitrogen it is most preferable to use nitrogen from the viewpoint of cost.
  • LED is an abbreviation for Light Emitting Diode, and is a semiconductor element that emits light when a voltage is applied in one direction, and is sometimes referred to as a light emitting diode.
  • an LED having an emission peak wavelength in the range of 350 nm to less than 450 nm is used as a light source.
  • a light source for example, a metal halide lamp, an ultra-high pressure mercury lamp, a high-pressure mercury lamp, an intermediate-pressure mercury lamp, a sterilization lamp, an xenon lamp, a carbon arc, an electrode lamp such as a tungsten lamp, or an electrodeless lamp Etc., but these emit light of a wide wavelength range from 200 nm to 600 nm.
  • Photochromic compounds absorb a wide range of UV light in the vicinity of 200 nm to 400 nm due to their characteristics.
  • the colored body produced thereby also absorbs ultraviolet rays around 200 nm to 400 nm with a higher molar extinction coefficient than before coloring.
  • the photopolymerization initiator is prevented from absorbing ultraviolet rays. Therefore, compared with a photocurable composition that does not contain a photochromic compound, it is necessary to perform light irradiation for a long time in order to cure the uncured coating layer, resulting in an increase in the temperature of the plastic lens.
  • the photopolymerization initiator can be decomposed while suppressing the coloring of the photochromic compound, and thus the uncured coating layer can be efficiently cured.
  • the emission peak wavelength of the LED to be used can be selected from a suitable wavelength from the absorption spectrum of the photochromic compound to be used and the photopolymerization initiator. However, if the wavelength is too short, decomposition of the photopolymerization initiator is suppressed by absorption of the photochromic compound. It is likely to cause poor curing, and if it is too long, the absorption of the photopolymerization initiator itself is reduced and the curing is also likely to be poor, and is preferably 360 nm to less than 420 nm, more preferably 370 nm to 400 nm, More preferably, it is 370 nm or more and less than 390 nm.
  • the half-value width of the light emission peak of the LED is preferably less than 30 nm, and more preferably less than 20 nm, since the effect is impaired when it is too large.
  • the LED emission angle from the LED irradiation device is preferably 120 degrees or less, more preferably 90 degrees or less, and particularly preferably 70 degrees or less.
  • the lower limit value of the emission angle is not particularly limited, but is 30 degrees. This angle refers to the spread of light emitted from the LED.
  • the uncured coating layer in a short time, it is preferable to use an LED having an irradiation intensity of 2 W / cm 2 or more on the light emission irradiation surface as the irradiation intensity of the light irradiated by the LED.
  • the irradiation intensity is less than 2 W / cm 2 , the uncured coating layer tends to be insufficiently cured, or a long time is required to cause a problem in production for curing.
  • the irradiation intensity is more preferably 3W / cm 2 or more, more preferably 5W / cm 2 or more, and particularly preferably 10 W / cm 2 or more.
  • the irradiation intensity is a value measured at the emission peak wavelength.
  • a light source which is a commercially available LED irradiation device can be used as such an LED light source.
  • Specific light sources include SemrayUV4003 ("Registered Trademark”; emission peak wavelengths of 365 nm, 385 nm, and 395 nm), NobleCure Altair Series ("Registered Trademark”; emission peak wavelengths of 365 nm, 385 nm, and 395 nm), and NobleCure IRIS series.
  • the light irradiation condition by the LED on the surface of the plastic lens on which the uncured coating layer is formed in the second step is sufficient as long as the uncured coating layer is cured, and the uncured coating layer is configured. What is necessary is just to determine suitably, considering the kind of photocurable coating agent to perform, the thickness of an unhardened coating layer, the shape of a plastic lens, a magnitude
  • this irradiation intensity points out the value of the minimum irradiation intensity (minimum irradiation intensity) in the plastic lens surface.
  • the irradiation intensity at the surface of the lens center is increased, but the irradiation intensity at the lens end is decreased.
  • the irradiation intensity on the surface of the lens end is 100 mW / cm 2 or more, particularly 250 mW / cm 2 or more.
  • the upper limit value of the light irradiation intensity on the plastic lens surface is not particularly limited, but is 1000 mW / cm 2 .
  • the irradiation intensity is a value measured at the emission peak wavelength.
  • the light irradiated by the LED reaches the entire surface of the uncured coating layer with a uniform irradiation intensity. That is, the cumulative amount of light irradiated onto the surface of the uncured coating layer is uniform.
  • the distance from the LED irradiation surface is different between the lens center and the end of the lens. The irradiation intensity of light reaching the lens end tends to be lower than the irradiation intensity.
  • the uncured coating is performed under such irradiation conditions that the ratio of the minimum irradiation intensity to the maximum irradiation intensity of light on the plastic lens surface on which the uncured coating layer is formed is 70% or more, particularly 80% or more. It is preferred to cure the layer. Thereby, the photochromic characteristics can be made uniform.
  • a cured layer (coating layer) that exhibits uniform performance can be formed (the maximum is 100%).
  • a method of approaching 100% for example, as described later, a method of separating a distance between the irradiation surface of the LED and one surface of the plastic lens by a certain distance or more can be employed.
  • a plurality of LEDs can be arranged and used so that the distance between the lens surface and the LED irradiation surface is constant so that the irradiation intensity is the same between the lens center surface and the lens end surface.
  • the irradiation surfaces of a plurality of LEDs are arranged so as to be the same curved surface as the lens curved surface.
  • the upper limit value of the ratio of the minimum irradiation intensity to the maximum irradiation intensity is 100%.
  • the ratio of the minimum irradiation intensity to the maximum irradiation intensity may be 95%.
  • the distance between the irradiation surface of the LED and one surface of the plastic lens is too close, the irradiation intensity of the light reaching the uncured coating layer is too high, making it difficult to control the surface temperature of the uncured coating layer. Become. Further, a difference occurs in the degree of curing between the center portion and the end portion of the lens due to the lens curve when a lens having a curved surface with a convex surface is used as a plastic lens described later. For this reason, the distance is preferably 3 cm or more, more preferably 5 cm or more, and particularly preferably 10 cm or more. Note that the upper limit of the distance is 30 cm in consideration of the performance of the current LED and the reduction of the device.
  • the irradiation intensity of light emitted by the LED tends to decrease according to the distance from the irradiation surface, but the degree of decrease (attenuation) tends to increase as the distance from the irradiation surface of the LED decreases, and decrease as the distance increases. It is in. Therefore, by measuring the distance from the irradiation surface in the LED light source used in advance and the irradiation intensity at the distance, and adjusting the distance between the irradiation surface of the LED and the surface of the uncured coating layer, the irradiation at the lens center and the lens end The intensity ratio can be controlled within the above range.
  • the maximum value of the integrated light quantity of light irradiated on the surface of the uncured coating layer (when using a lens having a curved surface with a convex lens surface side, the integrated light quantity differs depending on the location.
  • High integrated light intensity is preferably performed under irradiation conditions such that it is in the range of 2 to 50 J / cm 2 , preferably in the range of 3 to 20 J / cm 2 , particularly preferably in the range of 3 to 15 J / cm 2.
  • the integrated light amount is represented by the product of the irradiation intensity of light reaching the surface of the uncured coating layer (usually measured in the UV-A region (range of 320 to 390 nm)) and the irradiation time.
  • the irradiation intensity and integrated light amount of light reaching the surface of the uncured coating layer can be measured with a commercially available UV integrated light meter, for example, a micro UV radiometer microcure (“registered trademark”; manufactured by HERAEUS).
  • the surface temperature of the uncured coating layer (in the examples and comparative examples, “after light irradiation” from the viewpoint of suppressing plastic lens deformation due to a temperature rise during curing of the uncured coating layer. It is preferable that the uncured coating layer is cured under such a condition that the lens temperature is 100 ° C. or lower, preferably 80 ° C. or lower, more preferably 70 ° C. or lower, particularly preferably 65 ° C. or lower. . Compared to conventional light sources, infrared rays are less likely to be generated, so the temperature of the plastic lens does not rise easily and temperature control is relatively easy. However, the surface temperature still depends on the light irradiation intensity and irradiation time (curing time).
  • the distance between the irradiation surface of the LED and the surface of the uncured coating layer or the curing time may be adjusted. Further, it is possible to control the surface temperature of the plastic lens by circulating nitrogen gas in an atmosphere for light irradiation.
  • the lower limit of “lens temperature after light irradiation” is preferably 40 ° C. or higher. By setting it to 40 ° C. or higher, it is possible to sufficiently cure, and the hardness of the cured coating layer can be increased.
  • the photochromic compound develops color when irradiated with light, but the color density during light irradiation can be lowered when the photochromic compound reaches 40 ° C. or higher. As a result, the rate of light transmission is increased and curing is sufficiently promoted.
  • this effect is that the molar extinction coefficient at 400 nm is 3000 L / (mol ⁇ cm) or more, and the average molar extinction coefficient in the range of 350 to 450 nm is 3000 L / (mol ⁇ cm) or more.
  • a photochromic compound indenonaphthopyran compound
  • the “lens temperature after light irradiation” is preferably 50 to 70 ° C., particularly preferably 50 to 65 ° C. .
  • the irradiation may be performed by irradiating with a certain irradiation intensity for a certain period of time.
  • a method of controlling by lowering, or a method of controlling by first reducing the irradiation intensity stepwise after curing proceeds to some extent after irradiating with the distance between the irradiation surface of the LED and the surface of the uncured coating layer, etc.
  • the “lens temperature after light irradiation” be 100 ° C. or lower during the light irradiation, and it is more preferable that the temperature is 50 to 70 ° C.
  • the temperature is 50 to 65 ° C.
  • the plastic lens having a coating layer (coating layer) obtained by the method for producing a plastic lens having a coating layer of the present invention can be used as an optical material as it is. It is preferable to form a coat layer. By forming the hard coat layer, the scratch resistance of the plastic lens can be improved.
  • the formation of the hard coat layer may be performed by applying a hard coat material and curing it in accordance with a generally adopted method.
  • the hard coating agent include known hard coating agents such as a silane coupling agent, a hard coating agent mainly composed of an oxide sol such as silicon, zirconium, antimony, and aluminum, and a hard coating agent mainly composed of an organic polymer.
  • a coating agent can be used without limitation.
  • processing such as antireflection treatment and antistatic treatment, and secondary treatment It is also possible to perform processing.
  • These secondary treatments can be performed by forming a thin film layer of a metal oxide such as SiO 2 , TiO 2 , or ZrO 2 by vapor deposition or by forming a thin film layer of an organic polymer.
  • Example 1 A plastic lens made of thiourethane resin (center thickness 1 mm, peripheral thickness 7 mm, diameter 75 mm, base curve 4.00, difference in lens height between center and end 0.5 cm) into a 10% alkaline aqueous solution at 60 ° C. 5 Pretreatment was performed by dipping for a minute. After the pretreatment, it was washed with pure water and subsequently subjected to a drying treatment.
  • the convex surface of this plastic lens was coated with a photocurable coating agent having the following composition to form an uncured coating layer.
  • the coating was performed using a MIKASA spin coater 1HDX2 (rotation speed: 600 rpm) so that the film thickness of the uncured coating layer was 40 ⁇ m.
  • Photocurable coating agent 1 a) Photochromic compound-Photochromic compound represented by the following formula (molar extinction coefficient 3400 L / (mol ⁇ cm) at 400 nm, average molar extinction coefficient 3720 L / (mol ⁇ cm) in the range of 350 to 450 nm) 2.5 mass Part
  • Polyethylene glycol diacrylate having an average molecular weight of 532 (average molecular weight of main chain 406) 15 mass Parts 2,2-bis (4-acryloyloxypolyethylene glycol phenyl) propane having an average molecular weight of 776 (average molecular weight of main chain: 650) 50 parts by weight monofunctional monomer ⁇ Glycidyl methacrylate 10 parts by mass ⁇ ⁇ -methacryloyloxypropyltrimethoxysilane 7 parts by mass
  • Photopolymerization initiator IRGACURE 819 (“registered trademark”; manufactured by BASF): Bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide 0.3 parts by mass Other additives N-methyldiethanolamine 3 parts Part • Bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate 5 parts by mass
  • the photocurable coating agent 1 was obtained by thoroughly mixing the above components.
  • the said compounding quantity is a real value, and it is not the numerical value which reconverted the compounding quantity of each component by making the total amount of b) radical polymerizable monomer into 100 mass parts.
  • an LED device (Senary UV4003 ("registered trademark" having a peak wavelength of 385 nm), HERAEUS Co., Ltd.) installed 14 cm above with the surface (convex surface side) of the lens on which the uncured coating layer is formed as the upper surface.
  • an LED device (Senary UV4003 ("registered trademark" having a peak wavelength of 385 nm), HERAEUS Co., Ltd.) installed 14 cm above with the surface (convex surface side) of the lens on which the uncured coating layer is formed as the upper surface.
  • Manufactured, adjusted half-width of emission peak to 10 nm, emission angle of 60 degrees, irradiation intensity adjusted to 7 W / cm 2 ) was irradiated with light in a nitrogen gas atmosphere for 40 seconds to cure the uncured coating layer.
  • the surface temperature immediately after light irradiation of this lens was 55 ° C. Thereafter, the lens was further post-cured at 110 ° C. for 1 hour.
  • the obtained plastic lens having a coating layer was used as a sample, and the film hardness, presence / absence of thermal deformation, adhesion between the coating layer and the plastic lens, and photochromic properties (fading half-life) were examined.
  • the results are shown in Table 2. These evaluation criteria are as shown in the following (A) to (D).
  • the C of the two fluorescent lamps are slightly distorted (slightly deformed) C, the fluorescent lamp after polymerization The distance between them is less than 0.90 or more than 1.10 and is severely distorted Those thermally deformed) and the E, was 4 out.
  • (C) Adhesiveness between lens and coating layer Evaluated by cross-cut tape test according to JIS D-0202. That is, using a cutter knife, cuts are made at intervals of about 1 mm on the surface of the coating layer of the plastic lens coated with the photocurable coating agent to form 100 squares.
  • a cellophane adhesive tape (cello tape (registered trademark) manufactured by Nichiban Co., Ltd.) was strongly pasted thereon, and then was pulled from the surface in a 90 ° direction at a stretch and peeled, and then the number of grids in which the coating layer remained was measured. .
  • the evaluation (represented by the residual cell after evaluation / the cell before evaluation) is 100/100 A, less than 100/100 95/100 or more B, less than 95/100 80/100 or more C, 80 / A 5-level evaluation was made with D less than 100/50 or more and E less than 50/100.
  • Example 2 After forming an uncured coating layer in the same manner as in Example 1, the LED device (NobleCure Altair 150 ("registered trademark”) was installed 4 cm above the surface (convex surface side) of the lens on which the uncured coating layer was formed. ”; Having a peak wavelength of 385 nm), manufactured by HERAEUS, light emission peak half-width of 10 nm, emission angle of 60 degrees, irradiation intensity of 3.3 W / cm 2 ), and irradiated with light in a nitrogen gas atmosphere for 40 seconds, uncured The coating layer was cured.
  • the LED device NobleCure Altair 150 (registered trademark) was installed 4 cm above the surface (convex surface side) of the lens on which the uncured coating layer was formed. ”; Having a peak wavelength of 385 nm), manufactured by HERAEUS, light emission peak half-width of 10 nm, emission angle of 60 degrees, irradiation intensity of 3.3 W / cm 2 ), and ir
  • the surface temperature immediately after light irradiation of this lens was 80 ° C. Thereafter, the lens was further post-cured at 110 ° C. for 1 hour.
  • the obtained plastic lens having a coating layer was used as a sample, and the film hardness, presence / absence of thermal deformation, adhesion between the coating layer and the plastic lens, and photochromic properties (fading half-life) were examined.
  • the results are shown in Table 2.
  • Example 3 After an uncured coating layer was formed in the same manner as in Example 1, the LED device (Senior UV4003 (peak wavelength was 365 nm), manufactured by HERAEUS Co., Ltd., light emission peak half width 13 nm, emission angle 60 degrees, irradiation intensity adjusted to 7 W / cm 2 ), light is irradiated in a nitrogen gas atmosphere for 40 seconds to cure the uncured coating layer I let you.
  • the LED device Silicon UV4003 (peak wavelength was 365 nm), manufactured by HERAEUS Co., Ltd., light emission peak half width 13 nm, emission angle 60 degrees, irradiation intensity adjusted to 7 W / cm 2 .
  • the surface temperature immediately after light irradiation of this lens was 55 ° C. Thereafter, the lens was further post-cured at 110 ° C. for 1 hour.
  • the obtained plastic lens having a coating layer was used as a sample, and the film hardness, presence / absence of thermal deformation, adhesion between the coating layer and the plastic lens, and photochromic properties (fading half-life) were examined.
  • the results are shown in Table 2.
  • Example 4 After an uncured coating layer was formed in the same manner as in Example 1, the LED device (Senior UV4003 (peak wavelength was 385 nm), manufactured by HERAEUS Co., Ltd., light emission peak half width 10 nm, emission angle 60 degrees, irradiation intensity adjusted to 6 W / cm 2 ), irradiated with light in a nitrogen gas atmosphere for 40 seconds to cure the uncured coating layer I let you.
  • the LED device Silicon UV4003 (peak wavelength was 385 nm), manufactured by HERAEUS Co., Ltd., light emission peak half width 10 nm, emission angle 60 degrees, irradiation intensity adjusted to 6 W / cm 2 ), irradiated with light in a nitrogen gas atmosphere for 40 seconds to cure the uncured coating layer I let you.
  • the obtained plastic lens having a coating layer was used as a sample, and the film hardness, presence / absence of thermal deformation, adhesion between the coating layer and the plastic lens, and photochromic properties (fading half-life) were examined.
  • the results are shown in Table 2.
  • Comparative Example 1 After forming an uncured coating layer in the same manner as in Example 1, an electrodeless UV lamp system D bulb installed 20 cm above, with the surface (convex surface side) of the lens on which the uncured coating layer is formed as the upper surface ( The emission peak wavelength is mainly around 380 nm, but the emission wavelength is 200 to 600 nm), manufactured by Senior), and irradiated with light in a nitrogen gas atmosphere for 40 seconds to cure the uncured coating layer.
  • the irradiation intensity of light on the surface of the plastic lens on which the uncured coating layer is formed is 250 mW / cm 2 at the position closest to the irradiation surface of the electrodeless UV lamp system D bulb, and 238 mW / cm at the farthest position. cm 2 .
  • the maximum value of the integrated light quantity was measured with an ultra-compact UV radiometer microcure (“registered trademark”; manufactured by HERAEUS) and found to be 10 J / cm 2 . These irradiation conditions are shown in Table 1.
  • the surface temperature immediately after light irradiation of this lens was 110 ° C. Thereafter, the lens was further post-cured at 110 ° C. for 1 hour.
  • the obtained plastic lens having a coating layer was used as a sample, and the film hardness, presence / absence of thermal deformation, adhesion between the coating layer and the plastic lens, and photochromic properties (fading half-life) were examined.
  • the results are shown in Table 2.
  • Comparative Example 2 After forming an uncured coating layer in the same manner as in Example 1, an electrodeless UV lamp system D bulb installed 20 cm above, with the surface (convex surface side) of the lens on which the uncured coating layer is formed as the upper surface ( The emission peak wavelength was mainly around 380 nm, but the emission wavelength was 200 to 600 nm), and the light was irradiated for 32 seconds in a nitrogen gas atmosphere from a company made by Senary Co.) to cure the uncured coating layer.
  • the irradiation intensity of light on the surface of the plastic lens on which the uncured coating layer is formed is 250 mW / cm 2 at the position closest to the irradiation surface of the electrodeless UV lamp system D bulb, and 238 mW / cm at the farthest position. cm 2 .
  • the maximum value of the integrated light quantity was measured with an ultra-compact UV radiometer microcure (“registered trademark”; manufactured by HERAEUS) and found to be 8 J / cm 2 . These irradiation conditions are shown in Table 1. The surface temperature of this lens immediately after light irradiation was 95 ° C. Thereafter, the lens was further post-cured at 110 ° C. for 1 hour.
  • the obtained plastic lens having a coating layer was used as a sample, and the film hardness, presence / absence of thermal deformation, adhesion between the coating layer and the plastic lens, and photochromic properties (fading half-life) were examined.
  • the results are shown in Table 2.
  • Photochromic compound represented by the following formula (molar extinction coefficient 6130 L / (mol ⁇ cm) at 400 nm, average molar extinction coefficient 4050 L / (mol ⁇ cm) in the range of 350 to 450 nm) 2.5 parts by mass
  • Polyethylene glycol diacrylate having an average molecular weight of 532 (average molecular weight of main chain 406) 15 mass Parts ⁇ 2,2-bis (4-acryloyloxypolyethylene glycol phenyl) propane having an average molecular weight of 776 (average molecular weight of main chain 650) 50 parts by weight monofunctional monomer ⁇ 10 parts by weight of glycidyl methacrylate ⁇ ⁇ -methacryloyloxypropyltrimethoxysilane 7 quality Part
  • Photopolymerization initiator IRGACURE 819 ("registered trademark”; manufactured by BASF): Bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide 0.3 parts by mass Other additives N-methyldiethanolamine 3 parts Part • Bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate 5 parts by mass The above components were mixed thoroughly to prepare Photocurable Coating Agent 2.
  • the said compounding quantity is a real value, and it is not the numerical value which reconverted the compounding quantity of each component by making the total amount of b) radical polymerizable monomer into 100 mass parts.
  • the surface (convex surface side) of the lens on which the uncured coating layer is formed is the upper surface, and is set 14 cm above.
  • the obtained plastic lens having a coating layer was used as a sample, and the film hardness, presence / absence of thermal deformation, adhesion between the coating layer and the plastic lens, and photochromic properties (fading half-life) were examined. The results are shown in Table 4.
  • Example 6 [Photocurable coating agent 3] a) Photochromic compound The same photochromic compound as used in Example 5 (molar extinction coefficient 6130 L / (mol ⁇ cm) at 400 nm, average molar extinction coefficient 4050 L / (mol ⁇ cm) in the range of 350 to 450 nm) 2 .5 parts by mass
  • Photopolymerization initiator IRGACURE819 (“registered trademark”; manufactured by BASF): Bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide 0.3 parts by mass Other additives Bis (1,2, 2,6,6-Pentamethyl-4-piperidyl) sebacate 5 parts by mass
  • the said compounding quantity is a real value
  • the surface (convex surface side) of the lens on which the uncured coating layer is formed is the upper surface, and is set 14 cm above.
  • the obtained plastic lens having a coating layer was used as a sample, and the film hardness, presence / absence of thermal deformation, adhesion between the coating layer and the plastic lens, and photochromic properties (fading half-life) were examined. The results are shown in Table 4.
  • Example 7 After forming an uncured coating layer using the photocurable coating agent 3 in the same manner as in Example 1, the surface (convex surface side) of the lens on which the uncured coating layer is formed is the upper surface, and is set 14 cm above.
  • LED device Silicone improved product (with peak wavelengths of 385 nm and 405 nm), manufactured by HERAEUS, respectively, the half width of the emission peak is 10 nm, the emission angle is 60 degrees, and the irradiation intensity is 3.5 W / cm 2 at 385 nm and 405 nm, respectively. (Adjustment) was irradiated with light in a nitrogen gas atmosphere for 40 seconds to cure the uncured coating layer.
  • the surface temperature of this lens immediately after light irradiation was 50 ° C. Thereafter, the lens was further post-cured at 110 ° C. for 1 hour.
  • the obtained plastic lens having a coating layer was used as a sample, and the film hardness, presence / absence of thermal deformation, adhesion between the coating layer and the plastic lens, and photochromic properties (fading half-life) were examined. The results are shown in Table 4.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Eyeglasses (AREA)
  • Optical Filters (AREA)

Abstract

プラスチックレンズの一方の表面に、 a)フォトクロミック化合物、 b)ラジカル重合性単量体、 c)光重合開始剤 を少なくとも含んでなる光硬化性コーティング組成物からなる未硬化被覆層を形成し、次いで該未硬化被覆層が形成されたプラスチックレンズに未硬化被覆層の外表面の上方より、350nm以上450nm未満の範囲に発光ピーク波長を有するLEDにより光を照射して該未硬化被覆層を硬化させることを特徴とする、硬化被覆層を有するプラスチックレンズの製造方法

Description

被覆層を有するプラスチックレンズの製造方法
 本発明は、フォトクロミック特性を有するコーティング層で被覆されたプラスチックレンズの製造方法に関する。より詳しくは、コーティング層を表面に有する眼鏡レンズ等のプラスチックレンズの簡便かつ確実な製造方法に関する。
 フォトクロミズムとは、ある化合物に太陽光あるいは水銀灯の光のような紫外線を含む光を照射すると速やかに色が変わり、光の照射をやめて暗所におくと元の色に戻る可逆作用のことであり、様々な用途に応用されている。
 例えば、眼鏡レンズの分野においてもフォトクロミズムが応用されており、上記のような性質を有する各種フォトクロミック化合物を添加した重合性単量体を硬化させることにより、フォトクロミック特性を有するプラスチックレンズが得られている。フォトクロミック化合物としてはこのような用途に好適に使用できるフルギミド化合物、スピロオキサジン化合物、クロメン化合物等が見出されている。
 フォトクロミック特性を有するプラスチックレンズの製造方法としては、フォトクロミック特性を有しないプラスチックレンズの表面にフォトクロミック化合物を含浸させる方法(以下、含浸法という)、あるいはプラスチックレンズの表面にフォトクロミック特性を有するコーティング層を設ける方法(以下、コーティング法という)、あるいはモノマーにフォトクロミック化合物を溶解させそれを重合させることにより直接フォトクロミックレンズを得る方法(以下、練り混み法という)が提案されている。
 コーティング法としては、例えば、ウレタンオリゴマー中にフォトクロミック化合物を溶解させたコーティング剤をレンズ上に塗布した後、赤外線を用いて40分間140℃で熱硬化する手法が提案されている(特許文献1参照)。
 また、単官能、2官能および多官能の各ラジカル重合性単量体の混合物にフォトクロミック化合物を溶解したコーティング剤を調合し、それをガラスモールド内面にコーティングした後に光硬化し、その後、モールド内部へモノマーを注型し、熱硬化する手法が提案されている(特許文献2参照)。
 さらに、N-アルコキシメチル(メタ)アクリルアミド、触媒好ましくは酸性触媒、及びフォトクロミック化合物を混合したコーティング剤をレンズ上に塗布した後、40分間140℃で熱硬化する手法が提案されている(特許文献3参照)。
 さらに、2種類以上の2官能(メタ)アクリルモノマーのみの組み合わせからなるモノマー組成物に、フォトクロミック化合物を溶解させたコーティング剤をレンズ上に塗布した後、500ワットのランプを用いて光硬化する手法が提案されている(特許文献4参照)。その際のレンズ表面温度は145-200℃となっている。
 しかしながら、これらいずれの方法においても、プラスチックレンズ表面に塗布したコーティング剤を十分に硬化させてプラスチックレンズ自体が変形することなしに、コーティング層を有するプラスチックレンズを得るのは難しい。
 即ち、本発明者らがプラスチックレンズ表面に塗布した光硬化性コーティング剤を硬化させる方法について研究を行った結果、光硬化性コーティング剤で被覆したプラスチックレンズのコーティング剤塗布面を上面に保持して強度の強い光を用いて光重合を行った場合、中心部分の厚さが薄いプラスチックレンズが変形するという問題があることが確認された。このような問題は、硬化に用いる光源に由来する熱によりプラスチックレンズが軟化するため、コーティング剤が硬化するときに発生する応力に耐えられずに変形してしまうことが原因であり、特に、中心部分の厚さが2mm未満であり周縁部分が中心部より厚いプラスチックレンズの場合に顕著である。
 上記問題の発生を抑えるために、照射する光の強度を弱くした場合には、コーティング剤が十分に硬化せず、プラスチックレンズとフォトクロミック層との密着性が不十分になり、また表面硬度が低下するという別の問題が発生し、長時間の硬化を行った場合には、生産性の低下が問題となる。
 このような問題を解決するための方法として、プラスチックレンズの表面に塗布した光硬化性コーティング剤を光硬化させる際に、プラスチックレンズの表面温度を100℃以下とする方法が提案されている(特許文献5参照)。
 さらに別の方法として、プラスチックレンズを弾性体もしくは塑性変形性材料によって保持することにより、レンズの変形を抑制する方法が提案されている(特許文献6参照)。
 さらに別の方法として、プラスチックレンズの裏面にヒドロゲルを付着させることによりプラスチックレンズの温度上昇を抑制し、レンズの変形を抑制する方法が提案されている(特許文献7参照)。
 さらに、別の方法として、光硬化性のコーティング剤をガラスモールドの内面にコーティングした上でLEDにより光を照射して硬化し、その後モールド内部にモノマーを注型し重合する方法が提案されている(特許文献8参照)。
 前記特許文献5に記載された方法では、プラスチックレンズの表面温度を100℃以下とする具体的方法として、プラスチックレンズに照射するレンズ表面の光強度及び照射時間を制御する方法が示されている。
 しかしながら、このような方法を採用した場合には、断続的に光照射することが必要となるなどのことから、コーティング剤の光硬化時間が長くなるため生産性の点で問題があるばかりでなく、レンズの中心厚に応じて光強度と光照射時間を制御する必要がある為、操作が煩雑となっていた。また、プラスチックレンズの裏面、さらには側面に冷水を循環させたチューブなどを接触させて、該プラスチックレンズを冷却する方法を併用することにより、光硬化時間をある程度短縮することが可能であったが、装置の構造が複雑になる上、チューブとプラスチックレンズの接触部と非接触部とで冷却効果に斑が発生する問題があった。
 また、前記特許文献6に記載された方法では、弾性体を使用する場合は、偏心レンズなどいびつな形状を有するプラスチックレンズに対してはフィット性が必ずしも十分ではなく、レンズと弾性体の間に隙間ができてしまい、熱変形を完全に抑制することが困難になる場合があった。一方、塑性変形性材料を使用する場合は、やはりフィット性が必ずしも十分でないことに加えて、該塑性変形性材料をプラスチックレンズから取り外す際に、その一部がプラスチックレンズに付着して残ってしまい、その後洗浄しても十分に除去しきれないなど、操作上の問題を有していた。
 また、前記特許文献7に記載された方法では、裏面にヒドロゲルを付着させる操作、及び硬化後のプラスチックレンズからヒドロゲルを除去する操作が必要となり、必ずしも大量生産には向かないという欠点を有していた。
 さらに、前記特許文献5~7に記載された方法では、いずれも光源として、メタルハライドランプ、超高圧水銀ランプ、高圧水銀ランプ、中圧水銀ランプ、殺菌ランプ、キセノンランプ、カーボンアーク、タングステンランプ等の有電極ランプ、または無電極ランプ等を用いている。これらの光源ではそのスペクトラムがフォトクロミック化合物の吸収域と重なるため、光硬化性のコーティング剤を硬化させるために過剰の光を照射する必要があり、その結果温度が上昇してプラスチックレンズが変形するという問題を生じる。さらにまた、硬化が不均一に進行することよりフォトクロミック特性の低下、特に退色速度が遅くなるという問題を生じる。
 さらに、前記特許文献8には光源としてLEDが用いられているが、その特性に関する記載はなく、さらにガラスモールドを用いるなどレンズを製造する方法自体も煩雑である等、なお改善の余地があった。
国際公開第1998/37115号 米国特許第5914174号公報 国際公開第2000/36047号 国際公開第2001/02449号 特開2004-012857号公報 国際公開第2006/132200号 国際公開第2016/122000号 国際公開第2006/135390号
 そこで、本発明は、プラスチックレンズの表面に光硬化性のコーティング剤を塗布し、これを硬化させて被覆層を有するプラスチックレンズを製造するに際し、特殊な冷却装置を必要とすることなく、かつ、様々な形状を有するプラスチックレンズに対しても、高い生産性で変形を起こすことなく目的物を製造することができる方法を提供することを目的とする。
 本発明者等は、上記課題を解決すべく鋭意検討を行なった結果、光照射の光源として特定のLEDを使用することにより、プラスチックレンズの温度上昇を抑制し、レンズを変形させることなく、未硬化被覆層の光硬化を行うことができることを見出し、本発明を完成させるに至った。
 即ち、本発明は、プラスチックレンズの一方の表面に、a)フォトクロミック化合物、b)ラジカル重合性単量体およびc)光重合開始剤を少なくとも含んでなる光硬化性コーティング組成物からなる未硬化被覆層を形成し、次いで該未硬化被覆層が形成されたプラスチックレンズの未硬化被覆層の外表面の上方より、350nm以上450nm未満の範囲に発光ピーク波長を有するLEDにより光を照射して該未硬化被覆層を硬化させることを特徴とする、被覆層を有するプラスチックレンズの製造方法である。
 上記本発明の被覆層を有するプラスチックレンズの製造方法では、以下の態様を好適に採り得る。
1)前記LEDの発光ピークの半値幅が30nm未満であること。
2)前記LEDにより照射される光の、LED照射装置からの射出角が120度以下であること。
3)前記LEDの照射表面における光の照射強度が発光ピーク波長において2W/cm以上であること。
4)前記未硬化被覆層が形成されたプラスチックレンズの未硬化被覆層の外表面における光の照射強度が発光ピーク波長において100mW/cm以上であること。
5)前記プラスチックレンズが凸状のレンズでありそして前記未硬化被覆層が形成されたプラスチックレンズの未硬化被覆層の外表面において、光の最大照射強度に対する最小照射強度の割合が70%以上であること。
6)前記未硬化被覆層が形成されたプラスチックレンズの未硬化被覆層の外表面において、光の積算光量の最大値が2J/cm以上50J/cm未満であること。
7)前記未硬化被覆層の硬化を該被覆層の表面温度が100℃以下となるようにして行うこと。
8)前記プラスチックレンズが、中心部分の厚さが2mm未満であり且つ周縁部分が中心部より厚いプラスチックレンズであること。
 本発明の被覆層を有するプラスチックレンズの製造方法によれば、プラスチックレンズの表面に光硬化性コーティング組成物を塗布し、これを硬化させて被覆層を有するプラスチックレンズを製造するに際し、該未硬化被覆層が形成されたプラスチックレンズの未硬化被覆層の外表面の上方より350nm以上450nm未満の発光ピーク波長を有するLEDにより光を照射することにより該未硬化被覆層を硬化させる。これにより、例えば200nm~600nmに渡って幅広い波長の光を放出する従来の光源を用いる場合と比較してフォトクロミック化合物の発色を抑制することができる。そのため、最小限の光量で光硬化性コーティング組成物を硬化することができる。加えて、LEDは赤外線をほぼ発しないという特性を有する。それにより、プラスチックレンズの温度上昇を抑制することができ、プラスチックレンズの変形を抑制することができる。
 さらに、従来の光源を用いる場合と比較して、フォトクロミック化合物を少なからず分解してしまう350nm未満の紫外線を含まないため発色濃度が高く、さらに過剰の光を照射する必要がないため退色速度も速いなど、フォトクロミック特性の点においても優れている。
 さらに、本発明の製造方法によれば、プラスチックレンズの温度上昇を抑制しながら、上記未硬化被覆層の硬化を行うことが可能であるため、プラスチックレンズの裏面すなわち未硬化被覆層のない外表面、さらには側面に冷水を循環させたチューブなどを接触させて、該プラスチックレンズを冷却するための特殊な冷却装置も特に必要としないので、製造装置の低コスト化、コンパクト化がはかれる利点がある。さらに、プラスチックレンズ裏面に発生する熱を逃がすための弾性体やヒドロゲルを付着させる必要がなく簡便な操作により被覆層を有するプラスチックレンズを製造することができる。
 本発明の被覆層を有するプラスチックレンズの製造方法では、プラスチックレンズの表面上に光硬化性樹脂の硬化体からなる被覆層を形成することによって、被覆層を有するプラスチックレンズを製造する。
 上記本発明の製造方法における基本的な製造プロセスは、従来の「光硬化性樹脂の硬化体からなる被覆層を有するプラスチックレンズ」を製造する場合と同様であり、プラスチックレンズの一方の表面上に光硬化性組成物からなる未硬化被覆層を形成する第一工程、及びプラスチックレンズの未硬化被覆層の外表面の上方から光照射することにより該未硬化被覆層を硬化させる第二工程を含む。以下、プラスチックレンズにおいて、未硬化被覆層が形成された面を「表面」、未硬化被覆層が形成されていない面を「裏面」として説明する。
 本発明の被覆層を有するプラスチックレンズの製造方法では、上記第二工程において、前記第一工程で得られた未硬化被覆層を有するプラスチックレンズに対し、該未硬化被覆層が形成された表面上方から350nm以上450nm未満の範囲に発光ピーク波長を有するLEDにより光を照射することにより該未硬化被覆層を硬化させることが特徴である。以下、本発明の被覆層を有するプラスチックレンズの製造方法に用いる各材料について説明する。
 (プラスチックレンズ)
 本発明の被覆層を有するプラスチックレンズの製造方法において、使用されるプラスチックレンズとしては、特に限定されず、一般的に使用されているプラスチックレンズが使用できる。特に、中心部分の厚さが2mm未満であり、周縁部分が中心部より厚い形状のプラスチックレンズが、本発明の効果が高度に達成される点で特に好ましい。汎用の眼鏡用プラスチックレンズにおける近眼矯正用の凹メニスカスレンズは、マイナス度数が大きくなるにつれて中心部分に対する周縁部分の厚みが徐々に大きくなっていくので、このような条件を満たすものが多い。このようなプラスチックレンズは、中心部分が薄いために、物理的な変形や、熱による変形を受けやすい傾向があるが、本発明の被覆層を有するプラスチックレンズの製造方法は、かかるプラスチックレンズに適用するのに特に効果的である。さらに、本発明の製造方法で対象とするプラスチックレンズの形状は、平坦でも、或いはレンズ表面側が凸となるような曲面のいずれであってもよい。
 また、本発明におけるプラスチックレンズの材質は特に限定されるものではなく、例えば(メタ)アクリル系樹脂、ポリカーボネート系樹脂、アリル系樹脂、チオウレタン系樹脂、ウレタン系樹脂およびチオエポキシ系樹脂等の公知の樹脂を使用できる。次に未硬化被覆層を構成する光硬化性のコーティング剤について説明する。
 (光硬化性のコーティング剤)
 本発明の被覆層を有するプラスチックレンズの製造方法において、前記第一工程で使用する光硬化性組成物は所謂光硬化性コーティング剤であり、必須成分として(a)フォトクロミック化合物、(b)ラジカル重合性単量体、及び(c)光重合開始剤を含む。
 (a)フォトクロミック化合物としては、例えばフルギド化合物、フルギミド化合物、スピロピラン化合物、スピロオキサジン化合物、クロメン化合物、ジアリールエテン化合物等の、フォトクロミック特性を有するプラスチックレンズに用いられるフォトクロミック化合物を特に制限なく用いることができる。これらのフォトクロミック化合物は単独で用いても、或いは複数を組み合わせて用いてもよい。特に優れたフォトクロミック特性を示すという点から、クロメン化合物を用いることが特に好ましい。
 さらに、クロメン化合物の中でも、400nmにおけるモル吸光係数が3000 L/(mol・cm)以上であり、かつ、350~450nmの範囲の平均モル吸光係数が3000 L/(mol・cm)以上であるクロメン化合物を用いるのが特に好ましい。前記の特性を満たすクロメン化合物は、屋外においては感度良く発色し、屋内においては紫外線や高エネルギー可視光線などの有害な光から眼を保護することができる優れた化合物である。しかしながら、その幅広く光を吸収する特性がゆえに、200nm~600nmに渡って幅広い波長の光を放出する従来の光源では光照射中にフォトクロミック化合物が発色し、無色状態よりも多くの光を吸収してしまう。このことから、光重合開始剤の分解及びそれにより開始する光重合反応が阻害されてしまい、十分な硬さを有する被覆層を形成させることが困難であった。本発明の方法は、後述する方法によりLED光を照射する(特定の発光ピーク波長を有するLEDを使用する)ため、クロメン化合物を含む光硬化性のコーティング剤を硬化させる場合であっても、得られる硬化体は、高い硬度の被覆層を有したまま、優れたフォトクロミック特性を有するものとなる。このような特性を有するクロメン化合物として、インデノ[2,1-f]ナフト[1,2-b]ピランを主骨格として有する化合物が挙げられる。
 インデノ[2,1-f]ナフト[1,2-b]ピランを主骨格として有する化合物(以下、単に「インデノナフトピラン化合物」とする場合もある。)は、特に優れたフォトクロミック特性を示す。しかしながら、その一方で、CornYellowに代表される3H-ナフト[2,1-b]ピランを主骨格として有する化合物、BerryRedに代表される2H-ナフト[1,2-b]ピランを主骨格として有する化合物、及びCR-173に代表される9,10-ジヒドロ-6H-ベンゾ[3,4]フェナンスロ[2,1-b]ピランを主骨格として有する化合物などに比べて長波長まで光を吸収する。なお、特許文献8に記載の化合物には、400nmにおけるモル吸光係数が3000 L/(mol・cm)以上であり、かつ、350~450nmの範囲の平均モル吸光係数も3000 L/(mol・cm)以上であるクロメン化合物を使用した例示はない。
 プラスチックレンズの有用性、及び本発明の効果が顕著に発揮されるものとして、該光硬化性のコーティング剤が含むインデノナフトピラン化合物は、400nmにおけるモル吸光係数が3000 L/(mol・cm)以上であり、かつ、350~450nmの範囲の平均モル吸光係数が3000 L/(mol・cm)以上であることがより好ましい。また、400nmにおけるモル吸光係数、及び350~450nmにおける平均モル吸光係数の上限値は、特に制限されるものではない。ただし、あまりに大きすぎると、室内で発色してしまうことから、400nmにおけるモル吸光係数の上限は10000 L/(mol・cm)であることが好ましい。すなわち、400nmにおけるモル吸光係数が3000~10000 L/(mol・cm)の範囲にあり、かつ350~450nmの範囲の平均モル吸光係数が3000~10000 L/(mol・cm)であることがさらに好ましい。また、400nmにおけるモル吸光係数が3500~7500 L/(mol・cm)の範囲にあり、350nm~450nmの範囲の平均モル吸光係数が3500~7500 L/(mol・cm)であることが特に好ましい。本発明においては、上記特性を有するインデノナフトピラン化合物を含む光硬化性のコーティング剤を使用する場合に、本発明の方法は、特に優れた効果を発揮する。
 なお、400nmにおけるモル吸光係数、及び350~450nmの範囲の平均モル吸光係数は以下の方法に従い測定した値である。
 400nmにおけるモル吸光係数(L/(mol・cm))、及び350~450nmの範囲の平均モル吸光係数(L/(mol・cm));フォトクロミック化合物のトルエン溶液(濃度2.0×10-4mol/L)を調製し、セル長1cmの石英セル中、23℃、暗所で1時間静止した後、紫外可視分光光度計により300~800nmの範囲で吸収スペクトラムを測定した。得られた吸光度データより、400nmにおけるモル吸光係数を計算した。また、350~450nmの範囲においてモル吸光係数を1nm単位で計算し、その積算値をデータ数である101で除することにより350~450nmの範囲における平均モル吸光係数を算出した。
 本発明で使用する光硬化性のコーティング剤は、特に制限されるものではないが、フォトクロミック化合物の含有量が、後述する全ラジカル重合性単量体100質量部に対して0.1~20質量部、さらに0.5~15質量部、特に2.5~5質量部の範囲で用いるのが好ましい。
 (b)ラジカル重合性単量体としては、例えば(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、ビニル基、アリル基、スチリル基等のラジカル重合性基を有すラジカル重合性単量体が好ましく用いられる。これらのなかでも、入手のし易さ、硬化性の良さから(メタ)アクリロイル基又は(メタ)アクリロイルオキシ基を有するラジカル重合性単量体がより好適に使用される。これらラジカル重合性単量体は、光硬化性コーティング剤の硬化後の耐溶剤性や硬度、耐熱性等の硬化体特性等を考慮して、2種類以上を適宜混合して用いることもできる。
 上記ラジカル重合性単量体としては、表面硬度の向上、耐衝撃性の向上、ハードコート層または反射防止層などとの密着性の向上などの目的に応じて、従来使用されている光硬化性コーティング剤が特に制限なく使用できる。例えば、表面硬度の向上を目的とする場合には、3個以上のラジカル重合性単量体および/または有機-無機ハイブリッドモノマーなどを含む組成のものが好適に使用される。
 また、高いフォトクロミック性を得るために、前記特許文献5に開示されているような「フォトクロミック化合物を含む光硬化性コーティング剤」、より具体的には、高硬度モノマー(主に、分子内に3個以上のラジカル重合性基を有するモノマー)と低硬度モノマー(主に、分子内に2個のラジカル重合性基を有するモノマーで、重合基間の構造が長鎖の炭化水素鎖、ポリエチレンオキサイド鎖、及びポリプロピレンオキサイド鎖等となるモノマー)などを組み合わせて用いることが好ましい。また、必要に応じて、分子内に1個のラジカル重合性基を有する単官能モノマーを使用することもできる。この単官能モノマーは、1つの(メタ)アクリロイル基を有し、かつその他、グリシジル基、オキセタニル基、又はアルコキシシリル基等の反応性基を有するモノマーであることが好ましい。
 中でも、得られる被覆層が、特に優れたフォトクロミック特性を有し、高い硬度となるためには、以下のモノマーを使用することが好ましい。
 具体的には、前記高硬度モノマーとしては、分子内に3個以上の(メタ)アクリロイル基を有するモノマーを使用することが好ましい。
 また、低硬度モノマーとしては、分子内に2個の(メタ)アクリロイル基を有し、
 分子量が100~700の範囲の炭化水素鎖、
 分子量が100~2500の範囲であり、ビスフェノール骨格を有してもよいポリエチレンオキサイド鎖、及び
 分子量が100~3000の範囲であり、ビスフェノール骨格を有してもよいポリプロピレンオキサイド鎖
から選ばれる長鎖を介して、前記2個の(メタ)アクリロイル基が結合されてなるモノマーを使用することが好ましい。
 さらに、得られる被覆層がより優れた効果を発揮するためには、各モノマーの配合量を以下の範囲とすることが好ましい。具体的には、前記高硬度モノマー20質量部以上60質量部以下、前記低硬度モノマー20質量部以上80質量部以下、前記単官能モノマー0質量部以上60質量部以下とすることが好ましい。さらには、前記高硬度モノマー20質量部以上50質量部以下、前記低硬度モノマー40質量部以上70質量部以下、前記単官能モノマー1質量部以上40質量部以下とすることが好ましい。
 その他、該「フォトクロミック化合物を含む光硬化性コーティング剤」には、コーティング層とプラスチックレンズとの密着性を向上させるためにトリエタノールアミン等のアミン化合物を配合してもよい。アミン化合物を使用する場合、特に制限されるものではない。中でも、「フォトクロミック化合物を含む光硬化性コーティング剤」には、前記モノマーの合計質量(全ラジカル重合性単量体の合計質量)を100質量部としたとき、アミン化合物を0.1~10質量部配合することが好ましく、さらには、アミン化合物を0.5~5質量部配合することが好ましい。
 さらに、被覆層とプラスチックレンズとの密着性を向上させるために、例えばウレタンプライマーからなる層を被覆層とプラスチックレンズとの間に形成してもよい。
 (c)光重合開始剤としては、350nm以上450nm未満の範囲に発光ピーク波長を有するLEDにより照射される光によって分解する光重合開始剤であればよい。本発明の製造方法に好適に使用される光重合開始剤を具体例としては、
 ベンゾイン、ベンゾインメチルエーテル、ベンゾインブチルエーテル、4,4’-ジクロロベンゾフェノンなどのベンゾイン系光重合開始剤;
 2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(IRGACURE 651「登録商標」)などのベンジルケタール系光重合開始剤;
 1-ヒドロキシシクロヘキシルフェニルケトン(IRGACURE 184「登録商標」)、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン(IRGACURE 1173「登録商標」)、1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン(IRGACURE 2959「登録商標」)、2-ヒロドキシ-1-{4-[4-(2-ヒドロキシ-2-メチルプロピオニル)ベンジル]フェニル}-2-メチルプロパン-1-オン(IRGACURE 127「登録商標」)などのα-ヒドロキシアセトフェノン系光重合開始剤;
 2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン(IRGACURE 907「登録商標」)、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1(IRGACURE 369E「登録商標」)、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン(IRGACURE 379EG「登録商標」)などのα-アミノアセトフェノン系光重合開始剤;
 ビス(2,6-ジメトキシベンゾイル-2,4,4-トリメチル-ペンチルフォスフィンオキサイド、ビス(2,4,6―トリメチルベンゾイル)-フェニルフォスフィンオキサイド(IRGACURE 819「登録商標」)、2,4,6-トリメチルベンゾイルジフェニル-フォスフィンオキサイド(IRGACURE TPO「登録商標」)などのアシルフォスフィンオキサイド系光重合開始剤;
 1,2-オクタンジオン,1-[4-(フェニルチオ)フェニル]-,2-(O-ベンゾイルオキシム)(IRGACURE OXE 01「登録商標」)、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)(IRUGACURE OXE 02「登録商標」)などのオキシムエステル系光重合開始剤;
 2-イソプロピルチオキサントンなどのチオキサントン系光重合開始剤;
ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)フェニル)チタニウム(IRGACURE 784「登録商標」)などのチタノセン系光重合開始剤;
等を挙げることができる。これらの中でも、上記波長のLEDにより照射される光を吸収して分解されやすく、効率的に未硬化被覆層を硬化することが可能であるという観点から、アシルフォスフィンオキサイド系光重合開始剤を用いることが好ましい。これらの光重合開始剤は、単独で用いても、或いは複数の光重合開始剤を組み合わせて用いても良い。例えば、アシルフォスフィンオキサイド系光重合開始剤とそれ以外の光重合開始剤を組み合わせて用いても良い。上記光重合開始剤は、全ラジカル重合性単量体100質量部に対して0.001~5質量部の範囲で用いるのが好ましい。
 さらに、前記した光重合開始剤に加えて熱重合開始剤を添加することも可能である。熱重合開始剤としては、好適な例として、ジアシルパーオキサイド、パーオキシエステル、パーカーボネートおよびアゾ化合物等が挙げられる。
 さらに、上記「フォトクロミック化合物を含む光硬化性コーティング剤」には、被覆層の黄変防止や成形性の向上、さらにはフォトクロミック化合物を添加時のフォトクロミック化合物の耐久性の向上、発色速度の向上、退色速度の向上等のために、界面活性剤、酸化防止剤、ラジカル補足剤、紫外線安定剤、紫外線吸収剤、離型剤、着色防止剤、帯電防止剤、蛍光染料、染料、顔料、香料、可塑剤等の添加剤を添加してもよい。
 (被覆層を有するプラスチックレンズの製造方法)
 前述のとおり、本発明の被覆層を有するプラスチックレンズの製造方法における基本的な製造プロセスは、プラスチックレンズの一方の表面上に光硬化性組成物からなる未硬化被覆層を形成する第一工程、及びプラスチックレンズに、未硬化被覆層の外表面の上方から350nm以上450nm未満の範囲に発光ピーク波長を有するLEDで光を照射することにより該未硬化被覆層を硬化させる第二工程を含む。以下第一工程について説明する。
 (第一工程)
 本発明の被覆層を有するプラスチックレンズの製造方法において、前記第一工程において、原料プラスチックレンズ基材の表面に光硬化性のコーティング剤からなる未硬化被覆層を形成するためには基材表面に光硬化性のコーティング剤を塗布すればよく、塗布方法としては、例えばスピンコーティング、スプレーコーティング、ディップコーティング、ディップ-スピンコーティング等の公知の塗布する方法が適用できる。
 ここで、本発明における被覆層の厚さは、あまりに薄いと十分なフォトクロミック特性、特に発色濃度が得られず、逆にあまりに厚いとLEDの光が十分に内部まで到達せず硬化不十分になることから、5ミクロン以上300ミクロン以下であることが好ましく、10ミクロン以上150ミクロン以下であることがさらに好ましく、20ミクロン以上50ミクロン以下であることが特に好ましい。
 なお、光硬化性のコーティング剤の塗布に先立ち、最終的に得られる被覆層と基材との密着性を向上させる目的でプラスチックレンズに前処理を行うことが好ましい。
 前処理としては、塩基性水溶液又は酸性水溶液による化学的処理、研磨剤を用いた研磨処理、大気圧プラズマ及び低圧プラズマ等を用いたプラズマ処理、コロナ放電処理、またはUVオゾン処理等を挙げることができる。また、プラスチックレンズの前処理においては、異なる2種類以上の処理を併用しても構わない。また、形成される被覆層との密着性を向上させたり、プラスチックレンズの耐衝撃性を向上させたりする目的で、予め原料レンズ基材表面に別のコーティング層(以下、プライマー層ともいう)を形成してもよい。プライマー層に使用される材料は特に限定されないが、好適に使用される例としては、ポリウレタン樹脂、エポキシ樹脂またはポリアセタール樹脂等が挙げられる。また、ポリウレタン樹脂からなるプライマー層を形成させる方法としては、特に限定されないが、湿気硬化性ポリウレタン樹脂からなるコーティング剤を塗布、硬化させる方法が特に優れた密着性を示すため、好ましい。次に第二工程について説明する。
 (第二工程)
 第二工程は、未硬化被覆層を形成したプラスチックレンズの未硬化被覆層の外表面の上方から350nm以上450nm未満の範囲に発光ピーク波長を有するLEDにより光を照射することにより該未硬化被覆層を硬化させる工程である。なお、当該工程において重合阻害を起こすことなく十分に硬化させるために、酸素濃度が10000ppm以下、特に1000ppm以下である雰囲気下で光照射するのが好適である。たとえば、窒素、アルゴン、ヘリウムなどの不活性ガスで装置内(雰囲気)を十分に置換してから光照射するのが好適である。不活性ガスとしては、コストの観点から窒素を使用するのが最も好ましい。まず最初にLEDについて説明する。
 (LED)
 LEDとは、Light Emitting Diodeの略で、一方向に電圧を加えたときに発光する半導体の素子であり、発光ダイオードと呼ばれることもある。本発明の被覆層を有するプラスチックレンズの製造方法では、光源として350nm以上450nm未満の範囲に発光ピーク波長を有するLEDが使用される。
 従来の光重合装置では、光源として、例えば、メタルハライドランプ、超高圧水銀ランプ、高圧水銀ランプ、中圧水銀ランプ、殺菌ランプ、キセノンランプ、カーボンアーク、タングステンランプ等の有電極ランプ、または無電極ランプ等を用いているが、これらは200nm~600nmに渡って幅広い波長の光を放出する。
 フォトクロミック化合物はその特性上、200nm~400nm付近の紫外線を幅広く吸収する。加えて、それによって生成する着色体もまた200nm~400nm付近の紫外線を着色前よりもさらに高いモル吸光係数をもって吸収することが一般的である。その結果、光重合開始剤が紫外線を吸収することが妨げられる。従って、フォトクロミック化合物を含まない光硬化性組成物に比べると、未硬化被覆層を硬化させるために長時間光照射を行う必要が生じ、その結果プラスチックレンズの温度が上昇してしまう。
 その点、発光ピークがシャープであるLEDを使用することにより、フォトクロミック化合物の着色を抑制しつつ、光重合開始剤を分解させることができるため、効率的に未硬化被覆層を硬化することができる。
 使用するLEDの発光ピーク波長は、用いるフォトクロミック化合物と光重合開始剤の吸収スペクトラムから好適な波長を選択することができるが、短波長すぎるとフォトクロミック化合物の吸収により光重合開始剤の分解が抑制され硬化不良を生じやすく、長波長すぎると光重合開始剤そのものの吸収が少なくなり同じく硬化不良になりやすいことから、360nm以上420nm未満とすることが好ましく、370nm以上400nm以下とすることがより好ましく、370nm以上390nm未満とすることがさらに好ましい。
 また、LEDの発光ピークの半値幅としては、あまり大きな場合は効果を損ねるため、30nm未満、さらに20nm未満とすることが好ましい。半値幅は狭ければ狭いほど効果的であるが、LEDの現状の工業的生産を考えると、半値幅の下限は5nmである。
 また、照射光が拡散すると、被覆層の硬化が不十分となるため、LED照射装置からのLEDの射出角としては、120度以下、さらに90度以下、特に70度以下とすることが好ましい。射出角の下限値は、特に制限されるものではないが、30度である。この角度は、LEDから照射される光の広がりを指す。
 さらに、短時間で未硬化被覆層の硬化を行える観点からLEDにより照射される光の照射強度としては、発光照射面において2W/cm以上のLEDを使用することが好ましい。照射強度が2W/cm未満の場合、未硬化被覆層の硬化が不十分となるか、硬化するのに生産上問題となるほどの長時間が必要となる傾向にある。照射強度としては、3W/cm以上であることがより好ましく、5W/cm以上であることがさらに好ましく、10W/cm以上とすることが特に好ましい。なお、照射強度は、高ければ高いほど調整の幅が広がるため好ましいが、LEDの現状の工業的生産を考慮すると、上限は30W/cmである。
 ここで前記照射強度は、発光ピーク波長で測定された値である。
 このようなLED光源として市販のLED照射装置である光源を用いることができる。具体的な光源としては、SemrayUV4003(「登録商標」;発光ピーク波長365nm、385nm、395nmのもの)、NobleCure Altairシリーズ(「登録商標」;発光ピーク波長365nm、385nm、395nmのもの)、NobleCure IRISシリーズ(「登録商標」;発光ピーク波長365nm、385nm、395nmのもの)、以上いずれもHERAEUS社製、Unifield NFシリーズ(「登録商標」;発光ピーク波長365nm、385nmのもの)、Unifield NLシリーズ、(「登録商標」;発光ピーク波長365nm、385nmのもの)、以上いずれもUSHIO社製、等が挙げられる。これらの光源は、プラスチックレンズの大きさ等を勘案して複数の光源を並べて使用しても良い。さらに、フォトクロミック化合物や光重合開始剤の吸収特性に応じて、異なる種類の発光ピーク波長を有するものを組み合わせて用いてもよい。
 (LEDによる光の照射条件)
 上記第二工程における未硬化被覆層が形成されたプラスチックレンズ表面へのLEDによる光の照射条件としては、該未硬化被覆層が硬化するに十分な条件であれば良く、未硬化被覆層を構成する光硬化性のコーティング剤の種類、未硬化被覆層の厚さ、プラスチックレンズの形状、大きさ等を勘案して適宜決定すれば良い。硬化時間、硬化時におけるプラスチックレンズ表面の温度上昇を抑制するという観点から、前記未硬化被覆層が形成されたプラスチックレンズ表面における光の照射強度を100mW/cm以上、特に250mW/cm以上とすることが好ましい。なお、この照射強度は、プラスチックレンズ表面における最小となる照射強度(最小照射強度)の値を指す。例えば、上に凸のレンズの凸側の外表面から光を照射する場合には、レンズ中心部の表面における照射強度が高くなるが、レンズ端部の照射強度は低くなる。この場合、レンズ端部の表面における照射強度が100mW/cm以上、特に250mW/cm以上となることが好ましい。
 また、プラスチックレンズ表面における光の照射強度の上限値は、特に制限されるものではないが、1000mW/cmである。
 ここで前記照射強度は、発光ピーク波長で測定された値である。
 なお、プラスチックレンズの形状として、表面が平坦なフラットレンズを用いる場合、LEDにより照射された光は、未硬化被覆層表面全体にわたって均一な照射強度で到達する。すなわち、未硬化被覆層表面に照射される光の積算光量が均一である。しかしながら、レンズ表面側が凸となるような曲面を有するレンズを用いた場合には、レンズ中心部とレンズの端部とでは、LEDの照射面からの距離が異なるため、レンズ中心部に到達する光の照射強度に対し、レンズ端部に到達する光の照射強度が低くなる傾向にある。このため、照射条件によっては、レンズの中心部分と端部分との硬化程度に差が生じ、それによりレンズ内でフォトクロミック特性、特に退色速度にムラを生じてしまう場合がある。これを防止するために、前記未硬化被覆層が形成されたプラスチックレンズ表面における光の最大照射強度に対する最小照射強度の割合が70%以上、特に80%以上となるような照射条件で未硬化被覆層の硬化を行うことが好ましい。これにより、フォトクロミック特性を均一にすることが可能となる。この場合、最大照射強度に対する最小照射強度の割合は大きければ大きいほど均一な性能を発揮する硬化層(被覆層)を形成できる(最大は100%である。)。100%に近づける方法としては、例えば、後述するようにLEDの照射面とプラスチックレンズの一方の表面との距離を一定以上離す方法を採用することができる。また、レンズ中心部の表面とレンズ端部の表面との照射強度が同じとなるように、レンズ表面とLED照射面との距離が一定となるようにLEDを複数配置して使用することもできる(例えば、複数のLEDの照射面をレンズ曲面と同じ曲面となるように並べる。)。そのため、最大照射強度に対する最小照射強度の割合の上限値は100%である。ただし、一般的な曲面を有するプラスチックレンズを使用する場合、高品質で実用的なプラスチックレンズを生産することができ、簡易的な装置とするためには、最大照射強度に対する最小照射強度の割合の上限値は95%であってもよい。
 さらに、LEDの照射面とプラスチックレンズの一方の表面との距離については、あまり近くすると、未硬化被覆層に到達する光の照射強度が高すぎて未硬化被覆層の表面温度の制御が困難になる。また、後述するプラスチックレンズとして表面側が凸となるような曲面を有するレンズを用いた際のレンズカーブによる、レンズの中心部分と端部分との硬化程度に差が生じてしまう。このことから、該距離は、3cm以上とすることが好ましく、5cm以上とすることがさらに好ましく、10cm以上とすることが特に好ましい。なお、現状のLEDの性能、装置の縮小化を考慮すると、該距離の上限値は30cmである。
 LEDによって照射された光の照射強度は照射面からの距離に応じて減少する傾向があるが、その減少度合い(減衰度)はLEDの照射面からの距離が近い程大きく、離れるにつれて少なくなる傾向にある。従って、予め用いるLED光源における照射面からの距離と当該距離における照射強度を測定し、LEDの照射面と未硬化被覆層表面との距離を調整することによって、レンズ中央部とレンズ端部における照射強度の比を上記範囲に制御することができる。
 また、未硬化被覆層表面に照射される光の積算光量の最大値(レンズ表面側が凸となるような曲面を有するレンズを用いた場合には、場所により積算光量が異なるため、その中で最も高い積算光量を指す)は2~50J/cmの範囲、好ましくは3~20J/cmの範囲、特に好ましくは、3~15J/cmの範囲となるような照射条件で行うことが好適である。ここで積算光量とは、未硬化被覆層表面に到達する光の照射強度(通常UV-A領域(320~390nmの範囲)で測定される)と照射時間の積で表される。未硬化被覆層表面に到達する光の照射強度および積算光量は、市販のUV積算光量計、例えば、超小型UVラジオメーター マイクロキュア(「登録商標」;HERAEUS社製)により測定することができる。
 また、当該工程においては、未硬化被覆層の硬化時の温度上昇による、プラスチックレンズ変形を抑制するという観点から未硬化被覆層の表面温度(なお、実施例・比較例では、「光照射後のレンズ温度」として記載している。)が100℃以下、好ましくは80℃以下、より好ましくは70℃以下、特に好ましくは65℃以下となるような条件で未硬化被覆層硬化を行うことが好ましい。従来の光源と比較して赤外線を発生しにくいため、プラスチックレンズの温度は上昇しづらく比較的温度制御は容易であるが、それでも表面温度は光の照射強度及び照射時間(硬化時間)に応じて上昇する傾向にある。従って、上記の温度に制御するために、LEDの照射面と未硬化被覆層表面との距離、或いは硬化時間の調整を行えば良い。また、光照射を行う雰囲気に窒素ガスを流通させて、プラスチックレンズの表面温度を制御することもできる。
 一方、「光照射後のレンズ温度」の下限値は、40℃以上であることが好ましい。40℃以上とすることにより、十分に硬化することが可能となり、硬化した被覆層の硬度を高くすることができる。加えて、光照射されることにより、フォトクロミック化合物が発色するが、40℃以上となることにより、光照射中の発色濃度を低下することができる。その結果、光が透過する割合が高くなり、硬化が十分に促進される。特に、この効果は、前記の400nmにおけるモル吸光係数が3000 L/(mol・cm)以上であり、かつ、350~450nmの範囲の平均モル吸光係数が3000 L/(mol・cm)以上であるフォトクロミック化合物(インデノナフトピラン化合物)を使用した場合に顕著となる。
 以上のことから、プラスチックレンズの変形抑制効果、及び高性能な被覆層形成という観点から、「光照射後のレンズ温度」は、50~70℃であることが好ましく、50~65℃が特に好ましい。
 本発明においては、一定の照射強度を一定の時間照射することによって行ってもよいのは言うまでもなく、始めは照射強度の高い光を照射し、ある程度硬化が進行してから段階的に照射強度を下げることで制御する方法、或いは始めは、LEDの照射面と未硬化被覆層表面との距離を近づけて照射し、ある程度硬化が進行してから段階的に照射強度を下げることで制御する方法等も採用することもできる。
 なお、照射強度を変化させる場合には、光を照射している間は、「光照射後のレンズ温度」が100℃以下となるようにすることが好ましく、50~70℃とすることがより好ましく、50~65℃とすることがさらに好ましい。
 (その後の処理)
 本発明の被覆層を有するプラスチックレンズの製造方法により得られる被覆層(コーティング層)を有するプラスチックレンズは、そのまま光学材料として使用することが可能であるが、得られた被覆層の上に更にハードコート層を形成するのが好ましい。ハードコート層を形成することにより、プラスチックレンズの耐擦傷性を向上させることができる。
 ハードコート層の形成は、一般的に採用されている方法に従い、ハードコート材を塗布しこれを硬化させればよい。ハードコート剤としては、シランカップリング剤やケイ素、ジルコニウム、アンチモン、アルミニウム等の酸化物のゾルを主成分とするハードコート剤、有機高分子体を主成分とするハードコート剤など、公知のハードコート剤が制限無く使用できる。
 また、第二工程で得られた被覆層を有するレンズの当該被覆層上(或いは必要に応じてその上に形成されるハードコート層上)に反射防止処理、帯電防止処理等の加工及び2次処理を施すことも可能である。これら2次処理は、SiO、TiO、ZrO等の金属酸化物の薄膜層を蒸着法により形成したり有機高分子体の薄膜層を形成したりすることにより行うことができる。
 以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。
 実施例1
 チオウレタン樹脂製のプラスチックレンズ(中心厚1mm、周縁厚7mm、直径75mm、ベースカーブ4.00、中心部と端部のレンズ高さの差0.5cm)を60℃の10%アルカリ水溶液へ5分間浸漬することにより、前処理を行なった。前処理後、純水にて洗浄し、引き続き乾燥処理を施した。
 このプラスチックレンズの凸面の表面に、下記組成の光硬化性のコーティング剤をコーティングし、未硬化被覆層を形成した。なお、コーティングは、MIKASA製スピンコーター1HDX2を用いて行い(回転数600rpm)、未硬化被覆層の膜厚が40μmとなるようにした。
 〔光硬化性コーティング剤1〕
a)フォトクロミック化合物
 ・下記式で示されるフォトクロミック化合物(400nmにおけるモル吸光係数3230 L/(mol・cm)、350~450nmの範囲の平均モル吸光係数3720 L/(mol・cm)) 2.5質量部
Figure JPOXMLDOC01-appb-C000001
b)ラジカル重合性単量体
3個以上の(メタ)アクリロイル基を有する高硬度モノマー
 ・トリメチロールプロパントリメタクリレート 15質量部
 ・ポリエステルオリゴマーヘキサアクリレート(ダイセルユーシービー社製、EB-1830) 10質量部
2個の(メタ)アクリロイル基を有し、長鎖を介して該(メタ)アクリロイル基が結合されてなる低硬度モノマー
 ・平均分子量532のポリエチレングリコールジアクリレート(主鎖の平均分子量406) 15質量部
 ・平均分子量776の2,2-ビス(4-アクリロイルオキシポリエチレングリコールフェニル)プロパン(主鎖の平均分子量650) 50質量部
単官能モノマー 
・グリシジルメタクリレート 10質量部
 ・γ-メタクリロイルオキシプロピルトリメトキシシラン 7質量部
c)光重合開始剤
・IRGACURE819(「登録商標」;BASF社製):ビス(2,4,6―トリメチルベンゾイル)-フェニルフォスフィンオキサイド 0.3質量部
その他添加剤
 ・N-メチルジエタノールアミン 3質量部
 ・ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート 5質量部
 以上の各成分を十分に混合することにより、光硬化性コーティング剤1とした。なお、上記配合量は、実数値であり、b)ラジカル重合性単量体の合計量を100質量部として、各成分の配合量を換算し直した数値ではない。
 続いて、該レンズの未硬化被覆層が形成された面(凸面側)を上面にして、上方14cmに設置したLED装置(Senary UV4003(「登録商標」;ピーク波長が385nmのもの)、HERAEUS社製、発光ピークの半値幅10nm、射出角60度、照射強度を7W/cmに調整)より窒素ガス雰囲気中で40秒間光を照射し、未硬化被覆層を硬化させた。
 この時、未硬化被覆層が形成されたプラスチックレンズの表面における光の照射強度を紫外線積算光量計H12684-385(浜松ホトニクス社製)で測定したところ、LEDの照射面より最も近い位置(プラスチックレンズ表面の中心部)において400mW/cmであり、最も遠い位置において380mW/cmであった。また、積算光量の最大値を超小型UVラジオメーター マイクロキュア(「登録商標」;HERAEUS社製)で測定したところ8J/cmであった。これら照射条件等を表1に示した。
 このレンズの光照射直後の表面温度は55℃であった。その後レンズをさらに110℃で1時間ポストキュアした。
 得られた被覆層を有するプラスチックレンズを試料とし、膜硬度、熱変形の有無、及び被覆層とプラスチックレンズとの密着性、及びフォトクロミック特性(退色半減期)について調べた。その結果を表2に示した。なお、これらの評価基準は下記(A)~(D)に示すとおりである。
 (A)膜硬度(ビッカース硬度):ダイヤモンド圧子を10gfの試験力で30秒間押し込んだ後、圧痕の面積からビッカース硬度を算出した。
 (B)レンズの熱変形:平行に並んだ2本の屋内蛍光灯の反射光を用いて、プラスチックレンズの変形を目視で確認した。評価基準としては、プラスチックレンズの凸面もしくは凹面に屋内蛍光灯を映し、重合前の2本の蛍光灯間の距離を1とした時に、重合後の蛍光灯間の距離が0.98以上1.02未満の範囲で蛍光灯が2本平行に並んでいるもの(熱変形していないもの)をA、重合後の蛍光灯間の距離が0.95以上0.98未満又は1.02以上1.05未満であり2本の蛍光灯の中央部が重合前に比べてほとんど歪んでいないもの(重合前後でほとんど熱変形していないもの)をB、重合後の蛍光灯間の距離が0.90以上0.95未満又は1.05以上1.10未満であり2本の蛍光灯の中央部がわずかに歪んでいるもの(わずかに熱変形しているもの)をC、重合後の蛍光灯間の距離が0.90未満又は1.10以上でありひどく歪んでいるもの(熱変形しているもの)をEとし、4段階評価とした。
 (C)レンズと被覆層との密着性:JIS D-0202に準じて、クロスカットテープ試験によって評価した。即ち、カッターナイフを使い、光硬化性コーティング剤で被覆されたプラスチックレンズのコーティング層の表面に、約1mm間隔に切れ目を入れ、マス目を100個形成させる。その上にセロファン粘着テープ(ニチバン株式会社製セロテープ(登録商標))を強く貼りつけ、次いで、表面から90°方向で一気に引っ張り、剥離した後、コーティング層が残っているマス目の数を測定した。評価(評価後の残存マス目/評価前のマス目で示す。)は、100/100をA、100/100未満95/100以上をB、95/100未満80/100以上をC、80/100未満50/100以上をD、50/100未満をEとする5段階評価とした。
 (D)フォトクロミック特性:
 (D-1)最大吸収波長(λmax):得られたレンズに、浜松ホトニクス製のキセノンランプL-2480(300W)SHL-100をエアロマスフィルター(コーニング社製)を介して20℃±1℃、フォトクロミックコート層表面でのビーム強度365nm=2.4mW/cm,245nm=24μW/cmで120秒間照射して発色させ、このときの最大吸収波長を(株)大塚電子工業製の分光光度計(瞬間マルチチャンネルフォトディテクターMCPD1000)により求めた。なお、該最大吸収波長は、発色時の色調に関係する。
 (D-2)発色濃度:120秒間光照射した後の、最大吸収波長における吸光度{ε(120)}と、光照射していない状態の硬化体の該波長における吸光度{ε(0)}との差{ε(120)-ε(0)}を求めこれを発色濃度とした。この値が高いほどフォトクロミック特性が優れているといえる。
 (D-3)退色半減期:120秒間光照射した後、光の照射を止め、該硬化体の最大波長における吸光度が前記{ε(120)-ε(0)}の1/2まで低下するのに要する時間{t1/2(min)}を測定した。この時間が短いほど退色速度が速くフォトクロミック特性が優れているといえる。
 (D-4)目視での退色均一性:晴天、気温23℃前後の屋外で発色させ、室内に戻った時の退色の均一性を目視で評価した。中心部と端部で差が見られない場合はA、わずかに差がみられるが問題ない範囲である場合をB、明らかに差があり問題である場合をCとする3段階評価とした。
 実施例2
 実施例1と同様に未硬化被覆層を形成した後、該レンズの未硬化被覆層が形成された面(凸面側)を上面にして、上方4cmに設置したLED装置(NobleCure Altair150(「登録商標」;ピーク波長が385nmのもの)、HERAEUS社製、発光ピークの半値幅10nm、射出角60度、照射強度3.3W/cm)より窒素ガス雰囲気中で40秒間光を照射し、未硬化被覆層を硬化させた。
 この時、未硬化被覆層が形成されたプラスチックレンズの表面における光の照射強度を紫外線積算光量計H12684-385(浜松ホトニクス社製)で測定したところ、LEDの照射面より最も近い位置において900mW/cmであり、最も遠い位置において630mW/cmであった。また、積算光量の最大値を超小型UVラジオメーター マイクロキュア(「登録商標」;HERAEUS社製)で測定したところ8J/cmであった。これら照射条件等を表1に示した。
 このレンズの光照射直後の表面温度は80℃であった。その後レンズをさらに110℃で1時間ポストキュアした。
 得られた被覆層を有するプラスチックレンズを試料とし、膜硬度、熱変形の有無、及び被覆層とプラスチックレンズとの密着性、及びフォトクロミック特性(退色半減期)について調べた。その結果を表2に示した。
 実施例3
 実施例1と同様に未硬化被覆層を形成した後、該レンズの未硬化被覆層が形成された面(凸面側)を上面にして、上方14cmに設置したLED装置(Senary UV4003(ピーク波長が365nmのもの)、HERAEUS社製、発光ピークの半値幅13nm、射出角60度、照射強度を7W/cmに調整)より窒素ガス雰囲気中で40秒間光を照射し、未硬化被覆層を硬化させた。
 この時、未硬化被覆層が形成されたプラスチックレンズの表面における光の照射強度を紫外線積算光量計H12684-365(浜松ホトニクス社製)で測定したところ、LEDの照射面より最も近い位置において350mW/cmであり、最も遠い位置において333mW/cmであった。また、積算光量の最大値を超小型UVラジオメーター マイクロキュア(「登録商標」;HERAEUS社製)で測定したところ8J/cmであった。これら照射条件等を表1に示した。
 このレンズの光照射直後の表面温度は55℃であった。その後レンズをさらに110℃で1時間ポストキュアした。
 得られた被覆層を有するプラスチックレンズを試料とし、膜硬度、熱変形の有無、及び被覆層とプラスチックレンズとの密着性、及びフォトクロミック特性(退色半減期)について調べた。その結果を表2に示した。
 実施例4
 実施例1と同様に未硬化被覆層を形成した後、該レンズの未硬化被覆層が形成された面(凸面側)を上面にして、上方14cmに設置したLED装置(Senary UV4003(ピーク波長が385nmのもの)、HERAEUS社製、発光ピークの半値幅10nm、射出角60度、照射強度を6W/cmに調整)より窒素ガス雰囲気中で40秒間光を照射し、未硬化被覆層を硬化させた。
 この時、未硬化被覆層が形成されたプラスチックレンズの表面における光の照射強度を紫外線積算光量計H12684-385(浜松ホトニクス社製)で測定したところ、LEDの照射面より最も近い位置において300mW/cmであり、最も遠い位置において285mW/cmであった。また、積算光量の最大値を超小型UVラジオメーター マイクロキュア(「登録商標」;HERAEUS社製)で測定したところ6J/cmであった。これら照射条件等を表1に示した。
 このレンズの光照射直後の表面温度は40℃であった。その後レンズをさらに110℃で1時間ポストキュアした。
 得られた被覆層を有するプラスチックレンズを試料とし、膜硬度、熱変形の有無、及び被覆層とプラスチックレンズとの密着性、及びフォトクロミック特性(退色半減期)について調べた。その結果を表2に示した。
 比較例1
 実施例1と同様に未硬化被覆層を形成した後、該レンズの未硬化被覆層が形成された面(凸面側)を上面にして、上方20cmに設置した無電極UVランプシステムDバルブ、(発光ピーク波長は主に380nm付近だが、発光波長は200~600nm)、Senary社製)より窒素ガス雰囲気中で40秒間光を照射し、未硬化被覆層を硬化させた。
 この時、未硬化被覆層が形成されたプラスチックレンズの表面における光の照射強度は、無電極UVランプシステムDバルブの照射面より最も近い位置において250mW/cmであり、最も遠い位置において238mW/cmであった。また、積算光量の最大値を超小型UVラジオメーター マイクロキュア(「登録商標」;HERAEUS社製)で測定したところ10J/cmであった。これら照射条件等を表1に示した。
 このレンズの光照射直後の表面温度は110℃であった。その後レンズをさらに110℃で1時間ポストキュアした。
 得られた被覆層を有するプラスチックレンズを試料とし、膜硬度、熱変形の有無、及び被覆層とプラスチックレンズとの密着性、及びフォトクロミック特性(退色半減期)について調べた。その結果を表2に示した。
 比較例2
 実施例1と同様に未硬化被覆層を形成した後、該レンズの未硬化被覆層が形成された面(凸面側)を上面にして、上方20cmに設置した無電極UVランプシステムDバルブ、(発光ピーク波長は主に380nm付近だが、発光波長は200~600nm)、Senary社製)より窒素ガス雰囲気中で32秒間光を照射し、未硬化被覆層を硬化させた。
 この時、未硬化被覆層が形成されたプラスチックレンズの表面における光の照射強度は、無電極UVランプシステムDバルブの照射面より最も近い位置において250mW/cmであり、最も遠い位置において238mW/cmであった。また、積算光量の最大値を超小型UVラジオメーター マイクロキュア(「登録商標」;HERAEUS社製)で測定したところ8J/cmであった。これら照射条件等を表1に示した。
 このレンズの光照射直後の表面温度は95℃であった。その後レンズをさらに110℃で1時間ポストキュアした。
 得られた被覆層を有するプラスチックレンズを試料とし、膜硬度、熱変形の有無、及び被覆層とプラスチックレンズとの密着性、及びフォトクロミック特性(退色半減期)について調べた。その結果を表2に示した。
 表2に示される結果から明らかなように、本発明の方法である発光ピーク波長が350nm以上450nm未満のLEDにより光を照射した場合、従来の光源より光を照射した場合と比較して、未硬化被覆層を硬化した後のレンズの温度を低く抑制することができる。その結果レンズの変形を抑制することができる。また、フォトクロミック特性においても、発色濃度、退色速度の点で、従来の光源よりも優れることが分かる。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 実施例5
〔光硬化性コーティング剤2〕
a)フォトクロミック化合物
 下記式で示されるフォトクロミック化合物(400nmにおけるモル吸光係数6130 L/(mol・cm)、350~450nmの範囲の平均モル吸光係数4050 L/(mol・cm)) 2.5質量部
Figure JPOXMLDOC01-appb-C000004
b)ラジカル重合性単量体
3個以上の(メタ)アクリロイル基を有する高硬度モノマー
 ・トリメチロールプロパントリメタクリレート 15質量部
 ・ポリエステルオリゴマーヘキサアクリレート(ダイセルユーシービー社製、EB-1830) 10質量部
2個の(メタ)アクリロイル基を有し、長鎖を介して該(メタ)アクリロイル基が結合されてなる低硬度モノマー
 ・平均分子量532のポリエチレングリコールジアクリレート(主鎖の平均分子量406) 15質量部
 ・平均分子量776の2,2-ビス(4-アクリロイルオキシポリエチレングリコールフェニル)プロパン(主鎖の平均分子量650) 50質量部
単官能モノマー
 ・グリシジルメタクリレート 10質量部
 ・γ-メタクリロイルオキシプロピルトリメトキシシラン 7質量部
c)光重合開始剤
・IRGACURE819(「登録商標」;BASF社製):ビス(2,4,6―トリメチルベンゾイル)-フェニルフォスフィンオキサイド 0.3質量部
その他添加剤
 ・N-メチルジエタノールアミン 3質量部
 ・ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート 5質量部
 以上の各成分を十分に混合して光硬化性コーティング剤2とした。なお、上記配合量は、実数値であり、b)ラジカル重合性単量体の合計量を100質量部として、各成分の配合量を換算し直した数値ではない。
 該光硬化性コーティング剤2を用いて実施例1と同様に未硬化被覆層を形成した後、該レンズの未硬化被覆層が形成された面(凸面側)を上面にして、上方14cmに設置したLED装置(Senary UV4003(ピーク波長が385nmのもの)、HERAEUS社製、発光ピークの半値幅10nm、射出角60度、照射強度を7W/cmに調整)より窒素ガス雰囲気中で40秒間光を照射し、未硬化被覆層を硬化させた。
 この時、未硬化被覆層が形成されたプラスチックレンズの表面における光の照射強度を紫外線積算光量計H12684-385(浜松ホトニクス社製)で測定したところ、LEDの照射面より最も近い位置において400mW/cmであり、最も遠い位置において380mW/cmであった。また、積算光量の最大値を超小型UVラジオメーター マイクロキュア(「登録商標」;HERAEUS社製)で測定したところ8J/cmであった。これら照射条件等を表3に示した。
 このレンズの光照射直後の表面温度は55℃であった。その後レンズをさらに110℃で1時間ポストキュアした。
 得られた被覆層を有するプラスチックレンズを試料とし、膜硬度、熱変形の有無、及び被覆層とプラスチックレンズとの密着性、及びフォトクロミック特性(退色半減期)について調べた。その結果を表4に示した。
 実施例6
〔光硬化性コーティング剤3〕
a)フォトクロミック化合物
 実施例5で使用したものと同じフォトクロミック化合物(400nmにおけるモル吸光係数6130 L/(mol・cm)、350~450nmの範囲の平均モル吸光係数4050 L/(mol・cm))   2.5質量部
b)ラジカル重合性単量体
3個以上の(メタ)アクリロイル基を有する高硬度モノマー
 ・トリメチロールプロパントリメタクリレート 40質量部
2個の(メタ)アクリロイル基を有し、長鎖を介して該(メタ)アクリロイル基が結合されてなる低硬度モノマー
 ・平均分子量770のポリエチレングリコールジメタクリレート(主鎖の平均分子量616) 53質量部
単官能モノマー
 ・グリシジルメタクリレート 1質量部
 ・γ-メタクリロイルオキシプロピルトリメトキシシラン 6質量部
c)光重合開始剤
・IRGACURE819(「登録商標」;BASF社製):ビス(2,4,6―トリメチルベンゾイル)-フェニルフォスフィンオキサイド 0.3質量部
その他添加剤
 ・ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート 5質量部
 以上の各成分を十分に混合して光硬化性コーティング剤3とした。なお、上記配合量は、実数値であり、b)ラジカル重合性単量体の合計量を100質量部として、各成分の配合量を換算し直した数値ではない(ただし、実施例6は、ラジカル重合性単量体の合計量が100質量部となっている。)。
 該光硬化性コーティング剤3を用いて実施例1と同様に未硬化被覆層を形成した後、該レンズの未硬化被覆層が形成された面(凸面側)を上面にして、上方14cmに設置したLED装置(Senary UV4003(ピーク波長が385nmのもの)、HERAEUS社製、発光ピークの半値幅10nm、射出角60度、照射強度を7W/cmに調整)より窒素ガス雰囲気中で40秒間光を照射し、未硬化被覆層を硬化させた。
 この時、未硬化被覆層が形成されたプラスチックレンズの表面における光の照射強度を紫外線積算光量計H12684-385(浜松ホトニクス社製)で測定したところ、LEDの照射面より最も近い位置において400mW/cmであり、最も遠い位置において380mW/cmであった。また、積算光量の最大値を超小型UVラジオメーター マイクロキュア(「登録商標」;HERAEUS社製)で測定したところ8J/cmであった。これら照射条件等を表3に示した。
 このレンズの光照射直後の表面温度は55℃であった。その後レンズをさらに110℃で1時間ポストキュアした。
 得られた被覆層を有するプラスチックレンズを試料とし、膜硬度、熱変形の有無、及び被覆層とプラスチックレンズとの密着性、及びフォトクロミック特性(退色半減期)について調べた。その結果を表4に示した。
 実施例7
 該光硬化性コーティング剤3を用いて実施例1と同様に未硬化被覆層を形成した後、該レンズの未硬化被覆層が形成された面(凸面側)を上面にして、上方14cmに設置したLED装置(Senary 改良品(ピーク波長が385nmと405nmのもの)、HERAEUS社製、発光ピークの半値幅それぞれ10nm、射出角60度、照射強度を385nmと405nmにおいてそれぞれ3.5W/cmに調整)より窒素ガス雰囲気中で40秒間光を照射し、未硬化被覆層を硬化させた。
 この時、未硬化被覆層が形成されたプラスチックレンズの表面における光の照射強度を紫外線積算光量計H12684-385、およびH12684-405(浜松ホトニクス社製)で測定したところ、385nm、405nmともにLEDの照射面より最も近い位置において300mW/cmであり、最も遠い位置において285mW/cmであった。また、積算光量の最大値を超小型UVラジオメーター マイクロキュア(「登録商標」;HERAEUS社製)で測定したところ7J/cmであった。これら照射条件等を表3に示した。
 このレンズの光照射直後の表面温度は50℃であった。その後レンズをさらに110℃で1時間ポストキュアした。
 得られた被覆層を有するプラスチックレンズを試料とし、膜硬度、熱変形の有無、及び被覆層とプラスチックレンズとの密着性、及びフォトクロミック特性(退色半減期)について調べた。その結果を表4に示した。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006

Claims (9)

  1.  プラスチックレンズの一方の表面に、
     a)フォトクロミック化合物、
     b)ラジカル重合性単量体、および
     c)光重合開始剤
     を少なくとも含んでなる光硬化性コーティング組成物からなる未硬化被覆層を形成し、次いで該未硬化被覆層が形成されたプラスチックレンズに未硬化被覆層の外表面の上方より、350nm以上450nm未満の範囲に発光ピーク波長を有するLEDにより光を照射して該未硬化被覆層を硬化させることを特徴とする、硬化被覆層を有するプラスチックレンズの製造方法。
  2.  前記LEDの発光ピークの半値幅が30nm未満である、請求項1に記載の製造方法。
  3.  前記LEDにより照射される光の、LED照射装置からの射出角が120度以下である請求項1に記載の製造方法。
  4.  前記LEDの照射表面における光の照射強度が、発光ピーク波長において2W/cm以上である請求項1に記載の製造方法。
  5.  前記未硬化被覆層が形成されたプラスチックレンズの未硬化被覆層の外表面における光の照射強度が発光ピーク波長において100mW/cm以上である請求項1に記載の製造方法。
  6.  前記プラスチックレンズが凸状のレンズであり、前記未硬化被覆層が形成されたプラスチックレンズの未硬化被覆層の外表面において、光の最大照射強度に対する最小照射強度の割合が70%以上である、請求項1に記載の製造方法。
  7.  前記未硬化被覆層が形成されたプラスチックレンズの未硬化被覆層の外表面において、光の積算光量の最大値が、2J/cm以上50J/cm未満である請求項1に記載の製造方法。
  8.  前記未硬化被覆層の硬化を、該被覆層の表面温度が100℃以下となるようにして行う請求項1記載のプラスチックレンズの製造方法。
  9.  前記プラスチックレンズが、中心部分の厚さが2mm未満であり且つ周縁部分が中心部より厚いプラスチックレンズである、請求項1に記載の製造方法。
PCT/JP2019/011336 2018-03-22 2019-03-19 被覆層を有するプラスチックレンズの製造方法 WO2019181903A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2020507817A JP7246373B2 (ja) 2018-03-22 2019-03-19 被覆層を有するプラスチックレンズの製造方法
CN201980020944.6A CN111936890B (zh) 2018-03-22 2019-03-19 具有覆盖层的塑料透镜的制造方法
US16/982,725 US20210003867A1 (en) 2018-03-22 2019-03-19 Method of producing a plastic lens having a coating layer
AU2019237487A AU2019237487A1 (en) 2018-03-22 2019-03-19 Method of producing a plastic lens having a coating layer
MX2020009708A MX2020009708A (es) 2018-03-22 2019-03-19 Metodo para producir una lente de plastico que tiene una capa de recubrimiento.
KR1020207026824A KR102533969B1 (ko) 2018-03-22 2019-03-19 피복층을 갖는 플라스틱 렌즈의 제조 방법
EP19770844.9A EP3770648A4 (en) 2018-03-22 2019-03-19 PROCESS FOR PRODUCING A PLASTIC LENS WITH A COATING LAYER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-053749 2018-03-22
JP2018053749 2018-03-22

Publications (1)

Publication Number Publication Date
WO2019181903A1 true WO2019181903A1 (ja) 2019-09-26

Family

ID=67986471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011336 WO2019181903A1 (ja) 2018-03-22 2019-03-19 被覆層を有するプラスチックレンズの製造方法

Country Status (8)

Country Link
US (1) US20210003867A1 (ja)
EP (1) EP3770648A4 (ja)
JP (1) JP7246373B2 (ja)
KR (1) KR102533969B1 (ja)
CN (1) CN111936890B (ja)
AU (1) AU2019237487A1 (ja)
MX (1) MX2020009708A (ja)
WO (1) WO2019181903A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8877103B2 (en) 2010-04-13 2014-11-04 Johnson & Johnson Vision Care, Inc. Process for manufacture of a thermochromic contact lens material
US8697770B2 (en) 2010-04-13 2014-04-15 Johnson & Johnson Vision Care, Inc. Pupil-only photochromic contact lenses displaying desirable optics and comfort
US11724471B2 (en) 2019-03-28 2023-08-15 Johnson & Johnson Vision Care, Inc. Methods for the manufacture of photoabsorbing contact lenses and photoabsorbing contact lenses produced thereby
US11598607B2 (en) * 2021-03-05 2023-03-07 Strike IP, LLC Reflex sight with ultraviolet-sensitive lens and shroud

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08319481A (ja) * 1995-05-26 1996-12-03 Tokuyama Corp フォトクロミック硬化体の製造方法
WO1998037115A1 (en) 1997-02-21 1998-08-27 Ppg Industries Ohio, Inc. Photochromic polyurethane coating and articles having such a coating
US5914174A (en) 1996-12-05 1999-06-22 Innotech, Inc. Lens or semi-finished blank comprising photochromic resin compositions
WO2000036047A1 (en) 1998-12-14 2000-06-22 Ppg Industries Ohio, Inc. Alkoxyacrylamide photochromic coating composition and photochromic articles
WO2001002449A2 (en) 1999-07-02 2001-01-11 Ppg Industries Ohio, Inc. Poly(meth)acrylic photochromic coating
WO2003099550A1 (fr) * 2002-05-27 2003-12-04 Tokuyama Corporation Procede de fabrication d'article photochromique en couches
JP2004012857A (ja) 2002-06-07 2004-01-15 Tokuyama Corp プラスチックレンズの製造方法
WO2006132200A1 (ja) 2005-06-07 2006-12-14 Tokuyama Corporation 被覆層を有するプラスチックレンズの製造方法およびレンズ保持台
WO2006135390A2 (en) 2004-08-12 2006-12-21 Q2100, Inc. Lens forming systems and methods
JP2013524296A (ja) * 2010-04-13 2013-06-17 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド サーモクロミックコンタクトレンズ材料の製造プロセス
JP2013205768A (ja) * 2012-03-29 2013-10-07 Hoya Corp フォトクロミックレンズの製造方法
WO2016013547A1 (ja) * 2014-07-24 2016-01-28 株式会社トクヤマ 光重合装置及びフォトクロミックコート層を有するレンズの製造方法
WO2016122000A1 (ja) 2015-01-30 2016-08-04 株式会社トクヤマ 被覆層を有するプラスチックレンズの製造方法
WO2017038566A1 (ja) * 2015-09-03 2017-03-09 日新製鋼株式会社 硬化膜の製造方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5529728A (en) * 1986-01-28 1996-06-25 Q2100, Inc. Process for lens curing and coating
IL115803A (en) * 1994-11-03 2000-02-17 Ppg Industries Inc Indeno-naphthopyran derivatives useful for photochromic articles
US5718849A (en) * 1995-09-25 1998-02-17 Galic Maus Ventures Method and apparatus for injection-compression molding & ejecting paired thermoplastic spectacle lens suited for fully automated dip hardcoating
US6303058B1 (en) * 1996-06-27 2001-10-16 3M Innovative Properties Company Method of making profiled retroreflective marking material
JPH1037115A (ja) 1996-07-22 1998-02-10 Minami:Kk 草止めエプロンブロック
JP2001294812A (ja) * 2000-04-11 2001-10-23 Seiko Epson Corp コーティング用組成物および合成樹脂製レンズ
ATE337164T1 (de) * 2000-11-29 2006-09-15 Zms Llc Photochromische artikel und verfahren zu ihrer herstellung
DE50115561D1 (de) * 2001-11-26 2010-08-26 X Rite Europe Gmbh Spektralphotometer und Verwendung desselben
US20050258408A1 (en) * 2001-12-20 2005-11-24 Molock Frank F Photochromic contact lenses and methods for their production
US7566377B2 (en) * 2002-09-19 2009-07-28 Mitsui Chemicals, Inc. Liquid crystal sealing agent composition and manufacturing method of liquid crystal display panel using the same
US20070159594A9 (en) * 2004-05-13 2007-07-12 Jani Dharmendra M Photochromic blue light filtering materials and ophthalmic devices
US20060033052A1 (en) * 2004-08-11 2006-02-16 Scott Robert R Curing light with ramped or pulsed leds
EP1777269A1 (en) * 2005-10-18 2007-04-25 Dainippon Ink And Chemicals, Inc. Curable composition and acryloyl group containing curable oligomer and process for producing the acryloyl group containing curable oligomer
JP4807848B2 (ja) * 2005-12-15 2011-11-02 株式会社リコー 画像形成装置及び画像形成方法
JP4986903B2 (ja) 2008-03-26 2012-07-25 株式会社トクヤマ プラスチックレンズの製造方法
US8541931B2 (en) * 2009-03-17 2013-09-24 Intematix Corporation LED based lamp including reflective hood to reduce variation in illuminance
EP2419771B1 (en) * 2009-04-15 2020-09-23 3M Innovative Properties Company Lightguide with optical film containing voids
US8432724B2 (en) * 2010-04-02 2013-04-30 Altera Corporation Memory elements with soft error upset immunity
DE102012008641A1 (de) * 2012-05-02 2013-11-07 Heraeus Noblelight Gmbh Leuchte mit Reflektor
EP3055123B1 (en) * 2013-10-11 2021-06-23 Transitions Optical, Inc. Spin coater for applying multiple coatings to an optical substrate
EP2993202A1 (de) 2014-09-08 2016-03-09 Evonik Degussa GmbH Composite-Halbzeuge und daraus hergestellte Formteile sowie direkt hergestellte Formteile auf Basis von hydroxyfunktionalisierten (Meth)Acrylaten und Uretdionen, die duroplastisch vernetzt werden
JP6822415B2 (ja) * 2016-11-07 2021-01-27 東レ株式会社 光源ユニット

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08319481A (ja) * 1995-05-26 1996-12-03 Tokuyama Corp フォトクロミック硬化体の製造方法
US5914174A (en) 1996-12-05 1999-06-22 Innotech, Inc. Lens or semi-finished blank comprising photochromic resin compositions
WO1998037115A1 (en) 1997-02-21 1998-08-27 Ppg Industries Ohio, Inc. Photochromic polyurethane coating and articles having such a coating
WO2000036047A1 (en) 1998-12-14 2000-06-22 Ppg Industries Ohio, Inc. Alkoxyacrylamide photochromic coating composition and photochromic articles
WO2001002449A2 (en) 1999-07-02 2001-01-11 Ppg Industries Ohio, Inc. Poly(meth)acrylic photochromic coating
WO2003099550A1 (fr) * 2002-05-27 2003-12-04 Tokuyama Corporation Procede de fabrication d'article photochromique en couches
JP2004012857A (ja) 2002-06-07 2004-01-15 Tokuyama Corp プラスチックレンズの製造方法
WO2006135390A2 (en) 2004-08-12 2006-12-21 Q2100, Inc. Lens forming systems and methods
WO2006132200A1 (ja) 2005-06-07 2006-12-14 Tokuyama Corporation 被覆層を有するプラスチックレンズの製造方法およびレンズ保持台
JP2013524296A (ja) * 2010-04-13 2013-06-17 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド サーモクロミックコンタクトレンズ材料の製造プロセス
JP2013205768A (ja) * 2012-03-29 2013-10-07 Hoya Corp フォトクロミックレンズの製造方法
WO2016013547A1 (ja) * 2014-07-24 2016-01-28 株式会社トクヤマ 光重合装置及びフォトクロミックコート層を有するレンズの製造方法
WO2016122000A1 (ja) 2015-01-30 2016-08-04 株式会社トクヤマ 被覆層を有するプラスチックレンズの製造方法
WO2017038566A1 (ja) * 2015-09-03 2017-03-09 日新製鋼株式会社 硬化膜の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3770648A4

Also Published As

Publication number Publication date
KR20200133745A (ko) 2020-11-30
US20210003867A1 (en) 2021-01-07
JPWO2019181903A1 (ja) 2021-03-11
EP3770648A1 (en) 2021-01-27
CN111936890A (zh) 2020-11-13
AU2019237487A1 (en) 2020-10-08
EP3770648A4 (en) 2022-01-05
MX2020009708A (es) 2021-01-08
JP7246373B2 (ja) 2023-03-27
KR102533969B1 (ko) 2023-05-18
CN111936890B (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
JP7246373B2 (ja) 被覆層を有するプラスチックレンズの製造方法
JP4762984B2 (ja) 被覆層を有するプラスチックレンズの製造方法およびレンズ保持台
JP6046038B2 (ja) フォトクロミック硬化性組成物
JP5005688B2 (ja) フォトクロミック膜およびそれを有するフォトクロミックレンズ、ならびにフォトクロミックレンズの製造方法
JP4578562B2 (ja) フォトクロミック積層体
JP6346183B2 (ja) 光学物品用光硬化性プライマー組成物の硬化体を含むフォトクロミック積層体及び該積層体の製造方法
ES2320773T3 (es) Composicion endurecible.
AU2004218587C1 (en) Method of manufacturing laminated body
JP4986903B2 (ja) プラスチックレンズの製造方法
JP2014056140A (ja) フォトクロミックレンズの製造方法、及びフォトクロミックコーティング液の前駆体組成物
JP4257075B2 (ja) プラスチックレンズの製造方法
JP2010037394A (ja) コーティング組成物、光学部材及びその製造方法
JP4456897B2 (ja) フォトクロミック積層体
JP6563959B2 (ja) 被覆層を有するプラスチックレンズの製造方法
JP2004050108A (ja) コーティング方法
JP6016397B2 (ja) フォトクロミックレンズの製造方法
JP2011186292A (ja) フォトクロミックレンズ
JP2012068295A (ja) フォトクロミックレンズおよびその製造方法
JP2024006618A (ja) フォトクロミック物品およびフォトクロミック物品の製造方法
JP2023150015A (ja) 光学物品の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19770844

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020507817

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019237487

Country of ref document: AU

Date of ref document: 20190319

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2019770844

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019770844

Country of ref document: EP

Effective date: 20201022