WO2019181172A1 - 電流センサ - Google Patents

電流センサ Download PDF

Info

Publication number
WO2019181172A1
WO2019181172A1 PCT/JP2019/001752 JP2019001752W WO2019181172A1 WO 2019181172 A1 WO2019181172 A1 WO 2019181172A1 JP 2019001752 W JP2019001752 W JP 2019001752W WO 2019181172 A1 WO2019181172 A1 WO 2019181172A1
Authority
WO
WIPO (PCT)
Prior art keywords
shield
bus bar
sensor
current sensor
wiring board
Prior art date
Application number
PCT/JP2019/001752
Other languages
English (en)
French (fr)
Inventor
卓馬 江坂
亮輔 酒井
大晃 三輪
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201980020169.4A priority Critical patent/CN111936872A/zh
Publication of WO2019181172A1 publication Critical patent/WO2019181172A1/ja
Priority to US17/023,508 priority patent/US11656249B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/205Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using magneto-resistance devices, e.g. field plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/207Constructional details independent of the type of device used

Definitions

  • This disclosure relates to a current sensor that detects a current to be measured.
  • Patent Document 1 there is known a current detection system (current sensor) that detects a current by converting a magnetic field generated by a current flowing through a bus bar into an electric signal.
  • This disclosure is intended to provide a current sensor in which a decrease in detection accuracy of a current to be measured is suppressed.
  • a current sensor includes a conductive member through which a current to be measured flows, a magnetoelectric conversion unit that converts a magnetic field to be measured generated by the flow of the current to be measured into an electrical signal, and an electromagnetic to the magnetoelectric conversion unit. And a shield for suppressing noise input.
  • the shield includes a plate-shaped first shield and a second shield that are opposed to each other with one surface being spaced apart. A part of the conductive member and the magnetoelectric conversion part are located between one surface of the first shield and one surface of the second shield. A portion of the conductive member located between the first shield and the second shield extends in the extending direction along one surface of the first shield.
  • the central portion of at least one of the first shield and the second shield in the extending direction is longer in the lateral direction along one surface of the first shield and intersecting the extending direction than both ends thereof.
  • the magnetoelectric conversion part is located between both ends of the first shield and the second shield.
  • At least one of the first shield and the second shield is shorter in the lateral direction at both ends than at the center. For this reason, electromagnetic noise is less likely to enter both ends than the center. Therefore, in the extending direction, electromagnetic noise is less likely to be transmitted from one end of the both end portions to the other through the central portion. This makes it difficult for the central portion of at least one of the first shield and the second shield to be magnetically saturated. Electromagnetic noise is prevented from leaking from the central part of at least one of the first shield and the second shield.
  • the magnetoelectric conversion unit is located between both ends of the first shield and the second shield in the extending direction. That is, the magnetoelectric conversion part is located between the central part of the first shield and the central part of the second shield. Therefore, it is suppressed that the electromagnetic noise leaked by the magnetic saturation of the central part of at least one of the first shield and the second shield is input to the magnetoelectric conversion unit. As a result, a decrease in detection accuracy of the current to be measured is suppressed.
  • the drawing It is a block diagram for explaining an in-vehicle system, It is a perspective view which shows a 1st current sensor, It is a disassembled perspective view which shows a 1st current sensor, It is a chart which shows the 1st current sensor, It is a chart which shows the 1st current sensor, It is a chart showing a wiring board, It is a block diagram for explaining a sensing unit, It is a chart showing a conductive bus bar, It is a chart which shows the 1st shield, It is a chart which shows the 2nd shield, It is a chart showing a sensor housing, It is a chart for explaining a substrate support pin and a substrate adhesive pin, FIG.
  • FIG. 13 is a cross-sectional view taken along line XIII-XIII shown in the column (b) of FIG. It is a chart for explaining a shield support pin and a shield adhesive pin
  • FIG. 15 is a cross-sectional view taken along line XV-XV shown in the column (b) of FIG.
  • FIG. 1 It is a perspective view which shows two separate sensors, It is a perspective view showing a wiring case, It is a perspective view for explaining the assembly of the individual sensor to the wiring case, It is a perspective view which shows a 2nd current sensor, It is a chart showing the wiring case, It is a chart showing the wiring case, It is a chart which shows the 2nd current sensor, It is a chart which shows the 2nd current sensor, It is a chart for explaining magnetic saturation of the first shield, It is a chart showing a simulation result of magnetic saturation, It is a chart for demonstrating the 2nd shield of 2nd Embodiment, It is a schematic diagram for demonstrating the magnetic field which permeate
  • FIG. 31 is a cross-sectional view taken along the line XXXI-XXXI shown in FIG. It is a chart for demonstrating the fixed form of a 1st current sensor, It is a graph which shows arrangement
  • the in-vehicle system 100 to which the current sensor is applied will be described.
  • This in-vehicle system 100 constitutes a hybrid system.
  • the in-vehicle system 100 includes a battery 200, a power conversion device 300, a first motor 400, a second motor 500, an engine 600, and a power distribution mechanism 700.
  • the on-vehicle system 100 has a plurality of ECUs.
  • FIG. 1 shows a battery ECU 801 and a MGECU 802 as representatives of the plurality of ECUs.
  • the plurality of ECUs transmit / receive signals to / from each other via the bus wiring 800 to cooperatively control the hybrid vehicle.
  • SOC stands for state of charge.
  • ECU is an abbreviation for electronic control unit.
  • the ECU includes at least one arithmetic processing unit (CPU) and at least one memory device (MMR) as a storage medium for storing programs and data.
  • the ECU is provided by a microcomputer having a computer-readable storage medium.
  • the storage medium is a non-transitional tangible storage medium that stores a computer-readable program non-temporarily.
  • the storage medium can be provided by a semiconductor memory or a magnetic disk.
  • the battery 200 has a plurality of secondary batteries. These secondary batteries constitute a battery stack connected in series.
  • a lithium ion secondary battery, a nickel hydride secondary battery, an organic radical battery, or the like can be adopted.
  • Secondary battery generates electromotive force by chemical reaction.
  • the secondary battery has a property that deterioration is accelerated when the amount of charge is too large or too small. In other words, the secondary battery has a property that deterioration is accelerated when the SOC is overcharged or overdischarged.
  • the SOC of the battery 200 corresponds to the SOC of the battery stack described above.
  • the SOC of the battery stack is the sum of the SOCs of a plurality of secondary batteries.
  • the overcharge and overdischarge of the SOC of the battery stack are avoided by the cooperative control described above.
  • the overcharge and overdischarge of the SOC of each of the plurality of secondary batteries are avoided by an equalization process that equalizes the SOC of each of the plurality of secondary batteries.
  • the equalization process is performed by charging and discharging a plurality of secondary batteries individually.
  • the battery 200 includes a switch for charging / discharging a plurality of secondary batteries individually.
  • the battery 200 includes a voltage sensor and a temperature sensor for detecting the SOC of each of the plurality of secondary batteries.
  • the battery ECU 801 controls opening and closing of the switch based on these sensors and the output of the first current sensor 11 described later. Thereby, the SOC of each of the plurality of secondary batteries is equalized.
  • the power conversion device 300 performs power conversion between the battery 200 and the first motor 400.
  • the power conversion device 300 also performs power conversion between the battery 200 and the second motor 500.
  • the power conversion device 300 converts the DC power of the battery 200 into AC power having a voltage level suitable for powering the first motor 400 and the second motor 500.
  • the power conversion device 300 converts AC power generated by power generation of the first motor 400 and the second motor 500 into DC power having a voltage level suitable for charging the battery 200.
  • the power conversion device 300 will be described in detail later.
  • the first motor 400, the second motor 500, and the engine 600 are each connected to a power distribution mechanism 700.
  • the first motor 400 is directly connected to an output shaft of a hybrid vehicle (not shown).
  • the rotational energy of the first motor 400 is transmitted to the traveling wheels via the output shaft.
  • the rotational energy of the traveling wheels is transmitted to the first motor 400 via the output shaft.
  • the first motor 400 is powered by AC power supplied from the power converter 300.
  • the rotational energy generated by this power running is distributed by the power distribution mechanism 700 to the engine 600 and the output shaft of the hybrid vehicle.
  • crankshaft cranking and propulsive force are applied to the traveling wheels.
  • the first motor 400 is regenerated by the rotational energy transmitted from the traveling wheels.
  • the AC power generated by the regeneration is converted into DC power by the power converter 300 and stepped down. This DC power is supplied to the battery 200. DC power is also supplied to various electric loads mounted on the hybrid vehicle.
  • the second motor 500 generates electricity by the rotational energy supplied from the engine 600.
  • the AC power generated by this power generation is converted into DC power by the power converter 300 and stepped down. This DC power is supplied to the battery 200 and various electric loads.
  • Engine 600 generates rotational energy by driving fuel to burn. This rotational energy is distributed to the second motor 500 and the output shaft via the power distribution mechanism 700. As a result, the second motor 500 generates power and imparts propulsive force to the traveling wheels.
  • the power distribution mechanism 700 has a planetary gear mechanism.
  • the power distribution mechanism 700 has a ring gear, a planetary gear, a sun gear, and a planetary carrier.
  • the ring gear has a ring shape.
  • a plurality of teeth are formed side by side in the circumferential direction on the outer peripheral surface and the inner peripheral surface of the ring gear.
  • Planetary gear and sun gear each have a disk shape.
  • a plurality of teeth are formed side by side in the circumferential direction on the circumferential surfaces of the planetary gear and the sun gear.
  • the planetary carrier has a ring shape.
  • a plurality of planetary gears are connected to a flat surface that connects the outer peripheral surface and the inner peripheral surface of the planetary carrier.
  • the flat surfaces of the planetary carrier and the planetary gear are opposed to each other.
  • Plural planetary gears are located on the circumference around the center of rotation of the planetary carrier. The intervals between the plurality of planetary gears are equal. In this embodiment, three planetary gears are arranged at intervals of 120 °.
  • the sun gear is provided at the center of the ring gear.
  • the inner peripheral surface of the ring gear and the outer peripheral surface of the sun gear face each other.
  • Three planetary gears are provided between the two.
  • the teeth of each of the three planetary gears mesh with the teeth of the ring gear and sun gear. Accordingly, the rotations of the ring gear, the planetary gear, the sun gear, and the planetary carrier are transmitted to each other.
  • the output shaft of the first motor 400 is connected to the ring gear.
  • the crankshaft of engine 600 is connected to the planetary carrier.
  • the output shaft of the second motor 500 is connected to the sun gear.
  • Torque is generated in the ring gear and the sun gear by supplying AC power from the power converter 300 to the first motor 400 and the second motor 500. Torque is generated in the planetary carrier by the combustion drive of the engine 600. By doing so, power running and regeneration of the first motor 400, power generation of the second motor 500, and application of propulsive force to the traveling wheels are performed.
  • each of the first motor 400, the second motor 500, and the engine 600 is cooperatively controlled by a plurality of ECUs.
  • the MGECU 802 determines target torques of the first motor 400 and the second motor 500 based on physical quantities detected by various sensors mounted on the hybrid vehicle, vehicle information input from other ECUs, and the like.
  • the MGECU 802 performs vector control so that the torque generated in each of the first motor 400 and the second motor 500 becomes the target torque.
  • the power conversion device 300 includes a converter 310, a first inverter 320, and a second inverter 330.
  • Converter 310 functions to increase or decrease the voltage level of DC power.
  • the first inverter 320 and the second inverter 330 function to convert DC power into AC power.
  • the first inverter 320 and the second inverter 330 function to convert AC power into DC power.
  • the converter 310 boosts the DC power of the battery 200 to a voltage level suitable for powering the first motor 400 and the second motor 500.
  • the first inverter 320 and the second inverter 330 convert this DC power into AC power.
  • This AC power is supplied to the first motor 400 and the second motor 500.
  • the first inverter 320 and the second inverter 330 convert AC power generated by the first motor 400 and the second motor 500 into DC power.
  • Converter 310 steps down this DC power to a voltage level suitable for charging battery 200.
  • the converter 310 is electrically connected to the battery 200 via the first power line 301 and the second power line 302.
  • Converter 310 is electrically connected to each of first inverter 320 and second inverter 330 via third power line 303 and fourth power line 304.
  • One end of the first power line 301 is electrically connected to the positive electrode of the battery 200.
  • One end of the second power line 302 is electrically connected to the negative electrode of the battery 200.
  • the other ends of the first power line 301 and the second power line 302 are electrically connected to the converter 310.
  • a first smoothing capacitor 305 is connected to the first power line 301 and the second power line 302. One of the two electrodes of the first smoothing capacitor 305 is connected to the third power line 303 and the other is connected to the fourth power line 304.
  • the battery 200 has a system main relay (SMR) (not shown).
  • SMR system main relay
  • the electrical connection between the battery stack of the battery 200 and the power conversion device 300 is controlled by opening and closing the system main relay. That is, the continuation and interruption of power supply between the battery 200 and the power converter 300 are controlled by opening and closing the system main relay.
  • One end of the third power line 303 is electrically connected to a high side switch 311 of the converter 310 described later.
  • One end of the fourth power line 304 is electrically connected to the other end of the second power line 302.
  • the other ends of the third power line 303 and the fourth power line 304 are electrically connected to the first inverter 320 and the second inverter 330, respectively.
  • a second smoothing capacitor 306 is connected to the third power line 303 and the fourth power line 304.
  • One of the two electrodes of the second smoothing capacitor 306 is connected to the third power line 303, and the other is connected to the fourth power line 304.
  • the first inverter 320 is electrically connected to the first U-phase stator coil 401 to the first W-phase stator coil 403 of the first motor 400 via the first energized bus bar 341 to the third energized bus bar 343.
  • Second inverter 330 is electrically connected to second U-phase stator coil 501 to second W-phase stator coil 503 of second motor 500 via fourth energized bus bar 344 to sixth energized bus bar 346.
  • Converter 310 includes high-side switch 311, low-side switch 312, high-side diode 311 a, low-side diode 312 a, and reactor 313.
  • high-side switch 311 and the low-side switch 312 an IGBT, a power MOSFET, or the like can be used.
  • n-channel IGBTs are employed as the high-side switch 311 and the low-side switch 312.
  • the semiconductor element constituting the converter 310 can be manufactured by a semiconductor such as Si or a wide gap semiconductor such as SiC.
  • the high side diode 311a is connected in reverse parallel to the high side switch 311. That is, the cathode electrode of the high-side diode 311 a is connected to the collector electrode of the high-side switch 311. The anode electrode of the high side diode 311 a is connected to the emitter electrode of the high side switch 311.
  • the low-side diode 312a is connected in reverse parallel to the low-side switch 312.
  • the cathode electrode of the low-side diode 312a is connected to the collector electrode of the low-side switch 312.
  • the anode electrode of the low-side diode 312a is connected to the emitter electrode of the low-side switch 312.
  • the third power line 303 is electrically connected to the collector electrode of the high side switch 311.
  • the emitter electrode of the high side switch 311 and the collector electrode of the low side switch 312 are connected.
  • the second power line 302 and the fourth power line 304 are electrically connected to the emitter electrode of the low-side switch 312. Accordingly, the high-side switch 311 and the low-side switch 312 are connected in series from the third power line 303 toward the second power line 302 in order. In other words, the high-side switch 311 and the low-side switch 312 are connected in series from the third power line 303 toward the fourth power line 304 in order.
  • a midpoint between the high-side switch 311 and the low-side switch 312 connected in series and one end of the reactor 313 are electrically connected via an energizing bus bar 307.
  • the other end of the reactor 313 is electrically connected to the other end of the first power line 301.
  • the DC power of the battery 200 is supplied to the midpoint of the high-side switch 311 and the low-side switch 312 connected in series via the reactor 313 and the energizing bus bar 307.
  • the AC power of the motor converted into DC power by at least one of the first inverter 320 and the second inverter 330 is supplied to the collector electrode of the high side switch 311.
  • the AC power of the motor converted into this DC power is supplied to the battery 200 via the high side switch 311, the energizing bus bar 307, and the reactor 313.
  • direct current power that inputs and outputs the battery 200 flows through the energizing bus bar 307.
  • a direct current that inputs and outputs the battery 200 flows through the energizing bus bar 307.
  • the high side switch 311 and the low side switch 312 of the converter 310 are controlled to open and close by the MGECU 802.
  • the MGECU 802 generates a control signal and outputs it to the gate driver 803.
  • the gate driver 803 amplifies the control signal and outputs it to the gate electrode of the switch. Thereby, MGECU 802 steps up and down the voltage level of the DC power input to converter 310.
  • the MGECU 802 generates a pulse signal as a control signal.
  • the MGECU 802 adjusts the step-up / step-down level of the DC power by adjusting the on-duty ratio and frequency of the pulse signal.
  • the step-up / down pressure level is determined according to the target torque and the SOC of the battery 200.
  • the MGECU 802 When boosting the DC power of the battery 200, the MGECU 802 opens and closes the high-side switch 311 and the low-side switch 312 alternately. Therefore, the MGECU 802 inverts the voltage level of the control signal output to the high side switch 311 and the low side switch 312.
  • the supply of DC power to the first inverter 320 and the second inverter 330 via the high-side switch 311 is interrupted.
  • the second smoothing capacitor 306 is charged.
  • power is supplied from the second smoothing capacitor 306 to the first inverter 320 and the second inverter 330.
  • the power supply to the first inverter 320 and the second inverter 330 is continued.
  • a high level is input to the high side switch 311 and a low level is input to the low side switch 312.
  • the electric energy accumulated in the reactor 313 together with the DC power of the battery 200 is supplied to the first inverter 320 and the second inverter 330 as DC power.
  • the DC power of the battery 200 boosted in terms of time average is supplied to the first inverter 320 and the second inverter 330.
  • the charge of the second smoothing capacitor 306 is recovered, and the amount of charge is increased.
  • the voltage level of the DC power supplied from the second smoothing capacitor 306 to the first inverter 320 and the second inverter 330 also increases.
  • the MGECU 802 When stepping down DC power supplied from at least one of the first inverter 320 and the second inverter 330, the MGECU 802 fixes the control signal output to the low-side switch 312 to a low level. At the same time, the MGECU 802 sequentially switches the control signal output to the high side switch 311 between a high level and a low level.
  • the first smoothing capacitor 305 is charged. Electric energy is accumulated in the reactor 313. Thereafter, when a low level is input to the gate electrode of the high-side switch 311, if there is a difference between the output voltage and the time constant of the second smoothing capacitor 306 and the battery 200, the second smoothing capacitor 306 and the battery 200 have a difference. Charging / discharging is performed.
  • a diode (not shown) connects the first power line 301 and the second power line 302. The anode electrode of this diode is connected to the second power line 302, and the cathode electrode is connected to the first power line 301. Therefore, a closed loop passing through the diode, the reactor 313, and the first smoothing capacitor 305 is formed. The electric current resulting from the electric energy of the reactor 313 flows through this closed loop.
  • the first inverter 320 includes a first switch 321 to a sixth switch 326, and a first diode 321a to a sixth diode 326a.
  • As the first switch 321 to the sixth switch 326 an IGBT, a power MOSFET, or the like can be employed. In this embodiment, n-channel IGBTs are employed as the first switch 321 to the sixth switch 326. When MOSFETs are employed as these switches, the above diodes may not be provided.
  • the semiconductor element constituting the first inverter 320 can be manufactured by a semiconductor such as Si or a wide gap semiconductor such as SiC.
  • the first diode 321a to the sixth diode 326a corresponding to the first switch 321 to the sixth switch 326 are connected in reverse parallel. That is, if k is a natural number of 1 to 6, the cathode electrode of the kth diode is connected to the collector electrode of the kth switch. The anode electrode of the kth diode is connected to the emitter electrode of the kth switch.
  • the first switch 321 and the second switch 322 are connected in series from the third power line 303 toward the fourth power line 304 in order.
  • the first switch 321 and the second switch 322 constitute a first U-phase leg.
  • One end of the first energizing bus bar 341 is connected to the midpoint between the first switch 321 and the second switch 322.
  • the other end of the first energizing bus bar 341 is connected to the first U-phase stator coil 401 of the first motor 400.
  • the third switch 323 and the fourth switch 324 are connected in series from the third power line 303 to the fourth power line 304 in order.
  • the third switch 323 and the fourth switch 324 constitute a first V-phase leg.
  • One end of the second energizing bus bar 342 is connected to the midpoint between the third switch 323 and the fourth switch 324.
  • the other end of second energizing bus bar 342 is connected to first V-phase stator coil 402 of first motor 400.
  • the fifth switch 325 and the sixth switch 326 are connected in series from the third power line 303 to the fourth power line 304 in order.
  • the fifth switch 325 and the sixth switch 326 form a first W-phase leg.
  • One end of the third energization bus bar 343 is connected to the midpoint between the fifth switch 325 and the sixth switch 326.
  • the other end of the third energizing bus bar 343 is connected to the first W-phase stator coil 403 of the first motor 400.
  • the second inverter 330 has the same configuration as the first inverter 320.
  • the second inverter 330 includes a seventh switch 331 to a twelfth switch 336, and a seventh diode 331a to a twelfth diode 336a.
  • the seventh diode 331a to the twelfth diode 336a corresponding to the seventh switch 331 to the twelfth switch 336 are connected in reverse parallel.
  • n is a natural number of 7 to 12
  • the cathode electrode of the nth diode is connected to the collector electrode of the nth switch.
  • the anode electrode of the nth diode is connected to the emitter electrode of the nth switch.
  • the seventh switch 331 and the eighth switch 332 are connected in series between the third power line 303 and the fourth power line 304 to constitute a second U-phase leg.
  • One end of the fourth energizing bus bar 344 is connected to the midpoint between the seventh switch 331 and the eighth switch 332.
  • the other end of the fourth energizing bus bar 344 is connected to the second U-phase stator coil 501 of the second motor 500.
  • the ninth switch 333 and the tenth switch 334 are connected in series between the third power line 303 and the fourth power line 304 to constitute a second V-phase leg.
  • One end of the fifth energizing bus bar 345 is connected to the midpoint between the ninth switch 333 and the tenth switch 334.
  • the other end of the fifth energizing bus bar 345 is connected to the second V-phase stator coil 502 of the second motor 500.
  • the eleventh switch 335 and the twelfth switch 336 are connected in series between the third power line 303 and the fourth power line 304 to constitute a second W-phase leg.
  • One end of a sixth energizing bus bar 346 is connected to the midpoint between the eleventh switch 335 and the twelfth switch 336.
  • the other end of the sixth energizing bus bar 346 is connected to the second W-phase stator coil 503 of the second motor 500.
  • each of the first inverter 320 and the second inverter 330 has a three-phase leg corresponding to each of the U-phase to W-phase stator coils of the motor.
  • a control signal of the MGECU 802 amplified by the gate driver 803 is input to the gate electrodes of the switches constituting each of the three-phase legs.
  • each switch When powering the motor, each switch is PWM-controlled by the output of a control signal from the MGECU 802. Thereby, a three-phase alternating current is generated by the inverter.
  • the MGECU 802 stops outputting the control signal, for example. As a result, AC power generated by the power generation of the motor passes through the diode. As a result, AC power is converted to DC power.
  • the AC power input / output from / to the first motor 400 described above flows through the first energized bus bar 341 to the third energized bus bar 343 connecting the first inverter 320 and the first motor 400.
  • AC power input / output to / from the second motor 500 flows through the fourth energized bus bar 344 to the sixth energized bus bar 346 connecting the second inverter 330 and the second motor 500.
  • the alternating current that inputs and outputs the first motor 400 flows through the first energized bus bar 341 to the third energized bus bar 343.
  • the alternating current that inputs and outputs the second motor 500 flows through the fourth energized bus bar 344 to the sixth energized bus bar 346.
  • the current sensors include a first current sensor 11, a second current sensor 12, and a third current sensor 13.
  • First current sensor 11 detects a current flowing through converter 310.
  • the second current sensor 12 detects a current flowing through the first motor 400.
  • the third current sensor 13 detects a current flowing through the second motor 500.
  • the first current sensor 11 is provided on the energizing bus bar 307. As described above, a direct current that inputs and outputs the battery 200 flows through the energizing bus bar 307. The first current sensor 11 detects this direct current.
  • the direct current detected by the first current sensor 11 is input to the battery ECU 801.
  • the battery ECU 801 monitors the SOC of the battery 200 based on the direct current detected by the first current sensor 11 or the voltage of the battery stack detected by a voltage sensor (not shown).
  • the second current sensor 12 is provided in the first energized bus bar 341 to the third energized bus bar 343. As described above, the alternating current that inputs and outputs the first motor 400 flows through the first energized bus bar 341 to the third energized bus bar 343. The second current sensor 12 detects this alternating current.
  • the alternating current detected by the second current sensor 12 is input to the MGECU 802.
  • the MGECU 802 performs vector control of the first motor 400 based on the alternating current detected by the second current sensor 12 and the rotation angle of the first motor 400 detected by a rotation angle sensor (not shown).
  • the third current sensor 13 is provided in the fourth energized bus bar 344 to the sixth energized bus bar 346. As described above, the alternating current that inputs and outputs the second motor 500 flows through the fourth energized bus bar 344 to the sixth energized bus bar 346. The third current sensor 13 detects this alternating current.
  • the alternating current detected by the third current sensor 13 is input to the MGECU 802.
  • the MGECU 802 performs vector control of the second motor 500 based on the alternating current detected by the third current sensor 13 or the rotation angle of the second motor 500 detected by a rotation angle sensor (not shown).
  • first U-phase stator coil 401, the first V-phase stator coil 402, and the first W-phase stator coil 403 of the first motor 400 are star-connected.
  • second U-phase stator coil 501, the second V-phase stator coil 502, and the second W-phase stator coil 503 of the second motor 500 are star-connected. Therefore, the remaining one-phase current can be detected by detecting the two-phase current of these three-phase stator coils.
  • the second current sensor 12 is provided in two of the first energized bus bar 341 to the third energized bus bar 343 connected to the first U-phase stator coil 401 to the first W-phase stator coil 403. More specifically, the second current sensor 12 is provided on the first energized bus bar 341 and the second energized bus bar 342.
  • the second current sensor 12 detects the current flowing through the first U-phase stator coil 401 and the current flowing through the first V-phase stator coil 402.
  • the MGECU 802 detects the current flowing through the first W-phase stator coil 403 based on the current flowing through the first U-phase stator coil 401 and the first V-phase stator coil 402.
  • the third current sensor 13 is provided in two of the fourth energized bus bar 344 to the sixth energized bus bar 346 connected to the second U-phase stator coil 501 to the second W-phase stator coil 503. More specifically, the third current sensor 13 is provided on the fourth energized bus bar 344 and the fifth energized bus bar 345.
  • the third current sensor 13 detects the current flowing through the second U-phase stator coil 501 and the current flowing through the second V-phase stator coil 502.
  • the MGECU 802 detects the current flowing through the second W-phase stator coil 503 based on the current flowing through the second U-phase stator coil 501 and the second V-phase stator coil 502.
  • Each of the direct current that inputs / outputs the battery 200 and the alternating current that inputs / outputs the first motor 400 and the second motor 500 corresponds to the current to be measured.
  • the magnetic field generated by the flow of these currents corresponds to the magnetic field to be measured.
  • the first current sensor 11 is provided on the energizing bus bar 307.
  • the energizing bus bar 307 is divided between the reactor 313 side and the high-side switch 311 (low-side switch 312) side.
  • the first current sensor 11 is provided on the energized bus bar 307 in a manner that bridges the reactor 313 side and the high-side switch 311 side of the energized bus bar 307 that is divided.
  • a current flowing through the energization bus bar 307 that is, a direct current that inputs and outputs the battery 200 flows through the first current sensor 11.
  • the configuration in which the energizing bus bar 307 is divided between the reactor 313 side and the high-side switch 311 side is only an example.
  • the first current sensor 11 bridges the reactor 313 and the energized bus bar 307.
  • the first current sensor 11 includes a wiring board 20, a conductive bus bar 30, a shield 40, and a sensor casing 50.
  • the conductive bus bar 30 bridges the energized bus bar 307. Therefore, a direct current flows through the conductive bus bar 30.
  • the conductive bus bar 30 corresponds to a conductive member.
  • (A) column of FIG. 4 shows a top view of the first current sensor 11.
  • the (b) column of FIG. 4 has shown the front view of the 1st current sensor.
  • the column (c) of FIG. 4 shows a bottom view of the first current sensor.
  • the (a) column of FIG. 5 shows a front view of the first current sensor 11.
  • the column (b) in FIG. 5 shows a side view of the first current sensor.
  • the column (c) of FIG. 5 shows a rear view of the first current sensor.
  • the same drawing is shown in the (b) column of FIG. 4 and the (a) column of FIG.
  • the conductive bus bar 30 is insert-molded in the sensor housing 50.
  • the sensor housing 50 is provided with the wiring board 20 and the shield 40.
  • the sensor housing 50 is made of an insulating resin material.
  • the wiring board 20 is fixed to the sensor casing 50 in a manner facing the portion of the conductive bus bar 30 that is insert-molded in the sensor casing 50.
  • a magnetoelectric conversion unit 25 described later is mounted on a portion of the wiring board 20 facing the conductive bus bar 30.
  • the magnetoelectric converter 25 converts a magnetic field generated by a direct current flowing through the conductive bus bar 30 into an electric signal.
  • the shield 40 has a first shield 41 and a second shield 42.
  • the first shield 41 and the second shield 42 are fixed to the sensor housing 50 so as to be separated from each other. Between the first shield 41 and the second shield 42, the portions of the wiring board 20 and the conductive bus bar 30 that face each other are positioned.
  • the first shield 41 and the second shield 42 are made of a material having higher magnetic permeability than the sensor housing 50. Therefore, electromagnetic noise (external noise) that tries to pass from the outside to the inside of the first current sensor 11 tends to actively pass through the first shield 41 and the second shield 42. Thereby, the input of the external noise to the magnetoelectric conversion unit 25 is suppressed.
  • connection terminal 60 shown in FIG. The connection terminal 60 is electrically and mechanically connected to the wiring board 20 by solder 61.
  • the connection terminal 60 is electrically connected to the battery ECU 801 via a wire harness or the like.
  • the electric signal converted by the magnetoelectric conversion unit 25 is input to the battery ECU 801 via the connection terminal 60 and a wire harness (not shown).
  • the components of the first current sensor 11 will be described individually. Accordingly, in the following, the three directions orthogonal to each other are referred to as an x direction, a y direction, and a z direction.
  • the x direction corresponds to the horizontal direction.
  • the y direction corresponds to the extending direction.
  • the wiring board 20 has a flat plate shape.
  • the wiring board 20 has a flat shape with a small thickness in the z direction.
  • the wiring board 20 is formed by laminating a plurality of insulating resin layers and conductive metal layers in the z direction.
  • the facing surface 20a having the largest area of the wiring board 20 and the back surface 20b on the back side thereof face the z direction.
  • the column (a) of FIG. 6 shows a top view of the wiring board.
  • the column (b) in FIG. 6 shows a bottom view of the wiring board.
  • the first sensing unit 21 and the second sensing unit 22 shown in the column (a) of FIG. 6 and FIG. 7 are mounted on the facing surface 20a of the wiring board 20.
  • Each of the first sensing unit 21 and the second sensing unit 22 includes an ASIC 23 and a filter 24.
  • the ASIC 23 and the filter 24 are electrically connected via the wiring pattern of the wiring board 20.
  • the connection terminal 60 is electrically connected to this wiring pattern.
  • ASIC stands for application specific integrated circuit.
  • the structure by which the 1st sensing part 21 and the 2nd sensing part 22 were mounted in the back surface 20b is also employable.
  • the ASIC 23 includes a magnetoelectric conversion unit 25, a processing circuit 26, a connection pin 27, and a resin unit 28.
  • the magnetoelectric converter 25 and the processing circuit 26 are electrically connected.
  • One end of the connection pin 27 is electrically connected to the processing circuit 26.
  • the other end of the connection pin 27 is electrically and mechanically connected to the wiring board 20.
  • One end side of the connection pin 27, the processing circuit 26, and the magnetoelectric conversion part 25 are covered with a resin part 28.
  • the other end side of the connection pin 27 is exposed from the resin portion 28.
  • the magnetoelectric conversion unit 25 has a plurality of magnetoresistive elements whose resistance values vary according to the magnetic field (transmission magnetic field) that passes through the magnetoelectric conversion unit 25.
  • the magnetoresistive effect element changes its resistance value according to the transmitted magnetic field along the facing surface 20a. That is, the resistance value of the magnetoresistive effect element changes according to the component along the x direction and the component along the y direction of the transmitted magnetic field.
  • the resistance value of the magnetoresistive element does not change due to the transmitted magnetic field along the z direction. Therefore, even if external noise along the z direction passes through the magnetoresistive element, the resistance value of the magnetoresistive element does not change.
  • the magnetoresistive effect element has a pinned layer whose magnetization direction is fixed, a free layer whose magnetization direction changes according to the transmitted magnetic field, and a nonmagnetic intermediate layer provided therebetween.
  • the magnetoresistive element is a giant magnetoresistive element.
  • the magnetoresistive element is a tunnel magnetoresistive element.
  • the magnetoresistive effect element may be an anisotropic magnetoresistive effect element (AMR).
  • the magnetoelectric conversion unit 25 may include a Hall element instead of the magnetoresistive effect element.
  • the resistance value of the magnetoresistive effect element changes depending on the angle formed by the magnetization directions of the pinned layer and the free layer.
  • the magnetization direction of the pinned layer is along the facing surface 20a.
  • the magnetization direction of the free layer is determined by the transmitted magnetic field along the facing surface 20a.
  • the resistance value of the magnetoresistive element is the smallest when the magnetization directions of the free layer and the fixed layer are parallel.
  • the resistance value of the magnetoresistive element is the largest when the magnetization directions of the free layer and the fixed layer are antiparallel.
  • the magnetoelectric conversion unit 25 includes a first magnetoresistive element 25a and a second magnetoresistive element 25b as the magnetoresistive elements described above.
  • the first magnetoresistive effect element 25a and the second magnetoresistive effect element 25b differ in the magnetization direction of the pinned layer by 90 °. For this reason, the increase and decrease of the resistance values of the first magnetoresistive effect element 25a and the second magnetoresistive effect element 25b are reversed.
  • the resistance value of one of the first magnetoresistive effect element 25a and the second magnetoresistive effect element 25b decreases, the other resistance value increases by the same amount.
  • the magnetoelectric conversion unit 25 has two first magnetoresistive elements 25a and two second magnetoresistive elements 25b.
  • the first magnetoresistive effect element 25a and the second magnetoresistive effect element 25b are sequentially connected in series from the power supply potential toward the reference potential to constitute a first half bridge circuit.
  • the second magnetoresistive effect element 25b and the first magnetoresistive effect element 25a are sequentially connected in series from the power supply potential toward the reference potential to form a second half bridge circuit.
  • the midpoint potential of the two half-bridge circuits is configured such that when one potential decreases, the other potential increases.
  • a full bridge circuit is configured by combining these two half bridge circuits.
  • the magnetoelectric conversion unit 25 includes a differential amplifier 25c, a feedback coil 25d, and a shunt resistor 25e in addition to the magnetoresistive effect element constituting the above-described full bridge circuit.
  • the midpoint potential of the two half-bridge circuits is input to the inverting input terminal and the non-inverting input terminal of the differential amplifier 25c.
  • a feedback coil 25d and a shunt resistor 25e are sequentially connected in series from the output terminal of the differential amplifier 25c toward the reference potential.
  • an output corresponding to the variation in the resistance value of the first magnetoresistive effect element 25a and the second magnetoresistive effect element 25b constituting the full bridge circuit is made from the output terminal of the differential amplifier 25c.
  • the This change in resistance value is caused by the transmission of a magnetic field along the facing surface 20a through the magnetoresistive element.
  • a magnetic field (measured magnetic field) generated from a current flowing through the conductive bus bar 30 is transmitted through the magnetoresistive effect element. Therefore, a current corresponding to the measured magnetic field flows through the input terminal of the differential amplifier 25c.
  • the input terminal and output terminal of the differential amplifier 25c are connected via a feedback circuit (not shown). Therefore, the differential amplifier 25c is virtually shorted. Therefore, the differential amplifier 25c operates so that the inverting input terminal and the non-inverting input terminal have the same potential. That is, the differential amplifier 25c operates so that the current flowing through the input terminal and the current flowing through the output terminal become zero. As a result, a current (feedback current) corresponding to the measured magnetic field flows from the output terminal of the differential amplifier 25c.
  • the feedback current flows between the output terminal of the differential amplifier 25c and the reference potential via the feedback coil 25d and the shunt resistor 25e. Due to the flow of the feedback current, a canceling magnetic field is generated in the feedback coil 25d. This canceling magnetic field passes through the magnetoelectric converter 25. As a result, the magnetic field to be measured transmitted through the magnetoelectric conversion unit 25 is canceled. As described above, the magnetoelectric conversion unit 25 operates so that the measured magnetic field that passes through itself and the canceling magnetic field are balanced.
  • a feedback voltage corresponding to the amount of feedback current that generates a canceling magnetic field is generated at the midpoint between the feedback coil 25d and the shunt resistor 25e. This feedback voltage is output to the processing circuit 26 at the subsequent stage as an electrical signal that detects the current to be measured.
  • the processing circuit 26 includes an adjustment amplifier 26a and a threshold power supply 26b.
  • the midpoint between the feedback coil 25d and the shunt resistor 25e is connected to the non-inverting input terminal of the adjustment amplifier 26a.
  • a threshold power supply 26b is connected to the inverting input terminal of the adjustment amplifier 26a.
  • the resistance values of the first magnetoresistive effect element 25a and the second magnetoresistive effect element 25b constituting the full bridge circuit have a property depending on temperature. For this reason, the output of the adjustment amplifier 26a varies due to temperature changes. Therefore, the processing circuit 26 includes a temperature detection element (not shown) and a nonvolatile memory that stores the relationship between the temperature and resistance value of the magnetoresistive effect element. This nonvolatile memory is electrically rewritable. By rewriting the value stored in the nonvolatile memory, the gain and offset of the adjustment amplifier 26a are adjusted. As a result, fluctuations in the output of the adjustment amplifier 26a due to temperature changes are cancelled.
  • the filter 24 has a resistor 24a and a capacitor 24b.
  • the wiring board 20 is provided with a power wiring 20c, a first output wiring 20d, a second output wiring 20e, and a ground wiring 20f as wiring patterns.
  • the ASIC 23 of the first sensing unit 21 is connected to the power supply wiring 20c, the first output wiring 20d, and the ground wiring 20f.
  • the output terminal of the adjustment amplifier 26a of the ASIC 23 of the first sensing unit 21 is connected to the first output wiring 20d.
  • the resistor 24a of the filter 24 of the first sensing unit 21 is provided in the first output wiring 20d.
  • the capacitor 24b connects the first output wiring 20d and the ground wiring 20f.
  • the filter 24 of the first sensing unit 21 forms a low-pass filter by the resistor 24a and the capacitor 24b.
  • the output of the ASIC 23 of the first sensing unit 21 is output to the battery ECU 801 through this low-pass filter. As a result, the output of the first sensing unit 21 from which high-frequency noise has been removed is input to the battery ECU 801.
  • the ASIC 23 of the second sensing unit 22 is connected to the power supply wiring 20c, the second output wiring 20e, and the ground wiring 20f.
  • the output terminal of the adjustment amplifier 26a of the ASIC 23 of the first sensing unit 21 is connected to the second output wiring 20e.
  • the resistor 24a of the filter 24 of the second sensing unit 22 is provided in the second output wiring 20e.
  • the capacitor 24b connects the second output wiring 20e and the ground wiring 20f. Accordingly, the filter 24 of the second sensing unit 22 forms a low-pass filter by the resistor 24a and the capacitor 24b.
  • the output of the ASIC 23 of the second sensing unit 22 is output to the battery ECU 801 through this low-pass filter. As a result, the output of the second sensing unit 22 from which high frequency noise has been removed is input to the battery ECU 801.
  • the first sensing unit 21 and the second sensing unit 22 of the present embodiment have the same configuration.
  • the magnetoelectric conversion units 25 of the first sensing unit 21 and the second sensing unit 22 are arranged in the y direction. As will be described in detail later, the magnetic fields transmitted through the magnetoelectric conversion units 25 of the first sensing unit 21 and the second sensing unit 22 are the same.
  • the electrical signal input from the first sensing unit 21 to the battery ECU 801 and the electrical signal input from the second sensing unit 22 to the battery ECU 801 are the same.
  • the battery ECU 801 determines whether or not an abnormality has occurred in one of the first sensing unit 21 and the second sensing unit 22 by comparing these two input electrical signals.
  • the first current sensor 11 according to the present embodiment has redundancy.
  • the shunt resistor 25e may be provided in the resin portion 28 or may be provided outside the resin portion 28. When provided outside the resin portion 28, the shunt resistor 25 e is mounted on the wiring board 20. The shunt resistor 25e is externally attached to the ASIC 23.
  • each of the four resistors constituting the full bridge circuit may not be a magnetoresistive element. At least one of these four resistors may be a magnetoresistive element. Instead of a full bridge circuit, only one half bridge circuit may be configured.
  • the first current sensor 11 may employ a configuration having one of the first sensing unit 21 and the second sensing unit 22.
  • the conductive bus bar 30 is made of a conductive material such as copper, brass and aluminum.
  • the conductive bus bar 30 can be manufactured by, for example, the methods listed below.
  • the conductive bus bar 30 can be manufactured by pressing a flat plate.
  • the conductive bus bar 30 can be manufactured by integrally connecting a plurality of flat plates.
  • the conductive bus bar 30 can be manufactured by welding a plurality of flat plates.
  • the conductive bus bar 30 can be manufactured by pouring a molten conductive material into a mold.
  • the method for manufacturing the conductive bus bar 30 is not particularly limited.
  • the conductive bus bar 30 has a flat shape with a small thickness in the z direction.
  • Each of the front surface 30a and the back surface 30b of the conductive bus bar 30 faces the z direction.
  • the (a) column of FIG. 8 shows a top view of the conductive bus bar.
  • the column (b) in FIG. 8 shows a side view of the conductive bus bar.
  • the conductive bus bar 30 extends in the y direction. 8
  • the conductive bus bar 30 includes a covering portion 31 that is covered with the sensor housing 50, and a first exposed portion 32 and a second exposed portion 33 that are exposed from the sensor housing 50.
  • Have The first exposed portion 32 and the second exposed portion 33 are arranged in the y direction with the covering portion 31 interposed therebetween.
  • the first exposed portion 32 and the second exposed portion 33 are integrally connected via the covering portion 31.
  • the length (thickness) in the z direction of each of the covering portion 31, the first exposed portion 32, and the second exposed portion 33 is the same. That is, the separation distance in the z direction between the front surface 30a and the back surface 30b of each of the covering portion 31, the first exposed portion 32, and the second exposed portion 33 is the same.
  • Each of the first exposed portion 32 and the second exposed portion 33 is formed with a bolt hole 30c for electrical and mechanical connection with the energizing bus bar 307 through a bolt.
  • the bolt hole 30c penetrates the front surface 30a and the back surface 30b.
  • the energizing bus bar 307 is divided between the reactor 313 side and the high side switch 311 side. Attachment holes corresponding to the bolt holes 30c are formed on the reactor 313 side and the high side switch 311 side of the energizing bus bar 307, respectively.
  • the mounting hole on the reactor 313 side of the energizing bus bar 307 and the bolt hole 30c of the first exposed portion 32 are arranged in the z direction.
  • the mounting hole on the high side switch 311 side of the energizing bus bar 307 and the bolt hole 30c of the second exposed portion 33 are aligned in the z direction.
  • the bolt shaft is passed through the bolt hole 30c and the mounting hole.
  • the nut is fastened from the tip of the bolt shaft portion toward the head.
  • the current-carrying bus bar 307 and the conductive bus bar 30 are sandwiched between the head of the bolt and the nut.
  • the current-carrying bus bar 307 and the conductive bus bar 30 are brought into contact with each other, and both are electrically and mechanically connected.
  • the reactor 313 side and the high-side switch 311 side of the divided energized bus bar 307 are bridged by the conductive bus bar 30.
  • a common current flows through the energized bus bar 307 and the conductive bus bar 30.
  • the covering portion 31 is formed with a locally narrowed portion 31 a having a length in the x direction.
  • the narrowed portion 31a of the present embodiment has a length in the x direction that is gradually reduced.
  • the narrowed portion 31a has a length in the x direction that is shortened in two steps from the first exposed portion 32 side of the covering portion 31 toward the center point CP of the covering portion 31 in the y direction.
  • the narrowed portion 31a has a length in the x direction that is shortened in two steps from the second exposed portion 33 side of the covering portion 31 toward the center point CP of the covering portion 31 in the y direction.
  • the length in the x direction of the narrowed portion 31a may be shortened in multiple steps, or may be continuously shortened.
  • the center point CP is equivalent to the center of gravity of the covering portion 31.
  • the covering portion 31 and the narrowed portion 31a have a line-symmetric shape with a center line passing through the center point CP in the z direction as a symmetry axis AS.
  • the narrowed portion 31a is shorter in length in the x direction than the first exposed portion 32 and the second exposed portion 33, respectively. For this reason, the density of the current flowing through the constricted part 31 a is higher than the density of the current flowing through the first exposed part 32 and the second exposed part 33. As a result, the strength of the magnetic field to be measured generated from the current flowing through the constriction 31a is high.
  • the first sensing unit 21 and the second sensing unit 21 are shown in the columns (a) and (b) of FIG. 8 so that the first sensing unit 21 and the magnetoelectric conversion unit 25 of the second sensing unit 22 are schematically surrounded by broken lines.
  • the sensing unit 22 is disposed opposite to the narrowed portion 31a in the z direction. Therefore, the first sensing unit 21 and the second sensing unit 22 are each transmitted with a strong magnetic field to be measured, which is generated from the current flowing through the constriction 31a.
  • the conductive bus bar 30 extends in the y direction. Therefore, a current flows in the y direction in the conductive bus bar 30. Due to the flow of current in the y direction, a measured magnetic field is generated in the circumferential direction around the y direction according to Ampere's law.
  • the magnetic field to be measured flows in an annular shape around the conductive bus bar 30 in a plane defined by the x direction and the z direction.
  • the first sensing unit 21 and the second sensing unit 22 detect a component along the x direction of the magnetic field to be measured.
  • the magnetoelectric conversion units 25 of the first sensing unit 21 and the second sensing unit 22 are arranged in the y direction. These two magnetoelectric converters 25 are arranged symmetrically with respect to the symmetry axis AS. The position in the x direction of the two magnetoelectric converters 25 and the position in the x direction of the symmetry axis AS (center point CP) are the same. Therefore, the two magnetoelectric converters 25 are arranged in the y direction via the center point CP.
  • the distance in the z direction between the two magnetoelectric conversion portions 25 and the covering portion 31 is the same. And as above-mentioned, the coating
  • the conductive bus bar 30 of the present embodiment is manufactured by pressing a conductive flat plate.
  • a flat plate is placed on a die, and a punch is brought close to the die to apply a tensile force to the flat plate.
  • the flat plate is separated into the conductive bus bar 30 and the chips, and the conductive bus bar 30 is manufactured.
  • the conductive bus bar 30 When the conductive bus bar 30 is manufactured by the above pressing, a shear surface is formed on the conductive bus bar 30. Sagging occurs on the shearing surface on the side of the conductive bus bar 30 that first contacts the punch. This may impair the right angle of the shear plane. As a result, the distribution of the measured magnetic field generated by the current flowing through the conductive bus bar 30 may be deviated from the design.
  • the conductive bus bar 30 of this embodiment is provided with a surface on the wiring substrate 20 side that is finally separated by the punch, not the surface that first contacts the punch. That is, the first surface that contacts the punch is the back surface 30b, and the last surface separated by the punch is the front surface 30a.
  • the shear surface corresponds to the side surface between the front surface 30a and the back surface 30b. Therefore, the right-angle property on the surface 30a side on the side surface of the conductive bus bar 30 is not easily impaired.
  • the surface 30 a of the conductive bus bar 30 faces the wiring board 20. Therefore, the distribution of the magnetic field to be measured that passes through the first sensing unit 21 and the second sensing unit 22 mounted on the wiring board 20 is suppressed from being deviated from the design.
  • a notch 33a for distinguishing this is formed in the second exposed portion 33 of the conductive bus bar 30 as a mark.
  • the notch 33a of this embodiment has a semicircular shape.
  • the shield 40 includes the first shield 41 and the second shield 42. As shown in FIGS. 9 and 10, each of the first shield 41 and the second shield 42 has a thin plate shape with a thickness in the z direction. One surface 41a having the largest area of the first shield 41 and its back surface 41b face each other in the z direction. One surface 42a having the largest area of the second shield 42 and its back surface 42b face each other in the z direction.
  • the first shield 41 and the second shield 42 are provided in the sensor housing 50 in such a manner that the one surface 41a and the one surface 42a face each other in the z direction.
  • Each of the back surface 41 b of the first shield 41 and the back surface 42 b of the second shield 42 is exposed outside the sensor housing 50.
  • Each of the back surface 41 b and the back surface 42 b constitutes a part of the outermost surface of the first current sensor 11.
  • the first shield 41 and the second shield 42 can be manufactured by pressure-bonding a plurality of flat plates made of a soft magnetic material having a high magnetic permeability such as permalloy.
  • the first shield 41 and the second shield 42 can be manufactured by rolling electromagnetic steel.
  • Each of the first shield 41 and the second shield 42 of the present embodiment is manufactured by crimping a plurality of flat plates made of a soft magnetic material.
  • Each of the plurality of flat plates is formed with four convex portions projecting from the main surface toward the back surface. Accordingly, each of the plurality of flat plates is formed with four recesses that are recessed from the back surface toward the main surface.
  • Each of these flat plates is arranged such that the main surface and the back surface face each other. And a some flat plate is laminated
  • a plurality of flat plates are pressure-bonded in this laminated state. Thereby, the 1st shield 41 and the 2nd shield 42 are manufactured.
  • the direction which extends electromagnetic steel by the rolling is made into x direction, for example.
  • the atomic arrangement (crystal) of the electrical steel is aligned in the x direction.
  • the permeability in the x direction is higher than that in the y direction.
  • the planar shape of the first shield 41 is a rectangle whose longitudinal direction is the x direction as shown in FIG. And the notch 41c is formed in the four corners of the 1st shield 41 of this embodiment.
  • two broken lines extending in the x direction are given to the first shield 41 in order to clarify the boundary between the center and both ends of the first shield 41 in the y direction.
  • the center of the first shield 41 in the y direction is referred to as a first central portion 41d. Both ends of the first shield 41 in the y direction are indicated as first end portions 41e.
  • the first central portion 41d is located between two end portions of the first both end portions 41e in the y direction.
  • the first both ends 41e are shorter in the x direction than the first center 41d. Therefore, the first end portion 41e has a lower magnetic permeability in the x direction than the first central portion 41d. It is difficult for the magnetic field to enter the first both ends 41e. Therefore, the magnetic field is transmitted from one of the two end portions of the first both end portions 41e to the other through a portion (parallel portion) directly connected to the first both end portions 41e in the first central portion 41d and arranged in the y direction. Transmission is suppressed. It is difficult for the magnetic field to pass through the parallel portion of the first central portion 41d. As a result, the parallel portion of the first central portion 41d is unlikely to be magnetically saturated.
  • the parallel part of the first central part 41d in which the magnetic saturation is suppressed, the first sensing part 21 and the second sensing part 22 mounted on the wiring board 20 are arranged in the z direction.
  • the magnetoelectric conversion units 25 of the first sensing unit 21 and the second sensing unit 22 are located between the first central part 41d and the constriction part 31a.
  • the planar shape of the second shield 42 is a rectangle whose longitudinal direction is the x direction as shown in FIG. In FIG. 10, two broken lines extending in the x direction are given to the second shield 42 in order to clarify the boundary between the center and both ends of the second shield 42 in the y direction.
  • the center in the y direction of the second shield 42 is referred to as a second central portion 42d.
  • Both ends of the second shield 42 in the y direction are indicated as second end portions 42e.
  • the second central portion 42d is located between the two end portions of the second both end portions 42e in the y direction.
  • the second shield 42 has two end sides 42f arranged in the x direction.
  • An extending portion 42c extending in the z direction is formed on each of the two end sides 42f on the second central portion 42d side. These two extending portions 42c extend in the direction from the back surface 42b toward the one surface 42a in the z direction.
  • the extending portion 42c forms a rectangular parallelepiped having the y direction as a longitudinal direction. As described above, the extending portion 42c is formed by crimping a plurality of flat plates made of a soft magnetic material when the second shield 42 is manufactured.
  • the first shield 41 and the second shield 42 are provided in the sensor housing 50 in such a manner that the one surface 41a of the first shield 41 and the one surface 42a of the second shield 42 face each other in the z direction.
  • the extending portion 42 c extends toward the first shield 41 while being provided in the sensor housing 50.
  • the end surface of the extending portion 42c and the one surface 41a of the first central portion 41d of the first shield 41 face each other in the z direction.
  • the distance between the first central portion 41d of the first shield 41 and the extending portion 42c of the second shield 42 is greater than the distance in the z direction between the one surface 41a of the first shield 41 and the one surface 42a of the second shield 42.
  • the separation distance in the z direction is shorter. Therefore, the magnetic field that has entered the first shield 41 is easily transmitted to the second shield 42 through the extended portion 42c.
  • the extending portion 42c extends in the z direction from the second central portion 42d side of the end side 42f.
  • the extending portion 42c is not formed on the second end portion 42e side of the end side 42f. Therefore, the magnetic field that has entered the first shield 41 is easily transmitted to the second central portion 42d of the second shield 42 through the extended portion 42c.
  • the second central portion 42d is opposed to the first sensing portion 21 and the second sensing portion 22 mounted on the wiring board 20 in the z direction. Between the first central part 41d and the second central part 42d, the magnetoelectric conversion part 25 and the constriction part 31a of the first sensing part 21 and the second sensing part 22, respectively, are located.
  • the position of the magnetoelectric conversion portion 25 in the x direction is between two extending portions 42c formed on each of the two end sides 42f. Therefore, when external noise along the x direction passes through a region between the one surface 41a of the first shield 41 and the one surface 42a of the second shield 42 where the magnetoelectric conversion unit 25 is located, the external noise is transmitted to the magnetoelectric conversion unit. 25, instead of entering the extended portion 42c.
  • the external noise that has entered the extending portion 42 c is bent in its transmission direction so as to pass through the second shield 42. As a result, the transmission of external noise through the magnetoelectric conversion unit 25 is suppressed.
  • a conductive bus bar 30 and a connection terminal 60 are insert-molded in the sensor housing 50.
  • the sensor housing 50 is provided with the wiring board 20 and the shield 40.
  • the conductive bus bar 30, the wiring board 20, and the shield 40 are arranged apart from each other in the z direction.
  • the (a) column of FIG. 11 shows a top view of the sensor housing.
  • the (b) column of FIG. 11 shows a bottom view of the sensor housing.
  • the sensor housing 50 has a base 51, an insulating part 52, a first surrounding part 53, a second surrounding part 54, and a connector part 55.
  • the base 51 has a rectangular parallelepiped with the x direction as the longitudinal direction.
  • the base 51 has six sides.
  • the base 51 has a left surface 51a and a right surface 51b facing in the y direction.
  • the base 51 has an upper surface 51c and a lower surface 51d facing in the x direction.
  • the base 51 has an upper end surface 51e and a lower end surface 51f facing in the z direction.
  • the insulating portion 52 is formed on a part of each of the left surface 51 a and the right surface 51 b of the base 51. These two insulating portions 52 extend in the y direction so as to be separated from the base portion 51. The two insulating portions 52 are arranged in the y direction via the base portion 51. The covering portion 31 of the conductive bus bar 30 is covered by the two insulating portions 52 and the base portion 51.
  • the first exposed portion 32 side and the second exposed portion 33 side of the covering portion 31 are covered by the two insulating portions 52.
  • the narrowed portion 31 a of the covering portion 31 is covered with the base portion 51. Therefore, the narrowed portion 31a is located between the upper end surface 51e and the lower end surface 51f of the base portion 51 in the z direction.
  • An insulating resin material constituting the base portion 51 is located between the narrowed portion 31a and the upper end surface 51e and between the narrowed portion 31a and the lower end surface 51f.
  • the first surrounding portion 53 is formed on the upper end surface 51 e of the base portion 51.
  • the first surrounding portion 53 has a left wall 53a and a right wall 53b arranged in the y direction.
  • the first surrounding portion 53 has an upper wall 53c and a lower wall 53d arranged in the x direction.
  • the first surrounding portion 53 are formed along the edge of the upper end surface 51e. In the circumferential direction around the z direction, the left wall 53a, the upper wall 53c, the right wall 53b, and the lower wall 53d are sequentially connected. Accordingly, the first surrounding portion 53 has an annular shape that opens in the z direction. An upper end surface 51 e is surrounded by the first surrounding portion 53.
  • the wiring board 20 and the first shield 41 are provided in a first storage space constituted by the first surrounding portion 53 and the upper end surface 51e.
  • the second surrounding portion 54 is formed on the lower end surface 51 f of the base portion 51.
  • the second surrounding portion 54 has a left wall 54a and a right wall 54b arranged in the y direction.
  • the second surrounding portion 54 has an upper wall 54c and a lower wall 54d arranged in the x direction.
  • the second surrounding portion 54 are formed around a portion of the lower end surface 51f aligned with the narrowed portion 31a of the base portion 51 in the z direction. In the circumferential direction around the z direction, the left wall 54a, the upper wall 54c, the right wall 54b, and the lower wall 54d are sequentially connected. Thus, the second surrounding portion 54 has an annular shape that opens in the z direction. A part of the lower end surface 51 f is surrounded by the second surrounding portion 54.
  • the second shield 42 is provided in the second storage space configured by the second surrounding portion 54 and the lower end surface 51f.
  • the plane perpendicular to the z direction is smaller than the first storage space.
  • the second storage space is aligned with a part of the first storage space in the z direction.
  • a portion of the first storage space that is not aligned with the second storage space in the z direction and the connector portion 55 are arranged in the z direction.
  • the connector portion 55 is formed on the lower end surface 51 f of the base portion 51.
  • the connector portion 55 extends in the z direction so as to be away from a portion (non-enclosed portion) that is not surrounded by the second surrounding portion 54 in the lower end surface 51f.
  • the connector portion 55 constitutes a part of the lower wall 54d.
  • the connector portion 55 includes a column portion 55a extending in the z direction from the lower end surface 51f, and a surrounding portion 55c surrounding the tip end surface 55b of the column portion 55a in the circumferential direction around the z direction.
  • the connection terminal 60 extends in the z direction.
  • the connection terminal 60 is covered with the column portion 55a and the portions of the base portion 51 that are aligned with the column portion 55a in the z direction.
  • connection terminal 60 is exposed outside the column portion 55a from the tip end surface 55b.
  • connection terminal 60 exposed from the tip end surface 55b is surrounded by the surrounding portion 55c.
  • a connector is constituted by the surrounding portion 55 c and one end of the connection terminal 60.
  • a connector such as a wire harness is connected to this connector.
  • connection terminal 60 is exposed outside the base 51 from the upper end surface 51e.
  • the other end of the connection terminal 60 is provided in the first storage space.
  • the connection terminal 60 is separated from the portion (the narrowed portion 31a) covered with the base 51 in the conductive bus bar 30 in the x direction.
  • the other end of the connection terminal 60 is located on the lower wall 53d side in the x direction.
  • the narrowed portion 31a is located on the upper wall 53c side.
  • An insulating resin material constituting the base portion 51 is located between the portions of the connection terminal 60 and the narrowed portion 31a that are insert-molded in the sensor housing 50.
  • a direct current that inputs and outputs the battery 200 flows through the conductive bus bar 30. Then, an electrical signal having a current amount smaller than the direct current flows through the connection terminal 60 between the wiring board 20 and the battery ECU 801. If the creepage distance between the conductive bus bar 30 and the connection terminal 60 is short, there is a possibility that both will conduct and short-circuit.
  • a rib 52a is formed in the insulating portion 52 for suppressing the occurrence of such a problem.
  • the rib 52a protrudes from the insulating portion 52 in the z direction.
  • the rib 52a extends in the x direction.
  • the length of the rib 52 a in the x direction is longer than the length of each of the first exposed portion 32 and the second exposed portion 33 in the x direction.
  • the rib 52a is located between the first exposed portion 32 and the second exposed portion 33 of the conductive bus bar 30 located outside the insulating portion 52 and the other end exposed to the outside from the upper end surface 51e of the connection terminal 60. Due to the rib 52a, the creeping distance between the conductive bus bar 30 and the connection terminal 60 on the surface of the sensor housing 50 is increased. Thereby, a short circuit between the conductive bus bar 30 and the connection terminal 60 is suppressed.
  • the rib 52 a is located between the first exposed portion 32 and the second exposed portion 33 and the first shield 41 and the second shield 42. Thereby, a short circuit between the conductive bus bar 30 and the shield 40 is also suppressed.
  • the length of the insulating portion 52 in the y direction can be shortened by extending the creepage distance by the rib 52a.
  • the length of the insulating part 52 in the y direction can be shortened by about 85%. Thereby, an increase in the size of the first current sensor 11 is suppressed.
  • the upper end surface 51e of the base 51 is formed with substrate support pins 56a and substrate adhesive pins 56b that extend locally in the z direction. .
  • a plurality of these substrate support pins 56a and substrate bonding pins 56b are formed on the upper end surface 51e.
  • the (a) column of FIG. 12 shows a perspective view of the sensor housing.
  • the (b) column of FIG. 12 shows a perspective view of the sensor housing provided with the wiring board. In FIG. 12, in order to explain these pins, some symbols are omitted.
  • Each of the plurality of substrate support pins 56a has a tip surface 56c facing in the z direction. The positions in the z direction of the plurality of tip surfaces 56c are the same.
  • each of the plurality of substrate bonding pins 56b has a front end surface 56d facing in the z direction. The positions in the z direction of the plurality of tip surfaces 56d are equal to each other.
  • the length in the z direction between the front end surface 56c and the upper end surface 51e of the substrate support pin 56a is L1.
  • the length in the z direction between the front end surface 56d and the upper end surface 51e of the substrate bonding pin 56b is L2.
  • the length L1 is longer than the length L2.
  • the front end surface 56c of the substrate support pin 56a is further away from the upper end surface 51e in the z direction than the front end surface 56d of the substrate bonding pin 56b.
  • the wiring substrate 20 is mounted on the sensor housing 50 in such a manner that the opposing surface 20a contacts the tip surface 56c of the substrate support pin 56a.
  • the substrate support pin 56a corresponds to the substrate support portion.
  • the front end surface 56c corresponds to a support surface.
  • the facing surface 20a of the wiring board 20 and the front end surface 56d of the substrate bonding pin 56b are separated in the z direction.
  • a board adhesive 56e for bonding and fixing the both is provided between the wiring board 20 and the board bonding pins 56b.
  • the substrate bonding pin 56b corresponds to the substrate bonding portion.
  • the front end surface 56d corresponds to the mounting surface.
  • the temperature of the board adhesive 56e is set higher than the environmental temperature at which the first current sensor 11 is provided.
  • the temperature of the substrate adhesive 56e can be set to about 150 ° C., for example.
  • the substrate adhesive 56e has fluidity.
  • a silicon-based adhesive can be used as the substrate adhesive 56e.
  • a substrate adhesive 56e having a fluidity of about 150 ° C. is applied to the tip surface 56d of the substrate bonding pin 56b. Then, the wiring substrate 20 is provided on the sensor housing 50 so that the front end surface 56c of the substrate support pin 56a and the substrate adhesive 56e are in contact with the facing surface 20a of the wiring substrate 20, respectively. Thereafter, the substrate adhesive 56e is cooled to room temperature and solidified.
  • the positional deviation of the wiring board 20 with respect to the sensor housing 50 does not depend on the variation in the shape of the substrate adhesive 56e having fluidity during bonding and fixing.
  • a positional deviation of the wiring board 20 with respect to the sensor casing 50 becomes a manufacturing error of the sensor casing 50.
  • a positional deviation of the wiring board 20 with respect to the conductive bus bar 30 that is insert-molded in the sensor casing 50 becomes a manufacturing error of the sensor casing 50.
  • three substrate support pins 56a are formed on the upper end surface 51e. Two of these three substrate support pins 56a are arranged apart from each other in the y direction. The remaining one substrate support pin 56a is spaced in the x direction from the midpoint between the two substrate support pins 56a arranged in the y direction. The tip surfaces 56c of the three substrate support pins 56a form vertices of isosceles triangles. The narrowed portion 31a of the conductive bus bar 30 is located between the two substrate support pins 56a arranged in the y direction and the remaining one substrate support pin 56a.
  • three substrate bonding pins 56b are formed on the upper end surface 51e. Two of these three substrate bonding pins 56b are arranged apart from each other in the y direction. The remaining one substrate bonding pin 56b is separated in the x direction from the midpoint between the two substrate support pins 56a arranged in the y direction.
  • the front end surfaces 56d of the three substrate bonding pins 56b form vertices of isosceles triangles.
  • the other ends of the plurality of connection terminals 60 are arranged between the two substrate support pins 56a arranged in the y direction.
  • the remaining one substrate support pin 56a is located at the midpoint between the two substrate bonding pins 56b arranged in the y direction. Therefore, the remaining one substrate support pin 56a is aligned with the remaining one substrate bonding pin 56b in the x direction.
  • the center point CP of the narrowed portion 31a is located between the remaining one substrate support pin 56a and the remaining one substrate bonding pin 56b in the x direction.
  • the isosceles triangle formed by connecting the tip surfaces 56c of the three substrate support pins 56a and the isosceles triangle formed by connecting the tip surfaces 56d of the three substrate bonding pins 56b overlap in the z direction. Yes.
  • the central point CP of the constricted portion 31a is located in a region where these two isosceles triangles overlap in the z direction.
  • the wiring board 20 is provided in the sensor casing 50 in such a manner as to face each of these two isosceles triangles in the z direction.
  • the portion of the wiring board 20 that faces the two isosceles triangles faces the two isosceles triangles for contact with the board support pins 56a and connection with the board adhesive pins 56b via the board adhesive 56e.
  • the connection with the sensor housing 50 is more stable than the portion that is not.
  • the first sensing unit 21 and the second sensing unit 22 are mounted on a portion of the wiring board 20 where the connection with the sensor housing 50 is stabilized.
  • the facing surface 20a of the wiring substrate 20 and the upper end surface 51e of the base 51 are in the z direction. It faces away.
  • the distance between the facing surface 20a and the upper end surface 51e is constant over the entire surface, and the two are in a parallel relationship.
  • the narrowed portion 31a of the conductive bus bar 30 is insert-molded in the base 51.
  • the separation distance between the surface 30a of the narrowed portion 31a and the upper end surface 51e of the base portion 51 is constant over the entire surface, and the two are in a parallel relationship.
  • the distance between the facing surface 20a of the wiring board 20 and the surface 30a of the narrowed portion 31a is constant over the entire surface, and the two are in a parallel relationship.
  • the wiring board 20 is formed by laminating a plurality of resin layers and metal layers in the z direction. Therefore, the manufacturing error of the thickness of the wiring board 20 in the z direction is large.
  • the manufacturing error of the thickness in the z direction of the wiring board 20 includes the manufacturing error of the position in the z direction due to the insert molding of the conductive bus bar 30 to the sensor casing 50 and the positioning error of the wiring board 20 in the z direction with respect to the sensor casing 50. It is about twice as much.
  • the first sensing portion 21 and the second sensing portion 22 are provided on the surface 20a of the wiring board 20 facing the conductive bus bar 30. Accordingly, the distance in the z direction between the first sensing unit 21 and the respective conductive bus bars 30 of the second sensing unit 22 does not depend on the thickness of the wiring board 20 in the z direction. Due to manufacturing errors in the thickness in the z direction of the wiring board 20, fluctuations in the distance in the z direction between the first sensing unit 21, the second sensing unit 22, and the conductive bus bar 30 are suppressed.
  • the number of substrate support pins 56a and substrate adhesion pins 56b is not limited to three. As the number of substrate support pins 56a, four or more may be employed. As the number of substrate bonding pins 56b, one, two, or four or more may be employed.
  • the polygon formed by connecting the tip surfaces 56c of the three or more substrate supporting pins 56a, and the three or more substrate bonding pins 56b is preferable.
  • the first sensing unit 21 and the second sensing unit 22 be mounted in a region facing the two polygons in the wiring board 20 in the z direction.
  • the substrate support pins 56a and the substrate bonding pins 56b As shown as the substrate support pins 56a and the substrate bonding pins 56b, an example in which these are columnar shapes extending in the z direction is shown. However, these shapes are not limited to columnar shapes.
  • the tip end surface 56c of the substrate support pin 56a only needs to be farther from the upper end surface 51e than the tip end surface 56d of the substrate bonding pin 56b, and the shape is not particularly limited.
  • a shield support pin 57 a and a shield bonding pin 57 b that extend locally in the z direction are formed on the upper end surface 51 e of the base 51. .
  • a plurality of these shield support pins 57a and shield adhesive pins 57b are formed on the upper end surface 51e.
  • the (a) column of FIG. 14 shows a perspective view of the sensor housing provided with the wiring board.
  • the column (b) of FIG. 14 shows a perspective view of a sensor housing provided with a wiring board and a shield. In FIG. 14, in order to describe these pins, some reference numerals are omitted.
  • Each of the plurality of shield support pins 57a has a front end surface 57c facing in the z direction.
  • the positions in the z direction of the plurality of tip surfaces 57c are the same.
  • each of the plurality of shield bonding pins 57b has a front end surface 57d facing in the z direction.
  • the positions in the z direction of the plurality of tip surfaces 57d are equal to each other.
  • each of the shield support pin 57a and the shield adhesive pin 57b is longer in the z direction than the substrate support pin 56a. More specifically, each of the shield support pin 57a and the shield bonding pin 57b has a length in the z direction that is longer than the thickness of the wiring board 20 in the z direction, as compared with the substrate support pin 56a. Therefore, in the state where the wiring substrate 20 is mounted on the sensor housing 50 as described above, the tip end surface 57c of the shield support pin 57a and the tip end surface 57d of the shield bonding pin 57b are respectively higher end surfaces than the back surface 20b of the wiring substrate 20. It is away from 51e in the z direction. A configuration in which the difference in the length in the z direction between the shield bonding pin 57b and the board support pin 56a is shorter than the thickness in the z direction of the wiring board 20 can also be adopted.
  • the length in the z direction between the tip surface 57c and the upper end surface 51e of the shield support pin 57a is L3.
  • the length in the z direction between the front end surface 57d and the upper end surface 51e of the shield bonding pin 57b is L4.
  • the length L3 is longer than the length L4.
  • the front end surface 57c of the shield support pin 57a is further away from the upper end surface 51e in the z direction than the front end surface 57d of the shield bonding pin 57b.
  • the first shield 41 is mounted on the sensor housing 50 in such a manner that the one surface 41a contacts the tip end surface 57c of the shield support pin 57a.
  • the shield support pin 57a corresponds to the shield support portion.
  • the tip surface 57c corresponds to the contact surface.
  • the one surface 41a of the first shield 41 and the tip surface 57d of the shield bonding pin 57b are separated in the z direction. Between the first shield 41 and the shield bonding pin 57b, a substrate adhesive 56e for bonding and fixing the both is provided.
  • the shield bonding pin 57b corresponds to the shield bonding portion.
  • the front end surface 57d corresponds to the installation surface.
  • the temperature of the shield adhesive 57e is set higher than the environmental temperature at which the first current sensor 11 is provided.
  • the temperature of the shield adhesive 57e at this time can also be set to about 150 ° C., for example. At this temperature, the shield adhesive 57e has fluidity.
  • a silicon-based adhesive can be used as the shield adhesive 57e.
  • the shield adhesive 57e having a fluidity of about 150 ° C. is applied to the tip surface 57d of the shield adhesive pin 57b.
  • the first shield 41 is provided on the sensor housing 50 so that the front surface 57c of the shield support pin 57a and the shield adhesive 57e are in contact with the one surface 41a of the first shield 41, respectively. Thereafter, the shield adhesive 57e is cooled to room temperature and solidified.
  • the displacement of the first shield 41 with respect to the sensor housing 50 does not depend on the variation in the shape of the shield adhesive 57e having fluidity at the time of bonding and fixing.
  • a positional deviation of the first shield 41 with respect to the sensor housing 50 becomes a manufacturing error of the sensor housing 50.
  • the positional deviation of the first shield 41 with respect to the wiring board 20 fixed to the sensor housing 50 becomes a manufacturing error of the sensor housing 50.
  • three shield support pins 57a are formed on the upper end surface 51e.
  • One of the three shield support pins 57a is integrally connected to the left wall 53a.
  • One of the remaining two shield support pins 57a is integrally connected to the right wall 53b.
  • the remaining one shield support pin 57a is integrally connected to the upper wall 53c.
  • the tip surfaces 57c of the three shield support pins 57a form a triangular apex.
  • the shield support pin 57a integrally connected to the left wall 53a and the shield support pin 57a integrally connected to the right wall 53b are arranged in the y direction.
  • the space between the two shield support pins 57a and the shield support pin 57a integrally connected to the upper wall 53c are separated in the x direction.
  • the first sensing portion 21 and the second sensing portion 22 of the wiring board 20 are located in a triangular area formed by connecting the tip surfaces 57c of the three shield support pins 57a.
  • three shield bonding pins 57b are formed on the upper end surface 51e.
  • One of the three shield bonding pins 57b is integrally connected to the left wall 53a.
  • One of the remaining two shield bonding pins 57b is integrally connected to the right wall 53b.
  • the remaining one shield bonding pin 57b is integrally connected to the upper wall 53c.
  • the shield adhesive pin 57b integrally connected to the left wall 53a and the shield adhesive pin 57b integrally connected to the right wall 53b are arranged in the y direction. Between these two shield bonding pins 57b and the shield bonding pins 57b integrally connected to the upper wall 53c are spaced apart in the x direction. A triangular region formed by connecting the front end surfaces 57d of the three shield bonding pins 57b, the first sensing unit 21 and the second sensing unit 22 are arranged in the z direction.
  • one shield support pin 57a and one shield adhesive pin 57b are arranged on the left wall 53a and the right wall 53b, respectively.
  • One shield support pin 57a and one shield adhesive pin 57b are arranged on the upper wall 53c.
  • a triangle formed by connecting the tip surfaces 57c of the three shield support pins 57a and a triangle formed by connecting the tip surfaces 57d of the three shield bonding pins 57b are overlapped in the z direction.
  • the region overlapping in the z direction and the center point CP of the narrowed portion 31a are aligned in the z direction.
  • the first shield 41 is provided in the sensor housing 50 in such a manner as to face each of these two triangles in the z direction.
  • the portion of the first shield 41 that faces the two triangles is more than the portion that does not face the two triangles because of contact with the shield support pin 57a and connection with the shield adhesive pin 57b via the shield adhesive 57e. Also, the connection with the sensor housing 50 is stabilized.
  • the portion of the first shield 41 where the connection with the sensor housing 50 is stabilized is aligned with the first sensing portion 21 and the second sensing portion 22 of the wiring board 20 in the z direction. Specifically, the first central portion 41d of the first shield 41 is aligned with the first sensing portion 21 and the second sensing portion 22 in the z direction.
  • the one surface 41a of the first shield 41 and the back surface 20b of the wiring board 20 are in the z direction. It faces away from.
  • the separation distance between the one surface 41a and the back surface 20b is constant over the entire surface, and the two are in a parallel relationship. Accordingly, the distance between the facing surface 20a of the wiring board 20 and the one surface 41a of the first shield 41 is also constant over the entire surface, and the two are in a parallel relationship.
  • a notch 20g for passing the shield support pin 57a and the shield adhesive pin 57b above the wiring board 20 is provided at the end of the wiring board 20. Is formed.
  • the wiring board 20 has a plurality of through holes 20h through which the other end of the connection terminal 60 passes.
  • the plurality of through holes 20h are arranged in the y direction.
  • the part where the plurality of through holes 20 h are formed in the wiring board 20 and the part where the first sensing unit 21 and the second sensing part 22 are mounted are aligned in the x direction.
  • a first position for guiding the position of the wiring board 20 with respect to the sensor casing 50 in the x direction is provided.
  • a notch 20i is formed.
  • the wiring board 20 is provided on the sensor housing 50 at a position where the first sensing unit 21 and the second sensing unit 22 are mounted on the wiring board 20, the position of the wiring board 20 in the y direction with respect to the sensor housing 50.
  • a second notch 20j is formed for guiding.
  • each of the left wall 53a and the right wall 53b of the sensor housing 50 is inserted into the first notch 20i as shown in the (a) column of FIG. 11 and the (b) column of FIG.
  • the first convex portion 53e is formed.
  • Each of the left wall 53a and the right wall 53b is formed with a second convex portion 53f that is disposed opposite to the second notch 20j in the y direction.
  • the first notch 20i and the first convex portion 53e have a similar shape and extend in the y direction.
  • the second notch 20j and the second protrusion 53f have a similar shape and extend in the x direction.
  • the number of the shield support pins 57a and the shield bonding pins 57b described above is not limited to the above example. Four or more shield support pins 57a can be employed. As the number of shield bonding pins 57b, one, two, or four or more can be adopted.
  • a polygon formed by connecting the tip surfaces 57c of the three or more shield support pins 57a and the tip surfaces of the three or more shield bond pins 57b It is preferable that the polygon formed by connecting 57d overlaps in the z direction.
  • the regions of the first shield 41 facing the two polygons in the z direction may be aligned with the first sensing unit 21 and the second sensing unit 22 of the wiring board 20 in the z direction. Thereby, the position shift with respect to the 1st sensing part 21 and the 2nd sensing part 22 of the 1st shield 41 is suppressed.
  • shield support pins 57a and shield adhesive pins 57b As shown as shield support pins 57a and shield adhesive pins 57b, an example is shown in which these are columnar shapes extending in the z direction. However, these shapes are not limited to columnar shapes.
  • the tip end surface 57c of the shield support pin 57a only needs to be further away from the upper end surface 51e than the tip end surface 57d of the shield bonding pin 57b, and the shape is not particularly limited.
  • ⁇ Fixing form of second shield to sensor housing> As shown in the column (b) of FIG. 11 and FIG. 15, a plurality of shield support pins 57 a are also formed on the lower end surface 51 f of the base 51.
  • the wiring substrate 20 is not provided between the sensor housing 50 and the second shield 42. Therefore, the shield support pin 57a formed on the lower end surface 51f is shorter in the z direction than the shield support pin 57a formed on the upper end surface 51e. The positions of the tips of the plurality of substrate support pins 56a in the z direction are the same.
  • the second shield 42 is mounted on the sensor housing 50 in such a manner that the one surface 42a contacts the tip end surface 57c of the shield support pin 57a.
  • the one surface 42a of the second shield 42 is separated from the lower end surface 51f in the z direction.
  • a shield adhesive 57e is provided between the second shield 42 and the lower end surface 51f.
  • the temperature of the shield adhesive 57e is also set higher than the environmental temperature at which the first current sensor 11 is provided.
  • a shield adhesive 57e having fluidity is applied to the lower end surface 51f. Then, the second shield 42 is provided in the sensor housing 50 so that the tip surface 57c of the shield support pin 57a and the shield adhesive 57e are in contact with the one surface 42a of the second shield 42, respectively. Thereafter, the shield adhesive 57e is cooled to room temperature and solidified.
  • the positional deviation of the second shield 42 with respect to the sensor housing 50 does not depend on the shape variation of the shield adhesive 57e having fluidity at the time of bonding and fixing.
  • a positional deviation of the second shield 42 with respect to the sensor housing 50 becomes a manufacturing error of the sensor housing 50.
  • the positional deviation of the second shield 42 with respect to the wiring board 20 fixed to the sensor casing 50 becomes a manufacturing error of the sensor casing 50.
  • four shield support pins 57a are formed on the lower end surface 51f.
  • the front end surfaces 57c of the four shield support pins 57a form a rectangular vertex.
  • a quadrangle formed by connecting the front end surfaces 57c of the four shield support pins 57a and the center point CP of the narrowed portion 31a are arranged in the z direction.
  • the shield adhesive 57e is applied to a region of the lower end surface 51f facing this square.
  • the second shield 42 is provided in the sensor casing 50 in such a manner that the second shield 42 faces the quadrangular shape in the z direction.
  • the portion of the second shield 42 that faces the quadrangle is more in contact with the shield support pin 57a and is connected to the lower end surface 51f via the shield adhesive 57e than the portion that does not face the quadrangle. Connection with 50 is stabilized.
  • the portion of the second shield 42 where the connection with the sensor housing 50 is stabilized is arranged in the z direction with each of the first sensing unit 21 and the second sensing unit 22 of the wiring board 20. Specifically, the second central portion 42d of the second shield 42 is aligned with the first sensing portion 21 and the second sensing portion 22 in the z direction.
  • the number of shield support pins 57a formed on the lower end surface 51f is not limited to four. Any number of shield support pins 57a can be used as long as it is three or more.
  • the region facing the polygon formed by connecting the tip surfaces 57c of the three or more shield support pins 57a in the second shield 42 in the z direction is the first sensing unit. 21 and the second sensing unit 22 may be arranged in the z direction. Thereby, the position shift with respect to each of the 1st sensing part 21 and the 2nd sensing part 22 of the 2nd shield 42 is suppressed.
  • the extended portions 42c extending in the z direction are formed on the two end sides 42f arranged in the x direction of the second shield 42, respectively.
  • two groove portions 51g for forming the extending portion 42c are formed on the lower end surface 51f.
  • the two groove portions 51g are arranged in the x direction between the upper wall 54c and the lower wall 54d. Each of the two groove portions 51g is formed in the z direction from the lower end surface 51f toward the upper end surface 51e. One part of the two groove portions 51g is constituted by the upper wall 54c. A part of the remaining one groove 51g is constituted by the lower wall 54d.
  • the covering portion 31 is located between the two groove portions 51g. Therefore, the covering portion 31 is located between the two extending portions 42 c of the second shield 42.
  • the upper end surface 51e of the base portion 51 is divided into a portion that exposes the other end of the connection terminal 60 arranged in the x direction and a portion that covers the constricted portion 31a, with the first convex portion 53e as a boundary in the y direction. Can do.
  • the exposed portion of the other end of the connection terminal 60 in the upper end surface 51e is located closer to the lower end surface 51f in the z direction than the portion covering the narrowed portion 31a.
  • the distance in the z direction between the exposed portion of the other end of the connection terminal 60 on the upper end surface 51e and the facing surface 20a of the wiring substrate 20 is such that the portion of the upper end surface 51e covering the constricted portion 31a and the wiring substrate 20 face each other.
  • the distance from the surface 20a in the z direction is longer. This is to secure a distance for inserting the other end of the connection terminal 60 into the through hole 20h of the wiring board 20.
  • the position in the z direction of the exposed portion of the other end of the connection terminal 60 on the upper end surface 51e and the portion covering the narrowed portion 31a are different.
  • Substrate support pins 56a are formed in each of these two parts.
  • the positions of the tip surfaces 56c of the plurality of substrate support pins 56a in the z direction are the same, although the position of the upper end surface 51e formed in this way is different in the z direction. Therefore, the lengths of the plurality of substrate support pins 56a in the z direction are different.
  • the length in the z direction of the plurality of substrate support pins 56a is not uniformly the length L1 shown in FIG.
  • the length L1 indicates the length in the z direction of the substrate support pin 56a formed at the portion covering the narrowed portion 31a on the upper end surface 51e.
  • the length in the z direction of the substrate support pin 56a formed in the exposed portion of the other end of the connection terminal 60 in the upper end surface 51e is z direction of the upper end surface 51e divided into the above two than the length L1. It is longer by the difference in position.
  • the length of the support pin in the z direction may be different depending on the position in the z direction of the surface to be formed. It is only necessary that the positions in the z direction of the front end surfaces 56c of the plurality of substrate support pins 56a be the same. The same applies to the plurality of shield support pins 57a.
  • a fluid board adhesive 56e is applied to the front end face 56d of the board adhesive pin 56b.
  • the substrate adhesive 56e has a variable shape in the z direction due to its fluidity. Therefore, the positions in the z direction of the front end surfaces 56d of the plurality of substrate bonding pins 56b may be different. The same applies to the plurality of shield bonding pins 57b.
  • the second current sensor 12 has the same components as the first current sensor 11. Therefore, in the following, description of the same points as the first current sensor 11 is omitted, and different points will be mainly described.
  • the second current sensor 12 is provided in the first energizing bus bar 341 and the second energizing bus bar 342.
  • the second current sensor 12 includes two individual sensors 71 having functions equivalent to those of the first current sensor 11.
  • the second current sensor 12 has a wiring case 72 that houses these two individual sensors 71.
  • the magnetic field generated from the alternating current flowing through the first energizing bus bar 341 is detected by one of the two individual sensors 71.
  • the magnetic field generated from the alternating current flowing through the second energized bus bar 342 is detected by the other of the two individual sensors 71.
  • FIG. 16 shows two individual sensors 71.
  • the two individual sensors 71 have the same shape.
  • Differences in structure between the individual sensor 71 and the first current sensor 11 include a connection portion of the conductive bus bar 30 with the energized bus bar, a shape of the connector portion 55 that covers the connection terminal 60, and the like. That is, the shapes of the first exposed portion 32 and the second exposed portion 33 of the conductive bus bar 30 and the disappearance of the surrounding portion 55c.
  • the structural difference between the individual sensor 71 and the first current sensor 11 as described above is because the connection objects of the two are different. This is because the first current sensor 11 is connected to the energization bus bar 307 of the converter 310. This is because the second current sensor 12 is connected to the first energized bus bar 341 and the second energized bus bar 342 of the first inverter 320. However, the internal structures of the individual sensor 71 and the first current sensor 11 are the same. Therefore, the individual sensor 71 has the same effect as the first current sensor 11.
  • a plurality of individual sensors 71 are housed in a wiring case 72 shown in FIG. As shown in FIG. 18, a plurality of individual sensors can be stored in the wiring case 72 at once. As shown in FIG. 19, the second current sensor 12 is configured by housing a plurality of individual sensors in the wiring case 72.
  • the first shield 41 and the second shield 42 of each individual sensor 71 are alternately arranged in the x direction.
  • the magnetic field detection direction of the magnetoelectric conversion unit 25 of the individual sensor 71 is the z direction and the y direction.
  • each of the wiring cases 72 shown in FIGS. 17 to 19 and the drawings shown below six individual sensors 71 are housed in each of the wiring cases 72 shown in FIGS. 17 to 19 and the drawings shown below.
  • the number of individual sensors 71 housed in the wiring case 72 is only an example.
  • the wiring case 72 only needs to accommodate at least two individual sensors 71.
  • a current sensor for detecting the current of other in-vehicle devices may be housed in the wiring case 72 of the second current sensor 12. Furthermore, the second current sensor 12 and the third current sensor 13 have a common wiring case 72, and the individual sensors that the second current sensor 12 and the third current sensor 13 have in the common wiring case 72. A configuration in which 71 is accommodated can also be adopted.
  • the wiring case 72 has an integrated housing 73, a terminal housing 74, and energization terminals 75.
  • the integrated casing 73 and the terminal casing 74 are made of an insulating resin material.
  • the integrated housing 73 and the terminal housing 74 are integrally connected.
  • a plurality of individual sensors 71 are accommodated in the integrated housing 73. Therefore, the integrated casing 73 is larger than the sensor casing 50 of the individual sensor 71.
  • a plurality of energizing terminals 75 are insert-molded in the terminal housing 74. As shown in FIGS. 20 to 23, one end and the other end of each of the plurality of energizing terminals 75 are exposed to the outside of the terminal housing 74.
  • FIG. 20 (a) column shows a rear view of the wiring case.
  • the column (b) in FIG. 20 shows a top view of the wiring case.
  • the column (c) of FIG. 20 shows a bottom view of the wiring case.
  • the (a) column of FIG. 21 shows a left side view of the wiring case.
  • the (b) column of FIG. 21 shows a top view of the wiring case.
  • the (c) column of FIG. 21 shows a right side view of the wiring case.
  • the same drawing is shown in the column (b) of FIG. 20 and the column (b) of FIG.
  • FIG. 22 (a) column shows a front view of the second current sensor.
  • the (b) column of FIG. 22 shows a top view of the second current sensor.
  • the (c) column of FIG. 22 shows a bottom view of the second current sensor.
  • the (a) column of FIG. 23 has shown the side view of the 2nd current sensor.
  • the wiring case 72 has an integrated wiring board 76 as shown in the column (c).
  • One end of the connection terminal 60 of the individual sensor 71 is connected to the integrated wiring board 76.
  • One end of the energization terminal 75 is connected to the integrated wiring board 76.
  • the individual sensor 71 and the energization terminal 75 are electrically connected via the wiring pattern of the integrated wiring board 76.
  • the other end of the energization terminal 75 is electrically connected to the MGECU 802 via a wire harness or the like.
  • the output of the individual sensor 71 is input to the MGECU 802 via the integrated wiring board 76, the energization terminal 75, and the wire harness.
  • the integrated wiring board 76 and the energization terminal 75 correspond to input / output wiring.
  • the second current sensor 12 is provided in the first energizing bus bar 341 and the second energizing bus bar 342. These energized bus bars are divided between the first inverter 320 side and the first motor 400 side.
  • the energizing bus bar has a portion for connecting the first inverter 320 and the second current sensor 12 and a portion for connecting the second current sensor 12 and the first motor 400.
  • the portion connecting the first inverter 320 and the second current sensor 12 is a conductive plate made of a metal material.
  • part which connects the 2nd current sensor 12 and the 1st motor 400 in an electricity supply bus bar is a wire.
  • part which connects the 1st inverter 320 and the 2nd current sensor 12 in an electricity supply bus bar is only shown as an electroconductive plate.
  • a portion connecting the second current sensor 12 and the first motor 400 in the energized bus bar is simply indicated as a wire.
  • the form of the current-carrying bus bar can be appropriately changed according to the shapes of the inverter and the motor, and the on-vehicle mounting form thereof. Therefore, the specific form of the energizing bus bar is not limited to the above example.
  • the form of each of the conductive bus bars 30 of the wiring case 72 and the individual sensor 71 can be changed as appropriate.
  • the form of the conductive bus bar 30 of the individual sensor 71 can be dealt with only by changing the shape of each of the first exposed portion 32 and the second exposed portion 33. Therefore, the internal shape of the individual sensor 71 does not need to be changed. Thereby, it is not necessary to change the production line of the individual sensor 71.
  • the integrated housing 73 has a bottom wall 77 and a peripheral wall 78. As shown in FIG.
  • the bottom wall 77 faces the z direction.
  • the planar shape of the bottom wall 77 is a rectangle whose longitudinal direction is the x direction.
  • the peripheral wall 78 stands up in the z direction from the inner bottom surface 77a of the bottom wall 77 facing the z direction.
  • the peripheral wall 78 has a left wall 78a and a right wall 78b arranged in the x direction.
  • the peripheral wall 78 has an upper wall 78c and a lower wall 78d arranged in the y direction.
  • the left wall 78a, the upper wall 78c, the right wall 78b, and the lower wall 78d are connected in order in the circumferential direction around the z direction.
  • the surrounding wall 78 has comprised the cylinder shape opened to az direction.
  • a plurality of individual sensors 71 can be stored in a storage space formed by the bottom wall 77 and the peripheral wall 78.
  • the individual sensor 71 is inserted into the storage space of the integrated casing 73 from the z direction. As shown in FIG. 19, the plurality of individual sensors 71 are provided side by side in the x direction in the storage space.
  • the plurality of individual sensors 71 have a first shield 41 and a second shield 42 in the same manner as the first current sensor 11.
  • the first shield 41 and the second shield 42 are opposed to each other in the x direction. Therefore, in the storage space, the first shields 41 and the second shields 42 included in the plurality of individual sensors are alternately arranged.
  • the first exposed portion 32 and the second exposed portion 33 extend in the y direction.
  • the upper wall 78c of the integrated housing 73 is formed with a slit 78e for housing the sensor housing 50 of the individual sensor 71 in the housing space and arranging the tip of the first exposed portion 32 outside the housing space. Yes.
  • the slit 78e is formed along the z direction from the front end surface of the upper wall 78c toward the bottom wall 77.
  • the tip of the first exposed portion 32 of the individual sensor 71 is located outside the storage space via the slit 78e.
  • the tip of the first exposed portion 32 is electrically connected to the conductive plate by laser welding or the like.
  • a conductive terminal 79 is insert-molded on the bottom wall 77 of the integrated casing 73. A part of the conductive terminal 79 is exposed from the inner bottom surface 77 a of the bottom wall 77 as shown in each column (b) of FIGS.
  • the second exposed portion 33 of the individual sensor 71 is disposed to face the portion exposed from the inner bottom surface 77a of the conductive terminal 79.
  • the second exposed portion 33 and the conductive terminal 79 are electrically connected by laser welding or the like.
  • the integrated casing 73 has a terminal block 80 for supporting a plurality of conductive terminals 79.
  • the terminal block 80 is integrally formed on the bottom wall 77 side of the lower wall 78d.
  • the terminal block 80 has a rectangular parallelepiped shape extending in the x direction.
  • the plurality of conductive terminals 79 are also insert-molded in the terminal block 80. Some of the plurality of conductive terminals 79 are exposed from the terminal block 80. A portion of the conductive terminal 79 exposed from the terminal block 80 extends in the z direction so as to be away from the terminal block 80. A portion of the conductive terminal 79 exposed from the terminal block 80 faces the lower wall 78d in the y direction.
  • the portions of the plurality of conductive terminals 79 exposed from the terminal block 80 are arranged apart from each other in the x direction.
  • the portion of the conductive terminal 79 exposed from the terminal block 80 has a flat shape with a small thickness in the y direction.
  • a portion of the conductive terminal 79 exposed from the terminal block 80 has a current-carrying surface 79a facing in the y direction and a back surface 79b thereof.
  • the conductive terminal 79 is formed with a bolt hole 79c that penetrates the energizing surface 79a and the back surface 79b in the y direction.
  • a nut 81 that opens in the y direction is provided on the back surface 79 b of the conductive terminal 79.
  • the opening of the nut 81 and the opening of the bolt hole 79c are arranged in the y direction.
  • a wire terminal is provided on the energizing surface 79 a of the conductive terminal 79.
  • the terminal of this wire is also formed with a bolt hole penetrating in the y direction.
  • the surface of the wire terminal through which the bolt hole passes is made to face the energizing surface 79a of the conductive terminal 79.
  • a shaft portion of a bolt (not shown) is passed through both bolt holes.
  • the tip of the shaft portion of the bolt is fastened to the nut 81.
  • the bolt is fastened to the nut 81 so as to go from the tip of the bolt shaft portion toward the head.
  • the conductive terminal 79 and the wire terminal are sandwiched between the bolt head and the nut 81. Thereby, the terminal of the wire and the conductive terminal 79 are brought into contact with each other, and both are electrically and mechanically connected.
  • the second exposed portion 33 of the individual sensor 71 and the wire terminal are electrically connected via the conductive terminal 79.
  • connection terminal 60 extends in the z direction from the sensor housing 50 of the individual sensor 71.
  • the bottom wall 77 of the integrated casing 73 is formed with an insertion hole for arranging one end of the connection terminal 60 outside the storage space.
  • the insertion hole passes through the inner bottom surface 77a of the bottom wall 77 and the outer bottom surface 77b on the back side.
  • One end of the connection terminal 60 protrudes out of the storage space in a manner away from the outer bottom surface 77b through the insertion hole.
  • the insertion hole is very small. Therefore, the insertion hole is not shown in the drawing.
  • the terminal housing 74 is aligned with the integrated housing 73 in the x direction.
  • the terminal housing 74 is integrally connected to the left wall 78 a of the integrated housing 73.
  • the terminal housing 74 extends in the z direction.
  • the terminal housing 74 has an upper surface 74a and a lower surface 74b arranged in the z direction.
  • the plurality of energizing terminals 75 that are insert-molded in the terminal housing 74 extend in the z direction. One end of the energization terminal 75 protrudes from the lower surface 74 b of the terminal housing 74. The other end of the energizing terminal 75 protrudes from the upper surface 74 a of the terminal housing 74.
  • the outer bottom surface 77b of the bottom wall 77 of the integrated housing 73 and the lower surface 74b of the terminal housing 74 are continuously connected in the x direction and the y direction.
  • the integrated wiring board 76 is provided on the continuously connected outer bottom surface 77b and lower surface 74b.
  • the integrated wiring board 76 has a flat shape with a small thickness in the z direction.
  • the integrated wiring board 76 has a mounting surface 76a and a back surface 76b facing in the z direction.
  • the integrated wiring board 76 is fixed to the integrated casing 73 and the terminal casing 74 such that the mounting surface 76a faces the outer bottom surface 77b and the lower surface 74b in the z direction.
  • the integrated wiring board 76 is formed with a first through hole 76c into which one end of the energizing terminal 75 is inserted.
  • a second through hole 76 d into which one end of the connection terminal 60 is inserted is formed in the integrated wiring board 76.
  • Each of the first through hole 76c and the second through hole 76d penetrates the mounting surface 76a and the back surface 76b of the integrated wiring board 76 in the z direction.
  • the integrated wiring board 76 is formed with a wiring pattern for electrically connecting the first through hole 76c and the second through hole 76d.
  • the integrated wiring board 76 is provided on the outer bottom surface 77b and the lower surface 74b so that one end of the energization terminal 75 is inserted into the first through hole 76c. Then, the first through hole 76c and the energizing terminal 75 are electrically connected via solder or the like.
  • the individual sensor 71 is provided in the storage space so that one end of the connection terminal 60 is inserted into the insertion hole of the bottom wall 77 and the second through hole 76d. Then, the second through hole 76d and the connection terminal 60 are electrically connected via solder or the like. As described above, the connection terminal 60 of the individual sensor 71 is electrically connected to the energization terminal 75 via the second through hole 76d, the wiring pattern of the integrated wiring board 76, and the first through hole 76c.
  • the wiring case 72 has a plurality of flanges 82 for mounting on the vehicle.
  • Each of the plurality of flanges 82 is formed with a bolt hole 82a for bolting the second current sensor 12 to the vehicle.
  • the wiring case 72 of this embodiment has three flanges 82.
  • One of the three flanges 82 is formed on the right wall 78 b side of the bottom wall 77.
  • One of the remaining two flanges 82 is formed on the lower wall 78 d side of the terminal housing 74.
  • the flange 82 is integrally connected to the terminal block 80.
  • the remaining one flange 82 is formed on the terminal housing 74 on the side opposite to the connection portion with the integrated housing 73.
  • two of the three flanges 82 are arranged in the x direction through the integrated casing 73 and the terminal casing 74.
  • the remaining one flange 82 is separated from the two flanges 82 arranged in the x direction in the y direction. In this way, the three flanges 82 form triangular vertices.
  • connection terminal 60 protrudes from the outer bottom surface 77b, and one end of the energization terminal 75 protrudes from the lower surface 74b.
  • An integrated wiring board 76 is provided on the outer bottom surface 77b and the lower surface 74b.
  • each of the three flanges 82 has a leg portion 83 extending in the z direction. With the leg 83, in a state where the second current sensor 12 is mounted on the vehicle, one end of the connection terminal 60, one end of the energization terminal 75, and the integrated wiring board 76 are separated from the vehicle in the z direction.
  • the first end 41e of the first shield 41 is shorter in the x direction than the first central portion 41d. Therefore, it is difficult for a magnetic field to enter the first both ends 41e. From one of the two end portions of the first both end portions 41e to the other, the magnetic field may be transmitted to a portion (parallel portion) that is directly connected to the first both end portions 41e in the first central portion 41d and arranged in the y direction. It is suppressed. As a result, the magnetic saturation of the parallel part of the first central part 41d is suppressed. Electromagnetic noise is prevented from leaking from the first central portion 41d.
  • FIG. 24 schematically shows a region where magnetic saturation is easily caused by transmission of the magnetic field in the first shield 41 by hatching.
  • the (a) column of FIG. 24 is a schematic diagram showing magnetic saturation occurring in the first shield without notches as a comparative configuration.
  • the (b) column of FIG. 24 is a schematic diagram showing a magnetic saturation region of the first shield 41 of the present embodiment.
  • a thick solid arrow shown in FIG. 24 indicates a current flowing through the conductive bus bar 30.
  • the first shield without a notch is easily magnetically saturated.
  • the first shield 41 in which the notch 41c is formed even if magnetic saturation occurs in a region other than the parallel part of the first central portion 41d, magnetic saturation is suppressed at the parallel part.
  • FIG. 25 shows the simulation result of the magnetic field distribution that passes through the shield.
  • the column (a) of FIG. 25 shows the magnetic field distribution of the cross section along the line XXVa-XXVa shown in FIG.
  • the column (b) of FIG. 25 shows the magnetic field distribution of the cross section along the line XXVb-XXVb shown in FIG.
  • the column (a) of FIG. 25 shows the simulation results when the first shield 41 and the second shield 42 are each rectangular.
  • the column (b) of FIG. 25 shows the simulation results when the notches 41c are formed in the first shield 41 and the second shield 42, respectively.
  • the intensity of the magnetic field is indicated by hatching density. The rougher the hatching, the weaker the magnetic field strength, and the denser the hatching, the higher the magnetic field strength.
  • the first shield 41 and the second shield 42 have different magnetic field distribution strengths. This difference is caused by a difference in the distance between the first shield 41 and the second shield 42 from the conductive bus bar 30. In any magnetic field distribution, the intensity is low in the parallel part and high in the region other than the parallel part.
  • the parallel part of the first central part 41d in which the magnetic saturation is suppressed and the first sensing part 21 and the second sensing part 22 mounted on the wiring board 20 are arranged in the z direction. Therefore, the electromagnetic noise leaked by the magnetic saturation of the first central portion 41d is suppressed from being input to the first sensing unit 21 and the magnetoelectric conversion unit 25 of the second sensing unit 22.
  • the first shield 41 is mounted on the shield support pin 57a, and is fixed to the shield adhesive pin 57b via a shield adhesive 57e.
  • the second shield 42 is mounted on the shield support pin 57a and is fixed to the base 51 via a shield adhesive 57e.
  • the positional deviations of the first shield 41 and the second shield 42 with respect to the sensor housing 50 do not depend on the variation in the shape of the shield adhesive 57e having fluidity at the time of bonding and fixing.
  • the positional deviation of each of the first shield 41 and the second shield 42 with respect to the sensor housing 50 becomes a manufacturing error of the sensor housing 50.
  • the cause of the positional deviation of the first shield 41 and the second shield 42 with respect to the wiring board 20 fixed to the sensor housing 50 can be a manufacturing error of the sensor housing 50.
  • a decrease in suppression of input of electromagnetic noise to the magnetoelectric conversion unit 25 by the first shield 41 and the second shield 42 is suppressed.
  • the temperature of the shield adhesive 57e when the first shield 41 and the second shield 42 are bonded and fixed to the sensor housing 50 is set higher than the environmental temperature at which the current sensor is provided.
  • the shield adhesive 57e is cooled to room temperature and solidifies. Therefore, residual stress that condenses to the center of the shield adhesive 57e is generated at the ambient temperature where the current sensor is provided. Due to this residual stress, the contact state between the first shield 41 and the shield support pin 57a and the contact state between the second shield 42 and the shield support pin 57a are maintained.
  • the displacement of the first shield 41 and the second shield 42 in the z direction with respect to the sensor housing 50 is suppressed.
  • the displacement in the z direction with respect to the wiring board 20 fixed to the sensor housing 50 of each of the first shield 41 and the second shield 42 is suppressed.
  • the fall of the input suppression to the magnetoelectric conversion part 25 of the electromagnetic noise by the 1st shield 41 and the 2nd shield 42 is suppressed.
  • the wiring board 20 is mounted on the board support pins 56a and fixed to the board adhesive pins 56b via the board adhesive 56e.
  • the positional deviation of the wiring board 20 with respect to the sensor housing 50 does not depend on the shape variation of the board adhesive 56e having fluidity during adhesion fixation.
  • a positional deviation of the wiring board 20 with respect to the sensor casing 50 becomes a manufacturing error of the sensor casing 50.
  • the cause of the positional deviation of the wiring board 20 with respect to the conductive bus bar 30 fixed to the sensor housing 50 can be a manufacturing error of the sensor housing 50.
  • the temperature of the substrate adhesive 56e when the wiring substrate 20 is bonded and fixed to the sensor housing 50 is set higher than the environmental temperature where the current sensor is provided.
  • the substrate adhesive 56e is cooled to room temperature and solidified. Therefore, a residual stress that condenses to the center of the substrate adhesive 56e is generated at the environmental temperature where the current sensor is provided. Due to this residual stress, the contact state between the wiring board 20 and the board support pins 56a is maintained.
  • the displacement of the wiring board 20 with respect to the sensor housing 50 in the z direction is suppressed.
  • the displacement in the z direction with respect to the conductive bus bar 30 fixed to the sensor housing 50 of the wiring board 20 is suppressed.
  • the magnetic field to be measured that passes through the magnetoelectric conversion unit 25 mounted on the wiring board 20 fluctuates.
  • a first sensing unit 21 and a second sensing unit 22 are provided on a surface 20 a of the wiring board 20 facing the conductive bus bar 30. Thereby, the separation distance in the z direction between the first sensing unit 21 and the respective conductive bus bars 30 of the second sensing unit 22 does not depend on the thickness of the wiring board 20 in the z direction. Due to the manufacturing error of the thickness of the wiring board 20 in the z direction, the separation distance in the z direction between the sensing unit and the conductive bus bar 30 is suppressed.
  • the second current sensor 12 and the third current sensor 13 have an integrated casing 73 that is larger than the sensor casing 50 of the current sensor (individual sensor 71).
  • a current sensor is accommodated in the integrated casing 73.
  • the conductive bus bar 30 is fixed to the sensor casing 50 instead of the large integrated casing 73.
  • the magnetoelectric conversion unit 25 detects the current flowing through the conductive bus bar 30.
  • the magnetic field that has entered the second shield 42 is easily transmitted to the first shield 41 through the extended portion 42c formed on the second both end portions 42e side.
  • the transmission path of the magnetic field is on the first end 41 e side in the first shield 41.
  • the transmission path of the magnetic field is on the second end 42 e side of the second shield 42.
  • the thick solid arrow shown in FIG. 27 indicates the current flowing through the conductive bus bar 30.
  • a solid arrow indicates a magnetic field that passes through the first shield 41.
  • a broken line arrow indicates a magnetic field that passes through the second shield 42.
  • a symbol with a dot at the center of the circle indicates a magnetic field from the second shield 42 toward the first shield 41 in the z direction.
  • a symbol with a cross mark in a circle indicates a magnetic field from the first shield 41 toward the second shield 42 in the z direction.
  • the electromagnetic noise that has entered the second shield 42 does not easily flow to the first shield 41 via the second central portion 42d. Similarly, electromagnetic noise that has entered the first shield 41 is less likely to be transmitted to the second shield 42 via the first central portion 41d.
  • the second central portion 42d and the first central portion 41d are not easily magnetically saturated. As a result, the magnetic field is prevented from leaking from the second central part 42d and the first central part 41d due to magnetic saturation.
  • the magnetoelectric conversion units 25 of the first sensing unit 21 and the second sensing unit 22 are located between the two extending portions 42c in the y direction. That is, the magnetoelectric conversion unit 25 is located between the second central portion 42d and the first central portion 41d in the z direction. Therefore, the magnetic field leaked by the magnetic saturation of each of the second central portion 42d and the first central portion 41d is suppressed from being input to the magnetoelectric conversion unit 25. As a result, a decrease in detection accuracy of the current to be measured is suppressed.
  • the extending portions 42c are formed on the second end portions 42e side of the two end sides 42f of the second shield 42 .
  • a configuration in which the extending portion 42c is also formed in the second central portion 42d of the two end sides 42f of the second shield 42 can be employed.
  • the extending portion 42c formed in the second central portion 42d is shorter in the z direction than the extending portion 42c formed in the second both end portions 42e.
  • an extending portion 42c is formed on the second end portion 42e side of one of the two end sides 42f, and the other second end portion 42e and the second central portion are formed.
  • a configuration in which the extended portion 42c is formed in each of the 42d may be employed.
  • the lengths in the z direction of the extending portions 42c formed at the other second end portions 42e and the second central portion 42d of the two end sides 42f are the same. This also makes it easier for the magnetic field that has entered the shield 40 to pass through the end portion rather than the center portion.
  • Each of the columns (a) and (b) in FIG. 28 is a perspective view for explaining the arrangement of the shield, the magnetoelectric conversion unit, and the conductive bus bar.
  • one of the two end portions 42e of one of the two end sides 42f and one of the two second end portions 42e have two sides.
  • a configuration in which the extending portion 42c is formed on each of the other sides of the two end portions may be employed.
  • the extending portion 42c formed on one of the two end sides 42f and the extending portion 42c formed on the other side are separated from each other in the y direction and the x direction.
  • the first shield 41 has two opposing sides 41f arranged in the x direction.
  • extending portions 42c are formed on the first opposite end portions 41e of the two opposing sides 41f of the first shield 41, respectively.
  • Each of the columns (a) and (b) in FIG. 29 is a perspective view for explaining the arrangement of the shield, the magnetoelectric conversion unit, and the conductive bus bar.
  • the form of the extending part 42c that can be formed in the first shield 41 can adopt a form equivalent to the extending part 42c formed in the second shield 42 shown so far.
  • the extended portion 42c formed in the first shield 41 corresponds to the extended portion.
  • the current sensor according to the present embodiment and the embodiment described below includes components equivalent to the current sensor described in the first embodiment. Therefore, it cannot be overemphasized that there exists an equivalent effect.
  • the stress relaxation part 34 is formed in the conductive bus bar 30 of the first current sensor 11.
  • the stress relaxation part 34 is formed in each of the first exposed part 32 and the second exposed part 33 of the conductive bus bar 30.
  • the conductive bus bar 30 has the covering portion 31 covered with the sensor housing 50.
  • Each of the first exposed portion 32 and the second exposed portion 33 is exposed from the sensor housing 50 and is integrally connected to the covering portion 31.
  • Each of the first exposed portion 32 and the second exposed portion 33 is formed with a bolt hole 30c for electrical and mechanical connection with the energizing bus bar 307 through a bolt.
  • the stress relaxation part 34 is formed between the connection part of each of the first exposed part 32 and the second exposed part 33 with the covering part 31 and the part where the bolt hole 30c is formed.
  • the stress relaxation part 34 is locally curved from the back surface 30b of the conductive bus bar 30 toward the front surface 30a. Due to this bending, the stress relaxation portion 34 is bent and elastically deformable with respect to the force in the z direction applied to the conductive bus bar 30.
  • the stress relaxation part 34 is curving so that it may wave once, the frequency
  • the conductive bus bar 30 is bolted to the energizing bus bar 307.
  • the energization bus bar 307 of this embodiment corresponds to the first terminal block 307a and the second terminal block 307b shown in FIG.
  • the conductive bus bar 30 is bolted to the first terminal block 307a and the second terminal block 307b.
  • the first terminal block 307 a and the second terminal block 307 b are bridged by the energizing bus bar 307.
  • the first terminal block 307a and the second terminal block 307b are electrically connected via the energization bus bar 307.
  • the reference numeral 307 c is given to the bolt that is passed through the bolt hole 30 c of the conductive bus bar 30.
  • the 1st terminal block 307a and the 2nd terminal block 307b are equivalent to an external energization part.
  • the first terminal block 307a has a first placement surface 307d facing in the z direction.
  • the second terminal block 307b has a second placement surface 307e facing in the z direction.
  • a fastening hole 307f for fastening the shaft portion of the bolt 307c is formed in the first placement surface 307d and the second placement surface 307e.
  • the fastening hole 307f is open to the first placement surface 307d and the second placement surface 307e.
  • the fastening hole 307f extends in the z direction.
  • the (a) column of FIG. 32 shows a case where the positions of the first placement surface and the second placement surface in the z direction match.
  • the (b) column of FIG. 32 shows a case where the positions of the first placement surface and the second placement surface in the z direction do not match.
  • the back surface 30b of the first exposed portion 32 faces the first placement surface 307d in the z direction.
  • the back surface 30b of the second exposed portion 33 faces the second placement surface 307e in the z direction.
  • the first current sensor 11 is provided on the first terminal block 307a and the second terminal block 307b.
  • the back surface of the first exposed portion 32 is aligned with the first placement surface 307d. While 30b contacts, the back surface 30b of the 2nd exposed part 33 contacts the 2nd mounting surface 307e.
  • the tip end of the shaft portion of the bolt 307c is inserted from the z direction into the bolt hole 30c of the conductive bus bar 30 and the fastening hole 307f of the terminal block. Then, the bolt 307c is fastened to the terminal block so that the head of the bolt 307c approaches the first placement surface 307d (second placement surface 307e).
  • the first exposed portion 32 and the second exposed portion 33 are sandwiched between the head of the bolt 307c and the terminal block. As a result, the first current sensor 11 is mechanically and electrically connected to the terminal block.
  • the first placement surface 307d is When the back surface 30b of the exposed part 32 contacts, the back surface 30b of the second exposed part 33 does not contact the second placement surface 307e.
  • the second placement surface 307e and the back surface 30b of the second exposed portion 33 are separated in the z direction, and a gap is formed between them.
  • the covering portion 31 is locally formed with a narrowed portion 31a having a short length in the x direction. Since the narrowed portion 31a has a short length in the x direction, it has lower rigidity than other portions. Therefore, the narrowed portion 31a is easily deformed.
  • the constricted portion 31a may be deformed thereby.
  • the position of the narrowed portion 31a in the sensor housing 50 is displaced.
  • the position of the covering portion 31 in the sensor housing 50 may be displaced.
  • the distribution of the magnetic field to be measured that passes through the magnetoelectric converter 25 may change.
  • the first exposed portion 32 and the second exposed portion 33 are each provided with the stress relaxation portion 34. Therefore, even if there is a gap between the second mounting surface 307e and the back surface 30b of the second exposed portion 33 due to the difference in the z-direction position between the first mounting surface 307d and the second mounting surface 307e described above.
  • the stress relaxation portion 34 is elastically deformed in accordance with the force of the bolt 307c in the z direction. As a result, deformation of the narrowed portion 31a is suppressed. The displacement of the position of the narrowed portion 31a in the sensor housing 50 is suppressed. As a result, a change in the distribution of the magnetic field to be measured that passes through the magnetoelectric conversion unit 25 is suppressed. A decrease in detection accuracy of the current to be measured is suppressed.
  • the length (thickness) between the front surface 30a and the back surface 30b of the stress relaxation portion 34 is equal to the thickness of each of the covering portion 31, the first exposed portion 32, and the second exposed portion 33. .
  • the stress relaxation portion 34 is suppressed from generating heat locally due to current application. As a result, a decrease in the life of the conductive bus bar 30 is suppressed.
  • the column (a) in FIG. 33 shows a top view of the conductive bus bar.
  • the column (b) of FIG. 33 shows a side view of the conductive bus bar.
  • the column (a) of FIG. 34 shows the positions of the wiring board 20 and the conductive bus bar 30 on which the magnetoelectric conversion units 25 of the first sensing unit 21 and the second sensing unit 22 are mounted.
  • the column (b) of FIG. 34 shows the displacement of the wiring board 20 with respect to the conductive bus bar 30.
  • the column (c) of FIG. 34 shows magnetic fields that pass through the magnetoelectric conversion units 25 of the first sensing unit 21 and the second sensing unit 22.
  • the magnetoelectric conversion units 25 of the first sensing unit 21 and the second sensing unit 22 are arranged in the y direction.
  • the magnetoelectric conversion units 25 of the first sensing unit 21 and the second sensing unit 22 are arranged in the x direction.
  • the magnetoelectric conversion unit 25 of the first sensing unit 21 corresponds to the first magnetoelectric conversion unit.
  • the magnetoelectric conversion unit 25 of the second sensing unit 22 corresponds to the second magnetoelectric conversion unit.
  • the two magnetoelectric converters 25 are arranged symmetrically with respect to the symmetry axis AS.
  • the position in the y direction of the two magnetoelectric converters 25 and the position in the y direction of the symmetry axis AS (center point CP) are the same. Accordingly, the two magnetoelectric converters 25 are arranged in the x direction via the center point CP.
  • the distance in the z direction between the two magnetoelectric conversion portions 25 and the covering portion 31 is the same.
  • the covering portion 31 and the narrowed portion 31a have a line-symmetric shape with respect to the symmetry axis AS.
  • the magnetic field to be measured having the same component in the x direction is transmitted to the two magnetoelectric converters 25. For this reason, the absolute values of the electrical signals output from the two magnetoelectric converters 25 are equal.
  • the covering portion 31 is covered with the base portion 51 of the sensor housing 50.
  • the wiring board 20 on which the two magnetoelectric converters 25 are mounted is mounted on a board support pin 56 a formed in the sensor housing 50. Therefore, the displacement of the wiring board 20 in the z direction is restricted by the board support pins 56a.
  • the wiring board 20 is fixed to the board bonding pins 56b via the board adhesive 56e.
  • the substrate adhesive 56e expands due to changes in the environmental temperature or undergoes aging degradation such as creep. For this reason, the wiring board 20 may be displaced relative to the covering portion 31 in the x direction and the y direction.
  • the component in the x direction of the magnetic field to be measured that passes through the two magnetoelectric conversion portions 25 does not change due to the symmetrical arrangement in the x direction.
  • the absolute values of the electrical signals output from the two magnetoelectric converters 25 are not equivalent.
  • FIG. 34 shows the arrangement positions of the two magnetoelectric converters 25 with respect to the conductive bus bar 30.
  • An alternate long and short dash line indicates an axis of symmetry AS passing through the center point CP of the conductive bus bar 30.
  • a two-dot chain line indicates a position where the two magnetoelectric conversion portions 25 are displaced with respect to the conductive bus bar 30.
  • a white arrow indicates a displacement direction of the wiring board 20 on which the two magnetoelectric conversion units 25 are mounted with respect to the conductive bus bar 30 by the board adhesive 56e.
  • the solid arrows shown in the columns (a) and (b) of FIG. 34 indicate the magnetic field passing through the magnetoelectric conversion unit 25.
  • the solid line arrows shown in the column (c) of FIG. 34 indicate the direction of change of the magnetic field that passes through the magnetoelectric converter 25.
  • the two magnetoelectric converters 25 are both mounted on the wiring board 20. Therefore, as described above, even if the relative position in the x direction between the wiring board 20 and the covering part 31 changes due to the deformation of the board adhesive 56e, the relative distance between the two magnetoelectric conversion parts 25 mounted on the wiring board 20 Does not change. Therefore, when the relative position between the wiring substrate 20 and the covering portion 31 changes in the x direction due to the deformation of the substrate adhesive 56e, one of the two magnetoelectric conversion portions 25 approaches the symmetry axis AS and the other moves away from the symmetry axis AS. . The distance is the same. In FIG. 34 (b) column, this distance is indicated by ⁇ .
  • the measured magnetic field that passes through one of the two magnetoelectric converters 25 decreases, and the measured magnetic field that passes through the other increases. It is expected that the amount of decrease and increase in the magnetic field to be measured transmitted through the two magnetoelectric converters 25 are equal.
  • the amount of change in the measured magnetic field is indicated as ⁇ B.
  • the polarities of the electric signals output from the two magnetoelectric conversion units 25 are inverted. Inverting the polarity in this way is realized, for example, by reversing the arrangement of the first magnetoresistive effect element 25a and the second magnetoresistive effect element 25b by the two magnetoelectric converters 25 as shown in FIG. Or, more simply, the polarity of the two electrical signals is inverted by reversing the inverting input terminal and the non-inverting input terminal of the differential amplifier 25c shown in FIG. 7 between the first sensing unit 21 and the second sensing unit 22. be able to.
  • the two magnetoelectric converters 25 output electrical signals having the same absolute value of the increase amount and the decrease amount, but having different polarities.
  • Two electric signals generated by the first current sensor 11 are input to the battery ECU 801 to the battery ECU 801.
  • Two electrical signals generated by the second current sensor 12 and the third current sensor 13 are input to the MGECU 802.
  • Battery ECU 801 and MGECU 802 take the difference between the two electrical signals.
  • B + ⁇ B ⁇ ( ⁇ (B ⁇ ) B
  • B is the absolute value of the electric signal output from the two magnetoelectric converters 25 when there is no displacement
  • ⁇ B the absolute value of the change amount of the electric signal due to the displacement.
  • ⁇ B)) 2B.
  • B ⁇ B ⁇ ( ⁇ (B + ⁇ B)) 2B.
  • a plus corresponds to one of the first polarity and the second polarity
  • a minus corresponds to the other of the first polarity and the second polarity.
  • Battery ECU 801 and MGECU 802 correspond to the difference unit.
  • a configuration in which a difference circuit 29 that takes the difference between the outputs of the two magnetoelectric converters 25 is mounted on the wiring board 20 may be employed.
  • the first output wiring 20 d and the second output wiring 20 e are connected to the inverting input terminal and the non-inverting input terminal of the difference circuit 29.
  • the difference circuit 29 corresponds to a difference unit.
  • the change in the relative position in the x direction between the wiring board 20 and the covering portion 31 described above is caused not only by the deformation of the board adhesive 56e described above, but also by, for example, external stress acting on the vehicle or vibration caused by driving of the engine 600 or the like. obtain.
  • the relative position in the x direction between the wiring board 20 and the covering portion 31 changes due to these, the difference between the two electrical signals output from the two magnetoelectric conversion portions 25 is obtained as described above. By doing so, the decrease and increase of the electric signal due to the change in the relative position between the wiring board 20 and the covering portion 31 are cancelled. As described above, it is suppressed that the detection accuracy of the magnetic field to be measured decreases.
  • each of the first shield 41 and the second shield 42 is manufactured by pressing a plurality of flat plates made of a soft magnetic material.
  • each of the first shield 41 and the second shield 42 is manufactured by rolling electromagnetic steel.
  • the magnetic permeability of the shield can be made anisotropic.
  • the rolling direction of the first shield 41 and the second shield 42 is set in the z direction.
  • the magnetic permeability of the first shield 41 and the second shield 42 is made anisotropic.
  • the manufacturing method of the 1st shield 41 and the 2nd shield 42 is not limited to the said example, You may manufacture with the material which has anisotropy in the first place. Further, one of the first shield 41 and the second shield 42 may have magnetic permeability anisotropy.
  • each of the second current sensor 12 and the third current sensor 13 individual sensors 71 are arranged side by side in the x direction.
  • the first shield 41 and the second shield 42 of each individual sensor 71 are arranged alternately in the x direction.
  • the magnetic field detection direction of the magnetoelectric conversion unit 25 of the individual sensor 71 is the z direction and the y direction.
  • a configuration in which the first shield 41 included in one of the two individual sensors 71 arranged in the x direction and the second shield 42 included in the other can be combined into one can be employed.
  • the magnetic field to be measured generated from the conductive bus bar 30 of one individual sensor 71 becomes external noise for the other individual sensors 71.
  • the external noise is formed in a ring shape with a plane defined by the x direction and the z direction centered on the conductive bus bar 30. Therefore, the external noise has components along the x direction and the z direction. Thus, the external noise along the x direction and the z direction is easily transmitted through the individual sensor 71.
  • FIG. 37 shows two individual sensors 71. Of the two individual sensors 71, the current to be measured flows through the conductive bus bar 30 that is marked with a cross in the circle. A magnetic field to be measured is emitted from here. For the adjacent individual sensor 71, the magnetic field to be measured emitted from the conductive bus bar 30 marked with a cross in this circle is electromagnetic noise. In FIG. 37, the magnetic field is indicated by an arrow.
  • each of the first shield 41 and the second shield 42 has anisotropy in the z direction. Therefore, components along the z direction of external noise try to enter each of the first shield 41 and the second shield 42.
  • the component along the x direction of the external noise does not depend on the anisotropy of the first shield 41 and the second shield 42. Therefore, the component along the x direction tries to pass through the magnetoelectric conversion unit 25.
  • the component along the z direction of this magnetic field will actively pass through the first shield 41 and the second shield 42, respectively.
  • the x-direction component of this magnetic field remains somewhat. Therefore, the component in the x direction of the magnetic field tends to pass through the magnetoelectric conversion unit 25.
  • the detection directions of the magnetic field to be measured by the magnetoelectric conversion unit 25 are the z direction and the y direction.
  • the magnetoelectric converter 25 does not detect a magnetic field in the x direction. Therefore, even if the x-direction component of the electromagnetic noise described above is transmitted through the magnetoelectric conversion unit 25, it is possible to suppress a decrease in the detection accuracy of the magnetic field to be measured.
  • the arrangement of the individual sensors 71 is not limited to the above example.
  • a configuration in which the individual sensors 71 are arranged in the x direction is also conceivable.
  • the first shields 41, the second shields 42, and the magnetoelectric converters 25 of the individual sensor 71 are arranged in the x direction.
  • the magnetic field detection direction of the magnetoelectric conversion unit 25 of the individual sensor 71 is the x direction and the y direction.
  • a configuration in which the second shields 42 of each of the plurality of individual sensors 71 are combined into one can be employed.
  • FIG. 38 also shows two individual sensors 71. Of the two individual sensors 71, the current to be measured flows through the conductive bus bar 30 that is marked with a cross in the circle. Also in FIG. 38, the magnetic field is indicated by arrows. The magnetic field has components along the x and z directions. Therefore, an environment in which external noise along the x direction and the z direction easily passes through the individual sensor 71 is provided.
  • the magnetic permeability of the first shield 41 and the second shield 42 is higher in the x direction than in the y direction. Therefore, the components along the x direction of the external noise try to enter the first shield 41 and the second shield 42, respectively.
  • the component along the z direction of the external noise does not depend on the anisotropy of the first shield 41 and the second shield 42. Therefore, the component along the z direction tries to pass through the magnetoelectric conversion unit 25.
  • the magnetoelectric conversion unit 25 when the magnetic field indicated by the broken-line arrow in FIG. 38 attempts to pass through the magnetoelectric conversion unit 25, the component along the x direction of this magnetic field will actively pass through the first shield 41 and the second shield 42, respectively. However, the z-direction component of this magnetic field remains somewhat. Therefore, the z-direction component of the magnetic field tends to pass through the magnetoelectric conversion unit 25.
  • the detection directions of the magnetic field to be measured by the magnetoelectric conversion unit 25 are the x direction and the y direction.
  • the magnetoelectric converter 25 does not detect a magnetic field in the z direction. Therefore, even if the z-direction component of the electromagnetic noise described above is transmitted through the magnetoelectric conversion unit 25, it is possible to suppress a decrease in detection accuracy of the magnetic field to be measured.
  • FIG. 39 it is possible to adopt a configuration in which notches 41c are formed at the four corners of each of the first shield 41 and the second shield 42. Thereby, the length of the 2nd both ends 42e is shorter than the 2nd center part 42d in the x direction.
  • the first sensing unit 21 and the magnetoelectric conversion unit 25 of the second sensing unit 22 mounted on the wiring board 20 are between the first center part 41d and the second center part 42d. Is located.
  • the (a) column of FIG. 39 is a perspective view for explaining the arrangement of the shield, the magnetoelectric conversion unit, and the conductive bus bar.
  • the (b) column of FIG. 39 is a side view for explaining the arrangement of the shield, the magnetoelectric conversion unit, and the conductive bus bar.
  • the extending portion 42c and the notch 41c may not be formed in the second shield 42.
  • a configuration in which notches 41c are formed in two of the four corners of the first shield 41 may be employed.
  • two notches 41c are arranged in the x direction.
  • Each of the columns (a) and (b) in FIG. 40 is a perspective view for explaining the arrangement of the shield, the magnetoelectric conversion unit, and the conductive bus bar.
  • the first end 41e of the first shield 41 only needs to be shorter in the x direction than the first central portion 41d, and the formation position of the notch 41c is not particularly limited.
  • the integrated casing 73 has the bottom wall 77 and the peripheral wall 78, and a plurality of individual sensors 71 are stored in a storage space constituted by them.
  • the integrated casing 73 does not have to have the peripheral wall 78.
  • the individual sensor 71 is provided rotated by 90 ° with respect to the bottom wall 77.
  • each of the front surface 30a and the back surface 30b of the conductive bus bar 30 of the individual sensor 71 faces in the z direction.
  • Each of the one surface 41a and the back surface 41b of the first shield 41 faces the z direction.
  • the one surface 42a and the back surface 42b of the second shield 42 also face the z direction.
  • the detection directions of the magnetoelectric conversion unit 25 of the individual sensor 71 are the x direction and the y direction.
  • the first shields 41 of the plurality of individual sensors 71 are arranged in the x direction.
  • the second shields 42 of the plurality of individual sensors 71 are arranged in the x direction.
  • the magnetoelectric conversion units 25 of the individual sensors 71 are arranged in the x direction.
  • FIG. 42 (a) shows a top view of the second current sensor.
  • the (b) column of FIG. 42 has shown the front view of the 2nd current sensor.
  • the (c) column of FIG. 42 shows a bottom view of the second current sensor.
  • the (a) column of FIG. 43 has shown the side view of the 2nd current sensor.
  • the same number of bolt holes as the individual sensors 71 are formed in the terminal block 80 along the z direction.
  • a bolt hole 30 c is formed in the second exposed portion 33 of the individual sensor 71.
  • the bolt is passed through the bolt hole of the terminal block 80, the bolt hole 30c of the second exposed portion 33, and the bolt hole formed in the terminal of the wire.
  • a nut is fastened to the tip of the bolt.
  • a nut is fastened to a bolt so that it may go to the head from the tip of the axial part of a bolt.
  • the second exposed portion 33 and the wire terminal are held between the head of the bolt and the terminal block 80. Thereby, the 2nd exposed part 33 and the terminal of a wire contact, and both are connected electrically and mechanically.
  • the rib 52a is formed in the sensor housing 50 of the first current sensor 11.
  • ribs 52a may be formed on the sensor housing 50 of the individual sensor 71 as shown in FIG.
  • a guide portion 72 a for inserting the individual sensor 71 into the wiring case 72 may be formed on the bottom wall 77 of the integrated housing 73.
  • the guide portion 72a forms a groove having a hollow shape similar to the rib 52a.
  • the guide part 72a is open in the z direction.
  • the rib 52a is passed through the opening into the hollow of the guide portion 72a.
  • a groove 77 c is provided in the bottom wall 77 for providing the protruding end of the connection terminal 60 in the individual sensor 71.
  • each of the U-phase stator coil, the V-phase stator coil, and the W-phase stator coil of the motor may be employed.
  • These individual sensors 71 can employ a configuration having only the first sensing unit 21.
  • the remaining one current can be detected based on the current flowing through two of the three-phase stator coils. Therefore, the current of the remaining one stator coil can be detected based on two outputs of the first sensing units 21 of the three individual sensors 71 provided in the three-phase stator coils. Further, the current of the remaining one stator coil can be detected by the first sensing unit 21 of the individual sensor 71 provided in the remaining one stator coil. By comparing these two detected currents, it is possible to determine whether or not an abnormality has occurred in one of them.
  • the example in which the current sensor is applied to the in-vehicle system 100 configuring the hybrid system is shown.
  • the in-vehicle system to which the current sensor is applied is not limited to the above example.
  • the current sensor may be applied to an in-vehicle system of an electric vehicle or an engine vehicle.
  • the system to which the current sensor is applied is not particularly limited.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

電流センサは、導電部材(30)と、磁電変換部(25)と、シールド(40)と、を備える。シールドは互いに一面(41a,42a)同士が離間して対向する板形状の第1シールド(41)と第2シールド(42)を含む。第1シールドの一面(41a)と第2シールドの一面(42a)との間に導電部材の一部と磁電変換部とが位置する。導電部材における第1シールドと第2シールドとの間に位置する部位(31)は第2シールドの一面に沿う延長方向に延びる。延長方向における第1シールドおよび第2シールドのうちの少なくとも一方の中央部(41d,42d)はその両端部(41e,42e)より、第1シールドの一面に沿いなおかつ延長方向に交差する横方向の長さが長い。延長方向において、磁電変換部は第1シールドおよび第2シールドの両端部の間に位置する。

Description

電流センサ 関連出願の相互参照
 本出願は、2018年3月20日に出願された日本出願番号2018-52959号に基づくもので、ここにその記載内容を援用する。
 本開示は、被測定電流を検出する電流センサに関するものである。
 特許文献1に示されるように、バスバーを流れる電流によって生じる磁界を電気信号に変換することで電流を検出する電流検出システム(電流センサ)が知られている。
 特許文献1に記載されているように、電流センサの技術分野では電流(被測定電流)の検出精度の低下、という課題がある。
特開2015-194472号公報
 本開示は、被測定電流の検出精度の低下が抑制された電流センサを提供することを目的とする。
 本開示の一態様によれば、電流センサは、被測定電流の流動する導電部材と、被測定電流の流動によって生じる被測定磁界を電気信号に変換する磁電変換部と、磁電変換部への電磁ノイズの入力を抑制するシールドと、を備える。シールドは互いに一面同士が離間して対向する板形状の第1シールドと第2シールドを含む。第1シールドの一面と第2シールドの一面との間に導電部材の一部と磁電変換部とが位置する。導電部材における第1シールドと第2シールドとの間に位置する部位は第1シールドの一面に沿う延長方向に延びている。延長方向における第1シールドおよび第2シールドのうちの少なくとも一方の中央部はその両端部より、第1シールドの一面に沿いなおかつ延長方向に交差する横方向の長さが長い。延長方向において、磁電変換部は第1シールドおよび第2シールドの両端部の間に位置する。
 本開示の一態様によれば、第1シールドおよび第2シールドのうちの少なくとも一方は、中央部よりも両端部のほうが横方向の長さが短くなっている。そのために中央部よりも両端部に電磁ノイズが侵入しがたくなっている。したがって、延長方向において、中央部を介して両端部の一方から他方へと電磁ノイズが透過しがたくなる。これにより第1シールドおよび第2シールドの少なくとも一方の中央部が磁気飽和しがたくなる。第1シールドおよび第2シールドの少なくとも一方の中央部から電磁ノイズが漏れることが抑制される。
 本開示の一態様によれば、磁電変換部は延長方向において第1シールドおよび第2シールドの両端部の間に位置する。すなわち磁電変換部は第1シールドの中央部と第2シールドの中央部との間に位置する。したがって、第1シールドおよび第2シールドの少なくとも一方の中央部の磁気飽和によって漏れた電磁ノイズが磁電変換部に入力されることが抑制される。この結果、被測定電流の検出精度の低下が抑制される。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
車載システムを説明するためのブロック図であり、 第1電流センサを示す斜視図であり、 第1電流センサを示す分解斜視図であり、 第1電流センサを示す図表であり、 第1電流センサを示す図表であり、 配線基板を示す図表であり、 センシング部を説明するためのブロック図であり、 導電バスバーを示す図表であり、 第1シールドを示す図表であり、 第2シールドを示す図表であり、 センサ筐体を示す図表であり、 基板支持ピンと基板接着ピンを説明するための図表であり、 図12の(b)欄に示すXIII-XIII線に沿う断面図であり、 シールド支持ピンとシールド接着ピンを説明するための図表であり、 図14の(b)欄に示すXV-XV線に沿う断面図であり、 2つの個別センサを示す斜視図であり、 配線ケースを示す斜視図であり、 配線ケースへの個別センサの組み付けを説明するための斜視図であり、 第2電流センサを示す斜視図であり、 配線ケースを示す図表であり、 配線ケースを示す図表であり、 第2電流センサを示す図表であり、 第2電流センサを示す図表であり、 第1シールドの磁気飽和を説明するための図表であり、 磁気飽和のシミュレーション結果を示す図表であり、 第2実施形態の第2シールドを説明するための図表であり、 シールドを透過する磁界を説明するための模式図であり、 シールドの変形例を示す図表であり、 シールドの変形例を示す図表であり、 第3実施形態の第1電流センサを示す斜視図であり、 図30に示すXXXI-XXXI線に沿う断面図であり、 第1電流センサの固定形態を説明するための図表であり、 第4実施形態の磁電変換部と導電バスバーの配置を示す図表であり、 磁電変換部の出力変化を説明するための図表であり、 第4実施形態のセンシング部を説明するためのブロック図であり、 差分回路を示すためのブロック図であり、 第5実施形態のシールドの遮蔽性を説明するための模式図であり、 シールドの遮蔽性を説明するための模式図であり、 シールドの変形例を示す図表であり、 シールドの変形例を示す図表であり、 第2電流センサの変形例を示す斜視図であり、 第2電流センサの変形例を示す図表であり、 第2電流センサの変形例を示す図表であり、 個別センサの配線ケースへの組み付け状態を示す斜視図であり、 検出形態の類型を説明するための図表である。
 (第1実施形態)
 <車載システム>
 先ず、電流センサの適用される車載システム100を説明する。この車載システム100はハイブリッドシステムを構成している。図1に示すように車載システム100は、バッテリ200、電力変換装置300、第1モータ400、第2モータ500、エンジン600、および、動力分配機構700を有する。
 また車載システム100は複数のECUを有する。図1ではこれら複数のECUの代表として、電池ECU801とMGECU802を図示している。これら複数のECUはバス配線800を介して相互に信号を送受信し、ハイブリッド自動車を協調制御する。この協調制御により、バッテリ200のSOCに応じた第1モータ400の回生と力行、第2モータ500の発電、および、エンジン600の出力などが制御される。SOCはstate of chargeの略である。ECUはelectronic control unitの略である。
 なお、ECUは、少なくとも1つの演算処理装置(CPU)と、プログラムおよびデータを記憶する記憶媒体としての少なくとも1つのメモリ装置(MMR)と、を有する。ECUはコンピュータによって読み取り可能な記憶媒体を備えるマイクロコンピュータによって提供される。記憶媒体はコンピュータによって読み取り可能なプログラムを非一時的に格納する非遷移的実体的記憶媒体である。記憶媒体は半導体メモリまたは磁気ディスクなどによって提供され得る。以下、車載システム100の構成要素を個別に概説する。
 バッテリ200は複数の二次電池を有する。これら複数の二次電池は直列接続された電池スタックを構成している。二次電池としてはリチウムイオン二次電池、ニッケル水素二次電池、および、有機ラジカル電池などを採用することができる。
 二次電池は化学反応によって起電圧を生成する。二次電池は充電量が多すぎたり少なすぎたりすると劣化が促進する性質を有する。換言すれば、二次電池はSOCが過充電だったり過放電だったりすると劣化が促進する性質を有する。
 バッテリ200のSOCは、上記の電池スタックのSOCに相当する。電池スタックのSOCは複数の二次電池のSOCの総和である。電池スタックのSOCの過充電や過放電は上記の協調制御により回避される。これに対して複数の二次電池それぞれのSOCの過充電や過放電は、複数の二次電池それぞれのSOCを均等化する均等化処理によって回避される。
 均等化処理は複数の二次電池を個別に充放電することで成される。バッテリ200には、複数の二次電池を個別に充放電するためのスイッチが含まれている。またバッテリ200には、複数の二次電池それぞれのSOCを検出するための電圧センサや温度センサなどが含まれている。電池ECU801はこれらセンサおよび後述の第1電流センサ11の出力などに基づいてスイッチを開閉制御する。これにより複数の二次電池それぞれのSOCが均等化される。
 電力変換装置300はバッテリ200と第1モータ400との間の電力変換を行う。また電力変換装置300はバッテリ200と第2モータ500との間の電力変換も行う。電力変換装置300はバッテリ200の直流電力を第1モータ400と第2モータ500の力行に適した電圧レベルの交流電力に変換する。電力変換装置300は第1モータ400と第2モータ500の発電によって生成された交流電力をバッテリ200の充電に適した電圧レベルの直流電力に変換する。電力変換装置300については後で詳説する。
 第1モータ400、第2モータ500、および、エンジン600それぞれは動力分配機構700に連結されている。第1モータ400は図示しないハイブリッド自動車の出力軸に直接連結されている。第1モータ400の回転エネルギーは出力軸を介して走行輪に伝達される。逆に、走行輪の回転エネルギーは出力軸を介して第1モータ400に伝達される。
 第1モータ400は電力変換装置300から供給される交流電力によって力行する。この力行によって発生した回転エネルギーは、動力分配機構700によってエンジン600やハイブリッド自動車の出力軸に分配される。これによりクランクシャフトのクランキングや走行輪への推進力の付与が成される。また第1モータ400は走行輪から伝達される回転エネルギーによって回生する。この回生によって発生した交流電力は、電力変換装置300によって直流電力に変換されるとともに降圧される。この直流電力がバッテリ200に供給される。また直流電力はハイブリッド自動車に搭載された各種電気負荷にも供給される。
 第2モータ500はエンジン600から供給される回転エネルギーによって発電する。この発電によって発生した交流電力は、電力変換装置300によって直流電力に変換されるとともに降圧される。この直流電力がバッテリ200や各種電気負荷に供給される。
 エンジン600は燃料を燃焼駆動することで回転エネルギーを発生する。この回転エネルギーが動力分配機構700を介して第2モータ500や出力軸に分配される。これにより第2モータ500の発電や走行輪への推進力の付与が成される。
 動力分配機構700は遊星歯車機構を有する。動力分配機構700はリングギヤ、プラネタリーギヤ、サンギヤ、および、プラネタリーキャリアを有する。
 リングギヤは環状を成す。リングギヤの外周面と内周面それぞれに複数の歯が周方向に並んで形成されている。
 プラネタリーギヤとサンギヤそれぞれは円盤形状を成す。プラネタリーギヤとサンギヤそれぞれの円周面に複数の歯が周方向に並んで形成されている。
 プラネタリーキャリアは環状を成す。プラネタリーキャリアの外周面と内周面とを連結する平坦面に複数のプラネタリーギヤが連結されている。プラネタリーキャリアとプラネタリーギヤそれぞれの平坦面は互いに対向している。
 複数のプラネタリーギヤはプラネタリーキャリアの回転中心を中心とする円周上に位置している。これら複数のプラネタリーギヤの隣接間隔は等しくなっている。本実施形態では3つのプラネタリーギヤが120°間隔で並んでいる。
 リングギヤの中心にサンギヤが設けられている。リングギヤの内周面とサンギヤの外周面とが互いに対向している。両者の間に3つのプラネタリーギヤが設けられている。3つのプラネタリーギヤそれぞれの歯がリングギヤとサンギヤそれぞれの歯とかみ合わさっている。これにより、リングギヤ、プラネタリーギヤ、サンギヤ、および、プラネタリーキャリアそれぞれの回転が相互に伝達される構成となっている。
 リングギヤに第1モータ400の出力軸が連結されている。プラネタリーキャリアにエンジン600のクランクシャフトが連結されている。サンギヤに第2モータ500の出力軸が連結されている。これにより第1モータ400、エンジン600、および、第2モータ500の回転数が共線図において直線の関係となっている。
 電力変換装置300から第1モータ400と第2モータ500に交流電力を供給することでリングギヤとサンギヤにトルクを発生させる。エンジン600の燃焼駆動によってプラネタリーキャリアにトルクを発生させる。こうすることで第1モータ400の力行と回生、第2モータ500の発電、および、走行輪への推進力の付与それぞれが行われる。
 第1モータ400、第2モータ500、および、エンジン600それぞれの挙動は複数のECUによって協調制御される。例えばMGECU802は、ハイブリッド自動車に搭載された各種センサで検出される物理量、および、他のECUから入力される車両情報などに基づいて、第1モータ400と第2モータ500の目標トルクを決定する。そしてMGECU802は第1モータ400と第2モータ500それぞれに生成されるトルクが目標トルクになるようにベクトル制御する。
 <電力変換装置>
 次に電力変換装置300を説明する。電力変換装置300はコンバータ310、第1インバータ320、および、第2インバータ330を備えている。コンバータ310は直流電力の電圧レベルを昇降圧する機能を果たす。第1インバータ320と第2インバータ330は直流電力を交流電力に変換する機能を果たす。第1インバータ320と第2インバータ330は交流電力を直流電力に変換する機能を果たす。
 車載システム100において、コンバータ310はバッテリ200の直流電力を第1モータ400と第2モータ500の力行に適した電圧レベルに昇圧する。第1インバータ320と第2インバータ330はこの直流電力を交流電力に変換する。この交流電力が第1モータ400と第2モータ500に供給される。また第1インバータ320と第2インバータ330は第1モータ400と第2モータ500で生成された交流電力を直流電力に変換する。コンバータ310はこの直流電力をバッテリ200の充電に適した電圧レベルに降圧する。
 図1に示すようにコンバータ310は第1電力ライン301と第2電力ライン302を介してバッテリ200と電気的に接続されている。コンバータ310は第3電力ライン303と第4電力ライン304を介して第1インバータ320および第2インバータ330それぞれと電気的に接続されている。
 第1電力ライン301の一端はバッテリ200の正極に電気的に接続されている。第2電力ライン302の一端はバッテリ200の負極に電気的に接続されている。そして第1電力ライン301と第2電力ライン302それぞれの他端はコンバータ310に電気的に接続されている。
 第1電力ライン301と第2電力ライン302には第1平滑コンデンサ305が接続されている。第1平滑コンデンサ305の有する2つの電極のうちの一方が第3電力ライン303に接続され、他方が第4電力ライン304に接続されている。
 なお、バッテリ200は図示しないシステムメインリレー(SMR)を有している。このシステムメインリレーの開閉によって、バッテリ200の電池スタックと電力変換装置300との電気的な接続が制御される。すなわちシステムメインリレーの開閉によって、バッテリ200と電力変換装置300との間の電力供給の継続と中断が制御される。
 第3電力ライン303の一端は後述のコンバータ310のハイサイドスイッチ311と電気的に接続されている。第4電力ライン304の一端は第2電力ライン302の他端と電気的に接続されている。そして第3電力ライン303と第4電力ライン304それぞれの他端は第1インバータ320と第2インバータ330それぞれと電気的に接続されている。
 第3電力ライン303と第4電力ライン304には第2平滑コンデンサ306が接続されている。第2平滑コンデンサ306の有する2つの電極のうちの一方が第3電力ライン303に接続され、他方が第4電力ライン304に接続されている。
 第1インバータ320は第1通電バスバー341~第3通電バスバー343を介して第1モータ400の第1U相ステータコイル401~第1W相ステータコイル403と電気的に接続されている。第2インバータ330は第4通電バスバー344~第6通電バスバー346を介して第2モータ500の第2U相ステータコイル501~第2W相ステータコイル503と電気的に接続されている。
 <コンバータ>
 コンバータ310は、ハイサイドスイッチ311、ローサイドスイッチ312、ハイサイドダイオード311a、ローサイドダイオード312a、および、リアクトル313を有する。これらハイサイドスイッチ311とローサイドスイッチ312としてはIGBTやパワーMOSFETなどを採用することができる。本実施形態ではハイサイドスイッチ311およびローサイドスイッチ312としてnチャネル型のIGBTを採用している。
 なお、ハイサイドスイッチ311およびローサイドスイッチ312としてMOSFETを採用する場合、MOSFETにはボディダイオードが形成される。そのためにハイサイドダイオード311aとローサイドダイオード312aはなくともよい。コンバータ310を構成する半導体素子は、Siなどの半導体、若しくは、SiCなどのワイドギャップ半導体によって製造することができる。
 ハイサイドダイオード311aはハイサイドスイッチ311に逆並列接続されている。すなわち、ハイサイドスイッチ311のコレクタ電極にハイサイドダイオード311aのカソード電極が接続されている。ハイサイドスイッチ311のエミッタ電極にハイサイドダイオード311aのアノード電極が接続されている。
 同様にして、ローサイドダイオード312aはローサイドスイッチ312に逆並列接続されている。ローサイドスイッチ312のコレクタ電極にローサイドダイオード312aのカソード電極が接続されている。ローサイドスイッチ312のエミッタ電極にローサイドダイオード312aのアノード電極が接続されている。
 図1に示すようにハイサイドスイッチ311のコレクタ電極に第3電力ライン303が電気的に接続されている。そしてハイサイドスイッチ311のエミッタ電極とローサイドスイッチ312のコレクタ電極が接続されている。ローサイドスイッチ312のエミッタ電極に第2電力ライン302と第4電力ライン304が電気的に接続されている。これにより第3電力ライン303から第2電力ライン302に向かってハイサイドスイッチ311とローサイドスイッチ312が順に直列接続されている。表現を換えれば、第3電力ライン303から第4電力ライン304に向かってハイサイドスイッチ311とローサイドスイッチ312が順に直列接続されている。
 直列接続されたハイサイドスイッチ311とローサイドスイッチ312との間の中点とリアクトル313の一端とが通電バスバー307を介して電気的に接続されている。そしてリアクトル313の他端が第1電力ライン301の他端と電気的に接続されている。
 以上により、直列接続されたハイサイドスイッチ311とローサイドスイッチ312の中点には、リアクトル313と通電バスバー307を介してバッテリ200の直流電力が供給される。ハイサイドスイッチ311のコレクタ電極には、第1インバータ320と第2インバータ330の少なくとも一方により直流電力に変換されたモータの交流電力が供給される。この直流電力に変換されたモータの交流電力は、ハイサイドスイッチ311、通電バスバー307、および、リアクトル313を介してバッテリ200に供給される。
 このように通電バスバー307にはバッテリ200を入出力する直流電力が流れる。流れる物理量を限定して言えば、通電バスバー307にはバッテリ200を入出力する直流電流が流れる。
 コンバータ310のハイサイドスイッチ311とローサイドスイッチ312はMGECU802によって開閉制御される。MGECU802は制御信号を生成し、それをゲートドライバ803に出力する。ゲートドライバ803は制御信号を増幅してスイッチのゲート電極に出力する。これによりMGECU802はコンバータ310に入力される直流電力の電圧レベルを昇降圧する。
 MGECU802は制御信号としてパルス信号を生成している。MGECU802はこのパルス信号のオンデューティ比と周波数を調整することで直流電力の昇降圧レベルを調整している。昇降圧レベルは上記の目標トルクとバッテリ200のSOCに応じて決定される。
 バッテリ200の直流電力を昇圧する場合、MGECU802はハイサイドスイッチ311とローサイドスイッチ312それぞれを交互に開閉する。そのためにMGECU802はハイサイドスイッチ311とローサイドスイッチ312に出力する制御信号の電圧レベルを反転している。
 ハイサイドスイッチ311のゲート電極にハイレベルが入力される場合、ローサイドスイッチ312のゲート電極にはローレベルが入力される。この場合、リアクトル313とハイサイドスイッチ311を介してバッテリ200の直流電力が第1インバータ320と第2インバータ330に供給される。この際、電流の流動によってリアクトル313に電気エネルギーが蓄積される。また第2平滑コンデンサ306に電荷が蓄えられる。第2平滑コンデンサ306が充電される。
 ハイサイドスイッチ311のゲート電極にローレベルが入力される場合、ローサイドスイッチ312のゲート電極にはハイレベルが入力される。この場合、第1平滑コンデンサ305、リアクトル313、および、ローサイドスイッチ312を通る閉ループが構成される。上記したようにリアクトル313には電気エネルギーが蓄積されている。そのためにリアクトル313は電流を流そうとする。このリアクトル313の電気エネルギーに起因する電流が上記の閉ループを流れる。
 またこの場合、ハイサイドスイッチ311を介した第1インバータ320と第2インバータ330への直流電力の供給が途絶える。しかしながら第2平滑コンデンサ306は充電されている。そのために第2平滑コンデンサ306から第1インバータ320と第2インバータ330への電力供給が成される。第1インバータ320と第2インバータ330への電力供給が継続される。
 この後にハイサイドスイッチ311にハイレベル、ローサイドスイッチ312にローレベルが入力される。この際、バッテリ200の直流電力とともにリアクトル313に蓄積された電気エネルギーが直流電力として第1インバータ320と第2インバータ330に供給される。これにより時間平均的に昇圧したバッテリ200の直流電力が第1インバータ320と第2インバータ330に供給される。また第2平滑コンデンサ306の充電が回復するとともに、その充電量が増大する。これにより第2平滑コンデンサ306から第1インバータ320と第2インバータ330に供給される直流電力の電圧レベルも上昇する。
 第1インバータ320と第2インバータ330の少なくとも一方から供給された直流電力を降圧する場合、MGECU802はローサイドスイッチ312に出力する制御信号をローレベルに固定する。それとともにMGECU802はハイサイドスイッチ311に出力する制御信号をハイレベルとローレベルに順次切り換える。
 ハイサイドスイッチ311のゲート電極にハイレベルが入力される場合、ハイサイドスイッチ311とリアクトル313を介して、第1インバータ320と第2インバータ330の少なくとも一方の直流電力がバッテリ200に供給される。
 ハイサイドスイッチ311のゲート電極にローレベルが入力される場合、第1インバータ320と第2インバータ330の少なくとも一方の直流電力がバッテリ200に供給されなくなる。この結果、時間平均的に降圧された直流電力がバッテリ200に供給される。
 なお、厳密に言うと、上記のようにハイサイドスイッチ311のゲート電極にハイレベルが入力されると、第1平滑コンデンサ305が充電される。リアクトル313に電気エネルギーが蓄積される。この後にハイサイドスイッチ311のゲート電極にローレベルが入力されると、第2平滑コンデンサ306とバッテリ200の出力電圧と時定数に差異がある場合、第2平滑コンデンサ306とバッテリ200との間で充放電が行われる。また図示しないダイオードが第1電力ライン301と第2電力ライン302を接続している。このダイオードのアノード電極が第2電力ライン302、カソード電極が第1電力ライン301に接続されている。そのため、このダイオード、リアクトル313、および、第1平滑コンデンサ305を通る閉ループが構成されている。リアクトル313の電気エネルギーに起因する電流はこの閉ループを流れる。
 <インバータ>
 第1インバータ320は第1スイッチ321~第6スイッチ326、および、第1ダイオード321a~第6ダイオード326aを有する。第1スイッチ321~第6スイッチ326としてはIGBTやパワーMOSFETなどを採用することができる。本実施形態では第1スイッチ321~第6スイッチ326としてnチャネル型のIGBTを採用している。これらスイッチとしてMOSFETを採用する場合、上記のダイオードはなくともよい。第1インバータ320を構成する半導体素子は、Siなどの半導体、若しくは、SiCなどのワイドギャップ半導体によって製造することができる。
 第1スイッチ321~第6スイッチ326に対応する第1ダイオード321a~第6ダイオード326aが逆並列接続されている。すなわち、kを1~6の自然数とすると、第kスイッチのコレクタ電極に第kダイオードのカソード電極が接続されている。第kスイッチのエミッタ電極に第kダイオードのアノード電極が接続されている。
 第1スイッチ321と第2スイッチ322は第3電力ライン303から第4電力ライン304へ向かって順に直列接続されている。第1スイッチ321と第2スイッチ322によって第1U相レグが構成されている。第1スイッチ321と第2スイッチ322との間の中点に第1通電バスバー341の一端が接続されている。第1通電バスバー341の他端が第1モータ400の第1U相ステータコイル401と接続されている。
 第3スイッチ323と第4スイッチ324は第3電力ライン303から第4電力ライン304へ向かって順に直列接続されている。第3スイッチ323と第4スイッチ324によって第1V相レグが構成されている。第3スイッチ323と第4スイッチ324との間の中点に第2通電バスバー342の一端が接続されている。第2通電バスバー342の他端が第1モータ400の第1V相ステータコイル402と接続されている。
 第5スイッチ325と第6スイッチ326は第3電力ライン303から第4電力ライン304へ向かって順に直列接続されている。第5スイッチ325と第6スイッチ326によって第1W相レグが構成されている。第5スイッチ325と第6スイッチ326との間の中点に第3通電バスバー343の一端が接続されている。第3通電バスバー343の他端が第1モータ400の第1W相ステータコイル403と接続されている。
 第2インバータ330は第1インバータ320と同様の構成になっている。第2インバータ330は第7スイッチ331~第12スイッチ336、および、第7ダイオード331a~第12ダイオード336aを有する。
 第7スイッチ331~第12スイッチ336に対応する第7ダイオード331a~第12ダイオード336aが逆並列接続されている。nを7~12の自然数とすると、第nスイッチのコレクタ電極に第nダイオードのカソード電極が接続されている。第nスイッチのエミッタ電極に第nダイオードのアノード電極が接続されている。
 第7スイッチ331と第8スイッチ332は第3電力ライン303と第4電力ライン304との間で直列接続されて第2U相レグを構成している。第7スイッチ331と第8スイッチ332との間の中点に第4通電バスバー344の一端が接続されている。第4通電バスバー344の他端が第2モータ500の第2U相ステータコイル501と接続されている。
 第9スイッチ333と第10スイッチ334は第3電力ライン303と第4電力ライン304との間で直列接続されて第2V相レグを構成している。第9スイッチ333と第10スイッチ334との間の中点に第5通電バスバー345の一端が接続されている。第5通電バスバー345の他端が第2モータ500の第2V相ステータコイル502と接続されている。
 第11スイッチ335と第12スイッチ336は第3電力ライン303と第4電力ライン304との間で直列接続されて第2W相レグを構成している。第11スイッチ335と第12スイッチ336との間の中点に第6通電バスバー346の一端が接続されている。第6通電バスバー346の他端が第2モータ500の第2W相ステータコイル503と接続されている。
 以上に示したように第1インバータ320と第2インバータ330それぞれはモータのU相~W相のステータコイルそれぞれに対応する3相のレグを有する。これら3相のレグそれぞれを構成するスイッチのゲート電極に、ゲートドライバ803によって増幅されたMGECU802の制御信号が入力される。
 モータを力行する場合、MGECU802からの制御信号の出力によって各スイッチがPWM制御される。これによりインバータで3相交流が生成される。モータが発電する場合、MGECU802は例えば制御信号の出力を停止する。これによりモータの発電によって生成された交流電力がダイオードを通る。この結果、交流電力が直流電力に変換される。
 以上に示した第1モータ400を入出力する交流電力は、第1インバータ320と第1モータ400とを接続する第1通電バスバー341~第3通電バスバー343を流れる。同様にして、第2モータ500を入出力する交流電力は、第2インバータ330と第2モータ500とを接続する第4通電バスバー344~第6通電バスバー346を流れる。
 流れる物理量を限定して言えば、第1モータ400を入出力する交流電流は、第1通電バスバー341~第3通電バスバー343を流れる。第2モータ500を入出力する交流電流は、第4通電バスバー344~第6通電バスバー346を流れる。
 <電流センサ>
 次に、これまでに説明した車載システム100に適用される電流センサを説明する。
 電流センサとしては、第1電流センサ11、第2電流センサ12、および、第3電流センサ13がある。第1電流センサ11はコンバータ310を流れる電流を検出する。第2電流センサ12は第1モータ400を流れる電流を検出する。第3電流センサ13は第2モータ500を流れる電流を検出する。
 第1電流センサ11は通電バスバー307に設けられる。上記したように通電バスバー307にはバッテリ200を入出力する直流電流が流れる。第1電流センサ11はこの直流電流を検出する。
 第1電流センサ11で検出された直流電流は電池ECU801に入力される。電池ECU801は第1電流センサ11で検出された直流電流や図示しない電圧センサで検出される電池スタックの電圧などに基づいて、バッテリ200のSOCを監視する。
 第2電流センサ12は第1通電バスバー341~第3通電バスバー343に設けられる。上記したように第1通電バスバー341~第3通電バスバー343には第1モータ400を入出力する交流電流が流れる。第2電流センサ12はこの交流電流を検出する。
 第2電流センサ12で検出された交流電流はMGECU802に入力される。MGECU802は第2電流センサ12で検出された交流電流や図示しない回転角センサで検出される第1モータ400の回転角などに基づいて、第1モータ400をベクトル制御する。
 第3電流センサ13は第4通電バスバー344~第6通電バスバー346に設けられる。上記したように第4通電バスバー344~第6通電バスバー346には第2モータ500を入出力する交流電流が流れる。第3電流センサ13はこの交流電流を検出する。
 第3電流センサ13で検出された交流電流はMGECU802に入力される。MGECU802は第3電流センサ13で検出された交流電流や図示しない回転角センサで検出される第2モータ500の回転角などに基づいて、第2モータ500をベクトル制御する。
 なお、第1モータ400の有する第1U相ステータコイル401、第1V相ステータコイル402、および、第1W相ステータコイル403はスター結線されている。同様にして、第2モータ500の有する第2U相ステータコイル501、第2V相ステータコイル502、および、第2W相ステータコイル503はスター結線されている。そのためにこれら3相のステータコイルのうちの2相の電流を検出することで、残り1相の電流を検出することができる。
 これら3相のステータコイルがデルタ結線された構成を採用することもできる。この構成においても、2相のステータコイルの電流を検出することで、残り1相の電流を検出することができる。
 第2電流センサ12は第1U相ステータコイル401~第1W相ステータコイル403に接続される第1通電バスバー341~第3通電バスバー343のうちの2つに設けられる。より具体的に言えば、第2電流センサ12は第1通電バスバー341と第2通電バスバー342に設けられる。
 そのために第2電流センサ12は第1U相ステータコイル401に流れる電流と、第1V相ステータコイル402に流れる電流を検出する。MGECU802はこれら第1U相ステータコイル401と第1V相ステータコイル402に流れる電流に基づいて第1W相ステータコイル403に流れる電流を検出する。
 同様にして、第3電流センサ13は第2U相ステータコイル501~第2W相ステータコイル503に接続される第4通電バスバー344~第6通電バスバー346のうちの2つに設けられる。より具体的に言えば、第3電流センサ13は第4通電バスバー344と第5通電バスバー345に設けられる。
 そのために第3電流センサ13は第2U相ステータコイル501に流れる電流と、第2V相ステータコイル502に流れる電流を検出する。MGECU802はこれら第2U相ステータコイル501と第2V相ステータコイル502に流れる電流に基づいて第2W相ステータコイル503に流れる電流を検出する。
 上記したバッテリ200を入出力する直流電流、および、第1モータ400と第2モータ500を入出力する交流電流それぞれが被測定電流に相当する。そしてこれらの電流の流動によって発生する磁界が被測定磁界に相当する。
 <第1電流センサ>
 上記したように第1電流センサ11は通電バスバー307に設けられる。通電バスバー307はリアクトル313側とハイサイドスイッチ311(ローサイドスイッチ312)側とで分断されている。第1電流センサ11はこの分断された通電バスバー307のリアクトル313側とハイサイドスイッチ311側とを架橋する態様で通電バスバー307に設けられる。これにより第1電流センサ11には通電バスバー307を流れる電流、すなわち、バッテリ200を入出力する直流電流が流れる。
 なおもちろんではあるが、通電バスバー307がリアクトル313側とハイサイドスイッチ311側とで分断された構成は一例に過ぎない。例えば、通電バスバー307が分断されずにハイサイドスイッチ311側だけに接続されている場合、第1電流センサ11はリアクトル313と通電バスバー307とを架橋する。
 図2~図5に示すように第1電流センサ11は、配線基板20、導電バスバー30、シールド40、および、センサ筐体50を有する。導電バスバー30が上記の通電バスバー307を架橋する。そのため、導電バスバー30に直流電流が流れる。導電バスバー30が導電部材に相当する。
 図4の(a)欄は第1電流センサ11の上面図を示している。図4の(b)欄は第1電流センサの正面図を示している。図4の(c)欄は第1電流センサの下面図を示している。図5の(a)欄は第1電流センサ11の正面図を示している。図5の(b)欄は第1電流センサの側面図を示している。図5の(c)欄は第1電流センサの背面図を示している。なお、図4の(b)欄と図5の(a)欄には同一の図面を示している。
 これらの図面に明示されるように、導電バスバー30の一部はセンサ筐体50にインサート成形されている。このセンサ筐体50に配線基板20とシールド40とが設けられる。センサ筐体50は絶縁性の樹脂材料からなる。
 配線基板20は導電バスバー30のセンサ筐体50にインサート成形された部位と対向する態様でセンサ筐体50に固定される。この配線基板20における導電バスバー30との対向部位に後述の磁電変換部25が搭載されている。この磁電変換部25によって、導電バスバー30を流れる直流電流の発する磁界が電気信号に変換される。
 シールド40は第1シールド41と第2シールド42を有する。第1シールド41と第2シールド42は互いに離間する態様でセンサ筐体50に固定される。この第1シールド41と第2シールド42との間に配線基板20と導電バスバー30それぞれの互いに対向する部位が位置する。
 第1シールド41と第2シールド42はセンサ筐体50よりも透磁率の高い材料からなる。したがって第1電流センサ11の外部から内部へと透過しようとする電磁ノイズ(外部ノイズ)は、第1シールド41と第2シールド42を積極的に通ろうとする。これにより外部ノイズの磁電変換部25への入力が抑制されている。
 なおセンサ筐体50には図4に示す接続端子60がインサート成形されている。この接続端子60ははんだ61によって配線基板20と電気的および機械的に接続される。この接続端子60がワイヤハーネスなどを介して電池ECU801と電気的に接続される。磁電変換部25で変換された電気信号は、接続端子60と図示しないワイヤハーネスなどを介して電池ECU801に入力される。
 次に、第1電流センサ11の構成要素を個別に詳説する。それに当たって、以下においては互いに直交の関係にある3方向をx方向、y方向、および、z方向とする。x方向が横方向に相当する。y方向が延長方向に相当する。
 <配線基板>
 図6に示すように配線基板20は平板形状を成している。配線基板20はz方向の厚さの薄い扁平形状を成している。配線基板20は絶縁性の樹脂層と導電性の金属層がz方向に複数積層されて成る。配線基板20の最も面積の広い対向面20aおよびその裏側の背面20bはz方向に面している。図6の(a)欄は配線基板の上面図を示している。図6の(b)欄は配線基板の下面図を示している。
 配線基板20の対向面20aには、図6の(a)欄および図7に示す第1センシング部21と第2センシング部22が搭載されている。第1センシング部21と第2センシング部22それぞれはASIC23とフィルタ24を有する。ASIC23とフィルタ24は配線基板20の配線パターンを介して電気的に接続されている。この配線パターンに接続端子60が電気的に接続されている。ASICはapplication specific integrated circuitの略である。なお、背面20bに第1センシング部21と第2センシング部22が搭載された構成を採用することもできる。
 <ASIC>
 ASIC23は磁電変換部25、処理回路26、接続ピン27、および、樹脂部28を有する。磁電変換部25と処理回路26は電気的に接続されている。接続ピン27の一端が処理回路26に電気的に接続されている。接続ピン27の他端が配線基板20に電気的および機械的に接続されている。接続ピン27の一端側、処理回路26、および、磁電変換部25は樹脂部28によって被覆されている。接続ピン27の他端側は樹脂部28から露出されている。
 磁電変換部25は自身を透過する磁界(透過磁界)に応じて抵抗値が変動する磁気抵抗効果素子を複数有する。この磁気抵抗効果素子は対向面20aに沿う透過磁界に応じて抵抗値が変化する。すなわち磁気抵抗効果素子は透過磁界のx方向に沿う成分とy方向に沿う成分に応じて抵抗値が変化する。
 その反面、磁気抵抗効果素子はz方向に沿う透過磁界によって抵抗値が変化しない。したがってz方向に沿う外部ノイズが磁気抵抗効果素子を透過したとしても、それによって磁気抵抗効果素子の抵抗値は変化しない。
 磁気抵抗効果素子は磁化方向の固定されたピン層、磁化方向が透過磁界に応じて変化する自由層、および、両者の間に設けられた非磁性の中間層を有する。中間層が非導電性を有する場合、磁気抵抗効果素子は巨大磁気抵抗素子である。中間層が導電性を有する場合、磁気抵抗効果素子はトンネル磁気抵抗素子である。なお、磁気抵抗効果素子は異方性磁気抵抗効果素子(AMR)でもよい。さらに言えば、磁電変換部25は磁気抵抗効果素子の代わりにホール素子を有してもよい。
 磁気抵抗効果素子はピン層と自由層それぞれの磁化方向の成す角度によって抵抗値が変化する。ピン層の磁化方向は対向面20aに沿っている。自由層の磁化方向は対向面20aに沿う透過磁界によって定まる。磁気抵抗効果素子の抵抗値は、自由層と固定層それぞれの磁化方向が平行の場合に最も小さくなる。磁気抵抗効果素子の抵抗値は、自由層と固定層それぞれの磁化方向が反平行の場合に最も大きくなる。
 磁電変換部25は、上記した磁気抵抗効果素子として第1磁気抵抗効果素子25aと第2磁気抵抗効果素子25bを有する。第1磁気抵抗効果素子25aと第2磁気抵抗効果素子25bはピン層の磁化方向が90°異なっている。このために第1磁気抵抗効果素子25aと第2磁気抵抗効果素子25bの抵抗値の増減が逆転している。第1磁気抵抗効果素子25aと第2磁気抵抗効果素子25bのうちの一方の抵抗値が減少すると、他方の抵抗値はそれと同等分だけ増大する。
 磁電変換部25は第1磁気抵抗効果素子25aと第2磁気抵抗効果素子25bそれぞれを2つ有する。電源電位から基準電位に向かって第1磁気抵抗効果素子25aと第2磁気抵抗効果素子25bが順に直列接続されて第1ハーフブリッジ回路が構成されている。電源電位から基準電位に向かって第2磁気抵抗効果素子25bと第1磁気抵抗効果素子25aが順に直列接続されて第2ハーフブリッジ回路が構成されている。
 このように2つのハーフブリッジ回路では第1磁気抵抗効果素子25aと第2磁気抵抗効果素子25bの並びが逆転している。そのために2つのハーフブリッジ回路の中点電位は、一方の電位が下がれば他方の電位が上がる構成となっている。磁電変換部25ではこれら2つのハーフブリッジ回路が組み合わさることでフルブリッジ回路が構成されている。
 磁電変換部25は上記したフルブリッジ回路を構成する磁気抵抗効果素子の他に、差動アンプ25c、フィードバックコイル25d、および、シャント抵抗25eを有する。差動アンプ25cの反転入力端子と非反転入力端子に2つのハーフブリッジ回路の中点電位が入力される。差動アンプ25cの出力端子から基準電位に向かって、フィードバックコイル25dとシャント抵抗25eとが順に直列接続されている。
 以上に示した接続構成により、差動アンプ25cの出力端子からは、フルブリッジ回路を構成する第1磁気抵抗効果素子25aと第2磁気抵抗効果素子25bの抵抗値の変動に応じた出力がなされる。この抵抗値の変化は、磁気抵抗効果素子を対向面20aに沿う磁界が透過することで生じる。磁気抵抗効果素子には導電バスバー30を流れる電流から生じる磁界(被測定磁界)が透過する。したがって差動アンプ25cの入力端子には被測定磁界に応じた電流が流れる。
 差動アンプ25cの入力端子と出力端子は図示しない帰還回路を介して接続されている。そのために差動アンプ25cはバーチャルショートしている。したがって差動アンプ25cは反転入力端子と非反転入力端子とが同電位となるように動作する。すなわち差動アンプ25cは入力端子に流れる電流と出力端子に流れる電流とがゼロとなるように動作する。この結果、差動アンプ25cの出力端子からは、被測定磁界に応じた電流(フィードバック電流)が流れる。
 フィードバック電流はフィードバックコイル25dとシャント抵抗25eとを介して、差動アンプ25cの出力端子と基準電位との間で流れる。このフィードバック電流の流動によって、フィードバックコイル25dに相殺磁界が発生する。この相殺磁界が磁電変換部25を透過する。これによって磁電変換部25を透過する被測定磁界が相殺される。以上により磁電変換部25は、自身を透過する被測定磁界と相殺磁界とが平衡となるように動作する。
 相殺磁界を発生するフィードバック電流の電流量に応じたフィードバック電圧がフィードバックコイル25dとシャント抵抗25eとの間の中点に生成される。このフィードバック電圧が、被測定電流を検出した電気信号として、後段の処理回路26に出力される。
 処理回路26は、調整アンプ26aと閾値電源26bを有する。調整アンプ26aの非反転入力端子にフィードバックコイル25dとシャント抵抗25eとの間の中点が接続されている。調整アンプ26aの反転入力端子に閾値電源26bが接続されている。これにより調整アンプ26aからは差動増幅されたフィードバック電圧が出力される。
 フルブリッジ回路を構成する第1磁気抵抗効果素子25aと第2磁気抵抗効果素子25bそれぞれの抵抗値は、温度に依存する性質を有する。そのために温度変化によって調整アンプ26aの出力が変動する。そこで処理回路26は図示しない温度検出素子や、磁気抵抗効果素子の温度と抵抗値の関係を記憶する不揮発性メモリなどを有する。この不揮発性メモリは電気的に書き換え可能である。不揮発性メモリに記憶された値を書き換えることで、調整アンプ26aのゲインやオフセットが調整される。これにより温度変化に起因する調整アンプ26aの出力の変動がキャンセルされる。
 <フィルタ>
 フィルタ24は抵抗24aとコンデンサ24bを有する。そして図7に示すように配線基板20には、配線パターンとして電源配線20c、第1出力配線20d、第2出力配線20e、および、グランド配線20fが形成されている。
 第1センシング部21のASIC23は電源配線20c、第1出力配線20d、および、グランド配線20fそれぞれと接続されている。第1センシング部21のASIC23の調整アンプ26aの出力端子が第1出力配線20dに接続されている。
 第1センシング部21のフィルタ24の抵抗24aは第1出力配線20dに設けられている。コンデンサ24bは第1出力配線20dとグランド配線20fとを接続している。これにより第1センシング部21のフィルタ24は抵抗24aとコンデンサ24bとによってローパスフィルタを構成している。第1センシング部21のASIC23の出力はこのローパスフィルタを介して電池ECU801に出力される。これにより高周波ノイズの除去された第1センシング部21の出力が電池ECU801に入力される。
 第2センシング部22のASIC23は電源配線20c、第2出力配線20e、および、グランド配線20fそれぞれと接続されている。第1センシング部21のASIC23の調整アンプ26aの出力端子が第2出力配線20eに接続されている。
 第2センシング部22のフィルタ24の抵抗24aは第2出力配線20eに設けられている。コンデンサ24bは第2出力配線20eとグランド配線20fとを接続している。これにより第2センシング部22のフィルタ24は抵抗24aとコンデンサ24bとによってローパスフィルタを構成している。第2センシング部22のASIC23の出力はこのローパスフィルタを介して電池ECU801に出力される。これにより高周波ノイズの除去された第2センシング部22の出力が電池ECU801に入力される。
 以上に示したように本実施形態の第1センシング部21と第2センシング部22は同一構成となっている。これら第1センシング部21と第2センシング部22それぞれの磁電変換部25はy方向に並んでいる。後で詳説するように第1センシング部21と第2センシング部22それぞれの磁電変換部25を透過する磁界は同一となっている。
 したがって、第1センシング部21から電池ECU801に入力される電気信号と、第2センシング部22から電池ECU801に入力される電気信号は同一になっている。電池ECU801は入力されるこれら2つの電気信号を比較することで、第1センシング部21と第2センシング部22のいずれか一方に異常が生じているか否かを判定する。このように本実施形態にかかる第1電流センサ11は冗長性を有している。
 なお、上記のシャント抵抗25eは樹脂部28の中に設けられても良いし、その外に設けられてもよい。樹脂部28の外に設けられる場合、シャント抵抗25eは配線基板20に搭載される。そしてシャント抵抗25eはASIC23に外付けされる。
 また、フルブリッジ回路を構成する4つの抵抗それぞれが磁気抵抗効果素子でなくともよい。これら4つの抵抗のうちの少なくとも1つが磁気抵抗効果素子であればよい。フルブリッジ回路ではなく、1つのハーフブリッジ回路だけを構成してもよい。
 上記の冗長性を有さなくともよい場合、第1電流センサ11は第1センシング部21と第2センシング部22のうちの一方を有する構成を採用することもできる。
 <導電バスバー>
 導電バスバー30は銅や黄銅およびアルミニウムなどの導電材料から成る。導電バスバー30は例えば以下に列挙する方法で製造することができる。導電バスバー30は平板をプレス加工することで製造することができる。導電バスバー30は複数の平板を一体的に連結することで製造することができる。導電バスバー30は複数の平板を溶接することで製造することができる。導電バスバー30は鋳型に溶融状態の導電材料を流し込むことで製造することができる。導電バスバー30の製造方法としては特に限定されない。
 図8に示すように導電バスバー30はz方向の厚さの薄い扁平形状を成している。導電バスバー30の表面30aおよびその裏面30bそれぞれはz方向に面している。図8の(a)欄は導電バスバーの上面図を示している。図8の(b)欄は導電バスバーの側面図を示している。
 導電バスバー30はy方向に延びている。図8において2つの破線で区切って示すように、導電バスバー30はセンサ筐体50に被覆される被覆部31、および、センサ筐体50から露出される第1露出部32と第2露出部33を有する。第1露出部32と第2露出部33は被覆部31を介してy方向に並んでいる。第1露出部32と第2露出部33は被覆部31を介して一体的に連結されている。
 図8の(b)欄に示すように被覆部31、第1露出部32、および、第2露出部33それぞれのz方向の長さ(厚さ)は相等しくなっている。すなわち被覆部31、第1露出部32、および、第2露出部33それぞれの表面30aと裏面30bとの間のz方向の離間距離が相等しくなっている。
 第1露出部32と第2露出部33それぞれには、ボルトを通して通電バスバー307と電気的および機械的に接続するためのボルト孔30cが形成されている。このボルト孔30cは表面30aと裏面30bとを貫通している。
 上記したように通電バスバー307はリアクトル313側とハイサイドスイッチ311側とで分断されている。この通電バスバー307のリアクトル313側、および、ハイサイドスイッチ311側それぞれに、ボルト孔30cに対応する取付孔が形成されている。
 通電バスバー307のリアクトル313側の取付孔と第1露出部32のボルト孔30cとをz方向で並ばせる。通電バスバー307のハイサイドスイッチ311側の取付孔と第2露出部33のボルト孔30cとをz方向で並ばせる。この状態において、ボルト孔30cと取付孔とにボルトの軸部を通す。そしてボルトの軸部の先端から頭部に向かってナットを締結する。ボルトの頭部とナットとによって通電バスバー307と導電バスバー30とを挟持する。これにより通電バスバー307と導電バスバー30とを接触し、両者を電気的および機械的に接続する。以上により、分断された通電バスバー307のリアクトル313側とハイサイドスイッチ311側とが導電バスバー30によって架橋される。通電バスバー307と導電バスバー30とに共通の電流が流れる。
 図8の(a)欄に示すように被覆部31には、x方向の長さの局所的に短い狭窄部31aが形成されている。本実施形態の狭窄部31aはx方向の長さが段階的に短くなっている。狭窄部31aは、y方向において被覆部31の第1露出部32側から被覆部31の中心点CPに向かうにしたがって、二段階にわたってx方向の長さが短くなっている。同様にして狭窄部31aは、y方向において被覆部31の第2露出部33側から被覆部31の中心点CPに向かうにしたがって、二段階にわたってx方向の長さが短くなっている。なお狭窄部31aのx方向の長さはより多段階的に短くなっても良いし、連続的に短くなってもよい。
 上記の中心点CPは被覆部31の重心と同等である。被覆部31および狭窄部31aは、中心点CPをz方向に通る中心線を対称軸ASとして、線対称な形状となっている。
 狭窄部31aは第1露出部32および第2露出部33それぞれよりもx方向の長さが短くなっている。このため狭窄部31aを流れる電流の密度は、第1露出部32と第2露出部33を流れる電流の密度よりも濃くなっている。この結果、狭窄部31aを流れる電流から発せられる被測定磁界の強度が高くなっている。
 図8の(a)欄と(b)欄それぞれに第1センシング部21と第2センシング部22の磁電変換部25を概略的に破線で囲って示すように、第1センシング部21と第2センシング部22は狭窄部31aとz方向で離間して対向配置される。したがって第1センシング部21と第2センシング部22それぞれには、狭窄部31aを流れる電流から発せられる、強度の高い被測定磁界が透過する。
 上記したように導電バスバー30はy方向に延びている。したがって導電バスバー30ではy方向に電流が流れる。このy方向への電流の流動によって、y方向まわりの周方向に、アンペールの法則にしたがう被測定磁界が生成される。被測定磁界は、x方向とz方向とによって規定される平面において、導電バスバー30を中心として環状に流れる。第1センシング部21と第2センシング部22は被測定磁界のx方向に沿う成分を検出する。
 図8に破線で示すように第1センシング部21と第2センシング部22それぞれの磁電変換部25はy方向に並んでいる。これら2つの磁電変換部25は対称軸ASを介して対称配置されている。2つの磁電変換部25のx方向の位置と対称軸AS(中心点CP)のx方向の位置とが同一になっている。したがって2つの磁電変換部25は中心点CPを介してy方向に並んでいる。
 また2つの磁電変換部25と被覆部31とのz方向の離間距離は同一となっている。そして上記したように被覆部31および狭窄部31aは対称軸ASを介して線対称な形状となっている。以上により、2つの磁電変換部25にはx方向の成分が同等の被測定磁界が透過する。
 なお、本実施形態の導電バスバー30は導電性の平板をプレス加工することで製造している。このプレス加工は、平板をダイに置き、パンチをダイに近づけて平板に引張り力を加える。こうすることで平板を導電バスバー30と切りくずとに分離し、導電バスバー30を製造する。
 上記のプレス加工によって導電バスバー30を製造すると、導電バスバー30にはせん断面が形成される。導電バスバー30におけるパンチと始めに接触する面側のせん断面にダレが発生する。これによってせん断面の直角性が損なわれる虞がある。この結果、導電バスバー30を流動する電流によって発生する被測定磁界の分布が設計からずれる虞がある。
 本実施形態の導電バスバー30は、パンチと始めに接触する面ではなく、パンチによって最後に分離される面を配線基板20側に設けている。すなわち、パンチと始めに接触する面を裏面30b、パンチによって最後に分離される面を表面30aとしている。せん断面は表面30aと裏面30bとの間の側面に相当する。したがって導電バスバー30の側面における表面30a側の直角性が損なわれがたくなっている。この導電バスバー30の表面30aが配線基板20と対向している。そのために配線基板20に搭載された第1センシング部21と第2センシング部22を透過する被測定磁界の分布が設計からずれることが抑制されている。
 なお、上記のように導電バスバー30をプレス加工で製造した後、側面における表面30a側と裏面30b側のいずれにダレが発生しているかを見分ける必要がある。これを見分けるための切欠き33aが、目印として導電バスバー30の第2露出部33に形成されている。本実施形態の切欠き33aは半円形状を成している。
 <シールド>
 上記したようにシールド40は第1シールド41と第2シールド42を有する。図9および図10に示すように第1シールド41と第2シールド42それぞれはz方向の厚さの薄い板形状を成している。第1シールド41の最も面積の広い一面41aとその裏面41bそれぞれはz方向に面している。第2シールド42の最も面積の広い一面42aとその裏面42bそれぞれはz方向に面している。
 図2および図3に示すように一面41aと一面42aとが互いにz方向において対向する態様で、第1シールド41と第2シールド42はセンサ筐体50に設けられる。第1シールド41の裏面41bと第2シールド42の裏面42bそれぞれはセンサ筐体50の外に露出される。これら裏面41bと裏面42bそれぞれは第1電流センサ11の最外表面の一部を構成している。
 図9の(a)欄は第1シールドの上面図を示している。図9の(b)欄は第1シールドの下面図を示している。図10の(a)欄は第2シールドの上面図を示している。図10の(b)欄は第2シールドの下面図を示している。
 これら第1シールド41と第2シールド42は、パーマロイなどの透磁率の高い軟磁性材料から成る複数の平板を圧着することで製造することができる。若しくは、第1シールド41と第2シールド42は電磁鋼を圧延することで製造することができる。
 本実施形態の第1シールド41と第2シールド42それぞれは軟磁性材料から成る複数の平板を圧着することで製造している。複数の平板それぞれには、その主面から裏面に向かって突起する4つの凸部が形成されている。これに応じて複数の平板それぞれには、裏面から主面に向かって凹む4つの凹部が形成されている。これら複数の平板それぞれを、主面と裏面とが対向するように配置する。そして対向する2つの平板のうちの一方の凹部に、他方の凸部が入り込むように、複数の平板を積層する。この積層状態で複数の平板を圧着する。これにより第1シールド41と第2シールド42とが製造される。
 なお、電磁鋼を圧延することで第1シールド41と第2シールド42を製造する場合、その圧延によって電磁鋼を延ばす方向を、例えばx方向にする。これにより電磁鋼の原子配列(結晶)がx方向に整列される。この結果、x方向のほうがy方向よりも透磁率が高まる。このように電磁鋼の圧延方向を特定することで、シールドの透磁率に異方性を持たせることができる。
 <第1シールド>
 第1シールド41の平面形状は、図9に示すようにx方向を長手方向とする矩形を成している。そして本実施形態の第1シールド41の四隅には切欠き41cが形成されている。図9では、y方向における第1シールド41の中央と両端との境界を明りょうとするため、x方向に延びる2つの破線を第1シールド41に付与している。以下においては第1シールド41のy方向の中央を第1中央部41dと示す。第1シールド41のy方向の両端を第1両端部41eと示す。y方向において第1両端部41eの有する2つの端部の間に第1中央部41dが位置している。
 この破線の付与によって明示されるように、第1両端部41eは第1中央部41dよりもx方向の長さが短くなっている。そのために第1両端部41eは第1中央部41dよりもx方向の透磁率が低くなっている。第1両端部41eに磁界が侵入しがたくなっている。したがって、第1両端部41eの有する2つの端部の一方から他方へと、第1中央部41dにおける第1両端部41eと直接連結されてy方向で並ぶ部位(並列部位)を介して磁界が透過することが抑制されている。第1中央部41dの並列部位に磁界が透過しがたくなっている。この結果、第1中央部41dの並列部位は磁気飽和しがたくなっている。
 この磁気飽和の抑制された第1中央部41dの並列部位と、配線基板20に搭載された第1センシング部21および第2センシング部22がz方向で並んでいる。第1中央部41dと狭窄部31aとの間に第1センシング部21と第2センシング部22それぞれの磁電変換部25が位置している。 
 <第2シールド>
 第2シールド42の平面形状は、図10に示すようにx方向を長手方向とする矩形を成している。図10では、y方向における第2シールド42の中央と両端との境界を明りょうとするために、x方向に延びる2つの破線を第2シールド42に付与している。以下においては第2シールド42のy方向の中央を第2中央部42dと示す。第2シールド42のy方向の両端を第2両端部42eと示す。y方向において第2両端部42eの有する2つの端部の間に第2中央部42dが位置している。
 第2シールド42はx方向で並ぶ2つの端辺42fを有する。これら2つの端辺42fの第2中央部42d側それぞれに、z方向に延びる延設部42cが形成されている。これら2つの延設部42cはz方向において裏面42bから一面42aに向かう方向に延びている。延設部42cはy方向を長手方向とする直方体を成している。延設部42cは上記したように第2シールド42を製造するにあたって軟磁性材料から成る複数の平板を圧着した後に曲げ加工することで形成される。
 上記したように第1シールド41の一面41aと第2シールド42の一面42aとが互いにz方向において対向する態様で、第1シールド41と第2シールド42はセンサ筐体50に設けられる。このセンサ筐体50に設けられている状態で、延設部42cは第1シールド41に向かって延びている。延設部42cの端面と第1シールド41の第1中央部41dの一面41aとがz方向で対向している。
 これにより、第1シールド41の一面41aと第2シールド42の一面42aとのz方向の離間距離よりも、第1シールド41の第1中央部41dと第2シールド42の延設部42cとのz方向の離間距離のほうが短くなっている。そのため、第1シールド41に侵入した磁界は、この延設部42cを介して第2シールド42へと透過しやすくなっている。
 上記したように延設部42cは端辺42fの第2中央部42d側からz方向に延びている。端辺42fの第2両端部42e側に延設部42cは形成されていない。そのため、第1シールド41に侵入した磁界は、延設部42cを介して第2シールド42の第2中央部42dへと透過しやすくなっている。
 この第2中央部42dと、配線基板20に搭載された第1センシング部21および第2センシング部22がz方向で対向している。第1中央部41dと第2中央部42dとの間に、第1センシング部21と第2センシング部22それぞれの磁電変換部25と狭窄部31aが位置している。
 また、磁電変換部25のx方向の位置は、2つの端辺42fそれぞれに形成された2つの延設部42cの間になっている。そのため、磁電変換部25の位置する第1シールド41の一面41aと第2シールド42の一面42aとの間の領域をx方向に沿う外部ノイズが透過しようとした場合、その外部ノイズは磁電変換部25ではなく延設部42cに侵入しようとする。延設部42cに侵入した外部ノイズは第2シールド42の中を透過するべく、その透過方向が曲げられる。この結果、外部ノイズが磁電変換部25を透過することが抑制されている。
 <センサ筐体>
 図3および図11に示すように、センサ筐体50には導電バスバー30と接続端子60がインサート成形されている。そしてセンサ筐体50には、配線基板20とシールド40が設けられる。導電バスバー30、配線基板20、および、シールド40はz方向で離間して並んでいる。図11の(a)欄はセンサ筐体の上面図を示している。図11の(b)欄はセンサ筐体の下面図を示している。
 図5および図11に示すようにセンサ筐体50は、基部51、絶縁部52、第1囲み部53、第2囲み部54、および、コネクタ部55を有する。
 基部51はx方向を長手方向とする直方体を成している。そのために基部51は6面を有する。基部51はy方向に面する左面51aと右面51bを有する。基部51はx方向に面する上面51cと下面51dを有する。基部51はz方向に面する上端面51eと下端面51fを有する。
 図5の(a)欄および図5の(c)欄に示すように、絶縁部52は基部51の左面51aと右面51bそれぞれの一部に形成されている。これら2つの絶縁部52は基部51から離れるようにy方向に延びている。2つの絶縁部52は基部51を介してy方向に並んでいる。2つの絶縁部52と基部51それぞれによって導電バスバー30の被覆部31が被覆されている。
 概略的に言えば、2つの絶縁部52によって被覆部31の第1露出部32側と第2露出部33側が被覆されている。基部51によって被覆部31の狭窄部31aが被覆されている。したがって狭窄部31aはz方向において基部51の上端面51eと下端面51fとの間に位置する。狭窄部31aと上端面51eとの間、および、狭窄部31aと下端面51fとの間それぞれに、基部51を構成する絶縁性の樹脂材料が位置している。
 図11の(a)欄に示すように、第1囲み部53は基部51の上端面51eに形成されている。第1囲み部53はy方向に並ぶ左壁53aと右壁53bを有する。第1囲み部53はx方向に並ぶ上壁53cと下壁53dを有する。
 これら第1囲み部53を構成する壁は上端面51eの縁に沿って形成されている。z方向まわりの周方向において、左壁53a、上壁53c、右壁53b、および、下壁53dが順に連結されている。これにより第1囲み部53はz方向に開口する環状を成している。第1囲み部53によって上端面51eが囲まれている。この第1囲み部53と上端面51eとによって構成される第1収納空間に配線基板20と第1シールド41が設けられる。
 図11の(b)欄に示すように、第2囲み部54は基部51の下端面51fに形成されている。第2囲み部54はy方向に並ぶ左壁54aと右壁54bを有する。第2囲み部54はx方向に並ぶ上壁54cと下壁54dを有する。
 これら第2囲み部54を構成する壁は、下端面51fにおける上記の基部51の狭窄部31aとz方向で並ぶ部位の周囲に形成されている。z方向まわりの周方向において、左壁54a、上壁54c、右壁54b、および、下壁54dが順に連結されている。これにより第2囲み部54はz方向に開口する環状を成している。第2囲み部54によって下端面51fの一部が囲まれている。この第2囲み部54と下端面51fとによって構成される第2収納空間に第2シールド42が設けられる。
 第2収納空間は第1収納空間よりもz方向に直交する平面の大きさが小さくなっている。第2収納空間は第1収納空間の一部とz方向で並んでいる。この第1収納空間における第2収納空間とのz方向で並ばない部位とコネクタ部55とがz方向で並んでいる。
 図5の(b)欄および図11の(b)欄に示すように、コネクタ部55は基部51の下端面51fに形成されている。コネクタ部55は下端面51fにおける第2囲み部54によって囲まれていない部位(非囲み部位)から離れるようにz方向に延びている。コネクタ部55は下壁54dの一部を構成している。
 コネクタ部55は下端面51fからz方向に延びる柱部55aと、柱部55aの先端面55bをz方向まわりの周方向で囲む囲み部55cと、を有する。接続端子60はz方向に延びている。接続端子60は柱部55a、および、基部51における柱部55aとz方向で並ぶ部位それぞれによって被覆されている。
 接続端子60の一端は先端面55bから柱部55aの外に露出されている。この先端面55bから露出した接続端子60の一端は上記の囲み部55cによってその周囲を囲まれている。これにより囲み部55cと接続端子60の一端とによってコネクタが構成されている。このコネクタにワイヤハーネスなどのコネクタが接続される。
 接続端子60の他端は上端面51eから基部51の外に露出されている。接続端子60の他端は上記の第1収納空間に設けられている。接続端子60は導電バスバー30における基部51によって被覆された部位(狭窄部31a)とx方向で離れている。x方向において接続端子60の他端は下壁53d側に位置する。狭窄部31aは上壁53c側に位置する。接続端子60と狭窄部31aそれぞれのセンサ筐体50にインサート成形された部位の間に、基部51を構成する絶縁性の樹脂材料が位置している。
 上記したように導電バスバー30にはバッテリ200を入出力する直流電流が流れる。そして接続端子60には、配線基板20と電池ECU801との間で、直流電流よりも電流量の少ない電気信号が流れる。この導電バスバー30と接続端子60との沿面距離が近いと、両者が導通してショートする虞がある。
 このような不具合が生じることを抑制するためのリブ52aが絶縁部52に形成されている。リブ52aは絶縁部52からz方向に突起している。そしてリブ52aはx方向に延びている。リブ52aのx方向の長さは第1露出部32および第2露出部33それぞれのx方向の長さよりも長くなっている。
 リブ52aは絶縁部52の外に位置する導電バスバー30の第1露出部32および第2露出部33と、接続端子60の上端面51eから外に露出された他端との間に位置する。このリブ52aにより、センサ筐体50の表面における導電バスバー30と接続端子60との沿面距離が長くなっている。これにより導電バスバー30と接続端子60とのショートが抑制されている。
 またリブ52aは第1露出部32および第2露出部33と、第1シールド41および第2シールド42との間に位置する。これにより導電バスバー30とシールド40とのショートも抑制されている。
 リブ52aによる沿面距離の延長によって、絶縁部52のy方向の長さを短くすることができる。絶縁部52のy方向の長さをおよそ85%短くすることができる。これにより第1電流センサ11の体格の増大が抑制される。
 <センサ筐体に対する配線基板の固定形態>
 図11の(a)欄および図12の(a)欄に示すように、基部51の上端面51eには、z方向に局所的に延びる基板支持ピン56aと基板接着ピン56bが形成されている。これら基板支持ピン56aと基板接着ピン56bは上端面51eに複数形成されている。図12の(a)欄はセンサ筐体の斜視図を示している。図12の(b)欄は配線基板の設けられたセンサ筐体の斜視図を示している。図12ではこれらピンを説明するために、一部の符号の付与を略している。
 複数の基板支持ピン56aそれぞれはz方向に面する先端面56cを有する。これら複数の先端面56cのz方向の位置が相等しくなっている。同様にして、複数の基板接着ピン56bそれぞれはz方向に面する先端面56dを有する。これら複数の先端面56dのz方向の位置が相等しくなっている。
 図13に示すように基板支持ピン56aの先端面56cと上端面51eとの間のz方向の長さはL1となっている。基板接着ピン56bの先端面56dと上端面51eとの間のz方向の長さはL2となっている。図面に明示するように、長さL1は長さL2よりも長くなっている。
 そのために基板支持ピン56aの先端面56cは、基板接着ピン56bの先端面56dよりも上端面51eからz方向に離れている。この基板支持ピン56aの先端面56cに対向面20aが接触する態様で、配線基板20はセンサ筐体50に搭載される。基板支持ピン56aが基板支持部に相当する。先端面56cが支持面に相当する。
 基板支持ピン56aの先端面56cに搭載されている状態において、配線基板20の対向面20aと基板接着ピン56bの先端面56dはz方向で離れている。この配線基板20と基板接着ピン56bとの間に、両者を接着固定する基板接着剤56eが設けられる。基板接着ピン56bが基板接着部に相当する。先端面56dが搭載面に相当する。
 基板接着剤56eによって配線基板20とセンサ筐体50とを接着固定する際、基板接着剤56eの温度は第1電流センサ11の設けられる環境温度よりも高めに設定される。この際の基板接着剤56eの温度は例えば150℃程度に設定することができる。この温度において基板接着剤56eは流動性を有している。基板接着剤56eとしてはシリコン系接着剤を採用することができる。
 基板接着ピン56bの先端面56dに150℃程度の流動性を有する基板接着剤56eを塗布する。そして配線基板20の対向面20aに基板支持ピン56aの先端面56cと基板接着剤56eそれぞれが接触するように、配線基板20をセンサ筐体50に設ける。この後に基板接着剤56eを室温まで降温して固化する。
 これにより基板接着剤56eには、第1電流センサ11の設けられる環境温度において、自身の中心へと凝縮する残留応力が発生する。この残留応力により、配線基板20と基板接着ピン56bとが互いに近づく状態となる。配線基板20の対向面20aと基板支持ピン56aの先端面56cとの接触状態が維持される。
 この結果、配線基板20のセンサ筐体50に対する位置ずれが、接着固定時に流動性を有する基板接着剤56eの形状バラツキに依存しなくなる。配線基板20のセンサ筐体50に対する位置ずれがセンサ筐体50の製造誤差になる。さらに言い換えれば、配線基板20のセンサ筐体50にインサート成形された導電バスバー30に対する位置ずれがセンサ筐体50の製造誤差になる。
 本実施形態では3つの基板支持ピン56aが上端面51eに形成されている。これら3つの基板支持ピン56aのうちの2つがy方向に離間して並んでいる。残り1つの基板支持ピン56aがy方向に並ぶ2つの基板支持ピン56aの間の中点からx方向に離間している。3つの基板支持ピン56aの先端面56cは二等辺三角形の頂点を成している。y方向に並ぶ2つの基板支持ピン56aと残り1つの基板支持ピン56aとの間に導電バスバー30の狭窄部31aが位置する。
 本実施形態では3つの基板接着ピン56bが上端面51eに形成されている。これら3つの基板接着ピン56bのうちの2つがy方向に離間して並んでいる。残り1つの基板接着ピン56bがy方向に並ぶ2つの基板支持ピン56aの間の中点からx方向に離間している。3つの基板接着ピン56bの先端面56dは二等辺三角形の頂点を成している。
 y方向に並ぶ2つの基板支持ピン56aの間で複数の接続端子60の他端が並んでいる。残り1つの基板支持ピン56aはy方向に並ぶ2つの基板接着ピン56bの間の中点に位置している。したがってこの残り1つの基板支持ピン56aはx方向において残り1つの基板接着ピン56bと並んでいる。そして狭窄部31aの中心点CPはx方向においてこれら残り1つの基板支持ピン56aと残り1つの基板接着ピン56bとの間に位置している。
 以上に示した構成により、3つの基板支持ピン56aの先端面56cを結んで成る二等辺三角形と、3つの基板接着ピン56bの先端面56dを結んで成る二等辺三角形とはz方向で重なっている。そしてこれら2つの二等辺三角形のz方向で重なる領域に狭窄部31aの中心点CPが位置している。
 配線基板20は、これら2つの二等辺三角形それぞれとz方向で対向する態様でセンサ筐体50に設けられる。この配線基板20における2つの二等辺三角形と対向する部位は、基板支持ピン56aとの接触、および、基板接着剤56eを介した基板接着ピン56bとの連結のため、2つの二等辺三角形と対向しない部位よりも、センサ筐体50との接続が安定化している。この配線基板20におけるセンサ筐体50との接続が安定化している部位に、第1センシング部21と第2センシング部22が搭載されている。
 配線基板20が基板支持ピン56aに搭載され、基板接着剤56eを介して基板接着ピン56bに固定されている状態において、配線基板20の対向面20aと基部51の上端面51eとがz方向に離間して対向している。製造誤差などが全くない場合、対向面20aと上端面51eとの離間距離は全面にわたって一定で、両者は平行の関係となっている。
 上記したように基部51には導電バスバー30の狭窄部31aがインサート成形されている。製造誤差などが全くない場合、狭窄部31aの表面30aと基部51の上端面51eとの間の離間距離も全面にわたって一定で、両者は平行の関係となっている。
 以上に示した平行の関係により、製造誤差などが全くない場合、配線基板20の対向面20aと狭窄部31aの表面30aとの離間距離も全面にわたって一定で、両者は平行の関係となっている。
 ところで、上記したように配線基板20は樹脂層と金属層がz方向に複数積層されて成る。そのために配線基板20のz方向の厚みの製造誤差は大きくなっている。配線基板20のz方向の厚みの製造誤差は、導電バスバー30のセンサ筐体50へのインサート成形によるz方向の位置の製造誤差、および、センサ筐体50に対する配線基板20のz方向の配置誤差の2倍程度となっている。
 これに対して、上記したように配線基板20における導電バスバー30との対向面20aに第1センシング部21と第2センシング部22が設けられている。したがって第1センシング部21と第2センシング部22それぞれの導電バスバー30とのz方向の離間距離が、配線基板20のz方向の厚みに依存しなくなっている。配線基板20のz方向の厚みの製造誤差によって、第1センシング部21と第2センシング部22それぞれと導電バスバー30とのz方向の離間距離が変動することが抑制されている。
 なお、基板支持ピン56aと基板接着ピン56bの数としては3つに限定されない。基板支持ピン56aの数としては4つ以上を採用することもできる。基板接着ピン56bの数としては、1つ、2つ、若しくは、4つ以上を採用することもできる。
 また、基板支持ピン56aと基板接着ピン56bそれぞれの数が3つ以上の場合、3つ以上の基板支持ピン56aの先端面56cを結んで成る多角形と、3つ以上の基板接着ピン56bの先端面56dを結んで成る多角形とがz方向で重なる構成がよい。この構成において、配線基板20における2つの多角形とz方向で対向する領域に第1センシング部21と第2センシング部22を搭載するとよい。これにより第1センシング部21と第2センシング部22それぞれのセンサ筐体50に対する位置ずれが抑制される。
 基板支持ピン56a、および、基板接着ピン56bと名称したように、これらがz方向に延びる柱状である例を示した。しかしながらこれらの形状は柱状に限定されない。基板支持ピン56aの先端面56cが基板接着ピン56bの先端面56dよりも上端面51eから離れていればよく、その形状は特に限定されない。
 <センサ筐体に対する第1シールドの固定形態>
 図11の(a)欄および図14の(a)欄に示すように、基部51の上端面51eには、z方向に局所的に延びるシールド支持ピン57aとシールド接着ピン57bが形成されている。これらシールド支持ピン57aとシールド接着ピン57bは上端面51eに複数形成されている。図14の(a)欄は配線基板の設けられたセンサ筐体の斜視図を示している。図14の(b)欄は配線基板とシールドの設けられたセンサ筐体の斜視図を示している。図14ではこれらピンを説明するために、一部の符号の付与を略している。
 複数のシールド支持ピン57aそれぞれはz方向に面する先端面57cを有する。これら複数の先端面57cのz方向の位置が相等しくなっている。同様にして、複数のシールド接着ピン57bそれぞれはz方向に面する先端面57dを有する。これら複数の先端面57dのz方向の位置が相等しくなっている。
 図15に示すようにシールド支持ピン57aとシールド接着ピン57bそれぞれは、基板支持ピン56aよりもz方向の長さが長くなっている。より詳しく言えば、シールド支持ピン57aとシールド接着ピン57bそれぞれは、基板支持ピン56aよりもz方向の長さが配線基板20のz方向の厚さ以上長くなっている。そのため、上記したようにセンサ筐体50に配線基板20が搭載された状態において、シールド支持ピン57aの先端面57cとシールド接着ピン57bの先端面57dそれぞれは配線基板20の背面20bよりも上端面51eからz方向に離れている。なお、シールド接着ピン57bと基板支持ピン56aとのz方向の長さの相違が、配線基板20のz方向の厚さよりも短い構成を採用することもできる。
 図15に示すようにシールド支持ピン57aの先端面57cと上端面51eとの間のz方向の長さはL3となっている。シールド接着ピン57bの先端面57dと上端面51eとの間のz方向の長さはL4となっている。図面に明示するように、長さL3は長さL4よりも長くなっている。
 そのためにシールド支持ピン57aの先端面57cは、シールド接着ピン57bの先端面57dよりも上端面51eからz方向に離れている。このシールド支持ピン57aの先端面57cに一面41aが接触する態様で、第1シールド41はセンサ筐体50に搭載される。シールド支持ピン57aがシールド支持部に相当する。先端面57cが接触面に相当する。
 シールド支持ピン57aの先端面57cに搭載されている状態において、第1シールド41の一面41aとシールド接着ピン57bの先端面57dはz方向で離れている。この第1シールド41とシールド接着ピン57bとの間に、両者を接着固定する基板接着剤56eが設けられる。シールド接着ピン57bがシールド接着部に相当する。先端面57dが設置面に相当する。
 シールド接着剤57eによって第1シールド41とセンサ筐体50とを接着固定する際、シールド接着剤57eの温度は第1電流センサ11の設けられる環境温度よりも高めに設定される。この際のシールド接着剤57eの温度も例えば150℃程度に設定することができる。この温度においてシールド接着剤57eは流動性を有している。シールド接着剤57eとしてはシリコン系接着剤を採用することができる。
 シールド接着ピン57bの先端面57dに150℃程度の流動性を有するシールド接着剤57eを塗布する。そして第1シールド41の一面41aにシールド支持ピン57aの先端面57cとシールド接着剤57eそれぞれが接触するように、第1シールド41をセンサ筐体50に設ける。この後にシールド接着剤57eを室温まで降温して固化する。
 これによりシールド接着剤57eには、第1電流センサ11の設けられる環境温度において、自身の中心へと凝縮する残留応力が発生する。この残留応力により、第1シールド41とシールド接着ピン57bとが互いに近づく状態となる。第1シールド41の一面41aとシールド支持ピン57aの先端面57cとの接触状態が維持される。
 この結果、第1シールド41のセンサ筐体50に対する位置ずれが、接着固定時に流動性を有するシールド接着剤57eの形状バラツキに依存しなくなる。第1シールド41のセンサ筐体50に対する位置ずれがセンサ筐体50の製造誤差になる。さらに言い換えれば、第1シールド41のセンサ筐体50に固定された配線基板20に対する位置ずれがセンサ筐体50の製造誤差になる。
 本実施形態では3つのシールド支持ピン57aが上端面51eに形成されている。これら3つのシールド支持ピン57aのうちの1つが左壁53aと一体的に連結されている。残り2つのシールド支持ピン57aのうちの1つが右壁53bと一体的に連結されている。残り1つのシールド支持ピン57aが上壁53cと一体的に連結されている。これにより3つのシールド支持ピン57aの先端面57cは三角形の頂点を成している。
 左壁53aと一体的に連結されたシールド支持ピン57aと、右壁53bと一体的に連結されたシールド支持ピン57aはy方向で並んでいる。これら2つのシールド支持ピン57aの間と、上壁53cと一体的に連結されたシールド支持ピン57aとがx方向で離間している。これら3つのシールド支持ピン57aの先端面57cを結んで成る三角形の領域に配線基板20の第1センシング部21と第2センシング部22が位置している。
 本実施形態では3つのシールド接着ピン57bが上端面51eに形成されている。これら3つのシールド接着ピン57bのうちの1つが左壁53aと一体的に連結されている。残り2つのシールド接着ピン57bのうちの1つが右壁53bと一体的に連結されている。残り1つのシールド接着ピン57bが上壁53cと一体的に連結されている。これにより3つのシールド接着ピン57bの先端面57dは三角形の頂点を成している。
 左壁53aと一体的に連結されたシールド接着ピン57bと、右壁53bと一体的に連結されたシールド接着ピン57bはy方向で並んでいる。これら2つのシールド接着ピン57bの間と、上壁53cと一体的に連結されたシールド接着ピン57bとがx方向で離間している。これら3つのシールド接着ピン57bの先端面57dを結んで成る三角形の領域と、第1センシング部21と第2センシング部22がz方向で並んでいる。
 また左壁53aと右壁53bそれぞれにおいて1つのシールド支持ピン57aと1つのシールド接着ピン57bが並んでいる。上壁53cにおいて1つのシールド支持ピン57aと1つのシールド接着ピン57bが並んでいる。3つのシールド支持ピン57aの先端面57cを結んで成る三角形と、3つのシールド接着ピン57bの先端面57dを結んで成る三角形とがz方向で重なっている。そしてこれらz方向で重なる領域と狭窄部31aの中心点CPとがz方向で並んでいる。
 第1シールド41はこれら2つの三角形それぞれとz方向で対向する態様で、センサ筐体50に設けられる。この第1シールド41における2つの三角形と対向する部位は、シールド支持ピン57aとの接触、および、シールド接着剤57eを介したシールド接着ピン57bとの連結のため、2つの三角形と対向しない部位よりもセンサ筐体50との接続が安定化している。
 この第1シールド41におけるセンサ筐体50との接続が安定化している部位が、配線基板20の第1センシング部21と第2センシング部22それぞれとz方向で並んでいる。具体的に言えば、第1シールド41の第1中央部41dが第1センシング部21と第2センシング部22それぞれとz方向で並んでいる。
 第1シールド41がシールド支持ピン57aに搭載され、シールド接着剤57eを介してシールド接着ピン57bに固定されている状態において、第1シールド41の一面41aと配線基板20の背面20bとがz方向に離間して対向している。製造誤差などが全くない場合、一面41aと背面20bとの離間距離は全面にわたって一定で、両者は平行の関係となっている。したがって配線基板20の対向面20aと、第1シールド41の一面41aとの離間距離も全面にわたって一定で、両者は平行の関係となっている。
 なお、図6および図14の(a)欄に示すように、配線基板20の端には、上記のシールド支持ピン57aとシールド接着ピン57bそれぞれを配線基板20の上方に通すための切欠き20gが形成されている。そして配線基板20には接続端子60の他端を通すための複数の貫通孔20hが形成されている。
 図6に示すように複数の貫通孔20hはy方向に並んでいる。配線基板20におけるこれら複数の貫通孔20hの形成された部位と、第1センシング部21と第2センシング部22の搭載される部位とは、x方向に並んでいる。配線基板20におけるこれらx方向に並ぶ2つの部位の間には、配線基板20をセンサ筐体50に設ける際に、配線基板20のセンサ筐体50に対するx方向の位置をガイドするための第1切欠き20iが形成されている。また配線基板20における第1センシング部21と第2センシング部22の搭載される部位には、配線基板20をセンサ筐体50に設ける際に、配線基板20のセンサ筐体50に対するy方向の位置をガイドするための第2切欠き20jが形成されている。
 これに対応して、センサ筐体50の左壁53aと右壁53bそれぞれには、図11の(a)欄および図12の(b)欄に示すように、第1切欠き20iに挿入される第1凸部53eが形成されている。左壁53aと右壁53bそれぞれには、第2切欠き20jとy方向で対向配置される第2凸部53fが形成されている。第1切欠き20iと第1凸部53eは相似形状を成してy方向に延びている。第2切欠き20jと第2凸部53fは相似形状を成してx方向に延びている。 
 上記したシールド支持ピン57aとシールド接着ピン57bの数としては上記例に限定されない。シールド支持ピン57aの数としては4つ以上を採用することができる。シールド接着ピン57bの数としては、1つ、2つ、若しくは、4つ以上を採用することができる。
 シールド支持ピン57aとシールド接着ピン57bそれぞれの数が3つ以上の場合、3つ以上のシールド支持ピン57aの先端面57cを結んで成る多角形と、3つ以上のシールド接着ピン57bの先端面57dを結んで成る多角形とがz方向で重なる構成がよい。この構成において、第1シールド41における2つの多角形とz方向で対向する領域が、配線基板20の第1センシング部21と第2センシング部22それぞれとz方向で並ぶとよい。これにより第1シールド41の第1センシング部21と第2センシング部22それぞれに対する位置ずれが抑制される。
 シールド支持ピン57a、および、シールド接着ピン57bと名称したように、これらがz方向に延びる柱状である例を示した。しかしながらこれらの形状は柱状に限定されない。シールド支持ピン57aの先端面57cがシールド接着ピン57bの先端面57dよりも上端面51eから離れていればよく、その形状は特に限定されない。
 <センサ筐体に対する第2シールドの固定形態>
 図11の(b)欄および図15に示すように、基部51の下端面51fにも複数のシールド支持ピン57aが形成されている。
 第1シールド41とは異なり、センサ筐体50と第2シールド42との間に配線基板20が設けられていない。そのために下端面51fに形成されたシールド支持ピン57aは、上端面51eに形成されたシールド支持ピン57aよりもz方向の長さが短くなっている。z方向における複数の基板支持ピン56aそれぞれの先端の位置が相等しくなっている。このシールド支持ピン57aの先端面57cに一面42aが接触する態様で、第2シールド42はセンサ筐体50に搭載される。
 シールド支持ピン57aの先端面57cに搭載されている状態において、第2シールド42の一面42aは下端面51fとz方向で離れている。この第2シールド42と下端面51fとの間にシールド接着剤57eが設けられる。
 シールド接着剤57eによって第2シールド42とセンサ筐体50とを接着固定する際、このシールド接着剤57eの温度も第1電流センサ11の設けられる環境温度よりも高めに設定される。
 下端面51fに流動性を有するシールド接着剤57eを塗布する。そして第2シールド42の一面42aにシールド支持ピン57aの先端面57cとシールド接着剤57eそれぞれが接触するように、第2シールド42をセンサ筐体50に設ける。この後にシールド接着剤57eを室温まで降温して固化する。
 これにより下端面51fに設けられたシールド接着剤57eにも、第1電流センサ11の設けられる環境温度において、自身の中心へと凝縮する残留応力が発生する。この残留応力により、第2シールド42とシールド接着ピン57bとが互いに近づく状態となる。第2シールド42の一面42aとシールド支持ピン57aの先端面57cとの接触状態が維持される。
 この結果、第2シールド42のセンサ筐体50に対する位置ずれが、接着固定時に流動性を有するシールド接着剤57eの形状バラツキに依存しなくなる。第2シールド42のセンサ筐体50に対する位置ずれがセンサ筐体50の製造誤差になる。さらに言いかえれば、第2シールド42のセンサ筐体50に固定された配線基板20に対する位置ずれがセンサ筐体50の製造誤差になる。
 本実施形態では4つのシールド支持ピン57aが下端面51fに形成されている。4つのシールド支持ピン57aの先端面57cは四角形の頂点を成している。これら4つのシールド支持ピン57aの先端面57cを結んで成る四角形と狭窄部31aの中心点CPとがz方向で並んでいる。シールド接着剤57eは下端面51fにおけるこの四角形と対向する領域に塗布される。
 第2シールド42は上記の四角形とz方向で対向する態様で、センサ筐体50に設けられる。この第2シールド42における四角形と対向する部位は、シールド支持ピン57aとの接触、および、シールド接着剤57eを介した下端面51fとの連結のため、四角形と対向しない部位よりも、センサ筐体50との接続が安定化している。
 この第2シールド42におけるセンサ筐体50との接続が安定化している部位が、配線基板20の第1センシング部21と第2センシング部22それぞれとz方向で並んでいる。具体的に言えば、第2シールド42の第2中央部42dが第1センシング部21と第2センシング部22それぞれとz方向で並んでいる。
 なお、下端面51fに形成されるシールド支持ピン57aの数としては4つに限定されない。シールド支持ピン57aの数としては3つ以上であれば適宜採用することができる。
 シールド支持ピン57aの数が3つ以上の場合、第2シールド42におけるこれら3つ以上のシールド支持ピン57aの先端面57cを結んで成る多角形とz方向で対向する領域が、第1センシング部21と第2センシング部22それぞれとz方向で並ぶとよい。これにより第2シールド42の第1センシング部21と第2センシング部22それぞれに対する位置ずれが抑制される。
 上記したように、第2シールド42のx方向で並ぶ2つの端辺42fそれぞれには、z方向に延びる延設部42cが形成されている。下端面51fには、この延設部42cを設けるための2つの溝部51gが形成されている。
 図11の(b)欄、および、図13に示すように2つの溝部51gは上壁54cと下壁54dとの間でx方向に並んでいる。2つの溝部51gはそれぞれ下端面51fから上端面51eに向かってz方向に形成されている。2つの溝部51gのうちの一方の一部が上壁54cによって構成されている。残り1つの溝部51gの一部が下壁54dによって構成されている。これら2つの溝部51gの間に被覆部31が位置する。したがって第2シールド42の2つの延設部42cの間に被覆部31が位置する。
 <支持ピンと接着ピンの長さ>
 基部51の上端面51eは、上記の第1凸部53eをy方向における境として、x方向に並ぶ接続端子60の他端の露出される部位と狭窄部31aを被覆する部位とに区分けすることができる。この上端面51eにおける接続端子60の他端の露出される部位は、狭窄部31aを被覆する部位よりも、z方向において下端面51f側に位置している。したがって上端面51eにおける接続端子60の他端の露出される部位と配線基板20の対向面20aとのz方向の離間距離は、上端面51eにおける狭窄部31aを被覆する部位と配線基板20の対向面20aとのz方向の離間距離よりも長くなっている。これは、配線基板20の貫通孔20hに接続端子60の他端を挿入するための距離を確保するためである。
 このように上端面51eにおける接続端子60の他端の露出される部位と狭窄部31aを被覆する部位のz方向の位置が異なっている。これら2つの部位それぞれに基板支持ピン56aが形成されている。このように形成される上端面51eのz方向の位置が異なるにも関わらずに、本実施形態では複数の基板支持ピン56aそれぞれの先端面56cのz方向の位置が同一となっている。そのために複数の基板支持ピン56aのz方向の長さは異なっている。
 複数の基板支持ピン56aのz方向の長さは、一律に図13に示す長さL1とはなっていない。この長さL1は、上端面51eにおける狭窄部31aを被覆する部位に形成された基板支持ピン56aのz方向の長さを示している。上端面51eにおける接続端子60の他端の露出される部位に形成された基板支持ピン56aのz方向の長さは、長さL1よりも、上記の2つに区分けられる上端面51eのz方向の位置の相違分だけ長くなっている。
 以上に示したように、形成される面のz方向の位置に応じて支持ピンのz方向の長さが相違してもよい。複数の基板支持ピン56aそれぞれの先端面56cのz方向の位置が同一であればよい。これは、複数のシールド支持ピン57aについても同様である。
 なお、センサ筐体50に配線基板20を搭載する際、基板接着ピン56bの先端面56dに流動性の基板接着剤56eが塗布される。基板接着剤56eはその流動性のためにz方向の形状が可変である。そのために複数の基板接着ピン56bそれぞれの先端面56dのz方向の位置は異なっていてもよい。これは、複数のシールド接着ピン57bについても同様である。
 <第2電流センサと第3電流センサ>
 次に、第2電流センサ12を詳説する。なお第2電流センサ12と第3電流センサ13は実質的に構成が同一である。そのために第3電流センサ13の説明を省略する。
 また第2電流センサ12は第1電流センサ11と共通の構成要素を有する。したがって以下においては第1電流センサ11と同一の点についてはその説明を省略し、主として異なる点を説明する。
 上記したように第2電流センサ12は第1通電バスバー341と第2通電バスバー342に設けられる。これら第1通電バスバー341と第2通電バスバー342それぞれの電流を検出するために、第2電流センサ12は第1電流センサ11と同等の機能を有する2つの個別センサ71を有する。また第2電流センサ12はこれら2つの個別センサ71を収納する配線ケース72を有する。
 2つの個別センサ71のうちの一方によって第1通電バスバー341を流れる交流電流から発生される磁界が検出される。2つの個別センサ71のうちの他方によって第2通電バスバー342を流れる交流電流から発生される磁界が検出される。
 図16に2つの個別センサ71を示す。このように2つの個別センサ71は同一の形状を成している。この個別センサ71と第1電流センサ11との構造上の相違は、導電バスバー30における通電バスバーとの連結部位、および、接続端子60を被覆するコネクタ部55の形状などである。すなわち、導電バスバー30の第1露出部32と第2露出部33の形状、および、囲み部55cの消失などである。 
 このように個別センサ71と第1電流センサ11とに構造上の相違が生じるのは、両者の接続対象が異なるからである。第1電流センサ11はコンバータ310の通電バスバー307に接続されるからである。第2電流センサ12は第1インバータ320の第1通電バスバー341と第2通電バスバー342に接続されるからである。ただし、個別センサ71と第1電流センサ11の内部構造は同一である。したがって個別センサ71は第1電流センサ11と同等の作用効果を奏するようになっている。
 複数の個別センサ71は図17に示す配線ケース72に収納される。図18に示すように複数の個別センサが一括して配線ケース72に収納可能となっている。図19に示すように複数の個別センサが配線ケース72に収納されることで第2電流センサ12が構成されている。
 なお、この配置構成の場合、個別センサ71それぞれの第1シールド41と第2シールド42はx方向に交互に並ぶ。個別センサ71の有する磁電変換部25の磁界の検知方向はz方向とy方向になる。
 また、これまでに示した図17~図19、および、以下に示す図面に示す配線ケース72それぞれには6個の個別センサ71が収納されている。この配線ケース72に収納される個別センサ71の数は一例に過ぎない。配線ケース72は少なくとも2つの個別センサ71を収納可能であればよい。
 また、第2電流センサ12の有する配線ケース72に、他の車載機器の電流を検出する電流センサが収納されてもよい。さらに言えば、第2電流センサ12と第3電流センサ13とが共通の配線ケース72を有し、この共通の配線ケース72に、第2電流センサ12と第3電流センサ13それぞれの有する個別センサ71が収納される構成を採用することもできる。
 <配線ケース>
 図17に示すように配線ケース72は、統合筐体73、端子筐体74、および、通電端子75を有する。統合筐体73と端子筐体74は絶縁性の樹脂材料から成る。統合筐体73と端子筐体74は一体的に連結されている。図18および図19に示すように統合筐体73に複数の個別センサ71が収納される。したがって統合筐体73は個別センサ71のセンサ筐体50よりも体格が大きくなっている。端子筐体74に複数の通電端子75がインサート成形されている。図20~図23に示すように複数の通電端子75それぞれの一端と他端が端子筐体74の外に露出されている。
 図20の(a)欄は配線ケースの背面図を示している。図20の(b)欄は配線ケースの上面図を示している。図20の(c)欄は配線ケースの下面図を示している。図21の(a)欄は配線ケースの左側面図を示している。図21の(b)欄は配線ケースの上面図を示している。図21の(c)欄は配線ケースの右側面図を示している。なお、図20の(b)欄と図21の(b)欄には同一の図面を示している。
 図22の(a)欄は第2電流センサの正面図を示している。図22の(b)欄は第2電流センサの上面図を示している。図22の(c)欄は第2電流センサの下面図を示している。図23の(a)欄は第2電流センサの側面図を示している。図23の(b)欄は第2電流センサの上面図を示している。なお、図22の(b)欄と図23の(b)欄には同一の図面を示している。
 図20および図22それぞれの(c)欄に示すように配線ケース72は統合配線基板76を有する。この統合配線基板76に個別センサ71の接続端子60の一端が接続される。統合配線基板76に通電端子75の一端が接続される。これにより統合配線基板76の配線パターンを介して個別センサ71と通電端子75とが電気的に接続される。通電端子75の他端がワイヤハーネスなどを介してMGECU802と電気的に接続される。以上により、個別センサ71の出力が統合配線基板76、通電端子75、および、ワイヤハーネスを介してMGECU802に入力される。統合配線基板76と通電端子75が入出力配線に相当する。
 上記したように第2電流センサ12は第1通電バスバー341と第2通電バスバー342に設けられる。これら通電バスバーは第1インバータ320側と第1モータ400側とで分断されている。通電バスバーは第1インバータ320と第2電流センサ12とを接続する部位と、第2電流センサ12と第1モータ400とを接続する部位と、を有する。
 本実施形態の通電バスバーにおける第1インバータ320と第2電流センサ12とを接続する部位は金属材料から成る導電プレートである。通電バスバーにおける第2電流センサ12と第1モータ400とを接続する部位はワイヤーである。以下においては、通電バスバーにおける第1インバータ320と第2電流センサ12とを接続する部位を単に導電プレートと示す。通電バスバーにおける第2電流センサ12と第1モータ400とを接続する部位を単にワイヤーと示す。
 なお、通電バスバーの形態は、インバータとモータそれぞれの形状、および、これらの車載への搭載形態などに応じて適宜変更可能である。したがって通電バスバーの具体的な形態は上記例に限定されない。これら通電バスバーの形態に応じて、配線ケース72や個別センサ71の導電バスバー30それぞれの形態は適宜変更可能である。特に個別センサ71の導電バスバー30の形態に対しては、第1露出部32と第2露出部33それぞれの形状を変えるだけで対応可能である。そのために個別センサ71の内部形状は変更不要である。これにより個別センサ71の製造ラインを変更しなくともよくなっている。
 図20および図21に示すように統合筐体73は底壁77と周壁78を有する。底壁77はz方向に面している。底壁77の平面形状はx方向を長手方向とする矩形を成している。
 周壁78は底壁77のz方向に面する内底面77aからz方向に起立している。周壁78はx方向に並ぶ左壁78aと右壁78bを有する。周壁78はy方向に並ぶ上壁78cと下壁78dを有する。z方向まわりの周方向で左壁78a、上壁78c、右壁78b、および、下壁78dが順に連結されている。これにより周壁78はz方向に開口する筒形状を成している。底壁77と周壁78とによって構成される収納空間に、複数の個別センサ71が収納可能となっている。
 図18に示すように個別センサ71は統合筐体73の収納空間にz方向から挿入される。そして図19に示すように収納空間において複数の個別センサ71はx方向に並んで設けられる。
 複数の個別センサ71は第1電流センサ11と同様にして第1シールド41と第2シールド42を有する。これら第1シールド41と第2シールド42それぞれはx方向で離間して対向している。したがって収納空間において、複数の個別センサの有する第1シールド41と第2シールド42とが交互に並んでいる。
 図16に示すように個別センサ71のセンサ筐体50からは、第1露出部32と第2露出部33がy方向に延びている。統合筐体73の上壁78cには、個別センサ71のセンサ筐体50を収納空間に収納しつつ、第1露出部32の先端を収納空間の外に配置するためのスリット78eが形成されている。スリット78eは上壁78cの先端面から底壁77に向かって、z方向に沿って形成されている。
 個別センサ71が統合筐体73に収納されている状態において、個別センサ71の第1露出部32の先端がスリット78eを介して収納空間の外に位置している。この第1露出部32の先端が上記の導電プレートとレーザ溶接などによって電気的に接続される。
 また統合筐体73の底壁77には導電端子79がインサート成形されている。図20および図21それぞれの(b)欄に示すように導電端子79の一部は底壁77の内底面77aから露出されている。
 個別センサ71が統合筐体73に収納されている状態において、個別センサ71の第2露出部33が導電端子79における内底面77aから露出された部位と対向配置される。この第2露出部33と導電端子79とがレーザ溶接などによって電気的に接続される。
 また統合筐体73は複数の導電端子79を支持するための端子台80を有する。端子台80は下壁78dの底壁77側に一体的に形成されている。端子台80はx方向に延びる直方体形状を成している。複数の導電端子79はこの端子台80にもインサート成形されている。複数の導電端子79の一部がこの端子台80から露出されている。導電端子79における端子台80から露出した部位は端子台80から離れるようにz方向に延びている。導電端子79における端子台80から露出した部位は下壁78dとy方向で対向している。複数の導電端子79における端子台80から露出した部位はx方向に離間して並んでいる。
 この導電端子79における端子台80から露出された部位はy方向の厚さの薄い扁平形状を成している。導電端子79における端子台80から露出された部位はy方向に面する通電面79aとその裏面79bとを有する。導電端子79には通電面79aと裏面79bとをy方向に貫通するボルト孔79cが形成されている。
 また導電端子79の裏面79bにはy方向に開口するナット81が設けられている。このナット81の開口とボルト孔79cの開口とがy方向に並んでいる。
 導電端子79の通電面79aにワイヤーの端子が設けられる。このワイヤーの端子にもy方向に貫通するボルト孔が形成されている。導電端子79の通電面79aにワイヤーの端子におけるボルト孔の貫通する面を対向させる。この態様で両者のボルト孔に図示しないボルトの軸部を通す。そしてこのボルトの軸部の先端をナット81に締結する。ボルトの軸部の先端から頭部に向かうように、ナット81にボルトを締結する。ボルトの頭部とナット81とによって導電端子79とワイヤーの端子とを挟持する。これによりワイヤーの端子と導電端子79とを接触し、両者を電気的および機械的に接続する。以上により、個別センサ71の第2露出部33とワイヤーの端子とが導電端子79を介して電気的に接続される。
 個別センサ71のセンサ筐体50からは、接続端子60がz方向に延びている。統合筐体73の底壁77には、接続端子60の一端を収納空間の外に配置するための挿通孔が形成されている。この挿通孔は底壁77の内底面77aとその裏側の外底面77bとを貫通している。接続端子60の一端は挿通孔を介して外底面77bから離れる態様で収納空間の外に突出している。なお挿通孔は微小である。そのために挿通孔は図面に示されていない。
 端子筐体74は統合筐体73とx方向に並んでいる。端子筐体74は統合筐体73の左壁78aと一体的に連結されている。端子筐体74はz方向に延びている。端子筐体74はz方向に並ぶ上面74aと下面74bを有する。
 この端子筐体74にインサート成形される複数の通電端子75はz方向に延びている。通電端子75の一端が端子筐体74の下面74bから突出している。通電端子75の他端が端子筐体74の上面74aから突出している。
 図20の(a)欄および(c)欄に示すように統合筐体73の底壁77の外底面77bと端子筐体74の下面74bはx方向およびy方向において連続的に連なっている。この連続的に連なる外底面77bと下面74bに統合配線基板76が設けられる。
 統合配線基板76はz方向の厚さの薄い扁平形状を成している。統合配線基板76はz方向に面する載置面76aと裏面76bを有する。統合配線基板76は、載置面76aが外底面77bと下面74bそれぞれとz方向で対向する態様で統合筐体73と端子筐体74に固定されている。
 上記したように通電端子75の一端が下面74bから突出している。接続端子60の一端が外底面77bから突出している。これに対して統合配線基板76には通電端子75の一端の挿入される第1スルーホール76cが形成されている。統合配線基板76には接続端子60の一端の挿入される第2スルーホール76dが形成されている。これら第1スルーホール76cと第2スルーホール76dそれぞれは統合配線基板76の載置面76aと裏面76bとをz方向に貫通している。また統合配線基板76には第1スルーホール76cと第2スルーホール76dとを電気的に接続する配線パターンが形成されている。
 第1スルーホール76cに通電端子75の一端が挿入されるように、統合配線基板76を外底面77bと下面74bに設ける。そして第1スルーホール76cと通電端子75とをはんだなどを介して電気的に接続する。
 接続端子60の一端が底壁77の挿通孔と第2スルーホール76dに挿入されるように、個別センサ71を収納空間に設ける。そして第2スルーホール76dと接続端子60とをはんだなどを介して電気的に接続する。以上により、個別センサ71の接続端子60は、第2スルーホール76d、統合配線基板76の配線パターン、および、第1スルーホール76cを介して通電端子75と電気的に接続される。
 配線ケース72は車両に搭載するための複数のフランジ82を有する。これら複数のフランジ82それぞれには第2電流センサ12を車両にボルト止めするためのボルト孔82aが形成されている。
 本実施形態の配線ケース72は3つのフランジ82を有する。3つのフランジ82のうちの1つが底壁77の右壁78b側に形成されている。残り2つのフランジ82のうちの1つが端子筐体74の下壁78d側に形成されている。このフランジ82は端子台80と一体的に連結されている。残り1つのフランジ82が端子筐体74における統合筐体73との連結部位とは反対側に形成されている。
 以上により3つのフランジ82のうちの2つが統合筐体73と端子筐体74とを介してx方向に並んでいる。残り1つのフランジ82がx方向に並ぶ2つのフランジ82とy方向に離間している。このように3つのフランジ82は三角形の頂点を成している。
 上記したように接続端子60の一端が外底面77bから突出し、通電端子75の一端が下面74bから突出している。そして外底面77bと下面74bに統合配線基板76が設けられる。これら接続端子60の一端、通電端子75の一端、および、統合配線基板76それぞれの車両との接触を避けるために、3つのフランジ82それぞれはz方向に延びる脚部83を有する。この脚部83により、第2電流センサ12が車両に搭載されている状態において、接続端子60の一端、通電端子75の一端、および、統合配線基板76がz方向において車両と離間している。
 <電流センサの作用効果>
 次に、本実施形態にかかる電流センサの作用効果を説明する。上記したように第1電流センサ11と、第2電流センサ12および第3電流センサ13の有する個別センサ71とは同等の構成を有している。そのために同等の作用効果を奏する。したがって、以下においては煩雑となることを避けるために第1電流センサ11と個別センサ71とを区別せずに、これらを単に電流センサと示す。以下に示す各種作用効果によって、被測定電流の検出精度の低下が抑制される。
 <シールドの磁気飽和>
 上記したように第1シールド41の第1両端部41eは第1中央部41dよりもx方向の長さが短くなっている。そのために第1両端部41eには磁界が侵入しがたくなっている。第1両端部41eの有する2つの端部の一方から他方へと、第1中央部41dにおける第1両端部41eと直接連結されてy方向で並ぶ部位(並列部位)に磁界が透過することが抑制されている。この結果、第1中央部41dの並列部位の磁気飽和が抑制されている。第1中央部41dから電磁ノイズが漏れることが抑制されている。
 図24に、第1シールド41における磁界の透過によって磁気飽和しやすい領域を模式的にハッチングで示す。図24の(a)欄は比較構成としての切欠きのない第1シールドに生じる磁気飽和を示す模式図である。図24の(b)欄は本実施形態の第1シールド41の磁気飽和する領域を示す模式図である。図24に示す太い実線矢印は導電バスバー30を流れる電流を示す。
 この模式図に示すように、切欠きのない第1シールドでは均等に磁気飽和しやすくなっている。これに対して切欠き41cの形成された第1シールド41では、第1中央部41dの並列部位以外の領域で磁気飽和が生じたとしても、並列部位で磁気飽和することが抑制されている。
 図25に、シールドを透過する磁界分布のシミュレーション結果を示す。図25の(a)欄は図24に示すXXVa-XXVa線に沿う断面の磁界分布を示している。図25の(b)欄は図24に示すXXVb-XXVb線に沿う断面の磁界分布を示している。
 ただし、図25の(a)欄は第1シールド41と第2シールド42それぞれが矩形の場合のシミュレーション結果を示している。図25の(b)欄は第1シールド41と第2シールド42それぞれに切欠き41cが形成されている場合のシミュレーション結果を示している。そして磁界の強度をハッチングの粗密で示している。ハッチングが粗いほどに磁界の強度が弱く、ハッチングが密であるほどに磁界の強度が高くなっている。
 このシミュレーション結果からも明らかなように、切欠き41cがない場合、第1シールドと第2シールドそれぞれの磁界分布は一様になる。そして第1シールドと第2シールドそれぞれの全体の磁界の強度が高くなる。これに対して、切欠き41cが形成されていると、第1シールドと第2シールドそれぞれの全体の磁界の強度が低くなる。特に、第1中央部41dと第2中央部42dそれぞれの並列部位の磁界分布の強度が低くなる。このために磁気飽和によって第1中央部41dと第2中央部42dから電磁ノイズが漏れることが抑制されている。
 なお図25に示すように第1シールド41と第2シールド42それぞれの磁界分布の強度が相違している。この相違は、第1シールド41と第2シールド42それぞれの導電バスバー30との離間距離の相違に起因している。いずれの磁界分布も、並列部位では強度が低く、並列部位以外の領域では強度が高くなっている。
 この磁気飽和の抑制された第1中央部41dの並列部位と、配線基板20に搭載された第1センシング部21および第2センシング部22とがz方向で並んでいる。したがって、第1中央部41dの磁気飽和によって漏れた電磁ノイズが第1センシング部21と第2センシング部22の磁電変換部25に入力されることが抑制される。
 <シールドの位置ずれ>
 第1シールド41はシールド支持ピン57aに搭載され、シールド接着剤57eを介してシールド接着ピン57bに固定されている。第2シールド42はシールド支持ピン57aに搭載され、シールド接着剤57eを介して基部51に固定されている。
 これにより第1シールド41と第2シールド42それぞれのセンサ筐体50に対する位置ずれが、接着固定時に流動性を有するシールド接着剤57eの形状バラツキに依存しなくなる。第1シールド41と第2シールド42それぞれのセンサ筐体50に対する位置ずれがセンサ筐体50の製造誤差になる。第1シールド41と第2シールド42それぞれのセンサ筐体50に固定された配線基板20に対する位置ずれの要因を、センサ筐体50の製造誤差にすることができる。この結果、第1シールド41および第2シールド42による電磁ノイズの磁電変換部25への入力抑制の低下が抑制される。
 第1シールド41および第2シールド42それぞれをセンサ筐体50に接着固定する際のシールド接着剤57eの温度は電流センサの設けられる環境温度よりも高めに設定される。このシールド接着剤57eは室温まで降温されて固化する。そのためにシールド接着剤57eには電流センサの設けられる環境温度において、自身の中心へと凝縮する残留応力が発生する。この残留応力により、第1シールド41とシールド支持ピン57aとの接触状態、および、第2シールド42とシールド支持ピン57aとの接触状態それぞれが維持される。
 これにより第1シールド41および第2シールド42それぞれのセンサ筐体50に対するz方向の変位が抑制される。換言すれば、第1シールド41と第2シールド42それぞれのセンサ筐体50に固定された配線基板20に対するz方向の変位が抑制される。これにより第1シールド41および第2シールド42による電磁ノイズの磁電変換部25への入力抑制の低下が抑制される。
 <配線基板の位置ずれ>
 配線基板20は基板支持ピン56aに搭載され、基板接着剤56eを介して基板接着ピン56bに固定されている。
 これにより配線基板20のセンサ筐体50に対する位置ずれが、接着固定時に流動性を有する基板接着剤56eの形状バラツキに依存しなくなる。配線基板20のセンサ筐体50に対する位置ずれがセンサ筐体50の製造誤差になる。配線基板20のセンサ筐体50に固定された導電バスバー30に対する位置ずれの要因を、センサ筐体50の製造誤差にすることができる。この結果、配線基板20に搭載された磁電変換部25を透過する被測定磁界が変動することが抑制される。
 配線基板20をセンサ筐体50に接着固定する際の基板接着剤56eの温度は電流センサの設けられる環境温度よりも高めに設定される。基板接着剤56eは室温まで降温されて固化する。そのために基板接着剤56eには電流センサの設けられる環境温度において、自身の中心へと凝縮する残留応力が発生する。この残留応力により、配線基板20と基板支持ピン56aとの接触状態が維持される。
 これにより配線基板20のセンサ筐体50に対するz方向の変位が抑制される。換言すれば、配線基板20のセンサ筐体50に固定された導電バスバー30に対するz方向の変位が抑制される。これにより配線基板20に搭載された磁電変換部25を透過する被測定磁界が変動することが抑制される。
 <配線基板の製造誤差>
 配線基板20における導電バスバー30との対向面20aに第1センシング部21と第2センシング部22が設けられている。これにより第1センシング部21と第2センシング部22それぞれの導電バスバー30とのz方向の離間距離が、配線基板20のz方向の厚みに依存しなくなっている。配線基板20のz方向の厚みの製造誤差によって、これらセンシング部と導電バスバー30とのz方向の離間距離が変動することが抑制されている。
 <配線ケースと個別センサの分離>
 絶縁性の樹脂材料から成る筐体に導電バスバーが固定される場合、筐体の製造誤差やクリープなどの経年劣化によって導電バスバーは筐体に対して位置ずれを起こす。その位置ずれは、筐体の体格が大きいほどに大きくなる。
 これに対して、上記したように第2電流センサ12と第3電流センサ13は、電流センサ(個別センサ71)のセンサ筐体50よりも体格の大きい統合筐体73を有する。この統合筐体73に電流センサが収納される。そしてこの体格の大きい統合筐体73ではなく、センサ筐体50に導電バスバー30が固定されている。この導電バスバー30を流れる電流を磁電変換部25が検出する。
 これによれば、上記の筐体の製造誤差やクリープなどの経年劣化によって、導電バスバー30と磁電変換部25との相対的な位置ズレが生じることが抑制される。
 (第2実施形態)
 次に、第2実施形態を図26および図27に基づいて説明する。以下に示す各実施形態にかかる電流センサは上記した実施形態によるものと共通点が多い。そのため以下においては共通部分の説明を省略し、異なる部分を重点的に説明する。また以下においては上記した実施形態で示した要素と同一の要素には同一の符号を付与する。
 <両端に延設部>
 第1実施形態では、第2シールド42のx方向で並ぶ2つの端辺42fの第2中央部42d側それぞれにz方向に延びる延設部42cが形成された例を示した。これに対して本実施形態では、図26に示すように第2シールド42の2つの端辺42fの第2両端部42e側それぞれに延設部42cが形成されている。図26の(a)欄はシールド、磁電変換部、および、導電バスバーの配置を説明するための斜視図である。図26の(b)欄はシールド、磁電変換部、および、導電バスバーの配置を説明するための側面図である。
 この構成により、第2シールド42に侵入した磁界は、第2両端部42e側に形成された延設部42cを介して第1シールド41へと透過しやすくなっている。この磁界の透過経路は、図27に模式的に示すように第1シールド41では第1両端部41e側となる。同様にして、磁界の透過経路は第2シールド42の第2両端部42e側となる。
 なお、図27に示す太い実線矢印は導電バスバー30を流れる電流を示す。実線矢印は第1シールド41を透過する磁界を示す。破線矢印は第2シールド42を透過する磁界を示す。丸の中心に点の付された記号は、z方向において、第2シールド42から第1シールド41へ向かう磁界を示す。丸の中にバツ印の付された記号は、z方向において、第1シールド41から第2シールド42へ向かう磁界を示す。
 したがって、第2シールド42に侵入した電磁ノイズは、第2中央部42dを介して第1シールド41へと流れがたくなる。同様にして、第1シールド41に侵入した電磁ノイズは、第1中央部41dを介して第2シールド42へと透過しがたくなる。
 そのために第2中央部42dと第1中央部41dそれぞれは磁気飽和しがたくなっている。この結果、第2中央部42dと第1中央部41dそれぞれから磁気飽和によって磁界が漏れることが抑制されている。
 また図26の(b)欄に明示するように、第1センシング部21と第2センシング部22それぞれの磁電変換部25はy方向において2つの延設部42cの間に位置する。すなわち、磁電変換部25はz方向において第2中央部42dと第1中央部41dの間に位置する。したがって第2中央部42dと第1中央部41dそれぞれの磁気飽和によって漏れた磁界が磁電変換部25に入力されることが抑制される。この結果、被測定電流の検出精度の低下が抑制される。
 本実施形態では第2シールド42の2つの端辺42fの第2両端部42e側それぞれに延設部42cが形成される例を示した。しかしながら例えば図28の(a)欄に示すように第2シールド42の2つの端辺42fの第2中央部42dにも延設部42cが形成された構成も採用することができる。ただし、この第2中央部42dに形成された延設部42cは、第2両端部42eに形成された延設部42cよりもz方向の長さが短くなっている。これにより、シールド40に侵入した磁界は中央部よりも端部を透過しやすくなる。
 また図28の(b)欄に示すように、2つの端辺42fのうちの一方の第2両端部42e側に延設部42cが形成され、他方の第2両端部42eと第2中央部42dそれぞれに延設部42cが形成された構成を採用することもできる。ただし、2つの端辺42fのうちの他方の第2両端部42eと第2中央部42dそれぞれに形成された延設部42cのz方向の長さは同一となっている。これによっても、シールド40に侵入した磁界は中央部よりも端部を透過しやすくなる。図28の(a)欄および(b)欄それぞれはシールド、磁電変換部、および、導電バスバーの配置を説明するための斜視図である。
 さらに図29の(a)欄に示すように、2つの端辺42fのうちの一方の第2両端部42eの有する2つの端部の一方側、および、他方の第2両端部42eの有する2つの端部の他方側それぞれに延設部42cが形成された構成を採用することもできる。2つの端辺42fのうちの一方に形成された延設部42cと、他方に形成された延設部42cはy方向およびx方向それぞれに離間している。
 第2シールド42だけでなく第1シールド41に延設部42cが形成された構成を採用することもできる。第1シールド41はx方向で並ぶ2つの対向辺41fを有する。例えば図29の(b)欄に示すように、この第1シールド41の2つの対向辺41fの第1両端部41e側それぞれに延設部42cが形成された構成を採用することができる。図29の(a)欄および(b)欄それぞれはシールド、磁電変換部、および、導電バスバーの配置を説明するための斜視図である。 
 第1シールド41に形成することのできる延設部42cの形態は、これまでに示した第2シールド42に形成された延設部42cと同等の形態を採用することができる。第1シールド41に形成された延設部42cが延長部に相当する。
 なお本実施形態、および、以下に示す実施形態にかかる電流センサには、第1実施形態に記載の電流センサと同等の構成要素が含まれている。そのため同等の作用効果を奏することは言うまでもない。
 (第3実施形態)
 次に、第3実施形態を図30~図32に基づいて説明する。
 <応力緩和部>
 本実施形態では第1電流センサ11の導電バスバー30に応力緩和部34が形成されている。この応力緩和部34は導電バスバー30の第1露出部32と第2露出部33それぞれに形成されている。
 上記したように導電バスバー30はセンサ筐体50に被覆された被覆部31を有する。第1露出部32と第2露出部33それぞれはセンサ筐体50から露出され、被覆部31と一体的に連結されている。そして第1露出部32と第2露出部33それぞれにはボルトを通して通電バスバー307と電気的および機械的に接続するためのボルト孔30cが形成されている。応力緩和部34はこの第1露出部32および第2露出部33それぞれの被覆部31との連結部位と、ボルト孔30cの形成部位との間に形成されている。
 図31に示すように応力緩和部34は導電バスバー30の裏面30bから表面30aに向かって局所的に湾曲してなる。この湾曲により、導電バスバー30に付与されるz方向の力に対して、応力緩和部34は撓んで弾性変形可能となっている。なお、図31においては応力緩和部34が一回波打つように湾曲しているが、この波打つ回数、および、その湾曲形態は上記例に限定されない。
 上記したように導電バスバー30は通電バスバー307とボルト止めされる。本実施形態の通電バスバー307は、図32に示す第1端子台307aと第2端子台307bに相当する。導電バスバー30はこれら第1端子台307aと第2端子台307bにボルト止めされる。これにより第1端子台307aと第2端子台307bは通電バスバー307により架橋される。通電バスバー307を介して第1端子台307aと第2端子台307bが電気的に接続される。なお以下においては、図32に示すように、導電バスバー30のボルト孔30cに通されるボルトに307cの符号を付す。第1端子台307aと第2端子台307bは外部通電部に相当する。
 第1端子台307aはz方向に面する第1載置面307dを有する。同様にして第2端子台307bはz方向に面する第2載置面307eを有する。これら第1載置面307dと第2載置面307eには、ボルト307cの軸部を締結するための締結孔307fが形成されている。締結孔307fは第1載置面307dと第2載置面307eに開口している。締結孔307fはz方向に延びている。図32の(a)欄は、第1載置面と第2載置面のz方向の位置が一致している場合を示している。図32の(b)欄は、第1載置面と第2載置面のz方向の位置が一致していない場合を示している。
 第1載置面307dに第1露出部32の裏面30bがz方向で対向する。第2載置面307eに第2露出部33の裏面30bがz方向で対向する。この態様で、第1端子台307aと第2端子台307bに第1電流センサ11が設けられる。
 図32の(a)欄に示すように第1載置面307dと第2載置面307eのz方向の位置が一致している場合、第1載置面307dに第1露出部32の裏面30bが接触するとともに、第2載置面307eに第2露出部33の裏面30bが接触する。この接触状態で、導電バスバー30のボルト孔30cと端子台の締結孔307fにボルト307cの軸部の先端がz方向から挿入される。そしてボルト307cの頭部が第1載置面307d(第2載置面307e)に近づくように、ボルト307cが端子台に締結される。ボルト307cの頭部と端子台とによって第1露出部32と第2露出部33が挟持される。これにより第1電流センサ11が端子台に機械的および電気的に接続される。
 これに対して、図32の(b)欄に示すように第1載置面307dと第2載置面307eのz方向の位置が一致していない場合、第1載置面307dに第1露出部32の裏面30bが接触する際、第2載置面307eに第2露出部33の裏面30bが接触しない。第2載置面307eと第2露出部33の裏面30bとがz方向で離間し、両者の間に隙間が形成される。
 この離間状態でボルト孔30cと締結孔307fにボルト307cの軸部が通され、ボルト307cの頭部が第2露出部33の表面30aに接触すると、第2露出部33にz方向に向かう力が作用する。
 上記したように、磁電変換部25を透過する被測定磁界の強度を強めるために、被覆部31には局所的にx方向の長さの短い狭窄部31aが形成されている。狭窄部31aはx方向の長さが短いために他の部位よりも剛性が低くなっている。そのために狭窄部31aは変形しやすくなっている。
 したがって上記のようにボルト307cの締結時のz方向に向かう力が第2露出部33に作用すると、それによって狭窄部31aが変形する虞がある。狭窄部31aのセンサ筐体50内での位置が変位する虞がある。もちろん、被覆部31に狭窄部31aが形成されていなくとも、被覆部31のセンサ筐体50内での位置が変位する虞がある。これによって磁電変換部25を透過する被測定磁界の分布が変化する虞がある。
 これに対して、上記したように第1露出部32と第2露出部33それぞれには応力緩和部34が形成されている。したがって上記した第1載置面307dと第2載置面307eのz方向の位置の相違により、第2載置面307eと第2露出部33の裏面30bとの間に空隙があったとしても、ボルト307cのz方向に向かう力に応じて応力緩和部34が弾性変形する。これにより狭窄部31aの変形が抑制される。狭窄部31aのセンサ筐体50内での位置の変位が抑制される。この結果、磁電変換部25を透過する被測定磁界の分布の変化が抑制される。被測定電流の検出精度の低下が抑制される。
 なお、応力緩和部34の表面30aと裏面30bとの間の長さ(厚さ)は、被覆部31、第1露出部32、および、第2露出部33それぞれの厚さと相等しくなっている。これにより、例えば応力緩和部の厚さが被覆部や露出部に比べて局所的に薄い構成とは異なり、電流の通電によって、応力緩和部34が局所的に発熱することが抑制される。この結果、導電バスバー30の寿命の低下が抑制される。
 (第4実施形態)
 次に、第4実施形態を図33~図35に基づいて説明する。図33の(a)欄は導電バスバーの上面図を示している。図33の(b)欄は導電バスバーの側面図を示している。図34の(a)欄は第1センシング部21と第2センシング部22それぞれの磁電変換部25を搭載する配線基板20と導電バスバー30の位置を示している。図34の(b)欄は配線基板20の導電バスバー30に対する変位を示している。図34の(c)欄は第1センシング部21と第2センシング部22それぞれの磁電変換部25を透過する磁界を示している。
 <差分キャンセル>
 第1実施形態では第1センシング部21と第2センシング部22それぞれの磁電変換部25がy方向に並ぶ例を示した。これに対して本実施形態では図33に破線で示すように第1センシング部21と第2センシング部22それぞれの磁電変換部25はx方向に並んでいる。第1センシング部21の磁電変換部25が第1磁電変換部に相当する。第2センシング部22の磁電変換部25が第2磁電変換部に相当する。
 2つの磁電変換部25は対称軸ASを介して対称配置されている。2つの磁電変換部25のy方向の位置と対称軸AS(中心点CP)のy方向の位置とが同一になっている。したがって2つの磁電変換部25は中心点CPを介してx方向に並んでいる。
 また2つの磁電変換部25と被覆部31とのz方向の離間距離は同一となっている。そして被覆部31および狭窄部31aは対称軸ASを介して線対称な形状となっている。以上により、2つの磁電変換部25には、z方向の成分は異なるものの、x方向の成分の同等な被測定磁界が透過する。そのために2つの磁電変換部25から出力される電気信号の絶対値は同等になる。
 上記したように被覆部31はセンサ筐体50の基部51に被覆されている。そして2つの磁電変換部25を搭載する配線基板20はセンサ筐体50に形成された基板支持ピン56aに搭載されている。したがって配線基板20のz方向の変位が基板支持ピン56aによって規制されている。
 しかしながら配線基板20は基板接着剤56eを介して基板接着ピン56bに固定されている。基板接着剤56eは環境温度の変化によって膨張したりクリープなどの経年劣化をしたりする。このために配線基板20は被覆部31に対してx方向とy方向とに相対的に変位する虞がある。
 配線基板20がy方向に変位した場合、上記の2つの磁電変換部25のx方向での対称配置により、両者を透過する被測定磁界のx方向の成分は変化しない。しかしながら図34に示すように配線基板20がx方向に変位すると、両者を透過する被測定磁界のx方向の成分が変化する。この結果、2つの磁電変換部25から出力される電気信号の絶対値が同等ではなくなる。
 図34に示す破線は2つの磁電変換部25の導電バスバー30に対する配置位置を示している。一点鎖線は導電バスバー30の中心点CPを通る対称軸ASを示している。二点鎖線は2つの磁電変換部25が導電バスバー30に対して変位した位置を示している。白抜き矢印は2つの磁電変換部25を搭載する配線基板20の基板接着剤56eによる導電バスバー30に対する変位方向を示している。図34の(a)欄と(b)欄に示す実線矢印は磁電変換部25を通る磁界を示している。図34の(c)欄に示す実線矢印は磁電変換部25を透過する磁界の変化方向を示している。
 ただし、上記したように2つの磁電変換部25はともに配線基板20に搭載されている。そのため、上記したように基板接着剤56eの変形によって配線基板20と被覆部31とのx方向の相対位置が変化したとしても、配線基板20に搭載されている2つの磁電変換部25の相対距離は変化しない。したがって、基板接着剤56eの変形によって配線基板20と被覆部31との相対位置がx方向に変化した場合、2つの磁電変換部25の一方は対称軸ASに近づき、他方は対称軸ASから遠ざかる。その遠近距離は同等である。図34の(b)欄ではこの遠近距離をΔで示している。
 そのために図34の(c)欄に示すように2つの磁電変換部25の一方を透過する被測定磁界が減少し、他方を透過する被測定磁界が増大する。2つの磁電変換部25を透過する被測定磁界の減少量と増大量は同等となることが期待される。図34の(b)欄ではこの被測定磁界の変化量をΔBと示している。
 そこで、本実施形態では2つの磁電変換部25の出力する電気信号の極性を反転している。このように極性を反転するには、例えば図35に示すように第1磁気抵抗効果素子25aと第2磁気抵抗効果素子25bの配置を2つの磁電変換部25で逆転させることで実現される。若しくは、より単純に、図7に示す差動アンプ25cの反転入力端子と非反転入力端子を第1センシング部21と第2センシング部22とで逆転させることで2つの電気信号の極性を反転することができる。
 以上により、2つの磁電変換部25からは、増大量と減少量の絶対値が等しく、なおかつ極性の異なる電気信号が出力される。電池ECU801に第1電流センサ11で生成された2つの電気信号が電池ECU801に入力される。MGECU802に第2電流センサ12および第3電流センサ13それぞれで生成された2つの電気信号が入力される。
 電池ECU801とMGECU802は2つの電気信号の差分をとる。この差分処理は、変位のない場合に2つの磁電変換部25から出力される電気信号の絶対値をB、変位による電気信号の変化量の絶対値をΔBとすると、B+ΔB-(-(B-ΔB))=2Bと表すことができる。若しくは、B-ΔB-(-(B+ΔB))=2Bと表すことができる。プラスが第1極性と第2極性の一方に相当し、マイナスが第1極性と第2極性の他方に相当する。
 このように差分処理を行うことで、上記の基板接着剤56eの変形に起因する配線基板20と被覆部31との相対位置の変化に起因する電気信号の減少と増大がキャンセルされる。電池ECU801とMGECU802が差分部に相当する。
 なお、例えば図36に示すように2つの磁電変換部25の出力の差分を取る差分回路29が配線基板20に搭載された構成を採用することもできる。差分回路29の反転入力端子と非反転入力端子に第1出力配線20dと第2出力配線20eが接続される。この場合、差分回路29が差分部に相当する。
 上記した配線基板20と被覆部31とのx方向の相対位置の変化は、上記した基板接着剤56eの変形だけではなく、例えば車両に作用する外部応力やエンジン600などの駆動による振動によっても起こり得る。しかしながら例えこれらによって配線基板20と被覆部31とのx方向の相対位置が変化したとしても、上記したように2つの磁電変換部25から出力される2つの電気信号の差分をとる。こうすることで配線基板20と被覆部31との相対位置の変化による電気信号の減少と増大がキャンセルされる。以上により、被測定磁界の検出精度が低下することが抑制される。
 (第5実施形態)
 次に、第5実施形態を図37および図38に基づいて説明する。
 <透磁率の異方性>
 第1実施形態では第1シールド41と第2シールド42それぞれを軟磁性材料から成る複数の平板を圧着することで製造する例を示した。これに対して本実施形態では第1シールド41と第2シールド42それぞれを、電磁鋼を圧延することで製造している。
 第1実施形態で説明したように電磁鋼の圧延方向を特定することで、シールドの透磁率に異方性を持たせることができる。本実施形態では、第1シールド41と第2シールド42の圧延方向をz方向に沿わせている。これにより第1シールド41と第2シールド42の透磁率に異方性を持たせている。なお、第1シールド41と第2シールド42の製造方法は上記例に限定されず、そもそも透磁率に異方性を有する材料によって製造してもよい。また、第1シールド41と第2シールド42の一方に透磁率の異方性を持たせてもよい。
 図37に示すように第2電流センサ12および第3電流センサ13それぞれでは、個別センサ71がx方向に並べて配置される。個別センサ71それぞれの第1シールド41と第2シールド42がx方向に交互に並ぶ構成となる。この構成においては、個別センサ71の有する磁電変換部25の磁界の検知方向はz方向とy方向になる。なおこの構成においては、x方向に並ぶ2つの個別センサ71のうちの一方の有する第1シールド41と、他方の有する第2シールド42とを一つにまとめた構成を採用することもできる。
 このように複数の個別センサ71がx方向に並ぶ構成においては、ある個別センサ71の導電バスバー30から発せられる被測定磁界が、他の個別センサ71にとっては外部ノイズになる。この外部ノイズは導電バスバー30を中心として、x方向とz方向とによって規定される平面で環状に形成される。したがって外部ノイズはx方向とz方向に沿う成分を有する。このようにx方向とz方向に沿う外部ノイズが個別センサ71を透過しやすい環境になっている。
 図37では2つの個別センサ71を示している。この2つの個別センサ71のうちの導電バスバー30に丸の中にバツ印の付されているほうに被測定電流が流れている。ここから被測定磁界が発せられている。隣の個別センサ71にとっては、この丸の中にバツ印の付されている導電バスバー30から発せられる被測定磁界が電磁ノイズになっている。図37では磁界を矢印で示している。
 上記したように第1シールド41と第2シールド42それぞれはz方向に異方性を有する。したがって第1シールド41と第2シールド42それぞれには外部ノイズのz方向に沿う成分が侵入しようとする。これに対して、外部ノイズのx方向に沿う成分は第1シールド41と第2シールド42の異方性に依存しなくなる。そのためにこのx方向に沿う成分は磁電変換部25を透過しようとする。
 例えば図37において破線矢印で示す磁界が磁電変換部25を通ろうとする場合、この磁界のz方向に沿う成分が第1シールド41と第2シールド42それぞれを積極的に通ろうとする。しかしながらこの磁界のx方向の成分は多少残る。そのためにこの磁界のx方向の成分は磁電変換部25を透過しようとする。
 これに対して磁電変換部25の被測定磁界の検知方向はz方向とy方向である。磁電変換部25はx方向の磁界を検知しない。したがって上記した電磁ノイズのx方向の成分が磁電変換部25を透過したとしても、それによって被測定磁界の検出精度が低下することが抑制される。
 個別センサ71の並び構成としては上記例に限定されない。例えば図38に示すように個別センサ71がx方向に並べて配置される構成も考えられる。この構成においては、個別センサ71の第1シールド41同士、第2シールド42同士、および、磁電変換部25同士がx方向に並ぶ。個別センサ71の有する磁電変換部25の磁界の検知方向はx方向とy方向になる。この構成においては、x方向に並ぶ複数の個別センサ71それぞれの有する第1シールド41を一つにまとめた構成を採用することもできる。同様にして、複数の個別センサ71それぞれの有する第2シールド42を一つにまとめた構成を採用することもできる。
 図38においても2つの個別センサ71を示している。2つの個別センサ71のうちの導電バスバー30に丸の中にバツ印の付されているほうに被測定電流が流れている。図38においても磁界を矢印で示している。磁界はx方向とz方向に沿う成分を有する。そのためにx方向とz方向に沿う外部ノイズが個別センサ71を透過しやすい環境になっている。
 この構成においては、第1シールド41と第2シールド42の透磁率をy方向よりもx方向に高めている。したがって第1シールド41と第2シールド42それぞれには外部ノイズのx方向に沿う成分が侵入しようとする。これに対して、外部ノイズのz方向に沿う成分は第1シールド41と第2シールド42の異方性に依存しなくなる。そのためにこのz方向に沿う成分は磁電変換部25を透過しようとする。
 例えば図38において破線矢印で示す磁界が磁電変換部25を通ろうとする場合、この磁界のx方向に沿う成分が第1シールド41と第2シールド42それぞれを積極的に通ろうとする。しかしながらこの磁界のz方向の成分は多少残る。そのためにこの磁界のz方向の成分は磁電変換部25を透過しようとする。
 これに対して磁電変換部25の被測定磁界の検知方向はx方向とy方向である。磁電変換部25はz方向の磁界を検知しない。したがって上記した電磁ノイズのz方向の成分が磁電変換部25を透過したとしても、それによって被測定磁界の検出精度が低下することが抑制される。
 以上、本開示物の好ましい実施形態について説明したが、本開示物は上記した実施形態になんら制限されることなく、本開示物の主旨を逸脱しない範囲において、種々変形して実施することが可能である。
 (第1の変形例)
 第1実施形態では第1シールド41の四隅に切欠き41cが形成された例を示した。これにより第1シールド41の第1両端部41eは第1中央部41dよりもx方向の長さが短い例を示した。そして第2シールド42に延設部42cが形成された例を示した。
 これに対して図39に示すように第1シールド41と第2シールド42それぞれの四隅に切欠き41cの形成された構成を採用することもできる。これにより第2両端部42eは第2中央部42dよりもx方向の長さが短くなっている。図39の(b)欄に示すように第1中央部41dと第2中央部42dとの間に、配線基板20に搭載された第1センシング部21および第2センシング部22の磁電変換部25が位置している。図39の(a)欄はシールド、磁電変換部、および、導電バスバーの配置を説明するための斜視図である。図39の(b)欄はシールド、磁電変換部、および、導電バスバーの配置を説明するための側面図である。
 また図40の(a)欄に示すように第2シールド42に延設部42cおよび切欠き41cが形成されなくともよい。図40の(b)欄に示すように、第1シールド41の四隅のうちの2つに切欠き41cが形成された構成を採用することもできる。なお図40の(b)欄では2つの切欠き41cがx方向に並んでいる。図40の(a)欄および(b)欄それぞれはシールド、磁電変換部、および、導電バスバーの配置を説明するための斜視図である。以上に示したように、第1シールド41の第1両端部41eが第1中央部41dよりもx方向の長さが短ければよく、切欠き41cの形成位置は特に限定されない。
 (第2の変形例)
 第1実施形態では統合筐体73が底壁77と周壁78を有し、これらによって構成される収納空間に複数の個別センサ71が収納される例を示した。しかしながら図41~図43に示すように統合筐体73は周壁78を有さなくともよい。この場合、個別センサ71は底壁77に対して90°回転して設けられる。それによって、個別センサ71の導電バスバー30の表面30aと裏面30bそれぞれはz方向に面する。第1シールド41の一面41aと裏面41bそれぞれはz方向に面する。同様にして第2シールド42の一面42aと裏面42bそれぞれもz方向に面する。個別センサ71の磁電変換部25の検知方向はx方向とy方向になる。
 これにより、図38に示したように複数の個別センサ71それぞれの第1シールド41がx方向に並ぶ構成となる。複数の個別センサ71それぞれの第2シールド42がx方向に並ぶ構成となる。複数の個別センサ71それぞれの磁電変換部25がx方向に並ぶ構成となる。
 なお図42の(a)欄は第2電流センサの上面図を示している。図42の(b)欄は第2電流センサの正面図を示している。図42の(c)欄は第2電流センサの下面図を示している。図43の(a)欄は第2電流センサの側面図を示している。図43の(b)欄は第2電流センサの正面図を示している。図42の(b)欄と図43の(b)欄には同一の図面を示している。
 本変形例では、端子台80に個別センサ71と同数のz方向に沿うボルト孔が形成されている。個別センサ71の第2露出部33にボルト孔30cが形成されている。この端子台80のボルト孔と第2露出部33のボルト孔30c、および、ワイヤーの端子に形成されたボルト孔にボルトが通される。そしてそのボルトの先端にナットが締結される。ボルトの軸部の先端から頭部に向かうように、ナットをボルトに締結する。ボルトの頭部と端子台80とによって第2露出部33とワイヤーの端子とを挟持する。これにより第2露出部33とワイヤーの端子とが接触し、両者が電気的および機械的に接続される。
 (第3の変形例)
 第1実施形態で示したように第1電流センサ11のセンサ筐体50にリブ52aが形成されている。これと同様にして、図44に示すように個別センサ71のセンサ筐体50にリブ52aを形成してもよい。そして統合筐体73の底壁77に、個別センサ71を配線ケース72に挿入する際のガイド部72aが形成されてもよい。ガイド部72aはリブ52aと相似形状の中空を有する溝を構成している。ガイド部72aはz方向に開口している。この開口を介して、ガイド部72aの中空へとリブ52aを通す。これにより個別センサ71の統合筐体73への組み付けが容易となる。なお図44に示す変形例では、個別センサ71における接続端子60の先端の突出する端部を設けるための溝77cが底壁77に形成されている。
 (第4の変形例)
 図45の(a)欄に模式的に示すように、各実施形態ではモータのU相ステータコイルとV相ステータコイルに個別センサ71が設けられる例を示した。これら個別センサ71が第1センシング部21と第2センシング部22を有する例を示した。
 しかしながら図45の(b)欄に模式的に示すように、モータのU相ステータコイル、V相ステータコイル、および、W相ステータコイルそれぞれに個別センサ71が設けられた構成を採用することもできる。これら個別センサ71は第1センシング部21だけを有する構成を採用することができる。
 上記したように3相のステータコイルのうちの2つに流れる電流に基づいて残り1つの電流を検出することができる。したがって3相のステータコイルに設けられた3つの個別センサ71の第1センシング部21のうちの2つの出力に基づいて残り1つのステータコイルの電流を検出することができる。また、この残り1つのステータコイルに設けられた個別センサ71の第1センシング部21によって、残り1つのステータコイルの電流を検出することができる。これら2つの検出した電流を比較することで、いずれか一方に異常が生じているか否かを判定することができる。
 (その他の変形例)
 各実施形態では、ハイブリッドシステムを構成する車載システム100に電流センサが適用される例を示した。しかしながら電流センサの適用される車載システムは上記例に限定されない。例えば電流センサは電気自動車やエンジン自動車の車載システムに適用されてもよい。電流センサの適用されるシステムに関しては特に限定されない。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (1)

  1.  被測定電流の流動する導電部材(30)と、
     前記被測定電流の流動によって生じる被測定磁界を電気信号に変換する磁電変換部(25)と、
     前記磁電変換部への電磁ノイズの入力を抑制するシールド(40)と、を備え、
     前記シールドは互いに一面(41a,42a)同士が離間して対向する板形状の第1シールド(41)と第2シールド(42)を含み、
     前記第1シールドの前記一面(41a)と前記第2シールドの前記一面(42a)との間に前記導電部材の一部と前記磁電変換部とが位置し、
     前記導電部材における前記第1シールドと前記第2シールドとの間に位置する部位(31)は前記第1シールドの前記一面に沿う延長方向に延びており、
     前記延長方向における前記第1シールドおよび前記第2シールドのうちの少なくとも一方の中央部(41d,42d)はその両端部(41e,42e)より、前記第1シールドの前記一面に沿いなおかつ前記延長方向に交差する横方向の長さが長く、
     前記延長方向において、前記磁電変換部は前記第1シールドおよび前記第2シールドの両端部の間に位置する電流センサ。
PCT/JP2019/001752 2018-03-20 2019-01-22 電流センサ WO2019181172A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980020169.4A CN111936872A (zh) 2018-03-20 2019-01-22 电流传感器
US17/023,508 US11656249B2 (en) 2018-03-20 2020-09-17 Current sensor with shielding for noise suppression

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-052959 2018-03-20
JP2018052959A JP7172079B2 (ja) 2018-03-20 2018-03-20 電流センサ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/023,508 Continuation US11656249B2 (en) 2018-03-20 2020-09-17 Current sensor with shielding for noise suppression

Publications (1)

Publication Number Publication Date
WO2019181172A1 true WO2019181172A1 (ja) 2019-09-26

Family

ID=67988354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001752 WO2019181172A1 (ja) 2018-03-20 2019-01-22 電流センサ

Country Status (4)

Country Link
US (1) US11656249B2 (ja)
JP (1) JP7172079B2 (ja)
CN (1) CN111936872A (ja)
WO (1) WO2019181172A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6919609B2 (ja) 2018-03-20 2021-08-18 株式会社デンソー 電流センサ
JP6973221B2 (ja) 2018-03-20 2021-11-24 株式会社デンソー 電流センサ
JP7087512B2 (ja) 2018-03-20 2022-06-21 株式会社デンソー 電流センサ
JP6472561B1 (ja) * 2018-06-26 2019-02-20 三菱電機株式会社 電力変換装置
JP7322442B2 (ja) * 2019-03-15 2023-08-08 Tdk株式会社 電流センサ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005300170A (ja) * 2004-04-06 2005-10-27 Mitsubishi Electric Corp 電流検出装置およびそれを備えた電力変換装置
JP2009036579A (ja) * 2007-07-31 2009-02-19 Alps Electric Co Ltd 磁気センサパッケージ
WO2014162687A1 (ja) * 2013-04-01 2014-10-09 株式会社デンソー 電流センサ用の磁気シールド体及び電流センサ装置
JP2015194472A (ja) * 2014-01-23 2015-11-05 株式会社デンソー 電流検出システム

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529199U (ja) 1991-06-26 1993-04-16 ニツテツ北海道制御システム株式会社 電子機器類の磁気シールド装置
JP2000213944A (ja) 1999-01-28 2000-08-04 Toyota Motor Corp 検出素子の固定構造
JP2002340942A (ja) 2001-05-21 2002-11-27 Sanken Electric Co Ltd 電流検出装置の製造方法及び電流検出装置
JP2004170091A (ja) * 2002-11-15 2004-06-17 Aichi Micro Intelligent Corp 電流センサ
JP2005195427A (ja) 2004-01-06 2005-07-21 Asahi Kasei Electronics Co Ltd 電流測定装置、電流測定方法および電流測定プログラム
JP5098855B2 (ja) 2008-07-02 2012-12-12 Tdk株式会社 電流センサ
WO2012046547A1 (ja) * 2010-10-08 2012-04-12 アルプス・グリーンデバイス株式会社 電流センサ
JP5690209B2 (ja) * 2011-05-17 2015-03-25 Tdk株式会社 電流センサ
WO2012160876A1 (ja) 2011-05-20 2012-11-29 本田技研工業株式会社 コアレス電流センサ構造体、コアレス電流センサ及び電流検知方法
JP2013238580A (ja) * 2011-12-28 2013-11-28 Tdk Corp 電流センサ
JP2013145165A (ja) 2012-01-13 2013-07-25 Denso Corp 電流センサ機構
EP2851691B1 (en) 2012-05-16 2019-12-04 Alps Alpine Co., Ltd. Current sensor
JP6019373B2 (ja) 2012-08-22 2016-11-02 アルプス・グリーンデバイス株式会社 電流センサ
JP2015049053A (ja) 2013-08-29 2015-03-16 アルプス・グリーンデバイス株式会社 電流検出装置
JP6350785B2 (ja) 2013-09-03 2018-07-04 Tdk株式会社 インバータ装置
JP2015108554A (ja) 2013-12-04 2015-06-11 株式会社オートネットワーク技術研究所 電流検出装置
JP2015135288A (ja) 2014-01-17 2015-07-27 株式会社デンソー 電流センサ
JP2015190780A (ja) 2014-03-27 2015-11-02 ヤマハ株式会社 電流センサーおよび基板
JP2015190781A (ja) 2014-03-27 2015-11-02 ヤマハ株式会社 基板
JP2016070744A (ja) 2014-09-29 2016-05-09 トヨタ自動車株式会社 電流センサ
CN104820125B (zh) * 2015-04-27 2018-04-06 江苏多维科技有限公司 采用z轴磁电阻梯度计和引线框电流的集成电流传感器
JP6524877B2 (ja) 2015-10-07 2019-06-05 株式会社デンソー 電流センサ
JP6302453B2 (ja) 2015-12-02 2018-03-28 アルプス電気株式会社 電流センサ
JP6651956B2 (ja) 2016-04-01 2020-02-19 日立金属株式会社 電流センサ
CN110226094B (zh) * 2017-02-17 2021-04-20 阿尔卑斯阿尔派株式会社 电流传感器
CN107486116B (zh) * 2017-09-27 2019-07-16 徐州工程学院 一种加氢反应器
WO2019117169A1 (ja) 2017-12-13 2019-06-20 アルプスアルパイン株式会社 電流センサ
JP7003620B2 (ja) * 2017-12-14 2022-01-20 日立金属株式会社 電流センサ
JP7119470B2 (ja) 2018-03-20 2022-08-17 株式会社デンソー 電流センサ
JP2019164077A (ja) 2018-03-20 2019-09-26 株式会社デンソー 電流センサ
JP7087512B2 (ja) 2018-03-20 2022-06-21 株式会社デンソー 電流センサ
JP7401180B2 (ja) 2018-03-20 2023-12-19 株式会社デンソー 電流センサ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005300170A (ja) * 2004-04-06 2005-10-27 Mitsubishi Electric Corp 電流検出装置およびそれを備えた電力変換装置
JP2009036579A (ja) * 2007-07-31 2009-02-19 Alps Electric Co Ltd 磁気センサパッケージ
WO2014162687A1 (ja) * 2013-04-01 2014-10-09 株式会社デンソー 電流センサ用の磁気シールド体及び電流センサ装置
JP2015194472A (ja) * 2014-01-23 2015-11-05 株式会社デンソー 電流検出システム

Also Published As

Publication number Publication date
CN111936872A (zh) 2020-11-13
JP7172079B2 (ja) 2022-11-16
JP2019164076A (ja) 2019-09-26
US20210003617A1 (en) 2021-01-07
US11656249B2 (en) 2023-05-23

Similar Documents

Publication Publication Date Title
WO2019181170A1 (ja) 電流センサ
WO2019181173A1 (ja) 電流センサ
WO2019181171A1 (ja) 電流センサ
JP7119470B2 (ja) 電流センサ
WO2019181172A1 (ja) 電流センサ
WO2019181174A1 (ja) 電流センサ
JP7401180B2 (ja) 電流センサ
JP2019164077A (ja) 電流センサ
US20220244296A1 (en) Sensor unit
US11293990B2 (en) Sensor unit
JP7167862B2 (ja) センサユニット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19772279

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19772279

Country of ref document: EP

Kind code of ref document: A1