JP2015190780A - 電流センサーおよび基板 - Google Patents

電流センサーおよび基板 Download PDF

Info

Publication number
JP2015190780A
JP2015190780A JP2014066393A JP2014066393A JP2015190780A JP 2015190780 A JP2015190780 A JP 2015190780A JP 2014066393 A JP2014066393 A JP 2014066393A JP 2014066393 A JP2014066393 A JP 2014066393A JP 2015190780 A JP2015190780 A JP 2015190780A
Authority
JP
Japan
Prior art keywords
pair
magnetic detection
detection elements
wiring
current sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014066393A
Other languages
English (en)
Inventor
康彦 関本
Yasuhiko Sekimoto
康彦 関本
典弘 川岸
Norihiro Kawagishi
典弘 川岸
克也 平野
Katsuya Hirano
克也 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2014066393A priority Critical patent/JP2015190780A/ja
Priority to US14/666,725 priority patent/US9933462B2/en
Publication of JP2015190780A publication Critical patent/JP2015190780A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/207Constructional details independent of the type of device used

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

【課題】測定対象である電流経路を切り離すことなく、精度良く電流値を測定可能な電流センサー、および配線を流れる電流の電流値を精度良く測定可能な基板を提供する。【解決手段】素子基板10と、表面10aに設けられた磁気検出素子20a,20bと、磁気検出素子20a,20bに接続され、表面10aと交差する方向に延在する外部接続端子31〜34と、を有し、素子基板10は、表面10aを平面視したときに同方向に延在する一対の傾斜面を有し、一対の傾斜面は、他方の面から表面10aへ向かう方向に間隔が漸減し、磁気検出素子20a,20bは、一対の傾斜面にそれぞれ設けられ、磁気検出素子20a,20bの感度方向Da,Dbは、それぞれ一対の傾斜面に沿って傾斜するように設定されている電流センサー1。【選択図】図1

Description

本発明は、電流センサーおよび基板に関するものである。
従来、バスバーに流れた電流により生じる磁界の強度を、磁気検出素子を用いて検出することで、磁界の強度と相関する電流の値を測定する測定装置が知られている。以下、このような測定装置のことを電流センサーと称する。
特許文献1の電流センサーは、平面視略U字状に形成された導電部材と、導電部材のうち互いに対向する導電路の間に配置された2つの磁気素子と、を有している。特許文献1の電流センサーにおいては、導電部材を流れる電流により発生する磁界の強度を2つの磁気素子でそれぞれ検出し、得られた磁界の強度から、磁界の強度と相関する電流値を求めている。また、特許文献1の電流センサーは、2つの磁気素子を差動動作させることにより、測定誤差の原因となる外乱磁界の影響を打ち消す構成となっている。
特開2012−63285号公報
上記構成の電流センサーは、測定対象である電流経路を切り離し、当該電流経路に電流センサーの導電部材を挿入することで、測定対象の電流経路を流れる電流値を測定可能となる。そのため、上記電流センサーでは、既存の電流経路を切り離すことなく、電流を測定することができない。
本発明はこのような事情に鑑みてなされたものであって、測定対象である電流経路を切り離すことなく、精度良く電流値を測定可能な電流センサーを提供することを目的とする。また、このような電流センサーを有し、配線を流れる電流の電流値を精度良く測定可能な基板を提供することを併せて目的とする。
上記の課題を解決するため、本発明の一態様に係る電流センサーは、素子基板と、前記素子基板の両面のうち一方の面に設けられた一対の磁気検出素子と、前記一対の磁気検出素子にそれぞれ接続され、前記素子基板の両面のうち他方の面側に延在する外部接続端子と、を有し、前記素子基板は、前記一方の面を平面視したときに面内で同じ方向に延在する一対の傾斜面を有し、前記一対の傾斜面は、前記他方の面から前記一方の面へ向かう方向に間隔が漸減し、前記一対の磁気検出素子は、前記一対の傾斜面にそれぞれ設けられ、前記一対の磁気検出素子の感度方向は、それぞれ前記一対の傾斜面に沿って傾斜するように設定されている。
また、本発明の他の態様に係る電流センサーは、素子基板と、前記素子基板の両面のうち一方の面に設けられた一対の磁気検出素子と、前記一対の磁気検出素子にそれぞれ接続され、前記一方の面側に延在する外部接続端子と、を有し、前記素子基板は、前記一方の面を平面視したときに面内で同じ方向に延在する一対の傾斜面を有し、前記一対の傾斜面は、前記素子基板の他方の面から前記一方の面へ向かう方向に間隔が漸増し、前記一対の磁気検出素子は、前記一対の傾斜面にそれぞれ設けられ、前記一対の磁気検出素子の感度方向は、それぞれ前記一対の傾斜面に沿って傾斜するように設定されている。
本発明の一態様においては、前記磁気検出素子が、磁気抵抗効果素子である構成としてもよい。
また、本発明の一態様に係る基板は、表面に配線が設けられた配線基板と、上記の電流センサーと、を有し、前記電流センサーは、平面視で前記配線と重なり、前記配線から離間して設けられ、前記電流センサーが有する一対の磁気検出素子は、前記配線の幅方向に配列し、平面視で前記配線の中心線に対して両側に配置しており、前記一対の磁気検出素子の離間距離は、前記配線の法線方向に漸減している。
本発明の一態様においては、前記一対の磁気検出素子は、前記中心線に対して線対称に配置している構成としてもよい。
本発明の一態様においては、前記一対の磁気検出素子は、前記配線の端部と平面的に重なって配置している構成としてもよい。
本発明によれば、測定対象である電流経路を切り離すことなく、精度良く電流値を測定可能な電流センサーを提供することができる。また、このような電流センサーを有し、配線を流れる電流の電流値を精度良く測定可能な基板を提供することができる。
第1実施形態の電流センサーおよび基板について示す概略斜視図である。 GMR素子である一対の磁気検出素子の構成を示す模式図である。 第1実施形態の電流センサーおよび基板について示す説明図である。 第1実施形態の電流センサーの機能を説明する説明図である。 配線から発生する磁界におけるz軸方向の成分の強度についてのシミュレーション結果を示すグラフである。 図5に示す結果を模式的に示した図である。 配線から発生する磁界におけるy軸方向の成分の強度についてのシミュレーション結果を示すグラフである。 第2実施形態の電流センサーおよび基板について示す概略斜視図である。
[第1実施形態]
以下、図1〜図7を参照しながら、本発明の第1実施形態に係る電流センサーおよび基板について説明する。なお、以下の全ての図面においては、図面を見やすくするため、各構成要素の寸法や比率などは適宜異ならせてある。
図1は、本実施形態の電流センサー1および基板1000について示す概略斜視図である。図に示すように、基板1000は、電流センサー1と、表面に配線200が設けられた配線基板100とを有している。
以下の図では、xyz座標系を設定し、このxyz座標系を参照しつつ各部材の位置関係を説明する。xyz座標系において、配線基板100の表面内に設定するx軸方向に対し、表面内において直交する方向をy軸方向、x軸方向とy軸方向のそれぞれと直交する方向をz軸方向とする。すなわち、配線基板100の表面と同じ面方向にxy平面が設定され、配線基板100の法線方向にz軸が設定されている。
また、本明細書において、「平面視」とは+z方向上方から−z方向に見たときの視野を指す。
電流センサー1は、素子基板10と、一対の磁気検出素子20a,20bと、外部接続端子31〜34と、を有している。
素子基板10は、平面視矩形の基板である。図では、素子基板10は、表面(一方の面)10aがxy平面の面方向と同方向となるように配置されている。素子基板10は、例えば、SiO/Si、ガラス、石英を形成材料としている。
素子基板10の表面10aには、平面視で素子基板10の対向する辺に沿いx方向に平行に延在する溝11a,11bが設けられている。溝11a,11bは、自身の延在方向(x方向)と直交する方向(y方向)に配列しており、当該直交する方向に離間して設けられている。
一対の磁気検出素子20a,20bは、素子基板10の表面10aに設けられた溝11a,11bの内部に配置されている。なお、図では磁気検出素子20a,20bをそれぞれ直方体状の構成として1つずつ示しているが、より詳細には、磁気検出素子20aが2個の素子から構成され、また磁気検出素子20bが2個の素子から構成されており、これら4個の素子の出力をブリッジ結線させたものを用いることとするとよい。
一対の磁気検出素子20a,20bとしては、ホール素子や磁気抵抗効果素子などの素子を用いることができる。磁気抵抗効果素子としては、GMR(Giant Magneto-Resistance、巨大磁気抵抗)素子、TMR(Tunnel Magneto-Resistance、トンネル磁気抵抗)素子などを挙げることができる。本実施形態では、一対の磁気検出素子20a,20bとして、GMR素子を用いることとして説明する。
図2は、GMR素子である一対の磁気検出素子20a,20bの構成を示す模式図であり、図2(a)は平面図、図2(b)は側面図である。
図に示すように、一対の磁気検出素子20a,20bは、互いに隣り合って平行に配置された複数(図では6本)の帯状部21と、帯状部21を接続するリード層22と、を有している。
帯状部21は、巨大磁気抵抗効果を示す金属薄膜の積層体で形成されている。帯状部21としては、素子基板10側から順に積層された、フリー層と、導電性のスペーサ層と、ピンド層と、キャッピング層と、を有している。
フリー層は、外部磁界の向きに応じて磁化の向きが変化する層である。フリー層は、例えば、素子基板10の表面に、コバルト−ジルコニウム−ニオブ(Co−Zr−Nb)アモルファス磁性層と、ニッケル−鉄(Ni−Fe)磁性層と、コバルト−鉄(Co−Fe)層と、がこの順に積層された層を示すことができる。Co−Zr−Nbアモルファス磁性層の層厚は、例えば8.0nmである。Ni−Fe磁性層の層厚は、例えば3.3nmである。Co−Fe層の層厚は、例えば1.2nmである。
Co−Zr−Nbアモルファス磁性層およびNi−Fe磁性層は、軟質強磁性体薄膜層を構成している。Co−Fe層は、磁気検出素子に外部磁界を加えたときの抵抗変化率を示すMR比を高める機能を有する。
導電性のスペーサ層としては、例えば、膜厚2.4nmの銅(Cu)層を示すことができる。
ピンド層は、磁化の向きが所定の向きに固定された(ピンド)層である。ピンド層は、例えば、スペーサ層の表面に、コバルト−鉄(Co−Fe)磁性層と、白金−マンガン(Pt−Mn)反強磁性層と、がこの順に積層された層を示すことができる。コバルト−鉄(Co−Fe)磁性層の層厚は、例えば2.2nmである。白金−マンガン(Pt−Mn)反強磁性層は、白金を45〜55mol%含む白金−マンガン(Pt−Mn)合金を形成材料とした層であって、層厚は例えば4.0nmである。
Co−Fe磁性層は、着磁(磁化)されたPt−Mn反強磁性層に交換結合的に裏打ちされることにより磁化(磁化ベクトル)の向きが固定されるピンド層を構成している。
キャッピング層としては、例えば、膜厚2.4nmのタンタル(Ta)層を示すことができる。
リード層22は、複数の帯状部21の両端に複数配置され、複数の帯状部21を直列に接続している。リード層22としては、例えば、膜厚0.3μmのクロム(Cr)層を示すことができる。
上述のような磁気検出素子20a,20bにおいては、外部からの磁場による巨大磁気抵抗効果により、ピンド層の磁化の向きと、フリー層の磁化の向きの相対関係に応じてスペーサ層の電気抵抗が変化する。そのため、スペーサ層に導電させたときの抵抗値を出力として示すことにより、外部からの磁場の強さを検出することができる。
図に示す磁気検出素子20a,20bでは、平面視で長手方向に直交する方向にピンド層の磁化の向きが固定されている。図では、ピンド層の磁化の向きを符号P(ピンド層の磁化方向P)で示す矢印で示している。また、磁界無印加時におけるフリー層の磁化の向きを符号F(フリー層の磁化方向F)で示す矢印で示している。
また、磁気検出素子20a,20bでは、磁界無印加時において、フリー層の磁化方向Fが平面視で長手方向と同方向となっている。フリー層の磁化方向Fはピンド層の磁化方向Pと直交している。
ここで、本明細書では、磁気検出素子において、外部から印加される磁界を、最も好感度に検出可能な方向を「感度方向」と称することとする。GMR素子である磁気検出素子20a,20bでは、外部からの磁場がフリー層の磁化方向Fと同方向となる場合に無感度となる。一方で、外部からの磁場がフリー層の磁化方向Fと直交する方向である場合に、フリー層の磁化方向Fは最も外部磁場による影響を受ける。したがって、図に示す磁気検出素子20a,20bにおいて、感度方向はフリー層の磁化方向Fと直交する方向に設定されたピンド層の磁化方向Pと同方向となる。
図では、磁気検出素子20a,20bの感度方向を、符号Da,Dbを用いて示す。
図1にもどって、外部接続端子31〜34は、磁気検出素子20aに接続された外部接続端子31,32と、磁気検出素子20bに接続された外部接続端子33,34と、を有している。外部接続端子31〜34は、素子基板10の裏面(他方の面)10b側に延在している。図では、外部接続端子31〜34は、一端が素子基板10に接続するとともに、他端が表面10aと直交する方向(−z方向)に延在し、配線基板100の接続配線(不図示)に接続されている。電流センサー1の使用時には、磁気検出素子20a,20bには、配線基板100の接続配線を介して電流が供給される。
なお、本発明において、外部接続端子31,32は、磁気検出素子20aに直接接続されていてもよく、電流センサー1に設けられた増幅回路を介して間接的に接続されていてもよい。外部接続端子33,34も同様に、磁気検出素子20bに直接接続されていてもよく、増幅回路を介して間接的に接続されていてもよい。
また、本実施形態では、外部接続端子31,32は磁気検出素子20aと接続し、外部接続端子33,34は磁気検出素子20bと接続していることとしたが、外部接続端子31〜34が接続する磁気検出素子20a,20bは、任意に変更してよい。
また、上述の様に、外部接続端子と磁気検出素子とが増幅回路を介して接続している場合、外部接続端子の数を増やしてもよい。
また、磁気検出素子20aが2個の素子から構成され、磁気検出素子20bが2個の素子から構成されており、電流センサー1において、磁気検出素子20a,20bを構成する4個の素子をブリッジ結線させて出力を得る場合、外部接続端子を増やしてもよい。
図3は、本実施形態の電流センサー1および基板1000について示す説明図であり、図3(a)は、図1の線分IIIa−IIIaにおける矢視断面図、図3(b)は、平面図である。
図3(a)に示すように、素子基板10に設けられた溝11a,11bは、断面視で楔型の形状を呈している。一対の磁気検出素子20a,20bは、溝11a,11bにおいて、それぞれ素子基板10の内側の傾斜面(一対の傾斜面)12a,12bに設けられている。傾斜面12a,12bは、素子基板10の裏面(他方の面)10bから表面10aへ向かう方向(+z方向)に間隔が漸減している。
素子基板10の裏面10bに対する傾斜面12a,12bの傾斜角は、設計により制御可能である。本実施形態の素子基板10では、傾斜面12aの傾斜角θaと、傾斜面12bの傾斜角θbとは等しくなっている。そのため、素子基板10の裏面10bに対する一対の磁気検出素子20a,20bの傾斜角は等しくなっている。
また、図3(b)に示すように、一対の磁気検出素子20a,20bは、長手方向が溝11a,11bの延在方向と一致するように設けられている。
このような傾斜面12a,12bに設けられた一対の磁気検出素子20a,20bにおいては、平面視で配線200の幅方向(y方向)に配列し、配線200の中心線Lに対して両側に配置している。本実施形態の基板1000では、一対の磁気検出素子20a,20bは、中心線Lに対して線対称に配置している。
また、一対の磁気検出素子20a,20bは、配線200に対するz軸方向の位置が等しく、配線200の端部と平面的に重なって(z方向の視野において重なって)配置している。一対の磁気検出素子20a,20bの離間距離は、素子基板10の裏面10bから表面10aへ向かう方向(配線200の法線方向、+z方向)に漸減している。
さらに、感度方向Da,Dbが、傾斜面12a,12bに沿って傾斜するように設定されている。このような感度方向Da,Dbを有する一対の磁気検出素子20a,20bは、y軸方向およびz軸方向に感度を有することとなる。
一対の磁気検出素子20a,20bは、断面視において、配線200の端部に対するそれぞれの相対距離が等しく、z軸方向の位置が等しく、さらに、x軸周りの回転姿勢が配線200の中心線Lに対して対称となるように設定されている。
図1,3に示すように、配線基板100は、表面に配線200が設けられている。図1において、配線200はx軸方向に延在することとして示している。また、電流センサー1は、平面視で配線200と重なり、配線200から配線基板100の法線方向(+z方向)に離間して設けられている。
図4は、電流センサー1の機能を説明する説明図であり、図3(a)と同じ視野における断面図である。
図4に示すように、配線200に対し、−x方向に流れる電流を供給すると、配線200には、右ねじの法則またはアンペールの法則に基づいた誘導磁界が生じる。図では、配線200に生じる誘導磁界を符号Mで示している。
このとき、磁気検出素子20a,20bでは誘導磁界Mを、それぞれ検出する。具体的には、一対の磁気検出素子20a,20bは、このような誘導磁界Mに曝されると、誘導磁界の接線成分Ma,Mbを検出する。
ここで、配線200に対する磁気検出素子20a,20bの位置(仰角、離間距離)は既知である。そのため、検出される接線成分Ma,Mbから配線200を流れる電流の値を求めることが可能となる。
また、磁気検出素子20a,20bは、溝11a,11bの斜面に設けられているため、磁気検出素子20a,20bが素子基板10の表面10aに設けられている場合と比べ、感度方向Da,Dbを接線成分Ma,Mbの方向に沿わせる(感度方向Da,Dbと接線成分Ma,Mbの方向とのなす角を小さくする)ことができる。そのため、磁気検出素子20a,20bによる誘導磁界Mの検出感度を高めることができる。
ここで、磁気検出素子20a,20bが検出する磁界の強度についてのシミュレーション結果を示す。
図5は、配線200に対して−x方向に電流を流したときに、配線200から発生する磁界におけるz軸方向の成分の強度についてのシミュレーション結果であり、0.1mm厚の配線に50Aの電流を流したときの発生磁界の強度を示すグラフを示している。
図5(a)は、2mm幅の配線200についてのシミュレーション結果である。同様に、図5(b)は、4mm幅の配線200について、図5(c)は、8mm幅の配線200についてのシミュレーション結果である。
横軸は、配線200の幅方向(y方向)の磁界強度算出位置(単位:mm)を示している。横軸においては、配線200の表面中心を原点としている。
縦軸は、磁界強度(単位:T)を示す。
1つのグラフに示した3種の結果は、それぞれ配線200の高さ方向(z方向)の磁界強度算出位置(単位:mm)を示している。z方向の算出位置においては、配線200の表面を原点としている。
図6は、図5に示す結果を模式的に示した図である。図5、6に示すように、z方向の磁界分布は、原点に対して点対称であり、配線200を断面視したときに幅方向の端部において磁界強度の絶対値がピークを示すことがわかる。したがって、z方向の磁界成分を計測するためには、一対の磁気検出素子20a,20bは、配線200の幅方向の端部に平面的に重なるように配置することが好ましい。
図7は、図5と同様に配線200に対して−x方向に電流を流したときに、配線200から発生する磁界におけるy軸方向の成分の強度についてのシミュレーション結果である。各グラフにおいて、横軸、縦軸および1つのグラフに示した3種の結果については、図5と同じものを示す。
図7(a)は、2mm幅の配線200についてのシミュレーション結果である。同様に、図7(b)は、4mm幅の配線200について、図5(c)は、8mm幅の配線200についてのシミュレーション結果である。
図7に示すように、y方向の磁界分布は、原点を含むxz平面に対して線対称であることがわかる。すなわち、y方向の磁界成分は、一対の磁気検出素子20a,20bを差動させることにより、低減させることができる。差動時には、適宜感度補正を行うこととしてもよい。本実施形態の基板1000のように、配線200の中心線Lに対して対称に一対の磁気検出素子20a,20bを配置させることにより、y方向の磁界成分は相殺させることができることがわかる。
本実施形態の電流センサー1では、配線200に対する磁気検出素子20aおよび磁気検出素子20bのそれぞれの相対距離が等しく、さらにz軸方向の位置が等しくなるように設定されている。そのため、上記シミュレーション結果から、磁気検出素子20aで検出される接線成分Maと、磁気検出素子20bで検出される接線成分Mbとは、大きさが等しく、z軸方向の成分の正負が異なる値(逆位相の値)となると予想できる。
さらに、一対の磁気検出素子20a,20bが外乱磁界DMの影響を受ける場合、一対の磁気検出素子20a,20bは、外乱磁界DMを互いに同方向から受ける磁場のノイズ成分として検出する。
このような電流センサー1では、一対の磁気検出素子20a,20bを差動させることで、磁気検出素子20a,20bで検出する互いに逆位相の値であるz軸方向の成分を加算処理して増幅するとともに、y方向の磁界成分は相殺させて検出する。さらに、電流センサー1では、素子基板10の裏面10bに対する一対の磁気検出素子20a,20bの傾斜角は既知である。そのため、一対の磁気検出素子20a,20bの傾斜角による補正を行いながら一対の磁気検出素子20a,20bを差動させることで、外乱磁界DMを減算処理してノイズを除去することが可能となる。
本実施形態の電流センサー1および基板1000は、以上のような構成となっている。
以上のような構成の電流センサー1によれば、測定対象である電流経路(配線200)を切り離すことなく、精度良く電流値を測定可能な電流センサーを提供することができる。
また、以上のような構成の基板1000においては、上述のような電流センサー1を有し、配線200を流れる電流の電流値を精度良く測定可能な基板を提供することができる。
なお、本実施形態においては、一対の磁気検出素子20a,20bが、平面視で平行に配置されているとしたが、これに限らない。一対の磁気検出素子20a,20bが、誘導磁界Mの接線成分Ma,Mbの強度を検出可能であれば、一対の磁気検出素子20a,20bの姿勢としては、本実施形態の姿勢からずれていても動作可能である。
同様に、本実施形態においては、基板1000の配線200の中心線に対して、一対の磁気検出素子20a,20bが線対称に配置されていることとしたが、これに限らない。配線200に対する一対の磁気検出素子20a,20bの相対位置が既知であれば、一対の磁気検出素子20a,20bの姿勢としては、本実施形態の姿勢からずれていても動作可能である。
また、本実施形態においては、一対の磁気検出素子20a,20bは、配線200の端部と平面的に重なって配置していることとしたが、一対の磁気検出素子20a,20bの配置位置がこの位置からずれていても構わない。この場合、一対の磁気検出素子20a,20bを配線200の端部と平面的に重なる位置にした場合と比べ、出力値が小さくなるため、出力値を増幅する構成を設けることとしてもよい。
また、本実施形態においては、一対の磁気検出素子20a,20bが、溝11a,11bの内面の一部である傾斜面12a,12bに設けられていることとしたが、これに限らない。例えば、溝11a,11bを設けることなく、逆に素子基板10の表面に、素子基板10の表面から遠ざかる方向に幅が漸減するテーパー状の凸条部を形成し、当該凸条部の側面である傾斜面に一対の磁気検出素子20a,20bを配置することとしても構わない。
また、本実施形態においては、電流センサー1および基板1000において、素子基板10は、表面(一方の面)10aがxy平面の面方向と同方向となるように配置されていることとしたが、これに限らず、素子基板10がy軸周りに傾斜した姿勢で配置されていても動作可能である。
[第2実施形態]
図8は、本発明の第2実施形態に係る電流センサー2および基板1100の説明図であり、図3(a)に対応した図である。
本実施形態の電流センサー2および基板1100は、第1実施形態の電流センサー1および基板1000と一部共通している。したがって、本実施形態において第1実施形態と共通する構成要素については同じ符号を付し、詳細な説明は省略する。
図に示すように、電流センサー2の素子基板10は、溝11a,11bが設けられた表面(一方の面)10aを配線200側(−z方向)に向けて配置している。また、外部接続端子31〜34は、表面10a側に延在している。
さらに、電流センサー2が有する一対の磁気検出素子20a,20bは、溝11a,11bにおいて、それぞれ素子基板10の外側の傾斜面(一対の傾斜面)13a,13bに設けられている。傾斜面13a,13bは、素子基板10の裏面(他方の面)10bから表面10aへ向かう方向(−z方向)に間隔が漸増している。
表面10aに対する一対の磁気検出素子20a,20bの姿勢や、配線200に対する一対の磁気検出素子20a,20bの相対位置については、第1実施形態と同様の構成となっている。すなわち、電流センサー2は、平面視で配線200と重なり、配線200から配線基板100の法線方向(+z方向)に離間して設けられている。また、一対の磁気検出素子20a,20bは、平面視で配線200の幅方向(y方向)に配列し、配線200の中心線Lに対して両側に配置している。さらに、上述のような傾斜面13a,13bに設けられた一対の磁気検出素子20a,20bの離間距離は、素子基板10の裏面10bから表面10aへ向かう方向(配線200の法線方向、+z方向)に漸減している。
このような構成の電流センサー2であっても、測定対象である電流経路(配線200)を切り離すことなく、精度良く電流値を測定可能な電流センサーを提供することができる。
また、このような構成の電流センサー2を有する基板1100であっても、配線200を流れる電流の電流値を精度良く測定可能な基板を提供することができる。
以上、添付図面を参照しながら本発明に係る好適な実施の形態例について説明したが、本発明は係る例に限定されないことは言うまでもない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
例えば、上記実施形態で説明した基板1000においては、配線200の+z方向上方に配置された電流センサー1を1個有することとし、基板1100においても、配線200の+z方向上方に配置された電流センサー2を1個有することとしたが、これに限らず、複数の電流センサーを有する基板としてもよい。
例えば、2個の電流センサー1を有する基板では、2個の電流センサー1を、配線200の+z方向上方であって図1の電流センサー1と同様な位置に配置する。この場合、2個の電流センサーを近接して配置し、2個の電流センサー1が有する2個の磁気検出素子20aと、2個の磁気検出素子20bとをブリッジ結線してもよい。
1,2…電流センサー、10…素子基板、10a…表面(一方の面)、11a,11b…溝、12a,12b,13a,13b…傾斜面(一対の傾斜面)、20a,20b…磁気検出素子、31〜34…外部接続端子、100…配線基板、200…配線、1000,1100…基板、Da,Db…感度方向、L…中心線

Claims (6)

  1. 素子基板と、
    前記素子基板の両面のうち一方の面に設けられた一対の磁気検出素子と、
    前記一対の磁気検出素子にそれぞれ接続され、前記素子基板の両面のうち他方の面側に延在する外部接続端子と、を有し、
    前記素子基板は、前記一方の面を平面視したときに面内で同じ方向に延在する一対の傾斜面を有し、
    前記一対の傾斜面は、前記他方の面から前記一方の面へ向かう方向に間隔が漸減し、
    前記一対の磁気検出素子は、前記一対の傾斜面にそれぞれ設けられ、
    前記一対の磁気検出素子の感度方向は、それぞれ前記一対の傾斜面に沿って傾斜するように設定されている電流センサー。
  2. 素子基板と、
    前記素子基板の両面のうち一方の面に設けられた一対の磁気検出素子と、
    前記一対の磁気検出素子にそれぞれ接続され、前記一方の面側に延在する外部接続端子と、を有し、
    前記素子基板は、前記一方の面を平面視したときに面内で同じ方向に延在する一対の傾斜面を有し、
    前記一対の傾斜面は、前記素子基板の他方の面から前記一方の面へ向かう方向に間隔が漸増し、
    前記一対の磁気検出素子は、前記一対の傾斜面にそれぞれ設けられ、
    前記一対の磁気検出素子の感度方向は、それぞれ前記一対の傾斜面に沿って傾斜するように設定されている電流センサー。
  3. 前記磁気検出素子が、磁気抵抗効果素子である請求項1または2に記載の電流センサー。
  4. 表面に配線が設けられた配線基板と、
    請求項1から3のいずれか1項に記載の電流センサーと、を有し、
    前記電流センサーは、平面視で前記配線と重なり、前記配線から離間して設けられ、
    前記電流センサーが有する一対の磁気検出素子は、前記配線の幅方向に配列し、平面視で前記配線の中心線に対して両側に配置しており、
    前記一対の磁気検出素子の離間距離は、前記配線の法線方向に漸減している基板。
  5. 前記一対の磁気検出素子は、前記中心線に対して線対称に配置している請求項4に記載の基板。
  6. 前記一対の磁気検出素子は、前記配線の端部と平面的に重なって配置している請求項4または5に記載の基板。
JP2014066393A 2014-03-27 2014-03-27 電流センサーおよび基板 Pending JP2015190780A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014066393A JP2015190780A (ja) 2014-03-27 2014-03-27 電流センサーおよび基板
US14/666,725 US9933462B2 (en) 2014-03-27 2015-03-24 Current sensor and current measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014066393A JP2015190780A (ja) 2014-03-27 2014-03-27 電流センサーおよび基板

Publications (1)

Publication Number Publication Date
JP2015190780A true JP2015190780A (ja) 2015-11-02

Family

ID=54189971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014066393A Pending JP2015190780A (ja) 2014-03-27 2014-03-27 電流センサーおよび基板

Country Status (2)

Country Link
US (1) US9933462B2 (ja)
JP (1) JP2015190780A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109406859A (zh) * 2018-11-30 2019-03-01 苏州汇川技术有限公司 电流检测板及驱动控制器
CN109870601A (zh) * 2017-12-05 2019-06-11 日立金属株式会社 电流传感器
JP2019100923A (ja) * 2017-12-05 2019-06-24 日立金属株式会社 電流センサ

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7172079B2 (ja) 2018-03-20 2022-11-16 株式会社デンソー 電流センサ
JP6919609B2 (ja) 2018-03-20 2021-08-18 株式会社デンソー 電流センサ
JP6973221B2 (ja) 2018-03-20 2021-11-24 株式会社デンソー 電流センサ
JP7087512B2 (ja) 2018-03-20 2022-06-21 株式会社デンソー 電流センサ
JP2019164075A (ja) 2018-03-20 2019-09-26 株式会社デンソー 電流センサ
CN108761171B (zh) * 2018-06-05 2024-04-19 南方电网科学研究院有限责任公司 一种线路电流的测量方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7492554B2 (en) * 2005-01-21 2009-02-17 International Business Machines Corporation Magnetic sensor with tilted magnetoresistive structures
US7816905B2 (en) * 2008-06-02 2010-10-19 Allegro Microsystems, Inc. Arrangements for a current sensing circuit and integrated current sensor
JP2012063285A (ja) 2010-09-17 2012-03-29 Alps Green Devices Co Ltd 電流センサ

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109870601A (zh) * 2017-12-05 2019-06-11 日立金属株式会社 电流传感器
JP2019100922A (ja) * 2017-12-05 2019-06-24 日立金属株式会社 電流センサ
JP2019100923A (ja) * 2017-12-05 2019-06-24 日立金属株式会社 電流センサ
JP7003608B2 (ja) 2017-12-05 2022-01-20 日立金属株式会社 電流センサ
JP7003609B2 (ja) 2017-12-05 2022-01-20 日立金属株式会社 電流センサ
CN109406859A (zh) * 2018-11-30 2019-03-01 苏州汇川技术有限公司 电流检测板及驱动控制器
CN109406859B (zh) * 2018-11-30 2024-04-30 苏州汇川技术有限公司 电流检测板及驱动控制器

Also Published As

Publication number Publication date
US20150276817A1 (en) 2015-10-01
US9933462B2 (en) 2018-04-03

Similar Documents

Publication Publication Date Title
JP2015190780A (ja) 電流センサーおよび基板
EP2284557B1 (en) Magnetic sensor
JP5648246B2 (ja) 電流センサ
US9964601B2 (en) Magnetic sensor
JP5906488B2 (ja) 電流センサ
US8451003B2 (en) Magnetic sensor having magneto-resistive elements on a substrate
JP6427588B2 (ja) 磁気センサ
JP5888402B2 (ja) 磁気センサ素子
US20130300404A1 (en) Current sensor
JP2011196798A (ja) 電流センサ
JP2011027683A (ja) 磁気センサ
CN113376422B (zh) 用于改善功能安全性的电流传感器
JP2016502098A (ja) 磁気センシング装置及びその磁気誘導方法
WO2013005545A1 (ja) 電流センサ
JP2016517952A (ja) 磁気センシング装置及びその磁気誘導方法、製造プロセス
JP2015190781A (ja) 基板
CN113495183B (zh) 电流传感器及其制造方法、电控制装置、以及电流传感器的设计方法
JP2017072375A (ja) 磁気センサ
JP2015219227A (ja) 磁気センサ
JP6321323B2 (ja) 磁気センサ
JP2014063893A (ja) 磁気センサ、磁気センサの製造方法
JP2018096895A (ja) 磁場検出装置
JP2013142569A (ja) 電流センサ
WO2015125699A1 (ja) 磁気センサ
JP6369527B2 (ja) センサユニット