WO2019181013A1 - 研磨液、研磨液セット及び研磨方法 - Google Patents

研磨液、研磨液セット及び研磨方法 Download PDF

Info

Publication number
WO2019181013A1
WO2019181013A1 PCT/JP2018/035456 JP2018035456W WO2019181013A1 WO 2019181013 A1 WO2019181013 A1 WO 2019181013A1 JP 2018035456 W JP2018035456 W JP 2018035456W WO 2019181013 A1 WO2019181013 A1 WO 2019181013A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
mass
liquid
polishing liquid
preferable
Prior art date
Application number
PCT/JP2018/035456
Other languages
English (en)
French (fr)
Inventor
友洋 岩野
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2018/011464 external-priority patent/WO2019180887A1/ja
Priority claimed from PCT/JP2018/028105 external-priority patent/WO2020021680A1/ja
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to KR1020207025931A priority Critical patent/KR102576637B1/ko
Priority to SG11202008797WA priority patent/SG11202008797WA/en
Priority to CN201880090885.5A priority patent/CN111819263A/zh
Priority to US16/981,560 priority patent/US11572490B2/en
Priority to JP2020507311A priority patent/JP6973620B2/ja
Priority to TW108109808A priority patent/TWI734971B/zh
Publication of WO2019181013A1 publication Critical patent/WO2019181013A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/04Aqueous dispersions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/06Other polishing compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/04Etching, surface-brightening or pickling compositions containing an inorganic acid
    • C09K13/06Etching, surface-brightening or pickling compositions containing an inorganic acid with organic material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1436Composite particles, e.g. coated particles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • H01L21/31055Planarisation of the insulating layers involving a dielectric removal step the removal being a chemical etching step, e.g. dry etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]

Definitions

  • the present invention relates to a polishing liquid, a polishing liquid set, and a polishing method.
  • the present invention relates to a polishing liquid, a polishing liquid set, and a polishing method that can be used in a planarization process of a substrate surface, which is a manufacturing technique of a semiconductor element.
  • the present invention relates to a polishing liquid that can be used in a planarization process of a shallow trench isolation (shallow trench isolation, hereinafter referred to as “STI”) insulating material, premetal insulating material, interlayer insulating material, etc.
  • STI shallow trench isolation
  • CMP Chemical Mechanical Polishing
  • Examples of the most frequently used polishing liquid include silica-based polishing liquids containing silica (silicon oxide) particles such as fumed silica and colloidal silica as abrasive grains.
  • the silica-based polishing liquid is characterized by high versatility, and a wide variety of materials can be polished regardless of insulating materials and conductive materials by appropriately selecting the abrasive content, pH, additives, and the like.
  • a polishing liquid mainly for an insulating material such as silicon oxide the demand for a polishing liquid containing cerium compound particles as an abrasive is also increasing.
  • a ceria-based polishing liquid containing ceria (cerium oxide) particles as abrasive grains can polish silicon oxide at high speed even with a lower abrasive grain content than a silica-based polishing liquid (see, for example, Patent Documents 1 and 2 below).
  • JP-A-10-106994 Japanese Patent Application Laid-Open No. 08-022970
  • the polishing liquid containing abrasive grains when the polishing liquid containing abrasive grains is stored for a certain period, if the abrasive grains change due to aggregation of the abrasive grains, the polishing rate obtained using the polishing liquid may decrease. . Therefore, it is required for the polishing liquid containing abrasive grains to improve the dispersion stability of the abrasive grains.
  • the present invention is intended to solve the above-mentioned problems, and an object thereof is to provide a polishing liquid having excellent dispersion stability of abrasive grains.
  • An object of the present invention is to provide a polishing liquid set for obtaining the polishing liquid.
  • An object of the present invention is to provide a polishing method using the polishing liquid or the polishing liquid set.
  • the present inventor has found that although the polishing characteristics such as the polishing rate of the insulating material can be improved by using a polishing liquid containing polyol, the abrasive grains may aggregate in the polishing liquid.
  • the present inventor uses abrasive grains having a positive zeta potential (cationic abrasive grains), a specific hydroxy acid, and a polyol in combination in a polishing liquid containing a polyol. It has been found that the dispersion stability of can be improved.
  • the polishing liquid according to the present invention contains abrasive grains, a hydroxy acid, a polyol, and a liquid medium, the abrasive grains have a positive zeta potential, and the hydroxy acid contains one carboxyl group and 1 to It has 3 hydroxyl groups.
  • the polishing liquid according to the present invention has excellent abrasive dispersion stability. According to such a polishing liquid, it is possible to suppress a decrease in the polishing rate even when the polishing liquid is stored for a certain period.
  • the hydroxy acid may contain a compound having one carboxyl group and one hydroxyl group, or may contain a compound having one carboxyl group and two hydroxyl groups.
  • the polyol preferably includes a polyether polyol.
  • the content of the hydroxy acid is preferably 0.01 to 1.0% by mass.
  • the content of the polyol is preferably 0.05 to 5.0% by mass.
  • One aspect of the present invention relates to the use of the polishing liquid for polishing a surface to be polished containing silicon oxide. That is, the polishing liquid according to the present invention is preferably used for polishing a surface to be polished containing silicon oxide.
  • the constituents of the polishing liquid are stored separately as a first liquid and a second liquid, and the first liquid includes the abrasive grains and a liquid medium.
  • the second liquid includes the hydroxy acid, the polyol, and a liquid medium. According to the polishing liquid set concerning the present invention, the same effect as the polishing liquid concerning the present invention can be acquired.
  • the polishing method according to the present invention may comprise a step of polishing a surface to be polished using the polishing liquid, and is obtained by mixing the first liquid and the second liquid in the polishing liquid set. You may provide the process of grind
  • One aspect of a polishing method according to the present invention is a method for polishing a substrate having an insulating material and silicon nitride, and includes a step of selectively polishing the insulating material with respect to silicon nitride using the polishing liquid.
  • the method may include a step of selectively polishing the insulating material with respect to silicon nitride using a polishing liquid obtained by mixing the first liquid and the second liquid in the polishing liquid set. Good.
  • polishing liquid or the polishing liquid set by using the polishing liquid or the polishing liquid set, the same effect as the polishing liquid according to the present invention is obtained when the insulating material is selectively polished with respect to silicon nitride. be able to.
  • Another aspect of the polishing method according to the present invention is a method for polishing a substrate having an insulating material and polysilicon, comprising the step of selectively polishing the insulating material with respect to polysilicon using the polishing liquid. And a step of selectively polishing the insulating material with respect to polysilicon using a polishing liquid obtained by mixing the first liquid and the second liquid in the polishing liquid set. Also good.
  • polishing methods by using the polishing liquid or the polishing liquid set, the same effect as the polishing liquid according to the present invention can be obtained when the insulating material is selectively polished with respect to polysilicon. be able to.
  • a polishing liquid having excellent dispersion stability of abrasive grains can be provided.
  • a polishing liquid set for obtaining the polishing liquid can be provided.
  • a polishing method using the polishing liquid or the polishing liquid set can be provided.
  • the polishing liquid or the polishing liquid set for the planarization process of the substrate surface it is possible to provide the use of the polishing liquid or the polishing liquid set for the planarization process of the substrate surface. According to the present invention, it is possible to provide the use of the polishing liquid or the polishing liquid set for the planarization process of the STI insulating material, the premetal insulating material, or the interlayer insulating material. ADVANTAGE OF THE INVENTION According to this invention, use of the polishing liquid or polishing liquid set for the grinding
  • polishing liquid the polishing liquid set, and the polishing method using these according to the embodiment of the present invention will be described in detail.
  • a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value of a numerical range in a certain step may be replaced with the upper limit value or the lower limit value of a numerical range in another step.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples. “A or B” only needs to include either A or B, and may include both.
  • the materials exemplified in the present specification can be used singly or in combination of two or more unless otherwise specified.
  • each component in the composition is the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition.
  • the term “process” is not limited to an independent process, and is included in this term if the intended effect of the process is achieved even when it cannot be clearly distinguished from other processes.
  • polishing liquid is defined as a composition that touches the surface to be polished during polishing.
  • the phrase “polishing liquid” itself does not limit the components contained in the polishing liquid.
  • the polishing liquid according to the present embodiment contains abrasive grains.
  • Abrasive grains are also referred to as “abrasive particles”, but are referred to herein as “abrasive grains”.
  • the abrasive grains are generally solid particles, and the object to be removed is removed (removed) by the mechanical action of the abrasive grains and the chemical action of the abrasive grains (mainly the surface of the abrasive grains) during polishing.
  • the present invention is not limited to this.
  • the polishing liquid according to this embodiment is, for example, a polishing liquid for CMP.
  • the polishing liquid according to this embodiment contains abrasive grains, a hydroxy acid, a polyol, and a liquid medium.
  • the abrasive grains have a positive zeta potential, and the hydroxy acid contains one carboxyl group and 1 With ⁇ 3 hydroxyl groups.
  • the polishing liquid according to the present embodiment has excellent dispersion stability of abrasive grains. According to the polishing liquid according to the present embodiment, even when the polishing liquid is stored for a certain period (for example, 168 hours or more), it is possible to suppress a decrease in the polishing rate.
  • the polishing speed decreases even when the polishing liquid is stored for a certain period (for example, 168 hours or more) while obtaining a high polishing speed immediately after the preparation of the polishing liquid. This can be suppressed.
  • the polishing liquid according to the present embodiment can achieve excellent dispersion stability of the abrasive grains.
  • the polishing liquid according to the present embodiment contains abrasive grains having a positive zeta potential in the polishing liquid as cationic abrasive grains.
  • the abrasive preferably contains at least one selected from the group consisting of ceria, silica, alumina, zirconia, yttria, and tetravalent metal element hydroxide from the viewpoint of polishing the insulating material at a high polishing rate. It is more preferable to contain.
  • An abrasive can be used individually by 1 type or in combination of 2 or more types.
  • the “tetravalent metal element hydroxide” is a compound containing a tetravalent metal (M 4+ ) and at least one hydroxide ion (OH ⁇ ).
  • the hydroxide of the tetravalent metal element may contain anions other than hydroxide ions (for example, nitrate ions NO 3 ⁇ and sulfate ions SO 4 2 ⁇ ).
  • a hydroxide of a tetravalent metal element may include an anion (for example, nitrate ion NO 3 ⁇ and sulfate ion SO 4 2 ⁇ ) bonded to the tetravalent metal element.
  • a hydroxide of a tetravalent metal element can be produced by reacting a salt (metal salt) of a tetravalent metal element with an alkali source (base).
  • the tetravalent metal element hydroxide preferably contains cerium hydroxide (tetravalent cerium hydroxide).
  • Cerium hydroxide can be produced by reacting a cerium salt with an alkali source (base).
  • the cerium hydroxide is preferably prepared by mixing a cerium salt and an alkaline solution (for example, an alkaline aqueous solution). Thereby, particles having a very small particle diameter can be obtained, and an excellent polishing scratch reduction effect can be easily obtained.
  • Cerium hydroxide can be obtained by mixing a cerium salt solution (for example, a cerium salt aqueous solution) and an alkali solution. Examples of the cerium salt include Ce (NO 3 ) 4 , Ce (SO 4 ) 2 , Ce (NH 4 ) 2 (NO 3 ) 6 , Ce (NH 4 ) 4 (SO 4 ) 4 and the like.
  • Ce (OH) a X b electron-withdrawing anions (X c ⁇ ) act to improve the reactivity of hydroxide ions, and the abundance of Ce (OH) a X b increases. It is considered that the polishing rate is improved with this.
  • Examples of the anion (X c ⁇ ) include NO 3 ⁇ and SO 4 2 ⁇ . It is considered that the particles containing cerium hydroxide can contain not only Ce (OH) a X b but also Ce (OH) 4 , CeO 2 and the like.
  • the particles containing cerium hydroxide contain Ce (OH) a Xb after the particles are thoroughly washed with pure water and then subjected to FT-IR ATR method (Fourier transformed Infrared Spectrometer Total Reflection method, Fourier transform infrared) This can be confirmed by a method of detecting a peak corresponding to an anion (X c ⁇ ) by a spectrophotometer total reflection measurement method). The presence of an anion (X c ⁇ ) can also be confirmed by XPS (X-ray Photoelectron Spectroscopy, X-ray photoelectron spectroscopy).
  • the lower limit of the ceria content is 50 masses based on the whole abrasive grains (the whole abrasive grains contained in the polishing liquid; hereinafter the same) from the viewpoint of further improving the polishing rate of the insulating material.
  • % Or more more preferably more than 50% by mass, still more preferably 60% by mass or more, particularly preferably 70% by mass or more, particularly preferably 80% by mass or more, very preferably 90% by mass or more, and 95% by mass.
  • % Or more is still more preferable, 98 mass% or more is more preferable, and 99 mass% or more is still more preferable.
  • the lower limit of the average particle size of the abrasive grains in the slurry in the polishing liquid or the polishing liquid set described below is preferably 16 nm or more, more preferably 20 nm or more, and 30 nm or more. More preferably, 40 nm or more is particularly preferable, 50 nm or more is very preferable, 100 nm or more is very preferable, 120 nm or more is more preferable, 150 nm or more is more preferable, 200 nm or more is further preferable, 250 nm or more is particularly preferable, and 300 nm or more is preferable. Highly preferred.
  • the upper limit of the average particle size of the abrasive grains is preferably 1050 nm or less, more preferably 1000 nm or less, still more preferably 800 nm or less, particularly preferably 600 nm or less, and particularly preferably 500 nm or less, from the viewpoint of further suppressing scratches on the surface to be polished. Is very preferable, and 400 nm or less is very preferable. From these viewpoints, the average particle size of the abrasive grains is more preferably 16 to 1050 nm, and further preferably 20 to 1000 nm.
  • the “average particle diameter” of the abrasive grains means the average secondary particle diameter of the abrasive grains.
  • the average particle diameter of the abrasive grains is a volume average particle diameter, and a light diffraction scattering type particle size distribution meter (for example, a product manufactured by Microtrack Bell Co., Ltd.) is used for a polishing liquid or a slurry in a polishing liquid set described later. Name: Microtrack MT3300EXII).
  • the zeta potential (surface potential) of the abrasive grains in the polishing liquid is positive from the viewpoint of obtaining excellent abrasive dispersion stability (the zeta potential exceeds 0 mV).
  • the lower limit of the zeta potential of the abrasive is preferably 10 mV or more, more preferably 20 mV or more, still more preferably 25 mV or more, particularly preferably 30 mV or more, and particularly preferably 40 mV or more from the viewpoint of easily obtaining excellent abrasive dispersion stability.
  • Preferably, 50 mV or more is very preferable.
  • the upper limit of the zeta potential of the abrasive grains is not particularly limited, but is preferably 200 mV or less. From these viewpoints, the zeta potential of the abrasive grains is more preferably 10 to 200 mV.
  • the zeta potential of the abrasive grains can be measured using, for example, a dynamic light scattering type zeta potential measuring device (for example, trade name: DelsaNano C, manufactured by Beckman Coulter, Inc.).
  • the zeta potential of the abrasive can be adjusted using an additive. For example, by bringing a monocarboxylic acid (for example, acetic acid) into contact with an abrasive containing ceria, an abrasive having a positive zeta potential can be obtained.
  • a monocarboxylic acid for example, acetic acid
  • an abrasive having a negative zeta potential can be obtained by bringing an abrasive containing ceria into contact with ammonium dihydrogen phosphate, a material having a carboxyl group (for example, polyacrylic acid), or the like.
  • the lower limit of the abrasive content is preferably 0.005% by mass or more, more preferably 0.01% by mass or more, based on the total mass of the polishing liquid, from the viewpoint of further improving the polishing rate of the insulating material.
  • 0.02% by mass or more is more preferable, 0.03% by mass or more is particularly preferable, 0.04% by mass or more is very preferable, 0.05% by mass or more is very preferable, and 0.1% by mass or more is even more preferable. 0.15 mass% or more is more preferable.
  • the upper limit of the abrasive content is preferably 20% by mass or less, more preferably 15% by mass or less, and more preferably 10% by mass based on the total mass of the polishing liquid from the viewpoint of easily obtaining excellent abrasive dispersion stability.
  • the following is more preferable, 5% by mass or less is particularly preferable, 4% by mass or less is very preferable, 3% by mass or less is very preferable, 1% by mass or less is more preferable, 0.5% by mass or less is more preferable, 0 Is more preferably 3% by mass or less, particularly preferably 0.2% by mass or less.
  • the content of the abrasive grains is more preferably 0.005 to 20% by mass based on the total mass of the polishing liquid.
  • the abrasive grains may include composite particles composed of a plurality of particles in contact with each other.
  • the abrasive grains may include composite particles including first particles and second particles in contact with the first particles, and the composite particles and free particles (eg, contact with the first particles). Second particles).
  • the abrasive grains include first particles and second particles in contact with the first particles.
  • the first particles contain ceria, and the second particles are cerium. It is preferable that it is an aspect containing a compound.
  • By using such abrasive grains it is easy to obtain excellent dispersion stability of the abrasive grains. Examples of the reason why such an effect can be obtained include the following reasons. However, the reason is not limited to the following.
  • the surface of the particles becomes uneven, so that the contact area when the composite particles come into contact with each other is reduced.
  • the dispersion stability is easily improved by suppressing the excessive aggregation of the composite particles.
  • the first particles contain ceria and the second particles contain a cerium compound, this phenomenon is likely to occur, and the dispersion stability is likely to be further improved.
  • cerium compound of the second particles examples include cerium hydroxide and ceria.
  • cerium compound of the second particles a compound different from ceria can be used.
  • the cerium compound preferably contains a cerium hydroxide from the viewpoint of easily obtaining excellent abrasive dispersion stability.
  • the particle size of the second particles is preferably smaller than the particle size of the first particles.
  • the magnitude relationship between the particle sizes of the first particles and the second particles can be determined from the SEM image of the composite particles.
  • particles having a small particle size have a high reaction activity because they have a larger surface area per unit mass than particles having a large particle size. Therefore, since the reaction activity of the second particles having a particle size smaller than that of the first particles is high, when the second particles come into contact with the first particles, the second particles quickly The first particle can be easily covered by interacting with one particle.
  • the lower limit of the particle size of the first particles is preferably 15 nm or more, more preferably 25 nm or more, further preferably 35 nm or more, particularly preferably 40 nm or more, and particularly preferably 50 nm or more, from the viewpoint of further improving the polishing rate of the insulating material.
  • 80 nm or more is very preferable, and 100 nm or more is even more preferable.
  • the upper limit of the particle size of the first particles is preferably 1000 nm or less, more preferably 800 nm or less, more preferably 600 nm, from the viewpoint of improving the dispersibility of the abrasive grains and from easily suppressing scratches on the surface to be polished.
  • the particle diameter of the first particles is more preferably 15 to 1000 nm.
  • the above-mentioned range may be sufficient as the average particle diameter (average secondary particle diameter) of 1st particle
  • the lower limit of the particle size of the second particles is preferably 1 nm or more, more preferably 2 nm or more, and further preferably 3 nm or more from the viewpoint of further improving the polishing rate of the insulating material.
  • the upper limit of the particle size of the second particles is preferably 50 nm or less, more preferably 30 nm or less, and more preferably 25 nm from the viewpoint of improving the dispersibility of the abrasive grains and easily suppressing scratches on the polished surface. The following is more preferable, 20 nm or less is particularly preferable, 15 nm or less is extremely preferable, and 10 nm or less is very preferable. From the above viewpoint, the particle size of the second particles is more preferably 1 to 50 nm. The above-mentioned range may be sufficient as the average particle diameter (average secondary particle diameter) of a 2nd particle.
  • the first particle can have a negative zeta potential.
  • the second particle can have a positive zeta potential.
  • the composite particle including the first particle and the second particle is obtained by bringing the first particle and the second particle into contact with each other using a homogenizer, a nanomizer, a ball mill, a bead mill, a sonicator, or the like, and mutually opposite charges. It can be obtained by contacting the first particles having the second particles with the second particles, contacting the first particles with the second particles in a state where the content of the particles is small, and the like.
  • the lower limit of the content of ceria in the first particle is based on the entire first particle (the entire first particle contained in the polishing liquid; the same applies hereinafter) from the viewpoint of further improving the polishing rate of the insulating material. , 50% by mass or more, preferably 70% by mass or more, more preferably 90% by mass or more, and particularly preferably 95% by mass or more.
  • the first particle may be in an aspect substantially consisting of ceria (an aspect in which 100% by mass of the first particle is substantially ceria).
  • the lower limit of the content of the cerium compound in the second particle is based on the entire second particle (the entire second particle contained in the polishing liquid; the same applies hereinafter) from the viewpoint of further improving the polishing rate of the insulating material. 50 mass% or more is preferable, 70 mass% or more is more preferable, 90 mass% or more is further more preferable, and 95 mass% or more is especially preferable.
  • the second particle may be in an aspect substantially composed of a cerium compound (an aspect in which 100% by mass of the second particle is substantially a cerium compound).
  • the content of the first particles in the abrasive grains containing composite particles is preferably in the following range based on the entire abrasive grains.
  • the lower limit of the content of the first particles is preferably 50% by mass or more, more preferably more than 50% by mass, still more preferably 60% by mass or more, and 70% by mass.
  • % Or more is particularly preferable, 75% by weight or more is very preferable, 80% by weight or more is very preferable, 85% by weight or more is even more preferable, and 90% by weight or more is more preferable.
  • the upper limit of the content of the first particles is preferably 95% by mass or less, more preferably 93% by mass or less, and still more preferably 91% by mass or less. From the above viewpoint, the content of the first particles is more preferably 50 to 95% by mass.
  • the content of the second particles in the abrasive grains containing composite particles is preferably in the following range based on the entire abrasive grains.
  • the lower limit of the content of the second particles is preferably 5% by mass or more, more preferably 7% by mass or more, and further preferably 9% by mass or more.
  • the upper limit of the content of the second particles is preferably 50% by mass or less, more preferably less than 50% by mass, further preferably 40% by mass or less, and further preferably 30% by mass or less from the viewpoint of further improving the polishing rate of the insulating material.
  • the content of the second particles is more preferably 5 to 50% by mass.
  • the content of ceria in the abrasive grains containing composite particles is preferably in the following range based on the entire abrasive grains.
  • the lower limit of the content of ceria is preferably 50% by mass or more, more preferably more than 50% by mass, further preferably 60% by mass or more, and more preferably 70% by mass or more from the viewpoint of further improving the polishing rate of the insulating material.
  • Particularly preferable is 75% by mass or more, extremely preferable 80% by mass or more, still more preferable 85% by mass or more, and more preferable 90% by mass or more.
  • the upper limit of the ceria content is preferably 95% by mass or less, more preferably 93% by mass or less, and still more preferably 91% by mass or less from the viewpoint of further improving the polishing rate of the insulating material. From the above viewpoint, the content of ceria is more preferably 50 to 95% by mass.
  • the content of cerium hydroxide in the abrasive grains containing composite particles is preferably in the following range based on the entire abrasive grains.
  • the lower limit of the content of cerium hydroxide is preferably 5% by mass or more, more preferably 7% by mass or more, and still more preferably 9% by mass or more from the viewpoint of further improving the polishing rate of the insulating material.
  • the upper limit of the content of cerium hydroxide is preferably 50% by mass or less, more preferably less than 50% by mass, further preferably 40% by mass or less, and further preferably 30% by mass or less from the viewpoint of further improving the polishing rate of the insulating material.
  • cerium hydroxide is more preferably 5 to 50% by mass.
  • the content of the first particles is preferably in the following range based on the total amount of the first particles and the second particles.
  • the lower limit of the content of the first particles is preferably 50% by mass or more, more preferably more than 50% by mass, still more preferably 60% by mass or more, and 70% by mass. % Or more is particularly preferable, 75% by weight or more is very preferable, 80% by weight or more is very preferable, 85% by weight or more is even more preferable, and 90% by weight or more is more preferable.
  • the upper limit of the content of the first particles is preferably 95% by mass or less, more preferably 93% by mass or less, and still more preferably 91% by mass or less. From the above viewpoint, the content of the first particles is more preferably 50 to 95% by mass.
  • the content of the second particles is preferably in the following range based on the total amount of the first particles and the second particles.
  • the lower limit of the content of the second particles is preferably 5% by mass or more, more preferably 7% by mass or more, and further preferably 9% by mass or more.
  • the upper limit of the content of the second particles is preferably 50% by mass or less, more preferably less than 50% by mass, further preferably 40% by mass or less, and further preferably 30% by mass or less from the viewpoint of further improving the polishing rate of the insulating material.
  • the content of the second particles is more preferably 5 to 50% by mass.
  • the content of the first particles in the polishing liquid is preferably in the following range based on the total mass of the polishing liquid.
  • the lower limit of the content of the first particles is preferably 0.005% by mass or more, more preferably 0.008% by mass or more, and further 0.01% by mass or more.
  • 0.05% by mass or more is particularly preferable, 0.08% by mass or more is very preferable, 0.1% by mass or more is very preferable, and 0.15% by mass or more is even more preferable.
  • the upper limit of the content of the first particles is preferably 5% by mass or less, more preferably 3% by mass or less, still more preferably 1% by mass or less, and 0.5% by mass. % Or less is particularly preferable, 0.3% by mass or less is extremely preferable, and 0.2% by mass or less is very preferable. From the above viewpoint, the content of the first particles is more preferably 0.005 to 5% by mass.
  • the content of the second particles in the polishing liquid is preferably in the following range based on the total mass of the polishing liquid.
  • the lower limit of the content of the second particles is preferably 0.005% by mass or more from the viewpoint of further improving the chemical interaction between the abrasive grains and the surface to be polished and further improving the polishing rate of the insulating material, 0.008% by mass or more is more preferable, 0.01% by mass or more is further preferable, 0.012% by mass or more is particularly preferable, 0.015% by mass or more is very preferable, and 0.016% by mass or more is very preferable. .
  • the upper limit of the content of the second particles makes it easy to avoid agglomeration of the abrasive grains, and further improves the chemical interaction between the abrasive grains and the surface to be polished, thereby effectively utilizing the characteristics of the abrasive grains.
  • it is preferably 5% by mass or less, more preferably 3% by mass or less, still more preferably 1% by mass or less, particularly preferably 0.5% by mass or less, extremely preferably 0.1% by mass or less, and 05% by mass or less is very preferable, 0.04% by mass or less is more preferable, 0.035% by mass or less is more preferable, 0.03% by mass or less is further preferable, and 0.025% by mass or less is particularly preferable. 0.03 mass% or less is very preferable. From the above viewpoint, the content of the second particles is more preferably 0.005 to 5% by mass.
  • the content of ceria in the polishing liquid containing abrasive grains including composite particles is preferably in the following range based on the total mass of the polishing liquid.
  • the lower limit of the ceria content is preferably 0.005% by mass or more, more preferably 0.008% by mass or more, still more preferably 0.01% by mass or more, from the viewpoint of further improving the polishing rate of the insulating material.
  • 0.05% by mass or more is particularly preferable, 0.08% by mass or more is extremely preferable, 0.1% by mass or more is very preferable, and 0.15% by mass or more is even more preferable.
  • the upper limit of the content of ceria is preferably 5% by mass or less, more preferably 3% by mass or less, further preferably 1% by mass or less, and 0.5% by mass or less from the viewpoint of increasing the storage stability of the polishing liquid. Particularly preferable is 0.3% by mass or less, and very preferable is 0.2% by mass or less. From the above viewpoint, the content of ceria is more preferably 0.005 to 5% by mass.
  • the content of cerium hydroxide in the polishing liquid containing abrasive grains including composite particles is preferably in the following range based on the total mass of the polishing liquid.
  • the lower limit of the cerium hydroxide content is preferably 0.005% by mass or more from the viewpoint of further improving the chemical interaction between the abrasive grains and the surface to be polished and further improving the polishing rate of the insulating material, 0.008% by mass or more is more preferable, 0.01% by mass or more is further preferable, 0.012% by mass or more is particularly preferable, 0.015% by mass or more is very preferable, and 0.016% by mass or more is very preferable. Good.
  • the upper limit of the content of cerium hydroxide makes it easier to avoid agglomeration of the abrasive grains, and further improves the chemical interaction between the abrasive grains and the surface to be polished, effectively utilizing the characteristics of the abrasive grains.
  • it is preferably 5% by mass or less, more preferably 3% by mass or less, still more preferably 1% by mass or less, particularly preferably 0.5% by mass or less, extremely preferably 0.1% by mass or less, and 05% by mass or less is very preferable, 0.04% by mass or less is more preferable, 0.035% by mass or less is more preferable, 0.03% by mass or less is further preferable, and 0.025% by mass or less is particularly preferable. 0.03 mass% or less is very preferable. From the above viewpoint, the content of cerium hydroxide is more preferably 0.005 to 5% by mass.
  • the content of abrasive grains in the polishing liquid containing abrasive grains including composite particles is preferably in the following range based on the total mass of the polishing liquid.
  • the lower limit of the content of abrasive grains is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, still more preferably 0.1% by mass or more, from the viewpoint of further improving the polishing rate of the insulating material. 0.12% by mass or more is particularly preferable, 0.16% by mass or more is very preferable, and 0.18% by mass or more is very preferable.
  • the upper limit of the content of abrasive grains is preferably 10% by mass or less, more preferably 5% by mass or less, still more preferably 1% by mass or less, and 0.5% by mass or less from the viewpoint of increasing the storage stability of the polishing liquid. Is particularly preferable, 0.1% by mass or less is extremely preferable, and 0.2% by mass or less is very preferable. From the above viewpoint, the content of abrasive grains is more preferably 0.01 to 10% by mass.
  • the polishing liquid according to this embodiment contains an additive.
  • the “additive” refers to a substance contained in the polishing liquid in addition to the abrasive grains and the liquid medium.
  • polishing characteristics such as polishing speed and polishing selectivity
  • polishing liquid characteristics such as abrasive dispersion stability and storage stability can be adjusted.
  • the polishing liquid according to this embodiment contains a hydroxy acid having one carboxyl group and 1 to 3 hydroxyl groups (hereinafter referred to as “specific hydroxy acid”) as an essential additive.
  • specific hydroxy acid the number of carboxyl groups is 1, and the number of hydroxyl groups is 1 to 3.
  • the “hydroxyl group” does not include “—OH” in the carboxyl group.
  • the “hydroxyl group” may be either an alcoholic hydroxyl group or a phenolic hydroxyl group.
  • the specific hydroxy acid may not have a phenolic hydroxyl group.
  • the specific hydroxy acid may have one carboxyl group and 1 to 3 alcoholic hydroxyl groups.
  • the specific hydroxy acid may include a compound having one carboxyl group and one hydroxyl group, or may include a compound having one carboxyl group and two hydroxyl groups. A compound having a carboxyl group and three hydroxyl groups may be included.
  • the said specific hydroxy acid can be used individually by 1 type or in combination of 2 or more types.
  • the number of hydroxyl groups in the specific hydroxy acid is preferably 1 to 2 and more preferably 2 from the viewpoint of easily obtaining excellent abrasive dispersion stability.
  • Examples of the specific hydroxy acid include glycolic acid, glyceric acid, lactic acid (for example, DL-lactic acid), 2,2-bis (hydroxymethyl) propionic acid, 2,2-bis (hydroxymethyl) butyric acid, N, N-bis ( 2-hydroxyethyl) glycine, N- [2-hydroxy-1,1-bis (hydroxymethyl) ethyl] glycine, bicine, tricine, tyrosine, serine, threonine and the like.
  • the specific hydroxy acid is lactic acid (for example, DL-lactic acid), 2,2-bis (hydroxymethyl) propionic acid, 2,2-bis (hydroxymethyl) butyric acid from the viewpoint of easily obtaining excellent abrasive dispersion stability.
  • N, N-bis (2-hydroxyethyl) glycine and N- [2-hydroxy-1,1-bis (hydroxymethyl) ethyl] glycine are preferably included.
  • the specific hydroxy acid preferably contains an aliphatic hydroxy acid from the viewpoint of easily obtaining excellent abrasive dispersion stability.
  • the specific hydroxy acid may contain a hydroxy acid containing a nitrogen atom or may contain a hydroxy acid containing no nitrogen atom.
  • the specific hydroxy acid may have an amino group or may not have an amino group.
  • the specific hydroxy acid may contain an amino acid and may not contain an amino acid.
  • the upper limit of the hydroxyl value of the specific hydroxy acid is preferably 1500 or less, more preferably 1300 or less, still more preferably 1100 or less, particularly preferably 1000 or less, and particularly preferably 900 or less from the viewpoint of easily obtaining excellent abrasive dispersion stability. Is very preferred.
  • the lower limit of the hydroxyl value of the specific hydroxy acid is preferably 50 or more, more preferably 150 or more, further preferably 250 or more, particularly preferably 500 or more, and 600 or more from the viewpoint of easily obtaining excellent abrasive dispersion stability. Is very preferable, and 650 or more is very preferable. From these viewpoints, the hydroxyl value of the specific hydroxy acid is more preferably 50 to 1500.
  • the lower limit of the content of the specific hydroxy acid is preferably 0.01% by mass or more, preferably 0.03% by mass or more, based on the total mass of the polishing liquid, from the viewpoint of easily obtaining excellent abrasive dispersion stability. More preferably, 0.05% by mass or more is further preferable, 0.08% by mass or more is particularly preferable, and 0.1% by mass or more is extremely preferable.
  • the upper limit of the content of the specific hydroxy acid is preferably 1.0% by mass or less, more preferably 0.8% by mass or less, based on the total mass of the polishing liquid, from the viewpoint of easily obtaining an appropriate polishing rate of the insulating material.
  • the content of the specific hydroxy acid is more preferably 0.01 to 1.0% by mass based on the total mass of the polishing liquid.
  • the lower limit of the content of the specific hydroxy acid is preferably 10 parts by mass or more, more preferably 20 parts by mass or more, with respect to 100 parts by mass of the abrasive, from the viewpoint of easily obtaining excellent abrasive dispersion stability. More preferably, it is more preferably 40 parts by weight or more, very preferably more than 40 parts by weight, very preferably 50 parts by weight or more, and even more preferably 55 parts by weight or more.
  • the upper limit of the content of the specific hydroxy acid is preferably 100 parts by mass or less, more preferably less than 100 parts by mass, more preferably 80 parts by mass with respect to 100 parts by mass of the abrasive grains from the viewpoint of easily obtaining an appropriate polishing rate of the insulating material.
  • Part or less is more preferable, 70 parts by weight or less is particularly preferable, 65 parts by weight or less is extremely preferable, and 60 parts by weight or less is very preferable.
  • the content of the specific hydroxy acid is more preferably 10 to 100 parts by mass with respect to 100 parts by mass of the abrasive grains.
  • the polishing liquid according to this embodiment may contain a hydroxy acid other than the specific hydroxy acid.
  • a hydroxy acid include a hydroxy acid having 2 or more carboxyl groups, a hydroxy acid having 4 or more hydroxyl groups, and the like.
  • Specific examples include glucuronic acid, gluconic acid, citric acid, tartaric acid and the like.
  • the lower limit of the content of the specific hydroxy acid in the polishing liquid according to the present embodiment is 50% by mass based on the total mass of hydroxy acid contained in the polishing liquid from the viewpoint of easily obtaining excellent abrasive dispersion stability.
  • the above is preferable, 70% by mass or more is more preferable, 90% by mass or more is further preferable, 95% by mass or more is particularly preferable, 97% by mass or more is very preferable, and 99% by mass or more is very preferable.
  • the polishing liquid according to this embodiment contains a polyol (excluding a compound corresponding to a hydroxy acid) as an essential additive.
  • a polyol is a compound having two or more hydroxyl groups in the molecule.
  • Polyols include polyglycerin, polyvinyl alcohol, polyalkylene glycol (polyethylene glycol, etc.), polyoxyalkylene glycol, polyoxyalkylene sorbitol ether (polyoxypropylene sorbitol ether, etc.), polyoxyalkylene condensate of ethylenediamine (ethylenediamine tetrapolyoxy) Ethylene polyoxypropylene), 2,2-bis (4-polyoxyalkylene-oxyphenyl) propane, polyoxyalkylene glyceryl ether, polyoxyalkylene diglyceryl ether, polyoxyalkylene trimethylolpropane ether, polyoxyalkylene pentaerythritol Examples include ether and polyoxyalkylene methyl glucoside.
  • Polyols are polyglycerin, polyalkylene glycol, polyoxyalkylene glycol, polyoxyalkylene sorbitol ether, polyoxyalkylene glyceryl ether, polyoxyalkylene trimethylol propane ether (polyoxyethylene glycol) from the viewpoint of easily obtaining excellent dispersion stability of abrasive grains. And at least one selected from the group consisting of polyoxyalkylene pentaerythritol ethers, and more preferably polyoxyalkylene trimethylol propane ethers.
  • the polyol preferably contains a polyol having no aromatic group from the viewpoint of easily obtaining excellent abrasive dispersion stability.
  • polyether polyol polyol having a polyether structure
  • the polyether polyol preferably has a polyoxyalkylene structure. This makes it easier to form a protective layer on the surface to be polished and adjust the polishing rate gently, so that overpolishing of the recesses can be more easily suppressed and the polished wafer can be finished flat. It is even easier.
  • the number of carbon atoms of the oxyalkylene group (structural unit) in the polyoxyalkylene structure is preferably 1 or more and more preferably 2 or more from the viewpoint of easily obtaining excellent abrasive dispersion stability.
  • the number of carbon atoms of the oxyalkylene group (structural unit) in the polyoxyalkylene structure is preferably 5 or less, more preferably 4 or less, and even more preferably 3 or less from the viewpoint of easily obtaining excellent abrasive dispersion stability. From these viewpoints, the carbon number is preferably 1 to 5.
  • the polyoxyalkylene chain may be a homopolymer chain or a copolymer chain.
  • the copolymer chain may be a block polymer chain or a random polymer chain.
  • Polyols can be used singly or in combination of two or more.
  • the lower limit of the molecular weight of the polyol is preferably 100 or more, more preferably 200 or more, still more preferably 300 or more, particularly preferably 330 or more, and extremely preferably 350 or more, from the viewpoint of easily obtaining excellent abrasive dispersion stability.
  • the upper limit of the molecular weight of the polyol is preferably 5000 or less, more preferably 4000 or less, still more preferably 3000 or less, particularly preferably 1000 or less, and particularly preferably 800 or less, from the viewpoint of easily obtaining excellent abrasive dispersion stability. 500 or less is very preferable, and 400 or less is even more preferable. From these viewpoints, the molecular weight of the polyol is more preferably from 100 to 5,000.
  • the lower limit of the polyol content is preferably 0.05% by mass or more based on the total mass of the polishing liquid from the viewpoint of easily obtaining excellent dispersion stability of the abrasive grains and the viewpoint of further improving the flatness. 0.1% by mass or more is more preferable, 0.2% by mass or more is further preferable, 0.3% by mass or more is particularly preferable, 0.4% by mass or more is very preferable, and 0.5% by mass or more is very preferable. .
  • the upper limit of the polyol content is preferably 5.0% by mass or less, more preferably 3.0% by mass or less, based on the total mass of the polishing liquid, from the viewpoint of easily obtaining an appropriate polishing rate of the insulating material. 0.0 mass% or less is more preferable, and 1.0 mass% or less is particularly preferable. From these viewpoints, the polyol content is more preferably 0.05 to 5.0% by mass based on the total mass of the polishing liquid.
  • the polishing liquid according to this embodiment may further contain any additive (except for the compound corresponding to the hydroxy acid and the compound corresponding to the polyol).
  • Optional additives include amino acids, water-soluble polymers, oxidizing agents (eg, hydrogen peroxide) and the like. Each of these additives can be used alone or in combination of two or more.
  • An amino acid has an effect of stabilizing the pH of the polishing liquid, an effect of easily obtaining excellent dispersion stability of the abrasive grains, and an effect of further improving the polishing rate of the insulating material.
  • amino acids arginine, lysine, aspartic acid, glutamic acid, asparagine, glutamine, histidine, proline, tryptophan, glycine, ⁇ -alanine, ⁇ -alanine, methionine, cysteine, phenylalanine, leucine, valine, isoleucine, glycylglycine, glycine
  • Examples include silalanine.
  • the water-soluble polymer has flatness, in-plane uniformity, polishing selectivity of silicon oxide with respect to silicon nitride (silicon oxide polishing rate / silicon nitride polishing rate), polishing selectivity of silicon oxide with respect to polysilicon (of silicon oxide) This has the effect of adjusting polishing characteristics such as (polishing rate / polysilicon polishing rate).
  • the “water-soluble polymer” is defined as a polymer that dissolves 0.1 g or more in 100 g of water.
  • the water-soluble polymer is not particularly limited, and polyacrylic acid polymers such as polyacrylic acid, polyacrylic acid copolymer, polyacrylic acid salt, and polyacrylic acid copolymer salt; polymethacrylic acid, polymethacrylic acid Polymethacrylic acid polymers such as salts; polyacrylamide; polydimethylacrylamide; polysaccharides such as alginic acid, pectic acid, carboxymethylcellulose, agar, curdlan, dextrin, cyclodextrin, pullulan; vinyl polymers such as polyvinylpyrrolidone and polyacrolein Etc.
  • a water-soluble polymer can be used individually by 1 type or in combination of 2 or more types.
  • the content is preferably 0.0001 to 10% by mass based on the total mass of the polishing liquid from the viewpoint of obtaining the additive effect while suppressing sedimentation of the abrasive grains. .
  • the lower limit of the content of the water-soluble polymer is based on the total mass of the polishing liquid from the viewpoint of obtaining the effect of adding the water-soluble polymer while suppressing sedimentation of abrasive grains. 0.0001 mass% or more is preferable, 0.001 mass% or more is more preferable, and 0.01 mass% or more is still more preferable.
  • the upper limit of the content of the water-soluble polymer is preferably 10% by mass or less, preferably 5% by mass based on the total mass of the polishing liquid from the viewpoint of obtaining the effect of adding the water-soluble polymer while suppressing sedimentation of the abrasive grains. % Or less is more preferable, 1 mass% or less is further more preferable, and 0.5 mass% or less is particularly preferable.
  • the liquid medium in the polishing liquid according to this embodiment is not particularly limited, but water such as deionized water or ultrapure water is preferable.
  • the content of the liquid medium may be the remainder of the polishing liquid excluding the content of other components and is not particularly limited.
  • the lower limit of the pH of the polishing liquid according to the present embodiment is preferably 2.0 or more, more preferably 2.5 or more, still more preferably 3.0 or more, from the viewpoint of easily obtaining excellent abrasive dispersion stability. 3.2 or higher is particularly preferable, 3.5 or higher is extremely preferable, and 4.0 or higher is very preferable.
  • the upper limit of the pH is preferably 7.0 or less, more preferably 6.5 or less, still more preferably 6.0 or less, and particularly preferably 5.0 or less, from the viewpoint of easily obtaining excellent abrasive dispersion stability. From these viewpoints, the pH of the polishing liquid is more preferably 2.0 to 7.0.
  • the pH may be less than 3.0, may be 2.8 or less, and may be 2.5 or less.
  • the pH of the polishing liquid is defined as the pH at a liquid temperature of 25 ° C.
  • the pH of the polishing liquid can be adjusted by an acid component such as an inorganic acid or an organic acid; an alkali component such as ammonia, sodium hydroxide, tetramethylammonium hydroxide (TMAH), imidazole, or alkanolamine.
  • a buffer may be added to stabilize the pH.
  • a buffer may be added as a buffer (a solution containing a buffer). Examples of such a buffer include acetate buffer and phthalate buffer.
  • the pH of the polishing liquid according to this embodiment can be measured with a pH meter (for example, model number PHL-40 manufactured by Toa DKK Corporation). Specifically, for example, after calibrating two pH meters using a phthalate pH buffer solution (pH: 4.01) and a neutral phosphate pH buffer solution (pH: 6.86) as standard buffers, Then, the pH meter electrode is put into the polishing liquid, and the value after 2 minutes has passed and stabilized is measured.
  • the temperature of the standard buffer solution and the polishing solution are both 25 ° C.
  • the polishing liquid according to the present embodiment may be stored as a one-part polishing liquid containing at least abrasive grains, the specific hydroxy acid, a polyol, and a liquid medium, and added with a slurry (first liquid).
  • the components of the polishing liquid are mixed into a slurry and an additive liquid so as to become the polishing liquid by mixing the liquid (second liquid) and stored as a multi-liquid type (for example, two-component type) polishing liquid set. May be.
  • the slurry includes, for example, at least abrasive grains and a liquid medium.
  • the additive liquid includes, for example, at least a hydroxy acid, a polyol, and a liquid medium.
  • the specific hydroxy acid, polyol, optional additive, and buffering agent are preferably contained in the additive liquid among the slurry and the additive liquid.
  • the constituents of the polishing liquid may be stored as a polishing liquid set divided into three or more liquids.
  • the slurry and additive liquid are mixed immediately before or during polishing to prepare a polishing liquid.
  • the one-component polishing liquid may be stored as a polishing liquid storage liquid in which the content of the liquid medium is reduced, and may be diluted with the liquid medium during polishing.
  • the multi-liquid type polishing liquid set may be stored as a slurry storage liquid and an additive liquid storage liquid with a reduced content of the liquid medium, and may be diluted with the liquid medium during polishing.
  • the polishing liquid is supplied onto the polishing surface plate by directly supplying the polishing liquid; supplying the polishing liquid storage liquid and the liquid medium through separate pipes. , A method of supplying them by merging and mixing them; a method of supplying the polishing liquid stock solution and the liquid medium by mixing them in advance, and the like.
  • the polishing rate can be adjusted by arbitrarily changing the composition of these liquids.
  • a polishing liquid set there are the following methods for supplying the polishing liquid onto the polishing surface plate. For example, a method in which slurry and additive liquid are sent through separate pipes, and these pipes are combined and mixed to supply; a slurry storage liquid, a storage liquid for additive liquid, and a liquid medium are sent through separate pipes.
  • a method of supplying them by mixing and mixing them; a method of supplying the slurry and the additive solution after mixing them; a method of supplying the slurry storage solution, the additive solution storage solution and the liquid medium after mixing them in advance, etc. Can be used. Further, it is possible to use a method of supplying the slurry and the additive liquid in the polishing liquid set onto the polishing surface plate, respectively. In this case, the surface to be polished is polished using a polishing liquid obtained by mixing the slurry and the additive liquid on the polishing surface plate.
  • the polishing liquid set according to the present embodiment may be divided into a polishing liquid containing at least the essential component and an additive liquid containing at least an optional component such as an oxidizing agent (for example, hydrogen peroxide).
  • polishing is performed using a mixed liquid obtained by mixing the polishing liquid and the additive liquid (the mixed liquid also corresponds to the “polishing liquid”).
  • the polishing liquid set according to this embodiment is a polishing liquid set divided into three or more liquids, a liquid containing at least a part of the essential component, a liquid containing at least the remainder of the essential component, and at least arbitrary.
  • the aspect divided into the addition liquid containing a component may be sufficient.
  • Each liquid constituting the polishing liquid set may be stored as a storage liquid in which the content of the liquid medium is reduced.
  • the polishing method (substrate polishing method or the like) according to this embodiment may include a polishing step of polishing a surface to be polished (surface to be polished of the substrate or the like) using the one-part polishing liquid.
  • You may provide the grinding
  • the polishing method according to the present embodiment may be a method for polishing a substrate having an insulating material and silicon nitride.
  • the one-part polishing liquid or a slurry and an additive liquid in the polishing liquid set are mixed.
  • a polishing step of selectively polishing the insulating material with respect to silicon nitride may be provided using the polishing liquid obtained in this manner.
  • the base may have, for example, a member containing an insulating material and a member containing silicon nitride.
  • the polishing method according to the present embodiment may be a method for polishing a substrate having an insulating material and polysilicon.
  • the one-part polishing liquid or the slurry and additive liquid in the polishing liquid set are used. You may provide the grinding
  • the base may have, for example, a member containing an insulating material and a member containing polysilicon.
  • the polishing method according to the present embodiment may be a method for polishing a substrate having a first member including a stopper material and a second member including an insulating material and disposed on the first member.
  • the polishing step is a step of polishing the second member until the first member is exposed using the one-part polishing liquid or a polishing liquid obtained by mixing the slurry and the additive liquid in the polishing liquid set. You may have.
  • the first member and the second member are obtained using the one-component polishing liquid or the polishing liquid obtained by mixing the slurry and the additive liquid in the polishing liquid set after the first member is exposed.
  • “Selectively polishing material A with respect to material B” means that the polishing rate of material A is higher than the polishing rate of material B under the same polishing conditions. More specifically, for example, the material A is polished at a polishing rate ratio of the polishing rate of the material A to the polishing rate of the material B of 80 or more.
  • the polishing liquid is supplied between the material to be polished and the polishing pad in a state where the material to be polished of the substrate having the material to be polished is pressed against the polishing pad (polishing cloth) of the polishing surface plate.
  • the surface to be polished of the material to be polished is polished by relatively moving the substrate and the polishing surface plate.
  • at least a part of the material to be polished is removed by polishing.
  • Examples of the substrate to be polished include a substrate to be polished.
  • Examples of the substrate to be polished include a substrate in which a material to be polished is formed on a substrate related to semiconductor element manufacturing (for example, a semiconductor substrate on which an STI pattern, a gate pattern, a wiring pattern, etc. are formed).
  • Examples of the material to be polished include an insulating material such as silicon oxide (excluding a material corresponding to a stopper material); a stopper material such as polysilicon and silicon nitride.
  • the material to be polished may be a single material or a plurality of materials. When a plurality of materials are exposed on the surface to be polished, they can be regarded as materials to be polished.
  • the material to be polished may be in the form of a film (film to be polished), and may be a silicon oxide film, a polysilicon film, a silicon nitride film, or the like.
  • the polishing liquid according to this embodiment is preferably used for polishing a surface to be polished containing silicon oxide.
  • a stopper polishing stop layer disposed under the insulating material, and a substrate (semiconductor substrate or the like) disposed under the stopper
  • the insulating material can be polished.
  • the stopper material constituting the stopper is a material whose polishing rate is lower than that of the insulating material, and polysilicon, silicon nitride and the like are preferable.
  • the insulating material can be prevented from being excessively polished, so that the flatness of the insulating material after polishing can be improved.
  • Examples of a method for producing a material to be polished by the polishing liquid according to this embodiment include a low pressure CVD method, a quasi-atmospheric pressure CVD method, a plasma CVD method, and other CVD methods; a spin coating method in which a liquid material is applied to a rotating substrate. Etc.
  • polishing method for example, a substrate having an insulating material formed on a semiconductor substrate
  • a polishing apparatus a general polishing apparatus having a holder capable of holding a substrate having a surface to be polished and a polishing surface plate to which a polishing pad can be attached can be used.
  • a motor capable of changing the rotation speed.
  • a polishing apparatus for example, a polishing apparatus: Reflexion manufactured by APPLIED MATERIALS can be used.
  • polishing pad general nonwoven fabric, foam, non-foam, etc.
  • the material of the polishing pad is polyurethane, acrylic resin, polyester, acrylic-ester copolymer, polytetrafluoroethylene, polypropylene, polyethylene, poly-4-methylpentene, cellulose, cellulose ester, polyamide (for example, nylon (trade name)) And aramid), polyimide, polyimide amide, polysiloxane copolymer, oxirane compound, phenol resin, polystyrene, polycarbonate, epoxy resin and the like.
  • the material of the polishing pad is preferably at least one selected from the group consisting of foamed polyurethane and non-foamed polyurethane, particularly from the viewpoint of further improving the polishing rate and flatness. It is preferable that the polishing pad is grooved so that the polishing liquid accumulates.
  • the upper limit of the rotation speed of the polishing platen is preferably 200 min ⁇ 1 or less so that the substrate does not pop out, and the upper limit of the polishing pressure (working load) applied to the substrate causes polishing flaws. From the viewpoint of sufficiently suppressing this, 15 psi (103 kPa) or less is preferable.
  • limiting in this supply amount it is preferable that the surface of a polishing pad is always covered with polishing liquid.
  • the substrate after polishing is preferably washed well under running water to remove particles adhering to the substrate.
  • dilute hydrofluoric acid or ammonia water may be used in addition to pure water, and a brush may be used in combination to increase cleaning efficiency.
  • the polishing liquid, the polishing liquid set and the polishing method according to this embodiment can be suitably used for forming STI.
  • the lower limit of the polishing rate ratio of the insulating material (for example, silicon oxide) to the stopper material (for example, silicon nitride and polysilicon) is 80 or more.
  • the polishing rate ratio is less than 80, the polishing rate of the insulating material with respect to the polishing rate of the stopper material is small, and it tends to be difficult to stop polishing at a predetermined position when forming the STI.
  • the polishing rate ratio is 80 or more, it is easy to stop polishing, which is more suitable for formation of STI.
  • the lower limit of the polishing rate of the insulating material is preferably 70 nm / min or more, more preferably 100 nm / min or more, further preferably 150 nm / min or more, particularly preferably 180 nm / min or more, and 200 nm / min or more. Highly preferred.
  • the upper limit of the polishing rate of the stopper material is preferably 10 nm / min or less, more preferably 7 nm / min or less, and further preferably 5 nm / min or less.
  • the polishing liquid, the polishing liquid set and the polishing method according to this embodiment can also be used for polishing a premetal insulating material.
  • a premetal insulating material for example, phosphorus-silicate glass or boron-phosphorus-silicate glass is used in addition to silicon oxide, and silicon oxyfluoride, fluorinated amorphous carbon, and the like can also be used.
  • the polishing liquid, the polishing liquid set, and the polishing method according to this embodiment can be applied to materials other than insulating materials such as silicon oxide.
  • materials include high dielectric constant materials such as Hf-based, Ti-based, and Ta-based oxides; semiconductor materials such as silicon, amorphous silicon, SiC, SiGe, Ge, GaN, GaP, GaAs, and organic semiconductors; GeSbTe Inorganic conductive materials such as ITO; Polymer resins such as polyimides, polybenzoxazoles, acrylics, epoxies, and phenols.
  • the polishing liquid, the polishing liquid set, and the polishing method according to this embodiment are not only film-like objects to be polished, but also various types composed of glass, silicon, SiC, SiGe, Ge, GaN, GaP, GaAs, sapphire, plastic, and the like. It can also be applied to substrates.
  • the polishing liquid, the polishing liquid set, and the polishing method according to the present embodiment are not only for manufacturing semiconductor elements, but also for image display devices such as TFTs and organic ELs; optical parts such as photomasks, lenses, prisms, optical fibers, and single crystal scintillators Optical elements such as optical switching elements and optical waveguides; light emitting elements such as solid-state lasers and blue laser LEDs; and magnetic storage devices such as magnetic disks and magnetic heads.
  • ⁇ Preparation of polishing liquid for CMP> After mixing the ceria powder (ceria particles) prepared above and deionized water, the polyols listed in Table 1 or Table 2 (manufactured by Nippon Emulsifier Co., Ltd., trade name: TMP-60, polyoxyethylene trimethylolpropane) Ether) and hydroxy acid were added. Then, ultrasonic dispersion is performed while stirring, and CMP containing 0.18% by mass of ceria particles, 0.50% by mass of polyol, and 0.10% by mass of hydroxy acid based on the total mass of the polishing slurry for CMP. A polishing liquid was obtained. The ultrasonic dispersion was performed at an ultrasonic frequency of 400 kHz and a dispersion time of 30 minutes.
  • Example 6 ⁇ Preparation of ceria slurry> Ceria particles (first particles) and Wako Pure Chemical Industries, Ltd. trade name: ammonium dihydrogen phosphate (molecular weight: 97.99) are mixed to obtain 5.0% by mass (solid content) of ceria particles. Content) A ceria slurry (pH: 7) was prepared. The blending amount of ammonium dihydrogen phosphate was adjusted to 1% by mass based on the total amount of ceria particles.
  • the resulting precipitate (precipitate containing cerium hydroxide) was subjected to solid-liquid separation by centrifuging (4000 min ⁇ 1 , 5 minutes) and then removing the liquid phase by decantation. After mixing 10 g of particles obtained by solid-liquid separation and 990 g of water, the particles are dispersed in water using an ultrasonic cleaning machine, and contain cerium hydroxide particles (second particles). A hydroxide slurry (particle content: 1.0 mass%) was prepared.
  • the average particle size (average secondary particle size) of the cerium hydroxide particles in the cerium hydroxide slurry was measured using a product name: N5 manufactured by Beckman Coulter, Inc., it was 10 nm.
  • the measuring method is as follows. First, about 1 mL of a measurement sample (cerium hydroxide slurry, aqueous dispersion) containing 1.0 mass% cerium hydroxide particles was placed in a 1 cm square cell, and then the cell was placed in N5. The refractive index of the N5 soft measurement sample information was set to 1.333, the viscosity was set to 0.887 mPa ⁇ s, the measurement was performed at 25 ° C., and the value displayed as Unimodal Size Mean was read.
  • the cerium hydroxide particles contained at least a part of particles having nitrate ions bonded to the cerium element. Moreover, since the particles having hydroxide ions bonded to the cerium element are contained in at least a part of the cerium hydroxide particles, it was confirmed that the cerium hydroxide particles contain cerium hydroxide. From these results, it was confirmed that the hydroxide of cerium contains hydroxide ions bonded to the cerium element.
  • the polishing liquid for CMP includes, as abrasive grains, cerium hydroxide particles that are not in contact with ceria particles (free particles) in addition to composite particles that include ceria particles and cerium hydroxide particles in contact with the ceria particles. ) And the mass ratio of ceria particles to cerium hydroxide particles was 10: 1 (ceria: cerium hydroxide).
  • PH of polishing liquid for CMP The pH of the polishing liquid for CMP was evaluated under the following conditions. The results are shown in Tables 1 and 2.
  • Measurement temperature 25 ° C
  • Measuring device manufactured by Toa DKK Corporation, model number PHL-40
  • Measurement method Two-point calibration using a standard buffer (phthalate pH buffer, pH: 4.01 (25 ° C.); neutral phosphate pH buffer, pH: 6.86 (25 ° C.)) Thereafter, the electrode was put into a polishing slurry for CMP, and the pH after being stabilized for 2 minutes or more was measured with the measuring device.
  • the particle size change rate was calculated by measuring the particle size (MV: volume average particle size) of the abrasive grains in the CMP polishing solution before and after storage of the CMP polishing solution. .
  • the particle size change rate was calculated based on the following formula.
  • the CMP polishing liquid immediately after preparation was stored at 25 ° C. for 168 hours.
  • the particle size before and after storage was measured using a laser diffraction / scattering particle size distribution analyzer (trade name: Microtrack MT3300EXII, manufactured by Microtrack Bell Co., Ltd.). The results are shown in Tables 1 and 2.
  • Change rate of particle size (%)
  • the polishing rate was calculated by polishing the silicon oxide film under the following conditions using the respective CMP polishing liquids before and after storage, and the rate of change of the polishing rate was calculated.
  • the rate of change of the polishing rate was calculated based on the following formula.
  • the CMP polishing liquid immediately after preparation was stored at 25 ° C. for 168 hours. The results are shown in Tables 1 and 2.
  • Rate of change in polishing rate (%)
  • a ⁇ 200 mm silicon wafer on which a silicon oxide film was formed was set on a holder to which a suction pad for attaching a substrate was attached in a polishing apparatus (manufactured by APPLIED MATERIALS, product name: Reflexion).
  • a holder was placed on a surface plate with a porous urethane resin pad attached so that the silicon oxide film faces the pad.
  • the substrate was pressed against the pad with a polishing load of 20 kPa while supplying the polishing slurry for CMP onto the pad at a supply rate of 200 mL / min. At this time, polishing was performed by rotating the platen at 78 min ⁇ 1 and the holder at 98 min ⁇ 1 for 1 min. The polished wafer was thoroughly washed with pure water and dried. The change in film thickness before and after polishing of the silicon oxide film was measured using an optical interference type film thickness measuring device to determine the polishing rate.

Abstract

砥粒と、ヒドロキシ酸と、ポリオールと、液状媒体と、を含有し、砥粒のゼータ電位が正であり、ヒドロキシ酸が1個のカルボキシル基と1~3個の水酸基とを有する、研磨液。

Description

研磨液、研磨液セット及び研磨方法
 本発明は、研磨液、研磨液セット及び研磨方法に関する。特に、本発明は、半導体素子の製造技術である基体表面の平坦化工程において用いることが可能な研磨液、研磨液セット及び研磨方法に関する。更に詳しくは、本発明は、シャロートレンチ分離(シャロー・トレンチ・アイソレーション。以下「STI」という。)絶縁材料、プリメタル絶縁材料、層間絶縁材料等の平坦化工程において用いることが可能な研磨液、研磨液セット及び研磨方法に関する。
 近年の半導体素子の製造工程では、高密度化及び微細化のための加工技術の重要性がますます高まっている。加工技術の一つであるCMP(ケミカル・メカニカル・ポリッシング:化学機械研磨)技術は、半導体素子の製造工程において、STIの形成、プリメタル絶縁材料又は層間絶縁材料の平坦化、プラグ又は埋め込み金属配線の形成等に必須の技術となっている。
 最も多用されている研磨液としては、例えば、砥粒として、ヒュームドシリカ、コロイダルシリカ等のシリカ(酸化珪素)粒子を含むシリカ系研磨液が挙げられる。シリカ系研磨液は、汎用性が高いことが特徴であり、砥粒含有量、pH、添加剤等を適切に選択することで、絶縁材料及び導電材料を問わず幅広い種類の材料を研磨できる。
 一方で、主に酸化珪素等の絶縁材料を対象とした研磨液として、セリウム化合物粒子を砥粒として含む研磨液の需要も拡大している。例えば、セリア(酸化セリウム)粒子を砥粒として含むセリア系研磨液は、シリカ系研磨液よりも低い砥粒含有量でも高速に酸化珪素を研磨できる(例えば、下記特許文献1及び2参照)。
特開平10-106994号公報 特開平08-022970号公報
 ところで、砥粒を含有する研磨液を一定期間保管した際に、砥粒同士が凝集する等して砥粒の状態が変化すると、当該研磨液を用いて得られる研磨速度が低下する場合がある。そのため、砥粒を含有する研磨液に対しては、砥粒の分散安定性を向上させることが求められる。
 本発明は、前記課題を解決しようとするものであり、優れた砥粒の分散安定性を有する研磨液を提供することを目的とする。本発明は、前記研磨液を得るための研磨液セットを提供することを目的とする。本発明は、前記研磨液又は前記研磨液セットを用いた研磨方法を提供することを目的とする。
 本発明者は、ポリオールを含有する研磨液を用いることにより絶縁材料の研磨速度等の研磨特性を向上させることができるものの、研磨液中において砥粒が凝集する場合があることを見出した。これに対し、本発明者は、正のゼータ電位を有する砥粒(陽イオン性砥粒)と、特定のヒドロキシ酸と、ポリオールと、を併用することにより、ポリオールを含有する研磨液において砥粒の分散安定性を向上させることができることを見出した。
 本発明に係る研磨液は、砥粒と、ヒドロキシ酸と、ポリオールと、液状媒体と、を含有し、前記砥粒のゼータ電位が正であり、前記ヒドロキシ酸が1個のカルボキシル基と1~3個の水酸基とを有する。
 本発明に係る研磨液は、優れた砥粒の分散安定性を有する。このような研磨液によれば、研磨液を一定期間保管する場合であっても、研磨速度が低下することを抑制することができる。
 前記ヒドロキシ酸は、1個のカルボキシル基と1個の水酸基とを有する化合物を含んでいてもよく、1個のカルボキシル基と2個の水酸基とを有する化合物を含んでいてもよい。
 前記ポリオールは、ポリエーテルポリオールを含むことが好ましい。
 前記ヒドロキシ酸の含有量は、0.01~1.0質量%であることが好ましい。
 前記ポリオールの含有量は、0.05~5.0質量%であることが好ましい。
 本発明の一側面は、酸化珪素を含む被研磨面の研磨への前記研磨液の使用に関する。すなわち、本発明に係る研磨液は、酸化珪素を含む被研磨面を研磨するために使用されることが好ましい。
 本発明に係る研磨液セットは、前記研磨液の構成成分が第1の液と第2の液とに分けて保存され、前記第1の液が、前記砥粒と、液状媒体と、を含み、前記第2の液が、前記ヒドロキシ酸と、前記ポリオールと、液状媒体と、を含む。本発明に係る研磨液セットによれば、本発明に係る研磨液と同様の前記効果を得ることができる。
 本発明に係る研磨方法は、前記研磨液を用いて被研磨面を研磨する工程を備えていてもよく、前記研磨液セットにおける前記第1の液と前記第2の液とを混合して得られる研磨液を用いて被研磨面を研磨する工程を備えていてもよい。これらの研磨方法によれば、前記研磨液又は前記研磨液セットを用いることにより、本発明に係る研磨液と同様の前記効果を得ることができる。
 本発明に係る研磨方法の一態様は、絶縁材料及び窒化珪素を有する基体の研磨方法であって、前記研磨液を用いて絶縁材料を窒化珪素に対して選択的に研磨する工程を備えていてもよく、前記研磨液セットにおける前記第1の液と前記第2の液とを混合して得られる研磨液を用いて絶縁材料を窒化珪素に対して選択的に研磨する工程を備えていてもよい。これらの研磨方法によれば、前記研磨液又は前記研磨液セットを用いることにより、絶縁材料を窒化珪素に対して選択的に研磨する場合において、本発明に係る研磨液と同様の前記効果を得ることができる。
 本発明に係る研磨方法の他の態様は、絶縁材料及びポリシリコンを有する基体の研磨方法であって、前記研磨液を用いて絶縁材料をポリシリコンに対して選択的に研磨する工程を備えていてもよく、前記研磨液セットにおける前記第1の液と前記第2の液とを混合して得られる研磨液を用いて絶縁材料をポリシリコンに対して選択的に研磨する工程を備えていてもよい。これらの研磨方法によれば、前記研磨液又は前記研磨液セットを用いることにより、絶縁材料をポリシリコンに対して選択的に研磨する場合において、本発明に係る研磨液と同様の前記効果を得ることができる。
 本発明によれば、優れた砥粒の分散安定性を有する研磨液を提供することができる。本発明によれば、前記研磨液を得るための研磨液セットを提供することができる。本発明によれば、前記研磨液又は前記研磨液セットを用いた研磨方法を提供することができる。
 本発明によれば、基体表面の平坦化工程への研磨液又は研磨液セットの使用を提供することができる。本発明によれば、STI絶縁材料、プリメタル絶縁材料又は層間絶縁材料の平坦化工程への研磨液又は研磨液セットの使用を提供することができる。本発明によれば、絶縁材料をストッパ材料に対して選択的に研磨する研磨工程への研磨液又は研磨液セットの使用を提供することができる。
 以下、本発明の実施形態に係る研磨液、研磨液セット、及び、これらを用いた研磨方法について詳細に説明する。
<定義>
 本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。「A又はB」とは、A及びBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。本明細書に例示する材料は、特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。本明細書において、組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。
 本明細書において、「研磨液」(polishing liquid、abrasive)とは、研磨時に被研磨面に触れる組成物として定義される。「研磨液」という語句自体は、研磨液に含有される成分を何ら限定しない。後述するように、本実施形態に係る研磨液は砥粒(abrasive grain)を含有する。砥粒は、「研磨粒子」(abrasive particle)ともいわれるが、本明細書では「砥粒」という。砥粒は、一般的には固体粒子であって、研磨時に、砥粒が有する機械的作用、及び、砥粒(主に砥粒の表面)の化学的作用によって、除去対象物が除去(remove)されると考えられるが、これに限定されない。
<研磨液>
 本実施形態に係る研磨液は、例えばCMP用研磨液である。本実施形態に係る研磨液は、砥粒と、ヒドロキシ酸と、ポリオールと、液状媒体と、を含有し、前記砥粒のゼータ電位が正であり、前記ヒドロキシ酸が1個のカルボキシル基と1~3個の水酸基とを有する。本実施形態に係る研磨液は、優れた砥粒の分散安定性を有する。本実施形態に係る研磨液によれば、研磨液を一定期間(例えば168時間以上)保管する場合であっても、研磨速度が低下することを抑制することができる。また、本実施形態に係る研磨液によれば、研磨液の調製直後から高い研磨速度を得つつ、研磨液を一定期間(例えば168時間以上)保管する場合であっても、研磨速度が低下することを抑制することができる。
 優れた砥粒の分散安定性が得られる効果が奏される要因は必ずしも明らかではないが、本発明者は以下のように推測している。
 すなわち、ヒドロキシ酸のカルボキシル基からプロトン(H)が解離することにより生成するCOOは、正のゼータ電位を有する砥粒に吸着できる。2個以上のカルボキシル基を有するヒドロキシ酸を用いる場合、砥粒に吸着したCOOを介して砥粒同士が結合しやすいことから砥粒が凝集しやすい。これに対し、ポリオールを含有する研磨液においてヒドロキシ酸のカルボキシル基の数を1個に留めることで、COOを介して砥粒同士が結合しにくくなり、砥粒の凝集を抑制しやすい。
 また、ヒドロキシ酸同士は、水酸基を介して結合することができる。そのため、ヒドロキシ酸の水酸基の数が多いと、砥粒に吸着したヒドロキシ酸の水酸基を介して砥粒が凝集しやすい。これに対し、ポリオールを含有する研磨液においてヒドロキシ酸の水酸基の数を1~3個に留めることで、ヒドロキシ酸の水酸基を介して砥粒同士が結合しにくくなり、砥粒の凝集を抑制しやすい。
 これらの作用により、本実施形態に係る研磨液では、優れた砥粒の分散安定性を達成することができる。
(砥粒)
 本実施形態に係る研磨液は、陽イオン性砥粒として、研磨液中において正のゼータ電位を有する砥粒を含有する。砥粒は、絶縁材料を高い研磨速度で研磨する観点から、セリア、シリカ、アルミナ、ジルコニア、イットリア及び4価金属元素の水酸化物からなる群より選択される少なくとも一種を含むことが好ましく、セリアを含むことがより好ましい。砥粒は、一種を単独で又は二種以上を組み合わせて使用することができる。
 「4価金属元素の水酸化物」とは、4価の金属(M4+)と、少なくとも1つの水酸化物イオン(OH)とを含む化合物である。4価金属元素の水酸化物は、水酸化物イオン以外の陰イオン(例えば、硝酸イオンNO 及び硫酸イオンSO 2-)を含んでいてもよい。例えば、4価金属元素の水酸化物は、4価金属元素に結合した陰イオン(例えば、硝酸イオンNO 及び硫酸イオンSO 2-)を含んでいてもよい。4価金属元素の水酸化物は、4価金属元素の塩(金属塩)と、アルカリ源(塩基)とを反応させることにより作製できる。
 4価金属元素の水酸化物は、絶縁材料の研磨速度を更に向上させる観点から、セリウム水酸化物(4価セリウムの水酸化物)を含むことが好ましい。セリウム水酸化物は、セリウム塩と、アルカリ源(塩基)とを反応させることにより作製できる。セリウム水酸化物は、セリウム塩とアルカリ液(例えばアルカリ水溶液)とを混合することにより作製されることが好ましい。これにより、粒径が極めて細かい粒子を得ることができ、優れた研磨傷の低減効果を得やすい。セリウム水酸化物は、セリウム塩溶液(例えばセリウム塩水溶液)とアルカリ液とを混合することにより得ることができる。セリウム塩としては、Ce(NO、Ce(SO、Ce(NH(NO、Ce(NH(SO等が挙げられる。
 セリウム水酸化物の製造条件等に応じて、4価セリウム(Ce4+)、1~3個の水酸化物イオン(OH)及び1~3個の陰イオン(Xc-)からなるCe(OH)(式中、a+b×c=4である)を含む粒子が生成すると考えられる(なお、このような粒子もセリウム水酸化物である)。Ce(OH)では、電子吸引性の陰イオン(Xc-)が作用して水酸化物イオンの反応性が向上しており、Ce(OH)の存在量が増加するに伴い研磨速度が向上すると考えられる。陰イオン(Xc-)としては、例えば、NO 及びSO 2-が挙げられる。セリウム水酸化物を含む粒子は、Ce(OH)だけでなく、Ce(OH)、CeO等も含み得ると考えられる。
 セリウム水酸化物を含む粒子がCe(OH)を含むことは、粒子を純水でよく洗浄した後に、FT-IR ATR法(Fourier transform Infra Red Spectrometer Attenuated Total Reflection法、フーリエ変換赤外分光光度計全反射測定法)で、陰イオン(Xc-)に該当するピークを検出する方法により確認できる。XPS法(X-ray Photoelectron Spectroscopy、X線光電子分光法)により、陰イオン(Xc-)の存在を確認することもできる。
 砥粒がセリアを含む場合、セリアの含有量の下限は、絶縁材料の研磨速度を更に向上させる観点から、砥粒全体(研磨液に含まれる砥粒全体。以下同様)を基準として、50質量%以上が好ましく、50質量%を超えることがより好ましく、60質量%以上が更に好ましく、70質量%以上が特に好ましく、80質量%以上が極めて好ましく、90質量%以上が非常に好ましく、95質量%以上がより一層好ましく、98質量%以上がより好ましく、99質量%以上が更に好ましい。砥粒が後述の複合粒子を含まない態様においてこれらの数値範囲が満たされていてよい。
 研磨液、又は、後述する研磨液セットにおけるスラリ中の砥粒の平均粒径の下限は、絶縁材料の研磨速度を更に向上させる観点から、16nm以上が好ましく、20nm以上がより好ましく、30nm以上が更に好ましく、40nm以上が特に好ましく、50nm以上が極めて好ましく、100nm以上が非常に好ましく、120nm以上がより一層好ましく、150nm以上がより好ましく、200nm以上が更に好ましく、250nm以上が特に好ましく、300nm以上が極めて好ましい。砥粒の平均粒径の上限は、被研磨面に傷がつくことを更に抑制する観点から、1050nm以下が好ましく、1000nm以下がより好ましく、800nm以下が更に好ましく、600nm以下が特に好ましく、500nm以下が極めて好ましく、400nm以下が非常に好ましい。これらの観点から、砥粒の平均粒径は、16~1050nmであることがより好ましく、20~1000nmであることが更に好ましい。
 砥粒の「平均粒径」とは、砥粒の平均二次粒径を意味する。例えば、砥粒の平均粒径は、体積平均粒径であり、研磨液、又は、後述する研磨液セットにおけるスラリについて、光回折散乱式粒度分布計(例えば、マイクロトラック・ベル株式会社製の商品名:マイクロトラックMT3300EXII)を用いて測定することができる。
 研磨液中における砥粒のゼータ電位(表面電位)は、優れた砥粒の分散安定性を得る観点から、正である(ゼータ電位が0mVを超える)。砥粒のゼータ電位の下限は、優れた砥粒の分散安定性を得やすい観点から、10mV以上が好ましく、20mV以上がより好ましく、25mV以上が更に好ましく、30mV以上が特に好ましく、40mV以上が極めて好ましく、50mV以上が非常に好ましい。砥粒のゼータ電位の上限は、特に限定されないが、200mV以下が好ましい。これらの観点から、砥粒のゼータ電位は、10~200mVがより好ましい。
 砥粒のゼータ電位は、例えば、動的光散乱式ゼータ電位測定装置(例えば、ベックマン・コールター株式会社製、商品名:DelsaNano C)を用いて測定することができる。砥粒のゼータ電位は、添加剤を用いて調整できる。例えば、セリアを含有する砥粒にモノカルボン酸(例えば酢酸)を接触させることにより、正のゼータ電位を有する砥粒を得ることができる。また、セリアを含有する砥粒に、リン酸二水素アンモニウム、カルボキシル基を有する材料(例えばポリアクリル酸)等を接触させることにより、負のゼータ電位を有する砥粒を得ることができる。
 砥粒の含有量の下限は、絶縁材料の研磨速度を更に向上させる観点から、研磨液の全質量を基準として、0.005質量%以上が好ましく、0.01質量%以上がより好ましく、0.02質量%以上が更に好ましく、0.03質量%以上が特に好ましく、0.04質量%以上が極めて好ましく、0.05質量%以上が非常に好ましく、0.1質量%以上がより一層好ましく、0.15質量%以上がより好ましい。砥粒の含有量の上限は、優れた砥粒の分散安定性を得やすい観点から、研磨液の全質量を基準として、20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下が更に好ましく、5質量%以下が特に好ましく、4質量%以下が極めて好ましく、3質量%以下が非常に好ましく、1質量%以下がより一層好ましく、0.5質量%以下がより好ましく、0.3質量%以下が更に好ましく、0.2質量%以下が特に好ましい。これらの観点から、砥粒の含有量は、研磨液の全質量を基準として0.005~20質量%であることがより好ましい。
 砥粒は、互いに接触した複数の粒子から構成される複合粒子を含んでいてよい。例えば、砥粒は、第1の粒子と、当該第1の粒子に接触した第2の粒子と、を含む複合粒子を含んでいてよく、複合粒子と遊離粒子(例えば、第1の粒子と接触していない第2の粒子)とを含んでいてよい。
 砥粒は、複合粒子を含む態様として、第1の粒子と、当該第1の粒子に接触した第2の粒子と、を含み、第1の粒子がセリアを含有し、第2の粒子がセリウム化合物を含有する態様であることが好ましい。このような砥粒を用いることにより、優れた砥粒の分散安定性を得やすい。このような効果が得られる理由としては、例えば、下記の理由が挙げられる。但し、理由は下記に限定されない。
 すなわち、第2の粒子が第1の粒子に接触することによって粒子の表面に凹凸が生じることにより、複合粒子同士が接触した際の接触面積が減少する。その効果、複合粒子の過度の凝集が抑制されることにより分散安定性が向上しやすい。そして、第1の粒子がセリアを含有すると共に第2の粒子がセリウム化合物を含有することによって当該現象が生じやすくなり、分散安定性が更に向上しやすい。
 第2の粒子のセリウム化合物としては、セリウム水酸化物、セリア等が挙げられる。第2の粒子のセリウム化合物としては、セリアとは異なる化合物を用いることができる。セリウム化合物は、優れた砥粒の分散安定性を得やすい観点から、セリウム水酸化物を含むことが好ましい。
 第2の粒子の粒径は、第1の粒子の粒径よりも小さいことが好ましい。第1の粒子及び第2の粒子の粒径の大小関係は、複合粒子のSEM画像等から判別することができる。一般的に、粒径が小さい粒子では、粒径が大きい粒子に比べて単位質量当たりの表面積が大きいことから反応活性が高い。そのため、第1の粒子の粒径よりも小さい粒径を有する第2の粒子の反応活性が高いことから、第2の粒子が第1の粒子と接触した際に第2の粒子が速やかに第1の粒子と相互作用して第1の粒子を容易に覆うことができる。
 第1の粒子の粒径の下限は、絶縁材料の研磨速度を更に向上させる観点から、15nm以上が好ましく、25nm以上がより好ましく、35nm以上が更に好ましく、40nm以上が特に好ましく、50nm以上が極めて好ましく、80nm以上が非常に好ましく、100nm以上がより一層好ましい。第1の粒子の粒径の上限は、砥粒の分散性が向上する観点、及び、被研磨面に傷がつくことが抑制されやすい観点から、1000nm以下が好ましく、800nm以下がより好ましく、600nm以下が更に好ましく、400nm以下が特に好ましく、300nm以下が極めて好ましく、200nm以下が非常に好ましく、150nm以下がより一層好ましい。前記観点から、第1の粒子の粒径は、15~1000nmであることがより好ましい。第1の粒子の平均粒径(平均二次粒径)が上述の範囲であってもよい。
 第2の粒子の粒径の下限は、絶縁材料の研磨速度を更に向上させる観点から、1nm以上が好ましく、2nm以上がより好ましく、3nm以上が更に好ましい。第2の粒子の粒径の上限は、砥粒の分散性が向上する観点、及び、被研磨面に傷がつくことが抑制されやすい観点から、50nm以下が好ましく、30nm以下がより好ましく、25nm以下が更に好ましく、20nm以下が特に好ましく、15nm以下が極めて好ましく、10nm以下が非常に好ましい。前記観点から、第2の粒子の粒径は、1~50nmであることがより好ましい。第2の粒子の平均粒径(平均二次粒径)が上述の範囲であってもよい。
 第1の粒子は、負のゼータ電位を有することができる。第2の粒子は、正のゼータ電位を有することができる。
 第1の粒子及び第2の粒子を含む複合粒子は、ホモジナイザー、ナノマイザー、ボールミル、ビーズミル、超音波処理機等を用いて第1の粒子と第2の粒子とを接触させること、互いに相反する電荷を有する第1の粒子と第2の粒子とを接触させること、粒子の含有量が少ない状態で第1の粒子と第2の粒子とを接触させることなどにより得ることができる。
 第1の粒子におけるセリアの含有量の下限は、絶縁材料の研磨速度を更に向上させる観点から、第1の粒子の全体(研磨液に含まれる第1の粒子の全体。以下同様)を基準として、50質量%以上が好ましく、70質量%以上がより好ましく、90質量%以上が更に好ましく、95質量%以上が特に好ましい。第1の粒子は、実質的にセリアからなる態様(実質的に第1の粒子の100質量%がセリアである態様)であってもよい。
 第2の粒子におけるセリウム化合物の含有量の下限は、絶縁材料の研磨速度を更に向上させる観点から、第2の粒子の全体(研磨液に含まれる第2の粒子の全体。以下同様)を基準として、50質量%以上が好ましく、70質量%以上がより好ましく、90質量%以上が更に好ましく、95質量%以上が特に好ましい。第2の粒子は、実質的にセリウム化合物からなる態様(実質的に第2の粒子の100質量%がセリウム化合物である態様)であってもよい。
 研磨液に特定の波長の光を透過させた際に分光光度計によって得られる下記式の吸光度の値により第2の粒子の含有量を推定することができる。すなわち、粒子が特定の波長の光を吸収する場合、当該粒子を含む領域の光透過率が減少する。光透過率は、粒子による吸収だけでなく、散乱によっても減少するが、第2の粒子では、散乱の影響が小さい。そのため、本実施形態では、下記式によって算出される吸光度の値により第2の粒子の含有量を推定することができる。
 吸光度 =-LOG10(光透過率[%]/100)
 複合粒子を含む砥粒における第1の粒子の含有量は、砥粒全体を基準として下記の範囲が好ましい。第1の粒子の含有量の下限は、絶縁材料の研磨速度を更に向上させる観点から、50質量%以上が好ましく、50質量%を超えることがより好ましく、60質量%以上が更に好ましく、70質量%以上が特に好ましく、75質量%以上が極めて好ましく、80質量%以上が非常に好ましく、85質量%以上がより一層好ましく、90質量%以上がより好ましい。第1の粒子の含有量の上限は、絶縁材料の研磨速度を更に向上させる観点から、95質量%以下が好ましく、93質量%以下がより好ましく、91質量%以下が更に好ましい。前記観点から、第1の粒子の含有量は、50~95質量%であることがより好ましい。
 複合粒子を含む砥粒における第2の粒子の含有量は、砥粒全体を基準として下記の範囲が好ましい。第2の粒子の含有量の下限は、絶縁材料の研磨速度を更に向上させる観点から、5質量%以上が好ましく、7質量%以上がより好ましく、9質量%以上が更に好ましい。第2の粒子の含有量の上限は、絶縁材料の研磨速度を更に向上させる観点から、50質量%以下が好ましく、50質量%未満がより好ましく、40質量%以下が更に好ましく、30質量%以下が特に好ましく、25質量%以下が極めて好ましく、20質量%以下が非常に好ましく、15質量%以下がより一層好ましく、10質量%以下がより好ましい。前記観点から、第2の粒子の含有量は、5~50質量%であることがより好ましい。
 複合粒子を含む砥粒におけるセリアの含有量は、砥粒全体を基準として下記の範囲が好ましい。セリアの含有量の下限は、絶縁材料の研磨速度を更に向上させる観点から、50質量%以上が好ましく、50質量%を超えることがより好ましく、60質量%以上が更に好ましく、70質量%以上が特に好ましく、75質量%以上が極めて好ましく、80質量%以上が非常に好ましく、85質量%以上がより一層好ましく、90質量%以上がより好ましい。セリアの含有量の上限は、絶縁材料の研磨速度を更に向上させる観点から、95質量%以下が好ましく、93質量%以下がより好ましく、91質量%以下が更に好ましい。前記観点から、セリアの含有量は、50~95質量%であることがより好ましい。
 複合粒子を含む砥粒におけるセリウム水酸化物の含有量は、砥粒全体を基準として下記の範囲が好ましい。セリウム水酸化物の含有量の下限は、絶縁材料の研磨速度を更に向上させる観点から、5質量%以上が好ましく、7質量%以上がより好ましく、9質量%以上が更に好ましい。セリウム水酸化物の含有量の上限は、絶縁材料の研磨速度を更に向上させる観点から、50質量%以下が好ましく、50質量%未満がより好ましく、40質量%以下が更に好ましく、30質量%以下が特に好ましく、25質量%以下が極めて好ましく、20質量%以下が非常に好ましく、15質量%以下がより一層好ましく、10質量%以下がより好ましい。前記観点から、セリウム水酸化物の含有量は、5~50質量%であることがより好ましい。
 第1の粒子の含有量は、第1の粒子及び第2の粒子の合計量を基準として下記の範囲が好ましい。第1の粒子の含有量の下限は、絶縁材料の研磨速度を更に向上させる観点から、50質量%以上が好ましく、50質量%を超えることがより好ましく、60質量%以上が更に好ましく、70質量%以上が特に好ましく、75質量%以上が極めて好ましく、80質量%以上が非常に好ましく、85質量%以上がより一層好ましく、90質量%以上がより好ましい。第1の粒子の含有量の上限は、絶縁材料の研磨速度を更に向上させる観点から、95質量%以下が好ましく、93質量%以下がより好ましく、91質量%以下が更に好ましい。前記観点から、第1の粒子の含有量は、50~95質量%であることがより好ましい。
 第2の粒子の含有量は、第1の粒子及び第2の粒子の合計量を基準として下記の範囲が好ましい。第2の粒子の含有量の下限は、絶縁材料の研磨速度を更に向上させる観点から、5質量%以上が好ましく、7質量%以上がより好ましく、9質量%以上が更に好ましい。第2の粒子の含有量の上限は、絶縁材料の研磨速度を更に向上させる観点から、50質量%以下が好ましく、50質量%未満がより好ましく、40質量%以下が更に好ましく、30質量%以下が特に好ましく、25質量%以下が極めて好ましく、20質量%以下が非常に好ましく、15質量%以下がより一層好ましく、10質量%以下がより好ましい。前記観点から、第2の粒子の含有量は、5~50質量%であることがより好ましい。
 研磨液における第1の粒子の含有量は、研磨液の全質量を基準として下記の範囲が好ましい。第1の粒子の含有量の下限は、絶縁材料の研磨速度を更に向上させる観点から、0.005質量%以上が好ましく、0.008質量%以上がより好ましく、0.01質量%以上が更に好ましく、0.05質量%以上が特に好ましく、0.08質量%以上が極めて好ましく、0.1質量%以上が非常に好ましく、0.15質量%以上がより一層好ましい。第1の粒子の含有量の上限は、研磨液の保存安定性を高くする観点から、5質量%以下が好ましく、3質量%以下がより好ましく、1質量%以下が更に好ましく、0.5質量%以下が特に好ましく、0.3質量%以下が極めて好ましく、0.2質量%以下が非常に好ましい。前記観点から、第1の粒子の含有量は、0.005~5質量%であることがより好ましい。
 研磨液における第2の粒子の含有量は、研磨液の全質量を基準として下記の範囲が好ましい。第2の粒子の含有量の下限は、砥粒と被研磨面との化学的な相互作用が更に向上して絶縁材料の研磨速度を更に向上させる観点から、0.005質量%以上が好ましく、0.008質量%以上がより好ましく、0.01質量%以上が更に好ましく、0.012質量%以上が特に好ましく、0.015質量%以上が極めて好ましく、0.016質量%以上が非常に好ましい。第2の粒子の含有量の上限は、砥粒の凝集を避けることが容易になると共に、砥粒と被研磨面との化学的な相互作用が更に良好となり、砥粒の特性を有効に活用しやすい観点から、5質量%以下が好ましく、3質量%以下がより好ましく、1質量%以下が更に好ましく、0.5質量%以下が特に好ましく、0.1質量%以下が極めて好ましく、0.05質量%以下が非常に好ましく、0.04質量%以下がより一層好ましく、0.035質量%以下がより好ましく、0.03質量%以下が更に好ましく、0.025質量%以下が特に好ましく、0.03質量%以下が極めて好ましい。前記観点から、第2の粒子の含有量は、0.005~5質量%であることがより好ましい。
 複合粒子を含む砥粒を含有する研磨液におけるセリアの含有量は、研磨液の全質量を基準として下記の範囲が好ましい。セリアの含有量の下限は、絶縁材料の研磨速度を更に向上させる観点から、0.005質量%以上が好ましく、0.008質量%以上がより好ましく、0.01質量%以上が更に好ましく、0.05質量%以上が特に好ましく、0.08質量%以上が極めて好ましく、0.1質量%以上が非常に好ましく、0.15質量%以上がより一層好ましい。セリアの含有量の上限は、研磨液の保存安定性を高くする観点から、5質量%以下が好ましく、3質量%以下がより好ましく、1質量%以下が更に好ましく、0.5質量%以下が特に好ましく、0.3質量%以下が極めて好ましく、0.2質量%以下が非常に好ましい。前記観点から、セリアの含有量は、0.005~5質量%であることがより好ましい。
 複合粒子を含む砥粒を含有する研磨液におけるセリウム水酸化物の含有量は、研磨液の全質量を基準として下記の範囲が好ましい。セリウム水酸化物の含有量の下限は、砥粒と被研磨面との化学的な相互作用が更に向上して絶縁材料の研磨速度を更に向上させる観点から、0.005質量%以上が好ましく、0.008質量%以上がより好ましく、0.01質量%以上が更に好ましく、0.012質量%以上が特に好ましく、0.015質量%以上が極めて好ましく、0.016質量%以上が非常に好まししい。セリウム水酸化物の含有量の上限は、砥粒の凝集を避けることが容易になると共に、砥粒と被研磨面との化学的な相互作用が更に良好となり、砥粒の特性を有効に活用しやすい観点から、5質量%以下が好ましく、3質量%以下がより好ましく、1質量%以下が更に好ましく、0.5質量%以下が特に好ましく、0.1質量%以下が極めて好ましく、0.05質量%以下が非常に好ましく、0.04質量%以下がより一層好ましく、0.035質量%以下がより好ましく、0.03質量%以下が更に好ましく、0.025質量%以下が特に好ましく、0.03質量%以下が極めて好ましい。前記観点から、セリウム水酸化物の含有量は、0.005~5質量%であることがより好ましい。
 複合粒子を含む砥粒を含有する研磨液における砥粒の含有量は、研磨液の全質量を基準として下記の範囲が好ましい。砥粒の含有量の下限は、絶縁材料の研磨速度を更に向上させる観点から、0.01質量%以上が好ましく、0.05質量%以上がより好ましく、0.1質量%以上が更に好ましく、0.12質量%以上が特に好ましく、0.16質量%以上が極めて好ましく、0.18質量%以上が非常に好ましい。砥粒の含有量の上限は、研磨液の保存安定性を高くする観点から、10質量%以下が好ましく、5質量%以下がより好ましく、1質量%以下が更に好ましく、0.5質量%以下が特に好ましく、0.1質量%以下が極めて好ましく、0.2質量%以下が非常に好ましい。前記観点から、砥粒の含有量は、0.01~10質量%であることがより好ましい。
(添加剤)
 本実施形態に係る研磨液は、添加剤を含有する。ここで、「添加剤」とは、砥粒及び液状媒体以外に研磨液が含有する物質を指す。添加剤を用いることにより、例えば、研磨速度、研磨選択性等の研磨特性;砥粒の分散安定性、保存安定性等の研磨液特性などを調整することができる。
[ヒドロキシ酸]
 本実施形態に係る研磨液は、必須の添加剤として、1個のカルボキシル基と1~3個の水酸基とを有するヒドロキシ酸(以下、「特定ヒドロキシ酸」という。)を含有する。前記特定ヒドロキシ酸において、カルボキシル基の数は1個であり、水酸基の数は1~3個である。なお、「水酸基」に、カルボキシル基中の「-OH」は含まない。「水酸基」は、アルコール性水酸基及びフェノール性水酸基のいずれであってもよい。前記特定ヒドロキシ酸は、フェノール性水酸基を有していなくてよい。前記特定ヒドロキシ酸は、1個のカルボキシル基と1~3個のアルコール性水酸基とを有していてよい。
 前記特定ヒドロキシ酸は、1個のカルボキシル基と1個の水酸基とを有する化合物を含んでいてもよく、1個のカルボキシル基と2個の水酸基とを有する化合物を含んでいてもよく、1個のカルボキシル基と3個の水酸基とを有する化合物を含んでいてもよい。前記特定ヒドロキシ酸は、一種を単独で又は二種以上を組み合わせて使用することができる。前記特定ヒドロキシ酸における水酸基の数は、優れた砥粒の分散安定性を得やすい観点から、1~2個が好ましく、2個がより好ましい。
 前記特定ヒドロキシ酸としては、グリコール酸、グリセリン酸、乳酸(例えばDL-乳酸)、2,2-ビス(ヒドロキシメチル)プロピオン酸、2,2-ビス(ヒドロキシメチル)酪酸、N,N-ビス(2-ヒドロキシエチル)グリシン、N-[2-ヒドロキシ-1,1-ビス(ヒドロキシメチル)エチル]グリシン、ビシン、トリシン、チロシン、セリン、トレオニン等が挙げられる。前記特定ヒドロキシ酸は、優れた砥粒の分散安定性を得やすい観点から、乳酸(例えばDL-乳酸)、2,2-ビス(ヒドロキシメチル)プロピオン酸、2,2-ビス(ヒドロキシメチル)酪酸、N,N-ビス(2-ヒドロキシエチル)グリシン、及び、N-[2-ヒドロキシ-1,1-ビス(ヒドロキシメチル)エチル]グリシンからなる群より選ばれる少なくとも一種を含むことが好ましい。
 前記特定ヒドロキシ酸は、優れた砥粒の分散安定性を得やすい観点から、脂肪族ヒドロキシ酸を含むことが好ましい。前記特定ヒドロキシ酸は、窒素原子を含むヒドロキシ酸を含んでいてもよく、窒素原子を含まないヒドロキシ酸を含んでいてもよい。前記特定ヒドロキシ酸は、アミノ基を有していてよく、アミノ基を有していなくてもよい。前記特定ヒドロキシ酸は、アミノ酸を含んでいてよく、アミノ酸を含んでいなくてもよい。
 前記特定ヒドロキシ酸の水酸基価の上限は、優れた砥粒の分散安定性を得やすい観点から、1500以下が好ましく、1300以下がより好ましく、1100以下が更に好ましく、1000以下が特に好ましく、900以下が極めて好ましい。前記特定ヒドロキシ酸の水酸基価の下限は、優れた砥粒の分散安定性を得やすい観点から、50以上が好ましく、150以上がより好ましく、250以上が更に好ましく、500以上が特に好ましく、600以上が極めて好ましく、650以上が非常に好ましい。これらの観点から、前記特定ヒドロキシ酸の水酸基価は、50~1500がより好ましい。なお、「水酸基価」とは、当該ヒドロキシ酸に含まれる水酸基数の大小の指標となる数値であり、下記式(1)から算出されるものとする。
 水酸基価=56110×水酸基数/分子量 …(1)
 前記特定ヒドロキシ酸の含有量の下限は、優れた砥粒の分散安定性を得やすい観点から、研磨液の全質量を基準として、0.01質量%以上が好ましく、0.03質量%以上がより好ましく、0.05質量%以上が更に好ましく、0.08質量%以上が特に好ましく、0.1質量%以上が極めて好ましい。前記特定ヒドロキシ酸の含有量の上限は、絶縁材料の適度な研磨速度を得やすい観点から、研磨液の全質量を基準として、1.0質量%以下が好ましく、0.8質量%以下がより好ましく、0.5質量%以下が更に好ましく、0.4質量%以下が特に好ましく、0.3質量%以下が極めて好ましく、0.2質量%以下が非常に好ましい。これらの観点から、前記特定ヒドロキシ酸の含有量は、研磨液の全質量を基準として0.01~1.0質量%がより好ましい。
 前記特定ヒドロキシ酸の含有量の下限は、優れた砥粒の分散安定性を得やすい観点から、砥粒100質量部に対して、10質量部以上が好ましく、20質量部以上がより好ましく、30質量部以上が更に好ましく、40質量部以上が特に好ましく、40質量部を超えることが極めて好ましく、50質量部以上が非常に好ましく、55質量部以上がより一層好ましい。前記特定ヒドロキシ酸の含有量の上限は、絶縁材料の適度な研磨速度を得やすい観点から、砥粒100質量部に対して、100質量部以下が好ましく、100質量部未満がより好ましく、80質量部以下が更に好ましく、70質量部以下が特に好ましく、65質量部以下が極めて好ましく、60質量部以下が非常に好ましい。これらの観点から、前記特定ヒドロキシ酸の含有量は、砥粒100質量部に対して10~100質量部がより好ましい。
 本実施形態に係る研磨液は、前記特定ヒドロキシ酸以外のヒドロキシ酸を含有してもよい。このようなヒドロキシ酸としては、2個以上のカルボキシル基を有するヒドロキシ酸、4個以上の水酸基を有するヒドロキシ酸等が挙げられる。具体例としては、グルクロン酸、グルコン酸、クエン酸、酒石酸等が挙げられる。
 本実施形態に係る研磨液における前記特定ヒドロキシ酸の含有量の下限は、優れた砥粒の分散安定性を得やすい観点から、研磨液に含まれるヒドロキシ酸の全質量を基準として、50質量%以上が好ましく、70質量%以上がより好ましく、90質量%以上が更に好ましく、95質量%以上が特に好ましく、97質量%以上が極めて好ましく、99質量%以上が非常に好ましい。
[ポリオール]
 本実施形態に係る研磨液は、必須の添加剤として、ポリオール(ヒドロキシ酸に該当する化合物を除く)を含有する。ポリオールとは、分子中に2個以上の水酸基を有している化合物である。
 ポリオールとしては、ポリグリセリン、ポリビニルアルコール、ポリアルキレングリコール(ポリエチレングリコール等)、ポリオキシアルキレングリコール、ポリオキシアルキレンソルビトールエーテル(ポリオキシプロピレンソルビトールエーテル等)、エチレンジアミンのポリオキシアルキレン縮合物(エチレンジアミンテトラポリオキシエチレンポリオキシプロピレン等)、2,2-ビス(4-ポリオキシアルキレン-オキシフェニル)プロパン、ポリオキシアルキレングリセリルエーテル、ポリオキシアルキレンジグリセリルエーテル、ポリオキシアルキレントリメチロールプロパンエーテル、ポリオキシアルキレンペンタエリスリトールエーテル、ポリオキシアルキレンメチルグルコシド等が挙げられる。
 ポリオールは、優れた砥粒の分散安定性を得やすい観点から、ポリグリセリン、ポリアルキレングリコール、ポリオキシアルキレングリコール、ポリオキシアルキレンソルビトールエーテル、ポリオキシアルキレングリセリルエーテル、ポリオキシアルキレントリメチロールプロパンエーテル(ポリオキシエチレントリメチロールプロパンエーテル等)、及び、ポリオキシアルキレンペンタエリスリトールエーテルからなる群より選ばれる少なくとも一種を含むことが好ましく、ポリオキシアルキレントリメチロールプロパンエーテルを含むことがより好ましい。ポリオールは、優れた砥粒の分散安定性を得やすい観点から、芳香族基を有しないポリオールを含むことが好ましい。
 ポリオールとしては、被研磨面に保護層を形成して研磨速度を緩やかに調整することが容易であることから、凹部の過研磨が容易に抑制され、研磨後のウエハを平坦に仕上げることが容易である観点から、ポリエーテルポリオール(ポリエーテル構造を有するポリオール)が好ましい。
 ポリエーテルポリオールとしては、ポリオキシアルキレン構造を有することが好ましい。これにより、被研磨面に保護層を形成して研磨速度を緩やかに調整することが更に容易であることから、凹部の過研磨が更に容易に抑制され、研磨後のウエハを平坦に仕上げることが更に容易である。ポリオキシアルキレン構造におけるオキシアルキレン基(構造単位)の炭素数は、優れた砥粒の分散安定性を得やすい観点から、1以上が好ましく、2以上がより好ましい。ポリオキシアルキレン構造におけるオキシアルキレン基(構造単位)の炭素数は、優れた砥粒の分散安定性を得やすい観点から、5以下が好ましく、4以下がより好ましく、3以下が更に好ましい。これらの観点から、前記炭素数は、1~5が好ましい。ポリオキシアルキレン鎖は、単独重合鎖であってもよく、共重合鎖であってもよい。共重合鎖は、ブロック重合鎖であってもよく、ランダム重合鎖であってもよい。
 ポリオールは、一種を単独で又は二種以上を組み合わせて使用することができる。
 ポリオールの分子量の下限は、優れた砥粒の分散安定性を得やすい観点から、100以上が好ましく、200以上がより好ましく、300以上が更に好ましく、330以上が特に好ましく、350以上が極めて好ましい。ポリオールの分子量の上限は、優れた砥粒の分散安定性を得やすい観点から、5000以下が好ましく、4000以下がより好ましく、3000以下が更に好ましく、1000以下が特に好ましく、800以下が極めて好ましく、500以下が非常に好ましく、400以下がより一層好ましい。これらの観点から、ポリオールの分子量は、100~5000がより好ましい。
 ポリオールの含有量の下限は、優れた砥粒の分散安定性を得やすい観点、及び、平坦性を更に向上させる観点から、研磨液の全質量を基準として、0.05質量%以上が好ましく、0.1質量%以上がより好ましく、0.2質量%以上が更に好ましく、0.3質量%以上が特に好ましく、0.4質量%以上が極めて好ましく、0.5質量%以上が非常に好ましい。ポリオールの含有量の上限は、絶縁材料の適度な研磨速度を得やすい観点から、研磨液の全質量を基準として、5.0質量%以下が好ましく、3.0質量%以下がより好ましく、2.0質量%以下が更に好ましく、1.0質量%以下が特に好ましい。これらの観点から、ポリオールの含有量は、研磨液の全質量を基準として0.05~5.0質量%がより好ましい。
[任意の添加剤]
 本実施形態に係る研磨液は、任意の添加剤(前記ヒドロキシ酸に該当する化合物、及び、ポリオールに該当する化合物を除く)を更に含有していてもよい。任意の添加剤としては、アミノ酸、水溶性高分子、酸化剤(例えば過酸化水素)等が挙げられる。これらの添加剤のそれぞれは、一種を単独で又は二種以上を組み合わせて使用することができる。
 アミノ酸は、研磨液のpHを安定化させる効果、優れた砥粒の分散安定性を得やすい効果、及び、絶縁材料の研磨速度を更に向上させる効果がある。アミノ酸としては、アルギニン、リシン、アスパラギン酸、グルタミン酸、アスパラギン、グルタミン、ヒスチジン、プロリン、トリプトファン、グリシン、α-アラニン、β-アラニン、メチオニン、システイン、フェニルアラニン、ロイシン、バリン、イソロイシン、グリシルグリシン、グリシルアラニン等が挙げられる。
 水溶性高分子は、平坦性、面内均一性、窒化珪素に対する酸化珪素の研磨選択性(酸化珪素の研磨速度/窒化珪素の研磨速度)、ポリシリコンに対する酸化珪素の研磨選択性(酸化珪素の研磨速度/ポリシリコンの研磨速度)等の研磨特性を調整する効果がある。ここで、「水溶性高分子」とは、水100gに対して0.1g以上溶解する高分子として定義する。
 水溶性高分子としては、特に制限はなく、ポリアクリル酸、ポリアクリル酸共重合体、ポリアクリル酸塩、ポリアクリル酸共重合体塩等のポリアクリル酸系ポリマ;ポリメタクリル酸、ポリメタクリル酸塩等のポリメタクリル酸系ポリマ;ポリアクリルアミド;ポリジメチルアクリルアミド;アルギン酸、ペクチン酸、カルボキシメチルセルロース、寒天、カードラン、デキストリン、シクロデキストリン、プルラン等の多糖類;ポリビニルピロリドン、ポリアクロレイン等のビニル系ポリマなどが挙げられる。水溶性高分子は、一種を単独で又は二種以上を組み合わせて使用することができる。
 アミノ酸又は酸化剤を使用する場合、その含有量は、砥粒の沈降を抑制しつつ添加剤の添加効果が得られる観点から、研磨液の全質量を基準として0.0001~10質量%が好ましい。
 水溶性高分子を使用する場合、水溶性高分子の含有量の下限は、砥粒の沈降を抑制しつつ水溶性高分子の添加効果が得られる観点から、研磨液の全質量を基準として、0.0001質量%以上が好ましく、0.001質量%以上がより好ましく、0.01質量%以上が更に好ましい。水溶性高分子の含有量の上限は、砥粒の沈降を抑制しつつ水溶性高分子の添加効果が得られる観点から、研磨液の全質量を基準として、10質量%以下が好ましく、5質量%以下がより好ましく、1質量%以下が更に好ましく、0.5質量%以下が特に好ましい。
(液状媒体)
 本実施形態に係る研磨液における液状媒体としては、特に制限はないが、脱イオン水、超純水等の水が好ましい。液状媒体の含有量は、他の構成成分の含有量を除いた研磨液の残部でよく、特に限定されない。
(研磨液の特性)
 本実施形態に係る研磨液のpHの下限は、優れた砥粒の分散安定性を得やすい観点から、2.0以上が好ましく、2.5以上がより好ましく、3.0以上が更に好ましく、3.2以上が特に好ましく、3.5以上が極めて好ましく、4.0以上が非常に好ましい。pHの上限は、優れた砥粒の分散安定性を得やすい観点から、7.0以下が好ましく、6.5以下がより好ましく、6.0以下が更に好ましく、5.0以下が特に好ましい。これらの観点から、研磨液のpHは、2.0~7.0がより好ましい。pHは、3.0未満であってよく、2.8以下であってよく、2.5以下であってよい。研磨液のpHは、液温25℃におけるpHと定義する。
 研磨液のpHは、無機酸、有機酸等の酸成分;アンモニア、水酸化ナトリウム、テトラメチルアンモニウムヒドロキシド(TMAH)、イミダゾール、アルカノールアミン等のアルカリ成分などによって調整できる。pHを安定化させるため、緩衝剤を添加してもよい。緩衝液(緩衝剤を含む液)として緩衝剤を添加してもよい。このような緩衝液としては、酢酸塩緩衝液、フタル酸塩緩衝液等が挙げられる。
 本実施形態に係る研磨液のpHは、pHメータ(例えば、東亜ディーケーケー株式会社製の型番PHL-40)で測定することができる。具体的には例えば、フタル酸塩pH緩衝液(pH:4.01)及び中性リン酸塩pH緩衝液(pH:6.86)を標準緩衝液として用いてpHメータを2点校正した後、pHメータの電極を研磨液に入れ、2分以上経過して安定した後の値を測定する。標準緩衝液及び研磨液の液温は、共に25℃とする。
 本実施形態に係る研磨液は、砥粒と、前記特定ヒドロキシ酸と、ポリオールと、液状媒体と、を少なくとも含む一液式研磨液として保存してもよく、スラリ(第1の液)と添加液(第2の液)とを混合して前記研磨液となるように前記研磨液の構成成分をスラリと添加液とに分けた複数液式(例えば二液式)の研磨液セットとして保存してもよい。スラリは、例えば、砥粒と、液状媒体とを少なくとも含む。添加液は、例えば、ヒドロキシ酸と、ポリオールと、液状媒体とを少なくとも含む。前記特定ヒドロキシ酸、ポリオール、任意の添加剤、及び、緩衝剤は、スラリ及び添加液のうち添加液に含まれることが好ましい。なお、前記研磨液の構成成分は、三液以上に分けた研磨液セットとして保存してもよい。
 前記研磨液セットにおいては、研磨直前又は研磨時に、スラリ及び添加液が混合されて研磨液が作製される。また、一液式研磨液は、液状媒体の含有量を減じた研磨液用貯蔵液として保存されると共に、研磨時に液状媒体で希釈して用いられてもよい。複数液式の研磨液セットは、液状媒体の含有量を減じたスラリ用貯蔵液及び添加液用貯蔵液として保存されると共に、研磨時に液状媒体で希釈して用いられてもよい。
 一液式研磨液の場合、研磨定盤上への研磨液の供給方法としては、研磨液を直接送液して供給する方法;研磨液用貯蔵液及び液状媒体を別々の配管で送液し、これらを合流及び混合させて供給する方法;あらかじめ研磨液用貯蔵液及び液状媒体を混合しておき供給する方法等を用いることができる。
 スラリと添加液とに分けた複数液式の研磨液セットとして保存する場合、これらの液の配合を任意に変えることにより研磨速度を調整することができる。研磨液セットを用いて研磨する場合、研磨定盤上への研磨液の供給方法としては、下記に示す方法がある。例えば、スラリと添加液とを別々の配管で送液し、これらの配管を合流及び混合させて供給する方法;スラリ用貯蔵液、添加液用貯蔵液及び液状媒体を別々の配管で送液し、これらを合流及び混合させて供給する方法;あらかじめスラリ及び添加液を混合しておき供給する方法;あらかじめスラリ用貯蔵液、添加液用貯蔵液及び液状媒体を混合しておき供給する方法等を用いることができる。また、前記研磨液セットにおけるスラリと添加液とをそれぞれ研磨定盤上へ供給する方法を用いることもできる。この場合、研磨定盤上においてスラリ及び添加液が混合されて得られる研磨液を用いて被研磨面が研磨される。
 本実施形態に係る研磨液セットは、前記必須成分を少なくとも含有する研磨液と、酸化剤(例えば過酸化水素)等の任意成分を少なくとも含む添加液とに分けた態様であってもよい。この場合、研磨液及び添加液が混合されて得られた混合液(当該混合液も「研磨液」に相当する)を用いて研磨が行われる。また、本実施形態に係る研磨液セットは、三液以上に分けた研磨液セットとして、少なくとも前記必須成分の一部を含有する液と、少なくとも前記必須成分の残部を含有する液と、少なくとも任意成分を含む添加液とに分けた態様であってもよい。研磨液セットを構成する各液は、液状媒体の含有量を減じた貯蔵液として保存されてもよい。
<研磨方法>
 本実施形態に係る研磨方法(基体の研磨方法等)は、前記一液式研磨液を用いて被研磨面(基体の被研磨面等)を研磨する研磨工程を備えていてもよく、前記研磨液セットにおけるスラリと添加液とを混合して得られる研磨液を用いて被研磨面(基体の被研磨面等)を研磨する研磨工程を備えていてもよい。
 本実施形態に係る研磨方法は、絶縁材料及び窒化珪素を有する基体の研磨方法であってもよく、例えば、前記一液式研磨液、又は、前記研磨液セットにおけるスラリと添加液とを混合して得られる研磨液を用いて、絶縁材料を窒化珪素に対して選択的に研磨する研磨工程を備えていてもよい。この場合、基体は、例えば、絶縁材料を含む部材と、窒化珪素を含む部材とを有していてもよい。
 また、本実施形態に係る研磨方法は、絶縁材料及びポリシリコンを有する基体の研磨方法であってもよく、例えば、前記一液式研磨液、又は、前記研磨液セットにおけるスラリと添加液とを混合して得られる研磨液を用いて、絶縁材料をポリシリコンに対して選択的に研磨する研磨工程を備えていてもよい。この場合、基体は、例えば、絶縁材料を含む部材と、ポリシリコンを含む部材とを有していてもよい。
 本実施形態に係る研磨方法は、ストッパ材料を含む第1部材と、絶縁材料を含むと共に第1部材上に配置された第2部材と、を有する基体の研磨方法であってよい。研磨工程は、前記一液式研磨液、又は、前記研磨液セットにおけるスラリと添加液とを混合して得られる研磨液を用いて、第1部材が露出するまで第2部材を研磨する工程を有していてよい。研磨工程は、第1部材が露出した後に、前記一液式研磨液、又は、前記研磨液セットにおけるスラリと添加液とを混合して得られる研磨液を用いて、第1部材及び第2部材を研磨する工程を有していてよい。
 「材料Aを材料Bに対して選択的に研磨する」とは、同一研磨条件において、材料Aの研磨速度が、材料Bの研磨速度よりも高いことをいう。より具体的には、例えば、材料Bの研磨速度に対する材料Aの研磨速度の研磨速度比が80以上で材料Aを研磨することをいう。
 研磨工程では、例えば、被研磨材料を有する基体の当該被研磨材料を研磨定盤の研磨パッド(研磨布)に押圧した状態で、前記研磨液を被研磨材料と研磨パッドとの間に供給し、基体と研磨定盤とを相対的に動かして被研磨材料の被研磨面を研磨する。研磨工程では、例えば、被研磨材料の少なくとも一部を研磨により除去する。
 研磨対象である基体としては、被研磨基板等が挙げられる。被研磨基板としては、例えば、半導体素子製造に係る基板(例えば、STIパターン、ゲートパターン、配線パターン等が形成された半導体基板)上に被研磨材料が形成された基体が挙げられる。被研磨材料としては、酸化珪素等の絶縁材料(ストッパ材料に該当する材料を除く);ポリシリコン、窒化珪素等のストッパ材料などが挙げられる。被研磨材料は、単一の材料であってもよく、複数の材料であってもよい。複数の材料が被研磨面に露出している場合、それらを被研磨材料と見なすことができる。被研磨材料は、膜状(被研磨膜)であってもよく、酸化珪素膜、ポリシリコン膜、窒化珪素膜等であってもよい。
 このような基板上に形成された被研磨材料(例えば、酸化珪素等の絶縁材料)を前記研磨液で研磨し、余分な部分を除去することによって、被研磨材料の表面の凹凸を解消し、被研磨材料の表面全体にわたって平滑な面を得ることができる。本実施形態に係る研磨液は、酸化珪素を含む被研磨面を研磨するために使用されることが好ましい。
 本実施形態では、少なくとも表面に酸化珪素を含む絶縁材料と、絶縁材料の下層に配置されたストッパ(研磨停止層)と、ストッパの下に配置された基板(半導体基板等)とを有する基体における絶縁材料を研磨することができる。ストッパを構成するストッパ材料は、絶縁材料よりも研磨速度が低い材料であり、ポリシリコン、窒化珪素等が好ましい。このような基体では、ストッパが露出したときに研磨を停止させることにより、絶縁材料が過剰に研磨されることを防止できるため、絶縁材料の研磨後の平坦性を向上させることができる。
 本実施形態に係る研磨液により研磨される被研磨材料の作製方法としては、低圧CVD法、準常圧CVD法、プラズマCVD法等のCVD法;回転する基板に液体原料を塗布する回転塗布法などが挙げられる。
 以下、基体(例えば、半導体基板上に形成された絶縁材料を有する基体)の研磨方法を一例に挙げて、本実施形態に係る研磨方法を説明する。本実施形態に係る研磨方法において、研磨装置としては、被研磨面を有する基体を保持可能なホルダーと、研磨パッドを貼り付け可能な研磨定盤とを有する一般的な研磨装置を使用できる。ホルダー及び研磨定盤のそれぞれには、回転数が変更可能なモータ等が取り付けてある。研磨装置としては、例えば、APPLIED MATERIALS社製の研磨装置:Reflexionを使用できる。
 研磨パッドとしては、一般的な不織布、発泡体、非発泡体等が使用できる。研磨パッドの材質としては、ポリウレタン、アクリル樹脂、ポリエステル、アクリル-エステル共重合体、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリ4-メチルペンテン、セルロース、セルロースエステル、ポリアミド(例えば、ナイロン(商標名)及びアラミド)、ポリイミド、ポリイミドアミド、ポリシロキサン共重合体、オキシラン化合物、フェノール樹脂、ポリスチレン、ポリカーボネート、エポキシ樹脂等の樹脂が使用できる。研磨パッドの材質としては、特に、研磨速度及び平坦性に更に優れる観点から、発泡ポリウレタン及び非発泡ポリウレタンからなる群より選択される少なくとも一種が好ましい。研磨パッドには、研磨液がたまるような溝加工が施されていることが好ましい。
 研磨条件に制限はないが、研磨定盤の回転速度の上限は、基体が飛び出さないように200min-1以下が好ましく、基体にかける研磨圧力(加工荷重)の上限は、研磨傷が発生することを充分に抑制する観点から、15psi(103kPa)以下が好ましい。研磨している間、ポンプ等で連続的に研磨液を研磨パッドに供給することが好ましい。この供給量に制限はないが、研磨パッドの表面が常に研磨液で覆われていることが好ましい。
 研磨終了後の基体は、流水中でよく洗浄して、基体に付着した粒子を除去することが好ましい。洗浄には、純水以外に希フッ酸又はアンモニア水を併用してもよく、洗浄効率を高めるためにブラシを併用してもよい。また、洗浄後は、スピンドライヤ等を用いて、基体に付着した水滴を払い落としてから基体を乾燥させることが好ましい。
 本実施形態に係る研磨液、研磨液セット及び研磨方法は、STIの形成に好適に使用できる。STIを形成するためには、ストッパ材料(例えば、窒化珪素及びポリシリコン)に対する絶縁材料(例えば酸化珪素)の研磨速度比の下限は、80以上であることが好ましい。前記研磨速度比が80未満であると、ストッパ材料の研磨速度に対する絶縁材料の研磨速度の大きさが小さく、STIを形成する際に所定の位置で研磨を停止しにくくなる傾向がある。一方、前記研磨速度比が80以上であれば、研磨の停止が容易になり、STIの形成に更に好適である。絶縁材料(例えば酸化珪素)の研磨速度の下限は、70nm/min以上が好ましく、100nm/min以上がより好ましく、150nm/min以上が更に好ましく、180nm/min以上が特に好ましく、200nm/min以上が極めて好ましい。ストッパ材料(例えば、窒化珪素及びポリシリコン)の研磨速度の上限は、10nm/min以下が好ましく、7nm/min以下がより好ましく、5nm/min以下が更に好ましい。
 本実施形態に係る研磨液、研磨液セット及び研磨方法は、プリメタル絶縁材料の研磨にも使用できる。プリメタル絶縁材料としては、酸化珪素の他、例えば、リン-シリケートガラス又はボロン-リン-シリケートガラスが使用され、さらに、シリコンオキシフロリド、フッ化アモルファスカーボン等も使用できる。
 本実施形態に係る研磨液、研磨液セット及び研磨方法は、酸化珪素等の絶縁材料以外の材料にも適用できる。このような材料としては、Hf系、Ti系、Ta系酸化物等の高誘電率材料;シリコン、アモルファスシリコン、SiC、SiGe、Ge、GaN、GaP、GaAs、有機半導体等の半導体材料;GeSbTe等の相変化材料;ITO等の無機導電材料;ポリイミド系、ポリベンゾオキサゾール系、アクリル系、エポキシ系、フェノール系等のポリマ樹脂材料などが挙げられる。
 本実施形態に係る研磨液、研磨液セット及び研磨方法は、膜状の研磨対象だけでなく、ガラス、シリコン、SiC、SiGe、Ge、GaN、GaP、GaAs、サファイヤ、プラスチック等から構成される各種基板にも適用できる。
 本実施形態に係る研磨液、研磨液セット及び研磨方法は、半導体素子の製造だけでなく、TFT、有機EL等の画像表示装置;フォトマスク、レンズ、プリズム、光ファイバー、単結晶シンチレータ等の光学部品;光スイッチング素子、光導波路等の光学素子;固体レーザ、青色レーザLED等の発光素子;磁気ディスク、磁気ヘッド等の磁気記憶装置などの製造に用いることができる。
 以下、実施例により本発明を具体的に説明する。但し、本発明は下記の実施例に限定されるものではない。
{実施例1~5及び比較例1~4}
<セリア粉末の作製>
 市販の炭酸セリウム水和物40kgをアルミナ製容器に入れ、830℃、空気中で2時間焼成することにより黄白色の粉末を20kg得た。この粉末の相同定をX線回折法により行い、セリア粉末が得られたことを確認した。得られたセリア粉末20kgを、ジェットミルを用いて乾式粉砕し、セリア粒子を含むセリア粉末を得た。
<CMP用研磨液の調製>
 上記で作製したセリア粉末(セリア粒子)と、脱イオン水とを混合した後、表1又は表2に記載のポリオール(日本乳化剤株式会社製、商品名:TMP-60、ポリオキシエチレントリメチロールプロパンエーテル)及びヒドロキシ酸を添加した。そして、攪拌しながら超音波分散を行い、CMP用研磨液の全質量を基準として、セリア粒子0.18質量%、ポリオール0.50質量%、及び、ヒドロキシ酸0.10質量%を含有するCMP用研磨液を得た。超音波分散は、超音波周波数400kHz、分散時間30分で行った。
{実施例6}
<セリアスラリの準備>
 セリア粒子(第1の粒子)と、和光純薬工業株式会社製の商品名:リン酸二水素アンモニウム(分子量:97.99)とを混合して、セリア粒子を5.0質量%(固形分含量)含有するセリアスラリ(pH:7)を調製した。リン酸二水素アンモニウムの配合量は、セリア粒子の全量を基準として1質量%に調整した。
 マイクロトラック・ベル株式会社製の商品名:マイクロトラックMT3300EXII内にセリアスラリを適量投入し、セリア粒子の平均粒径を測定した。表示された平均粒径値を平均粒径(平均二次粒径)として得た。セリアスラリにおけるセリア粒子の平均粒径は350nmであった。
 ベックマン・コールター株式会社製の商品名:DelsaNano C内に適量のセリアスラリを投入し、25℃において測定を2回行った。表示されたゼータ電位の平均値をゼータ電位として得た。セリアスラリにおけるセリア粒子のゼータ電位は-55mVであった。
<セリウム水酸化物スラリの準備>
(セリウム水酸化物の合成)
 480gのCe(NH(NO50質量%水溶液(日本化学産業株式会社製、商品名:CAN50液)を7450gの純水と混合して溶液を得た。次いで、この溶液を撹拌しながら、750gのイミダゾール水溶液(10質量%水溶液、1.47mol/L)を5mL/minの混合速度で滴下して、セリウム水酸化物を含む沈殿物を得た。セリウム水酸化物の合成は、温度20℃、撹拌速度500min-1で行った。撹拌は、羽根部全長5cmの3枚羽根ピッチパドルを用いて行った。
 得られた沈殿物(セリウム水酸化物を含む沈殿物)を遠心分離(4000min-1、5分間)した後にデカンテーションで液相を除去することによって固液分離を施した。固液分離により得られた粒子10gと、水990gと、を混合した後、超音波洗浄機を用いて粒子を水に分散させて、セリウム水酸化物粒子(第2の粒子)を含有するセリウム水酸化物スラリ(粒子の含有量:1.0質量%)を調製した。
(平均粒径の測定)
 ベックマン・コールター株式会社製、商品名:N5を用いてセリウム水酸化物スラリにおけるセリウム水酸化物粒子の平均粒径(平均二次粒径)を測定したところ、10nmであった。測定法は次のとおりである。まず、1.0質量%のセリウム水酸化物粒子を含む測定サンプル(セリウム水酸化物スラリ。水分散液)を1cm角のセルに約1mL入れた後、N5内にセルを設置した。N5のソフトの測定サンプル情報の屈折率を1.333、粘度を0.887mPa・sに設定し、25℃において測定を行い、Unimodal Size Meanとして表示される値を読み取った。
(ゼータ電位の測定)
 ベックマン・コールター株式会社製の商品名:DelsaNano C内に適量のセリウム水酸化物スラリを投入し、25℃において測定を2回行った。表示されたゼータ電位の平均値をゼータ電位として得た。セリウム水酸化物スラリにおけるセリウム水酸化物粒子のゼータ電位は+50mVであった。
(セリウム水酸化物粒子の構造分析)
 セリウム水酸化物スラリを適量採取し、真空乾燥してセリウム水酸化物粒子を単離した後に純水で充分に洗浄して試料を得た。得られた試料について、FT-IR ATR法による測定を行ったところ、水酸化物イオン(OH)に基づくピークの他に、硝酸イオン(NO )に基づくピークが観測された。また、同試料について、窒素に対するXPS(N-XPS)測定を行ったところ、NH に基づくピークは観測されず、硝酸イオンに基づくピークが観測された。これらの結果より、セリウム水酸化物粒子は、セリウム元素に結合した硝酸イオンを有する粒子を少なくとも一部含有することが確認された。また、セリウム元素に結合した水酸化物イオンを有する粒子がセリウム水酸化物粒子の少なくとも一部に含有されることから、セリウム水酸化物粒子がセリウム水酸化物を含有することが確認された。これらの結果より、セリウムの水酸化物が、セリウム元素に結合した水酸化物イオンを含むことが確認された。
<CMP用研磨液の調製>
 2枚羽根の撹拌羽根を用いて300rpmの回転数で撹拌しながら、前記セリウム水酸化物スラリ32gと、脱イオン水1904gとを混合して混合液を得た。続いて、前記混合液を撹拌しながら前記セリアスラリ64gを前記混合液に混合した後、株式会社エスエヌディ製の超音波洗浄機(装置名:US-105)を用いて超音波を照射しながら撹拌した。続いて、ポリオール(日本乳化剤株式会社製、商品名:TMP-60、ポリオキシエチレントリメチロールプロパンエーテル)と、ヒドロキシ酸と、脱イオン水とを混合した。これにより、CMP用研磨液の全質量を基準として、砥粒0.18質量%、ポリオール0.50質量%、及び、ヒドロキシ酸0.10質量%を含有するCMP用研磨液を得た。CMP用研磨液は、砥粒として、セリア粒子と、当該セリア粒子に接触したセリウム水酸化物粒子と、を含む複合粒子に加えて、セリア粒子に接触していないセリウム水酸化物粒子(遊離粒子)を含有しており、セリア粒子とセリウム水酸化物粒子との質量比は10:1(セリア:セリウム水酸化物)であった。
(砥粒のゼータ電位)
 ベックマン・コールター株式会社製の商品名:DelsaNano C内に適量のCMP用研磨液を投入し、25℃において測定を2回行った。表示されたゼータ電位の平均値をゼータ電位として得た。結果を表1及び表2に示す。
(CMP用研磨液のpH)
 CMP用研磨液のpHを下記の条件で評価した。結果を表1及び表2に示す。
[pH]
 測定温度:25℃
 測定装置:東亜ディーケーケー株式会社製、型番PHL-40
 測定方法:標準緩衝液(フタル酸塩pH緩衝液、pH:4.01(25℃);中性リン酸塩pH緩衝液、pH:6.86(25℃))を用いて2点校正した後、電極をCMP用研磨液に入れ、2分以上経過して安定した後のpHを前記測定装置により測定した。
<分散安定性の評価>
 分散安定性(粒径安定性)の評価として、CMP用研磨液の保管前後におけるCMP用研磨液中の砥粒の粒径(MV:体積平均粒径)を測定し粒径変化率を算出した。粒径変化率は下記式に基づき算出した。調製直後のCMP用研磨液を25℃で168時間保管した。レーザ回折・散乱式粒度分布測定装置(マイクロトラック・ベル株式会社製、商品名:マイクロトラックMT3300EXII)を用いて保管前後の粒径を測定した。結果を表1及び表2に示す。
 粒径変化率(%)=|保管後の粒径(nm)-保管前の粒径(nm)|/保管前の粒径(nm)×100
 研磨評価として、保管前後のそれぞれのCMP用研磨液を用いて酸化珪素膜を下記の条件で研磨して研磨速度を算出し研磨速度の変化率を算出した。研磨速度の変化率は下記式に基づき算出した。調製直後のCMP用研磨液を25℃で168時間保管した。結果を表1及び表2に示す。
 研磨速度の変化率(%)=|保管後の研磨速度(nm/min)-保管前の研磨速度(nm/min)|/保管前の研磨速度(nm/min)×100
[研磨]
 研磨装置(APPLIED MATERIALS社製、商品名:Reflexion)における基体取り付け用の吸着パッドを貼り付けたホルダーに、酸化珪素膜が形成されたφ200mmシリコンウエハをセットした。多孔質ウレタン樹脂製パッドを貼り付けた定盤上に、酸化珪素膜がパッドに対向するようにホルダーを載せた。CMP用研磨液を供給量200mL/minでパッド上に供給しながら、研磨荷重20kPaで基体をパッドに押し当てた。このとき、定盤を78min-1、ホルダーを98min-1で1min回転させて研磨を行った。研磨後のウエハを純水でよく洗浄し乾燥させた。光干渉式膜厚測定装置を用いて酸化珪素膜の研磨前後の膜厚変化を測定して研磨速度を求めた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び表2に示されるように、正のゼータ電位を有する砥粒と、特定のヒドロキシ酸と、ポリオールと、を併用することにより、ポリオールを含有する研磨液において砥粒の分散安定性を向上させることができることが確認される。

Claims (14)

  1.  砥粒と、ヒドロキシ酸と、ポリオールと、液状媒体と、を含有し、
     前記砥粒のゼータ電位が正であり、
     前記ヒドロキシ酸が1個のカルボキシル基と1~3個の水酸基とを有する、研磨液。
  2.  前記ヒドロキシ酸が、1個のカルボキシル基と1個の水酸基とを有する化合物を含む、請求項1に記載の研磨液。
  3.  前記ヒドロキシ酸が、1個のカルボキシル基と2個の水酸基とを有する化合物を含む、請求項1又は2に記載の研磨液。
  4.  前記ポリオールがポリエーテルポリオールを含む、請求項1~3のいずれか一項に記載の研磨液。
  5.  前記ヒドロキシ酸の含有量が0.01~1.0質量%である、請求項1~4のいずれか一項に記載の研磨液。
  6.  前記ポリオールの含有量が0.05~5.0質量%である、請求項1~5のいずれか一項に記載の研磨液。
  7.  酸化珪素を含む被研磨面を研磨するために使用される、請求項1~6のいずれか一項に記載の研磨液。
  8.  請求項1~7のいずれか一項に記載の研磨液の構成成分が第1の液と第2の液とに分けて保存され、前記第1の液が、前記砥粒と、液状媒体と、を含み、前記第2の液が、前記ヒドロキシ酸と、前記ポリオールと、液状媒体と、を含む、研磨液セット。
  9.  請求項1~7のいずれか一項に記載の研磨液を用いて被研磨面を研磨する工程を備える、研磨方法。
  10.  請求項8に記載の研磨液セットにおける前記第1の液と前記第2の液とを混合して得られる研磨液を用いて被研磨面を研磨する工程を備える、研磨方法。
  11.  絶縁材料及び窒化珪素を有する基体の研磨方法であって、
     請求項1~7のいずれか一項に記載の研磨液を用いて前記絶縁材料を前記窒化珪素に対して選択的に研磨する工程を備える、研磨方法。
  12.  絶縁材料及び窒化珪素を有する基体の研磨方法であって、
     請求項8に記載の研磨液セットにおける前記第1の液と前記第2の液とを混合して得られる研磨液を用いて前記絶縁材料を前記窒化珪素に対して選択的に研磨する工程を備える、研磨方法。
  13.  絶縁材料及びポリシリコンを有する基体の研磨方法であって、
     請求項1~7のいずれか一項に記載の研磨液を用いて前記絶縁材料を前記ポリシリコンに対して選択的に研磨する工程を備える、研磨方法。
  14.  絶縁材料及びポリシリコンを有する基体の研磨方法であって、
     請求項8に記載の研磨液セットにおける前記第1の液と前記第2の液とを混合して得られる研磨液を用いて前記絶縁材料を前記ポリシリコンに対して選択的に研磨する工程を備える、研磨方法。
PCT/JP2018/035456 2018-03-22 2018-09-25 研磨液、研磨液セット及び研磨方法 WO2019181013A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020207025931A KR102576637B1 (ko) 2018-03-22 2018-09-25 연마액, 연마액 세트 및 연마 방법
SG11202008797WA SG11202008797WA (en) 2018-03-22 2018-09-25 Polishing liquid, polishing liquid set, and polishing method
CN201880090885.5A CN111819263A (zh) 2018-03-22 2018-09-25 研磨液、研磨液套剂和研磨方法
US16/981,560 US11572490B2 (en) 2018-03-22 2018-09-25 Polishing liquid, polishing liquid set, and polishing method
JP2020507311A JP6973620B2 (ja) 2018-03-22 2018-09-25 研磨液、研磨液セット及び研磨方法
TW108109808A TWI734971B (zh) 2018-03-22 2019-03-21 研磨液、研磨液套組及研磨方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
PCT/JP2018/011464 WO2019180887A1 (ja) 2018-03-22 2018-03-22 研磨液、研磨液セット及び研磨方法
JPPCT/JP2018/011464 2018-03-22
JPPCT/JP2018/028105 2018-07-26
PCT/JP2018/028105 WO2020021680A1 (ja) 2018-07-26 2018-07-26 スラリ及び研磨方法

Publications (1)

Publication Number Publication Date
WO2019181013A1 true WO2019181013A1 (ja) 2019-09-26

Family

ID=67986825

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/JP2018/035456 WO2019181013A1 (ja) 2018-03-22 2018-09-25 研磨液、研磨液セット及び研磨方法
PCT/JP2018/035480 WO2019181016A1 (ja) 2018-03-22 2018-09-25 研磨液、研磨液セット及び研磨方法
PCT/JP2018/035458 WO2019181014A1 (ja) 2018-03-22 2018-09-25 研磨液、研磨液セット及び研磨方法
PCT/JP2019/011872 WO2019182063A1 (ja) 2018-03-22 2019-03-20 研磨液、研磨液セット及び研磨方法

Family Applications After (3)

Application Number Title Priority Date Filing Date
PCT/JP2018/035480 WO2019181016A1 (ja) 2018-03-22 2018-09-25 研磨液、研磨液セット及び研磨方法
PCT/JP2018/035458 WO2019181014A1 (ja) 2018-03-22 2018-09-25 研磨液、研磨液セット及び研磨方法
PCT/JP2019/011872 WO2019182063A1 (ja) 2018-03-22 2019-03-20 研磨液、研磨液セット及び研磨方法

Country Status (7)

Country Link
US (3) US11572490B2 (ja)
JP (2) JP6973620B2 (ja)
KR (3) KR102576637B1 (ja)
CN (3) CN111819263A (ja)
SG (3) SG11202008797WA (ja)
TW (3) TWI734971B (ja)
WO (4) WO2019181013A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112980332A (zh) * 2019-12-16 2021-06-18 凯斯科技股份有限公司 用于sti工艺的抛光浆料组合物
WO2022070314A1 (ja) * 2020-09-30 2022-04-07 昭和電工マテリアルズ株式会社 スラリ及び研磨方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020021680A1 (ja) * 2018-07-26 2020-01-30 日立化成株式会社 スラリ及び研磨方法
US20230348753A1 (en) * 2020-08-31 2023-11-02 Soulbrain Co., Ltd. Cerium oxide particles, chemical mechanical polishing slurry composition comprising same, and method for manufacturing semiconductor device
US20230145080A1 (en) * 2020-11-11 2023-05-11 Showa Denko Materials Co., Ltd. Polishing liquid and polishing method
KR20220101080A (ko) * 2021-01-06 2022-07-19 쇼와덴코머티리얼즈가부시끼가이샤 연마액, 연마액 세트 및 연마 방법
CN113231919A (zh) * 2021-05-10 2021-08-10 南通瑞景光电科技有限公司 光学元件环保型研磨工艺
WO2023127775A1 (ja) * 2021-12-28 2023-07-06 株式会社レゾナック 組成物、研磨剤および基材の研磨方法
CN115446718A (zh) * 2022-07-19 2022-12-09 北京博海康源医疗器械有限公司 一种用于手术刀表面的抛光及去毛刺系统及其抛光方法
WO2024080833A1 (ko) * 2022-10-13 2024-04-18 솔브레인 주식회사 화학적 기계적 연마용 슬러리 조성물 및 그 제조방법
CN115710464A (zh) * 2022-11-11 2023-02-24 博力思(天津)电子科技有限公司 一种低表面粗糙度的氧化硅介质层化学机械抛光液

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007318072A (ja) * 2006-04-27 2007-12-06 Kao Corp 研磨液組成物
JP2012186339A (ja) * 2011-03-07 2012-09-27 Hitachi Chem Co Ltd 研磨液及びこの研磨液を用いた基板の研磨方法
JP2015137297A (ja) * 2014-01-21 2015-07-30 株式会社フジミインコーポレーテッド 研磨用組成物およびその製造方法
JP2018044046A (ja) * 2016-09-13 2018-03-22 旭硝子株式会社 研磨剤と研磨方法、および研磨用添加液

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4941430B1 (ja) 1970-08-25 1974-11-08
JPS5943073U (ja) 1982-09-13 1984-03-21 三洋電機株式会社 小型電気機器
JP3278532B2 (ja) 1994-07-08 2002-04-30 株式会社東芝 半導体装置の製造方法
TW311905B (ja) 1994-07-11 1997-08-01 Nissan Chemical Ind Ltd
EP0820092A4 (en) 1996-02-07 2000-03-29 Hitachi Chemical Co Ltd CERIUM OXIDE ABRASIVE, SEMICONDUCTOR MICROPLATE, SEMICONDUCTOR DEVICE, PROCESS FOR PRODUCING THE SAME, AND METHOD FOR POLISHING THE SUBSTRATES
JPH10106994A (ja) 1997-01-28 1998-04-24 Hitachi Chem Co Ltd 酸化セリウム研磨剤及び基板の研磨法
EP1369906B1 (en) 2001-02-20 2012-06-27 Hitachi Chemical Company, Ltd. Polishing compound and method for polishing substrate
US6821897B2 (en) 2001-12-05 2004-11-23 Cabot Microelectronics Corporation Method for copper CMP using polymeric complexing agents
US7071105B2 (en) 2003-02-03 2006-07-04 Cabot Microelectronics Corporation Method of polishing a silicon-containing dielectric
US6939211B2 (en) 2003-10-09 2005-09-06 Micron Technology, Inc. Planarizing solutions including abrasive elements, and methods for manufacturing and using such planarizing solutions
US7112123B2 (en) 2004-06-14 2006-09-26 Amcol International Corporation Chemical-mechanical polishing (CMP) slurry containing clay and CeO2 abrasive particles and method of planarizing surfaces
US20050119360A1 (en) 2003-11-28 2005-06-02 Kabushiki Kaisha Kobe Seiko Sho Method for producing porous material
JP2006249129A (ja) 2005-03-08 2006-09-21 Hitachi Chem Co Ltd 研磨剤の製造方法及び研磨剤
KR101267971B1 (ko) 2005-08-31 2013-05-27 가부시키가이샤 후지미인코퍼레이티드 연마용 조성물 및 연마 방법
JP2008112990A (ja) 2006-10-04 2008-05-15 Hitachi Chem Co Ltd 研磨剤及び基板の研磨方法
JP5281758B2 (ja) 2007-05-24 2013-09-04 ユシロ化学工業株式会社 研磨用組成物
KR101184731B1 (ko) 2008-03-20 2012-09-20 주식회사 엘지화학 산화세륨 제조 방법, 이로부터 얻어진 산화세륨 및 이를 포함하는 cmp슬러리
JP5423669B2 (ja) 2008-04-23 2014-02-19 日立化成株式会社 研磨剤及びこの研磨剤を用いた基板の研磨方法
JP5287174B2 (ja) 2008-04-30 2013-09-11 日立化成株式会社 研磨剤及び研磨方法
JP2010153781A (ja) 2008-11-20 2010-07-08 Hitachi Chem Co Ltd 基板の研磨方法
CN102232242B (zh) 2008-12-11 2014-07-09 日立化成株式会社 Cmp用研磨液以及使用该研磨液的研磨方法
KR20140027561A (ko) 2009-06-09 2014-03-06 히타치가세이가부시끼가이샤 연마제, 연마제 세트 및 기판의 연마 방법
TWI454562B (zh) 2009-07-16 2014-10-01 Hitachi Chemical Co Ltd 鈀研磨用cmp研磨液以及研磨方法
JP4894981B2 (ja) 2009-10-22 2012-03-14 日立化成工業株式会社 研磨剤、濃縮1液式研磨剤、2液式研磨剤及び基板の研磨方法
JP2011142284A (ja) 2009-12-10 2011-07-21 Hitachi Chem Co Ltd Cmp研磨液、基板の研磨方法及び電子部品
SG10201506220PA (en) * 2010-09-08 2015-09-29 Basf Se Aqueous polishing composition and process for chemically mechanically polishing substrate materials for electrical, mechanical and optical devices
US9881801B2 (en) 2010-11-22 2018-01-30 Hitachi Chemical Company, Ltd. Slurry, polishing liquid set, polishing liquid, method for polishing substrate, and substrate
KR101886895B1 (ko) 2010-11-22 2018-08-08 히타치가세이가부시끼가이샤 슬러리, 연마액 세트, 연마액, 기판의 연마 방법 및 기판
CN103450847A (zh) 2010-11-22 2013-12-18 日立化成株式会社 磨粒的制造方法、悬浮液的制造方法以及研磨液的制造方法
KR20140005963A (ko) 2011-01-25 2014-01-15 히타치가세이가부시끼가이샤 Cmp 연마액 및 그의 제조 방법, 복합 입자의 제조 방법, 및 기체의 연마 방법
JP2015088495A (ja) 2012-02-21 2015-05-07 日立化成株式会社 研磨剤、研磨剤セット及び基体の研磨方法
CN104334675B (zh) 2012-05-22 2016-10-26 日立化成株式会社 悬浮液、研磨液套剂、研磨液、基体的研磨方法及基体
SG11201501334RA (en) * 2012-08-30 2015-05-28 Hitachi Chemical Co Ltd Polishing agent, polishing agent set and method for polishing base
JP2014060205A (ja) * 2012-09-14 2014-04-03 Fujimi Inc 研磨用組成物
JP6139975B2 (ja) * 2013-05-15 2017-05-31 株式会社フジミインコーポレーテッド 研磨用組成物
US10155886B2 (en) 2013-06-12 2018-12-18 Hitachi Chemical Company, Ltd. Polishing liquid for CMP, and polishing method
WO2014208414A1 (ja) 2013-06-27 2014-12-31 コニカミノルタ株式会社 酸化セリウム研磨材、酸化セリウム研磨材の製造方法及び研磨加工方法
WO2015052988A1 (ja) 2013-10-10 2015-04-16 日立化成株式会社 研磨剤、研磨剤セット及び基体の研磨方法
US9340706B2 (en) 2013-10-10 2016-05-17 Cabot Microelectronics Corporation Mixed abrasive polishing compositions
JP6223786B2 (ja) 2013-11-12 2017-11-01 花王株式会社 硬脆材料用研磨液組成物
JP6256482B2 (ja) * 2013-12-26 2018-01-10 日立化成株式会社 研磨剤、研磨剤セット及び基体の研磨方法
KR20170032335A (ko) 2014-07-09 2017-03-22 히타치가세이가부시끼가이샤 Cmp용 연마액 및 연마 방법
JP6435689B2 (ja) * 2014-07-25 2018-12-12 Agc株式会社 研磨剤と研磨方法、および研磨用添加液
CN106661429B (zh) 2014-08-26 2019-07-05 凯斯科技股份有限公司 抛光浆料组合物
JP2016069535A (ja) * 2014-09-30 2016-05-09 株式会社フジミインコーポレーテッド 研磨用組成物及びその製造方法並びに研磨方法
US9422455B2 (en) 2014-12-12 2016-08-23 Cabot Microelectronics Corporation CMP compositions exhibiting reduced dishing in STI wafer polishing
JP2016154208A (ja) 2015-02-12 2016-08-25 旭硝子株式会社 研磨剤、研磨方法および半導体集積回路装置の製造方法
US10946494B2 (en) 2015-03-10 2021-03-16 Showa Denko Materials Co., Ltd. Polishing agent, stock solution for polishing agent, and polishing method
KR101761792B1 (ko) 2015-07-02 2017-07-26 주식회사 케이씨텍 Sti 연마용 슬러리 조성물
JP6570382B2 (ja) 2015-09-09 2019-09-04 デンカ株式会社 研磨用シリカ添加剤及びそれを用いた方法
JP6720975B2 (ja) 2015-09-09 2020-07-08 日立化成株式会社 研磨液、研磨液セット及び基体の研磨方法
KR101737938B1 (ko) 2015-12-15 2017-05-19 주식회사 케이씨텍 다기능성 연마 슬러리 조성물
KR101761789B1 (ko) * 2015-12-24 2017-07-26 주식회사 케이씨텍 첨가제 조성물 및 이를 포함하는 포지티브 연마 슬러리 조성물
KR20180112004A (ko) * 2016-02-16 2018-10-11 쓰리엠 이노베이티브 프로퍼티즈 컴파니 폴리싱 시스템 및 그의 제조 방법 및 사용 방법
JP2017203076A (ja) 2016-05-10 2017-11-16 日立化成株式会社 Cmp研磨剤及びこれを用いた研磨方法
US20190256742A1 (en) 2016-07-15 2019-08-22 Fujimi Incorporated Polishing composition, method for producing polishing composition, and polishing method
KR101823083B1 (ko) 2016-09-07 2018-01-30 주식회사 케이씨텍 표면개질된 콜로이달 세리아 연마입자, 그의 제조방법 및 그를 포함하는 연마 슬러리 조성물
KR102619722B1 (ko) 2016-10-27 2024-01-02 삼성디스플레이 주식회사 트랜지스터 표시판의 제조 방법 및 이에 이용되는 연마 슬러리
SG11202001013YA (en) * 2017-08-14 2020-03-30 Hitachi Chemical Co Ltd Polishing liquid, polishing liquid set and polishing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007318072A (ja) * 2006-04-27 2007-12-06 Kao Corp 研磨液組成物
JP2012186339A (ja) * 2011-03-07 2012-09-27 Hitachi Chem Co Ltd 研磨液及びこの研磨液を用いた基板の研磨方法
JP2015137297A (ja) * 2014-01-21 2015-07-30 株式会社フジミインコーポレーテッド 研磨用組成物およびその製造方法
JP2018044046A (ja) * 2016-09-13 2018-03-22 旭硝子株式会社 研磨剤と研磨方法、および研磨用添加液

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112980332A (zh) * 2019-12-16 2021-06-18 凯斯科技股份有限公司 用于sti工艺的抛光浆料组合物
WO2022070314A1 (ja) * 2020-09-30 2022-04-07 昭和電工マテリアルズ株式会社 スラリ及び研磨方法
WO2022070926A1 (ja) * 2020-09-30 2022-04-07 昭和電工マテリアルズ株式会社 スラリ、研磨方法及び半導体部品の製造方法

Also Published As

Publication number Publication date
SG11202009064XA (en) 2020-10-29
TW201940651A (zh) 2019-10-16
KR20200128742A (ko) 2020-11-16
JPWO2019181013A1 (ja) 2021-02-04
US20210017422A1 (en) 2021-01-21
KR20200128741A (ko) 2020-11-16
WO2019181014A1 (ja) 2019-09-26
TWI734971B (zh) 2021-08-01
TW201940617A (zh) 2019-10-16
WO2019182063A1 (ja) 2019-09-26
CN111868202B (zh) 2021-12-21
KR102520409B1 (ko) 2023-04-11
CN111868203A (zh) 2020-10-30
SG11202008680WA (en) 2020-10-29
JPWO2019182063A1 (ja) 2021-02-25
JP7067614B2 (ja) 2022-05-16
US20210054233A1 (en) 2021-02-25
KR102576637B1 (ko) 2023-09-07
US11767448B2 (en) 2023-09-26
WO2019181016A1 (ja) 2019-09-26
SG11202008797WA (en) 2020-10-29
US11572490B2 (en) 2023-02-07
JP6973620B2 (ja) 2021-12-01
KR20200118186A (ko) 2020-10-14
CN111868202A (zh) 2020-10-30
TWI786281B (zh) 2022-12-11
US11352523B2 (en) 2022-06-07
US20210071037A1 (en) 2021-03-11
TW201940652A (zh) 2019-10-16
CN111819263A (zh) 2020-10-23
KR102589079B1 (ko) 2023-10-12

Similar Documents

Publication Publication Date Title
JP6973620B2 (ja) 研磨液、研磨液セット及び研磨方法
JP5418590B2 (ja) 研磨剤、研磨剤セット及び基板の研磨方法
JP6375623B2 (ja) 研磨剤、研磨剤セット及び基体の研磨方法
JP7056728B2 (ja) 研磨液、研磨液セット及び研磨方法
WO2018179787A1 (ja) 研磨液、研磨液セット及び研磨方法
JP2015088495A (ja) 研磨剤、研磨剤セット及び基体の研磨方法
TWI804659B (zh) 研漿及研磨方法
JP2014187268A (ja) Cmp研磨剤及び基板の研磨方法
JP6753518B2 (ja) 研磨液、研磨液セット、添加液及び研磨方法
WO2019180887A1 (ja) 研磨液、研磨液セット及び研磨方法
WO2018179064A1 (ja) スラリ及び研磨方法
WO2019182057A1 (ja) 研磨液、研磨液セット及び研磨方法
JP2016023224A (ja) 研磨剤、研磨剤セット及び基体の研磨方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18911158

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020507311

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207025931

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18911158

Country of ref document: EP

Kind code of ref document: A1