WO2019176859A1 - エポキシ樹脂組成物、及び電子部品装置 - Google Patents

エポキシ樹脂組成物、及び電子部品装置 Download PDF

Info

Publication number
WO2019176859A1
WO2019176859A1 PCT/JP2019/009705 JP2019009705W WO2019176859A1 WO 2019176859 A1 WO2019176859 A1 WO 2019176859A1 JP 2019009705 W JP2019009705 W JP 2019009705W WO 2019176859 A1 WO2019176859 A1 WO 2019176859A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
group
resin composition
epoxy
mass
Prior art date
Application number
PCT/JP2019/009705
Other languages
English (en)
French (fr)
Inventor
東哲 姜
格 山浦
健太 石橋
拓也 児玉
慧地 堀
実佳 田中
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2020506510A priority Critical patent/JP7351291B2/ja
Priority to KR1020207026486A priority patent/KR20200132871A/ko
Priority to SG11202008967WA priority patent/SG11202008967WA/en
Priority to US16/981,188 priority patent/US20210061986A1/en
Priority to CN201980019217.8A priority patent/CN111868169B/zh
Publication of WO2019176859A1 publication Critical patent/WO2019176859A1/ja
Priority to JP2023048622A priority patent/JP2023076548A/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/688Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5425Silicon-containing compounds containing oxygen containing at least one C=C bond
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/296Organo-silicon compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/206Applications use in electrical or conductive gadgets use in coating or encapsulating of electronic parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler

Definitions

  • the present disclosure relates to an epoxy resin composition and an electronic component device.
  • packages in which elements such as transistors and ICs are sealed with a resin such as an epoxy resin have been widely used in electronic devices.
  • the present disclosure provides an epoxy resin composition having excellent thermal conductivity, low viscosity, and good curability, and an electronic component including an element sealed using the epoxy resin composition It is an object to provide an apparatus.
  • Means for solving the above problems include the following aspects.
  • the functional group that does not react with the epoxy group is at least one selected from the group consisting of a (meth) acryloyl group, a (meth) acryloyloxy group, and a vinyl group, ⁇ 1> or ⁇ 2>
  • ⁇ 4> The epoxy resin composition according to any one of ⁇ 1> to ⁇ 3>, wherein the silane compound includes 3-methacryloxypropyltrimethoxysilane.
  • ⁇ 5> The epoxy resin composition according to any one of ⁇ 1> to ⁇ 4>, wherein the content of the alumina particles is 50% by volume or more.
  • ⁇ 6> The epoxy resin composition according to any one of ⁇ 1> to ⁇ 5>, further containing silica particles.
  • An electronic component device comprising an element sealed with the epoxy resin composition according to any one of ⁇ 1> to ⁇ 6>.
  • an epoxy resin composition having excellent thermal conductivity, low viscosity, and good curability is maintained, and an electronic component device including an element sealed using the epoxy resin composition is provided. Is done.
  • each component may contain a plurality of corresponding substances.
  • the content or content of each component is the total content or content of the multiple types of substances present in the composition unless otherwise specified.
  • a plurality of particles corresponding to each component may be included.
  • the particle diameter of each component means a value for a mixture of the plurality of particles present in the composition unless otherwise specified.
  • (meth) acryloyl group means at least one of acryloyl group and methacryloyl group
  • (meth) acryloyloxy group means at least one of acryloyloxy group and methacryloyloxy group.
  • the epoxy resin composition of the present disclosure has an epoxy resin, a curing agent, alumina particles, and a functional group that does not react with the epoxy group while having no functional group that reacts with the epoxy group, and reacts with the epoxy group.
  • a silane compound having a structure in which a functional group that is not bonded is bonded to a silicon atom or bonded to a silicon atom via a chain hydrocarbon group having 1 to 5 carbon atoms.
  • a functional group that does not react with an epoxy group while having a functional group that does not react with an epoxy group, and the functional group that does not react with the epoxy group is bonded to a silicon atom A “silane compound having a structure bonded to a silicon atom via a chain hydrocarbon group of 5 to 5” is also referred to as a “specific silane compound”.
  • the epoxy resin composition may contain other components as necessary.
  • the epoxy resin composition of the present disclosure has the above-described effects is not necessarily clear, but is estimated as follows.
  • a silane compound having a functional group having reactivity with the epoxy resin is often used. This increases the dispersibility of the inorganic filler in the epoxy resin by the chemical bond between the silanol group of the silane compound and the inorganic filler and the chemical bond between the functional group of the silane compound and the epoxy resin.
  • the main purpose is to increase liquidity.
  • the specific silane compound in the epoxy resin composition of the present disclosure has a functional group that does not react with the epoxy group, and does not have a functional group that reacts with the epoxy group. It is thought that exists. Alumina particles generally tend to lower the fluidity of the resin composition due to the nature of the surface state. However, when the specific silane compound is present on the surface of the alumina particles, it is considered that the compatibility of the alumina particles with the resin is improved because the specific silane compound functions as a lubricant. Thereby, it is estimated that the frictional resistance between the alumina particles is reduced and the melt viscosity is lowered.
  • the increase in the viscosity of the epoxy resin composition can be suppressed, it is possible to increase the amount of alumina particles blended and to further improve the thermal conductivity.
  • the curability may decrease, but when a specific silane compound is used, the curability of the epoxy resin composition is not significantly decreased.
  • the specific silane compound has a structure in which a functional group that does not react with an epoxy group is bonded to a silicon atom or bonded to a silicon atom via a hydrocarbon group having a chain length of 5 or less carbon atoms. Therefore, it is estimated that this is because the distance between silicon and the functional group is relatively short, and it is difficult to hinder the curing reaction of the epoxy resin composition.
  • the epoxy resin composition contains an epoxy resin.
  • the type of the epoxy resin is not particularly limited as long as it has an epoxy group in the molecule.
  • Specific examples of the epoxy resin include at least one selected from the group consisting of phenol compounds such as phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, and naphthol compounds such as ⁇ -naphthol, ⁇ -naphthol, and dihydroxynaphthalene.
  • a novolak-type epoxy resin obtained by epoxidizing a novolak resin obtained by condensing or co-condensing a phenolic compound with an aliphatic aldehyde compound such as formaldehyde, acetaldehyde, propionaldehyde or the like under an acidic catalyst Epoxy resins, ortho-cresol novolac type epoxy resins, etc.); the above phenolic compounds and aromatic aldehyde compounds such as benzaldehyde and salicylaldehyde can be condensed or acidic Is a triphenylmethane type epoxy resin obtained by epoxidizing a triphenylmethane type phenol resin obtained by cocondensation; a novolak obtained by cocondensing the above phenol compound, naphthol compound and aldehyde compound in the presence of an acidic catalyst Copolymerized epoxy resin obtained by epoxidizing resin; diphenylmethane type epoxy
  • the epoxy equivalent (molecular weight / number of epoxy groups) of the epoxy resin is not particularly limited. From the viewpoint of balance of various properties such as moldability, reflow resistance and electrical reliability, it is preferably 100 g / eq to 1000 g / eq, and more preferably 150 g / eq to 500 g / eq.
  • the epoxy equivalent of the epoxy resin is a value measured by a method according to JIS K 7236: 2009.
  • the softening point or melting point of the epoxy resin is not particularly limited.
  • the temperature is preferably 40 ° C to 180 ° C, and from the viewpoint of handleability when preparing the epoxy resin composition, it is more preferably 50 ° C to 130 ° C.
  • the melting point of the epoxy resin is a value measured by differential scanning calorimetry (DSC), and the softening point of the epoxy resin is a value measured by a method (ring and ball method) according to JIS K 7234: 1986.
  • the content of the epoxy resin in the epoxy resin composition is preferably 0.5% by mass to 50% by mass from the viewpoint of strength, fluidity, heat resistance, moldability and the like, and is 2% by mass to 30% by mass. More preferably, it is more preferably 2% by mass to 20% by mass.
  • the epoxy resin composition contains a curing agent.
  • the type of the curing agent is not particularly limited and can be selected according to the type of resin, desired characteristics of the epoxy resin composition, and the like.
  • the curing agent include phenol curing agents, amine curing agents, acid anhydride curing agents, polymercaptan curing agents, polyaminoamide curing agents, isocyanate curing agents, and blocked isocyanate curing agents.
  • the curing agent is preferably one having a phenolic hydroxyl group in the molecule (phenol curing agent).
  • the phenol curing agent include polyphenol compounds such as resorcin, catechol, bisphenol A, bisphenol F, substituted or unsubstituted biphenol; phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, phenylphenol At least one phenolic compound selected from the group consisting of phenolic compounds such as aminophenol and naphtholic compounds such as ⁇ -naphthol, ⁇ -naphthol and dihydroxynaphthalene, and aldehydes such as formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde and salicylaldehyde A novolak-type phenol resin obtained by condensation or co-condensation of a compound with an acidic catalyst; the phenolic compound and dimethoxypara Aralkyl-type phenol resins such as phenol aralkyl resins and naphthol aralky
  • biphenyl type phenol resins are preferable from the viewpoint of flame retardancy
  • aralkyl type phenol resins are preferable from the viewpoint of reflow resistance and curability
  • dicyclopentadiene type phenol resins from the viewpoint of low hygroscopicity.
  • triphenylmethane type phenol resin is preferable
  • novolac type phenol resin is preferable. It is preferable that the epoxy resin composition contains at least one of these phenol resins.
  • the functional group equivalent of the curing agent (hydroxyl equivalent in the case of a phenol curing agent) is not particularly limited. From the viewpoint of balance of various properties such as moldability, reflow resistance, and electrical reliability, it is preferably 70 g / eq to 1000 g / eq, and more preferably 80 g / eq to 500 g / eq.
  • the functional group equivalent of the curing agent is a value measured by a method according to JIS K 0070: 1992.
  • the softening point or melting point of the curing agent is not particularly limited.
  • the temperature is preferably 40 ° C to 180 ° C, and from the viewpoint of handleability during production of the epoxy resin composition, it is more preferably 50 ° C to 130 ° C.
  • the melting point or softening point of the curing agent is a value measured in the same manner as the melting point or softening point of the epoxy resin.
  • the equivalent ratio of the epoxy resin and the curing agent that is, the ratio of the number of functional groups in the curing agent to the number of epoxy groups in the epoxy resin (the number of functional groups in the curing agent / the number of epoxy groups in the epoxy resin) is not particularly limited. From the viewpoint of reducing the amount of each unreacted component, the equivalent ratio of the epoxy resin and the curing agent is preferably set in the range of 0.5 to 2.0, and set in the range of 0.6 to 1.3. More preferably. From the viewpoint of moldability and reflow resistance, the equivalent ratio of the epoxy resin and the curing agent is more preferably set in the range of 0.8 to 1.2.
  • the epoxy resin composition contains alumina particles as an inorganic filler.
  • the epoxy resin composition may contain an inorganic filler other than the alumina particles.
  • the content of alumina particles in the epoxy resin composition is not particularly limited. From the viewpoint of the thermal conductivity of the cured product, the content of alumina particles is preferably 30% by volume or more, more preferably 35% by volume or more, and 40% by volume with respect to the total amount of the epoxy resin composition. More preferably, it is more preferably 45% by volume or more, and most preferably 50% by volume or more.
  • the upper limit of the content of the alumina particles is not particularly limited, and is preferably less than 100% by volume, more preferably 99% by volume or less, and 98% by volume from the viewpoints of improving fluidity and lowering the viscosity. More preferably, it is% or less.
  • the content of alumina particles in the epoxy resin composition is preferably 30% by volume or more and less than 100% by volume, more preferably 35% by volume to 99% by volume, and 40% by volume to 98% by volume. Is more preferably 45% by volume to 98% by volume, and particularly preferably 50% by volume to 98% by volume.
  • the content rate of the alumina particle in an epoxy resin composition can be measured with the measuring method of the content rate of the below-mentioned inorganic filler, for example.
  • the volume average particle diameter of the alumina particles is not particularly limited.
  • the volume average particle diameter of the alumina particles is preferably 0.1 ⁇ m or more, and more preferably 0.3 ⁇ m or more. Further, the volume average particle diameter of the alumina particles is preferably 80 ⁇ m or less, and more preferably 50 ⁇ m or less. When the volume average particle diameter of the alumina particles is 0.1 ⁇ m or more, an increase in the viscosity of the epoxy resin composition is easily suppressed.
  • the volume average particle diameter of the alumina particles is 80 ⁇ m or less, the mixing property of the alumina particles in the epoxy resin composition is improved, the uneven distribution of the alumina particles is suppressed, and the variation in the thermal conductivity in the cured product is suppressed. There is a tendency. Moreover, even if it is used for sealing a narrow region, it tends to be excellent in the packing property of alumina particles.
  • the volume average particle diameter of the alumina particles can be measured by, for example, a laser scattering diffraction method particle size distribution measuring apparatus. In the present disclosure, the volume average particle diameter is measured as the particle diameter (D50) when the accumulation from the small diameter side is 50% in the volume-based particle size distribution measured by the laser scattering diffraction particle size distribution analyzer. Can do.
  • the shape of the alumina particles is not limited and may be spherical or square. From the viewpoint of fluidity, the particle shape of the alumina particles is preferably spherical, and the particle size distribution of the alumina particles is preferably distributed over a wide range. For example, when alumina particles are blended in an amount of 75% by volume or more based on the epoxy resin composition, 70% by mass or more of the total amount of alumina particles is made spherical particles, and the particle diameter of the spherical particles is distributed over a wide range of 0.1 ⁇ m to 80 ⁇ m. Is preferred. Since such alumina particles tend to have a close-packed structure, even if the blending amount is increased, the viscosity of the material is little increased and an epoxy resin composition excellent in fluidity tends to be obtained.
  • the epoxy resin composition may contain an inorganic filler other than alumina particles.
  • Inorganic fillers other than alumina particles are not particularly limited, and are fused silica, crystalline silica, glass, calcium carbonate, zirconium silicate, calcium silicate, silicon nitride, aluminum nitride, boron nitride, magnesium oxide, silicon carbide, beryllia, zirconia. , Zircon, fosterite, steatite, spinel, mullite, titania, talc, clay, mica, and other inorganic materials.
  • An inorganic filler having a flame retardant effect may be used.
  • Examples of the inorganic filler having a flame retardant effect include aluminum hydroxide, magnesium hydroxide, composite metal hydroxide such as composite hydroxide of magnesium and zinc, zinc borate and the like.
  • An inorganic filler may be used individually by 1 type, or may use 2 or more types together.
  • Inorganic fillers other than alumina particles may be used alone or in combination of two or more. “Use of two or more inorganic fillers in combination” means that, for example, when two or more inorganic fillers having the same component and different volume average particle diameters are used, the inorganic fillers having the same volume average particle diameter and different components are used. And two or more types of inorganic fillers having different volume average particle sizes and types.
  • the content of the inorganic filler in the total mass of the epoxy resin composition is not particularly limited. From the viewpoint of the thermal conductivity of the cured product, the content of the inorganic filler is preferably 30% by volume or more, more preferably 35% by volume or more, and 40% by volume with respect to the total amount of the epoxy resin composition. % Or more, more preferably 45% by volume or more, and particularly preferably 50% by volume or more.
  • the upper limit of the content of the inorganic filler is not particularly limited, and is preferably less than 100% by volume, more preferably 99% by volume or less, from the viewpoint of improvement in fluidity, decrease in viscosity, and the like. More preferably, it is not more than volume%.
  • the content of the inorganic filler in the epoxy resin composition is preferably 30% by volume or more and less than 100% by volume, more preferably 35% by volume to 99% by volume, and 40% by volume to 98% by volume. More preferably, it is 45% to 98% by volume, particularly preferably 50% to 98% by volume.
  • the content of the inorganic filler in the total mass of the epoxy resin composition is measured as follows. First, the total mass of a cured product (also referred to as an epoxy resin molding) of the epoxy resin composition is measured, and the epoxy resin molding is baked at 400 ° C. for 2 hours and then at 700 ° C. for 3 hours to evaporate the resin component. Then, the mass of the remaining inorganic filler is measured. The volume is calculated from the obtained mass and specific gravity, and the ratio of the volume of the inorganic filler to the total volume of the cured product (epoxy resin molded product) of the epoxy resin composition is obtained as the content of the inorganic filler.
  • the maximum particle diameter (also referred to as a cut point) of the inorganic filler may be controlled from the viewpoint of improving the filling property in a narrow gap when the epoxy resin composition is used for mold underfill.
  • the maximum particle size of the inorganic filler may be appropriately adjusted. From the viewpoint of filling properties, it is preferably 105 ⁇ m or less, more preferably 75 ⁇ m or less, 60 ⁇ m or less, and 40 ⁇ m or less. May be.
  • the maximum particle size can be measured with a laser diffraction particle size distribution meter (trade name: LA920, manufactured by Horiba, Ltd.).
  • the content of the alumina particles with respect to the total amount of the inorganic filler is preferably 30% by mass or more. 35% by mass or more is more preferable, and 40% by mass or more is more preferable.
  • the upper limit of the content rate of the alumina particles with respect to the total amount of the inorganic filler is not particularly limited, and may be 100% by mass or less, 90% by mass or less, or 85% by mass or less.
  • the epoxy resin composition contains a specific silane compound.
  • the specific silane compound does not have a functional group that reacts with an epoxy group, but has a functional group that does not react with an epoxy group, and the functional group that does not react with the epoxy group is bonded to a silicon atom or has 1 carbon atom. It has a structure bonded to a silicon atom via a chain hydrocarbon group of ⁇ 5.
  • the functional group that does not react with the epoxy group in the specific silane compound is also referred to as “specific functional group”.
  • “Functional group that does not react with epoxy group” means that no chemical reaction occurs with the epoxy group or the reaction rate is extremely slow, so that the change in the properties of the epoxy resin composition due to the reaction is negligible in practice.
  • the “functional group that reacts with the epoxy group” refers to a functional group other than the functional group that does not react with the epoxy group.
  • the “functional group” of a silane compound refers to an atom or atomic group that exists in the molecule of the silane compound and causes the reactivity of the silane compound. The fact that the functional group of the silane compound does not react with the epoxy group can be confirmed by, for example, a differential thermal scanning calorimeter (DSC).
  • DSC differential thermal scanning calorimeter
  • Specific functional groups include (meth) acryloyl group, (meth) acryloyloxy group, vinyl group, styryl group and the like.
  • examples of the “functional group that reacts with an epoxy group” include groups having an amine structure such as an amino group and a phenylamino group, epoxy groups, thiol groups, isocyanate groups, isocyanurate groups, and ureido groups.
  • the specific functional group is preferably at least one selected from the group consisting of a (meth) acryloyl group, a (meth) acryloyloxy group, and a vinyl group, and more preferably a (meth) acryloyloxy group.
  • the specific silane compound may have one specific functional group per molecule or a plurality of specific functional groups.
  • the number of specific functional groups per molecule of the specific silane compound is preferably 1 to 4, more preferably 1 to 3, still more preferably 1 or 2, and particularly preferably 1. .
  • the specific functional group is bonded to the silicon atom or bonded to the silicon atom via a chain hydrocarbon group having 1 to 5 carbon atoms.
  • the chain hydrocarbon group has 2 to 4 carbon atoms from the viewpoint of viscosity reduction and moldability. It is preferably 3, and more preferably 3.
  • the number of carbon atoms of the chain hydrocarbon group means the number of carbon atoms that does not include branched or substituted carbon.
  • the specific functional group may be present at the end of the chain hydrocarbon group. It may be present in the side chain of the hydrogen group. From the viewpoint of suppressing the viscosity, the specific functional group is preferably present at the end of the chain hydrocarbon group.
  • the chain hydrocarbon group may have a branched chain.
  • the branched chain preferably has 1 or 2 carbon atoms.
  • the chain hydrocarbon group preferably has no branched chain.
  • the chain hydrocarbon group may have a substituent in addition to the specific functional group.
  • the substituent is not particularly limited, and may be an alkoxy group, an aryl group, an aryloxy group, or the like.
  • the chain hydrocarbon group preferably has no substituent other than the specific functional group.
  • the chain hydrocarbon group may or may not contain an unsaturated bond, and preferably does not contain an unsaturated bond.
  • the specific functional group directly bonded to the silicon atom, or the group bonded to the silicon atom and having the chain hydrocarbon group having 1 to 5 carbon atoms and the specific functional group is referred to as “specific functional group. It is referred to as a “containing group”.
  • the number of the group containing the specific functional group in the specific silane compound may be 1 to 4, preferably 1 to 3, more preferably 1 or 2, and further preferably 1.
  • other groups bonded to the silicon atom are not particularly limited, and are independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or 1 to 3 carbon atoms.
  • one group containing a specific functional group is bonded to the silicon atom, and each of the other three bonds is independently an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms. Bonding is preferred.
  • one group containing a specific functional group is bonded to the silicon atom, and that the other three bonds are independently bonded to a methyl group, an ethyl group, a methoxy group, or an ethoxy group. .
  • Specific silane compounds include 3- (meth) acryloxypropylmethyldimethoxysilane, 3- (meth) acryloxypropyltrimethoxysilane, 3- (meth) acryloxypropylmethyldiethoxysilane, 3- (meth) acryloxy Examples thereof include propyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, and p-styryltrimethoxysilane. Of these, 3- (meth) acryloxypropyltrimethoxysilane is preferred from the viewpoint of suppressing the increase in viscosity of the epoxy resin composition and curing properties.
  • a specific silane compound may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the specific silane compound may be synthesized or commercially available.
  • Examples of the commercially available silane compound include KBM-502 (3-methacryloxypropylmethyldimethoxysilane), KBM-503 (3-methacryloxypropyltrimethoxysilane), KBE-502 (manufactured by Shin-Etsu Chemical Co., Ltd.). 3-methacryloxypropylmethyldiethoxysilane), KBE-503 (3-methacryloxypropyltriethoxysilane), KBM-5103 (3-acryloxypropyltrimethoxysilane) and the like.
  • the content of the specific silane compound in the epoxy resin composition is not particularly limited.
  • the content of the specific silane compound is preferably 0.01% by mass to 20% by mass with respect to the total amount of the epoxy resin.
  • the content of the specific silane compound may be 0.01% by mass to 10% by mass with respect to the total amount of the epoxy resin.
  • the content of the specific silane compound may be 10% by mass to 20% by mass, or 15% by mass to 20% by mass with respect to the total amount of the epoxy resin. May be.
  • the epoxy resin composition may further contain other silane compounds in addition to the specific silane compound.
  • the other silane compound is not particularly limited as long as it is generally used in an epoxy resin composition, and may be a silane compound that reacts with an epoxy group or a silane compound that does not react with an epoxy group.
  • examples of other silane compounds include epoxy silane, mercapto silane, amino silane, alkyl silane, ureido silane, (meth) acryl silane (excluding specific silane compounds), vinyl silane (excluding specific silane compounds), and the like.
  • Another silane compound may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the content of the other silane compound with respect to the total amount of the specific silane compound and the other silane compound is preferably 30% by mass or less, and 20% by mass or less. Is more preferable, and it is further more preferable that it is 10 mass% or less.
  • the epoxy resin composition may contain a coupling agent other than the silane compound.
  • coupling agents other than silane compounds include known coupling agents such as titanium compounds, aluminum chelate compounds, and aluminum / zirconium compounds.
  • Another coupling agent may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the epoxy resin composition may contain a curing accelerator.
  • the kind in particular of hardening accelerator is not restrict
  • the curing accelerator include diazabicycloalkenes such as 1,5-diazabicyclo [4.3.0] nonene-5 (DBN), 1,8-diazabicyclo [5.4.0] undecene-7 (DBU), Cyclic amidine compounds such as 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-heptadecylimidazole; derivatives of the cyclic amidine compounds; phenol novolac salts of the cyclic amidine compounds or derivatives thereof; And maleic anhydride, 1,4-benzoquinone, 2,5-toluquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquino
  • Ammonium salt compounds such as ruammonium hydroxide and tetrapropylammonium hydroxide; triphenylphosphine, diphenyl (p-tolyl) phosphine, tris (alkylphenyl) phosphine, tris (alkoxyphenyl) phosphine, tris (alkylalkoxyphenyl) phosphine, tris (Dialkylphenyl) phosphine, tris (trialkylphenyl) phosphine, tris (tetraalkylphenyl) phosphine, tris (dialk
  • halogenated phenol compounds such as di-t-butylphenol, 4-chloro-1-naphthol, 1-bromo-2
  • the epoxy resin composition contains a curing accelerator
  • its content is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the resin component (that is, the total of the resin and the curing agent). More preferably, it is 1 to 15 parts by mass. It exists in the tendency which hardens
  • the amount of the curing accelerator is 30 parts by mass or less with respect to 100 parts by mass of the resin component, the curing rate is not too high and a good molded product tends to be obtained.
  • the epoxy resin composition may contain various additives such as ion exchangers, mold release agents, flame retardants, colorants, and stress relaxation agents exemplified below.
  • the epoxy resin composition may contain various additives well known in the art as needed in addition to the additives exemplified below.
  • the epoxy resin composition may contain an ion exchanger.
  • an ion exchanger in particular, when the epoxy resin composition is used as a molding material for sealing, it is preferable to contain an ion exchanger from the viewpoint of improving the moisture resistance and high temperature storage characteristics of an electronic component device including an element to be sealed. .
  • An ion exchanger in particular is not restrict
  • Specific examples include hydrotalcite compounds and hydrous oxides of at least one element selected from the group consisting of magnesium, aluminum, titanium, zirconium and bismuth.
  • An ion exchanger may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the hydrotalcite represented with the following general formula (A) is preferable.
  • the content is not particularly limited as long as it is an amount sufficient to trap ions such as halogen ions.
  • the amount is preferably 0.1 to 30 parts by mass, more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the resin component.
  • the epoxy resin composition may contain a release agent from the viewpoint of obtaining good release properties from the mold during molding.
  • the release agent is not particularly limited, and conventionally known release agents can be used. Specific examples include carnauba wax, higher fatty acids such as montanic acid and stearic acid, higher fatty acid metal salts, ester waxes such as montanic acid esters, and polyolefin waxes such as oxidized polyethylene and non-oxidized polyethylene.
  • a mold release agent may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the content thereof is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the resin component.
  • the amount of the release agent is 0.01 parts by mass or more with respect to 100 parts by mass of the resin component, the release property tends to be sufficiently obtained.
  • the amount is 10 parts by mass or less, better adhesion and curability tend to be obtained.
  • the epoxy resin composition may contain a flame retardant.
  • the flame retardant is not particularly limited, and conventionally known flame retardants can be used. Specifically, an organic or inorganic compound containing a halogen atom, an antimony atom, a nitrogen atom or a phosphorus atom, a metal hydroxide, and the like can be given.
  • a flame retardant may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the content is not particularly limited as long as it is an amount sufficient to obtain a desired flame retardant effect.
  • the amount is preferably 1 part by mass to 30 parts by mass and more preferably 2 parts by mass to 20 parts by mass with respect to 100 parts by mass of the resin component.
  • the epoxy resin composition may further contain a colorant.
  • a colorant include known colorants such as carbon black, organic dyes, organic pigments, titanium oxide, red lead, and bengara.
  • the content of the colorant can be appropriately selected according to the purpose and the like.
  • a coloring agent may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the epoxy resin composition may contain a stress relaxation agent such as silicone oil and silicone rubber particles.
  • a stress relaxation agent such as silicone oil and silicone rubber particles.
  • the stress relaxation agent include known stress relaxation agents (also referred to as flexible agents) that are generally used.
  • thermoplastic elastomers such as silicone, styrene, olefin, urethane, polyester, polyether, polyamide, polybutadiene, NR (natural rubber), NBR (acrylonitrile-butadiene rubber), acrylic Rubber particles such as rubber, urethane rubber and silicone powder, core-shell such as methyl methacrylate-styrene-butadiene copolymer (MBS), methyl methacrylate-silicone copolymer, methyl methacrylate-butyl acrylate copolymer Examples thereof include rubber particles having a structure.
  • a stress relaxation agent may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the viscosity of the epoxy resin composition is not particularly limited. It is preferable to adjust to a desired viscosity according to the molding method, the composition of the epoxy resin composition, and the like.
  • the viscosity of the epoxy resin composition is preferably 200 Pa ⁇ s or less at 175 ° C. and 150 Pa ⁇ s or less from the viewpoint of reducing the wire flow. More preferably, it is more preferably 100 Pa ⁇ s or less.
  • the lower limit of the viscosity is not particularly limited, and may be, for example, 10 Pa ⁇ s or more.
  • the viscosity of the epoxy resin composition is preferably 200 Pa ⁇ s or less at 175 ° C., and 150 Pa ⁇ s or less from the viewpoint of reducing the wire flow. It is more preferable that it is 100 Pa ⁇ s or less.
  • the lower limit of the viscosity is not particularly limited, and may be, for example, 10 Pa ⁇ s or more.
  • the viscosity of the epoxy resin composition can be measured with a Koka flow tester (for example, manufactured by Shimadzu Corporation).
  • the viscosity of an epoxy resin composition is determined by using a spiral flow measurement mold conforming to the standard (EMMI-1-66) and applying an epoxy resin composition to a plunger bottom pressure converted hydraulic pressure of 70 kgf / cm 2 (about 6.86 MPa). And can be evaluated by the flow distance measured as the length of the molded product when molded at 175 ° C. for 120 sec.
  • the flow distance measured under the above conditions is preferably 67 inches (170 cm) or more, more preferably 70 inches (178 cm) or more, still more preferably 75 inches (191 cm) or more, 80 It is particularly preferable that it is not less than inch (203 cm), and it is very preferable that it is not less than 85 inch (216 cm).
  • the numerical value (cm) in a parenthesis represents a conversion value.
  • the thermal conductivity when the epoxy resin composition is a cured product is not particularly limited. From the viewpoint of obtaining desired heat dissipation, the thermal conductivity may be 3.0 W / (m ⁇ K) or more at room temperature (25 ° C.), or 4.0 W / (m ⁇ K) or more. Or 5.0 W / (m ⁇ K) or more, 6.0 W / (m ⁇ K) or more, or 7.0 W / (m ⁇ K) or more. It may be 8.0 W / (m ⁇ K) or more. The upper limit of the thermal conductivity is not particularly limited, and may be 9.0 W / (m ⁇ K).
  • the thermal conductivity of the cured product can be measured by a xenon flash (Xe-flash) method (for example, product name: LFA467 type Hyper Flash device manufactured by NETZSCH).
  • the hot hardness when the epoxy resin composition is a cured product is not particularly limited.
  • the hot hardness measured using a Shore D hardness meter is preferably 60 or more, and 65 or more. Is more preferable, and 70 or more is more preferable.
  • the method for preparing the epoxy resin composition is not particularly limited. As a general method, after each component is sufficiently mixed with a mixer or the like, it can be melt-kneaded with a mixing roll or an extruder, cooled, and pulverized. More specifically, for example, there may be mentioned a method in which the above-mentioned components are mixed and stirred, kneaded with a kneader, roll, extruder or the like that has been heated to 70 ° C. to 140 ° C., cooled, and pulverized. it can.
  • the epoxy resin composition may be solid or liquid at normal temperature and normal pressure (for example, 25 ° C. and atmospheric pressure), and is preferably solid.
  • the shape in particular when an epoxy resin composition is solid is not restrict
  • An electronic component device includes an element sealed with the above-described epoxy resin composition.
  • Electronic component devices include lead frames, pre-wired tape carriers, wiring boards, glass, silicon wafers, organic substrates and other supporting members, active elements such as semiconductor chips, transistors, diodes, and thyristors, capacitors, and resistors. And an element portion obtained by mounting a passive element such as a coil) with an epoxy resin composition. More specifically, the element is fixed on the lead frame, the terminal part of the element such as a bonding pad and the lead part are connected by wire bonding, bump, etc., and then sealed by transfer molding or the like using an epoxy resin composition.
  • DIP Device Inline Package
  • PLCC Physical Leaded Chip Carrier
  • QFP Quad Flat Package
  • SOP Small Outline Package T
  • SOJ Small Outline J-Lead Package
  • General resin sealed IC such as TQFP (Thin Quad Flat Package), etc .
  • TCP Tepe Carrier Package having a structure sealed with a resin composition; an element connected to a wiring formed on a support member by wire bonding, flip chip bonding, solder or the like is sealed with an epoxy resin composition COB (Chip On Board) module, hybrid IC, multi-chip module, etc.
  • COB Chip On Board
  • an element is mounted on the surface of a support member on which a wiring board connection terminal is formed on the back surface, and the element and the support member are mounted by bump or wire bonding
  • Examples include BGA (Ball Grid Array), CSP (Chip Size Package), and MCP (Multi Chip Package), which have a structure in which an element is sealed with an epoxy resin composition after being connected to the formed wiring.
  • an epoxy resin composition can be used suitably also in a printed wiring board.
  • Examples of a method for sealing an electronic component device using an epoxy resin composition include a low-pressure transfer molding method, an injection molding method, and a compression molding method.
  • Epoxy resin A bisphenol F type epoxy resin having an epoxy equivalent of 187 g / eq to 197 g / eq and a melting point of 61 ° C. to 71 ° C. (manufactured by Nippon Steel Chemical & Materials Co., Ltd., trade name: YSLV-80XY)
  • Epoxy resin B epoxy resin having an epoxy equivalent of 192 g / eq and a melting point of 106 ° C. (trade name: YX-4000, manufactured by Mitsubishi Chemical Corporation)
  • Triphenylmethane type phenolic resin having a hydroxyl equivalent weight of 102 g / eq and a softening point of 70 ° C. (Air Water Co., Ltd., trade name: HE910)
  • Silane compound A 3-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KBM-503)
  • Silane compound B N-phenyl-3-aminopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KBM-573)
  • Silane compound C 3-mercaptopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KBM-803)
  • Silica particles volume average particle diameter 0.2 ⁇ m
  • Alumina particles A Volume average particle diameter 10 ⁇ m, cut point 55 ⁇ m
  • Alumina particles B Volume average particle diameter 1 ⁇ m, cut point 25 ⁇ m
  • Magnesium oxide Volume average particle diameter of about 2 ⁇ m
  • each component shown in Table 1 was blended in amounts shown in the same table, kneaded, cooled, and pulverized to prepare an epoxy resin composition.
  • the unit of the blending amount of the component represents part by mass.
  • “-” indicates that no component is blended.
  • the epoxy resin composition was molded under the conditions of 175 ° C., 120 sec, and pressure 7 MPa with a high-temperature vacuum molding machine, and processed into 1 mm thickness and 10 mm square to make a test piece.
  • the said test piece was measured on room temperature (25 degreeC) conditions using the brand name: LFA467 type
  • the said epoxy resin composition was shape
  • Example 1 and Example 2 in which the silane compound A was blended the viscosity was low, and the thermal conductivity of the cured product was good. Moreover, the hardness at the time of heating was not greatly reduced as compared with the comparative example, and good curability was maintained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Epoxy Resins (AREA)

Abstract

エポキシ樹脂組成物は、エポキシ樹脂、硬化剤、アルミナ粒子、及び、エポキシ基と反応する官能基を有さない一方で、エポキシ基と反応しない官能基を有し、前記エポキシ基と反応しない官能基がケイ素原子に結合しているか、炭素数1~5の鎖状炭化水素基を介してケイ素原子に結合している構造を有するシラン化合物を含有する。

Description

エポキシ樹脂組成物、及び電子部品装置
 本開示は、エポキシ樹脂組成物、及び電子部品装置に関する。
 従来から、トランジスタ、IC等の素子がエポキシ樹脂等の樹脂で封止されたパッケージ(電子部品装置)が電子機器に広く用いられている。
 近年、電子部品装置の小型化及び高密度化に伴って発熱量が増大する傾向にあり、いかに熱を放散させるかが重要な課題となっている。そこで、封止材に熱伝導率の高い無機充填材を混合して熱伝導性を高めることが行われている。
 封止材に無機充填材を混合する場合、その量が増加するに従って封止材の粘度が上昇し、流動性が低下して、充填不良、ワイヤ流れ等の問題を生じるおそれがある。そこで、特定のリン化合物を硬化促進剤として用いることで、封止材の流動性を高める方法が提案されている(例えば、特許文献1参照)。
特開平9-157497号公報
 しかし、電子部品装置の小型化及び高密度化のいっそうの進展に伴い、より高いレベルで熱伝導性を維持しつつ、粘度の上昇が抑えられる封止材として使用可能な樹脂組成物の提供が望まれている。また、樹脂組成物の粘度の上昇を抑えつつも、成形するときの硬化性を損なわないことも要求される。
 かかる状況に鑑み、本開示は、熱伝導性に優れつつ、低粘度であり、かつ良好な硬化性が維持されているエポキシ樹脂組成物、及びこれを用いて封止された素子を備える電子部品装置を提供することを課題とする。
 上記課題を解決するための手段には以下の態様が含まれる。
<1> エポキシ樹脂、硬化剤、アルミナ粒子、及び、エポキシ基と反応する官能基を有さない一方で、エポキシ基と反応しない官能基を有し、前記エポキシ基と反応しない官能基がケイ素原子に結合しているか、炭素数1~5の鎖状炭化水素基を介してケイ素原子に結合している構造を有するシラン化合物を含有する、エポキシ樹脂組成物。
<2> 前記シラン化合物の含有率が、前記エポキシ樹脂の総量に対して0.01質量%~20質量%である、<1>に記載のエポキシ樹脂組成物。
<3> 前記エポキシ基と反応しない官能基が、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、及びビニル基からなる群より選択される少なくとも1つである、<1>又は<2>に記載のエポキシ樹脂組成物。
<4> 前記シラン化合物が、3-メタクリロキシプロピルトリメトキシシランを含む、<1>~<3>のいずれか1項に記載のエポキシ樹脂組成物。
<5> 前記アルミナ粒子の含有率が50体積%以上である、<1>~<4>のいずれか1項に記載のエポキシ樹脂組成物。
<6> さらにシリカ粒子を含有する、<1>~<5>のいずれか1項に記載のエポキシ樹脂組成物。
<7> <1>~<6>のいずれか1項に記載のエポキシ樹脂組成物によって封止された素子を備える電子部品装置。
 本開示によれば、熱伝導性に優れつつ、低粘度であり、かつ良好な硬化性が維持されているエポキシ樹脂組成物、及びこれを用いて封止された素子を備える電子部品装置が提供される。
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本開示において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において各成分に該当する粒子は複数種含まれていてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本開示において、(メタ)アクリロイル基とはアクリロイル基及びメタクリロイル基の少なくとも一方を意味し、(メタ)アクリロイルオキシ基((メタ)アクリロキシ基ともいう)とはアクリロイルオキシ基及びメタクリロイルオキシ基の少なくとも一方を意味する。
<エポキシ樹脂組成物>
 本開示のエポキシ樹脂組成物は、エポキシ樹脂、硬化剤、アルミナ粒子、及び、エポキシ基と反応する官能基を有さない一方で、エポキシ基と反応しない官能基を有し、前記エポキシ基と反応しない官能基がケイ素原子に結合しているか、炭素数1~5の鎖状炭化水素基を介してケイ素原子に結合している構造を有するシラン化合物を含有する。本開示において、「エポキシ基と反応する官能基を有さない一方で、エポキシ基と反応しない官能基を有し、前記エポキシ基と反応しない官能基がケイ素原子に結合しているか、炭素数1~5の鎖状炭化水素基を介してケイ素原子に結合している構造を有するシラン化合物」を「特定シラン化合物」ともいう。エポキシ樹脂組成物は必要に応じてその他の成分を含有してもよい。
 上記構成により、熱伝導性に優れつつ、粘度の上昇が抑制され、かつ良好な硬化性が維持されているエポキシ樹脂組成物を得ることができる。本開示のエポキシ樹脂組成物が上記効果を奏する詳細な理由は必ずしも明らかではないが、以下のように推測される。
 一般的に、エポキシ樹脂組成物においてカップリング剤としてシラン化合物を用いる場合、エポキシ樹脂と反応性を有する官能基を有するシラン化合物が用いられることが多い。これは、シラン化合物のシラノール基と無機充填材との化学結合、及びシラン化合物の当該官能基とエポキシ樹脂との化学結合によって、エポキシ樹脂中での無機充填材の分散性を高め、組成物の流動性を高めることを主な目的としている。
 一方、本開示のエポキシ樹脂組成物における特定シラン化合物は、エポキシ基と反応しない官能基を有し、エポキシ基と反応する官能基を有さないため、エポキシ樹脂と結合せずにアルミナ粒子の表面に存在していると考えられる。アルミナ粒子は、その表面状態の性質上、一般的に樹脂組成物の流動性を低下させやすい。しかし、特定シラン化合物がアルミナ粒子の表面に存在すると、当該特定シラン化合物が潤滑剤として機能することで、アルミナ粒子の樹脂に対する相溶性が向上すると考えられる。これにより、アルミナ粒子同士の摩擦抵抗が低減され、溶融粘度が低下すると推測される。さらに、エポキシ樹脂組成物の粘度の上昇が抑えられることから、アルミナ粒子の配合量を増やすことが可能となり、より熱伝導率を向上させることが可能になると考えられる。
 一方、一般的に、硬化に寄与しない成分が増えると硬化性が低下するおそれがあるが、特定シラン化合物を用いると、エポキシ樹脂組成物の硬化性を大きく低下させることがない。この理由は明らかではないが、特定シラン化合物は、エポキシ基と反応しない官能基がケイ素原子に結合しているか、炭素数5以下の鎖長の炭化水素基を介してケイ素原子に結合する構造をとっていることから、ケイ素と官能基の距離が比較的短く、エポキシ樹脂組成物の硬化反応を妨げにくいためであると推測される。
(エポキシ樹脂)
 エポキシ樹脂組成物は、エポキシ樹脂を含有する。エポキシ樹脂は、分子中にエポキシ基を有するものであればその種類は特に制限されない。
 エポキシ樹脂として具体的には、フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF等のフェノール化合物及びα-ナフトール、β-ナフトール、ジヒドロキシナフタレン等のナフトール化合物からなる群より選ばれる少なくとも1種のフェノール性化合物と、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド等の脂肪族アルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるノボラック樹脂をエポキシ化したものであるノボラック型エポキシ樹脂(フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂等);上記フェノール性化合物と、ベンズアルデヒド、サリチルアルデヒド等の芳香族アルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるトリフェニルメタン型フェノール樹脂をエポキシ化したものであるトリフェニルメタン型エポキシ樹脂;上記フェノール化合物及びナフトール化合物と、アルデヒド化合物とを酸性触媒下で共縮合させて得られるノボラック樹脂をエポキシ化したものである共重合型エポキシ樹脂;ビスフェノールA、ビスフェノールF等のジグリシジルエーテルであるジフェニルメタン型エポキシ樹脂;アルキル置換又は非置換のビフェノールのジグリシジルエーテルであるビフェニル型エポキシ樹脂;スチルベン系フェノール化合物のジグリシジルエーテルであるスチルベン型エポキシ樹脂;ビスフェノールS等のジグリシジルエーテルである硫黄原子含有エポキシ樹脂;ブタンジオール、ポリエチレングリコール、ポリプロピレングリコール等のアルコール類のグリシジルエーテルであるエポキシ樹脂;フタル酸、イソフタル酸、テトラヒドロフタル酸等の多価カルボン酸化合物のグリシジルエステルであるグリシジルエステル型エポキシ樹脂;アニリン、ジアミノジフェニルメタン、イソシアヌル酸等の窒素原子に結合した活性水素をグリシジル基で置換したものであるグリシジルアミン型エポキシ樹脂;ジシクロペンタジエンとフェノール化合物の共縮合樹脂をエポキシ化したものであるジシクロペンタジエン型エポキシ樹脂;分子内のオレフィン結合をエポキシ化したものであるビニルシクロヘキセンジエポキシド、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、2-(3,4-エポキシ)シクロヘキシル-5,5-スピロ(3,4-エポキシ)シクロヘキサン-m-ジオキサン等の脂環型エポキシ樹脂;パラキシリレン変性フェノール樹脂のグリシジルエーテルであるパラキシリレン変性エポキシ樹脂;メタキシリレン変性フェノール樹脂のグリシジルエーテルであるメタキシリレン変性エポキシ樹脂;テルペン変性フェノール樹脂のグリシジルエーテルであるテルペン変性エポキシ樹脂;ジシクロペンタジエン変性フェノール樹脂のグリシジルエーテルであるジシクロペンタジエン変性エポキシ樹脂;シクロペンタジエン変性フェノール樹脂のグリシジルエーテルであるシクロペンタジエン変性エポキシ樹脂;多環芳香環変性フェノール樹脂のグリシジルエーテルである多環芳香環変性エポキシ樹脂;ナフタレン環含有フェノール樹脂のグリシジルエーテルであるナフタレン型エポキシ樹脂;ハロゲン化フェノールノボラック型エポキシ樹脂;ハイドロキノン型エポキシ樹脂;トリメチロールプロパン型エポキシ樹脂;オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂;フェノールアラルキル樹脂、ナフトールアラルキル樹脂等のアラルキル型フェノール樹脂をエポキシ化したものであるアラルキル型エポキシ樹脂;などが挙げられる。さらにはシリコーン樹脂のエポキシ化物、アクリル樹脂のエポキシ化物等もエポキシ樹脂として挙げられる。これらのエポキシ樹脂は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
 エポキシ樹脂のエポキシ当量(分子量/エポキシ基数)は、特に制限されない。成形性、耐リフロー性及び電気的信頼性等の各種特性バランスの観点からは、100g/eq~1000g/eqであることが好ましく、150g/eq~500g/eqであることがより好ましい。
 エポキシ樹脂のエポキシ当量は、JIS K 7236:2009に準じた方法で測定される値とする。
 エポキシ樹脂が固体である場合、エポキシ樹脂の軟化点又は融点は特に制限されない。成形性と耐リフロー性の観点からは40℃~180℃であることが好ましく、エポキシ樹脂組成物の調製の際の取扱い性の観点からは50℃~130℃であることがより好ましい。
 エポキシ樹脂の融点は示差走査熱量測定(DSC)で測定される値とし、エポキシ樹脂の軟化点はJIS K 7234:1986に準じた方法(環球法)で測定される値とする。
 エポキシ樹脂組成物中のエポキシ樹脂の含有率は、強度、流動性、耐熱性、成形性等の観点から0.5質量%~50質量%であることが好ましく、2質量%~30質量%であることがより好ましく、2質量%~20質量%であることがさらに好ましい。
(硬化剤)
 エポキシ樹脂組成物は、硬化剤を含有する。硬化剤の種類は特に制限されず、樹脂の種類、エポキシ樹脂組成物の所望の特性等に応じて選択できる。
 硬化剤としては、フェノール硬化剤、アミン硬化剤、酸無水物硬化剤、ポリメルカプタン硬化剤、ポリアミノアミド硬化剤、イソシアネート硬化剤、ブロックイソシアネート硬化剤等が挙げられる。耐熱性向上の観点からは、硬化剤は、フェノール性水酸基を分子中に有するもの(フェノール硬化剤)が好ましい。
 フェノール硬化剤として具体的には、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、置換又は非置換のビフェノール等の多価フェノール化合物;フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール、アミノフェノール等のフェノール化合物及びα-ナフトール、β-ナフトール、ジヒドロキシナフタレン等のナフトール化合物からなる群より選ばれる少なくとも一種のフェノール性化合物と、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド、サリチルアルデヒド等のアルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるノボラック型フェノール樹脂;上記フェノール性化合物と、ジメトキシパラキシレン、ビス(メトキシメチル)ビフェニル等とから合成されるフェノールアラルキル樹脂、ナフトールアラルキル樹脂等のアラルキル型フェノール樹脂;パラキシリレン及び/又はメタキシリレン変性フェノール樹脂;メラミン変性フェノール樹脂;テルペン変性フェノール樹脂;上記フェノール性化合物と、ジシクロペンタジエンとから共重合により合成されるジシクロペンタジエン型フェノール樹脂及びジシクロペンタジエン型ナフトール樹脂;シクロペンタジエン変性フェノール樹脂;多環芳香環変性フェノール樹脂;ビフェニル型フェノール樹脂;上記フェノール性化合物と、ベンズアルデヒド、サリチルアルデヒド等の芳香族アルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるトリフェニルメタン型フェノール樹脂;これら2種以上を共重合して得たフェノール樹脂などが挙げられる。これらのフェノール硬化剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
 なかでも、難燃性の観点からは、ビフェニル型フェノール樹脂が好ましく、耐リフロー性及び硬化性の観点からは、アラルキル型フェノール樹脂が好ましく、低吸湿性の観点からは、ジシクロペンタジエン型フェノール樹脂が好ましく、耐熱性、低膨張率及び低そり性の観点からは、トリフェニルメタン型フェノール樹脂が好ましく、硬化性の観点からは、ノボラック型フェノール樹脂が好ましい。エポキシ樹脂組成物は、これらのフェノール樹脂の少なくとも1種を含有していることが好ましい。
 硬化剤の官能基当量(フェノール硬化剤の場合は水酸基当量)は、特に制限されない。成形性、耐リフロー性、電気的信頼性等の各種特性バランスの観点からは、70g/eq~1000g/eqであることが好ましく、80g/eq~500g/eqであることがより好ましい。
 硬化剤の官能基当量(フェノール硬化剤の場合は水酸基当量)は、JIS K 0070:1992に準じた方法により測定される値とする。
 硬化剤が固体である場合、硬化剤の軟化点又は融点は、特に制限されない。成形性と耐リフロー性の観点からは、40℃~180℃であることが好ましく、エポキシ樹脂組成物の製造時における取扱い性の観点からは、50℃~130℃であることがより好ましい。
 硬化剤の融点又は軟化点は、エポキシ樹脂の融点又は軟化点と同様にして測定される値とする。
 エポキシ樹脂と硬化剤との当量比、すなわちエポキシ樹脂中のエポキシ基数に対する硬化剤中の官能基数の比(硬化剤中の官能基数/エポキシ樹脂中のエポキシ基数)は、特に制限されない。それぞれの未反応分を少なく抑える観点からは、エポキシ樹脂と硬化剤との当量比は0.5~2.0の範囲に設定されることが好ましく、0.6~1.3の範囲に設定されることがより好ましい。成形性と耐リフロー性の観点からは、エポキシ樹脂と硬化剤との当量比は0.8~1.2の範囲に設定されることがさらに好ましい。
(アルミナ粒子)
 エポキシ樹脂組成物は、無機充填材としてアルミナ粒子を含有する。エポキシ樹脂組成物は、アルミナ粒子以外の無機充填材を含有していてもよい。
 エポキシ樹脂組成物中のアルミナ粒子の含有率は特に制限されない。硬化物の熱伝導性の観点からは、アルミナ粒子の含有率はエポキシ樹脂組成物の全量に対して30体積%以上であることが好ましく、35体積%以上であることがより好ましく、40体積%以上であることがさらに好ましく、45体積%以上であることが特に好ましく、50体積%以上であることが極めて好ましい。アルミナ粒子の含有率の上限は特に制限されず、流動性の向上、粘度の低下等の観点からは、100体積%未満であることが好ましく、99体積%以下であることがより好ましく、98体積%以下であることがさらに好ましい。エポキシ樹脂組成物中のアルミナ粒子の含有率は30体積%以上100体積%未満であることが好ましく、35体積%~99体積%であることがより好ましく、40体積%~98体積%であることがさらに好ましく、45体積%~98体積%であることが特に好ましく、50体積%~98体積%であることが極めて好ましい。エポキシ樹脂組成物中のアルミナ粒子の含有率は、例えば、後述の無機充填材の含有率の測定方法によって測定することができる。
 アルミナ粒子の体積平均粒子径は特に制限されない。アルミナ粒子の体積平均粒子径は、0.1μm以上が好ましく、0.3μm以上がより好ましい。また、アルミナ粒子の体積平均粒子径は、80μm以下が好ましく、50μm以下がより好ましい。アルミナ粒子の体積平均粒子径が0.1μm以上であると、エポキシ樹脂組成物の粘度の上昇が抑えられやすい。また、アルミナ粒子の体積平均粒子径が80μm以下であると、エポキシ樹脂組成物中のアルミナ粒子の混合性が向上し、アルミナ粒子の偏在が抑制され、硬化物における熱伝導性のばらつきが抑えられる傾向にある。また、狭い領域の封止に用いたとしても、アルミナ粒子の充填性に優れる傾向にある。アルミナ粒子の体積平均粒子径は、例えば、レーザー散乱回折法粒度分布測定装置により測定することができる。本開示において、体積平均粒子径は、レーザー散乱回折法粒度分布測定装置により測定される体積基準の粒度分布において、小径側からの累積が50%となるときの粒子径(D50)として測定することができる。
 アルミナ粒子の形状は制限されず、球状、角形が挙げられる。流動性の観点からは、アルミナ粒子の粒子形状は球形が好ましく、アルミナ粒子の粒度分布は広範囲に分布したものが好ましい。例えば、アルミナ粒子をエポキシ樹脂組成物に対して75体積%以上配合する場合、アルミナ粒子全量の70質量%以上を球状粒子とし、球状粒子の粒子径は0.1μm~80μmという広範囲に分布したものが好ましい。このようなアルミナ粒子は最密充填構造をとりやすいため配合量を増加させても材料の粘度上昇が少なく、流動性に優れたエポキシ樹脂組成物を得ることができる傾向にある。
 エポキシ樹脂組成物は、アルミナ粒子以外の無機充填材を含有してもよい。アルミナ粒子以外の無機充填材は特に制限されず、溶融シリカ、結晶シリカ、ガラス、炭酸カルシウム、ケイ酸ジルコニウム、ケイ酸カルシウム、窒化ケイ素、窒化アルミニウム、窒化ホウ素、酸化マグネシウム、炭化ケイ素、ベリリア、ジルコニア、ジルコン、フォステライト、ステアタイト、スピネル、ムライト、チタニア、タルク、クレー、マイカ等の粒子の無機材料が挙げられる。難燃効果を有する無機充填材を用いてもよい。難燃効果を有する無機充填材としては、水酸化アルミニウム、水酸化マグネシウム、マグネシウムと亜鉛の複合水酸化物等の複合金属水酸化物、硼酸亜鉛などが挙げられる。無機充填材は1種を単独で用いても、2種以上を併用してもよい。特に、硬化物の熱伝導率、熱膨張係数等の各種特性のバランスの観点から、アルミナ粒子とシリカ粒子を併用することが好ましい。また、熱伝導率の観点から、酸化マグネシウムを併用することも好ましい。
 アルミナ粒子以外の無機充填材は1種を単独で用いても2種以上を併用してもよい。なお、「無機充填材を2種以上併用する」とは、例えば、同じ成分で体積平均粒子径が異なる無機充填材を2種類以上用いる場合、体積平均粒子径が同じで成分の異なる無機充填材を2種類以上用いる場合並びに体積平均粒子径及び種類の異なる無機充填材を2種類以上用いる場合が挙げられる。
 エポキシ樹脂組成物の総質量中の無機充填材の含有率は特に制限されない。硬化物の熱伝導性の観点からは、無機充填材の含有率はエポキシ樹脂組成物の全量に対して30体積%以上であることが好ましく、35体積%以上であることがより好ましく、40体積%以上であることがさらに好ましく、45体積%以上であることが特に好ましく、50体積%以上であることが極めて好ましい。無機充填材の含有率の上限は特に制限されず、流動性の向上、粘度の低下等の観点からは、100体積%未満であることが好ましく、99体積%以下であることがより好ましく、98体積%以下であることがさらに好ましい。エポキシ樹脂組成物中の無機充填材の含有率は30体積%以上100体積%未満であることが好ましく、35体積%~99体積%であることがより好ましく、40体積%~98体積%であることがさらに好ましく、45体積%~98体積%であることが特に好ましく、50体積%~98体積%であることが極めて好ましい。
 エポキシ樹脂組成物の総質量中の無機充填材の含有率は、次のようにして測定される。まず、エポキシ樹脂組成物の硬化物(エポキシ樹脂成形物ともいう)の総質量を測定し、該エポキシ樹脂成形物を400℃で2時間、次いで700℃で3時間焼成し、樹脂成分を蒸発させ、残存した無機充填材の質量を測定する。得られた質量、及び比重から体積を算出し、エポキシ樹脂組成物の硬化物(エポキシ樹脂成形物)の総体積に対する無機充填材の体積の割合を得て、無機充填材の含有率とする。
 無機充填材は、エポキシ樹脂組成物をモールドアンダーフィル用に使用する場合等における、狭い隙間への充填性の向上の観点から、最大粒子径(カットポイントともいう)が制御されていてもよい。無機充填材の最大粒子径は適宜調整してよく、充填性の観点からは、105μm以下であることが好ましく、75μm以下であることがより好ましく、60μm以下であってもよく、40μm以下であってもよい。最大粒子径はレーザー回折粒度分布計(株式会社堀場製作所製、商品名:LA920)により測定することができる。
 エポキシ樹脂組成物が、無機充填材として、アルミナ粒子と、アルミナ粒子以外の無機充填材とを含有する場合、無機充填材の全量に対するアルミナ粒子の含有率は、30質量%以上であることが好ましく、35質量%以上であることがより好ましく、40質量%以上であることがさらに好ましい。無機充填材の全量に対するアルミナ粒子の含有率の上限は、特に制限されず、100質量%以下であってもよく、90質量%以下であってもよく、85質量%以下であってもよい。
(特定シラン化合物)
 エポキシ樹脂組成物は、特定シラン化合物を含有する。特定シラン化合物は、エポキシ基と反応する官能基を有さない一方で、エポキシ基と反応しない官能基を有し、前記エポキシ基と反応しない官能基がケイ素原子に結合しているか、炭素数1~5の鎖状炭化水素基を介してケイ素原子に結合している構造を有する。以下、特定シラン化合物における、エポキシ基と反応しない官能基を「特定官能基」ともいう。
 「エポキシ基と反応しない官能基」とは、エポキシ基との間で化学反応を起こさないか、反応速度が極めて遅いため当該反応によるエポキシ樹脂組成物の特性の変化が実用上無視できる程度である官能基をいう。「エポキシ基と反応する官能基」とは、エポキシ基と反応しない官能基以外の官能基をいう。シラン化合物の「官能基」とは、シラン化合物の分子内に存在し、当該シラン化合物の反応性の原因となる原子又は原子団をいう。シラン化合物の官能基がエポキシ基と反応しないことは、例えば、示差熱走査熱量計(DSC)によって確認することができる。
 上述の「エポキシ基と反応しない官能基がケイ素原子に結合しているか、炭素数1~5の鎖状炭化水素基を介してケイ素原子に結合している構造」において、「エポキシ基と反応しない官能基がケイ素原子に結合している」構造とは、特定官能基とケイ素原子が直接結合している構造をさす。
 特定官能基としては、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、ビニル基、スチリル基等が挙げられる。
 一方、「エポキシ基と反応する官能基」としては、アミノ基、フェニルアミノ基等のアミン構造を有する基、エポキシ基、チオール基、イソシアネート基、イソシアヌレート基、ウレイド基などが挙げられる。
 特定官能基は、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、及びビニル基からなる群より選択される少なくとも1つであることが好ましく、(メタ)アクリロイルオキシ基であることがより好ましい。
 特定シラン化合物は、1分子に特定官能基を1つ有していてもよく、複数有していてもよい。特定シラン化合物1分子あたりの特定官能基の数は、1~4であることが好ましく、1~3であることがより好ましく、1又は2であることがさらに好ましく、1であることが特に好ましい。
 特定シラン化合物において、特定官能基は、ケイ素原子に結合しているか、炭素数1~5の鎖状炭化水素基を介してケイ素原子に結合している。特定官能基が炭素数1~5の鎖状炭化水素基を介してケイ素原子に結合している場合、粘度低下及び成形性の観点から、鎖状炭化水素基の炭素数は、2~4であることが好ましく、3であることがより好ましい。なお、本開示において、鎖状炭化水素基の炭素数とは、分岐又は置換基の炭素を含まない炭素数を意味する。
 特定官能基が炭素数1~5の鎖状炭化水素基を介してケイ素原子に結合している場合、特定官能基は、鎖状炭化水素基の末端に存在していてもよく、鎖状炭化水素基の側鎖に存在していてもよい。粘度を抑える観点からは、特定官能基は鎖状炭化水素基の末端に存在していることが好ましい。
 鎖状炭化水素基は、分岐鎖を有していてもよい。鎖状炭化水素基が分岐鎖を有する場合、分岐鎖の炭素数は1又は2であることが好ましい。鎖状炭化水素基は分岐鎖を有しないことが好ましい。
 鎖状炭化水素基は、特定官能基の他に置換基を有していてもよい。鎖状炭化水素基が置換基を有する場合、置換基は特に限定されず、アルコキシ基、アリール基、アリールオキシ基等であってよい。鎖状炭化水素基は、特定官能基の他に置換基を有しないことが好ましい。
 鎖状炭化水素基は、不飽和結合を含んでいても含んでいなくてもよく、不飽和結合を含まないことが好ましい。
 以下、ケイ素原子に直接結合している特定官能基、又は、ケイ素原子に結合しており前記炭素数1~5の鎖状炭化水素基と特定官能基とを有する基を、「特定官能基を含む基」と称する。
 特定シラン化合物における、特定官能基を含む基の数は1~4であってよく、1~3であることが好ましく、1又は2であることがより好ましく、1であることがさらに好ましい。特定官能基を含む基の数が1~3である場合、ケイ素原子に結合するその他の基は特に制限されず、それぞれ独立に、水素原子、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、アリール基、アリールオキシ基等であってもよく、炭素数1~5のアルキル基又は炭素数1~5のアルコキシ基であることが好ましく、メチル基、エチル基、メトキシ基、又はエトキシ基であることがより好ましい。なかでも、ケイ素原子に特定官能基を含む基が1つ結合しており、その他の3つの結合手に、それぞれ独立に、炭素数1~5のアルキル基又は炭素数1~5のアルコキシ基が結合していることが好ましい。ケイ素原子に特定官能基を含む基が1つ結合しており、その他の3つの結合手に、それぞれ独立に、メチル基、エチル基、メトキシ基、又はエトキシ基が結合していることがより好ましい。
 特定シラン化合物としては、3-(メタ)アクリロキシプロピルメチルジメトキシシラン、3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルメチルジエトキシシラン、3-(メタ)アクリロキシプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、p-スチリルトリメトキシシラン等が挙げられる。なかでも、エポキシ樹脂組成物の粘度の上昇抑制及び硬化性の観点から、3-(メタ)アクリロキシプロピルトリメトキシシランが好ましい。特定シラン化合物は1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 特定シラン化合物は合成しても、市販されているものを用いてもよい。市販されている特定シラン化合物としては、信越化学工業株式会社製の、KBM-502(3-メタクリロキシプロピルメチルジメトキシシラン)、KBM-503(3-メタクリロキシプロピルトリメトキシシラン)、KBE-502(3-メタクリロキシプロピルメチルジエトキシシラン)、KBE-503(3-メタクリロキシプロピルトリエトキシシラン)、KBM-5103(3-アクリロキシプロピルトリメトキシシラン)等が挙げられる。
 エポキシ樹脂組成物中の特定シラン化合物の含有率は特に制限されない。特定シラン化合物の含有率は、エポキシ樹脂の総量に対して0.01質量%~20質量%であることが好ましい。例えば、組成物の粘度と硬化性のバランスの観点から、特定シラン化合物の含有率は、エポキシ樹脂の総量に対して、0.01質量%~10質量%であってもよい。また、より粘度の上昇を抑える観点からは、特定シラン化合物の含有率は、エポキシ樹脂の総量に対して、10質量%~20質量%であってもよく、15質量%~20質量%であってもよい。
 エポキシ樹脂組成物は、特定シラン化合物に加えて、他のシラン化合物をさらに含有してもよい。他のシラン化合物としては、エポキシ樹脂組成物に一般に使用されているものであれば特に制限はなく、エポキシ基と反応するシラン化合物であっても、エポキシ基と反応しないシラン化合物であってもよい。他のシラン化合物としては、エポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、ウレイドシラン、(メタ)アクリルシラン(特定シラン化合物を除く)、ビニルシラン(特定シラン化合物を除く)等が挙げられる。他のシラン化合物は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
 特定シラン化合物の作用を良好に発揮する観点から、特定シラン化合物及び他のシラン化合物の合計量に対する他のシラン化合物の含有率は30質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることがさらに好ましい。
 エポキシ樹脂組成物は、シラン化合物以外のカップリング剤を含有してもよい。シラン化合物以外のカップリング剤としては、チタン系化合物、アルミニウムキレート化合物、アルミニウム/ジルコニウム系化合物等の公知のカップリング剤が挙げられる。他のカップリング剤は1種を単独で用いても、2種以上を組み合わせて用いてもよい。
(硬化促進剤)
 エポキシ樹脂組成物は、硬化促進剤を含有してもよい。硬化促進剤の種類は特に制限されず、エポキシ樹脂の種類、エポキシ樹脂組成物の所望の特性等に応じて選択できる。
 硬化促進剤としては、1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)等のジアザビシクロアルケン、2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-ヘプタデシルイミダゾール等の環状アミジン化合物;前記環状アミジン化合物の誘導体;前記環状アミジン化合物又はその誘導体のフェノールノボラック塩;これらの化合物に無水マレイン酸、1,4-ベンゾキノン、2,5-トルキノン、1,4-ナフトキノン、2,3-ジメチルベンゾキノン、2,6-ジメチルベンゾキノン、2,3-ジメトキシ-5-メチル-1,4-ベンゾキノン、2,3-ジメトキシ-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノン等のキノン化合物、ジアゾフェニルメタンなどの、π結合をもつ化合物を付加してなる分子内分極を有する化合物;DBUのテトラフェニルボレート塩、DBNのテトラフェニルボレート塩、2-エチル-4-メチルイミダゾールのテトラフェニルボレート塩、N-メチルモルホリンのテトラフェニルボレート塩等の環状アミジニウム化合物;ピリジン、トリエチルアミン、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の三級アミン化合物;前記三級アミン化合物の誘導体;酢酸テトラ-n-ブチルアンモニウム、リン酸テトラ-n-ブチルアンモニウム、酢酸テトラエチルアンモニウム、安息香酸テトラ-n-ヘキシルアンモニウム、水酸化テトラプロピルアンモニウム等のアンモニウム塩化合物;トリフェニルホスフィン、ジフェニル(p-トリル)ホスフィン、トリス(アルキルフェニル)ホスフィン、トリス(アルコキシフェニル)ホスフィン、トリス(アルキル・アルコキシフェニル)ホスフィン、トリス(ジアルキルフェニル)ホスフィン、トリス(トリアルキルフェニル)ホスフィン、トリス(テトラアルキルフェニル)ホスフィン、トリス(ジアルコキシフェニル)ホスフィン、トリス(トリアルコキシフェニル)ホスフィン、トリス(テトラアルコキシフェニル)ホスフィン、トリアルキルホスフィン、ジアルキルアリールホスフィン、アルキルジアリールホスフィン等の三級ホスフィン;前記三級ホスフィンと有機ボロン類との錯体等のホスフィン化合物;前記三級ホスフィン又は前記ホスフィン化合物と無水マレイン酸、1,4-ベンゾキノン、2,5-トルキノン、1,4-ナフトキノン、2,3-ジメチルベンゾキノン、2,6-ジメチルベンゾキノン、2,3-ジメトキシ-5-メチル-1,4-ベンゾキノン、2,3-ジメトキシ-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノン等のキノン化合物、ジアゾフェニルメタンなどの、π結合をもつ化合物を付加してなる分子内分極を有する化合物;前記三級ホスフィン又は前記ホスフィン化合物と4-ブロモフェノール、3-ブロモフェノール、2-ブロモフェノール、4-クロロフェノール、3-クロロフェノール、2-クロロフェノール、4-ヨウ化フェノール、3-ヨウ化フェノール、2-ヨウ化フェノール、4-ブロモ-2-メチルフェノール、4-ブロモ-3-メチルフェノール、4-ブロモ-2,6-ジメチルフェノール、4-ブロモ-3,5-ジメチルフェノール、4-ブロモ-2,6-ジ-t-ブチルフェノール、4-クロロ-1-ナフトール、1-ブロモ-2-ナフトール、6-ブロモ-2-ナフトール、4-ブロモ-4’-ヒドロキシビフェニル等のハロゲン化フェノール化合物を反応させた後に、脱ハロゲン化水素の工程を経て得られる、分子内分極を有する化合物;テトラフェニルホスホニウム等のテトラ置換ホスホニウム、テトラ-p-トリルボレート等のホウ素原子に結合したフェニル基がないテトラ置換ホスホニウム及びテトラ置換ボレート;テトラフェニルホスホニウムとフェノール化合物との塩などが挙げられる。硬化促進剤は1種を単独で用いても2種以上を組み合わせて用いてもよい。
 エポキシ樹脂組成物が硬化促進剤を含有する場合、その含有量は、樹脂成分(すなわち、樹脂と硬化剤の合計)100質量部に対して0.1質量部~30質量部であることが好ましく、1質量部~15質量部であることがより好ましい。硬化促進剤の量が樹脂成分100質量部に対して0.1質量部以上であると、短時間で良好に硬化する傾向にある。硬化促進剤の量が樹脂成分100質量部に対して30質量部以下であると、硬化速度が速すぎず良好な成形品が得られる傾向にある。
[各種添加剤]
 エポキシ樹脂組成物は、上述の成分に加えて、以下に例示するイオン交換体、離型剤、難燃剤、着色剤、応力緩和剤等の各種添加剤を含有してもよい。エポキシ樹脂組成物は、以下に例示する添加剤以外にも必要に応じて当技術分野で周知の各種添加剤を含有してもよい。
(イオン交換体)
 エポキシ樹脂組成物は、イオン交換体を含有してもよい。特に、エポキシ樹脂組成物を封止用成形材料として用いる場合には、封止される素子を備える電子部品装置の耐湿性及び高温放置特性を向上させる観点から、イオン交換体を含有することが好ましい。イオン交換体は特に制限されず、従来公知のものを用いることができる。具体的には、ハイドロタルサイト化合物、並びにマグネシウム、アルミニウム、チタン、ジルコニウム及びビスマスからなる群より選ばれる少なくとも1種の元素の含水酸化物等が挙げられる。イオン交換体は、1種を単独で用いても2種以上を組み合わせて用いてもよい。中でも、下記一般式(A)で表されるハイドロタルサイトが好ましい。
  Mg(1-X)Al(OH)(COX/2・mHO ……(A)
  (0<X≦0.5、mは正の数)
 エポキシ樹脂組成物がイオン交換体を含有する場合、その含有量は、ハロゲンイオン等のイオンを捕捉するのに充分な量であれば特に制限はない。例えば、樹脂成分100質量部に対して0.1質量部~30質量部であることが好ましく、1質量部~10質量部であることがより好ましい。
(離型剤)
 エポキシ樹脂組成物は、成形時における金型との良好な離型性を得る観点から、離型剤を含有してもよい。離型剤は特に制限されず、従来公知のものを用いることができる。具体的には、カルナバワックス、モンタン酸、ステアリン酸等の高級脂肪酸、高級脂肪酸金属塩、モンタン酸エステル等のエステル系ワックス、酸化ポリエチレン、非酸化ポリエチレン等のポリオレフィン系ワックスなどが挙げられる。離型剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
 エポキシ樹脂組成物が離型剤を含有する場合、その含有量は樹脂成分100質量部に対して0.01質量部~10質量部が好ましく、0.1質量部~5質量部がより好ましい。離型剤の量が樹脂成分100質量部に対して0.01質量部以上であると、離型性が充分に得られる傾向にある。10質量部以下であると、より良好な接着性及び硬化性が得られる傾向にある。
(難燃剤)
 エポキシ樹脂組成物は、難燃剤を含有してもよい。難燃剤は特に制限されず、従来公知のものを用いることができる。具体的には、ハロゲン原子、アンチモン原子、窒素原子又はリン原子を含む有機又は無機の化合物、金属水酸化物等が挙げられる。難燃剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
 エポキシ樹脂組成物が難燃剤を含有する場合、その含有量は、所望の難燃効果を得るのに充分な量であれば特に制限されない。例えば、樹脂成分100質量部に対して1質量部~30質量部であることが好ましく、2質量部~20質量部であることがより好ましい。
(着色剤)
 エポキシ樹脂組成物は、着色剤をさらに含有してもよい。着色剤としてはカーボンブラック、有機染料、有機顔料、酸化チタン、鉛丹、ベンガラ等の公知の着色剤を挙げることができる。着色剤の含有量は目的等に応じて適宜選択できる。着色剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
(応力緩和剤)
 エポキシ樹脂組成物は、シリコーンオイル、シリコーンゴム粒子等の応力緩和剤を含有してもよい。応力緩和剤を使用することにより、パッケージの反り変形及びパッケージクラックの発生をより低減させることができる。応力緩和剤としては、一般に使用されている公知の応力緩和剤(可とう剤ともいう)が挙げられる。具体的には、シリコーン系、スチレン系、オレフィン系、ウレタン系、ポリエステル系、ポリエーテル系、ポリアミド系、ポリブタジエン系等の熱可塑性エラストマー、NR(天然ゴム)、NBR(アクリロニトリル-ブタジエンゴム)、アクリルゴム、ウレタンゴム、シリコーンパウダー等のゴム粒子、メタクリル酸メチル-スチレン-ブタジエン共重合体(MBS)、メタクリル酸メチル-シリコーン共重合体、メタクリル酸メチル-アクリル酸ブチル共重合体等のコア-シェル構造を有するゴム粒子などが挙げられる。応力緩和剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
[エポキシ樹脂組成物の物性]
(エポキシ樹脂組成物の粘度)
 エポキシ樹脂組成物の粘度は、特に制限されない。成形方法、エポキシ樹脂組成物の組成等に応じて所望の粘度となるよう調整することが好ましい。
 例えば、圧縮成形法によりエポキシ樹脂組成物を成形する場合、ワイヤ流れの低減の観点から、エポキシ樹脂組成物の粘度は、175℃で200Pa・s以下であることが好ましく、150Pa・s以下であることがより好ましく、100Pa・s以下であることがさらに好ましい。粘度の下限値は特に限定されず、例えば、10Pa・s以上であってもよい。
 また、例えば、トランスファー成形法によりエポキシ樹脂組成物を成形する場合、ワイヤ流れの低減の観点から、エポキシ樹脂組成物の粘度は、175℃で200Pa・s以下であることが好ましく、150Pa・s以下であることがより好ましく、100Pa・s以下であることがさらに好ましい。粘度の下限値は特に限定されず、例えば、10Pa・s以上であってもよい。
 エポキシ樹脂組成物の粘度は、高化式フローテスター(例えば、島津製作所社製)によって測定することができる。
 また、エポキシ樹脂組成物の粘度は、スパイラルフローによって確認してもよい。例えば、粘度は、規格(EMMI-1-66)に準拠したスパイラルフロー測定用金型を用いて、エポキシ樹脂組成物を、プランジャー底部圧力換算値の油圧70kgf/cm(約6.86MPa)で注入し、175℃、120secの条件で成形したときの成形物の長さとして測定される流動距離により評価することができる。上記の条件で測定される流動距離は、67インチ(170cm)以上であることが好ましく、70インチ(178cm)以上であることがより好ましく、75インチ(191cm)以上であることがさらに好ましく、80インチ(203cm)以上であることが特に好ましく、85インチ(216cm)以上であることが極めて好ましい。なお、括弧内の数値(cm)は換算値を表す。
(硬化物としたときの熱伝導率)
 エポキシ樹脂組成物を硬化物としたときの熱伝導率は、特に制限されない。所望の放熱性を得る観点からは、熱伝導率は、室温(25℃)で、3.0W/(m・K)以上であってもよく、4.0W/(m・K)以上であってもよく、5.0W/(m・K)以上であってもよく、6.0W/(m・K)以上であってもよく、7.0W/(m・K)以上であってもよく、8.0W/(m・K)以上であってもよい。熱伝導率の上限は特に制限されず、9.0W/(m・K)であってもよい。硬化物の熱伝導率は、キセノンフラッシュ(Xe-flash)法(例えば、NETZSCH社製、商品名:LFA467型 Hyper Flash装置)によって測定することができる。
(硬化物としたときの熱時硬度)
 エポキシ樹脂組成物を硬化物としたときの熱時硬度は、特に制限されない。例えば、エポキシ樹脂組成物を175℃、120sec、圧力7MPaの条件で成形したときの、ショアD硬度計を用いて測定される熱時硬度は、60以上であることが好ましく、65以上であることがより好ましく、70以上であることがさらに好ましい。
[エポキシ樹脂組成物の調製方法]
 エポキシ樹脂組成物の調製方法は、特に制限されない。一般的な手法としては、各成分をミキサー等によって充分混合した後、ミキシングロール、押出機等によって溶融混練し、冷却し、粉砕する方法を挙げることができる。より具体的には、例えば、上述した成分を混合して撹拌し、予め70℃~140℃に加熱してあるニーダー、ロール、エクストルーダー等で混練し、冷却し、粉砕する方法を挙げることができる。
 エポキシ樹脂組成物は、常温常圧下(例えば、25℃、大気圧下)において固体であっても液状であってもよく、固体であることが好ましい。エポキシ樹脂組成物が固体である場合の形状は特に制限されず、粉状、粒状、タブレット状等が挙げられる。エポキシ樹脂組成物がタブレット状である場合の寸法及び質量は、パッケージの成形条件に合うような寸法及び質量となるようにすることが取り扱い性の観点から好ましい。
<電子部品装置>
 本開示の一実施形態である電子部品装置は、上述のエポキシ樹脂組成物によって封止された素子を備える。
 電子部品装置としては、リードフレーム、配線済みのテープキャリア、配線板、ガラス、シリコンウエハ、有機基板等の支持部材に、素子(半導体チップ、トランジスタ、ダイオード、サイリスタ等の能動素子、コンデンサ、抵抗体、コイル等の受動素子など)を搭載して得られた素子部をエポキシ樹脂組成物で封止したものが挙げられる。
 より具体的には、リードフレーム上に素子を固定し、ボンディングパッド等の素子の端子部とリード部とをワイヤボンディング、バンプ等で接続した後、エポキシ樹脂組成物を用いてトランスファー成形等によって封止した構造を有するDIP(Dual Inline Package)、PLCC(Plastic Leaded Chip Carrier)、QFP(Quad Flat Package)、SOP(Small Outline Package)、SOJ(Small Outline J-lead package)、TSOP(Thin Small Outline Package)、TQFP(Thin Quad Flat Package)等の一般的な樹脂封止型IC;テープキャリアにバンプで接続した素子をエポキシ樹脂組成物で封止した構造を有するTCP(Tape Carrier Package);支持部材上に形成した配線に、ワイヤボンディング、フリップチップボンディング、はんだ等で接続した素子を、エポキシ樹脂組成物で封止した構造を有するCOB(Chip On Board)モジュール、ハイブリッドIC、マルチチップモジュール等;裏面に配線板接続用の端子を形成した支持部材の表面に素子を搭載し、バンプ又はワイヤボンディングにより素子と支持部材に形成された配線とを接続した後、エポキシ樹脂組成物で素子を封止した構造を有するBGA(Ball Grid Array)、CSP(Chip Size Package)、MCP(Multi Chip Package)などが挙げられる。また、プリント配線板においてもエポキシ樹脂組成物を好適に使用することができる。
 エポキシ樹脂組成物を用いて電子部品装置を封止する方法としては、低圧トランスファー成形法、インジェクション成形法、圧縮成形法等が挙げられる。
 以下、上記実施形態を実施例により具体的に説明するが、上記実施形態の範囲はこれらの実施例に限定されるものではない。
<エポキシ樹脂組成物の作製>
 まず、下記に示す各成分を準備した。
〔エポキシ樹脂〕
・エポキシ樹脂A:エポキシ当量187g/eq~197g/eq、融点61℃~71℃のビスフェノールF型エポキシ樹脂(日鉄ケミカル&マテリアル株式会社製、商品名:YSLV-80XY)
・エポキシ樹脂B:エポキシ当量192g/eq、融点106℃のエポキシ樹脂(三菱ケミカル株式会社製、商品名:YX-4000)
〔硬化剤〕
・水酸基当量102g/eq、軟化点70℃のトリフェニルメタン型フェノール樹脂(エア・ウォーター株式会社、商品名:HE910)
〔硬化促進剤〕
・リン系硬化促進剤
〔シラン化合物〕
・シラン化合物A:3-メタクリロキシプロピルトリメトキシシラン(信越化学工業株式会社製、商品名:KBM-503)
・シラン化合物B:N-フェニル-3-アミノプロピルトリメトキシシラン(信越化学工業株式会社製、商品名:KBM-573)
・シラン化合物C:3-メルカプトプロピルトリメトキシシラン(信越化学工業株式会社製、商品名:KBM-803)
〔無機充填材〕
・シリカ粒子:体積平均粒子径0.2μm
・アルミナ粒子A:体積平均粒子径10μm、カットポイント55μm
・アルミナ粒子B:体積平均粒子径1μm、カットポイント25μm
・酸化マグネシウム:体積平均粒子径約2μm
〔添加剤〕
・離型剤:ヘキストワックス(クラリアント社製、商品名:HW-E)
・顔料:カーボンブラック(三菱ケミカル株式会社製、商品名:MA-600MJ-S)
・イオン交換体:ハイドロタルサイト(堺化学工業株式会社製、商品名:STABIACE HT-P)
 表1に示す各成分を同表に示す量で配合して混練し、冷却し、粉砕することにより、エポキシ樹脂組成物を作製した。表中、別段の記載がない場合、成分の配合量の単位は質量部を表す。表中、「-」は成分が配合されていないことを表す。
<粘度の評価(スパイラルフローの評価)>
 規格(EMMI-1-66)に準拠したスパイラルフロー測定用金型を用いて、エポキシ樹脂組成物を、プランジャー底部圧力換算値の油圧70kgf/cm(約6.86MPa)にて注入し、175℃、120secの条件で成形したときの成形物の長さを流動距離として評価した。
<熱伝導率の評価>
 上記エポキシ樹脂組成物を、高温真空成型機にて、175℃、120sec、圧力7MPaの条件下で成形し、1mm厚み、10mm四方に加工したものを試験片とした。上記試験片を、NETZSCH社製、商品名:LFA467型 Hyper Flash装置を用いて室温(25℃)条件で測定し、キセノンフラッシュ法により算出した値を熱伝導率とした。
<熱時硬度の評価>
 上記エポキシ樹脂組成物を、高温真空成型機にて、175℃、120sec、圧力7MPaの条件下で成形し、ショアD硬度計を用いて測定した値を硬度とした。
Figure JPOXMLDOC01-appb-T000001
 評価の結果、シラン化合物Aを配合した実施例1及び実施例2では、粘度が低下しており、硬化物の熱伝導率は良好であった。また、熱時硬度は比較例と比べて大きく低下しておらず、良好な硬化性が維持されていた。
 日本国特許出願第2018-049153号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に援用されて取り込まれる。

Claims (7)

  1.  エポキシ樹脂、
     硬化剤、
     アルミナ粒子、及び、
     エポキシ基と反応する官能基を有さない一方で、エポキシ基と反応しない官能基を有し、前記エポキシ基と反応しない官能基がケイ素原子に結合しているか、炭素数1~5の鎖状炭化水素基を介してケイ素原子に結合している構造を有するシラン化合物
     を含有する、エポキシ樹脂組成物。
  2.  前記シラン化合物の含有率が、前記エポキシ樹脂の総量に対して0.01質量%~20質量%である、請求項1に記載のエポキシ樹脂組成物。
  3.  前記エポキシ基と反応しない官能基が、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、及びビニル基からなる群より選択される少なくとも1つである、請求項1又は請求項2に記載のエポキシ樹脂組成物。
  4.  前記シラン化合物が、3-メタクリロキシプロピルトリメトキシシランを含む、請求項1~請求項3のいずれか1項に記載のエポキシ樹脂組成物。
  5.  前記アルミナ粒子の含有率が50体積%以上である、請求項1~請求項4のいずれか1項に記載のエポキシ樹脂組成物。
  6.  さらにシリカ粒子を含有する、請求項1~請求項5のいずれか1項に記載のエポキシ樹脂組成物。
  7.  請求項1~請求項6のいずれか1項に記載のエポキシ樹脂組成物によって封止された素子を備える電子部品装置。
PCT/JP2019/009705 2018-03-16 2019-03-11 エポキシ樹脂組成物、及び電子部品装置 WO2019176859A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2020506510A JP7351291B2 (ja) 2018-03-16 2019-03-11 エポキシ樹脂組成物、及び電子部品装置
KR1020207026486A KR20200132871A (ko) 2018-03-16 2019-03-11 에폭시 수지 조성물 및 전자 부품 장치
SG11202008967WA SG11202008967WA (en) 2018-03-16 2019-03-11 Epoxy resin composition and electronic component device
US16/981,188 US20210061986A1 (en) 2018-03-16 2019-03-11 Epoxy resin composition and electronic component device
CN201980019217.8A CN111868169B (zh) 2018-03-16 2019-03-11 环氧树脂组合物及电子部件装置
JP2023048622A JP2023076548A (ja) 2018-03-16 2023-03-24 エポキシ樹脂組成物、及び電子部品装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018049153 2018-03-16
JP2018-049153 2018-03-16

Publications (1)

Publication Number Publication Date
WO2019176859A1 true WO2019176859A1 (ja) 2019-09-19

Family

ID=67908239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009705 WO2019176859A1 (ja) 2018-03-16 2019-03-11 エポキシ樹脂組成物、及び電子部品装置

Country Status (7)

Country Link
US (1) US20210061986A1 (ja)
JP (2) JP7351291B2 (ja)
KR (1) KR20200132871A (ja)
CN (1) CN111868169B (ja)
SG (1) SG11202008967WA (ja)
TW (1) TW201945460A (ja)
WO (1) WO2019176859A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022050170A1 (ja) * 2020-09-03 2022-03-10 昭和電工マテリアルズ株式会社 コンパウンド、成形体、及びコンパウンドの硬化物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11261379B1 (en) * 2019-08-23 2022-03-01 B/E Aerospace, Inc. Fire-retardant potting compound for backlit devices

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07316459A (ja) * 1994-05-25 1995-12-05 Shin Etsu Chem Co Ltd 表面処理アルミナの製造方法
JP2005015639A (ja) * 2003-06-26 2005-01-20 Nhk Spring Co Ltd 電気絶縁材料樹脂組成物および電気絶縁積層材料
JP2005068258A (ja) * 2003-08-22 2005-03-17 Denki Kagaku Kogyo Kk 球状アルミナ粉末及びその用途
JP2008127484A (ja) * 2006-11-22 2008-06-05 Sumitomo Bakelite Co Ltd エポキシ樹脂用硬化促進剤、エポキシ樹脂組成物、及び電子材料用樹脂組成物
JP2012153829A (ja) * 2011-01-27 2012-08-16 Iteq Corp ハロゲンフリーエポキシ樹脂組成物と、それを用いたプリプレグ及び印刷回路基板
WO2013150753A1 (ja) * 2012-04-05 2013-10-10 パナソニック株式会社 エポキシ樹脂組成物、プリプレグ、積層板、プリント配線板
CN104910588A (zh) * 2014-03-12 2015-09-16 江苏麒祥高新材料有限公司 一种含有纳米银线的高导热环氧材料的制备方法
WO2017122460A1 (ja) * 2016-01-13 2017-07-20 太陽インキ製造株式会社 ドライフィルムおよびプリント配線板
KR101829213B1 (ko) * 2016-12-20 2018-02-19 안순영 온도감지기 충진용 수지 조성물

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3478315B2 (ja) 1995-12-06 2003-12-15 日立化成工業株式会社 半導体封止用エポキシ樹脂組成物及び該樹脂組成物で封止した半導体装置
JP3714861B2 (ja) * 2000-09-20 2005-11-09 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物
JP2006249222A (ja) * 2005-03-10 2006-09-21 Hitachi Chem Co Ltd エポキシ樹脂硬化剤とその製造方法、エポキシ樹脂組成物及び電子部品装置
JP2008274013A (ja) * 2007-04-25 2008-11-13 Asahi Kasei Chemicals Corp 硬化性エポキシ樹脂組成物およびその製造法
JP5410245B2 (ja) 2009-11-11 2014-02-05 電気化学工業株式会社 球状アルミナ粉末、その製造方法及び用途。
CN103987790A (zh) 2011-12-27 2014-08-13 松下电器产业株式会社 导热性树脂组合物
JP6828238B2 (ja) 2016-01-06 2021-02-10 昭和電工マテリアルズ株式会社 樹脂組成物及び硬化物
JP6980986B2 (ja) * 2016-04-22 2021-12-15 住友ベークライト株式会社 半導体封止用樹脂組成物および半導体装置
SG11201809513UA (en) * 2016-04-28 2018-11-29 Hitachi Chemical Co Ltd Epoxy resin composition and electronic component device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07316459A (ja) * 1994-05-25 1995-12-05 Shin Etsu Chem Co Ltd 表面処理アルミナの製造方法
JP2005015639A (ja) * 2003-06-26 2005-01-20 Nhk Spring Co Ltd 電気絶縁材料樹脂組成物および電気絶縁積層材料
JP2005068258A (ja) * 2003-08-22 2005-03-17 Denki Kagaku Kogyo Kk 球状アルミナ粉末及びその用途
JP2008127484A (ja) * 2006-11-22 2008-06-05 Sumitomo Bakelite Co Ltd エポキシ樹脂用硬化促進剤、エポキシ樹脂組成物、及び電子材料用樹脂組成物
JP2012153829A (ja) * 2011-01-27 2012-08-16 Iteq Corp ハロゲンフリーエポキシ樹脂組成物と、それを用いたプリプレグ及び印刷回路基板
WO2013150753A1 (ja) * 2012-04-05 2013-10-10 パナソニック株式会社 エポキシ樹脂組成物、プリプレグ、積層板、プリント配線板
CN104910588A (zh) * 2014-03-12 2015-09-16 江苏麒祥高新材料有限公司 一种含有纳米银线的高导热环氧材料的制备方法
WO2017122460A1 (ja) * 2016-01-13 2017-07-20 太陽インキ製造株式会社 ドライフィルムおよびプリント配線板
KR101829213B1 (ko) * 2016-12-20 2018-02-19 안순영 온도감지기 충진용 수지 조성물

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022050170A1 (ja) * 2020-09-03 2022-03-10 昭和電工マテリアルズ株式会社 コンパウンド、成形体、及びコンパウンドの硬化物

Also Published As

Publication number Publication date
JP2023076548A (ja) 2023-06-01
KR20200132871A (ko) 2020-11-25
JPWO2019176859A1 (ja) 2021-03-11
US20210061986A1 (en) 2021-03-04
JP7351291B2 (ja) 2023-09-27
CN111868169A (zh) 2020-10-30
SG11202008967WA (en) 2020-10-29
CN111868169B (zh) 2024-03-08
TW201945460A (zh) 2019-12-01

Similar Documents

Publication Publication Date Title
WO2019240079A1 (ja) 硬化性樹脂組成物及び電子部品装置
JP2023076548A (ja) エポキシ樹脂組成物、及び電子部品装置
JP2024012392A (ja) エポキシ樹脂組成物、及び電子部品装置
JP2019167407A (ja) エポキシ樹脂組成物、及び電子部品装置
JP7452028B2 (ja) 封止用樹脂組成物、電子部品装置、及び電子部品装置の製造方法
JP7388160B2 (ja) 封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法
TWI816887B (zh) 密封用樹脂組成物、電子零件裝置及電子零件裝置的製造方法
CN114008105A (zh) 密封用树脂组合物、电子零件装置及电子零件装置的制造方法
JP2023059892A (ja) 封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法
WO2018181813A1 (ja) エポキシ樹脂組成物及び電子部品装置
JP2018104603A (ja) 硬化性樹脂組成物及び電子部品装置
JP7396290B2 (ja) 封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法
TW202116913A (zh) 壓縮成形用密封材及電子零件裝置
JP2021084980A (ja) 封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法
JP2020193293A (ja) 封止用樹脂組成物、硬化物、及び電子部品装置
WO2018123745A1 (ja) 樹脂組成物及び電子部品装置
JP7491223B2 (ja) 封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法
JP7443778B2 (ja) 封止用樹脂組成物、電子部品装置、及び電子部品装置の製造方法
TWI839335B (zh) 應用於電子零件裝置密封之環氧樹脂組成物及電子零件裝置
TW202233736A (zh) 熱硬化性樹脂組成物的製造方法、熱硬化性樹脂組成物及電子零件裝置
JP2022011184A (ja) 封止用樹脂組成物及び電子部品装置
JP2023127420A (ja) 封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法
JP2024055627A (ja) 成形用樹脂組成物及び電子部品装置
TW202102567A (zh) 密封用樹脂組成物、電子零件裝置及電子零件裝置的製造方法
JP2009256436A (ja) エポキシ樹脂組成物及び電子部品装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19766496

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020506510

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19766496

Country of ref document: EP

Kind code of ref document: A1