WO2019174007A1 - 连接板、电路板组件及电子设备 - Google Patents

连接板、电路板组件及电子设备 Download PDF

Info

Publication number
WO2019174007A1
WO2019174007A1 PCT/CN2018/079178 CN2018079178W WO2019174007A1 WO 2019174007 A1 WO2019174007 A1 WO 2019174007A1 CN 2018079178 W CN2018079178 W CN 2018079178W WO 2019174007 A1 WO2019174007 A1 WO 2019174007A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal transmission
hole
circuit board
grounding
ground
Prior art date
Application number
PCT/CN2018/079178
Other languages
English (en)
French (fr)
Inventor
王辉
邱丹
陈志君
唐戴平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2018/079178 priority Critical patent/WO2019174007A1/zh
Priority to CN202010231933.7A priority patent/CN111356287B/zh
Priority to CN201880057169.7A priority patent/CN111052876A/zh
Priority to US16/980,174 priority patent/US11166374B2/en
Priority to EP18909634.0A priority patent/EP3755126A4/en
Priority to CN202110337506.1A priority patent/CN113194598A/zh
Publication of WO2019174007A1 publication Critical patent/WO2019174007A1/zh
Priority to US17/487,988 priority patent/US11706871B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/145Arrangements wherein electric components are disposed between and simultaneously connected to two planar printed circuit boards, e.g. Cordwood modules
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • H05K1/0219Printed shielding conductors for shielding around or between signal conductors, e.g. coplanar or coaxial printed shielding conductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • H05K1/0219Printed shielding conductors for shielding around or between signal conductors, e.g. coplanar or coaxial printed shielding conductors
    • H05K1/0222Printed shielding conductors for shielding around or between signal conductors, e.g. coplanar or coaxial printed shielding conductors for shielding around a single via or around a group of vias, e.g. coaxial vias or vias surrounded by a grounded via fence
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/0243Printed circuits associated with mounted high frequency components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/115Via connections; Lands around holes or via connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/144Stacked arrangements of planar printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/0017Casings, cabinets or drawers for electric apparatus with operator interface units
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/04Assemblies of printed circuits
    • H05K2201/042Stacked spaced PCBs; Planar parts of folded flexible circuits having mounted components in between or spaced from each other
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09618Via fence, i.e. one-dimensional array of vias
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09809Coaxial layout
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09818Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
    • H05K2201/09854Hole or via having special cross-section, e.g. elliptical
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10128Display
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10378Interposers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/20Details of printed circuits not provided for in H05K2201/01 - H05K2201/10
    • H05K2201/2036Permanent spacer or stand-off in a printed circuit or printed circuit assembly
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/429Plated through-holes specially for multilayer circuits, e.g. having connections to inner circuit layers

Definitions

  • the present application relates to the field of electronic products, and in particular, to a connection board, a circuit board assembly, and an electronic device.
  • PCBs printed circuit boards
  • Multilayer printed circuit boards use a connection board to connect two printed circuit boards, and the traces in the connection board are used to transfer signals between the two printed circuit boards.
  • the characteristic impedance of the traces in the conventional connection board structure cannot be controlled, which causes the signal transmission to be discontinuous, resulting in a large insertion loss of the signal during transmission, and the Smith chart (also known as the Smith chart). More divergent, it is difficult to debug convergence.
  • connection board a circuit board assembly, and an electronic device capable of accurately controlling a characteristic impedance.
  • the application provides a web.
  • the connecting plate is used to be connected between two circuit boards to achieve an electrical connection between the two circuit boards.
  • the connecting plate includes a plate body, a signal transmission portion, and a ground portion.
  • the plate body is provided with a signal transmission hole and at least one ground hole.
  • the signal transmission hole extends from one end of the plate body to the other end of the plate body.
  • the signal transmission unit is disposed in the signal transmission hole.
  • the signal transmission portion is capable of transmitting a radio frequency signal between two circuit boards.
  • the at least one grounding hole extends from one end of the plate body to the other end of the plate body and is the same as the signal transmission hole extending path.
  • the at least one ground hole surrounds the signal transmission hole and is spaced apart from the signal transmission hole.
  • the grounding portion is disposed in the at least one grounding hole. The ground portion can connect the ground of the two circuit boards to achieve grounding continuity between the two circuit boards and the connection board.
  • the grounding portion is disposed in the at least one grounding hole, and the signal transmission portion is disposed in the The signal is transmitted through the hole, and thus the ground portion surrounds the signal transmission portion and is spaced apart from the signal transmission portion.
  • the ground portion can serve as a reference ground for the signal transmitted by the signal transmission portion, thereby adjusting a radius of the signal transmission portion (hereinafter referred to as an inner diameter) and a radius of an inscribed circle of the inner contour of the ground portion (below
  • the outer diameter is referred to as an outer diameter to control the characteristic impedance of the signal transmission portion, so that the characteristic impedance of the signal transmission portion is controllable, and the continuity of the signal transmitted by the signal transmission portion is strong, thereby maintaining good matching characteristics and reducing loss due to characteristic impedance.
  • the controllability of the characteristic impedance of the signal transmitting portion is higher.
  • the grounding portion is also capable of shielding the signal radiation, so that the grounding portion can effectively reduce the signal even when the signal transmitting portion is equivalently formed as a small-section antenna, and the signal is transmitted in the signal transmitting portion.
  • the radiation of the signal transmitted by the transmission unit reduces the interference of other signals on the signal transmitted by the signal transmission unit, so that the overall performance of the signal transmitted by the signal transmission unit is better.
  • the characteristic impedance of the signal transmission portion increases as the outer diameter increases.
  • the characteristic impedance of the signal transmission portion decreases as the inner diameter increases, under other conditions.
  • the number of the ground holes is at least two.
  • the spacing between adjacent grounding holes is d.
  • the spacing d refers to the smallest distance between adjacent grounding holes.
  • the spacing d satisfies: d ⁇ ⁇ / n.
  • the signal transmission unit is configured to transmit a signal with a highest frequency f, and the wavelength corresponding to the highest frequency f is ⁇ . N ⁇ 4.
  • the spacing between the adjacent grounding holes is small, and the grounding portion filled in all the grounding holes is equivalent to the closed annular grounding portion, thereby ensuring the grounding portion.
  • the characteristic impedance control effect and shielding effect on the signal transmission portion It can be understood that the smaller the spacing between adjacent grounding holes, the better the characteristic impedance control effect and the shielding effect played by the grounding portion.
  • connection board can better balance the number of the ground holes and the characteristic impedance control effect and the shielding effect of the ground portion, so that the connection board is low in cost and high in reliability.
  • all of the grounding holes are equally spaced in the circumferential direction of the signal transmission hole. At this time, the spacing between the adjacent grounding holes is equal, so that the characteristic impedance control effect and the shielding effect of the grounding portion are better, and the preparation process of the grounding portion is also simpler and more reliable, and the reduction is performed.
  • the defect rate of the connecting plate is equal.
  • the spacing between all of the ground holes and the signal transmission holes is equal.
  • the center of the inscribed circle of the inner contour overlaps with the center of the signal transmission hole.
  • All of the grounding holes are in contact with the inscribed circle of the inner contour thereof, and all of the grounding holes can simultaneously perform characteristic impedance control and shielding, so that the characteristic impedance control of the signal transmission part is more precise, and the radiation shielding effect is obtained. Better.
  • the cross-sectional shape of the ground hole is the same as the cross-sectional shape of the signal transmission hole.
  • all the grounding holes and the signal transmission holes can be processed by the same jig, so that the processing of the connecting plates is less difficult and the cost is lower.
  • it also helps to set the inner diameter and the outer diameter in accordance with the required characteristic impedance.
  • the cross-sectional shape of the signal transmission hole is circular, elliptical or polygonal.
  • Polygons include, but are not limited to, trigonal, quadrilateral (eg, square or diamond), pentagon or hexagonal, and the like.
  • the signal transmission hole has a circular cross section shape.
  • the cross-sectional shape of the grounding hole is a fan shape.
  • the cross-sectional shape of the grounding hole includes opposite inner arc edges and outer arc edges, and the signal transmission hole is located at a side of the inner arc edge away from the outer arc edge.
  • the opposite sides of the adjacent sector shapes are parallel to each other, and the gap between the adjacent ground holes can be reduced, and the risk of signal radiation transmitted by the signal transmission portion passing through the ground portion can be reduced.
  • the cross-sectional shape of the signal transmission hole is circular, the number of the ground holes is four, and the cross-sectional shape of each of the ground holes includes a first area and a second area, An area is vertically connected to the second area, and a cross-sectional shape of the ground hole includes opposite inner and outer sides, and the signal transmission hole is located on a side of the inner side away from the outer side.
  • the adjacent sides of the first region and the second region that are adjacent and not connected are parallel to each other, and the gap between the adjacent ground holes can be reduced, and the signal radiation transmitted by the signal transmission portion can be reduced. The risk of the grounding portion.
  • the number of the grounding holes is one, and the cross-sectional shape of the grounding holes is a closed annular shape. At this time, the characteristic impedance control function and the shielding function of the ground portion are more reliable, and the signal transmitted by the signal transmission portion does not radiate outward around the ground portion.
  • the cross-sectional shape of the signal transmission hole is circular
  • the cross-sectional shape of the ground hole is a circular ring shape, an elliptical ring shape or a polygonal ring shape.
  • the polygonal ring includes, but is not limited to, a three-sided ring, a four-sided ring (for example, a square ring, a rectangular ring or a diamond ring), a five-sided ring or a hexagonal ring, and the like.
  • the grounding portion is made of the same material as that used in the signal transmission portion. At this time, the characteristic impedance of the signal transmission portion is easier to calculate, design, and adjust.
  • the plate body is further provided with a connecting hole.
  • the connection hole is located at a side of the at least one ground hole away from the signal transmission hole.
  • the connecting plate further includes a connecting portion.
  • the connecting portion is disposed in the connecting hole.
  • the connection portion and the signal transmission portion are for transmitting different signals.
  • the connection can be used to transmit a power signal, a ground signal, or other signal.
  • connection hole is located at a side of the at least one ground hole away from the signal transmission hole
  • connection portion is disposed at a side of the ground portion away from the signal transmission portion
  • the connecting portion includes a first connecting portion and a second connecting portion.
  • the number of the connection holes is at least two.
  • the first connecting portion and the second connecting portion are disposed in different connecting holes.
  • the first connection portion and the second connection portion are used to transmit different signals. At this time, the integration degree of the connection board is further improved.
  • connection hole is the same as the cross-sectional shape of the signal transmission hole.
  • connection board has a low process difficulty and a low processing cost.
  • the present application provides a circuit board assembly.
  • the circuit board assembly includes a first circuit board, a second circuit board, and the connection board.
  • the connection board is connected between the first circuit board and the second circuit board.
  • the signal transmission unit is configured to transmit a signal between the first circuit board and the second circuit board.
  • the ground portion is used to connect the ground of the first circuit board and the ground of the second circuit board.
  • connection board since the connection board is connected between the first circuit board and the second circuit board, the characteristic impedance of the signal transmission part of the connection board is controllable, and thus the circuit board Components are also easier to achieve precise control of the characteristic impedance.
  • the first circuit board and the second circuit board are stacked.
  • the circuit board assembly constitutes a multi-layer circuit board stack structure, and can be widely applied to various electronic devices.
  • the first circuit board is provided with a first soldering area toward a side of the second circuit board.
  • the second circuit board is provided with a second soldering area toward a side of the first circuit board.
  • One end of the plate body abuts the first welding zone.
  • the other end of the plate body abuts the second weld zone.
  • One end of the plate body is fixedly connected to the first welding zone by soldering (for example, a soldering layer) to achieve structural connection and electrical connection.
  • the other end of the plate body is fixedly connected to the second welding zone by soldering (for example, coating a soldering layer) to achieve structural connection and electrical connection.
  • soldering for example, coating a soldering layer
  • the connecting board is a straight board, so that the characteristic impedance continuity of the signal transmitted by the signal transmitting part is better.
  • the first bonding pad is provided with a first signal transmission pad and at least one first ground pad.
  • the at least one first ground pad surrounds the first signal transmission pad and is spaced apart from the first signal transmission pad.
  • the shape of the first signal transmission pad is the same as the cross-sectional shape of the first signal transmission hole.
  • the shape of the first signal transmission pad varies with the cross-sectional shape of the first signal transmission hole, and the two overlap to achieve characteristic impedance continuity during signal transmission.
  • the shape of the at least one first ground pad is the same as the cross-sectional shape of the at least one ground hole.
  • the shape of the at least one first ground pad varies with the cross-sectional shape of the at least one ground hole, and the two overlap to achieve characteristic impedance continuity during signal transmission.
  • the second pad is provided with a second signal transmission pad and at least one second ground pad.
  • the at least one second ground pad surrounds the second signal transmission pad and is spaced apart from the second signal transmission pad.
  • the shape of the second signal transmission pad is the same as the cross-sectional shape of the first signal transmission hole, and the shape of the at least one second ground pad is the same as the cross-sectional shape of the at least one ground hole.
  • the circuit board assembly further comprises two solder layers disposed at opposite ends of the board body.
  • the shape of the solder layer is changed in accordance with the cross-sectional shape of the signal transmission hole and the at least one ground hole to achieve characteristic impedance continuity at the time of signal transmission.
  • a first positioning member is further disposed on a side of the first circuit board facing the second circuit board.
  • the first positioning member is located outside the first welding zone.
  • the first positioning member is configured to position the connecting plate and the first circuit board. At this time, the electrical connection between the connection board and the first circuit board is highly reliable and the signal transmission quality is high.
  • the first positioning member includes at least one of a positioning block or a positioning point.
  • the first positioning member includes a first positioning block and a second positioning block that are spaced apart.
  • the connecting plate is disposed between the first positioning block and the second positioning block to achieve positioning.
  • the present application provides an electronic device.
  • the electronic device includes a housing and the above-described circuit board assembly.
  • the circuit board assembly is housed within the housing.
  • the electronic device can be any device having communication and storage functions.
  • the circuit board assembly is used to carry a variety of components.
  • the circuit board assembly is also used to implement electrical connections between various components.
  • FIG. 1 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • FIG. 2 is a schematic view showing a state of use of a circuit board assembly of the electronic device shown in FIG. 1;
  • Figure 3 is a schematic view showing the internal structure of the circuit board assembly shown in Figure 2;
  • FIG. 4 is a schematic structural view of an embodiment of the structure of the connecting plate shown in FIG. 2 at the line A-A;
  • Figure 5 is a schematic view showing the field distribution of electric and magnetic fields of the connecting plate shown in Figure 4;
  • Figure 6 is a graph showing changes in characteristic impedance and outer diameter of the connecting plate shown in Figure 4;
  • Figure 7 is a graph showing changes in characteristic impedance and inner diameter of the connecting plate shown in Figure 4.
  • Figure 8 is a schematic diagram of an equivalent physical model of the connecting plate shown in Figure 4.
  • FIG. 9 is a schematic structural view of another embodiment of the structure of the connecting plate shown in FIG. 2 at the line A-A;
  • FIG. 10 is a schematic structural view of another embodiment of the structure of the connecting plate shown in FIG. 2 at the line A-A;
  • Figure 11 is a schematic structural view showing another embodiment of the structure of the connecting plate shown in Figure 2 at line A-A;
  • Figure 12 is a schematic structural view of another embodiment of the structure of the connecting plate shown in Figure 2 at line A-A;
  • Figure 13 is a schematic structural view showing another embodiment of the structure of the connecting plate shown in Figure 2 at line A-A;
  • Figure 14 is a schematic structural view showing another embodiment of the structure of the connecting plate shown in Figure 2 at line A-A;
  • FIG. 15 is a schematic structural view of an embodiment of a first circuit board of the circuit board assembly shown in FIG. 2;
  • FIG. 16 is a schematic structural view of an embodiment of a second circuit board of the circuit board assembly shown in FIG. 2;
  • FIG. 17 is a schematic structural view of another embodiment of a first circuit board of the circuit board assembly shown in FIG. 2;
  • FIG. 18 is a schematic structural view of another embodiment of a second circuit board of the circuit board assembly shown in FIG. 2;
  • FIG. 19 is a front elevational view of another embodiment of a circuit board assembly of the electronic device of FIG. 1.
  • the present application provides an electronic device 100 .
  • the electronic device 100 may be any device having communication and storage functions, such as a tablet computer, a mobile phone, an e-reader, a remote controller, a personal computer (PC), a notebook computer, an in-vehicle device, and a network.
  • a smart device with network capabilities such as TVs and wearable devices.
  • the embodiment of the present application is described by taking the electronic device 100 as a mobile phone as an example.
  • the electronic device 100 includes a housing 200 and a circuit board assembly 300 .
  • the circuit board assembly 300 is housed within the housing 200.
  • the housing 200 is used to protect the circuit board assembly 300.
  • the circuit board assembly 300 is used to carry a variety of components.
  • the circuit board assembly 300 is also used to implement electrical connections between various components.
  • the electronic device 100 further includes a display screen 400 that is fixed to the housing 200 for displaying an image.
  • the display screen 400 is stacked with the circuit board assembly 300.
  • the circuit board assembly 300 includes a first circuit board 1, a second circuit board 2, and a connection board 3.
  • the connecting plate 3 is connected between the first circuit board 1 and the second circuit board 2.
  • the connecting plate 3 can realize the structural connection between the first circuit board 1 and the second circuit board 2, and can also realize the connection between the first circuit board 1 and the second circuit board 2 Electrical connection.
  • the number of the connection plates 3 connected between the second circuit board 2 and the first circuit board 1 may be one or more.
  • the first circuit board 1 is used to carry the first device 10.
  • the first device 10 can be disposed on opposite sides of the first circuit board 1.
  • the first device 10 includes, but is not limited to, Radio Frequency Integrated Circuits (RFICs), Power Amplifiers (PAs), filters, Central Processing Units (CPUs), or system level.
  • RFICs Radio Frequency Integrated Circuits
  • PAs Power Amplifiers
  • CPUs Central Processing Units
  • SOC System on Chip
  • the second circuit board 2 is used to carry the second device 20.
  • the second device 20 can be disposed on opposite sides of the second circuit board 2.
  • the second device 20 includes, but is not limited to, Radio Frequency Integrated Circuits (RFICs), Power Amplifiers (PAs), filters, Central Processing Units (CPUs), or system level.
  • SOC System on Chip
  • the connecting plate 3 is used to realize an electrical connection between the first device 10 and the second device 20.
  • the signals transmitted by the connection board 3 include, but are not limited to, one or more of a radio frequency signal, a ground signal, and a power signal.
  • the radio frequency signals include high frequency, very high frequency and ultra high frequency, and the frequency thereof is in the range of 300 kHz (kilohertz) to 300 GHz (gigahertz).
  • the first device 10 employs a radio frequency integrated circuit
  • the second device 20 employs a central processing unit
  • the connection board 3 is used between the radio frequency integrated circuit and the central processing unit. Transmit RF signals.
  • the connecting plate 3 includes a plate body 31, a signal transmission portion 32, and a grounding portion 33.
  • One end 314 of the plate body 31 is connected to the first circuit board 1
  • the other end 315 of the board body 31 is connected to the second circuit board 2 .
  • the board body 31 is provided with a signal transmission hole 311 and at least one ground hole 312.
  • the signal transmission hole 311 extends from one end 314 of the plate body 31 to the other end 315 of the plate body 31.
  • the signal transmission unit 32 is provided in the signal transmission hole 311.
  • the signal transmission unit 32 connects the first circuit board 1 and the second circuit board 2.
  • the signal transmission unit 32 is configured to transmit a signal between the first circuit board 1 and the second circuit board 2.
  • the at least one grounding hole 312 extends from one end 314 of the plate body 31 to the other end 315 of the plate body 31 and is the same as the signal transmission hole 311 extending path.
  • the at least one grounding hole 312 surrounds the signal transmission hole 311 and is spaced apart from the signal transmission hole 311.
  • the grounding portion 33 is disposed in the at least one grounding hole 312.
  • the grounding portion 33 connects the first circuit board 1 and the second circuit board 2.
  • the grounding portion 33 is for connecting the ground of the first circuit board 1 and the ground of the second circuit board 2. At this time, the first circuit board 1, the ground portion 33, and the second circuit board 2 are grounded continuously.
  • the present application is described by taking the signal transmission unit 32 for transmitting a radio frequency signal as an example.
  • the radio frequency signal may include, but is not limited to, a Wireless-Fidelity (Wi-Fi) signal, a Bluetooth signal, a Global Navigation Satellite System (GNSS), 2G (2-Generation wireless telephone technology, 2nd generation) Mobile communication technology specifications) Signal, 3G (3-Generation wireless telephone technology) signal, 4G (4-Generation wireless telephone technology) signal or 5G (5-Generation) Wireless telephone technology, the fifth generation mobile phone communication technical specifications) signal.
  • Wi-Fi Wireless-Fidelity
  • GNSS Global Navigation Satellite System
  • 2G (2-Generation wireless telephone technology, 2nd generation) Mobile communication technology specifications 2G (2-Generation wireless telephone technology, 2nd generation) Mobile communication technology specifications
  • 3G 3-Generation wireless telephone technology
  • 4G (4-Generation wireless telephone technology) signal or 5G (5-Generation) Wireless telephone technology, the fifth generation mobile phone communication technical specifications
  • the at least one grounding hole 312 surrounds the signal transmission hole 311 and is spaced apart from the signal transmission hole 311, and the grounding portion 33 is disposed in the at least one grounding hole 312.
  • the signal transmission unit 32 is provided in the signal transmission hole 311. Therefore, the ground portion 33 surrounds the signal transmission unit 32 and is spaced apart from the signal transmission unit 32.
  • the electric field and magnetic field distribution when the signal is transmitted on the signal transmission portion 32 is as shown in FIG. Among them, the continuous line "-" with an arrow represents the electric field E, and the dotted line "---" represents the magnetic field H.
  • the grounding portion 33 can serve as a reference ground for the signal transmitted by the signal transmitting portion 32, thereby allowing the radius of the signal transmitting portion 32 (hereinafter referred to as the inner diameter a) and the inner contour of the ground portion 33 to be inscribed.
  • the radius of the circle 330 controls the characteristic impedance of the signal transmission portion 32 such that the characteristic impedance of the signal transmission portion 32 is controllable, and the signal is held on the first circuit board 1, the connection board 3 and the second circuit board 2 maintain good matching characteristics during transmission, reducing the extra insertion loss introduced by the characteristic impedance mismatch, so the insertion loss of the signal transmitted by the signal transmission portion 32 is small, Smith chart (Smith Chart, also known as the Smith chart, is more convergent.
  • the routing direction of the grounding portion 33 The wiring direction of the signal transmission portion 32 is the same, so the spacing between the connection portion 33 and the signal transmission portion 32 remains unchanged, so that the characteristic impedance of the signal transmission portion 32 is more controllable.
  • the grounding portion 33 is also capable of shielding the signal radiation, so that the grounding portion 33 can be effective even when the signal transmitting portion 32 is equivalently formed as a small-section antenna and the signal is transmitted in the signal transmitting portion 32.
  • the radiation of the signal transmitted by the signal transmission unit 32 is reduced, and the interference of other signals with the signal transmitted by the signal transmission unit 32 is reduced, so that the overall performance of the signal transmitted by the signal transmission unit 32 is better.
  • the characteristic impedance of the signal transmission portion 32 of the connection board 3 can be accurately controlled, the overall characteristic impedance in the circuit board assembly 300 to which the connection board 3 is applied can also be accurately obtained.
  • the control, the controllability of the characteristic impedance in the electronic device 100 to which the circuit board assembly 300 is applied is high.
  • the signal transmission portion 32 can be formed by filling a conductive material in the signal transmission hole 311.
  • the conductive traces are formed into the signal transmission portion 32 by embedding the conductive traces and then forming the plate body 31. At this time, the conductive traces also fill the signal transmission holes 311.
  • the signal transmission portion 32 may not fill the signal transmission hole 311, but pass through the signal transmission hole 311 through a wire, and at this time, the signal transmission portion 32 occupies the signal transmission. Part of the space of the hole 311.
  • the ground portion 33 may be formed by filling a conductive material in the at least one ground hole 312.
  • the conductive traces are formed into the ground portion 33 by embedding the conductive traces and then forming the plate body 31. At this time, the conductive traces also fill the at least one ground via 312.
  • the grounding portion 33 in the single grounding hole 312 may not fill the corresponding grounding hole 312, but pass through the corresponding grounding hole 312 through the wire.
  • the ground portion 33 occupies a portion of the space of the corresponding ground hole 312.
  • the signal transmission unit 32 fills the signal transmission hole 311
  • the ground portion 33 fills the at least one ground hole 312 as an example for description.
  • the radius of the signal transmission hole 311 is the inner diameter a.
  • the radius of the inscribed circle 330 of the inner contour of the at least one grounding hole 312 is the outer diameter b.
  • the dielectric constant of the plate body 31 is ⁇ r .
  • the surface resistance of the conductor used in the signal transmission portion 32 and the ground portion 33 is R S and the magnetic permeability is 1.
  • the equivalent inductance L of the signal transmission unit 32 is calculated according to the formula (1)
  • the equivalent capacitance C is calculated according to the formula (2)
  • the equivalent resistance R is calculated according to (3):
  • the characteristic impedance Z is calculated by the equivalent resistance R, the equivalent inductance L, and the equivalent capacitance C, the characteristic impedance Z of the signal transmission portion 32 can be accurately controlled by adjusting the inner diameter a and the outer diameter b.
  • the dielectric plate used in the present application can have any dielectric constant ⁇ r , and the characteristic impedance can be matched to the state required by the designer through calculation and simulation optimization.
  • the characteristic curve Z (ohm, ohm) and outer diameter b (mm, mm) are shown in Fig. 6.
  • the characteristic impedance Z increases as the outer diameter b increases.
  • the characteristic curve Z (ohm, ohm) and the inner diameter a (mm, mm) are shown in Fig. 7.
  • the characteristic impedance Z decreases as the inner diameter a increases.
  • the structure and relative position of the signal transmission hole 311 and the at least one ground hole 312 are implemented in various forms, including:
  • the number of the grounding holes 312 is at least two.
  • the spacing between adjacent grounding holes 312 is d.
  • the spacing d refers to the minimum distance between the walls of the holes of the adjacent two grounding holes 312. The spacing d satisfies:
  • the signal transmission unit 32 is configured to transmit a signal having a highest frequency of f, that is, a highest frequency in a frequency band of the radio frequency signal transmitted in the signal transmission unit 32 is f.
  • the wavelength corresponding to the highest frequency f is ⁇ . N ⁇ 4.
  • the value of the spacing d obtained according to the formula (4) is small, that is, the spacing d between the adjacent grounding holes 312 is small, and is filled in all the places.
  • the grounding portion 33 in the grounding hole 312 is equivalent to the closed annular grounding portion 33' as shown in FIG. 8, so that the characteristic impedance control effect and shielding of the grounding portion 33 on the signal transmitting portion 32 can be ensured. effect. It can be understood that the smaller the distance d between the adjacent grounding holes 312, the better the characteristic impedance control effect and the shielding effect played by the grounding portion 33.
  • the wavelength is shorter, so that the signal with higher frequency is more easily radiated around the gap between the adjacent ground holes 312, so in the present embodiment, according to the highest frequency f.
  • the wavelength ⁇ sets the spacing d.
  • connection board 3 can better balance the number of the ground holes 312 and the characteristic impedance control effect and the shielding effect of the ground portion 33, so that the connection board 3 is low in cost and high in reliability.
  • all of the ground holes 312 are arranged at equal intervals in the circumferential direction of the signal transmission hole 311. At this time, the spacing between the adjacent grounding holes 312 is equal, so that the characteristic impedance control effect and the shielding effect of the grounding portion 33 are better, and the preparation process of the grounding portion 33 is also simpler and more reliable.
  • the defect rate of the connecting plate 3 is lowered.
  • all the grounding holes 312 may also be arranged at unequal intervals in the circumferential direction of the signal transmission hole 311, but the spacing between any two adjacent grounding holes 312. Both must satisfy formula (4).
  • the spacing S between all the grounding holes 312 and the signal transmission holes 311 is equal.
  • the center of the inscribed circle 330 overlaps with the center of the signal transmission hole 311.
  • All of the grounding holes 312 are in contact with the inscribed circle 330 of the inner contour thereof, and all of the grounding holes 312 can simultaneously perform characteristic impedance control and shielding, so that the characteristic impedance control of the signal transmitting portion 32 is more precise. The radiation shielding effect is better.
  • the spacing between all the grounding holes 312 and the signal transmission holes 311 may also be unequal.
  • the cross-sectional shape of the grounding hole 312 is the same as the cross-sectional shape of the signal transmission hole 311.
  • the processing of all the grounding holes 312 and the signal transmission holes 311 can be completed by the same jig, so that the processing of the connecting plate 3 is less difficult and the cost is lower.
  • it also helps to set the inner diameter a and the outer diameter b according to the characteristic impedance Z required.
  • the cross-sectional shape of the signal transmission hole 311 and the ground hole 312 may have various shapes. E.g:
  • the signal transmission hole 311 has a circular cross section.
  • the cross-sectional shape of the grounding hole 312 is circular.
  • the radius of the circle is the inner diameter a
  • the radius of the inscribed circle 330 of the inner contour of all the ground holes 312 is the outer diameter b.
  • the minimum spacing between two adjacent circles is d.
  • the minimum spacing is located on the line between the adjacent two circular centers.
  • a single of the ground holes 312 has a radius c.
  • the radius c can be set to any value.
  • the cross-sectional shape of the signal transmission hole 311 may also be elliptical or polygonal.
  • Polygons include, but are not limited to, trigonal, quadrilateral (eg, square or diamond), pentagon or hexagonal, and the like.
  • the cross-sectional shape of the signal transmission hole 311 is a regular hexagon.
  • the cross-sectional shape of the grounding hole 312 is a regular hexagon.
  • the cross-sectional shape of the grounding hole 312 is different from the cross-sectional shape of the signal transmission hole 311.
  • the signal transmission hole 311 has a circular cross section.
  • the cross-sectional shape of the grounding hole 312 has a sector shape.
  • the cross-sectional shape of the grounding hole 312 includes opposite inner arc edges 3121 and outer arc edges 3122, and the signal transmission holes 311 are located on a side of the inner arc edge 3121 away from the outer arc edge 3122.
  • the opposite sides of the adjacent sector shapes are parallel to each other, and the gap between the adjacent ground holes 312 can be reduced, and the risk of signal radiation transmitted by the signal transmission portion 32 passing through the ground portion 33 can be reduced.
  • the cross-sectional shape of the signal transmission hole 311 is circular.
  • the number of the grounding holes 312 is four.
  • the cross-sectional shape of each of the ground holes 312 includes a first region 3123 and a second region 3124, and the first region 3123 is perpendicularly connected to the second region 3124.
  • the cross-sectional shape of the grounding hole 312 is substantially a right-angled shape.
  • the cross-sectional shape of the grounding hole 312 includes opposite inner side edges 3125 and outer side edges 3126, and the signal transmission holes 311 are located on a side of the inner side edge 3125 away from the outer side edge 3126.
  • the opposite sides of the first region 3123 and the second region 3124 which are adjacent and not connected are parallel to each other, and the gap between the adjacent ground holes 312 can be reduced to reduce the transmission of the signal transmission portion 32. The risk of signal radiation passing through the ground portion 33.
  • the number of the grounding holes 312 is one.
  • the cross-sectional shape of the grounding hole 312 is a closed ring shape. At this time, the characteristic impedance control function and the shielding function of the ground portion 33 are more reliable, and the signal transmitted by the signal transmission portion 32 does not radiate outward around the ground portion 33.
  • the radius of the inscribed circle 330 of the inner contour of the grounding hole 312 is the outer diameter b.
  • the inner contour of the grounding hole 312 is a profile toward the side of the signal transmission hole 311.
  • the cross-sectional shape of the signal transmission hole 311 is circular.
  • the radius of the circle is the inner diameter a.
  • the cross-sectional shape of the grounding hole 312 is a circular ring shape, an elliptical ring shape or a polygonal ring shape.
  • the polygonal ring shape includes, but is not limited to, a three-sided ring shape, a four-sided ring shape (for example, a square ring shape, or a rectangular ring shape, or a diamond ring shape), a five-sided ring shape, or a hexagonal ring shape.
  • the cross-sectional shape of the grounding hole 312 has a square ring shape.
  • the grounding portion 33 is made of the same material as the signal transmitting portion 32. At this time, the characteristic impedance of the signal transmission portion 32 is more easily calculated, designed, and adjusted. Of course, in other embodiments, the material used for the ground portion 33 may be different from the material used for the signal transmission portion 32.
  • the board body 31 is further provided with a connecting hole 313 .
  • the connection hole 313 is located at a side of the at least one ground hole 312 away from the signal transmission hole 311.
  • the connecting plate 3 further includes a connecting portion 34.
  • the connecting portion 34 is provided in the connecting hole 313 for transmitting a signal different from the signal transmitted by the signal transmitting portion 32.
  • the signal transmission unit 32 is for transmitting a signal that requires a high characteristic impedance
  • the connection portion 34 can be used to transmit a signal that does not require a high characteristic impedance.
  • the connection portion 34 can be used to transmit a power signal, a ground signal, or other signals.
  • connection hole 313 is located at a side of the at least one grounding hole 312 away from the signal transmission hole 311, the connecting portion 34 is disposed at the grounding portion 33 away from the signal transmission.
  • the arrangement of the connecting portion 34 does not adversely affect the signal transmitted by the signal transmitting portion 32, and the connection board 3 can ensure the quality of the signal transmitted by the signal transmitting portion 32.
  • other signals for which the characteristic impedance is not required are transmitted, and the integration of the connection board 3 is high.
  • the connecting portion 34 includes a first connecting portion 341 and a second connecting portion 342.
  • the number of the connecting holes 313 is at least two, and the first connecting portion 341 and the second connecting portion 342 are disposed in different connecting holes 313.
  • the first connection portion 341 and the second connection portion 342 are used to transmit different signals. At this time, the degree of integration of the connecting plate 3 is further improved.
  • the first connection 341 is for transmitting a power signal.
  • the second connecting portion 342 is used to implement a ground connection.
  • connection hole 313 is the same as the cross-sectional shape of the signal transmission hole 311. At this time, the connection board 3 has a low process difficulty and a low processing cost.
  • the structure and arrangement of the signal transmission portion 32 and the ground portion 33 in the present application are not limited to the above embodiments, and the ground portion 33 is disposed around the signal transmission portion 32 to achieve The methods of characteristic impedance control and shielding are within the scope of coverage and protection of this patent.
  • the first circuit board 1 and the second circuit board 2 are stacked.
  • the circuit board assembly 300 constitutes a multi-layer circuit board stack structure, and can be widely applied to various electronic devices 100.
  • the first circuit board 1 is provided with a first pad 11 toward a side of the second circuit board 2.
  • the second circuit board 2 is provided with a second land 21 toward a side of the first circuit board 1.
  • one end 314 of the plate body 31 abuts the first weld zone 11, and the other end 315 of the plate body 31 abuts the second weld zone 21.
  • One end 314 of the plate body 31 is fixedly connected to the first bonding zone 11 by soldering (for example, a soldering layer) to achieve structural connection and electrical connection.
  • the other end 315 of the plate body 31 is fixedly connected to the second lands 21 by soldering (for example, a soldering layer) to achieve structural connection and electrical connection.
  • the connecting plate 3 is a straight plate, so that the characteristic impedance continuity of the signal transmitted by the signal transmitting portion 32 is better.
  • the first pad 11 is provided with a first signal transmission pad 111 and at least one first ground pad 112.
  • the at least one first ground pad 112 surrounds the first signal transmission pad 111 and is spaced apart from the first signal transmission pad 111.
  • the shape of the first signal transmission pad 111 is the same as the cross-sectional shape of the first signal transmission hole 311 (shown in FIG. 4). In other words, the shape of the first signal transmission pad 111 varies with the cross-sectional shape of the first signal transmission hole 311, and the two overlap to achieve characteristic impedance continuity at the time of signal transmission.
  • the shape of the at least one first ground pad 112 is the same as the cross-sectional shape of the at least one ground hole 312 (shown in FIG. 4). In other words, the shape of the at least one first ground pad 112 varies with the cross-sectional shape of the at least one ground hole 312, and the two overlap to achieve characteristic impedance continuity during signal transmission.
  • the second pad 21 is provided with a second signal transmission pad 211 and at least one second ground pad 212.
  • the at least one second ground pad 212 surrounds the second signal transfer pad 211 and is spaced apart from the second signal transfer pad 211.
  • the shape of the second signal transmission pad 211 is the same as the cross-sectional shape of the first signal transmission hole 311 (shown in FIG. 4). That is, the shape of the second signal transmission pad 211 varies with the cross-sectional shape of the first signal transmission hole 311, and the two overlap to achieve characteristic impedance continuity at the time of signal transmission.
  • the shape of the at least one second ground pad 212 is the same as the cross-sectional shape of the at least one ground hole 312 (shown in FIG. 4). That is, the shape of the at least one second ground pad 212 varies with the cross-sectional shape of the at least one ground hole 312, and the two overlap to achieve characteristic impedance continuity during signal transmission.
  • the first pad region 11 is further provided with a first connection pad 113.
  • the first connection pad 113 is located on a side of the at least one first ground pad 112 away from the first signal transmission pad 111. Referring to FIG. 14 and FIG. 17 together, the first connection pad 113 is used to connect the connecting portion 34.
  • the shape of the first connection pad 113 is the same as the cross-sectional shape of the connection hole 313. In other words, the shape of the first connection pad 113 varies with the cross-sectional shape of the connection hole 313, and the two overlap.
  • the number and position of the first connection pads 113 are matched with the number and position of the connection holes 313.
  • the shape of the first connection pad 113 may be different from the cross-sectional shape of the connection hole 313.
  • the second pad region 21 is further provided with a second connection pad 213 .
  • the second connection pad 213 is located on a side of the at least one second ground pad 212 away from the second signal transmission pad 211. Referring to FIG. 14 and FIG. 18 together, the second connection pad 213 is used to connect the connecting portion 34.
  • the shape of the second connection pad 213 is the same as the cross-sectional shape of the connection hole 313. In other words, the shape of the second connection pad 213 varies with the cross-sectional shape of the connection hole 313, and the two overlap.
  • the number and position of the second connection pads 213 are matched with the number and position of the connection holes 313.
  • the shape of the second connection pad 213 may be different from the cross-sectional shape of the connection hole 313.
  • the circuit board assembly 300 further includes two solder layers disposed at opposite ends of the board body 31.
  • the shape of the solder layer is changed in accordance with the sectional shape of the signal transmission hole 311 and the at least one ground hole 312 to achieve characteristic impedance continuity at the time of signal transmission.
  • the first circuit board 1 is provided with a first positioning member 12 facing one side of the second circuit board 2.
  • the first positioning member 12 is located outside the first welding zone 11 .
  • the first positioning member 12 is used for positioning the connecting plate 3 and the first circuit board 1. At this time, the electrical connection between the connection board 3 and the first circuit board 1 is highly reliable and the signal transmission quality is high.
  • the first positioning member 12 includes at least one of a positioning block (121/122) or an positioning point (123).
  • the first positioning member 12 includes a first positioning block 121 and a second positioning block 122 that are spaced apart.
  • the connecting plate 3 is disposed between the first positioning block 121 and the second positioning block 122 to achieve positioning.
  • only the first positioning block 121 or the second positioning block 122 may be disposed, and one side of the connecting plate 3 is abutted against the first positioning block 121 or the first The positioning block 122 is positioned to achieve positioning.
  • the first positioning member 12 includes a first positioning point 123.
  • the assembly device realizes the alignment of the connecting board 3 with the first circuit board 1 with the first positioning point 123 as a reference point, thereby assembling The latter connecting plate 3 and the first circuit board 1 are positioned accurately with each other.
  • the number of the first positioning points 123 may be plural, and the plurality of the first positioning points 123 are dispersedly arranged.
  • the first circuit board 1 can be provided with a positioning block and an anchor point at the same time.
  • the second circuit board 2 is provided with a second positioning member 22 toward a side of the first circuit board 1.
  • the second positioning member 22 is located outside the second welding zone 21 .
  • the second positioning member 22 is configured to position the connecting plate 3 and the second circuit board 2 . At this time, the electrical connection of the connection board 3 and the second circuit board 2 is highly reliable and the signal transmission quality is high.
  • the second positioning member 22 includes at least one of a positioning block (221/222) or an positioning point (223).
  • the second positioning member 22 includes a third positioning block 221 and a fourth positioning block 222 that are spaced apart.
  • the connecting plate 3 is disposed between the third positioning block 221 and the fourth positioning block 222 to achieve positioning.
  • only the third positioning block 221 or the fourth positioning block 222 may be disposed, and one side of the connecting plate 3 is abutted against the third positioning block 221 or the first The positioning block 222 is positioned to achieve positioning.
  • the second positioning member 22 includes a second positioning point 223.
  • the assembly device realizes the alignment of the connecting board 3 and the second circuit board 2 with the second positioning point 223 as a reference point, thereby assembling The latter connecting plate 3 and the second circuit board 2 are positioned accurately with each other.
  • the second circuit board 2 can be provided with positioning blocks and positioning points at the same time.
  • the circuit board assembly 300 further includes a third circuit board 4.
  • the third circuit board 4 is stacked on the first circuit board 1 and disposed on a side of the first circuit board 1 away from the second circuit board 2.
  • a structural connection and an electrical connection are made between the third circuit board 4 and the second circuit board 2 via the connection board 3 .
  • the third circuit board 4 and the second circuit board 2 can pass through the connecting board 5 (the structure of the connecting board 5 is similar to the structure of the connecting board 3, and the connecting board 5 spans the first circuit board 1) Structural connection and electrical connection.
  • the number of the connecting plates 5 connected between the third circuit board 4 and the second circuit board 2 may be one or more.
  • the arrangement of the first circuit board 1 and the second circuit board 2 may also be parallel. At this time, the shape of the connecting plate 3 changes accordingly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

一种连接板(3),电路板组件(300)及电子设备(100),该连接板(3)包括板体(31)、信号传输部(32)及接地部(33)。板体(31)设有信号传输孔(311)和至少一个接地孔(312),信号传输孔(311)自板体(31)的一端(314)延伸至板体(31)的另一端(315),信号传输部(32)设于信号传输孔(311)内,至少一个接地孔(312)自板体(31)的一端(314)延伸至板体(31)的另一端(315),且与信号传输孔(311)延伸路径相同,至少一个接地孔(312)环绕信号传输孔(311)且与信号传输孔(311)间隔设置,接地部(33)设于至少一个接地孔(312)内。上述连接板(3)能够精确控制特性阻抗。

Description

连接板、电路板组件及电子设备 技术领域
本申请涉及电子产品领域,尤其涉及一种连接板、一种电路板组件以及一种电子设备。
背景技术
随着技术的发展,消费者对于电子产品的需求越来越高,研发人员对于小型化印刷电路板(Printed Circuit Board,PCB)的设计需求也越来越强烈,多层印刷电路板堆叠设计的系统架构也更多地受到研发人员的欢迎。
这种印刷电路板架构在带来小型化收益的同时,也引入了一些新的问题,在这些问题中,如何解决不同印刷电路板之间的信号连接,特别是射频信号的连接问题,十分关键。多层印刷电路板使用连接板连接两个印刷电路板,连接板中的走线用于在两个印刷电路板之间传输信号。然而,传统的连接板结构中的走线的特性阻抗无法得到控制,会使得信号传输不连续,导致信号在传输时存在很大的插入损耗,且史密斯图表(Smith chart,又称史密斯圆图)较发散,很难调试收敛。
发明内容
本申请提供一种能够精确控制特性阻抗的连接板、电路板组件及电子设备。
第一方面,本申请提供了一种连接板。所述连接板用于连接在两个电路板之间,以实现两个电路板之间的电性连接。所述连接板包括板体、信号传输部及接地部。所述板体设有信号传输孔和至少一个接地孔。所述信号传输孔自所述板体的一端延伸至所述板体的另一端。所述信号传输部设于所述信号传输孔内。所述信号传输部能够在两个电路板之间传输射频信号。所述至少一个接地孔自所述板体的一端延伸至所述板体的另一端,且与所述信号传输孔延伸路径相同。所述至少一个接地孔环绕所述信号传输孔且与所述信号传输孔间隔设置。所述接地部设于所述至少一个接地孔内。所述接地部能够连接两个电路板的地,以实现两个电路板与所述连接板之间的接地连续。
在本实施方式中,由于所述至少一个接地孔环绕所述信号传输孔且与所述信号传输孔间隔设置,所述接地部设于所述至少一个接地孔内,所述信号传输部设于所述信号传输孔内,因此所述接地部环绕所述信号传输部且与所述信号传输部间隔设置。所述接地部能够作为所述信号传输部所传输信号的参考地,从而得以通过调整所述信号传输部的半径(以下简称内径)和所述接地部的内侧轮廓的内切圆的半径(以下简称外径)来控制所述信号传输部的特性阻抗,使得信号传输部的特性阻抗可控,所述信号传输部所传输信号的连续性强,从而保持良好的匹配特性,降低由于特性阻抗失配引入的插入损耗,因此所述信号传输部所传输信号的插入损耗较小,史密斯图表较为收敛。由于所述至少一个接地孔与所述信号传输孔延伸路径相同,也即所述接地部的延伸路径与所述信号传输部的延伸路径相同,因此所述信号传输部的特性阻抗的可控性更高。所述接地部还能够对信号辐射起到屏 蔽作用,因此即使所述信号传输部等效形成一小节天线,信号在所述信号传输部中传输时,所述接地部也能够有效降低所述信号传输部所传输信号的辐射,并降低其他信号对所述信号传输部所传输信号的干扰,使得所述信号传输部所传输信号的整体性能较佳。
其中,在其它条件不变的情况下,所述信号传输部的特性阻抗随所述外径增加而增加。在其它条件不变的情况下,所述信号传输部的特性阻抗随所述内径增加而减小。
一种实施方式中,所述接地孔的数量为至少两个。相邻的所述接地孔之间的间距为d。所述间距d指相邻的所述接地孔之间最小的距离。所述间距d满足:d≤λ/n。其中,所述信号传输部用于传输最高频率为f的信号,最高频率f所对应的波长为λ。n≥4。
在本实施方式中,相邻的所述接地孔之间的间距很小,填充于所有的所述接地孔中的所述接地部等效于封闭的环形接地部,从而能够保证所述接地部对所述信号传输部的特性阻抗控制效果和屏蔽效果。可以理解的是,相邻的所述接地孔之间的间距越小,所述接地部所起到的特性阻抗控制效果和屏蔽效果越好。
一种实施方式中,n=10。此时,所述连接板能够更好地平衡所述接地孔的数量与所述接地部的特性阻抗控制效果和屏蔽效果,使得所述连接板成本低且可靠性高。
一种实施方式中,所有的所述接地孔在所述信号传输孔的圆周方向上等间距排布。此时,相邻的所述接地孔之间的间距相等,使得所述接地部的特性阻抗控制效果和屏蔽效果更佳,同时也使得所述接地部的制备过程更为简单、可靠,降低所述连接板的不良率。
一种实施方式中,所有的所述接地孔与所述信号传输孔之间的间距相等。此时,所述内轮廓的内切圆的中心与所述信号传输孔的中心重叠。所有的所述接地孔均接触其内侧轮廓的内切圆,所有的所述接地孔能够同时起到特性阻抗控制和屏蔽作用,使得所述信号传输部的特性阻抗控制更为精确,辐射屏蔽效果更佳。
一种实施方式中,所述接地孔的截面形状与所述信号传输孔的截面形状相同。此时,可通过同一个治具完成所有的所述接地孔和所述信号传输孔的加工,使得所述连接板的加工难度较小、成本较低。当然,也有助于对依据所需要的特性阻抗设置所述内径和所述外径。
一种实施方式中,所述信号传输孔的截面形状呈圆形、椭圆形或多边形。多边形包括但不限于三边形、四边形(例如方形或菱形)、五边形或六边形等。
一种实施方式中,所述信号传输孔的截面形状呈圆形。所述接地孔的截面形状呈扇面形。所述接地孔的截面形状包括相背的内弧边和外弧边,所述信号传输孔位于所述内弧边远离所述外弧边的一侧。相邻的扇面形的相对边相互平行,能够减小相邻的所述接地孔之间的缝隙,降低所述信号传输部所传输信号辐射穿过所述接地部的风险。
一种实施方式中,所述信号传输孔的截面形状呈圆形,所述接地孔的数量为四个,每个所述接地孔的截面形状均包括第一区域和第二区域,所述第一区域垂直连接所述第二区域,所述接地孔的截面形状包括相背的内侧边和外侧边,所述信号传输孔位于所述内侧边远离所述外侧边的一侧。相邻且不连接的所述第一区域和所述第二区域的相对边相互平行,能够减小相邻的所述接地孔之间的缝隙,降低所述信号传输部所传输信号辐射穿过所述接地部的风险。
一种实施方式中,所述接地孔的数量为一个,所述接地孔的截面形状呈封闭的环形。 此时,所述接地部的特性阻抗控制功能和屏蔽功能更为可靠,所述信号传输部所传输信号不会绕过所述接地部向外辐射。
一种实施方式中,所述信号传输孔的截面形状呈圆形,所述接地孔的截面形状呈圆环形、椭圆环形或多边环形。所述多边环形包括但不限于三边环形、四边环形(例如正方环形、长方环形或菱形环形)、五边环形或六边环形等。
一种实施方式中,所述接地部所采用的材料与所述信号传输部所采用的材料相同。此时,所述信号传输部的特性阻抗更容易进行计算、设计以及调整。
一种实施方式中,所述板体还设有连接孔。所述连接孔位于所述至少一个接地孔远离所述信号传输孔的一侧。所述连接板还包括连接部。所述连接部设于所述连接孔中。所述连接部和所述信号传输部用于传输不同的信号。所述连接部可用于传输电源信号、地信号或其他信号。
在本实施方式中,由于所述连接孔位于所述至少一个接地孔远离所述信号传输孔的一侧,因此所述连接部设于所述接地部的远离所述信号传输部的一侧,所述连接部的设置不会对所述信号传输部所传输信号造成不良影响,所述连接板可以在保证所述信号传输部所传输信号的质量的情况下,实现其他对特性阻抗要求不高的信号的传输,所述连接板的集成度高。
一种实施方式中,所述连接部包括第一连接部和第二连接部。所述连接孔的数量为至少两个。所述第一连接部和所述第二连接部设于不同的所述连接孔中。所述第一连接部和所述第二连接部用于传输不同的信号。此时,所述连接板的集成度进一步提高。
其中,所述连接孔的截面形状与所述信号传输孔的截面形状相同。此时,所述连接板的工艺难度较低,加工成本较低。
第二方面,本申请提供了一种电路板组件。所述电路板组件包括第一电路板、第二电路板及上述连接板。所述连接板连接在所述第一电路板与所述第二电路板之间。所述信号传输部用于在所述第一电路板与所述第二电路板之间传输信号。所述接地部用于连接所述第一电路板的地和所述第二电路板的地。
在本实施方式中,由于所述连接板连接在所述第一电路板和所述第二电路板之间,所述连接板的所述信号传输部的特性阻抗可控,因此所述电路板组件也更为容易实现对特性阻抗的精确控制。
一种实施方式中,所述第一电路板与所述第二电路板堆叠设置。此时,所述电路板组件构成多层电路板堆叠架构,能够广泛应用于各种电子设备。所述第一电路板朝向所述第二电路板的一侧设有第一焊接区。所述第二电路板朝向所述第一电路板的一侧设有第二焊接区。所述板体的一端抵持所述第一焊接区。所述板体的另一端抵持所述第二焊接区。所述板体的一端通过焊接方式(例如涂覆锡焊层)固定连接所述第一焊接区,以实现结构连接和电性连接。所述板体的另一端通过焊接方式(例如涂覆锡焊层)固定连接所述第二焊接区,以实现结构连接和电性连接。其中,所述连接板为直板,使得所述信号传输部所传输信号的特性阻抗连续性较佳。
一种实施方式中,所述第一焊接区设有第一信号传输焊盘和至少一个第一接地焊盘。所述至少一个第一接地焊盘环绕所述第一信号传输焊盘且与所述第一信号传输焊盘间隔设 置。所述第一信号传输焊盘的形状与所述第一信号传输孔的截面形状相同。所述第一信号传输焊盘的形状随所述第一信号传输孔的截面形状变化,两者重叠,以实现信号传输时的特性阻抗连续性。所述至少一个第一接地焊盘的形状与所述至少一个接地孔的截面形状相同。所述至少一个第一接地焊盘的形状随所述至少一个接地孔的截面形状变化,两者重叠,以实现信号传输时的特性阻抗连续性。
其中,所述第二焊接区设有第二信号传输焊盘和至少一个第二接地焊盘。所述至少一个第二接地焊盘环绕所述第二信号传输焊盘且与所述第二信号传输焊盘间隔设置。所述第二信号传输焊盘的形状与所述第一信号传输孔的截面形状相同,所述至少一个第二接地焊盘的形状与所述至少一个接地孔的截面形状相同。
其中,所述电路板组件还包括设于所述板体相对两端的两个焊接层。焊接层的形状设置随所述信号传输孔和所述至少一个接地孔的截面形状变化,以实现信号传输时的特性阻抗连续性。
一种实施方式中,所述第一电路板朝向所述第二电路板的一侧还设有第一定位件。所述第一定位件位于所述第一焊接区外侧。所述第一定位件用于定位所述连接板与所述第一电路板。此时,所述连接板与所述第一电路板的电性连接可靠性高、信号传输质量高。
所述第一定位件包括定位块或定位点中的至少一者。例如,所述第一定位件包括间隔设置的第一定位块和第二定位块。所述连接板设于所述第一定位块和所述第二定位块之间,以实现定位。
第三方面,本申请提供了一种电子设备。所述电子设备包括壳体和上述电路板组件。所述电路板组件收容在所述壳体内。所述电子设备可以是任何具备通信和存储功能的设备。所述电路板组件用于承载多种元器件。所述电路板组件还用于实现多种元器件之间的电性连接。
附图说明
图1是本申请实施方式提供的电子设备的结构示意图;
图2是图1所示电子设备的电路板组件的使用状态示意图;
图3是图2所示电路板组件的内部结构示意图;
图4是图2所示连接板在A-A线处结构的一种实施方式的结构示意图;
图5是图4所示连接板的电场和磁场的场分布示意图;
图6是图4所示连接板的特性阻抗与外径的变化曲线图;
图7是图4所示连接板的特性阻抗与内径的变化曲线图;
图8是图4所示连接板的等效物理模型示意图;
图9是图2所示连接板在A-A线处结构的另一种实施方式的结构示意图;
图10是图2所示连接板在A-A线处结构的另一种实施方式的结构示意图;
图11是图2所示连接板在A-A线处结构的另一种实施方式的结构示意图;
图12是图2所示连接板在A-A线处结构的另一种实施方式的结构示意图;
图13是图2所示连接板在A-A线处结构的另一种实施方式的结构示意图;
图14是图2所示连接板在A-A线处结构的另一种实施方式的结构示意图;
图15是图2所示电路板组件的第一电路板的一种实施方式的结构示意图;
图16是图2所示电路板组件的第二电路板的一种实施方式的结构示意图;
图17是图2所示电路板组件的第一电路板的另一种实施方式的结构示意图;
图18是图2所示电路板组件的第二电路板的另一种实施方式的结构示意图;
图19是图1所示电子设备的电路板组件的另一种实施方式的正视图。
具体实施方式
下面结合本申请实施方式中的附图对本申请实施方式进行描述。
请参阅图1,本申请提供了一种电子设备100。本申请实施方式涉及的电子设备100可以是任何具备通信和存储功能的设备,例如:平板电脑、手机、电子阅读器、遥控器、个人计算机(Personal Computer,PC)、笔记本电脑、车载设备、网络电视、可穿戴设备等具有网络功能的智能设备。本申请实施方式以所述电子设备100是手机为例进行说明。
请参阅图1,所述电子设备100包括壳体200和电路板组件300。所述电路板组件300收容在所述壳体200内。所述壳体200用于保护所述电路板组件300。所述电路板组件300用于承载多种元器件。所述电路板组件300还用于实现多种元器件之间的电性连接。所述电子设备100还包括显示屏400,所述显示屏400固定在所述壳体200上,所述显示屏400用于显示图像。所述显示屏400与所述电路板组件300堆叠设置。
请参阅图2,所述电路板组件300包括第一电路板1、第二电路板2及连接板3。所述连接板3连接在所述第一电路板1与所述第二电路板2之间。所述连接板3既可以实现所述第一电路板1与所述第二电路板2之间的结构连接,还可以实现所述第一电路板1与所述第二电路板2之间的电性连接。连接在所述第二电路板2与所述第一电路板1之间的所述连接板3的数量可以为一个或多个。
请参阅图2,所述第一电路板1用于承载第一器件10。所述第一器件10可设于第一电路板1的相对两侧面。所述第一器件10包括但不限于射频集成电路(Radio Frequency Integrated Circuits,RFIC)、功率放大器(Power Amplifier,PA)、滤波器(filter)、中央处理器(Central Processing Unit,CPU)或系统级芯片(System on Chip,SOC)中的一者或多者。所述第二电路板2用于承载第二器件20。所述第二器件20可设于所述第二电路板2的相对两侧面。所述第二器件20包括但不限于射频集成电路(Radio Frequency Integrated Circuits,RFIC)、功率放大器(Power Amplifier,PA)、滤波器(filter)、中央处理器(Central Processing Unit,CPU)或系统级芯片(System on Chip,SOC)中的一者或多者。所述连接板3用于实现所述第一器件10与所述第二器件20之间的电性连接。所述连接板3所传输的信号包括但不限于射频信号、地信号、电源信号中的一者或多者。其中,射频信号包括高频、甚高频和超高频,其频率在300kHz(千赫兹)至300GHz(吉赫兹)范围中。在一种实施方式中,所述第一器件10采用射频集成电路,所述第二器件20采用中央处理器,所述连接板3用于在所述射频集成电路与所述中央处理器之间传输射频信号。
请一并参阅图3和图4,所述连接板3包括板体31、信号传输部32及接地部33。所述板体31的一端314连接所述第一电路板1,所述板体31的另一端315连接所述第二电路板2。所述板体31设有信号传输孔311和至少一个接地孔312。所述信号传输孔311自 所述板体31的一端314延伸至所述板体31的另一端315。所述信号传输部32设于所述信号传输孔311内。所述信号传输部32连接所述第一电路板1和所述第二电路板2。所述信号传输部32用于在所述第一电路板1与所述第二电路板2之间传输信号。所述至少一个接地孔312自所述板体31的一端314延伸至所述板体31的另一端315,且与所述信号传输孔311延伸路径相同。所述至少一个接地孔312环绕所述信号传输孔311且与所述信号传输孔311间隔设置。所述接地部33设于所述至少一个接地孔312内。所述接地部33连接所述第一电路板1与所述第二电路板2。所述接地部33用于连接所述第一电路板1的地和所述第二电路板2的地。此时,所述第一电路板1、所述接地部33及所述第二电路板2实现接地连续。本申请以所述信号传输部32用于传输射频信号为例进行说明。所述射频信号可以包括但不限于无线局域网(Wireless-Fidelity,Wi-Fi)信号、蓝牙信号、全球导航卫星系统(Global Navigation Satellite System,GNSS)、2G(2-Generation wireless telephone technology,第二代手机通信技术规格)信号、3G(3-Generation wireless telephone technology,第三代手机通信技术规格)信号、4G(4-Generation wireless telephone technology,第四代手机通信技术规格)信号或5G(5-Generation wireless telephone technology,第五代手机通信技术规格)信号。
在本实施方式中,由于所述至少一个接地孔312环绕所述信号传输孔311且与所述信号传输孔311间隔设置,所述接地部33设于所述至少一个接地孔312内,所述信号传输部32设于所述信号传输孔311内,因此所述接地部33环绕所述信号传输部32且与所述信号传输部32间隔设置。信号在所述信号传输部32上传输时的电场和磁场分布如图5所示。其中,带箭头的连续线“—”代表电场E,环形的虚线“---”代表磁场H。所述接地部33能够作为所述信号传输部32所传输信号的参考地,从而得以通过调整所述信号传输部32的半径(以下简称内径a)和所述接地部33的内侧轮廓的内切圆330的半径(以下简称外径b)来控制所述信号传输部32的特性阻抗,使得信号传输部32的特性阻抗可控,并保持信号在所述第一电路板1、所述连接板3及所述第二电路板2中传输时保持良好的匹配特性,降低由于特性阻抗失配引入的额外插入损耗,因此所述信号传输部32所传输信号的插入损耗较小,史密斯图表(Smith chart,又称史密斯圆图)较为收敛。由于所述至少一个接地孔312与所述信号传输孔311延伸路径相同,也即所述接地部33的延伸路径与所述信号传输部32的延伸路径相同,所述接地部33的走线方向和所述信号传输部32的走线方向相同,因此所述连接部33与所述信号传输部32之间的间距保持不变,使得所述信号传输部32的特性阻抗的可控性更高。所述接地部33还能够对信号辐射起到屏蔽作用,因此即使所述信号传输部32等效形成一小节天线,信号在所述信号传输部32中传输时,所述接地部33也能够有效降低所述信号传输部32所传输信号的辐射,并降低其他信号对所述信号传输部32所传输信号的干扰,使得所述信号传输部32所传输信号的整体性能较佳。
可以理解的是,由于所述连接板3的所述信号传输部32的特性阻抗能够得到精准控制,因此应用所述连接板3的所述电路板组件300中的整体特性阻抗也可得到较为准确的控制,应用所述电路板组件300的所述电子设备100中的特性阻抗的可控性高。
可以理解的是,可通过在所述信号传输孔311中填充导电材料形成所述信号传输部32。或者,通过预埋导电走线、后成型所述板体31的方式,使导电走线构成所述信号传输部 32,此时导电走线亦填充所述信号传输孔311。当然,在其他实施方式中,所述信号传输部32也可不填充所述信号传输孔311,而是通过导线穿过所述信号传输孔311,此时所述信号传输部32占据所述信号传输孔311的部分空间。
可通过在所述至少一个接地孔312内填充导电材料形成所述接地部33。或者,通过预埋导电走线、后成型所述板体31的方式,使导电走线构成所述接地部33,此时导电走线亦填充所述至少一个接地孔312。当然,在其他实施方式中,处于单个所述接地孔312中的所述接地部33也可不填充对应的所述接地孔312,而是通过导线穿过对应的所述接地孔312,此时所述接地部33占据对应的所述接地孔312的部分空间。
其中,如图4所示,本申请以所述信号传输部32填充所述信号传输孔311,所述接地部33填充所述至少一个接地孔312为例进行说明。所述信号传输孔311的半径即为所述内径a。所述至少一个接地孔312的内侧轮廓的内切圆330的半径即为所述外径b。所述板体31的介电常数为ε r。所述信号传输部32和所述接地部33所使用导体的表面电阻为R S,磁导率为1。
所述信号传输部32的等效电感L依据公式(1)计算,等效电容C依据公式(2),等效电阻R依据(3)进行计算:
Figure PCTCN2018079178-appb-000001
Figure PCTCN2018079178-appb-000002
其中,由于特性阻抗Z由等效电阻R、等效电感L及等效电容C计算获得,因此所述信号传输部32的特性阻抗Z可通过调整内径a和外径b得到精确控制。本申请所使用的所述介质板可以具有任意的介电常数ε r,通过计算和仿真优化均可使特性阻抗匹配至设计者所需要的状态。
请参阅图6,在一种实施方式中,内径a为0.25mm(毫米),介电常数ε r=3.5。特性阻抗Z(ohm,欧姆)与外径b(mm,毫米)的变化曲线如图6所示,特性阻抗Z随外径b增加而增加。
请参阅图7,在另一种实施方式中,外径b为0.8mm(毫米),介电常数ε r=3.5。特性阻抗Z(ohm,欧姆)与内径a(mm,毫米)的变化曲线如图7所示,特性阻抗Z随内径a增加而减小。
在本申请中,所述信号传输孔311和所述至少一个接地孔312的结构及相对位置有多种实现形式,包括:
在第一实施方式中,请参阅图4,所述接地孔312的数量为至少两个。相邻的所述接地孔312之间的间距为d。所述间距d指相邻的两个所述接地孔312的孔壁之间最小的距离。所述间距d满足:
d≤λ/n                (4)
其中,所述信号传输部32用于传输最高频率为f的信号,也即在所述信号传输部32 中传输的射频信号的频段中的最高频率为f。最高频率f所对应的波长为λ。n≥4。
通过实验验证,当n≥4时,依据公式(4)计算获得的所述间距d的值很小,也即相邻的所述接地孔312之间的间距d很小,填充于所有的所述接地孔312中的所述接地部33等效于如图8所示的封闭的环形接地部33’,从而能够保证所述接地部33对所述信号传输部32的特性阻抗控制效果和屏蔽效果。可以理解的是,相邻的所述接地孔312之间的间距d越小,所述接地部33所起到的特性阻抗控制效果和屏蔽效果越好。
可以理解的是,由于信号频率越高,波长越短,因此频率高的信号较为容易绕过相邻的接地孔312之间的缝隙辐射出去,因此在本实施方式中依据最高频率f所对应的波长λ对所述间距d进行设置,当所述接地部33对最高频率f的信号起作用时,必然的会对频率低于最高频率f的其他信号起到作用,从而保证所述接地部33的可靠性。
其中,n=10。此时,所述连接板3能够更好地平衡所述接地孔312的数量与所述接地部33的特性阻抗控制效果和屏蔽效果,使得所述连接板3成本低且可靠性高。
其中,如图4所示,所有的所述接地孔312在所述信号传输孔311的圆周方向上等间距排布。此时,相邻的所述接地孔312之间的间距相等,使得所述接地部33的特性阻抗控制效果和屏蔽效果更佳,同时也使得所述接地部33的制备过程更为简单、可靠,降低所述连接板3的不良率。当然,在其他实施方式中,所有的所述接地孔312也可以在所述信号传输孔311的圆周方向上不等间距排布,但任意相邻的两个所述接地孔312之间的间距均要满足公式(4)。
其中,如图4所示,所有的所述接地孔312与所述信号传输孔311之间的间距S相等。此时,内切圆330的中心与所述信号传输孔311的中心重叠。所有的所述接地孔312均接触其内侧轮廓的内切圆330,所有的所述接地孔312能够同时起到特性阻抗控制和屏蔽作用,使得所述信号传输部32的特性阻抗控制更为精确,辐射屏蔽效果更佳。当然,在其他实施方式中,所有的所述接地孔312与所述信号传输孔311之间的间距也可不相等。
在一种可选实施例中,请一并参阅图4和图9,所述接地孔312的截面形状与所述信号传输孔311的截面形状相同。此时,可通过同一个治具完成所有的所述接地孔312和所述信号传输孔311的加工,使得所述连接板3的加工难度较小、成本较低。当然,也有助于对依据所需要的特性阻抗Z设置所述内径a和所述外径b。
其中,所述信号传输孔311和所述接地孔312的截面形状可以有多种形状。例如:
如图4所示,所述信号传输孔311的截面形状呈圆形。所述接地孔312的截面形状呈圆形。此时,圆形的半径为所述内径a,所有的所述接地孔312的内侧轮廓的内切圆330的半径为所述外径b。相邻的两个圆形之间最小的间距为d。该最小间距位于相邻的两个圆形的圆心之间的连线上。单个所述接地孔312具有半径c。所述半径c可设置成任意值。
当然,在其他实施方式中,所述信号传输孔311的截面形状也可以为椭圆形或多边形。多边形包括但不限于三边形、四边形(例如方形或菱形)、五边形或六边形等。如图9所示,所述信号传输孔311的截面形状呈正六边形。所述接地孔312的截面形状呈正六边形。
在另一种可选实施例中,请一并参阅图10和图11,所述接地孔312的截面形状与所述信号传输孔311的截面形状不同。例如:
如图10所示,所述信号传输孔311的截面形状呈圆形。所述接地孔312的截面形状呈 扇面形。所述接地孔312的截面形状包括相背的内弧边3121和外弧边3122,所述信号传输孔311位于所述内弧边3121远离所述外弧边3122的一侧。相邻的扇面形的相对边相互平行,能够减小相邻的所述接地孔312之间的缝隙,降低所述信号传输部32所传输信号辐射穿过所述接地部33的风险。
或者,如图11所示,所述信号传输孔311的截面形状呈圆形。所述接地孔312的数量为四个。每个所述接地孔312的截面形状均包括第一区域3123和第二区域3124,所述第一区域3123垂直连接所述第二区域3124。所述接地孔312的截面形状大致呈直角尺形。所述接地孔312的截面形状包括相背的内侧边3125和外侧边3126,所述信号传输孔311位于所述内侧边3125远离所述外侧边3126的一侧。相邻且不连接的所述第一区域3123和所述第二区域3124的相对边相互平行,能够减小相邻的所述接地孔312之间的缝隙,降低所述信号传输部32所传输信号辐射穿过所述接地部33的风险。
在第二实施方式中,请一并参阅图12和图13,所述接地孔312的数量为一个。所述接地孔312的截面形状呈封闭的环形。此时,所述接地部33的特性阻抗控制功能和屏蔽功能更为可靠,所述信号传输部32所传输信号不会绕过所述接地部33向外辐射。所述接地孔312的内侧轮廓的内切圆330的半径为所述外径b。所述接地孔312的内侧轮廓为朝向所述信号传输孔311一侧的轮廓。
其中,所述信号传输孔311的截面形状呈圆形。所述圆形的半径为所述内径a。所述接地孔312的截面形状呈圆环形、椭圆环形或多边环形。所述多边环形包括但不限于三边环形、四边环形(例如正方环形,或长方环形、或菱形环形)、五边环形或六边环形等。如图13所示,所述接地孔312的截面形状呈正方环形。
一种实施方式中,所述接地部33所采用的材料与所述信号传输部32所采用的材料相同。此时,所述信号传输部32的特性阻抗更容易进行计算、设计以及调整。当然,在其他实施方式中,所述接地部33所采用的材料与所述信号传输部32所采用的材料也可不同。
一种实施方式中,请一并参阅图9至图14,所述板体31还设有连接孔313。所述连接孔313位于所述至少一个接地孔312远离所述信号传输孔311的一侧。所述连接板3还包括连接部34。所述连接部34设于所述连接孔313中,所述连接部34用于传输与所述信号传输部32传输的信号不同的信号。所述信号传输部32用于传输对特性阻抗要求较高的信号,所述连接部34可用于传输对特性阻抗要求不高的信号。例如,所述连接部34可用于传输电源信号、地信号或其他信号。
在本实施方式中,由于所述连接孔313位于所述至少一个接地孔312远离所述信号传输孔311的一侧,因此所述连接部34设于所述接地部33的远离所述信号传输部32的一侧,所述连接部34的设置不会对所述信号传输部32所传输信号造成不良影响,所述连接板3可以在保证所述信号传输部32所传输信号的质量的情况下,实现其他对特性阻抗要求不高的信号的传输,所述连接板3的集成度高。
其中,如图14所示,所述连接部34包括第一连接部341和第二连接部342。所述连接孔313的数量为至少两个,所述第一连接部341和所述第二连接部342设于不同的所述连接孔313中。所述第一连接部341和所述第二连接部342用于传输不同的信号。此时,所述连接板3的集成度进一步提高。在一种实施例中,所述第一连接部341用于传输电源 信号。所述第二连接部342用于实现接地连接。
其中,所述连接孔313的截面形状与所述信号传输孔311的截面形状相同。此时,所述连接板3的工艺难度较低,加工成本较低。
可以理解的是,本申请中所述信号传输部32和所述接地部33的结构和排布方式不局限在上述实施方式中,满足所述接地部33环绕所述信号传输部32设置以实现特性阻抗控制和屏蔽的方式均属于本专利的覆盖和保护范围。
一种实施方式中,请一并参阅图3、图4、图15以及图16,所述第一电路板1与所述第二电路板2堆叠设置。此时,所述电路板组件300构成多层电路板堆叠架构,能够广泛应用于各种电子设备100。如图15所示,所述第一电路板1朝向所述第二电路板2的一侧设有第一焊接区11。如图16所示,所述第二电路板2朝向所述第一电路板1的一侧设有第二焊接区21。如图3所示,所述板体31的一端314抵持所述第一焊接区11,所述板体31的另一端315抵持所述第二焊接区21。所述板体31的一端314通过焊接方式(例如涂覆锡焊层)固定连接所述第一焊接区11,以实现结构连接和电性连接。所述板体31的另一端315通过焊接方式(例如涂覆锡焊层)固定连接所述第二焊接区21,以实现结构连接和电性连接。其中,所述连接板3为直板,使得所述信号传输部32所传输信号的特性阻抗连续性较佳。
其中,如图15所示,所述第一焊接区11设有第一信号传输焊盘111和至少一个第一接地焊盘112。所述至少一个第一接地焊盘112环绕所述第一信号传输焊盘111且与所述第一信号传输焊盘111间隔设置。所述第一信号传输焊盘111的形状与所述第一信号传输孔311(如图4所示)的截面形状相同。换言之,所述第一信号传输焊盘111的形状随所述第一信号传输孔311的截面形状变化,两者重叠,以实现信号传输时的特性阻抗连续性。所述至少一个第一接地焊盘112的形状与所述至少一个接地孔312(如图4所示)的截面形状相同。换言之,所述至少一个第一接地焊盘112的形状随所述至少一个接地孔312的截面形状变化,两者重叠,以实现信号传输时的特性阻抗连续性。
其中,如图16所示,所述第二焊接区21设有第二信号传输焊盘211和至少一个第二接地焊盘212。所述至少一个第二接地焊盘212环绕所述第二信号传输焊盘211且与所述第二信号传输焊盘211间隔设置。所述第二信号传输焊盘211的形状与所述第一信号传输孔311(如图4所示)的截面形状相同。也即所述第二信号传输焊盘211的形状随所述第一信号传输孔311的截面形状变化,两者重叠,以实现信号传输时的特性阻抗连续性。所述至少一个第二接地焊盘212的形状与所述至少一个接地孔312(如图4所示)的截面形状相同。也即至少一个第二接地焊盘212的形状随所述至少一个接地孔312的截面形状变化,两者重叠,以实现信号传输时的特性阻抗连续性。
一种实施方式中,请参阅图17,所述第一焊盘区11还设有第一连接焊盘113。所述第一连接焊盘113位于所述至少一个第一接地焊盘112远离所述第一信号传输焊盘111的一侧。请一并参阅图14和图17,所述第一连接焊盘113用于连接所述连接部34。所述第一连接焊盘113的形状与所述连接孔313的截面形状相同。换言之,所述第一连接焊盘113的形状随所述连接孔313的截面形状变化,两者重叠。所述第一连接焊盘113的数量及位置与所述连接孔313的数量及位置相适配。当然,在其他实施方式中,所述第一连接焊盘 113的形状也可以与所述连接孔313的截面形状不同。
其中,请参阅图18,所述第二焊盘区21还设有第二连接焊盘213。所述第二连接焊盘213位于所述至少一个第二接地焊盘212远离所述第二信号传输焊盘211的一侧。请一并参阅图14和图18,所述第二连接焊盘213用于连接所述连接部34。所述第二连接焊盘213的形状与所述连接孔313的截面形状相同。换言之,所述第二连接焊盘213的形状随所述连接孔313的截面形状变化,两者重叠。所述第二连接焊盘213的数量及位置与所述连接孔313的数量及位置相适配。当然,在其他实施方式中,所述第二连接焊盘213的形状也可以与所述连接孔313的截面形状不同。
一种实施方式中,所述电路板组件300还包括设于所述板体31相对两端的两个焊接层。焊接层的形状设置随所述信号传输孔311和所述至少一个接地孔312的截面形状变化,以实现信号传输时的特性阻抗连续性。
一种实施方式中,请一并参阅图2、图15及图17,所述第一电路板1朝向所述第二电路板2的一侧设有第一定位件12。所述第一定位件12位于所述第一焊接区11外侧。所述第一定位件12用于定位所述连接板3与所述第一电路板1。此时,所述连接板3与所述第一电路板1的电性连接可靠性高、信号传输质量高。
所述第一定位件12包括定位块(121/122)或定位点(123)中的至少一者。
例如,如图2和图15所示,所述第一定位件12包括间隔设置的第一定位块121和第二定位块122。所述连接板3设于所述第一定位块121和所述第二定位块122之间,以实现定位。当然,在其他实施方式中,也可仅设置所述第一定位块121或所述第二定位块122,所述连接板3的一侧抵持于所述第一定位块121或所述第二定位块122,从而实现定位。
或者,如图17所示,所述第一定位件12包括第一定位点123。组装所述连接板3与所述第一电路板1时,组装设备以所述第一定位点123为参考点实现所述连接板3与所述第一电路板1的对位,从而使得组装后的所述连接板3与所述第一电路板1彼此定位准确。所述第一定位点123的数量可以有多个,多个所述第一定位点123分散排布。当然,在其他实施方式中,所述第一电路板1可同时设有定位块和定位点。
请一并参阅图2、图16以及图18,所述第二电路板2朝向所述第一电路板1的一侧设有第二定位件22。所述第二定位件22位于所述第二焊接区21外侧。所述第二定位件22用于定位所述连接板3与所述第二电路板2。此时,所述连接板3与所述第二电路板2的电性连接可靠性高、信号传输质量高。
所述第二定位件22包括定位块(221/222)或定位点(223)中的至少一者。
例如,如图2和图16所示,所述第二定位件22包括间隔设置的第三定位块221和第四定位块222。所述连接板3设于所述第三定位块221和所述第四定位块222之间,以实现定位。当然,在其他实施方式中,也可仅设置所述第三定位块221或所述第四定位块222,所述连接板3的一侧抵持于所述第三定位块221或所述第四定位块222,从而实现定位。
或者,如图18所示,所述第二定位件22包括第二定位点223。组装所述连接板3与所述第二电路板2时,组装设备以所述第二定位点223为参考点实现所述连接板3与所述第二电路板2的对位,从而使得组装后的所述连接板3与所述第二电路板2彼此定位准确。所述第二定位点223的数量可以有多个,多个所述第二定位点223分散排布。当然,在其 他实施方式中,所述第二电路板2可同时设有定位块和定位点。
一种实施方式中,请参阅图19,所述电路板组件300还包括第三电路板4。所述第三电路板4与所述第一电路板1堆叠设置,且设置于所述第一电路板1远离所述第二电路板2的一侧。所述第三电路板4与第二电路板2之间通过所述连接板3实现结构连接和电性连接。所述第三电路板4与第二电路板2之间可通过连接板5(该连接板5结构与前述连接板3结构相同相似,该连接板5跨过所述第一电路板1)实现结构连接和电性连接。连接在所述第三电路板4与所述第二电路板2之间的连接板5的数量可以为一个或多个。
当然,在其他实施方式中,所述第一电路板1与所述第二电路板2的排布方式也可以是并行。此时,所述连接板3的形状随之发生变化。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种连接板,其特征在于,包括板体、信号传输部及接地部,所述板体设有信号传输孔和至少一个接地孔,所述信号传输孔自所述板体的一端延伸至所述板体的另一端,所述信号传输部设于所述信号传输孔内,所述至少一个接地孔自所述板体的一端延伸至所述板体的另一端,且与所述信号传输孔延伸路径相同,所述至少一个接地孔环绕所述信号传输孔且与所述信号传输孔间隔设置,所述接地部设于所述至少一个接地孔内。
  2. 根据权利要求1所述的连接板,其特征在于,所述接地孔的数量为至少两个,相邻的所述接地孔之间的间距为d,满足:d≤λ/n,其中,所述信号传输部用于传输最高频率为f的信号,最高频率f所对应的波长为λ,n≥4。
  3. 根据权利要求2所述的连接板,其特征在于,n=10。
  4. 根据权利要求2所述的连接板,其特征在于,所有的所述接地孔在所述信号传输孔的圆周方向上等间距排布。
  5. 根据权利要求2所述的连接板,其特征在于,所有的所述接地孔与所述信号传输孔之间的间距相等。
  6. 根据权利要求2至5中任一项所述的连接板,其特征在于,所述接地孔的截面形状与所述信号传输孔的截面形状相同。
  7. 根据权利要求6所述的连接板,其特征在于,所述信号传输孔的截面形状呈圆形、椭圆形或多边形。
  8. 根据权利要求2至5中任一项所述的连接板,其特征在于,所述信号传输孔的截面形状呈圆形,所述接地孔的截面形状呈扇面形,所述接地孔的截面形状包括相背的内弧边和外弧边,所述信号传输孔位于所述内弧边远离所述外弧边的一侧。
  9. 根据权利要求2至5中任一项所述的连接板,其特征在于,所述信号传输孔的截面形状呈圆形,所述接地孔的数量为四个,每个所述接地孔的截面形状均包括第一区域和第二区域,所述第一区域垂直连接所述第二区域,所述接地孔的截面形状包括相背的内侧边和外侧边,所述信号传输孔位于所述内侧边远离所述外侧边的一侧。
  10. 根据权利要求1所述的连接板,其特征在于,所述接地孔的数量为一个,所述接地孔的截面形状呈封闭的环形。
  11. 根据权利要求10所述的连接板,其特征在于,所述信号传输孔的截面形状呈圆形,所述接地孔的截面形状呈圆环形、椭圆环形或多边环形。
  12. 根据权利要求1至11中任一项所述的连接板,其特征在于,所述板体还设有连接孔,所述连接孔位于所述至少一个接地孔远离所述信号传输孔的一侧,所述连接板还包括连接部,所述连接部设于所述连接孔中,所述连接部用于传输与所述信号传输部传输的信号不同的信号。
  13. 根据权利要求12所述的连接板,其特征在于,所述连接部包括第一连接部和第二连接部,所述连接孔的数量为至少两个,所述第一连接部和所述第二连接部设于不同的所述连接孔中,所述第一连接部和所述第二连接部用于传输不同的信号。
  14. 一种电路板组件,其特征在于,包括第一电路板、第二电路板及权利要求1至13中任一项所述的连接板,所述连接板连接在所述第一电路板与所述第二电路板之间,所述信号传输部用于在所述第一电路板与所述第二电路板之间传输信号,所述接地部用于连接所述第一电路板的地和所述第二电路板的地。
  15. 根据权利要求14所述的电路板组件,其特征在于,所述第一电路板与所述第二电路板堆叠设置,所述第一电路板朝向所述第二电路板的一侧设有第一焊接区,所述第二电路板朝向所述第一电路板的一侧设有第二焊接区,所述板体的一端抵持所述第一焊接区,所述板体的另一端抵持所述第二焊接区。
  16. 根据权利要求15所述的电路板组件,其特征在于,所述第一焊接区设有第一信号传输焊盘和至少一个第一接地焊盘,所述至少一个第一接地焊盘环绕所述第一信号传输焊盘且与所述第一信号传输焊盘间隔设置,所述第一信号传输焊盘的形状与所述第一信号传输孔的截面形状相同,所述至少一个第一接地焊盘的形状与所述至少一个接地孔的截面形状相同。
  17. 根据权利要求15或16所述的电路板组件,其特征在于,所述第一电路板朝向所述第二电路板的一侧还设有第一定位件,所述第一定位件位于所述第一焊接区外侧,所述第一定位件用于定位所述连接板与所述第一电路板。
  18. 根据权利要求17所述的电路板组件,其特征在于,所述第一定位件包括定位块或定位点中的至少一者。
  19. 一种电子设备,其特征在于,包括壳体和权利要求14至18中任一项所述的电路板组件,所述电路板组件收容在所述壳体内。
PCT/CN2018/079178 2018-03-15 2018-03-15 连接板、电路板组件及电子设备 WO2019174007A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/CN2018/079178 WO2019174007A1 (zh) 2018-03-15 2018-03-15 连接板、电路板组件及电子设备
CN202010231933.7A CN111356287B (zh) 2018-03-15 2018-03-15 连接板、电路板组件及电子设备
CN201880057169.7A CN111052876A (zh) 2018-03-15 2018-03-15 连接板、电路板组件及电子设备
US16/980,174 US11166374B2 (en) 2018-03-15 2018-03-15 Connection plate, circuit board assembly, and electronic device
EP18909634.0A EP3755126A4 (en) 2018-03-15 2018-03-15 CONNECTING BOARD, PCB ASSEMBLY AND ELECTRONIC DEVICE
CN202110337506.1A CN113194598A (zh) 2018-03-15 2018-03-15 连接板、电路板组件及电子设备
US17/487,988 US11706871B2 (en) 2018-03-15 2021-09-28 Connection plate, circuit board assembly, and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/079178 WO2019174007A1 (zh) 2018-03-15 2018-03-15 连接板、电路板组件及电子设备

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/980,174 A-371-Of-International US11166374B2 (en) 2018-03-15 2018-03-15 Connection plate, circuit board assembly, and electronic device
US17/487,988 Continuation US11706871B2 (en) 2018-03-15 2021-09-28 Connection plate, circuit board assembly, and electronic device

Publications (1)

Publication Number Publication Date
WO2019174007A1 true WO2019174007A1 (zh) 2019-09-19

Family

ID=67908684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/079178 WO2019174007A1 (zh) 2018-03-15 2018-03-15 连接板、电路板组件及电子设备

Country Status (4)

Country Link
US (2) US11166374B2 (zh)
EP (1) EP3755126A4 (zh)
CN (3) CN111052876A (zh)
WO (1) WO2019174007A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10419050B1 (en) * 2018-05-29 2019-09-17 Apple Inc. Printed circuit board interposer for radio frequency signal transmission
KR102526400B1 (ko) * 2018-09-06 2023-04-28 삼성전자주식회사 5g 안테나 모듈을 포함하는 전자 장치
WO2020090230A1 (ja) * 2018-11-01 2020-05-07 株式会社村田製作所 高周波モジュールおよび通信装置
US20230361460A1 (en) * 2022-05-06 2023-11-09 Apple Inc. System and method for ground fencing
CN114945240A (zh) * 2022-05-23 2022-08-26 维沃移动通信有限公司 转接板、电路板和电子设备
EP4312470A1 (en) * 2022-07-29 2024-01-31 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Component carrier with signal conductive element and shielding conductive structure
WO2024022699A1 (en) * 2022-07-29 2024-02-01 At & S Austria Technologie & Systemtechnik Aktiengesellschaft Component carrier with signal conductive element and shielding conductive structure
CN117082723A (zh) * 2023-10-11 2023-11-17 荣耀终端有限公司 电路板、电子设备及板制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1182913A1 (en) * 2000-08-25 2002-02-27 Agere Systems Guardian Corporation High speed circuit board interconnection
US20020139578A1 (en) * 2001-03-28 2002-10-03 International Business Machines Corporation Hyperbga buildup laminate
CN103260335A (zh) * 2012-02-16 2013-08-21 京信通信系统(中国)有限公司 印刷电路板
CN104638463A (zh) * 2013-11-06 2015-05-20 罗森伯格(上海)通信技术有限公司 高速板对板电子连接器及多层电路板组件
CN104752904A (zh) * 2013-12-31 2015-07-01 财团法人工业技术研究院 连接器
CN105682343A (zh) * 2016-02-25 2016-06-15 广东欧珀移动通信有限公司 软硬结合板及终端

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4054939A (en) 1975-06-06 1977-10-18 Elfab Corporation Multi-layer backpanel including metal plate ground and voltage planes
US4737116A (en) * 1986-04-21 1988-04-12 Micro Component Technology, Inc. Impedance matching block
US5842877A (en) * 1996-12-16 1998-12-01 Telefonaktiebolaget L M Ericsson Shielded and impedance-matched connector assembly, and associated method, for radio frequency circuit device
JP3495727B2 (ja) 2001-11-07 2004-02-09 新光電気工業株式会社 半導体パッケージおよびその製造方法
CN101662882B (zh) 2005-01-25 2011-05-25 财团法人工业技术研究院 高频宽带阻抗匹配的传输孔
JP4725582B2 (ja) * 2005-10-27 2011-07-13 株式会社村田製作所 高周波モジュール
US20090101402A1 (en) * 2007-10-19 2009-04-23 Advantest Corporation Circuit board, and electronic device
US8379403B2 (en) * 2009-04-02 2013-02-19 Qualcomm, Incorporated Spacer-connector and circuit board assembly
TWI456726B (zh) * 2011-01-24 2014-10-11 Ind Tech Res Inst 內連線結構、具有該內連線結構的裝置與線路結構、及防護內連線結構電磁干擾(emi)的方法
KR101798918B1 (ko) * 2011-03-25 2017-11-17 엘지전자 주식회사 인쇄회로기판 어셈블리, 이의 제조 방법 및 이를 구비하는 이동 단말기
CN103703610B (zh) * 2011-12-02 2016-07-27 松下知识产权经营株式会社 无线模块
CN204597019U (zh) 2012-06-29 2015-08-26 株式会社村田制作所 将电缆固定于布线基板的固定结构、以及电缆
US9363892B2 (en) 2013-07-19 2016-06-07 Google Technology Holdings LLC Circuit assembly and corresponding methods
CN105580196A (zh) * 2013-09-24 2016-05-11 日本电气株式会社 印刷电路板及在印刷电路板上安装的方法
US9419341B2 (en) 2014-03-18 2016-08-16 Peraso Technologies Inc. RF system-in-package with quasi-coaxial coplanar waveguide transition
CN107624004A (zh) * 2017-08-22 2018-01-23 努比亚技术有限公司 一种印刷电路板的贴合方法及一种印刷电路板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1182913A1 (en) * 2000-08-25 2002-02-27 Agere Systems Guardian Corporation High speed circuit board interconnection
US20020139578A1 (en) * 2001-03-28 2002-10-03 International Business Machines Corporation Hyperbga buildup laminate
CN103260335A (zh) * 2012-02-16 2013-08-21 京信通信系统(中国)有限公司 印刷电路板
CN104638463A (zh) * 2013-11-06 2015-05-20 罗森伯格(上海)通信技术有限公司 高速板对板电子连接器及多层电路板组件
CN104752904A (zh) * 2013-12-31 2015-07-01 财团法人工业技术研究院 连接器
CN105682343A (zh) * 2016-02-25 2016-06-15 广东欧珀移动通信有限公司 软硬结合板及终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3755126A4 *

Also Published As

Publication number Publication date
CN111052876A (zh) 2020-04-21
US11166374B2 (en) 2021-11-02
CN113194598A (zh) 2021-07-30
US11706871B2 (en) 2023-07-18
US20210014971A1 (en) 2021-01-14
CN111356287B (zh) 2021-01-05
EP3755126A1 (en) 2020-12-23
US20220022320A1 (en) 2022-01-20
EP3755126A4 (en) 2021-03-03
CN111356287A (zh) 2020-06-30

Similar Documents

Publication Publication Date Title
WO2019174007A1 (zh) 连接板、电路板组件及电子设备
JP6524986B2 (ja) 高周波モジュール、アンテナ付き基板、及び高周波回路基板
US8653910B2 (en) High-frequency signal transmission line and electronic apparatus
JP2008524845A (ja) スルーコネクションを含む高周波用多層プリント回路基板
US10079417B2 (en) High-frequency transmission line and electronic device
US9713259B2 (en) Communication module
JP6563164B1 (ja) 高周波フィルタ
TWI618175B (zh) 設置有天線的積體電路封裝裝置及其製造方法
US9301386B2 (en) Printed circuit board and method of manufacturing the same
CN108321520A (zh) 一种天线结构
WO2021145015A1 (ja) 基板及びアンテナモジュール
US20200381376A1 (en) Electronic circuit
KR20220036602A (ko) 안테나 장치
JP2008263360A (ja) 高周波基板装置
US9525213B2 (en) Antenna device
JP2012182174A (ja) 電子回路、及び、電子回路の製造方法
WO2023037799A1 (ja) 高周波モジュール
TWI581501B (zh) Antenna device
US9537197B2 (en) Transmission line implementation in wafer-level packaging
JP2021114655A (ja) 基板及びアンテナモジュール
JP2021022607A (ja) 高周波回路装置およびその製造方法
JP2019029735A (ja) 回路基板、無線装置、及び回路基板の製造方法
JPH11284413A (ja) 方向性結合器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018909634

Country of ref document: EP

Effective date: 20200918