WO2021145015A1 - 基板及びアンテナモジュール - Google Patents

基板及びアンテナモジュール Download PDF

Info

Publication number
WO2021145015A1
WO2021145015A1 PCT/JP2020/031816 JP2020031816W WO2021145015A1 WO 2021145015 A1 WO2021145015 A1 WO 2021145015A1 JP 2020031816 W JP2020031816 W JP 2020031816W WO 2021145015 A1 WO2021145015 A1 WO 2021145015A1
Authority
WO
WIPO (PCT)
Prior art keywords
holes
hole
frequency signal
substrate
antenna
Prior art date
Application number
PCT/JP2020/031816
Other languages
English (en)
French (fr)
Inventor
道和 冨田
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to CN202080004014.4A priority Critical patent/CN115335982A/zh
Priority to US17/268,170 priority patent/US11864308B2/en
Priority to EP20851193.1A priority patent/EP4092726A4/en
Priority to JP2020570211A priority patent/JP7129499B2/ja
Publication of WO2021145015A1 publication Critical patent/WO2021145015A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/04Fixed joints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • H05K1/0219Printed shielding conductors for shielding around or between signal conductors, e.g. coplanar or coaxial printed shielding conductors
    • H05K1/0222Printed shielding conductors for shielding around or between signal conductors, e.g. coplanar or coaxial printed shielding conductors for shielding around a single via or around a group of vias, e.g. coaxial vias or vias surrounded by a grounded via fence
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/025Impedance arrangements, e.g. impedance matching, reduction of parasitic impedance
    • H05K1/0251Impedance arrangements, e.g. impedance matching, reduction of parasitic impedance related to vias or transitions between vias and transmission lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/115Via connections; Lands around holes or via connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/115Via connections; Lands around holes or via connections
    • H05K1/116Lands, clearance holes or other lay-out details concerning the surrounding of a via
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09618Via fence, i.e. one-dimensional array of vias
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09636Details of adjacent, not connected vias
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09718Clearance holes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09809Coaxial layout
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10098Components for radio transmission, e.g. radio frequency identification [RFID] tag, printed or non-printed antennas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10431Details of mounted components
    • H05K2201/10507Involving several components
    • H05K2201/10545Related components mounted on both sides of the PCB

Definitions

  • the present invention relates to a substrate and an antenna module.
  • the present application claims priority based on Japanese Patent Application No. 2020-005342 filed in Japan on January 16, 2020, the contents of which are incorporated herein by reference.
  • Through holes with a coaxial structure may be formed on the substrate on which high-frequency signals such as millimeter waves are transmitted. This is to reduce the transmission loss of the high frequency signal transmitted through the through hole as much as possible by performing impedance matching of the through hole.
  • a through hole (via hole conductor) through which a high-frequency signal is transmitted is surrounded by a large number of ground potential through holes (via hole conductor) to form a through hole formed as a pseudo coaxial structure. It is disclosed.
  • the present invention has been made in view of the above circumstances, and provides a substrate capable of arranging impedance-matched through holes at a higher density than the conventional one, and an antenna module including the substrate.
  • a predetermined interval is set in a substrate (30) in which a through hole is formed from a first surface (30a) to a second surface (30b) which is a surface opposite to the first surface.
  • the two first through-holes (31a) through which high-frequency signals are transmitted and the two first through-holes arranged side by side are arranged side by side so as to have an interval narrower than the predetermined interval.
  • a second through hole (31b) having at least three reference potentials is provided, and one of the three second through holes is a region between the two first through holes.
  • one of the other two second through holes is the two first throughs. It is arranged side by side with respect to one of the holes, and the other of the other two second through holes is arranged side by side with respect to the other of the two first through holes.
  • one of at least three second through holes arranged side by side with respect to the two first through holes through which a high frequency signal is transmitted is located between the two first through holes. Placed in the area.
  • the one second through hole can be shared by the two first through holes, and the distance between the two first through holes can be narrowed. Therefore, the impedance-matched through hole can be made more than before. It can be arranged at high density.
  • the second through holes arranged in the region between the two first through holes are substantially equal to each of the first through holes. It is preferably arranged at a position that is a distance.
  • the second through holes arranged in the region between the two first through holes are centered on the first through holes. It is preferably arranged on a connected straight line (L1).
  • the first through hole and the second through hole have an impedance-matched pseudo coaxial structure. It is preferably arranged.
  • the substrate according to any one of the first to fourth aspects is further provided with a ground pattern (33) for impedance matching electrically connected to the second through hole. Is preferable.
  • the ground pattern is provided at least one layer inside the substrate.
  • electrode pads (LC1) are formed at both ends of the first through hole in the substrate according to the first to sixth aspects.
  • the substrate according to any one of the first to seventh aspects includes a plurality of third through holes (32) through which a non-high frequency signal different from the high frequency signal is transmitted. It is preferable that the distance between the first through holes is different from the distance between the third through holes.
  • a ninth aspect of the present invention is an antenna module (1), the antenna substrate (10) on which the antenna (11) is formed, a high-frequency integrated circuit (20) for processing a high-frequency signal, and the first to first steps described above.
  • the first unit of the substrate is provided with the substrate (30) according to any one of the eight embodiments, so that at least a part of the antenna substrate and the high-frequency integrated circuit overlap when viewed in a plan view. It is mounted on the surface and the second surface, respectively, and is electrically connected via the first through hole.
  • the substrate is formed of a material having a larger dielectric loss tangent than the material of the antenna substrate.
  • impedance-matched through holes can be arranged at a higher density than before.
  • FIG. 1 is a cross-sectional view showing a main configuration of an antenna module according to an embodiment of the present invention.
  • the antenna module 1 includes an antenna substrate 10 (high frequency substrate), an RFIC 20 (high frequency integrated circuit), and a component mounting substrate 30, for example, millimeter waves having a frequency of about 50 to 70 [GHz]. Etc. is transmitted and received.
  • the antenna module 1 may be one that only transmits a high frequency signal or one that only receives a high frequency signal.
  • the antenna substrate 10 is a substrate on which the antenna 11 is formed on the surface (first surface 10a) or inside, and is mounted on the first surface 30a side of the component mounting substrate 30.
  • the antenna substrate 10 is formed by using a material having a small dielectric loss tangent (small loss of high frequency signal) and good transmission characteristics of high frequency signal. Examples of such a material include fluororesin, liquid crystal polymer (LCP), polyphenylene ether (PPE) resin, low-temperature fired ceramics, and the like.
  • LCP liquid crystal polymer
  • PPE polyphenylene ether
  • the antenna substrate 10 has a minimum area (area in a plan view) necessary for reducing the cost.
  • the antenna 11 is, for example, an array antenna in which a plurality of radiating elements (not shown) are two-dimensionally arranged on the first surface 10a of the antenna substrate 10. Further, as the antenna 11, a linear antenna, a flat antenna, a microstrip antenna, a patch antenna, or another antenna can be used in addition to the array antenna.
  • the antenna 11 is not particularly limited as long as it has a structure that can be formed on the surface (first surface 10a) or inside of the antenna substrate 10.
  • a plurality of metal terminals 12 are provided on the second surface 10b of the antenna board 10.
  • a metal such as solder can be used as the material of the metal terminal 12.
  • the metal terminal 12 includes a plurality of connecting metal terminals 12a, a plurality of connecting metal terminals 12b, and a plurality of fixing metal terminals 12c.
  • connection metal terminal 12a electrically connects the antenna board 10 and the pseudo-coaxial structure through hole 31 (details will be described later) formed in the component mounting board 30.
  • connection metal terminal 12b electrically connects the antenna substrate 10 and the non-high frequency signal through hole 32 (details will be described later) formed in the component mounting substrate 30.
  • the fixing metal terminal 12c fixes the antenna board 10 to the component mounting board 30 without being electrically connected to the circuit formed on the component mounting board 30.
  • connection metal terminals 12a are arranged in the same manner as the pseudo-coaxial structure through holes 31 of the component mounting board 30 when viewed in a plan view. That is, when the antenna board 10 and the component mounting board 30 are aligned, each of the connecting metal terminals 12a of the antenna board 10 is one-to-one with each of the pseudo coaxial structure through holes 31 of the component mounting board 30. They are arranged so that they overlap.
  • the connecting metal terminals 12a are arranged with a pitch of about 0.1 to 0.5 [mm]. As a result, the transmission distance of the high frequency signal can be minimized, and the transmission loss of the high frequency signal can be minimized.
  • the connection metal terminals 12b may also be arranged in the same manner as the non-high frequency signal through holes 32 of the component mounting substrate 30 when viewed in a plan view.
  • the connecting metal terminal 12a has a configuration not covered with a resin or the like, and the connecting metal terminal 12b and the fixing metal terminal 12c are , It is desirable to have a configuration covered with resin.
  • the connection metal terminal 12a By not covering the connection metal terminal 12a with resin or the like, the transmission loss of the high frequency signal can be reduced.
  • the connection portion between the antenna substrate 10 and the component mounting substrate 30 can be reinforced.
  • the RFIC 20 is an integrated circuit that processes high-frequency signals, and is mounted on the second surface 30b side of the component mounting board 30.
  • the RFIC 20 is electrically connected to the antenna board 10 via a pseudo-coaxial structure through hole 31 of the component mounting board 30, a non-high frequency signal through hole 32, and metal terminals 12 (metal terminals 12a and 12b for connection).
  • the RFIC 20 performs reception processing of a high frequency signal output from the antenna substrate 10 and outputs a reception signal having a frequency lower than that of the high frequency signal from an output terminal (not shown).
  • the RFIC 20 performs transmission processing of a transmission signal input from an input terminal (not shown), and outputs a high frequency signal having a frequency higher than that of the transmission signal to the antenna substrate 10, for example.
  • a plurality of metal terminals 21 are provided on the first surface 20a of the RFIC 20.
  • a metal such as solder (SnAgCu solder or the like), gold, silver, copper or the like can be used.
  • the metal terminal 21 includes a plurality of metal terminals 21a and a plurality of metal terminals 21b.
  • the metal terminal 21a electrically connects the RFIC 20 and the pseudo-coaxial structure through hole 31 of the component mounting board 30.
  • the metal terminal 21b electrically connects the RFIC 20 and the non-high frequency signal through hole 32 of the component mounting substrate 30. Bonding of the metal terminal 21a and the pseudo-coaxial structure through hole 31 and bonding of the metal terminal 21b and the non-high frequency signal through hole 32 are performed by, for example, solder bonding, ultrasonic bonding, pressure bonding, and the like. It may be carried out by using the bonding method of.
  • the metal terminals 21a are arranged in the same manner as the pseudo-coaxial structure through holes 31 of the component mounting board 30 when viewed in a plan view. That is, when the RFIC 20 and the component mounting board 30 are aligned, each of the metal terminals 21a of the RFIC 20 is arranged so as to overlap each of the pseudo-coaxial structure through holes 31 of the component mounting board 30 on a one-to-one basis. There is.
  • the metal terminals 21a are arranged at a pitch of about 0.1 to 0.5 [mm], similarly to the connection metal terminals 12a of the antenna substrate 10. As a result, the transmission distance of the high frequency signal can be minimized, and the transmission loss of the high frequency signal can be minimized.
  • the metal terminals 21b may also be arranged in the same manner as the non-high frequency signal through holes 32 of the component mounting substrate 30 when viewed in a plan view.
  • the metal terminal 21a has a configuration in which the metal terminal 21a is not covered with a resin or the like in a state where the RFIC 20 is mounted on the component mounting substrate 30.
  • the space between the first surface 20a of the RFIC 20 and the second surface 30b of the component mounting substrate 30 is not sealed by the underfill.
  • the component mounting board 30 is a board on which components such as the antenna board 10 and the RFIC 20 are mounted.
  • the component mounting board 30 is made of a material having a larger dielectric loss tangent than the antenna board 10. Examples of such a material include an inexpensive material (for example, epoxy, polyimide, etc.) that has been generally used conventionally as a material for a rigid substrate or a flexible substrate.
  • the thickness of the component mounting substrate 30 is, for example, about 1.6 [mm] or less. In order to form fine through holes, it is advantageous that the thickness of the component mounting substrate 30 is small. For example, when forming a fine through hole having a diameter of about 0.1 [mm], it is desirable to use a component mounting substrate 30 having a thickness of about 0.8 [mm] or less.
  • the component mounting board 30 is formed with a pseudo-coaxial structure through hole 31 and a non-high frequency signal through hole 32 (third through hole) extending from the first surface 30a to the second surface 30b of the component mounting board 30.
  • FIG. 1 shows one pseudo-coaxial structure through-hole 31 and one non-high-frequency signal through-hole 32 for simplification of illustration, a plurality of these may be provided.
  • the pseudo-coaxial structure through hole 31 is a through hole provided for transmitting a high frequency signal.
  • the pseudo-coaxial structure through-hole 31 includes two high-frequency signal through-holes 31a (first through-hole) and at least three ground through-holes 31b (second through-hole) arranged side by side with respect to the two high-frequency signal through-holes 31a. It is composed of (see FIG. 2). Of the three ground through holes 31b, one ground through hole 31b is arranged in the region between the two high frequency signal through holes 31a (see FIG. 3 below).
  • one ground through hole 31b is arranged side by side with respect to one high frequency signal through hole 31a in a region other than the region between the high frequency signal through holes 31a, and the other ground through hole 31b.
  • the holes 31b are arranged so as to be arranged side by side with respect to the other high frequency signal through hole 31a.
  • the high frequency signal through hole 31a is a through hole through which a high frequency signal is transmitted.
  • the ground through hole 31b is a through hole having a ground potential (reference potential).
  • the high-frequency signal through-holes 31a and the ground through-holes 31b are arranged so that the pseudo-coaxial structure through-holes 31 have a pseudo-coaxial structure in which impedance matching is performed.
  • ground through hole 31b there is only one ground through hole 31b juxtaposed with one high frequency signal through hole 31a, the effect of confining the electric field of the high frequency signal is insufficient and good characteristics cannot be obtained. Therefore, in the present embodiment, two ground through holes 31b (one is shared by the pseudo-coaxial structure through holes 31A and 31B) are arranged side by side with one high frequency signal through hole 31a, and the transmission loss of the high frequency signal is lost. Is being reduced.
  • the number of ground through holes 31b juxtaposed with the high frequency signal through holes 31a may be three or more. However, when the number of ground through holes 31b increases, it becomes similar to the through holes having a pseudo-coaxial structure described in the prior art document, and is not suitable for narrowing the pitch. In addition, the cost increases, and the distance between the ground through holes 31b becomes narrow, so that problems such as damage are likely to occur. Therefore, the number of ground through holes 31b is preferably as small as possible (two or more) as long as an impedance-matched pseudo coaxial structure can be obtained.
  • the impedance-matched pseudo coaxial structure is on or near a virtual circle in which the ground conductor surrounding the central conductor should be originally arranged when considering a coaxial structure with the high-frequency signal through hole 31a as the central conductor.
  • a ground through hole 31b is arranged.
  • the displacement of the ground through hole 31b from the virtual circle is allowed as long as the impedance error is in the range of about ⁇ 10 [ ⁇ ], for example.
  • the non-high frequency signal through hole 32 is a through hole provided for transmitting a low frequency signal having a frequency lower than that of the high frequency signal, supplying power, connecting to the ground, and the like. Since the transmission loss of low-frequency signals and the like due to impedance mismatch is sufficiently smaller than the transmission loss of high-frequency signals, the non-high-frequency signal through-hole 32 is regarded as a pseudo-coaxial structure such as the pseudo-coaxial structure through-hole 31. Not.
  • the diameter of the non-high frequency signal through hole 32 is the same as (or about the same as) the diameter of the high frequency signal through hole 31a and the ground through hole 31b.
  • the diameters of the high-frequency signal through-holes 31a, the ground through-holes 31b, and the non-high-frequency signal through-holes 32 are preferably 0.15 [mm] or less, for example.
  • the high-frequency signal through hole 31a, the ground through hole 31b, and the non-high-frequency signal through hole 32 are preferably formed by any of conductor pins, conductor wires, metal plating, conductive paste, and the like, but are limited thereto. It's not a thing.
  • Examples of the conductor used for the high-frequency signal through hole 31a and the ground through hole 31b and the non-high-frequency signal through hole 32 include metals such as copper, silver, gold, and alloys, and carbon.
  • the shapes of the high-frequency signal through-holes 31a and ground through-holes 31b and the non-high-frequency signal through-holes 32 are not particularly limited, and examples thereof include pin-like, linear, layered, particulate, scaly, fibrous, and nanotubes. ..
  • a ground pattern 33 is formed on the component mounting board 30.
  • the ground pattern 33 is an inner layer pattern of the component mounting substrate 30, and is electrically connected to the ground through hole 31b.
  • FIG. 2 is a cross-sectional arrow view taken along the line AA of FIG.
  • FIG. 1 is, for example, a cross-sectional arrow view taken along line BB in FIG.
  • FIG. 2 of the through holes formed in the component mounting substrate 30, three pseudo-coaxial structure through holes 31 (31A, 31B, 31C) and one non-high frequency signal through hole 32 are illustrated.
  • Pseudo-coaxial structure through holes 31A and 31B are arranged close to each other in order to narrow the pitch.
  • the pseudo-coaxial structure through-holes 31C are arranged at positions separated from the pseudo-coaxial structure through-holes 31A and 31B to some extent.
  • an opening AP is formed in which the perimeter of the high frequency signal through holes 31a provided in each of the pseudo-coaxial structure through holes 31A, 31B, and 31C is hollowed out in a substantially circular shape. ing.
  • the ground through holes 31b provided in each of the pseudo-coaxial structure through holes 31A, 31B, and 31C are electrically connected to the ground pattern 33. Further, the non-high frequency signal through hole 32 is insulated from the ground pattern 33.
  • the high-frequency signal through-holes 31a and the ground through-holes 31b provided in the pseudo-coaxial structure through-holes 31A, 31B, and 31C are such that the pseudo-coaxial structure through-holes 31A, 31B, and 31C are impedance-matched. Arranged so as to have an appropriate spacing. For example, when the relative permittivity of the component mounting substrate 30 is about "4", the diameter of the high frequency signal through hole 31a is 0.15 [mm], and the characteristic impedance is 50 [ ⁇ ], the high frequency signal The distance between the through hole 31a and the ground through hole 31b is set to about 0.375 [mm].
  • the ground through hole 31b can be reinforced and good impedance matching can be realized. Therefore, the size of the opening AP formed in the ground pattern 33 can be designed by the same method as the distance between the high frequency signal through hole 31a and the ground through hole 31b.
  • the distance between the high frequency signal through hole 31a and the inner peripheral edge of the opening AP is set to about 0.375 [mm] (the inner diameter of the opening AP is about 0.75 [mm]).
  • the interval between the through holes needs to be a certain distance or more (for example, 0.2 [mm] or more).
  • the pseudo-coaxial structure through holes 31A and 31B are arranged close to each other in order to narrow the pitch, and the ground through holes 31b of the pseudo-coaxial structure through holes 31A and 31B are close to each other (for example, 0.2). It may be less than [mm].
  • the ground through holes 31b arranged in the region between the two high frequency signal through holes 31a are shared by the pseudo-coaxial structure through holes 31A and 31B to prevent the above proximity from occurring. ..
  • the pseudo-coaxial structure through-holes 31A and 31B arranged close to each other have two high-frequency signal through-holes 31a and these high-frequency signal through-holes 31a. It is provided with three ground through holes 31b arranged side by side. The three ground through holes 31b are arranged on a straight line L1 so that two adjacent ground through holes 31b sandwich one high frequency signal through hole 31a.
  • the straight line L1 is a straight line connecting the centers of the high frequency signal through holes 31a of the pseudo-coaxial structure through holes 31A and 31B.
  • the ground through holes 31b arranged in the region between the two high frequency signal through holes 31a are arranged at positions that are substantially equidistant from each of the high frequency signal through holes 31a.
  • the "substantially equidistant” is a distance in consideration of a manufacturing error during manufacturing of the component mounting substrate 30. That is, even if the distances are not completely equidistant, if the difference in distance is about a manufacturing error, the ground through holes 31b arranged in the region between the high frequency signal through holes 31a are relative to each of the high frequency signal through holes 31a. It can be said that they are arranged at equal distances.
  • the ground through holes 31b arranged in the region between the high frequency signal through holes 31a are arranged at positions on the straight line L1 at substantially equidistant distances from each of the high frequency signal through holes 31a. With such an arrangement, the influence on the characteristics exerted between the adjacent high frequency signal through holes 31a can be minimized.
  • FIG. 3 is a plan view illustrating a region between high frequency signal through holes according to an embodiment of the present invention.
  • the region R1 between the high-frequency signal through-hole 31a of the pseudo-coaxial structure through-hole 31A and the high-frequency signal through-hole 31a of the pseudo-coaxial structure through-hole 31B is a region shown by a line segment in the figure. Is.
  • a straight line orthogonal to the straight line L1 is centered on the high-frequency signal through holes 31a of the pseudo-coaxial structure through holes 31A and 31B, and the center of the ground through holes 31b arranged side by side in each high-frequency signal through hole 31a is a circle.
  • This is a region partitioned by parallel straight lines L11 and L12 that circumscribe the two circles CR that are regarded as part of the circumference.
  • the pseudo-coaxial structure through holes 31A and 31B are designed under the following conditions.
  • one ground through hole 31b is arranged in the region R1 between the high frequency signal through holes 31a.
  • the other two ground through holes 31b in regions other than the region R1, one ground through hole 31b is arranged side by side with respect to one high frequency signal through hole 31a, and the other ground through hole 31b is the other first ground through hole 31b. It is arranged so as to be arranged side by side with respect to 1 through hole 31a.
  • the arrangement of the ground through holes 31b can be changed as long as the above conditions are satisfied and impedance matching is performed.
  • all three ground through holes 31b were arranged on the straight line L1.
  • the ground through hole 31b arranged in the region R1 between the two high frequency signal through holes 31a does not have to be arranged on the straight line L1 as long as it is arranged in the region R1.
  • the other ground through holes 31b may not be arranged on the straight line L1.
  • FIG. 4 is a diagram showing the surface of the component mounting substrate according to the embodiment of the present invention.
  • FIG. 4A is a plan view showing a pattern formed on the second surface 30b side of the component mounting substrate 30, and
  • FIG. 4B is a plan view showing a state in which a solder resist is formed on the pattern. It is a figure.
  • FIG. 4 shows the configuration on the second surface 30b side of the component mounting board 30, the configuration on the first surface 30a side of the component mounting board 30 is the same.
  • the pseudo-coaxial structure through-holes 31A and 31B having the same reference numerals as those of the pseudo-coaxial structure through-holes 31A and 31B shown in FIG. 2 are shown.
  • the pseudo-coaxial structure through-holes 31A and 31B shown in FIG. 4 and the pseudo-coaxial structure through-holes 31A and 31B shown in FIG. 2 are different from each other (formed at different positions on the component mounting substrate 30). Please be careful.
  • two pseudo-coaxial structure through-holes 31 31A, 31B
  • two non-high frequency signal through-holes 32 32A, 32B
  • the ground through holes 31b of the pseudo-coaxial structure through holes 31A and 31B are connected to the ground pattern 33 formed on the second surface 30b of the component mounting substrate 30.
  • the non-high frequency signal through holes 32A and 32B are insulated from the ground pattern 33.
  • Land conductor LC1 (electrode pad) is formed around the high-frequency signal through-holes 31a of the pseudo-coaxial structure through-holes 31A and 31B, and land conductor LC2 is formed around the non-high-frequency signal through-holes 32A and 32B.
  • the high-frequency signal through-holes 31a and the non-high-frequency signal through-holes 32A and 32B of the pseudo-coaxial structure through-holes 31A and 31B have a so-called pad-on-via structure.
  • a circular conductor (hereinafter, for convenience, referred to as a land conductor LC3) is also formed on the second surface 30b of the component mounting substrate 30.
  • the land conductor LC3 has the same size as the land conductors LC1 and LC2, and is insulated from the ground pattern 33. With the land conductor LC3, for example, the RFIC 20 mounted on the second surface 30b of the component mounting substrate 30 can be fixed.
  • a solder resist 34 is formed on the second surface 30b of the component mounting substrate 30.
  • the solder resist 34 is formed with holes H1 for exposing the high frequency signal through holes 31a (including a part of the land conductor LC1) of the pseudo-coaxial structure through holes 31A and 31B to the outside.
  • the diameter of the land conductor LC1 is, for example, about 0.3 [mm]
  • the diameter of the hole H1 is, for example, about 0.2 [mm].
  • the solder resist 34 is formed with holes H2 for exposing the non-high frequency signal through holes 32A and 32B (including a part of the land conductor LC2) to the outside. Further, the solder resist 34 is formed with holes H3 for exposing a part of the land conductor LC3 and a part of the ground pattern 33 to the outside.
  • the diameters of the land conductors LC2 and LC3 are, for example, about 0.3 [mm], and the diameters of the holes H2 and H3 are, for example, about 0.2 [mm].
  • the portion exposed to the outside through the holes H1, H2, and H3 is used as a mounting land for mounting the RFIC 20 on the second surface 30b of the component mounting board 30.
  • These mounting lands are basically arranged at a constant pitch in the plane of the second surface 30b of the component mounting substrate 30.
  • the pitch of the mounting lands related to the holes H1 may be different from the pitch of the mounting lands related to the holes H2 and H3.
  • the intervals between the non-high frequency signal through holes 32A and 32B can be set to be different from the intervals between the high frequency signal through holes 31a of the pseudo-coaxial structure through holes 31A and 31B. This is because it may be desirable to adjust the distance between the high frequency signal through hole 31a and the ground through hole 31b in order to match the impedance of the pseudo-coaxial structure through holes 31A and 31B.
  • each of the connecting metal terminals 12a overlaps one-to-one with each of the high-frequency signal through holes 31a of the component mounting board 30 in a plan view
  • each of the connecting metal terminals 12b is a component mounting board in a plan view. It is positioned so as to overlap each of the non-high frequency signal through holes 32 of 30 on a one-to-one basis, and is mounted on the first surface 30a of the component mounting board 30.
  • each of the metal terminals 21a overlaps one-to-one with each of the high-frequency signal through holes 31a of the component mounting board 30 in a plan view
  • each of the metal terminals 21b is a non-high-frequency signal through of the component mounting board 30 in a plan view. It is positioned so as to overlap each of the holes 32 on a one-to-one basis, and is mounted on the second surface 30b of the component mounting board 30.
  • the antenna substrate 10 and the RFIC 20 are mounted on the first surface 30a and the second surface 30b of the component mounting substrate 30 so that the entire RFIC 20 overlaps the antenna substrate 10 when viewed in a plan view, and the high frequency signal through holes 31a are mounted on the first surface 30a and the second surface 30b, respectively. And are electrically connected via a non-high frequency signal through hole 32.
  • the antenna substrate 10 and the RFIC 20 may be at least partially overlapped when viewed in a plan view, and may be electrically connected via a high frequency signal through hole 31a provided in the overlapped portion.
  • the antenna module 1 of the present embodiment includes a component mounting board 30 provided with two pseudo-coaxial structure through holes 31A and 31B arranged in close proximity to each other.
  • the pseudo-coaxial structure through-holes 31A and 31B of the component mounting substrate 30 are, when viewed together, two high-frequency signal through-holes 31a and at least three ground-through holes 31b arranged side by side with respect to the high-frequency signal through-holes 31a. And. Of the three ground through holes 31b, one ground through hole 31b is arranged in the region R1 between the two high frequency signal through holes 31a.
  • one ground through hole 31b is arranged side by side with respect to one high frequency signal through hole 31a, and the other ground through hole 31b is the other above-mentioned first. It is arranged so as to be arranged side by side with respect to 1 through hole 31a.
  • the ground through hole 31b arranged in the region R1 between the high frequency signal through hole 31a of the pseudo-coaxial structure through hole 31A and the high frequency signal through hole 31a of the pseudo coaxial structure through hole 31B is pseudo-coaxial. It is shared by the structural through holes 31A and 31B.
  • the impedance-matched pseudo-coaxial structure through-holes 31 can be arranged at a higher density than before.
  • the number of ground through holes 31b can be reduced by one, so that the cost can be reduced accordingly. Can be done.
  • FIG. 5 is a cross-sectional view showing a component mounting substrate according to the first modification.
  • the cross-sectional view shown in FIG. 5 corresponds to the cross-sectional view taken along the line AA of FIG.
  • the same reference numerals are given to the same configurations as those shown in FIG.
  • the number of pseudo-coaxial structure through holes 31 arranged close to each other may be three or more.
  • pseudo-coaxial structure through-holes 31 are arranged close to one pseudo-coaxial structure through-hole 31 (31A).
  • the ground through holes 31b arranged in the region R1 (not shown) between the high frequency signal through holes 31a of the pseudo-coaxial structure through holes 31A and 31B are shared by the pseudo coaxial structure through holes 31A and 31B.
  • the ground through hole 31b arranged in the region R1 (not shown) between the high frequency signal through holes 31a of the pseudo coaxial structure through holes 31A and 31C is shared by the pseudo coaxial structure through holes 31A and 31C.
  • ground through holes 31b arranged in the region R1 (not shown) between the high frequency signal through holes 31a of the pseudo-coaxial structure through holes 31A and 31D are shared by the pseudo coaxial structure through holes 31A and 31D.
  • the ground through hole 31b arranged in the region R1 (not shown) between the high frequency signal through holes 31a of the pseudo coaxial structure through holes 31A and 31E is shared by the pseudo coaxial structure through holes 31A and 31E.
  • FIG. 6 is a cross-sectional view showing a component mounting substrate according to the second modification.
  • the antenna substrate 10 and the RFIC 20 are not shown, and only the portion of the component mounting substrate 30 on which the pseudo-coaxial structure through hole 31 is formed and its periphery are shown. Further, in FIG. 6, the same reference numerals are given to the same configurations as those shown in FIG.
  • a ground pattern 33 having a plurality of layers is formed in the component mounting substrate 30.
  • Each ground pattern 33 is formed with an opening AP in which the periphery of the high-frequency signal through-hole 31a provided in each of the pseudo-coaxial structure through-holes 31 is hollowed out in a substantially circular shape. Further, each ground pattern 33 is electrically connected to the ground through hole 31b of the pseudo-coaxial structure through hole 31.
  • the ground through hole 31b of the pseudo-coaxial structure through hole 31 is reinforced by the ground pattern 33 of a plurality of layers (three layers) formed in the component mounting substrate 30.
  • the ground pattern 33 in the component mounting substrate 30 is one layer.
  • FIG. 7 is a cross-sectional view showing an antenna module according to a third modification.
  • the same reference numerals are given to the configurations similar to those shown in FIG.
  • the difference between the antenna module 1 according to this modification and the antenna module 1 shown in FIG. 1 is that the ground pattern 33 in the component mounting board 30 is omitted.
  • the ground pattern 33 in the component mounting board 30 is provided to reinforce the ground through hole 31b of the pseudo-coaxial structure through hole 31. However, if it is not necessary to reinforce the ground through hole 31b of the pseudo-coaxial structure through hole 31, it can be omitted as shown in FIG.
  • the present invention is not limited to the above embodiments and can be freely modified within the scope of the present invention.
  • the antenna module 1 in the above-described embodiment only the antenna board 10 and the RFIC 20 are mounted on the component mounting board 30.
  • components other than the antenna substrate 10 and the RFIC 20 may be mounted on the component mounting substrate 30.
  • the antenna board 10 is mounted on the first surface 30a of the component mounting board 30 and the RFIC 20 is mounted on the second surface 30b of the component mounting board 30 has been described.
  • the RFIC 20 may be mounted on the first surface 30a of the component mounting board 30, and the antenna board 10 may be mounted on the second surface 30b of the component mounting board 30.
  • Antenna module 10 ... Antenna board, 11 ... Antenna, 20 ... RFIC, 30 ... Component mounting board, 30a ... 1st surface, 30b ... 2nd surface, 31a ... High frequency signal through hole, 31b ... Ground through hole, 32 ... non-high frequency signal through hole, 33 ... ground pattern, L1 ... straight line, LC1 ... land conductor, R1 ... region

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

第1面から第1面とは反対の面である第2面に至るスルーホールが形成された基板は、所定の間隔を有するように並設された、高周波信号が伝送される2つの第1スルーホールと、2つの第1スルーホールに対し、所定の間隔よりも狭い間隔を有するように並設された、少なくとも3つの基準電位の第2スルーホールと、を備え、3つの第2スルーホールのうち、1つの第2スルーホールが2つの第1スルーホールの間の領域に配置され、他の2つの第2スルーホールが、第1スルーホールの間の領域以外の領域において、他の2つの第2スルーホールの一方が2つの第1スルーホールのうちの一方に対して並設し、他の2つの第2スルーホールの他方が2つの第1スルーホールのうちの他方に対して並設するように配置されている。

Description

基板及びアンテナモジュール
 本発明は、基板及びアンテナモジュールに関する。
 本願は、2020年1月16日に日本に出願された特願2020-005342号に基づき優先権を主張し、その内容をここに援用する。
 ミリ波等の高周波信号が伝送される基板には、同軸構造のスルーホールが形成されることがある。これは、スルーホールのインピーダンス整合を行うことによって、スルーホールを介して伝送される高周波信号の伝送損失を極力低減するためである。以下の特許文献1には、高周波信号が伝送されるスルーホール(ビアホール導体)を、多数のグランド電位のスルーホール(ビアホール導体)で囲うことにより、疑似的な同軸構造として形成されたスルーホールが開示されている。
日本国特開2003-100941号公報
 近年、基板に実装される高周波集積回路(RFIC:Radio Frequency Integrated Circuits)は、ピッチが狭くなっており、今後益々狭くなると考えられる。これに伴って、基板に形成されるスルーホールのピッチも狭くなることが要求される。上述した特許文献1に開示されたスルーホールは、高周波信号が伝送されるスルーホールを、グランド電位のスルーホールがリング状に囲む構造であるため、ピッチを狭くするには適していない。
 本発明は上記事情に鑑みてなされたものであり、インピーダンス整合されたスルーホールを従来よりも高密度に配置することができる基板、及び当該基板を備えるアンテナモジュールを提供する。
 本発明の第1態様は、第1面(30a)から前記第1面とは反対の面である第2面(30b)に至るスルーホールが形成された基板(30)において、所定の間隔を有するように並設された、高周波信号が伝送される2つの第1スルーホール(31a)と、2つの前記第1スルーホールに対し、前記所定の間隔よりも狭い間隔を有するように並設された、少なくとも3つの基準電位の第2スルーホール(31b)と、を備え、3つの前記第2スルーホールのうち、1つの前記第2スルーホールが2つの前記第1スルーホールの間の領域(R1)に配置され、他の2つの前記第2スルーホールが前記第1スルーホールの間の領域以外の領域において、前記他の2つの第2スルーホールのうちの一方が2つの前記第1スルーホールのうちの一方に対して並設し、前記他の2つの第2スルーホールのうちの他方が2つの前記第1スルーホールのうちの他方に対して並設するように配置されている。
 上記本発明の第1態様による基板では、高周波信号が伝送される2つの第1スルーホールに対して並設された少なくとも3つの第2スルーホールの1つが、2つの第1スルーホールの間の領域に配置される。これにより、該1つの第2スルーホールを2つの第1スルーホールで共用することができ、2つの第1スルーホールの間隔を狭くすることができるため、インピーダンス整合されたスルーホールを従来よりも高密度に配置することができる。
 本発明の第2態様では、上記第1態様による基板において、2つの前記第1スルーホールの間の領域に配置される前記第2スルーホールが、前記第1スルーホールの各々に対して略等距離となる位置に配置されることが好ましい。
 本発明の第3態様では、上記第1または第2態様による基板において、2つの前記第1スルーホールの間の領域に配置される前記第2スルーホールが、前記第1スルーホールの中心同士を結んだ直線(L1)上に配置されることが好ましい。
 本発明の第4態様では、上記第1~第3態様の何れか一態様による基板において、前記第1スルーホール及び前記第2スルーホールが、インピーダンス整合された疑似的な同軸構造を有するように配置されていることが好ましい。
 本発明の第5態様では、上記第1~第4態様の何れか一態様による基板において、前記第2スルーホールと電気的に接続された、インピーダンス整合用のグランドパターン(33)を更に備えることが好ましい。
 本発明の第6態様では、上記第5態様による基板において、前記グランドパターンが、基板の内部に少なくとも一層設けられていることが好ましい。
 本発明の第7態様では、上記第1~第6態様による基板において、前記第1スルーホールの両端部には、電極パッド(LC1)が形成されていることが好ましい。
 本発明の第8態様では、上記第1~第7態様の何れか一態様による基板が、前記高周波信号とは異なる非高周波信号が伝送される複数の第3スルーホール(32)を備え、前記第1スルーホール同士の間隔が、前記第3スルーホール同士の間隔とは異なることが好ましい。
 本発明の第9態様は、アンテナモジュール(1)であって、アンテナ(11)が形成されたアンテナ基板(10)と、高周波信号を処理する高周波集積回路(20)と、上記第1~第8態様の何れか一態様に記載の基板(30)と、を備え、前記アンテナ基板及び前記高周波集積回路が、平面視をした場合に、少なくとも一部が重なるように、前記基板の前記第1面及び前記第2面にそれぞれ搭載され、前記第1スルーホールを介して電気的に接続されている。
 本発明の第10態様では、上記第9態様によるアンテナモジュールにおいて、前記基板が、前記アンテナ基板の材料よりも誘電正接が大きな材料によって形成されていることが好ましい。
 上記本発明の一態様によれば、インピーダンス整合されたスルーホールを従来よりも高密度に配置することができる。
本発明の一実施形態によるアンテナモジュールの要部構成を示す断面図である。 図1のA-A線に沿う断面矢視図である。 本発明の一実施形態における高周波信号スルーホールの間の領域を説明するための平面図である。 本発明の一実施形態における部品実装基板の表面を示す図である。 第1変形例に係る部品実装基板を示す断面図である。 第2変形例に係る部品実装基板を示す断面図である。 第3変形例に係るアンテナモジュールを示す断面図である。
 以下、図面を参照して本発明の実施形態による基板及びアンテナモジュールについて詳細に説明する。尚、以下の説明で用いる図面は、構成を分かりやすくするために、便宜上、各構成要素の部分を拡大して示している場合があり、各構成要素の寸法比率等が実際と同じであるとは限らない。また、本発明は以下の実施形態に限定されない。
 〈アンテナモジュールの要部構成〉
 図1は、本発明の一実施形態によるアンテナモジュールの要部構成を示す断面図である。図1に示す通り、アンテナモジュール1は、アンテナ基板10(高周波基板)、RFIC20(高周波集積回路)、及び部品実装基板30を備えており、例えば、周波数が50~70[GHz]程度のミリ波等の高周波信号の送受信を行う。尚、アンテナモジュール1は、高周波信号の送信のみを行うものであっても、受信のみを行うものであっても良い。
 〈アンテナ基板〉
 アンテナ基板10は、表面(第1面10a)又は内部にアンテナ11が形成された基板であり、部品実装基板30の第1面30a側に搭載される。アンテナ基板10は、誘電正接が小さく(高周波信号の損失が小さく)、高周波信号の伝送特性の良い材料を用いて形成される。このような材料としては、例えば、フッ素樹脂、液晶ポリマ(LCP)、ポリフェニレンエーテル(PPE)樹脂、低温焼成セラミックス等が挙げられる。アンテナ基板10は、コストを低減するために必要最小限の面積(平面視での面積)を有する。
 アンテナ11は、例えば、複数の放射素子(図示省略)がアンテナ基板10の第1面10aに二次元状に配設されたアレーアンテナである。また、アンテナ11としては、アレーアンテナ以外に、線状アンテナ、平面アンテナ、マイクロストリップアンテナ、パッチアンテナ、その他のアンテナを用いることができる。尚、アンテナ11は、アンテナ基板10の表面(第1面10a)又は内部に形成することが可能な構造であれば特に限定されない。
 アンテナ基板10の第2面10bには、複数の金属端子12が設けられている。金属端子12の材料としては、例えば、ハンダ等の金属を用いることができる。この金属端子12には、複数の接続用金属端子12a、複数の接続用金属端子12b、及び複数の固定用金属端子12cが含まれる。
 接続用金属端子12aは、アンテナ基板10と部品実装基板30に形成された疑似同軸構造スルーホール31(詳細は後述する)とを電気的に接続する。接続用金属端子12bは、アンテナ基板10と部品実装基板30に形成された非高周波信号スルーホール32(詳細は後述する)とを電気的に接続する。固定用金属端子12cは、部品実装基板30に形成された回路とは電気的に接続されずに、アンテナ基板10を部品実装基板30に固定する。
 接続用金属端子12aは、平面視で見た場合に、部品実装基板30の疑似同軸構造スルーホール31と同様に配列されている。つまり、アンテナ基板10と部品実装基板30との位置合わせを行った場合に、アンテナ基板10の接続用金属端子12aの各々が、部品実装基板30の疑似同軸構造スルーホール31の各々と一対一で重なるように配列されている。例えば、接続用金属端子12aは、0.1~0.5[mm]程度のピッチをもって配列されている。これにより、高周波信号の伝送距離を最短にして、高周波信号の伝送損失を最小にすることができる。接続用金属端子12bも、平面視で見た場合に、部品実装基板30の非高周波信号スルーホール32と同様に配列されていても良い。
 アンテナ基板10が部品実装基板30上に実装されている状態において、接続用金属端子12aは、樹脂等によって覆われていない構成を有することが望ましく、接続用金属端子12b及び固定用金属端子12cは、樹脂によって覆われている構成を有することが望ましい。接続用金属端子12aを樹脂等によって覆わないことにより、高周波信号の伝送損失を低減することができる。接続用金属端子12b及び固定用金属端子12cを樹脂によって覆うことにより、アンテナ基板10と部品実装基板30との接続部を補強することができる。
 アンテナ基板10には、他の部品が搭載(実装)されていないことが望ましい。これは、アンテナ基板10の面積及び厚みを極力小さくするとともに、信頼性を確保するため等の理由による。但し、必要であれば、アンテナ基板10に他の部品を搭載しても良い。
 〈RFIC〉
 RFIC20は、高周波信号を処理する集積回路であり、部品実装基板30の第2面30b側に搭載される。RFIC20は、部品実装基板30の疑似同軸構造スルーホール31、非高周波信号スルーホール32、及び金属端子12(接続用金属端子12a,12b)を介してアンテナ基板10と電気的に接続されている。RFIC20は、例えば、アンテナ基板10から出力される高周波信号の受信処理を行って、高周波信号よりも周波数の低い受信信号を出力端子(図示省略)から出力する。RFIC20は、例えば、入力端子(図示省略)から入力される送信信号の送信処理を行って、送信信号よりも周波数の高い高周波信号をアンテナ基板10に出力する。
 RFIC20の第1面20aには、複数の金属端子21が設けられている。金属端子21の材料としては、例えば、ハンダ(SnAgCuハンダ等)、金、銀、銅等の金属を用いることができる。金属端子21には、複数の金属端子21aと複数の金属端子21bとが含まれる。
 金属端子21aは、RFIC20と部品実装基板30の疑似同軸構造スルーホール31とを電気的に接続する。金属端子21bは、RFIC20と部品実装基板30の非高周波信号スルーホール32とを電気的に接続する。金属端子21aと疑似同軸構造スルーホール31との接合、及び、金属端子21bと非高周波信号スルーホール32との接合は、例えば、ハンダ接合によって行われるが、超音波接合、加圧による圧着、その他の接合方法を用いて行っても良い。
 金属端子21aは、平面視で見た場合に、部品実装基板30の疑似同軸構造スルーホール31と同様に配列されている。つまり、RFIC20と部品実装基板30との位置合わせを行った場合に、RFIC20の金属端子21aの各々が、部品実装基板30の疑似同軸構造スルーホール31の各々と一対一で重なるように配列されている。例えば、金属端子21aは、アンテナ基板10の接続用金属端子12aと同様に、0.1~0.5[mm]程度のピッチをもって配列されている。これにより、高周波信号の伝送距離を最短にして、高周波信号の伝送損失を最小にすることができる。金属端子21bも、平面視で見た場合に、部品実装基板30の非高周波信号スルーホール32と同様に配列されていても良い。
 RFIC20が部品実装基板30上に実装されている状態において、金属端子21aは、樹脂等によって覆われていない構成を有することが望ましい。例えば、RFIC20の第1面20aと部品実装基板30の第2面30bとの間が、アンダーフィルによって封止されていない構成であることが望ましい。金属端子21aを樹脂等によって覆わないことにより、高周波信号の伝送損失を低減することができる。
 〈部品実装基板〉
 部品実装基板30は、アンテナ基板10及びRFIC20等の部品が搭載される基板である。部品実装基板30は、アンテナ基板10よりも誘電正接が大きな材料によって形成される。このような材料としては、例えば、リジット基板又はフレキシブル基板の材料として従来から一般的に用いられている安価な材料(例えば、エポキシやポリイミド等)が挙げられる。
 部品実装基板30の厚みは、例えば、1.6[mm]程度以下であることが望ましい。微細なスルーホールを形成するためには、部品実装基板30の厚みが小さい方が有利である。例えば、径が0.1[mm]程度の微細なスルーホールを形成する場合には、厚みが0.8[mm]程度以下の部品実装基板30を用いるのが望ましい。
 部品実装基板30には、部品実装基板30の第1面30aから第2面30bに至る疑似同軸構造スルーホール31及び非高周波信号スルーホール32(第3スルーホール)が形成されている。尚、図1では、図示を簡略化するため、疑似同軸構造スルーホール31及び非高周波信号スルーホール32を1つずつ図示しているが、これらは複数設けられていても良い。
 疑似同軸構造スルーホール31は、高周波信号を伝送するために設けられるスルーホールである。疑似同軸構造スルーホール31は、2つの高周波信号スルーホール31a(第1スルーホール)と、2つの高周波信号スルーホール31aに対して並設された少なくとも3つのグランドスルーホール31b(第2スルーホール)とから構成される(図2参照)。3つのグランドスルーホール31bのうち、1つのグランドスルーホール31bが2つの高周波信号スルーホール31aの間の領域(後述、図3参照)に配置される。他の2つのグランドスルーホール31bについては、高周波信号スルーホール31aの間の領域以外の領域において、一方のグランドスルーホール31bが一方の高周波信号スルーホール31aに対して並設し、他方のグランドスルーホール31bが他方の高周波信号スルーホール31aに対して並設するように配置されている。
 高周波信号スルーホール31aは、高周波信号が伝送されるスルーホールである。グランドスルーホール31bは、グランド電位(基準電位)のスルーホールである。高周波信号スルーホール31a及びグランドスルーホール31bは、疑似同軸構造スルーホール31がインピーダンス整合された疑似的な同軸構造を有するように配置されている。
 ここで、1つの高周波信号スルーホール31aに対して並設されるグランドスルーホール31bが1つのみでは、高周波信号の電界を閉じ込める効果が不十分で良好な特性が得られない。このため、本実施形態では、1つの高周波信号スルーホール31aに対して2つのグランドスルーホール31b(1つは疑似同軸構造スルーホール31A,31Bで共用)を並設して、高周波信号の伝送損失を低減している。
 尚、高周波信号スルーホール31aに対して並設されるグランドスルーホール31bは3つ以上であっても良い。但し、グランドスルーホール31bの数が増えると、先行技術文献に記述された疑似同軸構造のスルーホールと同様になり、ピッチを狭くすることに適さない。また、コストが上昇するとともに、グランドスルーホール31b間の間隔が狭くなって破損が生ずる等の不具合が生じやすくなる。このため、グランドスルーホール31bの数は、インピーダンス整合された疑似的な同軸構造が得られる限りにおいて、極力少ない方(2つ以上)が望ましい。
 ここで、インピーダンス整合された疑似的な同軸構造とは、高周波信号スルーホール31aを中心導体とした同軸構造を考えたとき、中心導体を取り囲むグランド導体が本来配置されるべき仮想円上又はその近傍にグランドスルーホール31bが配置された構造をいう。グランドスルーホール31bの上記の仮想円上からの位置ずれは、例えば、インピーダンスの誤差が±10[Ω]程度の範囲であれば許容される。
 非高周波信号スルーホール32は、高周波信号よりも周波数が低い低周波信号の伝送、電源供給、グランド接続等を行うために設けられるスルーホールである。インピーダンス不整合による低周波信号等の伝送損失は、高周波信号の伝送損失に比べて十分小さいため、非高周波信号スルーホール32は、疑似同軸構造スルーホール31のような疑似的な同軸構造とはされていない。
 ここで、非高周波信号スルーホール32の径は、高周波信号スルーホール31a及びグランドスルーホール31bの径と同じ(或いは、同程度)である。高周波信号スルーホール31a及びグランドスルーホール31b並びに非高周波信号スルーホール32の径は、例えば、0.15[mm]以下であることが好ましい。
 高周波信号スルーホール31a及びグランドスルーホール31b、並びに、非高周波信号スルーホール32は、導体ピン、導体線、金属めっき、導電ペースト等の何れかによって形成されるのが好ましいが、これらに限定されるものではない。高周波信号スルーホール31a及びグランドスルーホール31b、並びに、非高周波信号スルーホール32に用いられる導体は、銅、銀、金、合金等の金属、カーボン等が挙げられる。高周波信号スルーホール31a及びグランドスルーホール31b、並びに、非高周波信号スルーホール32の形状は、特に限定されないが、ピン状、線状、層状、粒子状、鱗片状、繊維状、ナノチューブ等が挙げられる。
 また、部品実装基板30には、グランドパターン33が形成されている。グランドパターン33は、部品実装基板30の内層パターンであり、グランドスルーホール31bと電気的に接続されている。グランドパターン33を設けることにより、疑似同軸構造スルーホール31のグランドスルーホール31bを補強して、良好なインピーダンス整合を実現することができる。
 図2は、図1のA-A線に沿う断面矢視図である。尚、図1は、例えば、図2中のB-B線に沿う断面矢視図である。図2に示す例では、部品実装基板30に形成されたスルーホールのうち、3つの疑似同軸構造スルーホール31(31A,31B,31C)と、1つの非高周波信号スルーホール32とを図示している。疑似同軸構造スルーホール31A,31Bは、ピッチを狭くするために近接配置されている。これに対し、疑似同軸構造スルーホール31Cは、疑似同軸構造スルーホール31A,31Bからある程度離間した位置に配置されている。
 図2に示す通り、グランドパターン33には、疑似同軸構造スルーホール31A,31B,31Cの各々に設けられた高周波信号スルーホール31aの周囲が、略円形状にくり抜かれた開口部APが形成されている。疑似同軸構造スルーホール31A,31B,31Cの各々に設けられたグランドスルーホール31bは、グランドパターン33と電気的に接続されている。また、非高周波信号スルーホール32はグランドパターン33とは絶縁されている。
 疑似同軸構造スルーホール31A,31B,31Cの各々に設けられた高周波信号スルーホール31a及びグランドスルーホール31bは、前述した通り、疑似同軸構造スルーホール31A,31B,31Cの各々がインピーダンス整合するように適切な間隔を有するように配置される。例えば、部品実装基板30の比誘電率が「4」程度であり、高周波信号スルーホール31aの径が0.15[mm]であり、特性インピーダンスが50[Ω]である場合には、高周波信号スルーホール31aとグランドスルーホール31bとの間隔は、0.375[mm]程度に設定される。
 また、グランドパターン33を設けることにより、前述した通り、グランドスルーホール31bを補強して、良好なインピーダンス整合を実現することができる。このため、グランドパターン33に形成される開口部APの大きさも、高周波信号スルーホール31aとグランドスルーホール31bとの間隔と同様の手法で設計できる。例えば、高周波信号スルーホール31aと開口部APの内周縁との間隔が、0.375[mm]程度(開口部APの内径が、0.75[mm]程度)に設定される。
 ここで、スルーホール(高周波信号スルーホール31a、グランドスルーホール31b)を形成する際に、形成しようとしているスルーホールが他のスルーホールに近づきすぎると、基板割れ等の破損が生ずる場合がある。このため、スルーホールの間隔は、ある一定距離以上(例えば、0.2[mm]以上)にする必要がある。
 図2に示す通り、疑似同軸構造スルーホール31A,31Bは、ピッチを狭くするために近接配置されており、疑似同軸構造スルーホール31A,31Bのグランドスルーホール31b同士が近接(例えば、0.2[mm]未満)する場合がある。本実施形態では、2つの高周波信号スルーホール31aの間の領域に配置されるグランドスルーホール31bを、疑似同軸構造スルーホール31A,31Bで共用することで、上記の近接が生じないようにしている。
 図2に示す例において、近接配置された疑似同軸構造スルーホール31A,31Bをまとめて見ると、疑似同軸構造スルーホール31A,31Bは、2つの高周波信号スルーホール31aと、これら高周波信号スルーホール31aに並設された3つのグランドスルーホール31bとを備える。3つのグランドスルーホール31bは、隣接する2つが1つの高周波信号スルーホール31aを挟むように、直線L1上に配置されている。尚、直線L1は、疑似同軸構造スルーホール31A,31Bの高周波信号スルーホール31aの中心同士を結ぶ直線である。
 2つの高周波信号スルーホール31aの間の領域に配置されるグランドスルーホール31bは、高周波信号スルーホール31aの各々に対して略等距離となる位置に配置される。ここで、「略等距離」とは、部品実装基板30の製造時の製造誤差を考慮した距離である。つまり、完全な等距離でなくとも、距離の差が製造誤差程度であれば、高周波信号スルーホール31aの間の領域に配置されるグランドスルーホール31bは、高周波信号スルーホール31aの各々に対して等距離である位置に配置されているということができる。
 このように、高周波信号スルーホール31aの間の領域に配置されるグランドスルーホール31bは、直線L1上であって高周波信号スルーホール31aの各々に対して略等距離となる位置に配置される。このような配置にすることにより、隣接する高周波信号スルーホール31a間で及ぼし合う特性に対する影響を最小にすることができる。
 図3は、本発明の一実施形態における高周波信号スルーホールの間の領域を説明する平面図である。図3に示す通り、疑似同軸構造スルーホール31Aの高周波信号スルーホール31aと、疑似同軸構造スルーホール31Bの高周波信号スルーホール31aとの間の領域R1は、図中の線分で示された領域である。領域R1は、直線L1に直交する直線が、疑似同軸構造スルーホール31A,31Bの高周波信号スルーホール31aを中心とし、各々の高周波信号スルーホール31aに並設されたグランドスルーホール31bの中心を円周の一部とみなす2つの円CRに外接する平行な直線L11,L12で仕切られる領域である。
 つまり、本実施形態において、疑似同軸構造スルーホール31A,31Bは、以下の条件の下で設計される。疑似同軸構造スルーホール31A,31Bの3つのグランドスルーホール31bのうち、1つのグランドスルーホール31bが高周波信号スルーホール31aの間の領域R1に配置される。他の2つのグランドスルーホール31bについては、領域R1以外の領域において、一方のグランドスルーホール31bが一方の高周波信号スルーホール31aに対して並設し、他方のグランドスルーホール31bが他方の前記第1スルーホール31aに対して並設するように配置される。
 上記の条件が満たされ、且つインピーダンス整合される限りにおいて、グランドスルーホール31bの配置は変更可能である。例えば、図2に示す例では、3つのグランドスルーホール31bの全てが、直線L1上に配置されていた。しかしながら、例えば、2つの高周波信号スルーホール31aの間の領域R1に配置されるグランドスルーホール31bは、領域R1に配置されていれば、直線L1上に配置されていなくても良い。また、他のグランドスルーホール31bも、直線L1上に配置されていなくても良い。
 図4は、本発明の一実施形態における部品実装基板の表面を示す図である。図4(a)は、部品実装基板30の第2面30b側に形成されたパターンを示す平面図であり、図4(b)は、そのパターン上にソルダーレジストが形成された状態を示す平面図である。尚、図4では、部品実装基板30の第2面30b側の構成を図示しているが、部品実装基板30の第1面30a側も同様の構成である。
 また、図4においては、便宜上、図2に示す疑似同軸構造スルーホール31A,31Bと同じ符号が付された疑似同軸構造スルーホール31A,31Bを図示している。しかしながら、図4に示す疑似同軸構造スルーホール31A,31Bと、図2に示す疑似同軸構造スルーホール31A,31Bとは異なるもの(部品実装基板30の異なる位置に形成されるもの)である点に注意されたい。
 図4(a)に示す例では、2つの疑似同軸構造スルーホール31(31A,31B)と、2つの非高周波信号スルーホール32(32A,32B)とを図示している。疑似同軸構造スルーホール31A,31Bのグランドスルーホール31bは、部品実装基板30の第2面30bに形成されたグランドパターン33に接続されている。これに対し、非高周波信号スルーホール32A,32Bは、グランドパターン33とは絶縁されている。
 疑似同軸構造スルーホール31A,31Bの高周波信号スルーホール31aの周囲にはランド導体LC1(電極パッド)が形成されており、非高周波信号スルーホール32A,32Bの周囲にはランド導体LC2が形成されている。つまり、疑似同軸構造スルーホール31A,31Bの高周波信号スルーホール31a及び非高周波信号スルーホール32A,32Bは、所謂パッドオンビア構造を有している。このようなパッドオンビア構造にすることにより、アンテナ基板10とRFIC20との間における高周波信号の伝送距離を最短にして、高周波信号の伝送損失を最小することができる。
 また、図4(a)に示す通り、部品実装基板30の第2面30bには、円形形状の導体(以下、便宜的に、ランド導体LC3という)も形成されている。ランド導体LC3は、ランド導体LC1,LC2と同程度の大きさであり、グランドパターン33とは絶縁されている。ランド導体LC3により、例えば、部品実装基板30の第2面30bに搭載されるRFIC20を固定することができる。
 図4(b)に示す通り、部品実装基板30の第2面30bには、ソルダーレジスト34が形成されている。ソルダーレジスト34には、疑似同軸構造スルーホール31A,31Bの高周波信号スルーホール31a(ランド導体LC1の一部を含む)を外部に露出させる孔H1が形成されている。尚、ランド導体LC1の径は、例えば、0.3[mm]程度であり、孔H1の径は、例えば、0.2[mm]程度である。
 また、ソルダーレジスト34には、非高周波信号スルーホール32A,32B(ランド導体LC2の一部を含む)を外部に露出させる孔H2が形成されている。また、ソルダーレジスト34には、ランド導体LC3の一部、及びグランドパターン33の一部を外部に露出させる孔H3が形成されている。尚、ランド導体LC2,LC3の径は、例えば、0.3[mm]程度であり、孔H2,H3の径は、例えば、0.2[mm]程度である。
 ここで、孔H1,H2,H3を介して外部に露出している部分は、部品実装基板30の第2面30bにRFIC20を搭載する実装用ランドとして用いられる。これら実装用ランドは、基本的には、部品実装基板30の第2面30bの面内において一定のピッチをもって配置される。但し、図4(b)に示す通り、孔H1に係る実装用ランドのピッチを、孔H2,H3に係る実装用ランドのピッチとは異なるピッチにすることもできる。
 つまり、非高周波信号スルーホール32A,32Bの間隔を、疑似同軸構造スルーホール31A,31Bの高周波信号スルーホール31aの間隔と異なる間隔にすることができる。これは、疑似同軸構造スルーホール31A,31Bについて、インピーダンス整合させるために、高周波信号スルーホール31aとグランドスルーホール31bとの距離の調整をすることが望ましい場合があるからである。
 アンテナ基板10は、接続用金属端子12aの各々が平面視で部品実装基板30の高周波信号スルーホール31aの各々と一対一で重なり、且つ、接続用金属端子12bの各々が平面視で部品実装基板30の非高周波信号スルーホール32の各々と一対一で重なるように位置決めされて、部品実装基板30の第1面30aに搭載される。RFIC20は、金属端子21aの各々が平面視で部品実装基板30の高周波信号スルーホール31aの各々と一対一で重なり、且つ、金属端子21bの各々が平面視で部品実装基板30の非高周波信号スルーホール32の各々と一対一で重なるように位置決めされて、部品実装基板30の第2面30bに搭載される。
 アンテナ基板10及びRFIC20は、平面視をした場合に、RFIC20の全体がアンテナ基板10に重なるように、部品実装基板30の第1面30a及び第2面30bにそれぞれ搭載され、高周波信号スルーホール31a及び非高周波信号スルーホール32を介して電気的に接続されている。尚、アンテナ基板10及びRFIC20は、平面視をした場合に、少なくとも一部が重なっており、その重なった部分に設けられた高周波信号スルーホール31aを介して電気的に接続されていれば良い。
 以上の通り、本実施形態のアンテナモジュール1は、近接配置された2つの疑似同軸構造スルーホール31A,31Bが設けられた部品実装基板30を備える。部品実装基板30の疑似同軸構造スルーホール31A,31Bは、これらをまとめて見ると、2つの高周波信号スルーホール31aと、高周波信号スルーホール31aに対して並設された少なくとも3つのグランドスルーホール31bとを備える。3つのグランドスルーホール31bのうち、1つのグランドスルーホール31bが2つの高周波信号スルーホール31aの間の領域R1に配置される。他の2つのグランドスルーホール31bについては、領域R1以外の領域において、一方のグランドスルーホール31bが一方の高周波信号スルーホール31aに対して並設し、他方のグランドスルーホール31bが他方の上記第1スルーホール31aに対して並設するように配置されている。
 このような構成により、疑似同軸構造スルーホール31Aの高周波信号スルーホール31aと、疑似同軸構造スルーホール31Bの高周波信号スルーホール31aとの間の領域R1に配置されたグランドスルーホール31bを、疑似同軸構造スルーホール31A,31Bで共用している。これにより、インピーダンス整合された疑似同軸構造スルーホール31を従来よりも高密度に配置することができる。また、領域R1に配置されたグランドスルーホール31bを疑似同軸構造スルーホール31A,31Bで共用することで、グランドスルーホール31bの数を1つ減らすことができるため、その分のコストを低減することができる。
 〈第1変形例〉
 図5は、第1変形例に係る部品実装基板を示す断面図である。尚、図5に示す断面図は、図1のA-A線に沿う断面図に相当する。また、図5においては、図2に示した構成と同様の構成については同一の符号を付してある。図2に示す例では、説明を簡単にするために、2つの疑似同軸構造スルーホール31(31A,31B)が近接配置された例について説明した。しかしながら、近接配置される疑似同軸構造スルーホール31は3つ以上であっても良い。
 図5に示す例では、1つの疑似同軸構造スルーホール31(31A)に対し、4つの疑似同軸構造スルーホール31(31B,31C,31D,31E)が近接配置されている。この例では、疑似同軸構造スルーホール31A,31Bの高周波信号スルーホール31aの間の領域R1(不図示)に配置されたグランドスルーホール31bが疑似同軸構造スルーホール31A,31Bで共用される。また、疑似同軸構造スルーホール31A,31Cの高周波信号スルーホール31aの間の領域R1(不図示)に配置されたグランドスルーホール31bが疑似同軸構造スルーホール31A,31Cで共用される。
 同様に、疑似同軸構造スルーホール31A,31Dの高周波信号スルーホール31aの間の領域R1(不図示)に配置されたグランドスルーホール31bが疑似同軸構造スルーホール31A,31Dで共用される。また、疑似同軸構造スルーホール31A,31Eの高周波信号スルーホール31aの間の領域R1(不図示)に配置されたグランドスルーホール31bが疑似同軸構造スルーホール31A,31Eで共用される。
 〈第2変形例〉
 図6は、第2変形例に係る部品実装基板を示す断面図である。尚、図6においては、アンテナ基板10及びRFIC20の図示を省略し、部品実装基板30の疑似同軸構造スルーホール31が形成された部分及びその周辺のみを図示している。また、図6においては、図1に示した構成と同様の構成については同一の符号を付してある。
 図6に示す通り、本変形例において、部品実装基板30内には、複数層(図6に示す例では、3層)のグランドパターン33が形成されている。各グランドパターン33には、疑似同軸構造スルーホール31の各々に設けられた高周波信号スルーホール31aの周囲が略円形状にくり抜かれた開口部APが形成されている。また、各グランドパターン33は、疑似同軸構造スルーホール31のグランドスルーホール31bと電気的に接続されている。
 以上の通り、本変形例では、部品実装基板30内に形成された複数層(3層)のグランドパターン33によって、疑似同軸構造スルーホール31のグランドスルーホール31bが補強されている。これにより、上述した実施形態(部品実装基板30内のグランドパターン33が一層)よりも良好なインピーダンス整合を実現することが可能である。
 〈第3変形例〉
 図7は、第3変形例に係るアンテナモジュールを示す断面図である。尚、図7においては、図1に示した構成と同様の構成については同一の符号を付してある。本変形例に係るアンテナモジュール1が、図1に示すアンテナモジュール1と異なる点は、部品実装基板30内のグランドパターン33が省略されている点である。
 部品実装基板30内のグランドパターン33は、疑似同軸構造スルーホール31のグランドスルーホール31bを補強する上では設けられていることが望ましい。但し、疑似同軸構造スルーホール31のグランドスルーホール31bを補強する必要が無ければ、図7に示す通り、省略することも可能である。
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に制限されることなく、本発明の範囲内で自由に変更が可能である。
 例えば、上述した実施形態におけるアンテナモジュール1では、アンテナ基板10及びRFIC20のみが部品実装基板30に搭載されている。しかしながら、部品実装基板30には、アンテナ基板10及びRFIC20以外の他の部品(図示省略)が搭載されていても良い。
 また、上述した実施形態では、アンテナ基板10が部品実装基板30の第1面30aに搭載され、RFIC20が、部品実装基板30の第2面30bに搭載される例について説明した。
 しかしながら、これとは逆に、RFIC20が部品実装基板30の第1面30aに搭載され、アンテナ基板10が、部品実装基板30の第2面30bに搭載されていても良い。
1…アンテナモジュール、10…アンテナ基板、11…アンテナ、20…RFIC、30…部品実装基板、30a…第1面、30b…第2面、31a…高周波信号スルーホール、31b…グランドスルーホール、32…非高周波信号スルーホール、33…グランドパターン、L1…直線、LC1…ランド導体、R1…領域

Claims (10)

  1.  第1面から前記第1面とは反対の面である第2面に至るスルーホールが形成された基板において、
     所定の間隔を有するように並設された、高周波信号が伝送される2つの第1スルーホールと、
     2つの前記第1スルーホールに対し、前記所定の間隔よりも狭い間隔を有するように並設された、少なくとも3つの基準電位の第2スルーホールと、
     を備え、
     3つの前記第2スルーホールのうち、1つの前記第2スルーホールが2つの前記第1スルーホールの間の領域に配置され、他の2つの前記第2スルーホールが前記第1スルーホールの間の領域以外の領域において、前記他の2つの第2スルーホールのうちの一方が2つの前記第1スルーホールのうちの一方に対して並設し、前記他の2つの第2スルーホールのうちの他方が2つの前記第1スルーホールのうちの他方に対して並設するように配置されている、
     基板。
  2.  2つの前記第1スルーホールの間の領域に配置される前記第2スルーホールは、前記第1スルーホールの各々に対して略等距離となる位置に配置される、請求項1記載の基板。
  3.  2つの前記第1スルーホールの間の領域に配置される前記第2スルーホールは、前記第1スルーホールの中心同士を結んだ直線上に配置される、請求項1又は請求項2記載の基板。
  4.  前記第1スルーホール及び前記第2スルーホールは、インピーダンス整合された疑似的な同軸構造を有するように配置されている、請求項1から請求項3の何れか一項に記載の基板。
  5.  前記第2スルーホールと電気的に接続された、インピーダンス整合用のグランドパターンを更に備える、請求項1から請求項4の何れか一項に記載の基板。
  6.  前記グランドパターンは、基板の内部に少なくとも一層設けられている、請求項5記載の基板。
  7.  前記第1スルーホールの両端部には、電極パッドが形成されている、請求項1から請求項6の何れか一項に記載の基板。
  8.  前記高周波信号とは異なる非高周波信号が伝送される複数の第3スルーホールを備え、
     前記第1スルーホール同士の間隔は、前記第3スルーホール同士の間隔とは異なる、
     請求項1から請求項7の何れか一項に記載の基板。
  9.  アンテナが形成されたアンテナ基板と、
     高周波信号を処理する高周波集積回路と、
     請求項1から請求項8の何れか一項に記載の基板と、
     を備え、
     前記アンテナ基板及び前記高周波集積回路は、平面視をした場合に、少なくとも一部が重なるように、前記基板の前記第1面及び前記第2面にそれぞれ搭載され、前記第1スルーホールを介して電気的に接続されている、
     アンテナモジュール。
  10.  前記基板は、前記アンテナ基板の材料よりも誘電正接が大きな材料によって形成されている、請求項9記載のアンテナモジュール。
PCT/JP2020/031816 2020-01-16 2020-08-24 基板及びアンテナモジュール WO2021145015A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080004014.4A CN115335982A (zh) 2020-01-16 2020-08-24 基板和天线模块
US17/268,170 US11864308B2 (en) 2020-01-16 2020-08-24 Substrate and antenna module
EP20851193.1A EP4092726A4 (en) 2020-01-16 2020-08-24 SUBSTRATE AND ANTENNA MODULE
JP2020570211A JP7129499B2 (ja) 2020-01-16 2020-08-24 基板及びアンテナモジュール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020005342 2020-01-16
JP2020-005342 2020-01-16

Publications (1)

Publication Number Publication Date
WO2021145015A1 true WO2021145015A1 (ja) 2021-07-22

Family

ID=76864095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031816 WO2021145015A1 (ja) 2020-01-16 2020-08-24 基板及びアンテナモジュール

Country Status (5)

Country Link
US (1) US11864308B2 (ja)
EP (1) EP4092726A4 (ja)
JP (1) JP7129499B2 (ja)
CN (1) CN115335982A (ja)
WO (1) WO2021145015A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023223846A1 (ja) * 2022-05-19 2023-11-23 京セラ株式会社 配線基板、配線基板を用いた電子部品実装用パッケージ、および電子モジュール

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0541463A (ja) * 1991-08-05 1993-02-19 Ngk Spark Plug Co Ltd 集積回路用パツケージ
JP2000216630A (ja) * 1999-01-20 2000-08-04 Alps Electric Co Ltd アンテナ付き送受信器
JP2003100941A (ja) 2001-09-27 2003-04-04 Kyocera Corp 配線基板とその実装構造
JP2005056961A (ja) * 2003-07-31 2005-03-03 Ngk Spark Plug Co Ltd インターポーザ
JP2006229072A (ja) * 2005-02-18 2006-08-31 Fujitsu Ltd 半導体装置
JP2020005342A (ja) 2018-06-25 2020-01-09 川本電産株式会社 制御盤、及び、ポンプ装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6602078B2 (en) * 2001-03-16 2003-08-05 Cenix, Inc. Electrical interconnect having a multi-layer circuit board structure and including a conductive spacer for impedance matching
JP4652230B2 (ja) * 2003-06-02 2011-03-16 日本電気株式会社 プリント回路基板用コンパクトビア伝送路およびその設計方法
JP6888667B2 (ja) * 2017-03-21 2021-06-16 株式会社村田製作所 アンテナモジュール及び通信装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0541463A (ja) * 1991-08-05 1993-02-19 Ngk Spark Plug Co Ltd 集積回路用パツケージ
JP2000216630A (ja) * 1999-01-20 2000-08-04 Alps Electric Co Ltd アンテナ付き送受信器
JP2003100941A (ja) 2001-09-27 2003-04-04 Kyocera Corp 配線基板とその実装構造
JP2005056961A (ja) * 2003-07-31 2005-03-03 Ngk Spark Plug Co Ltd インターポーザ
JP2006229072A (ja) * 2005-02-18 2006-08-31 Fujitsu Ltd 半導体装置
JP2020005342A (ja) 2018-06-25 2020-01-09 川本電産株式会社 制御盤、及び、ポンプ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4092726A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023223846A1 (ja) * 2022-05-19 2023-11-23 京セラ株式会社 配線基板、配線基板を用いた電子部品実装用パッケージ、および電子モジュール

Also Published As

Publication number Publication date
JPWO2021145015A1 (ja) 2021-07-22
US11864308B2 (en) 2024-01-02
US20220117078A1 (en) 2022-04-14
EP4092726A1 (en) 2022-11-23
EP4092726A4 (en) 2024-03-20
CN115335982A (zh) 2022-11-11
JP7129499B2 (ja) 2022-09-01

Similar Documents

Publication Publication Date Title
US11081804B2 (en) Antenna-integrated type communication module and manufacturing method for the same
JP6888667B2 (ja) アンテナモジュール及び通信装置
JP6524986B2 (ja) 高周波モジュール、アンテナ付き基板、及び高周波回路基板
JP5431433B2 (ja) 高周波線路−導波管変換器
JP5909707B2 (ja) 無線モジュール
WO2019174007A1 (zh) 连接板、电路板组件及电子设备
US9748664B2 (en) Semiconductor device, transmission system, method for manufacturing semiconductor device, and method for manufacturing transmission system
US11612053B2 (en) Circuit board and electronic device
JP6602326B2 (ja) 無線装置
JP6741186B2 (ja) 回路基板、回路基板モジュールおよび、アンテナモジュール
WO2021145015A1 (ja) 基板及びアンテナモジュール
JP2021022610A (ja) アンテナ装置および製造方法
JP2021072413A (ja) アンテナモジュール
JP7047910B2 (ja) アンテナ装置
JP2021114655A (ja) 基板及びアンテナモジュール
JP7540913B2 (ja) 無線通信モジュール
JP2022159819A (ja) 高周波部品
JP2008263360A (ja) 高周波基板装置
JP2022083669A (ja) 無線通信モジュール
WO2023037799A1 (ja) 高周波モジュール
JP2001088097A (ja) ミリ波多層基板モジュール及びその製造方法
TWI848584B (zh) 毫米波埋入式天線
WO2023135912A1 (ja) アンテナモジュール
US11874515B2 (en) Electronic device
WO2023095643A1 (ja) アンテナモジュール、およびそれを搭載した通信装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020570211

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20851193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020851193

Country of ref document: EP

Effective date: 20220816

ENP Entry into the national phase

Ref document number: 2020851193

Country of ref document: EP

Effective date: 20220816