WO2019172118A1 - センサシステム、センサモジュール、およびランプ装置 - Google Patents

センサシステム、センサモジュール、およびランプ装置 Download PDF

Info

Publication number
WO2019172118A1
WO2019172118A1 PCT/JP2019/008085 JP2019008085W WO2019172118A1 WO 2019172118 A1 WO2019172118 A1 WO 2019172118A1 JP 2019008085 W JP2019008085 W JP 2019008085W WO 2019172118 A1 WO2019172118 A1 WO 2019172118A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor unit
sensor
unit
detection reference
support
Prior art date
Application number
PCT/JP2019/008085
Other languages
English (en)
French (fr)
Inventor
裕一 綿野
野村 幸生
快之 中西
鉄平 村松
義超 謝
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Priority to EP19764283.8A priority Critical patent/EP3764126A4/en
Priority to JP2020504984A priority patent/JPWO2019172118A1/ja
Priority to US16/978,556 priority patent/US11248767B2/en
Publication of WO2019172118A1 publication Critical patent/WO2019172118A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/65Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources
    • F21S41/657Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources by moving light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/0017Devices integrating an element dedicated to another function
    • B60Q1/0023Devices integrating an element dedicated to another function the element being a sensor, e.g. distance sensor, camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/0064Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor with provision for maintenance, e.g. changing the light bulb
    • B60Q1/007Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor with provision for maintenance, e.g. changing the light bulb via a removable cap
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/06Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle
    • B60Q1/068Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/06Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle
    • B60Q1/068Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle by mechanical means
    • B60Q1/0683Adjustable by rotation of a screw
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • G01S13/865Combination of radar systems with lidar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • G01S13/867Combination of radar systems with cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/86Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/87Combinations of systems using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/027Constructional details of housings, e.g. form, type, material or ruggedness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4813Housing arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9323Alternative operation using light waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93277Sensor installation details in the lights
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4026Antenna boresight

Definitions

  • the present disclosure relates to a sensor system mounted on a vehicle.
  • This disclosure also relates to a sensor module mounted on a vehicle.
  • the present disclosure also relates to a lamp device mounted on a vehicle.
  • Patent Document 1 discloses a lamp device in which a laser radar and a camera are arranged in a lamp chamber.
  • Patent Document 3 discloses a lamp device in which a camera is disposed in a lamp chamber.
  • driving support means a control process that at least partially performs at least one of driving operation (steering operation, acceleration, deceleration), monitoring of driving environment, and backup of driving operation.
  • this means including partial driving assistance such as a collision damage reducing brake function and a lane keeping assist function to a fully automatic driving operation.
  • the sensor unit posture and detection reference position with respect to the vehicle body are adjusted.
  • the information acquired by the sensor is used for driving support. Therefore, it is not preferable that a general user can easily adjust the detection reference position of the sensor unit after the lamp device is mounted on the vehicle.
  • the first problem in the present disclosure is to increase the use efficiency of a space in which a plurality of sensors necessary for driving support of a vehicle are arranged.
  • the second problem in the present disclosure is to increase the detection accuracy of a plurality of sensors required for driving support of the vehicle.
  • a third problem in the present disclosure is to reduce labor required for maintenance and inspection work and replacement work of a plurality of sensors mounted on the vehicle.
  • the fourth problem in the present disclosure is to limit the act of adjusting the detection reference position of the sensor unit included in the lamp device by a general user.
  • One aspect for achieving the first problem is a sensor system mounted on a vehicle, A first sensor unit for detecting first external information of the vehicle based on a first detection reference axis; A second sensor unit for detecting second external information of the vehicle based on a second detection reference axis; With The first detection reference axis and the second detection reference axis intersect each other when viewed from the vertical direction of the vehicle.
  • the above sensor system can be configured as follows.
  • the first detection reference axis and the second detection reference axis intersect each other.
  • the difference in position between the first sensor unit and the second sensor unit in the vertical direction of the vehicle is reduced, and an increase in size of the sensor system in the same direction can be suppressed.
  • the reference height for acquiring the first external information matches the reference height for acquiring the second external information, the subsequent information processing load based on the first external information and the second external information is increased. Can be suppressed.
  • the above sensor system can be configured as follows.
  • a translucent member that divides a storage chamber for storing the first sensor unit and the second sensor unit;
  • the translucent member has a recess recessed toward the storage chamber,
  • the first detection reference axis and the second detection reference axis intersect the recess.
  • the concave portion includes a first flat portion and a second flat portion,
  • the first detection reference axis intersects the first flat portion,
  • the second detection reference axis intersects the second flat portion.
  • the above sensor system can be configured as follows.
  • a first signal unit corresponding to the first external information is obtained from the first sensor unit, and a second signal unit corresponding to the second external information is obtained from the second sensor unit.
  • the signal processing device generates data corresponding to integrated information obtained by integrating the first external information and the second external information based on the first signal and the second signal.
  • the integrated information can be used for driving support of the vehicle.
  • driving support control is executed by a control device such as an ECU mounted on a vehicle
  • the first external information and the second external information are integrated by the signal processing device, so that the processing load on the control device is increased. Can be suppressed.
  • the above sensor system can be configured as follows.
  • a housing that divides a lamp chamber that houses the lamp unit;
  • the first sensor unit and the second sensor unit are disposed in the lamp chamber.
  • the lamp unit is generally arranged in a place with little shielding because of the function of supplying light to the outside of the vehicle.
  • the height detection information when the height detection information is acquired from the vehicle auto leveling system, the height detection information can be shared with the lamp unit. In this case, efficient system design is possible.
  • the above sensor system can be configured as follows.
  • the first sensor unit and the second sensor unit include at least one of a LiDAR sensor unit, a camera unit, and a millimeter wave sensor unit.
  • One aspect for achieving the second problem is a sensor system mounted on a vehicle, A first sensor unit for detecting information outside the vehicle; A second sensor unit that is connectable to the first sensor unit and detects information outside the vehicle; When the first sensor unit and the second sensor unit are coupled, a regulating member that regulates an angle of the detection reference direction of the second sensor unit with respect to the detection reference direction of the first sensor unit; It has.
  • the first sensor unit and the second sensor unit when used for driving support of the vehicle, the first sensor unit is detected only by connecting the first sensor unit and the second sensor unit.
  • An angle formed by the reference direction and the detection reference direction of the second sensor unit can be uniquely determined. Therefore, the detection accuracy of the first sensor unit and the second sensor unit can be increased while reducing the burden associated with the operation of adjusting the detection reference direction.
  • the above sensor system can be configured as follows.
  • the restriction member is configured to be able to select the angle from a plurality of values.
  • the above sensor system can be configured as follows.
  • a common support for supporting the first sensor unit and the second sensor unit;
  • An adjustment mechanism for adjusting at least one of the position and posture of the support relative to the vehicle; It has.
  • the angle formed by the detection reference direction of the first sensor unit and the detection reference direction of the second sensor unit is uniquely determined by the restriction member described above.
  • the sensor system is mounted on a vehicle, at least one of the detection reference directions of both sensor units may deviate from a desired direction due to tolerances of vehicle body parts and positional deviation of the sensor system with respect to the vehicle body. Therefore, after the sensor system is mounted on the vehicle, the detection reference direction is readjusted.
  • the first sensor unit and the second sensor unit are supported by a common support, adjustment of the detection reference direction of both sensor units can be performed collectively by the adjustment mechanism. Therefore, even when a plurality of sensor units are used for driving support, it is possible to reduce the burden of work for adjusting the detection reference direction of each sensor unit.
  • the above sensor system can be configured as follows.
  • a lamp housing that partitions a lamp chamber that houses the lamp unit;
  • the first sensor unit and the second sensor unit are disposed in the lamp chamber.
  • the lamp unit is generally arranged in a place with little shielding because of the function of supplying light to the outside of the vehicle.
  • the above sensor system can be configured as follows.
  • the first sensor unit and the second sensor unit include at least one of a LiDAR sensor unit, a camera unit, and a millimeter wave sensor unit.
  • One aspect for achieving the third problem is a sensor module mounted on a vehicle, A housing partitioning the containment chamber; A support body detachable from the outside with respect to the housing; A first sensor unit supported by the support; A second sensor unit supported by the support; With When the support is mounted on the housing, the support defines a part of the storage chamber, and the first sensor unit and the second sensor unit are disposed in the storage chamber.
  • the sensor module described above can be configured as follows. When viewed from the mounting direction of the support, the entire first sensor unit and the entire second sensor unit are located inside the outer edge of the support.
  • the sensor module described above can be configured as follows.
  • the support body and the housing have a shape that regulates a posture when the support body is mounted on the housing.
  • the sensor module described above can be configured as follows.
  • the mounting direction of the support is along the detection reference direction of the first sensor unit and the detection reference direction of the second sensor unit.
  • each sensor unit tends to be small when viewed from the detection reference direction. Therefore, the size of the support can be reduced by setting the mounting direction of the support along the detection reference direction of each sensor unit.
  • the sensor module described above can be configured as follows.
  • the detection reference position of the first sensor unit and the detection reference position of the second sensor unit are not offset in the front-rear direction.
  • Such a configuration facilitates batch adjustment of the detection reference direction of the first sensor unit and the detection reference direction of the second sensor unit by adjusting the posture of the support.
  • the sensor module described above can be configured as follows.
  • the detection reference position of the first sensor unit and the detection reference position of the second sensor unit are not offset in the vertical direction.
  • the sensor module described above can be configured as follows.
  • the first sensor unit and the second sensor unit can be individually attached to and detached from the support.
  • the sensor module can be economically operated.
  • the sensor module described above can be configured as follows.
  • An aggregating portion that aggregates the signal lines connected to the first sensor unit and the signal lines connected to the second sensor unit is provided on the support.
  • the sensor module has multiple sensor units, multiple signal lines must be routed. According to the above configuration, since the plurality of signal lines are collected on the support, the handling of the plurality of signal lines is facilitated. Therefore, a decrease in work efficiency can be suppressed.
  • the sensor module described above can be configured as follows.
  • a control device that controls the operation of at least one of the first sensor unit and the second sensor unit is supported by the support.
  • control device can share a part of processing performed by the overall control device such as an ECU mounted on the vehicle. Therefore, the processing load in the overall control device can be reduced.
  • the sensor module described above can be configured as follows.
  • the said support body is formed with the material containing a metal.
  • heat generated by the operations of the first sensor unit and the second sensor unit can be efficiently dissipated.
  • heat generated by the operation of the control device can also be efficiently dissipated.
  • the sensor module described above can be configured as follows.
  • a sealing member is provided between the support and the housing.
  • the sensor module described above can be configured as follows. At least one of the first sensor unit and the second sensor unit is a camera unit, A light shielding cover is provided to surround the imaging surface of the camera unit.
  • the entry of disturbance light to the imaging surface can be suppressed. Accordingly, it is possible to suppress a decrease in detection accuracy of external information of the vehicle by the camera unit.
  • the sensor module described above can be configured as follows.
  • a first adjustment mechanism for adjusting the detection reference direction of the first sensor unit and a second adjustment mechanism for adjusting the detection reference direction of the second sensor unit are supported by the support.
  • the adjustment of the detection reference direction of a specific sensor unit can be performed without being restricted by the detection reference direction of another sensor unit.
  • the sensor module described above can be configured as follows.
  • a third sensor module supported by the support is provided.
  • One aspect for achieving the third problem is a sensor module mounted on a vehicle, A housing partitioning the containment chamber; A support body detachable from the outside with respect to the housing; A sensor unit supported by the support; A lamp unit supported by the support; With When the support is attached to the housing, the support defines a part of the storage chamber, and the sensor unit and the lamp unit are disposed in the storage chamber.
  • One aspect for achieving the fourth problem is a lamp device mounted on a vehicle, A lamp unit that emits illumination light; A sensor unit for detecting information outside the vehicle; A housing that defines a space for housing the lamp unit and the sensor unit; A first aiming mechanism for adjusting the illumination reference position of the lamp unit; A second aiming mechanism that is disposed in the space and adjusts a detection reference position of the sensor unit; Switching that allows switching between a first state in which operation of only the first aiming mechanism is allowed from the outside of the housing and a second state in which the second aiming mechanism is operated in accordance with the operation of the first aiming mechanism Equipment, It has.
  • the second aiming mechanism housed in the housing cannot be operated unless the switching device establishes the second state. Therefore, it is possible to limit the act of adjusting the detection reference position of the sensor unit included in the lamp device by a general user.
  • the lamp device described above can be configured as follows.
  • the switching device can be switched to a third state in which only the second aiming mechanism is allowed to operate.
  • the lamp device described above can be configured as follows. A part of the switching device is detachable from the outside of the housing, In a state where a part of the switching device is removed, only the first state is established.
  • ramp apparatus can be comprised as follows. At least a part of the switching device is disposed in the space.
  • the lamp device described above can be configured as follows.
  • the sensor unit includes at least one of a LiDAR sensor unit, a camera unit, and a millimeter wave sensor unit.
  • the “sensor unit” means a component unit of a component that has a desired information detection function and can be circulated by itself.
  • the “lamp unit” means a structural unit of a part that is provided with a desired lighting function and can be circulated by itself.
  • Fig. 2 illustrates the position of the sensor system of Fig. 1 in a vehicle.
  • the external appearance of the 2nd sensor unit which concerns on 2nd embodiment is illustrated.
  • the external appearance of the 2nd sensor unit which concerns on 2nd embodiment is illustrated.
  • the structure of the sensor system which concerns on 2nd embodiment is illustrated.
  • the structure of the sensor system which concerns on the 1st modification of 2nd embodiment is shown.
  • the structure of the sensor system which concerns on the 2nd modification of 2nd embodiment is shown.
  • the external appearance of the sensor unit which concerns on 3rd embodiment is illustrated.
  • the structure of the sensor system which concerns on 3rd embodiment is illustrated.
  • the external appearance of the sensor unit which concerns on 4th embodiment is illustrated.
  • the structure of the sensor system which concerns on 4th embodiment is illustrated.
  • a configuration in which the first sensor unit and the second sensor unit are arranged in the lamp chamber is illustrated.
  • the external appearance of the sensor module which concerns on 5th embodiment is illustrated.
  • 14 illustrates an internal configuration of the sensor module in FIG. 13.
  • 14 illustrates an internal configuration of the sensor module in FIG. 13.
  • 14 illustrates another configuration of the sensor module in FIG. 13.
  • 14 illustrates another configuration of the sensor module in FIG. 13.
  • the structure of the lamp device which concerns on 6th embodiment is illustrated.
  • ramp apparatus of FIG. 19 and the 2nd aiming mechanism is illustrated.
  • the structure of the switching apparatus used for the lamp device of FIG. 19 is illustrated.
  • the usage method of the switching apparatus of FIG. 21 is shown.
  • the usage method of the switching apparatus of FIG. 21 is shown.
  • the usage method of the switching apparatus of FIG. 21 is shown.
  • 22 illustrates another configuration of the switching device in FIG. 21. 22 illustrates another configuration of the switching device in FIG. 21.
  • an arrow F indicates the forward direction of the illustrated structure.
  • Arrow B indicates the backward direction of the illustrated structure.
  • Arrow L indicates the left direction of the illustrated structure.
  • Arrow R indicates the right direction of the illustrated structure. “Left” and “right” used in the following description indicate the left and right directions viewed from the driver's seat.
  • FIG. 1A illustrates the configuration of the left front sensor system 101 according to the first embodiment.
  • the left front sensor system 101 is mounted on the left front corner LF of the vehicle 100 shown in FIG.
  • a front right sensor system having a symmetrical configuration with the left front sensor system 101 is mounted on the right front corner RF of the vehicle 100.
  • the front left sensor system 101 includes a first camera unit 111.
  • the first camera unit 111 is a device for acquiring a first image including at least the front of the vehicle 100.
  • the first camera unit 111 is configured to output a first signal S1 corresponding to the acquired first image.
  • the first camera unit 111 may be a visible light camera or an infrared camera.
  • the first camera unit 111 is an example of a first sensor unit.
  • the first camera unit 111 has a first optical axis X1.
  • the first optical axis X1 can define a reference direction when the first camera unit 111 acquires the first image. That is, the first camera unit 111 is configured to acquire a first image including at least the front of the vehicle 100 based on the first optical axis X1.
  • the first optical axis X1 is an example of a first detection reference axis. Acquisition of the first image is an example of detection of first external information of the vehicle 100.
  • the front left sensor system 101 includes a second camera unit 112.
  • the second camera unit 112 is a device for acquiring a second image including at least the left side of the vehicle 100.
  • the second camera unit 112 is configured to output a second signal S2 corresponding to the acquired second image.
  • the second camera unit 112 may be a visible light camera or an infrared camera.
  • the second camera unit 112 is an example of a second sensor unit.
  • the second camera unit 112 has a second optical axis X2.
  • the second optical axis X2 can define the reference direction when the second camera unit 112 acquires the second image. That is, the second camera unit 112 is configured to acquire a second image including at least the left side of the vehicle 100 based on the second optical axis X2.
  • the second optical axis X2 is an example of a second detection reference axis. Acquisition of the second image is an example of detection of second external information of the vehicle 100.
  • the front left sensor system 101 includes a housing 113 and a translucent member 114.
  • the housing 113 and the translucent member 114 define a storage chamber 115.
  • the first camera unit 111 and the second camera unit 112 are disposed in the storage chamber 115.
  • the first camera unit 111 and the second camera unit 112 are arranged so that the first optical axis X1 and the second optical axis X2 intersect when viewed from the vertical direction of the vehicle 100.
  • FIG. 1B shows a left front sensor system 101A according to a comparative example.
  • the first camera unit 111 and the second camera unit 112 are arranged so that the first optical axis X1 and the second optical axis X2 do not intersect.
  • it can be seen that it is easier to secure a relatively wide space in a region corresponding to the inside of the vehicle 100 than the first camera unit 111 and the second camera unit 112. That is, even if a plurality of camera units are used to obtain more image information, the utilization efficiency of the space in which the plurality of camera units are arranged can be increased.
  • first optical axis X1 and the second optical axis X2 intersect when viewed from the vertical direction of the vehicle 100, the first optical axis X1 and the second optical axis X2 intersect when viewed from the lateral direction or the front-rear direction of the vehicle 100. You don't have to. However, it is preferable that the first optical axis X1 and the second optical axis X2 actually intersect each other.
  • the difference in position between the first camera unit 111 and the second camera unit 112 in the vertical direction of the vehicle 100 is reduced, and an increase in size of the left front sensor system 101 in the same direction can be suppressed.
  • the reference height for acquiring the first image matches the reference height for acquiring the second image, the first signal S1 output from the first camera unit 111 and the output from the second camera unit 112 are output. An increase in the load of image processing based on the second signal S2 that has been performed can be suppressed.
  • the translucent member 114 may have a recess 114a.
  • the recess 114 a is a portion that is recessed toward the accommodation chamber 115.
  • the first camera unit 111 and the second camera unit 112 can be arranged such that the first optical axis X1 and the second optical axis X2 intersect the recess 114a.
  • each of the first camera unit 111 and the second camera unit 112 and the inner surface of the translucent member 114 is shorter, it is easier to suppress the quality degradation of the acquired image. According to the above configuration, it becomes easy to dispose each of the first camera unit 111 and the second camera unit 112 near the inner surface of the translucent member 114. Therefore, it is possible to suppress the deterioration of the quality of the first image acquired by the first camera unit 111 and the deterioration of the quality of the second image acquired by the second camera unit 112.
  • the recess 114a can include a first flat portion 114a1 and a second flat portion 114a2.
  • the first camera unit 111 can be arranged such that the first optical axis X1 intersects the first flat portion 114a1.
  • the second camera unit 112 can be arranged so that the second optical axis X2 intersects the second flat portion 114a2. Therefore, the first camera unit 111 acquires a first image based on the light that has passed through the first flat portion 114a1 of the translucent member 114.
  • the second camera unit 112 acquires a second image based on the light that has passed through the second flat portion 114a2 of the translucent member 114.
  • the first camera unit 111 is preferably arranged so that the first optical axis X1 is orthogonal to the first flat portion 114a1.
  • the second camera unit 112 is preferably arranged so that the second optical axis X2 is orthogonal to the second flat portion 114a2.
  • the left front sensor system 101 may include a signal processing device 116.
  • the signal processing device 116 can be realized by a general-purpose microprocessor that operates in cooperation with a general-purpose memory.
  • a general-purpose microprocessor a CPU, an MPU, and a GPU can be exemplified.
  • the general-purpose memory ROM and RAM can be exemplified.
  • the ROM can store a computer program that realizes processing to be described later.
  • the general-purpose microprocessor designates at least a part of a program stored on the ROM, expands it on the RAM, and executes the above-described processing in cooperation with the RAM.
  • the signal processing device 116 may be realized by a dedicated integrated circuit such as a microcontroller, an ASIC, or an FPGA that can execute a computer program that realizes processing to be described later.
  • the signal processing device 116 may be realized by a combination of a general-purpose microprocessor and a dedicated integrated circuit.
  • the signal processing device 116 may be realized as a device fixed to the housing 113, or may be realized as a control device such as an ECU mounted on the vehicle 100.
  • the signal processing device 116 acquires the first signal S1 output from the first camera unit 111 and the second signal S2 output from the second camera unit 112.
  • the signal processing device 116 is configured to generate integrated image data based on the first signal S1 and the second signal S2.
  • the first signal S ⁇ b> 1 corresponds to the first image including at least the front of the vehicle 100.
  • the second signal S ⁇ b> 2 corresponds to a second image including at least the left side of the vehicle 100.
  • the integrated image data is data corresponding to an image obtained by integrating the first image and the second image.
  • the integrated image data can be used for driving support of the vehicle 100.
  • the driving support control is executed by a control device such as an ECU mounted on the vehicle 100
  • the signal processing device 116 integrates the first image and the second image, so that the processing load on the control device is increased. Can be suppressed.
  • the left front sensor system 101 can include a lamp unit 117.
  • the lamp unit 117 is a device that emits visible light to the outside of the vehicle 100.
  • the lamp unit 117 is housed in the housing chamber 115 together with the first camera unit 111 and the second camera unit 112. Examples of the lamp unit 117 include a headlamp unit, a vehicle width lamp unit, a direction indicator lamp unit, and a fog lamp unit.
  • the lamp unit 117 Since the lamp unit 117 has a function of supplying light to the outside of the vehicle 100, the lamp unit 117 is generally arranged in a place with a small shielding object such as the left front corner LF. By arranging the first camera unit 111 and the second camera unit 112 in such a place, information outside the vehicle 100 can be efficiently acquired.
  • the first embodiment is merely an example for facilitating understanding of the present disclosure.
  • the configuration according to the first embodiment can be changed or improved as appropriate without departing from the spirit of the present disclosure.
  • the left front sensor system 101 includes the first camera unit 111 and the second camera unit 112 .
  • at least one of the first camera unit 111 and the second camera unit 112 can be replaced by either a LiDAR sensor unit or a millimeter wave unit.
  • the LiDAR sensor unit has a configuration for emitting invisible light and a configuration for detecting return light as a result of reflection of the invisible light on an object existing at least outside the vehicle.
  • the LiDAR sensor unit can include a scanning mechanism that sweeps the invisible light by changing the emission direction (that is, the detection direction) as necessary. For example, infrared light having a wavelength of 905 nm can be used as invisible light.
  • the LiDAR sensor unit can acquire the distance to the object associated with the return light based on, for example, the time from when the invisible light is emitted in a certain direction until the return light is detected. Further, by accumulating such distance data in association with the detection position, information related to the shape of the object associated with the return light can be acquired. In addition to or instead of this, information related to attributes such as the material of the object associated with the return light can be acquired based on the difference between the waveforms of the emitted light and the return light.
  • the optical axis of the camera unit described with reference to the first optical axis X1 and the second optical axis X2 can be replaced with the detection reference axis of the LiDAR sensor unit.
  • the detection reference axis defines the detection reference direction of the LiDAR sensor unit.
  • the LiDAR sensor unit detects information outside the vehicle 100 based on the detection reference axis.
  • the millimeter wave sensor unit has a configuration for transmitting a millimeter wave and a configuration for receiving a reflected wave resulting from the reflection of the millimeter wave by an object existing outside the vehicle 100.
  • Examples of the millimeter wave frequency include 24 GHz, 26 GHz, 76 GHz, and 79 GHz.
  • the millimeter wave sensor unit can acquire the distance to the object associated with the reflected wave based on the time from when the millimeter wave is transmitted in a certain direction until the reflected wave is received. Further, by accumulating such distance data in association with the detection position, it is possible to acquire information related to the motion of the object associated with the reflected wave.
  • the optical axis of the camera unit described with reference to the first optical axis X1 and the second optical axis X2 can be replaced with the detection reference axis of the millimeter wave sensor unit.
  • the detection reference axis defines the detection reference direction of the millimeter wave sensor unit.
  • the millimeter wave sensor unit detects information outside the vehicle 100 based on the detection reference axis.
  • the translucent member 114 that partitions the storage chamber 115 does not necessarily need to be transparent.
  • the term “translucent” means that the sensor unit can transmit light having a wavelength used for detecting information outside the vehicle 100.
  • the configuration of the left front sensor system 101 can also be applied to the left rear sensor system.
  • the left rear sensor system is mounted on the left rear corner LB of the vehicle 100 shown in FIG.
  • the basic configuration of the left rear sensor system may be symmetrical with the left front sensor system 101 in the front-rear direction.
  • the configuration of the left front sensor system 101 can also be applied to the right rear sensor system.
  • the right rear sensor system is mounted on the right rear corner RB of the vehicle 100 shown in FIG.
  • the basic configuration of the right rear sensor system is bilaterally symmetric with the left rear sensor system described above.
  • FIG. 3A shows an appearance of the first sensor unit 201 according to the second embodiment as viewed from above.
  • FIG. 3B shows an appearance of the first sensor unit 201 as viewed from the front.
  • FIG. 3C shows the external appearance of the first sensor unit 201 as viewed from below.
  • (D) of FIG. 3 has shown the external appearance which looked at the 1st sensor unit 201 from the right side. The appearance seen from the left is symmetrical to the appearance seen from the right.
  • the first sensor unit 201 is a device that is mounted on a vehicle and acquires information outside the vehicle.
  • the first sensor unit 201 can be any one of a LiDAR sensor unit, a camera unit, and a millimeter wave sensor unit.
  • the LiDAR sensor unit has a configuration for emitting invisible light and a configuration for detecting return light as a result of reflection of the invisible light on an object existing at least outside the vehicle.
  • the LiDAR sensor unit can include a scanning mechanism that sweeps the invisible light by changing the emission direction (that is, the detection direction) as necessary. For example, infrared light having a wavelength of 905 nm can be used as invisible light.
  • the camera unit is a device for acquiring an image as information outside the vehicle.
  • the image can include at least one of a still image and a moving image.
  • the camera unit may include a camera having sensitivity to visible light, or may include a camera having sensitivity to infrared light.
  • the millimeter wave sensor unit has a configuration for transmitting a millimeter wave and a configuration for receiving a reflected wave resulting from the reflection of the millimeter wave by an object existing outside the vehicle 100.
  • Examples of the millimeter wave frequency include 24 GHz, 26 GHz, 76 GHz, and 79 GHz.
  • the first sensor unit 201 includes a detection surface 211.
  • the detection surface 211 is a surface through which light related to detection of information passes among the outer surfaces constituting the housing.
  • the first sensor unit 201 includes a first recess 212a and a second recess 212b.
  • the first recess 212 a and the second recess 212 b are formed on the upper surface 213 of the first sensor unit 201.
  • FIG. 4 has shown the external appearance which looked at the 2nd sensor unit 202 which concerns on 2nd embodiment from upper direction.
  • FIG. 4B shows an appearance of the second sensor unit 202 as viewed from the front.
  • FIG. 4C shows the external appearance of the second sensor unit 202 as viewed from below.
  • FIG. 4D shows an appearance of the second sensor unit 202 viewed from the right side. The appearance seen from the left is symmetrical to the appearance seen from the right.
  • the second sensor unit 202 is mounted on a vehicle and is a device for acquiring information outside the vehicle.
  • the second sensor unit 202 can be any of a LiDAR sensor unit, a camera unit, and a millimeter wave sensor unit.
  • the second sensor unit 202 includes a detection surface 221.
  • the detection surface 221 is a surface through which light related to information detection passes among the outer surfaces constituting the housing.
  • the second sensor unit 202 includes a first convex portion 222a and a second convex portion 222b.
  • the first convex portion 222 a and the second convex portion 222 b are formed on the lower surface 223 of the second sensor unit 202.
  • the first sensor unit 201 and the second sensor unit 202 are connectable.
  • the first convex portion 222a and the second convex portion 222b of the second sensor unit 202 are fitted into the first concave portion 212a and the second concave portion 212b of the first sensor unit 201, respectively.
  • FIG. 5A shows an appearance of the first sensor unit 201 and the second sensor unit 202 in a connected state as viewed from above.
  • the connected first sensor unit 201 and second sensor unit 202 constitute a sensor system S.
  • FIG. 5B shows an external appearance of the first sensor unit 201 and the second sensor unit 202 in a connected state as viewed from the right side.
  • the 1st convex part 222a fits into the 1st crevice 212a
  • the 2nd convex part 222b fits into the 2nd crevice 212b, and it is the 1st sensor unit 201 in the plane which intersects the connection direction.
  • the postures of the first sensor unit 201 and the second sensor unit 202 are regulated so that the detection reference direction Y1 of the second sensor unit 202 matches the detection reference direction Y2 of the second sensor unit 202.
  • the first concave portion 212a, the second concave portion 212b, the first convex portion 222a, and the second convex portion 222b are detected by the first sensor unit 201.
  • the angle of the detection reference direction Y2 of the second sensor unit 202 with respect to the reference direction Y1 is restricted.
  • the 1st recessed part 212a, the 2nd recessed part 212b, the 1st convex part 222a, and the 2nd convex part 222b are examples of a control member.
  • the first sensor unit 201 and the second sensor unit 202 are simply connected to each other.
  • the angle formed by the detection reference direction Y1 of the sensor unit 201 and the detection reference direction Y2 of the second sensor unit 202 can be uniquely determined. Therefore, the detection accuracy of the first sensor unit 201 and the second sensor unit 202 can be increased while reducing the burden associated with the operation of adjusting the detection reference direction.
  • FIG. 6A shows an appearance of the first sensor unit 201A according to the first modification of the second embodiment as viewed from above. Elements having substantially the same configuration and function as those of the first sensor unit 201 are denoted by the same reference numerals, and repeated description is omitted.
  • the first sensor unit 201A is different from the first sensor unit 201 in the position where the first recess 212a is formed and the position where the second recess 212b is formed.
  • FIG. 6B shows an appearance of the first sensor unit 201A as viewed from above in a state where the second sensor unit 202 is connected to the first sensor unit 201A.
  • the first sensor unit 201A is fitted in the plane intersecting the connecting direction by fitting the first convex part 222a with the first concave part 212a and the second convex part 222b with the second concave part 212b.
  • the postures of the first sensor unit 201A and the second sensor unit 202 are regulated so that the detection reference direction Y1 of the second sensor unit 202 and the detection reference direction Y2 of the second sensor unit 202 form a predetermined angle.
  • the first sensor unit 201A and the second sensor unit 202 are simply connected to each other.
  • An angle formed by the detection reference direction Y1 of the unit 201A and the detection reference direction Y2 of the second sensor unit 202 can be uniquely determined. Therefore, it is possible to increase the detection accuracy of the first sensor unit 201A and the second sensor unit 202 while reducing the burden associated with the operation of adjusting the detection reference direction.
  • FIG. 7A shows an external appearance of the first sensor unit 201B according to the second modification of the second embodiment as viewed from above. Elements having substantially the same configuration and function as those of the first sensor unit 201 are denoted by the same reference numerals, and repeated description is omitted.
  • the upper surface 213 of the first sensor unit 201B has a third recess 212c, a fourth recess 212d, a fifth recess 212e, a sixth recess 212f, a seventh recess 212g, An eighth recess 212h, a ninth recess 212i, and a tenth recess 212j are formed.
  • the detection reference direction Y1 of the first sensor unit 201B and the second direction in the plane intersecting the connection direction of the first sensor unit 201B and the second sensor unit 202 are used.
  • the angle formed by the detection reference direction Y2 of the sensor unit 202 can be selected from a plurality of values.
  • the detection reference direction Y1 of the first sensor unit 201B matches the detection reference direction Y2 of the second sensor unit 202.
  • the detection reference of the second sensor unit 202 is obtained.
  • the direction Y2 is a direction indicated by a dashed arrow that is different from the detection reference direction Y1 of the first sensor unit 201B.
  • the detection reference of the second sensor unit 202 is obtained.
  • the direction Y2 is a direction indicated by a two-dot chain line arrow that is different from the detection reference direction Y1 of the first sensor unit 201B.
  • the first sensor unit 201 (201A, 201B) is provided with a recess
  • the second sensor unit 202 is provided with a protrusion that fits into the recess.
  • a convex part may be provided in the first sensor unit 201 (201A, 201B), and a concave part in which the convex part is fitted may be provided in the second sensor unit 202.
  • the first sensor unit 201 (201A, 201B) and the second sensor unit are connected to the first sensor unit 201 (201A, 201B) and the second sensor unit 202. It can be appropriately determined according to the posture of 202.
  • a groove formed on one of two surfaces facing each other at the time of connection and a ridge provided on the other surface and fitted into the groove can also be an example of a regulating member.
  • FIG. 8 shows the external appearance which looked at the sensor unit 203 which concerns on 3rd embodiment from upper direction.
  • FIG. 8B shows an appearance of the sensor unit 203 as viewed from the front.
  • FIG. 8C shows the external appearance of the sensor unit 203 as viewed from below.
  • FIG. 8D shows the external appearance of the sensor unit 203 viewed from the right side. The appearance seen from the left is symmetrical to the appearance seen from the right.
  • the sensor unit 203 is a device that is mounted on a vehicle and acquires information outside the vehicle.
  • the sensor unit 203 can be any one of a LiDAR sensor unit, a camera unit, and a millimeter wave sensor unit.
  • the sensor unit 203 includes a detection surface 231.
  • the detection surface 231 is a surface through which light related to information detection passes among the outer surfaces constituting the housing.
  • the sensor unit 203 includes a first recess 232a and a second recess 232b.
  • the first recess 232 a and the second recess 232 b are formed on the upper surface 233 of the sensor unit 203.
  • the sensor unit 203 includes a first convex portion 234a and a second convex portion 234b.
  • the first convex portion 234 a and the second convex portion 234 b are provided on the lower surface 235 of the sensor unit 203.
  • any number of sensor units 203 having the same configuration can be connected in the vertical direction. Therefore, the manufacturing cost can be reduced while reducing the burden associated with the operation of adjusting the detection reference direction.
  • FIG. 9 shows a state where three sensor units 203 are connected in the vertical direction.
  • the first convex portion 234a and the second convex portion 234b of a certain sensor unit 203 are respectively inserted into the first concave portion 232a and the second concave portion 232b of another sensor unit 203, whereby the two sensors Units 203 are connected in the vertical direction.
  • the first concave portion 232a, the second concave portion 232b, the first convex portion 234a, and the second convex portion 234b are configured such that the detection reference direction Y of one sensor unit 203 is the other in a plane that intersects the connecting direction.
  • the sensor unit 203 is arranged so as to coincide with the detection reference direction Y.
  • one of the two sensor units 203 to be connected is an example of the first sensor unit, and the other sensor unit 203 is an example of the second sensor unit.
  • the 1st recessed part 232a, the 2nd recessed part 232b, the 1st convex part 234a, and the 2nd convex part 234b are examples of a control member.
  • the positions of the first concave portion 232a, the second concave portion 232b, the first convex portion 234a, and the second convex portion 234b are the same as the detection reference directions Y of the two sensor units 203 to be connected as shown in FIG. Can be appropriately determined according to the angle formed by.
  • the number of recesses formed on the upper surface 233 can be three or more.
  • the angle formed by the detection reference directions Y of the two sensor units 203 to be connected can be selected from a plurality of values.
  • a concave portion is provided on the upper surface 233 of the sensor unit 203, and a convex portion that fits with a concave portion of another sensor unit 203 is provided on the lower surface 235.
  • a concave portion may be formed on the upper surface 233 and a convex portion may be provided on the lower surface 235.
  • the upper sensor unit 203, the middle sensor unit 203, and the lower sensor unit 203 can be a LiDAR sensor unit, a camera unit, and a millimeter wave sensor unit, respectively.
  • FIG. 10A shows an appearance of the sensor unit 204 according to the fourth embodiment viewed from the rear.
  • FIG. 10B shows the external appearance of the sensor unit 204 viewed from the left.
  • FIG. 10C shows the external appearance of the sensor unit 204 as viewed from above.
  • FIG. 10D shows an appearance of the sensor unit 204 viewed from the right side.
  • FIG. 10E shows the external appearance of the sensor unit 204 as viewed from the front.
  • the appearance seen from below is symmetrical with the appearance seen from above.
  • the sensor unit 204 is a device that is mounted on a vehicle and acquires information outside the vehicle.
  • the sensor unit 204 can be any one of a LiDAR sensor unit, a camera unit, and a millimeter wave sensor unit.
  • the sensor unit 204 includes a detection surface 241.
  • the detection surface 241 is a surface through which light related to information detection passes among the outer surfaces constituting the housing.
  • the sensor unit 204 includes a first recess 242a and a second recess 242b.
  • the first recess 242 a and the second recess 242 b are formed on the left side surface 243 of the sensor unit 204.
  • the sensor unit 204 includes a first convex portion 244a and a second convex portion 244b.
  • the first convex portion 244 a and the second convex portion 244 b are provided on the right side surface 245 of the sensor unit 204.
  • any number of sensor units 204 having the same configuration can be connected in the left-right direction. Therefore, the manufacturing cost can be reduced while reducing the burden associated with the operation of adjusting the detection reference direction.
  • FIG. 11 shows a state in which three sensor units 204 are connected in the left-right direction.
  • the first convex portion 244a and the second convex portion 244b of a certain sensor unit 204 are fitted into the first concave portion 242a and the second concave portion 242b of another sensor unit 204, respectively, so that the two sensors Units 204 are connected in the left-right direction.
  • the first concave portion 242a, the second concave portion 242b, the first convex portion 244a, and the second convex portion 244b are configured so that the detection reference direction Y of one sensor unit 204 is within the plane including the connecting direction.
  • the unit 204 is arranged so as to form a predetermined angle with the detection reference direction Y of the unit 204.
  • one of the two sensor units 204 to be coupled is an example of a first sensor unit, and the other sensor unit 204 is an example of a second sensor unit.
  • the 1st recessed part 242a, the 2nd recessed part 242b, the 1st convex part 244a, and the 2nd convex part 244b are examples of a control member.
  • a concave portion is provided on the left side surface 243 of the sensor unit 204, and a convex portion that fits into a concave portion of another sensor unit 204 is provided on the right side surface 245.
  • a concave portion may be formed on the right side surface 245, and a convex portion may be provided on the left side surface 243.
  • the position, number, and shape of the convex portions and the concave portions provided in the sensor unit 204 can be appropriately determined according to the postures of the two sensor units 204 at the time of connection.
  • a groove formed on one of two surfaces facing each other at the time of connection and a ridge provided on the other surface and fitted into the groove can also be an example of a regulating member.
  • All of the plurality of sensor units 204 connected need not be the same type of sensor unit.
  • the left sensor unit 204, the center sensor unit 204, and the right sensor unit 204 can be a LiDAR sensor unit, a camera unit, and a millimeter wave sensor unit, respectively.
  • the angle range in which information can be detected can be expanded in the left-right direction.
  • the detection reference direction Y of the two sensor units 204 connected to each other intersects a plane including the connection direction by appropriately determining the positions of the protrusions and the recesses. It is also possible to make the difference in the plane (that is, in the plane including the vertical direction). As in the example described with reference to FIG. 7, an angle formed by two detection reference directions Y in a plane including the vertical direction may be selectable from a plurality of values.
  • the sensor system S can include a support 205 and an adjustment mechanism 206.
  • the support 205 is a common support that supports the first sensor unit 201 and the second sensor unit 202.
  • the adjustment mechanism 206 is a mechanism that adjusts at least one of the position and posture of the support 205 with respect to the vehicle when the sensor system S is mounted on the vehicle.
  • a known aiming screw mechanism or actuator mechanism can be exemplified.
  • the angle formed by the detection reference direction Y1 of the first sensor unit 201 and the detection reference direction Y2 of the second sensor unit 202 is uniquely determined by the above-described restriction member.
  • the sensor system S when the sensor system S is mounted on the vehicle, when at least one of the detection reference direction Y1 and the detection reference direction Y2 deviates from a desired direction due to tolerances of vehicle body parts or displacement of the sensor system S with respect to the vehicle body. There is. Therefore, after the sensor system S is mounted on the vehicle, the detection reference direction Y1 and the detection reference direction Y2 are readjusted.
  • the adjustment mechanism 206 can collectively adjust the detection reference direction Y1 and the detection reference direction Y2. The Therefore, even when a plurality of sensor units are used for driving support, it is possible to reduce the burden of work for adjusting the detection reference direction of each sensor unit.
  • the configuration related to the support body 205 and the adjustment mechanism 206 can be applied to each example of the sensor system S described with reference to other drawings.
  • the sensor system S can include a left front lamp device 207.
  • the left front lamp device 207 may include a lamp housing 271 and a translucent cover 272.
  • the lamp housing 271 defines the lamp chamber 273 together with the translucent cover 272.
  • the left front lamp device 207 is mounted on the left front corner LF of the vehicle 100 shown in FIG.
  • an arrow F indicates the front direction of the vehicle 100.
  • An arrow B indicates the backward direction of the vehicle 100.
  • An arrow L indicates the left direction of the vehicle 100.
  • An arrow R indicates the right direction of the vehicle 100. “Left” and “right” used in the description relating to these drawings indicate the left and right directions viewed from the driver's seat.
  • the left front lamp device 207 may include a lamp unit 274.
  • the lamp unit 274 is a device that emits visible light to the outside of the vehicle 100.
  • the lamp unit 274 is accommodated in the lamp chamber 273.
  • Examples of the lamp unit 274 may include a headlamp unit, a vehicle width lamp unit, a direction indicator lamp unit, and a fog lamp unit.
  • the first sensor unit 201 and the second sensor unit 202 are disposed in the lamp chamber 273. Since the lamp unit 274 has a function of supplying light to the outside of the vehicle 100, the lamp unit 274 is generally arranged in a place with a small shielding object such as the left front corner LF. By arranging the first sensor unit 201 and the second sensor unit 202 in such a place, information outside the vehicle 100 can be efficiently acquired.
  • a right front lamp device having a symmetrical configuration with the left front lamp device 207 can be mounted on the right front corner RF of the vehicle 100 shown in FIG.
  • a left rear lamp device may be mounted on the left rear corner LB of the vehicle 100.
  • examples of the lamp unit included in the left rear lamp device may include a brake light unit, a taillight unit, a vehicle width light unit, and a reverse light unit.
  • a right rear lamp device having a configuration symmetrical to the left rear lamp device may be mounted on the right rear corner RB of the vehicle 100.
  • the first sensor unit 201 and the second sensor unit 202 can be disposed in a lamp chamber defined by a lamp housing.
  • the second to fourth embodiments are merely examples for facilitating understanding of the present disclosure.
  • the configuration according to each embodiment can be changed or improved as appropriate without departing from the spirit of the present disclosure.
  • the arrow F indicates the forward direction of the illustrated structure.
  • Arrow B indicates the backward direction of the illustrated structure.
  • Arrow U indicates the upward direction of the illustrated structure.
  • Arrow D indicates the downward direction of the illustrated structure.
  • Arrow L indicates the left direction of the illustrated structure.
  • Arrow R indicates the right direction of the illustrated structure.
  • FIG. 13A shows the appearance of the sensor module 501 according to the fifth embodiment.
  • the sensor module 501 includes a housing 511 and a translucent cover 512.
  • the housing 511 partitions the accommodation chamber 513 together with the translucent cover 512.
  • FIG. 13B shows the external appearance of the sensor module 501 with the translucent cover 512 removed.
  • FIG. 14 shows a cross section of the sensor module 501 viewed from the direction of the arrow along the line XIV-XIV in FIG.
  • the sensor module 501 includes a camera unit 514 and a LiDAR sensor unit 515.
  • the camera unit 514 is an example of a first sensor unit.
  • the LiDAR sensor unit 515 is an example of a second sensor unit.
  • the camera unit 514 is a device for acquiring an image as information outside the vehicle.
  • the image can include at least one of a still image and a moving image.
  • the camera unit 514 may include a camera that has sensitivity to visible light, or may include a camera that has sensitivity to infrared light.
  • the LiDAR sensor unit 515 has a configuration for emitting non-visible light and a configuration for detecting return light as a result of reflection of the non-visible light on an object existing at least outside the vehicle.
  • the LiDAR sensor unit 515 can include a scanning mechanism that sweeps the invisible light by changing the emission direction (that is, the detection direction) as necessary. For example, infrared light having a wavelength of 905 nm can be used as invisible light.
  • the sensor module 501 is mounted at an appropriate location in the vehicle. The location is determined as a position where each of the camera unit 514 and the LiDAR sensor unit 515 can obtain desired information.
  • the sensor module 501 includes a support body 516.
  • the support body 516 supports the camera unit 514 and the LiDAR sensor unit 515.
  • an opening 511 b is formed in the back wall 511 a of the housing 511.
  • the support 516 can be attached to and detached from the housing 511 from the outside.
  • FIG. 14 indicates the state shown in FIG. 14 .
  • An arrow A in FIG. 14 indicates the mounting direction of the support 516.
  • maintenance and inspection work and replacement work for a plurality of sensors can be performed only by attaching / detaching the support 516 to / from the housing 511 from the outside. Therefore, it is possible to reduce labor required for maintenance and inspection work and replacement work of a plurality of sensors mounted on the vehicle.
  • the entire camera unit 514 and the entire LiDAR sensor unit 515 are located inside the outer edge 516a of the support 516 when viewed from the mounting direction of the support 516. .
  • the opening 511 b formed in the housing 511 also has a shape corresponding to the support body 516. That is, the support body 516 and the housing 511 have a shape that regulates the posture when the support body 516 is attached to the housing 511.
  • an arrow 514d indicates the detection reference direction of the camera unit 514.
  • An arrow 515d indicates the detection reference direction of the LiDAR sensor unit 515.
  • the mounting direction A of the support 516 is along the detection reference direction 514d of the camera unit 514 and the detection reference direction 515d of the LiDAR sensor unit 515.
  • “Along the detection reference direction” means that the mounting direction A coincides with the detection reference direction and the case where the mounting direction A is inclined with respect to the detection reference direction. However, in the latter case, the inclination of the mounting direction A with respect to the detection reference direction needs to be smaller than the inclination with respect to the direction orthogonal to the detection reference direction.
  • the detection reference direction 514d of the camera unit 514 and the detection reference direction 515d of the LiDAR sensor unit 515 are along the front-rear direction.
  • the mounting direction A may be inclined with respect to the front-rear direction. However, the inclination with respect to the front-rear direction needs to be smaller than the inclination with respect to the left-right direction and the up-down direction.
  • the projected area of each sensor unit tends to be small when viewed from the detection reference direction. Therefore, the size of the support body 516 and the area of the opening 511b of the housing 511 can be reduced by setting the mounting direction A of the support body 516 along the detection reference direction of each sensor unit.
  • a point 514p indicates the detection reference position of the camera unit 514.
  • a point 515p indicates a detection reference position of the LiDAR sensor unit 515.
  • the detection reference position may be determined as a physical position (such as an image sensor in the camera unit 514 or a light receiving surface of the light receiving element in the LiDAR sensor unit 515) related to actual detection by each sensor unit. It may be determined as a virtual point used in determining the arrangement and detection range.
  • the detection reference position 514p of the camera unit 514 and the detection reference position 515p of the LiDAR sensor unit 515 are not offset in the front-rear direction.
  • Such a configuration facilitates collective adjustment of the detection reference direction 514d of the camera unit 514 and the detection reference direction 515d of the LiDAR sensor unit 515 by adjusting the posture of the support 516.
  • the detection reference position 514p of the camera unit 514 and the detection reference position 515p of the LiDAR sensor unit 515 are not offset in the vertical direction.
  • This configuration also facilitates batch adjustment of the detection reference direction 514d of the camera unit 514 and the detection reference direction 515d of the LiDAR sensor unit 515 by adjusting the posture of the support 516.
  • the support body 516 can include a mechanism (not shown) for finely adjusting the attitude with respect to the housing 511.
  • a mechanism for finely adjusting the attitude with respect to the housing 511. Examples of such a mechanism include an aiming screw mechanism and an actuator mechanism.
  • the camera unit 514 and the LiDAR sensor unit 515 can be individually attached to and detached from the support 516.
  • the sensor module 501 can be economically operated.
  • the signal line 541 is connected to the camera unit 514.
  • the signal line 541 is used to supply power and control signals to the camera unit 514 and to output a signal corresponding to information detected by the camera unit 514.
  • the signal line 551 is connected to the LiDAR sensor unit 515.
  • the signal line 551 is used for supplying power and control signals to the LiDAR sensor unit 515 and outputting a signal corresponding to information detected by the LiDAR sensor unit 515.
  • the sensor module 501 includes an aggregation unit 561.
  • the aggregation unit 561 is provided on the support body 516.
  • the aggregation unit 561 aggregates the signal line 541 connected to the camera unit 514 and the signal line 551 connected to the LiDAR sensor unit 515.
  • the aggregation part 561 is provided as an elastic member in which an insertion hole is formed, for example. A through hole is formed in the housing 511, and the aggregation portion 561 is fitted into the through hole.
  • the signal line 541 and the signal line 551 are drawn out of the housing 511 through the insertion holes formed in the aggregation portion 561.
  • the sensor module has multiple sensor units, multiple signal lines must be routed. According to the above configuration, since the plurality of signal lines are aggregated in the support 516, handling of the plurality of signal lines is facilitated. Therefore, a decrease in work efficiency can be suppressed.
  • the sensor module 501 includes a control device 517.
  • the control device 517 is a device for controlling each of the camera unit 514 and the LiDAR sensor unit 515.
  • the control device 517 is supported by the support body 516 outside the housing 511.
  • the signal line 541 and the signal line 551 are connected to the control device 517.
  • a signal for controlling the operation of the camera unit 514 is supplied to the camera unit 514 through a signal line 541.
  • a signal for controlling the operation of the LiDAR sensor unit 515 is supplied to the LiDAR sensor unit 515 via the signal line 551.
  • a communication line is connected to the control device 517.
  • the communication line is directly or indirectly connected to a general control device such as an ECU mounted on the vehicle. Thereby, communication of signals and data is enabled between the control device 517 and the overall control device.
  • the control device 517 can be realized by a general-purpose microprocessor that operates in cooperation with a general-purpose memory.
  • a general-purpose microprocessor a CPU, an MPU, and a GPU can be exemplified.
  • the general-purpose memory ROM and RAM can be exemplified.
  • the ROM can store a computer program that realizes processing to be described later.
  • the general-purpose microprocessor designates at least a part of a program stored on the ROM, expands it on the RAM, and executes the above-described processing in cooperation with the RAM.
  • the control device 517 may be realized by a dedicated integrated circuit such as a microcontroller, an ASIC, or an FPGA that can execute a computer program that realizes processing to be described later.
  • the control device 517 may be realized by a combination of a general-purpose microprocessor and a dedicated integrated circuit.
  • control device 517 can share a part of the processing performed by the overall control device such as an ECU mounted on the vehicle. Therefore, the processing load in the overall control device can be reduced.
  • the operation of either the camera unit 514 or the LiDAR sensor unit 515 may be controlled by the overall control device without using the control device 517.
  • the control device 517 may be supported by the support body 516 in the accommodation chamber 513. In this case, since the signal line 541 and the signal line 551 are connected to the control device 517 in the storage chamber 513, the control device 517 can function as an aggregation unit. Then, a signal line used for communication with the overall control device is drawn out from the housing chamber 513 to the outside of the housing 511.
  • the support body 516 is formed of a material containing metal.
  • heat generated by the operations of the camera unit 514 and the LiDAR sensor unit 515 can be efficiently dissipated.
  • heat generated by the operation of the control device 517 can also be efficiently dissipated.
  • the support body 516 includes a sealing member 562.
  • the sealing member 562 is disposed between the support 516 and the housing 511. Examples of the sealing member 562 include a gasket and an O-ring.
  • the sealing member 562 can have elasticity.
  • the camera unit 514 can include a light shielding cover 542.
  • the light shielding cover 542 is provided so as to surround the imaging surface 543 of the camera unit 514.
  • the entry of disturbance light to the imaging surface 543 can be suppressed. Therefore, it is possible to suppress a decrease in detection accuracy of external information of the vehicle by the camera unit 514.
  • the fifth embodiment is merely an example for facilitating understanding of the present disclosure.
  • the configuration according to the fifth embodiment may be changed or improved as appropriate without departing from the spirit of the present disclosure.
  • the mounting direction A of the support 516 with respect to the housing 511 is along the detection reference direction 514d of the camera unit 514 and the detection reference direction 515d of the LiDAR sensor unit 515.
  • the mounting direction of the support 516 may not be along the detection reference direction 514d of the camera unit 514 and the detection reference direction 515d of the LiDAR sensor unit 515.
  • FIG. 16 shows such another example.
  • the mounting direction of the support body 516 is along the vertical direction of the sensor module 501.
  • the detection reference direction 514d of the camera unit 514 and the detection reference direction 515d of the LiDAR sensor unit 515 are along the front-rear direction of the sensor module 501. That is, the above-described opening 511b is formed in the ceiling wall 511c or the bottom wall 511d of the housing 511 shown in FIG. 13B, and the support body 516 is passed through the opening 511b through the camera unit 514 and the LiDAR sensor unit 515. Is attached to the housing 511.
  • the entire camera unit 514 and the entire LiDAR sensor unit 515 are located inside the outer edge 516a of the support 516.
  • the support body 516 viewed from the mounting direction with respect to the housing 511 has a substantially rectangular shape in which only one of the four corners has a different shape.
  • the shape of the support body 516 viewed from the mounting direction can be substantially circular.
  • the protrusion 516b may be formed on a part of the outer edge 516a.
  • the opening 511b formed in the housing 511 is formed with a recess for receiving the protrusion 516b. That is, also in this example, the support body 516 and the housing 511 have a shape that regulates the posture when the support body 516 is mounted on the housing 511. The relationship between the protrusion and the recess may be reversed.
  • the detection reference direction 514d of the camera unit 514 and the detection reference direction 515d of the LiDAR sensor unit 515 do not change relative to each other.
  • the detection reference direction 514d and the detection reference direction 515d are fixed together with the support body 516 or are collectively adjusted.
  • a configuration in which the detection reference direction 514d and the detection reference direction 515d can be individually adjusted may be employed.
  • FIG. 17A shows such an example.
  • the sensor module 501 includes a first adjustment mechanism 581 and a second adjustment mechanism 582.
  • the first adjustment mechanism 581 is a mechanism for adjusting the detection reference direction 514d of the camera unit 514.
  • the second adjustment mechanism 582 is a mechanism for adjusting the detection reference direction 515d of the LiDAR sensor unit 515.
  • the first adjustment mechanism 581 and the second adjustment mechanism 582 are supported by the support body 516.
  • the first adjustment mechanism 581 is an aiming screw mechanism including a screw 581a, a screw 581b, a fulcrum 581c, and a support plate 581d.
  • the camera unit 514 is supported by the support plate 581d.
  • the support plate 581d is supported by the support body 516 via a screw 581a, a screw 581b, and a fulcrum 581c.
  • the screw 581a and the screw 581b can be operated from the outside of the housing 511.
  • the second adjustment mechanism 582 is an aiming screw mechanism including a screw 582a, a screw 582b, a fulcrum 582c, and a support plate 582d.
  • the LiDAR sensor unit 515 is supported by the support plate 582d.
  • the support plate 582d is supported by the support body 516 via a screw 582a, a screw 582b, and a fulcrum 582c.
  • the screw 582a and the screw 582b can be operated from the outside of the housing 511.
  • the posture of the support plate 582d changes in the left-right direction around the fulcrum 582c.
  • the detection reference direction 515d of the LiDAR sensor unit 515 changes in the left-right direction.
  • the screw 582b is operated, the posture of the support plate 582d changes in the vertical direction around the fulcrum 582c.
  • the detection reference direction 515d of the LiDAR sensor unit 515 changes in the vertical direction.
  • Each of the screw 582a and the screw 582b can be replaced with an actuator that operates in response to an external control signal.
  • the adjustment of the detection reference direction of a specific sensor unit can be performed without being restricted by the detection reference direction of another sensor unit.
  • the sensor module 501 includes two sensor units. However, the sensor module 501 may have three or more sensor units.
  • FIG. 17B shows such another example.
  • the sensor module 501 can further include a millimeter wave sensor unit 519.
  • the millimeter wave sensor unit 519 is supported by the support body 516.
  • the millimeter wave sensor unit 519 is an example of a third sensor unit.
  • the millimeter wave sensor unit 519 has a configuration for transmitting a millimeter wave and a configuration for receiving a reflected wave resulting from the reflection of the millimeter wave by an object existing outside the vehicle.
  • Examples of the millimeter wave frequency include 24 GHz, 26 GHz, 76 GHz, and 79 GHz.
  • each sensor unit can be appropriately selected from the camera unit, the LiDAR sensor unit, and the millimeter wave sensor unit described above.
  • the sensor module 501 includes a plurality of sensor units.
  • the sensor module 501 may be configured to include a lamp unit and at least one sensor unit.
  • FIG. 18 shows such another example.
  • the sensor module 501 includes a camera unit 514 and a lamp unit 520.
  • the lamp unit 520 is a device that emits visible light to the outside of the vehicle.
  • the lamp unit 520 is accommodated in the accommodation chamber 513.
  • the lamp unit 520 is supported by the support body 516. Examples of the lamp unit 520 include a headlamp unit, a vehicle width lamp unit, a direction indicator lamp unit, and a fog lamp unit.
  • the sensor module 501 is mounted on the left front corner LF of the vehicle 100 shown in FIG.
  • a sensor module having a bilaterally symmetric configuration with the sensor module 501 shown in FIG. 18 is mounted on the right front corner RF of the vehicle 100.
  • “Left” and “right” used in the description of FIG. 18 indicate the left and right directions viewed from the driver's seat.
  • the sensor module 501 shown in FIG. 18 can also be mounted on the left rear corner LB of the vehicle 100 shown in FIG.
  • the basic configuration of the sensor module mounted on the left rear corner LB may be symmetric with respect to the sensor module 501 shown in FIG.
  • the sensor module 501 shown in FIG. 18 can also be mounted on the right rear corner RB of the vehicle 100 shown in FIG.
  • the basic configuration of the sensor module mounted on the right rear corner RB is bilaterally symmetrical with the sensor module mounted on the left rear corner LB described above.
  • maintenance and inspection work and replacement work of the camera unit 514 and the lamp unit 520 can be performed only by attaching / detaching the support 516 to / from the housing 511 from the outside. Therefore, it is possible to reduce labor required for maintenance and inspection work or replacement work of the sensor module in which at least one sensor unit and lamp unit are arranged in the storage chamber 513.
  • the arrow F indicates the forward direction of the illustrated structure.
  • Arrow B indicates the backward direction of the illustrated structure.
  • Arrow L indicates the left direction of the illustrated structure.
  • Arrow R indicates the right direction of the illustrated structure. “Left” and “right” used in the following description indicate the left and right directions viewed from the driver's seat.
  • FIG. 19 schematically shows the configuration of the left front lamp device 601 according to the sixth embodiment.
  • the left front lamp device 601 includes a housing 611 and a translucent cover 612.
  • the housing 611 defines the lamp chamber 613 together with the translucent cover 612.
  • the left front lamp device 601 is mounted on the left front corner LF of the vehicle 100 shown in FIG.
  • a right front lamp device having a symmetrical configuration with the left front lamp device 601 is mounted on the right front corner RF of the vehicle 100.
  • the left front lamp device 601 includes a lamp unit 614.
  • the lamp unit 614 is a device that emits visible light to the outside of the vehicle 100.
  • the lamp unit 614 is accommodated in the lamp chamber 613. Examples of the lamp unit 614 include a headlamp unit, a vehicle width lamp unit, a direction indicator lamp unit, and a fog lamp unit.
  • the front left lamp device 601 includes a sensor unit 615.
  • the sensor unit 615 is accommodated in the lamp chamber 613.
  • the lamp chamber 613 is an example of a space defined by the housing 611.
  • the sensor unit 615 is a device that detects information outside the vehicle 100 and outputs a signal corresponding to the information.
  • the sensor unit 615 can be any of a LiDAR sensor unit, a camera unit, and a millimeter wave sensor unit.
  • the LiDAR sensor unit has a configuration for emitting invisible light and a configuration for detecting return light as a result of reflection of the invisible light on an object existing at least outside the vehicle.
  • the LiDAR sensor unit can include a scanning mechanism that sweeps the invisible light by changing the emission direction (that is, the detection direction) as necessary. For example, infrared light having a wavelength of 905 nm can be used as invisible light.
  • the camera unit is a device for acquiring an image as information outside the vehicle.
  • the image can include at least one of a still image and a moving image.
  • the camera unit may include a camera having sensitivity to visible light, or may include a camera having sensitivity to infrared light.
  • the millimeter wave sensor unit has a configuration for transmitting a millimeter wave and a configuration for receiving a reflected wave resulting from the reflection of the millimeter wave by an object existing outside the vehicle 100.
  • Examples of the millimeter wave frequency include 24 GHz, 26 GHz, 76 GHz, and 79 GHz.
  • the left front lamp device 601 includes a first aiming mechanism 616.
  • the first aiming mechanism 616 is a mechanism that adjusts the illumination reference position of the lamp unit 614.
  • the left front lamp device 601 includes a second aiming mechanism 617.
  • the second aiming mechanism 617 is a mechanism that adjusts the detection reference position of the sensor unit 615.
  • FIG. 20A shows an appearance of a part of the front left lamp device 601 as viewed from the direction of the arrow XXA in FIG.
  • FIG. 20B shows a cross section viewed from the direction of the arrow along the line XXB-XXB in FIG.
  • the first aiming mechanism 616 includes an aiming screw 661.
  • the aiming screw 661 has a head portion 661a and a shaft portion 661b.
  • the housing 611 has a through hole 611a.
  • the head portion 661 a is disposed outside the housing 611.
  • the shaft portion 661b extends into the lamp chamber 613 through the through hole 611a.
  • a thread groove is formed on a part of the outer peripheral surface of the shaft portion 661b.
  • the first aiming mechanism 616 includes a link member 662.
  • the link member 662 has a through hole. A thread groove is formed on the inner peripheral surface of the through hole.
  • the link member 662 is coupled to the shaft portion 661b of the aiming screw 661 so that the screw grooves are screwed together.
  • the link member 662 is coupled to a part of the lamp unit 614.
  • the first aiming mechanism 616 can be operated from the outside of the housing 611.
  • the shaft portion 661b is also rotated in the same direction.
  • the screwed link member 662 is displaced along the shaft portion 661b.
  • the illumination reference position of the lamp unit 614 is changed by changing the posture of the lamp unit 614 according to the displacement. Since the method of adjusting the illumination reference position of the lamp unit 614 via the link member 662 is well known, detailed description thereof is omitted.
  • the second aiming mechanism 617 includes an aiming screw 671.
  • the aiming screw 671 has a head portion 671a and a shaft portion 671b.
  • the head portion 671a is disposed in the lamp chamber 613.
  • a screw groove is formed on the outer peripheral surface of the shaft portion 671b.
  • the second aiming mechanism 617 includes a link member 672.
  • the link member 672 has a through hole. A thread groove is formed on the inner peripheral surface of the through hole.
  • the link member 672 is coupled to the shaft portion 671b of the aiming screw 671 so that the screw grooves are screwed together.
  • the link member 672 is coupled to a part of the sensor unit 615.
  • the left front lamp device 601 includes a switching device 618.
  • the switching device 618 has a first state in which only the first aiming mechanism 616 is allowed to operate from the outside of the housing 611 and a second state in which the second aiming mechanism 617 is operated in response to the operation of the first aiming mechanism 616. It is a switchable device.
  • the switching device 618 includes a first gear 681.
  • the first gear 681 is coupled to the shaft portion 661 b of the aiming screw 661 in the first aiming mechanism 616. That is, when the head portion 661a of the aiming screw 661 is rotated outside the housing 611, the first gear 681 is also rotated in the same direction.
  • the switching device 618 includes a second gear 682, a third gear 683, and a shaft 684.
  • the shaft 684 is rotatably supported by a bearing mechanism.
  • the second gear 682 is in mesh with the first gear 681.
  • the second gear 682 can idle around the shaft 684 in a normal state.
  • Third gear 683 is coupled to shaft 684. Therefore, the third gear 683 rotates in the same direction as the shaft 684.
  • a gear 671c is formed on the outer peripheral surface of the head portion 671a of the aiming screw 671 in the second aiming mechanism 617.
  • the gear 671 c meshes with the third gear 683.
  • the state shown in FIG. 20B corresponds to the first state described above.
  • the head portion 661a of the aiming screw 661 is rotated outside the housing 611, the first gear 681 is also rotated in the same direction. The rotation is transmitted to the second gear 682. However, since the second gear 682 idles around the shaft 684, the third gear 683 does not rotate. Therefore, the operation of only the first aiming mechanism 616 is allowed.
  • the shaft 684 has a hollow portion 684a.
  • a through-hole 611b is formed in the housing 611.
  • the through hole 611b communicates with the hollow portion 684a.
  • the through hole 611b is covered with a cover 685 in a normal state.
  • the switching device 618 includes a key unit 686.
  • the key portion 686 has a cylindrical shaft portion 686a.
  • the key portion 686 includes a pair of protrusions 686b. Each protrusion 686b protrudes from the side surface of the shaft portion 686a. Each protrusion 686b is urged toward the outside of the shaft portion 686a by an elastic member (not shown).
  • the key unit 686 includes an operation member 686c.
  • each projection 686b is forcibly pulled back into the shaft portion 686a against the urging force of the elastic member, and is accommodated in the shaft portion 686a. Is done.
  • each projection 686b protrudes outward from the shaft portion 686a by the biasing force of the elastic member.
  • FIG. 21B shows a state in which the protrusion amount of each protrusion 686b is maximum.
  • each protrusion 686b can be displaced toward the shaft portion 686a by a force in a direction against the urging force of the elastic member.
  • the position of the operation member 686c is displaced between the position shown in FIG. 21A and the position shown in FIG. 21B according to the protrusion amount of each protrusion 686b.
  • a mark 686d indicates that the operation member 686c is located at a position where the protrusion amount of each protrusion 686b is maximized.
  • each protrusion 686b can protrude from the shaft portion 686a, but the protrusion is blocked by the inner wall of the hollow portion 684a.
  • the shaft 684 has a pair of through holes 684b.
  • Each through hole 684b is formed only in a part of the shaft 684 in the circumferential direction.
  • Each through hole 684b extends in the radial direction of the shaft 684, and communicates the outside of the shaft 684 with the hollow portion 684a.
  • a pair of horizontal holes 682a are formed on the inner peripheral surface of the second gear 682. As shown in FIG. Each lateral hole 682 a extends in the radial direction of the second gear 682. While the first gear 681 and the second gear 682 are rotated via the aiming screw 661, a state in which the pair of lateral holes 682a are opposed to the pair of through holes 684b is temporarily established. At this time, the pair of protrusions 686b are further protruded by the biasing force of the elastic member, and enter the pair of lateral holes 682a, respectively. Thus, the second gear 682 and the shaft 684 are coupled via the pair of protrusions 686b.
  • the state shown in FIG. 24 corresponds to the second state described above.
  • the first gear 681 is also rotated in the same direction.
  • the rotation is transmitted to the second gear 682.
  • the second gear 682 and the shaft 684 are coupled via the key portion 686, the shaft 684 rotates in the same direction as the second gear 682.
  • the third gear 683 is coupled to the shaft 684, the third gear 683 also rotates in the same direction as the second gear 682.
  • the rotation of the third gear 683 is transmitted to the aiming screw 671 through the gear 671c.
  • the aiming screw 671 rotates in the same direction as the aiming screw 661. That is, the second aiming mechanism 617 is operated in accordance with the operation of the first aiming mechanism 616.
  • the screwed link member 672 is displaced along the shaft portion 671b.
  • the detection reference position of the sensor unit 615 is changed by changing the attitude of the sensor unit 615 according to the displacement. Since the method of adjusting the illumination reference position of the sensor unit 615 via the link member 672 is well known, detailed description thereof is omitted.
  • each protrusion 686b is the maximum in the state shown in FIG. 24, the operation member 686c reaches the mark 686d. That is, the user can recognize that the second state is established based on the fact that the operation member 686c has reached the mark 686d.
  • the pair of protrusions 686b are pulled back to the shaft portion 686a by moving the operation member 686c of the key portion 686 to the position shown in FIG. 22, and the second gear 682 and the shaft The connection of 684 is released. That is, switching from the second state to the first state is performed. In this state or after the key portion 686 is removed from the hollow portion 684a, the illumination reference position of the lamp unit 614 can be adjusted by operating the first aiming mechanism 616.
  • the second aiming mechanism 617 accommodated in the housing 611 cannot be operated unless the switching device 618 establishes the second state. Therefore, it is possible to limit the adjustment action by the general user of the detection reference position of the sensor unit 615 included in the left front lamp device 601.
  • the key portion 686 that is a part of the switching device 618 is detachable from the outside of the housing 611. In a state where the key portion 686 is removed, only the first state is established.
  • the operation member 686c of the key portion 686 can be locked at the position indicated by the mark 686e.
  • the position can be set so that the protrusion amount of each protrusion 686b is smaller than the state shown in FIG.
  • the protruding amount is determined as an amount by which the pair of protrusions 686 b can engage with only the pair of through holes 684 b in the shaft 684.
  • the switching device 618 can take a third state in which only the second aiming mechanism 617 is allowed to operate. That is, the shaft 684 rotates independently of the second gear 682 by rotating the key 686 in the state shown in FIG. Therefore, the rotation of the shaft 684 is transmitted to the aiming screw 671 through the third gear 683 and the gear 671c, but not transmitted to the aiming screw 661 of the first aiming mechanism 616.
  • the sixth embodiment is merely an example for facilitating understanding of the present disclosure.
  • the configuration according to the sixth embodiment can be changed or improved as appropriate without departing from the spirit of the present disclosure.
  • a key portion 686 that is a part of the switching device 618 is detachable from the outside of the housing 611.
  • at least a part of the switching device 619 having a switching function similar to that of the key unit 686 can be disposed in the lamp chamber 613.
  • the switching device 619 includes a main body 691.
  • the main body 691 is disposed in the hollow portion 684 a of the shaft 684.
  • a pair of protrusions 692 can protrude from the main body 691. Since the relationship between the main body 691 and the pair of protrusions 692 is the same as the relationship between the shaft portion 686a and the pair of protrusions 686b in the above-described embodiment, detailed description thereof is omitted. It is possible to selectively take the first state, the second state, and the third state described above according to the protrusion amount of each protrusion 692.
  • the protrusion amount of the protrusion 692 can be adjusted by an operation member (not shown) (lever, button, dial, etc.) connected to the main body 691.
  • the operation member is disposed at a location where a general user cannot access when the left front lamp device 601 is mounted on the vehicle 100.
  • the switching device 619 can be easily managed.
  • the key unit 686 does not necessarily need to include the operation member 686c.
  • a configuration in which the pair of protrusions 686b are pulled back into the shaft portion 686a while resisting the biasing force of the elastic member by applying a force of a certain value or more in the direction in which the key portion 686 is pulled out from the hollow portion 684a of the shaft 684 is employed. sell.
  • the configuration of the left front lamp device 601 can also be applied to the left rear lamp device.
  • the left rear lamp device is mounted on the left rear corner LB of the vehicle 100 shown in FIG.
  • the basic configuration of the left rear lamp device may be symmetrical with the front left lamp device 601.
  • the configuration of the left front lamp device 601 can also be applied to the right rear lamp device.
  • the right rear lamp device is mounted on the right rear corner RB of the vehicle 100 shown in FIG.
  • the basic configuration of the right rear lamp device is symmetrical to the left rear lamp device described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Traffic Control Systems (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

第一カメラユニット(111)は、第一光軸(X1)に基づいて車両の少なくとも前方を含む画像を取得する。第二カメラユニット(112)は、第二光軸(X2)に基づいて少なくとも車両の左方の画像を取得する。車両の上下方向から見て第一光軸(X1)と第二光軸(X2)は交差している。

Description

センサシステム、センサモジュール、およびランプ装置
 本開示は、車両に搭載されるセンサシステムに関連する。
 本開示は、車両に搭載されるセンサモジュールにも関連する。
 本開示は、車両に搭載されるランプ装置にも関連する。
 車両の運転支援技術を実現するためには、当該車両の外部の情報を検出するためのセンサを車体に搭載する必要がある。そのようなセンサの例としては、LiDAR(Light Detection and Ranging)センサやカメラが挙げられる(例えば、特許文献1を参照)。特許文献2は、レーザレーダとカメラが灯室内に配置されたランプ装置を開示している。特許文献3は、カメラが灯室内に配置されたランプ装置を開示している。
 本明細書において、「運転支援」とは、運転操作(ハンドル操作、加速、減速)、走行環境の監視、および運転操作のバックアップの少なくとも一つを少なくとも部分的に行なう制御処理を意味する。すなわち、衝突被害軽減ブレーキ機能やレーンキープアシスト機能のような部分的な運転支援から完全自動運転動作までを含む意味である。
 車両の運転支援技術が高度化するにつれ、搭載されるセンサの数が増加する傾向にある。したがって、センサの保守点検作業や交換作業に必要とされる労力もまた増す傾向にある。
 上記のようなランプ装置が車体に搭載されるとき、車体に対するランプユニットの姿勢や照明基準位置に加えて、車体に対するセンサユニットの姿勢や検出基準位置が調節される。前述のように、センサによって取得される情報は、運転支援に利用される。したがって、ランプ装置が車両に搭載された後、センサユニットの検出基準位置を一般ユーザが容易に調節できることは好ましくない。
日本国特許出願公開2010-185769号公報 日本国特許出願公開2015-076352号公報 日本国特許出願公開2008-105518号公報
 本開示における第一の課題は、車両の運転支援に必要とされる複数のセンサが配置される空間の利用効率を高めることである。
 本開示における第二の課題は、車両の運転支援に必要とされる複数のセンサの検出精度を高めることである。
 本開示における第三の課題は、車両に搭載される複数のセンサの保守点検作業や交換作業に必要とされる労力を軽減することである。
 本開示における第四の課題は、ランプ装置が備えるセンサユニットの検出基準位置の一般ユーザによる調節行為を制限することである。
 上記の第一の課題を達成するための一態様は、車両に搭載されるセンサシステムであって、
 第一検出基準軸に基づいて前記車両の第一外部情報を検出する第一センサユニットと、
 第二検出基準軸に基づいて前記車両の第二外部情報を検出する第二センサユニットと、
を備えており、
 前記車両の上下方向から見て前記第一検出基準軸および前記第二検出基準軸は交差している。
 上記の構成によれば、第一センサユニットと第二センサユニットよりも車両の内側に対応する領域に比較的広い空間の確保が容易になる。すなわち、より多くの外部情報を得るために複数のセンサユニットを使用しても、当該複数のセンサユニットが配置される空間の利用効率を高めることができる。
 上記のセンサシステムは、以下のように構成されうる。
 前記第一検出基準軸と前記第二検出基準軸は交差している。
 このような構成によれば、車両の上下方向における第一センサユニットと第二センサユニットの位置の相違が小さくなり、同方向におけるセンサシステムの大型化を抑制できる。また、第一外部情報を取得するための基準高さと第二外部情報を取得するための基準高さが一致するので、第一外部情報と第二外部情報に基づく後続する情報処理の負荷の増大を抑制できる。
 上記のセンサシステムは、以下のように構成されうる。
 第一センサユニットと第二センサユニットを収容する収容室を区画する透光部材を備えており、
 前記透光部材は、前記収容室に向かって凹んだ凹部を有しており、
 前記第一検出基準軸と前記第二検出基準軸は、前記凹部と交差している。
 第一センサユニットと第二センサユニットの各々と透光部材の内面との距離が短いほど、取得される外部情報の品質低下を抑制しやすい。上記のような構成によれば、第一センサユニットと第二センサユニットの各々を、透光部材の内面の近くに配置することが容易になる。
 この場合、上記のセンサシステムは、以下のように構成されうる。
 前記凹部は第一平坦部と第二平坦部を含んでおり、
 前記第一検出基準軸は、前記第一平坦部と交差しており、
 前記第二検出基準軸は、前記第二平坦部と交差している。
 このような構成によれば、透光部材において生じる光の反射に伴う第一外部情報と第二外部情報の品質低下を抑制できる。
 上記のセンサシステムは、以下のように構成されうる。
 前記第一センサユニットから前記第一外部情報に対応する第一信号を取得し、前記第二センサユニットから前記第二外部情報に対応する第二信号を取得する信号処理装置を備えており、
 前記信号処理装置は、前記第一信号と前記第二信号に基づいて前記第一外部情報と前記第二外部情報が統合された統合情報に対応するデータを生成する。
 このような構成によれば、車両の運転支援に統合情報を利用できる。特に車両に搭載されるECUなどの制御装置によって運転支援制御が実行される場合、信号処理装置によって第一外部情報と第二外部情報の統合がなされるので、当該制御装置における処理負荷の増大を抑制できる。
 上記のセンサシステムは、以下のように構成されうる。
 ランプユニットを収容する灯室を区画しているハウジングを備えており、
 前記第一センサユニットと前記第二センサユニットは、前記灯室内に配置されている。
 ランプユニットは、車両の外部に光を供給するという機能ゆえに、遮蔽物の少ない場所に配置されることが一般的である。このような場所に第一センサユニットと第二センサユニットも配置されることにより、車両の外部の情報を効率的に取得できる。
 また、高さ検出情報を車両のオートレベリングシステムから取得する場合、高さ検出情報をランプユニットと共用しうる。この場合、効率的なシステムの設計が可能である。
 上記のセンサシステムは、以下のように構成されうる。
 前記第一センサユニットと前記第二センサユニットは、LiDARセンサユニット、カメラユニット、ミリ波センサユニットの少なくとも一つを含んでいる。
 上記の第二の課題を達成するための一態様は、車両に搭載されるセンサシステムであって、
 前記車両の外部の情報を検出する第一センサユニットと、
 前記第一センサユニットと連結可能であり、前記車両の外部の情報を検出する第二センサユニットと、
 前記第一センサユニットと前記第二センサユニットが連結されるとき、前記第一センサユニットの検出基準方向に対する前記第二センサユニットの検出基準方向の角度を規制する規制部材と、
を備えている。
 このような構成によれば、車両の運転支援に第一センサユニットと第二センサユニットが使用される場合において、第一センサユニットと第二センサユニットを連結するのみで、第一センサユニットの検出基準方向と第二センサユニットの検出基準方向のなす角度を一義的に定めることができる。したがって、検出基準方向を調節する作業に係る負担を軽減しつつ、第一センサユニットと第二センサユニットの検出精度を高めることができる。
 上記のセンサシステムは、以下のように構成されうる。
 前記規制部材は、前記角度を複数の値から選択可能に構成されている。
 このような構成によれば、検出基準方向を調節する作業に係る負担を軽減しつつ、検出基準方向の選択自由度を高めることもできる。
 上記のセンサシステムは、以下のように構成されうる。
 前記第一センサユニットと前記第二センサユニットを支持する共通の支持体と、
 前記車両に対する前記支持体の位置と姿勢の少なくとも一方を調節する調節機構と、
を備えている。
 センサシステムの出荷前において、第一センサユニットの検出基準方向と第二センサユニットの検出基準方向がなす角度は、前述した規制部材により一義的に定まる。しかしながら、センサシステムが車両に搭載される際、車体部品の公差や車体に対するセンサシステムの位置ずれに起因して、両センサユニットの検出基準方向の少なくとも一方が所望の方向からずれる場合がある。したがって、センサシステムが車両に搭載された後、検出基準方向の再調整が行なわれる。上記の構成においては、第一センサユニットと第二センサユニットが共通の支持体に支持されているので、調節機構によって両センサユニットの検出基準方向の調節を一括して行なえる。したがって、運転支援に複数のセンサユニットが使用される場合においても、各センサユニットの検出基準方向を調節する作業の負担を軽減できる。
 上記のセンサシステムは、以下のように構成されうる。
 ランプユニットを収容する灯室を区画しているランプハウジングを備えており、
 前記第一センサユニットと前記第二センサユニットは、前記灯室内に配置されている。
 ランプユニットは、車両の外部に光を供給するという機能ゆえに、遮蔽物の少ない場所に配置されることが一般的である。このような場所に第一センサユニットと第二センサユニットも配置されることにより、車両の外部の情報を効率的に取得できる。
 上記のセンサシステムは、以下のように構成されうる。
 前記第一センサユニットと前記第二センサユニットは、LiDARセンサユニット、カメラユニット、ミリ波センサユニットの少なくとも一つを含んでいる。
 上記の第三の課題を達成するための一態様は、車両に搭載されるセンサモジュールであって、
 収容室を区画しているハウジングと、
 前記ハウジングに対して外部より着脱可能な支持体と、
 前記支持体に支持されている第一センサユニットと、
 前記支持体に支持されている第二センサユニットと、
を備えており、
 前記支持体が前記ハウジングに装着されることにより、当該支持体が前記収容室の一部を区画するとともに、前記第一センサユニットと前記第二センサユニットが前記収容室内に配置される。
 このような構成によれば、複数のセンサに対する保守点検作業や交換作業を、支持体をハウジングに対して外部から着脱するのみで遂行できる。したがって、車両に搭載される複数のセンサの保守点検作業や交換作業に必要とされる労力を軽減できる。
 上記のセンサモジュールは、以下のように構成されうる。
 前記支持体の装着方向から見たとき、前記第一センサユニットの全体と前記第二センサユニットの全体が前記支持体の外縁の内側に位置している。
 このような構成によれば、ハウジングに形成された開口を第一センサユニットと第二センサユニットに通過させて支持体の装着がなされる場合において、支持体を傾けるなどの手間を不要にできる。支持体のハウジングに対する着脱を直線的な動作で遂行できるので、作業効率の低下を抑制できる。
 上記のセンサモジュールは、以下のように構成されうる。
 前記支持体と前記ハウジングは、前記支持体が前記ハウジングに装着される際の姿勢を規制する形状を有している。
 このような構成によれば、誤った姿勢で第一センサユニットと第二センサユニットが収容室内に配置される事態を回避できる。また、ハウジングへの装着時における支持体の姿勢の決定に迷いが生じないので、作業効率の低下を抑制できる。
 上記のセンサモジュールは、以下のように構成されうる。
 前記支持体の装着方向は、前記第一センサユニットの検出基準方向および前記第二センサユニットの検出基準方向に沿っている。
 各センサユニットの投影面積は、検出基準方向から見た場合において小さくなる傾向にある。したがって、支持体の装着方向を各センサユニットの検出基準方向に沿わせることにより、支持体の寸法を小さくできる。
 上記のセンサモジュールは、以下のように構成されうる。
 前記第一センサユニットの検出基準位置と前記第二センサユニットの検出基準位置は、前後方向にオフセットしていない。
 このような構成によれば、支持体の姿勢を調節することによる第一センサユニットの検出基準方向と第二センサユニットの検出基準方向の一括調整が容易になる。
 上記のセンサモジュールは、以下のように構成されうる。
 前記第一センサユニットの検出基準位置と前記第二センサユニットの検出基準位置は、上下方向にオフセットしていない。
 このような構成によっても、支持体の姿勢を調節することによる第一センサユニットの検出基準方向と第二センサユニットの検出基準方向の一括調整が容易になる。
 上記のセンサモジュールは、以下のように構成されうる。
 前記第一センサユニットと前記第二センサユニットは、前記支持体に対して個別に着脱可能とされている。
 このような構成によれば、修理や交換の必要がないセンサユニットを継続利用できるので、センサモジュールの経済的な運用が可能である。
 上記のセンサモジュールは、以下のように構成されうる。
 前記第一センサユニットに接続された信号線と前記第二センサユニットに接続された信号線を集約する集約部が、前記支持体に設けられている。
 センサモジュールが複数のセンサユニットを備えている場合、複数の信号線の引き回しが必要になる。上記のような構成によれば、複数の信号線が支持体において集約されるので、複数の信号線の取扱いが容易になる。よって、作業効率の低下を抑制できる。
 上記のセンサモジュールは、以下のように構成されうる。
 前記第一センサユニットと前記第二センサユニットの少なくとも一方の動作を制御する制御装置が、前記支持体に支持されている。
 このような構成によれば、車両に搭載されたECUなどの統括制御装置により行なわれる処理の一部を、制御装置が分担できる。したがって、統括制御装置における処理負荷を軽減できる。
 上記のセンサモジュールは、以下のように構成されうる。
 前記支持体は、金属を含む材料で形成されている。
 このような構成によれば、第一センサユニットと第二センサユニットの各々の動作により発生する熱を効率的に放散できる。制御装置が支持体に支持される場合においては、制御装置の動作により発生する熱も効率的に放散できる。
 上記のセンサモジュールは、以下のように構成されうる。
 前記支持体と前記ハウジングの間に配置される封止部材を備えている。
 このような構成によれば、収容室の一部を区画する支持体をハウジングに対して外部から着脱可能にしても、収容室に対する防水性や防塵性を確保できる。
 上記のセンサモジュールは、以下のように構成されうる。
 前記第一センサユニットと前記第二センサユニットの少なくとも一方は、カメラユニットであり、
 前記カメラユニットの撮像面を包囲する遮光カバーを備えている。
 このような構成によれば、撮像面への外乱光の進入を抑制できる。したがって、カメラユニットによる車両の外部情報の検出精度の低下を抑制できる。
 上記のセンサモジュールは、以下のように構成されうる。
 前記第一センサユニットの検出基準方向を調節するための第一調節機構と前記第二センサユニットの検出基準方向を調節するための第二調節機構が、前記支持体に支持されている。
 このような構成によれば、特定のセンサユニットの検出基準方向の調節を、別のセンサユニットの検出基準方向の制約を受けることなく遂行できる。
 上記のセンサモジュールは、以下のように構成されうる。
 前記支持体に支持されている第三センサモジュールを備えている。
 このような構成によれば、取得可能な車両外部の情報を増やしつつも、センサの保守点検作業や交換作業に必要とされる労力を軽減できる。
 上記の第三の課題を達成するための一態様は、車両に搭載されるセンサモジュールであって、
 収容室を区画しているハウジングと、
 前記ハウジングに対して外部より着脱可能な支持体と、
 前記支持体に支持されているセンサユニットと、
 前記支持体に支持されているランプユニットと、
を備えており、
 前記支持体が前記ハウジングに装着されることにより、当該支持体が前記収容室の一部を区画するとともに、前記センサユニットと前記ランプユニットが前記収容室内に配置される。
 このような構成によれば、センサユニットとランプユニットの保守点検作業や交換作業を、支持体をハウジングに対して外部から着脱するのみで遂行できる。したがって、収容室内にセンサユニットとランプユニットが配置されるセンサモジュールの保守点検作業や交換作業に必要とされる労力を軽減できる。
 上記の第四の課題を達成するための一態様は、車両に搭載されるランプ装置であって、
 照明光を出射するランプユニットと、
 前記車両の外部の情報を検出するセンサユニットと、
 前記ランプユニットと前記センサユニットを収容する空間を区画するハウジングと、
 前記ランプユニットの照明基準位置を調節する第一エイミング機構と、
 前記空間内に配置されており、前記センサユニットの検出基準位置を調節する第二エイミング機構と、
 前記ハウジングの外側から前記第一エイミング機構のみの操作を許容する第一状態と、前記第一エイミング機構の操作に応じて前記第二エイミング機構が操作される第二状態とを切り替え可能である切替装置と、
を備えている。
 このような構成によれば、切替装置が第二状態を成立させない限り、ハウジング内に収容された第二エイミング機構を操作できない。したがって、ランプ装置が備えるセンサユニットの検出基準位置の一般ユーザによる調節行為を制限できる。
 上記のランプ装置は、以下のように構成されうる。
 前記切替装置は、前記第二エイミング機構のみの操作を許容する第三状態にも切り替え可能である。
 このような構成によれば、ランプユニットの照明基準位置とセンサユニットの検出基準位置を独立して調節できるので、作業性が向上する。
 上記のランプ装置は、以下のように構成されうる。
 前記切替装置の一部は、前記ハウジングの外部から着脱可能であり、
 前記切替装置の一部が取り外された状態では、前記第一状態のみが成立する。
 このような構成によれば、一般ユーザが入手できないように切替装置の一部を管理することにより、一般ユーザによるセンサユニットの検出基準位置の調節を不可能にできる。
 あるいは、上記のランプ装置は、以下のように構成されうる。
 前記切替装置の少なくとも一部は、前記空間内に配置されている。
 このような構成によれば、着脱可能な部品の所在を意識する必要がないので、切替装置の管理を容易にできる。
 上記のランプ装置は、以下のように構成されうる。
 前記センサユニットは、LiDARセンサユニット、カメラユニット、ミリ波センサユニットの少なくとも一つを含んでいる。
 本明細書において、「センサユニット」とは、所望の情報検出機能を備えつつ、それ自身が単体で流通可能な部品の構成単位を意味する。
 本明細書において、「ランプユニット」とは、所望の照明機能を備えつつ、それ自身が単体で流通可能な部品の構成単位を意味する。
第一実施形態に係るセンサシステムの構成を例示している。 車両における図1のセンサシステムの位置を例示している。 第二実施形態に係る第二センサユニットの外観を例示している。 第二実施形態に係る第二センサユニットの外観を例示している。 第二実施形態に係るセンサシステムの構成を例示している。 第二実施形態の第一変形例に係るセンサシステムの構成を示している。 第二実施形態の第二変形例に係るセンサシステムの構成を示している。 第三実施形態に係るセンサユニットの外観を例示している。 第三実施形態に係るセンサシステムの構成を例示している。 第四実施形態に係るセンサユニットの外観を例示している。 第四実施形態に係るセンサシステムの構成を例示している。 上記の第一センサユニットと第二センサユニットが灯室内に配置された構成を例示している。 第五実施形態に係るセンサモジュールの外観を例示している。 図13のセンサモジュールの内部構成を例示している。 図13のセンサモジュールの内部構成を例示している。 図13のセンサモジュールの別構成を例示している。 図13のセンサモジュールの別構成を例示している。 図13のセンサモジュールの別構成を例示している。 第六実施形態に係るランプ装置の構成を例示している。 図19のランプ装置における第一エイミング機構と第二エイミング機構の構成を例示している。 図19のランプ装置に使用される切替装置の構成を例示している。 図21の切替装置の使用方法を示している。 図21の切替装置の使用方法を示している。 図21の切替装置の使用方法を示している。 図21の切替装置の別構成を例示している。 図21の切替装置の別構成を例示している。
 添付の図面を参照しつつ、実施形態の例について以下詳細に説明する。以下の説明に用いる各図面では、各部材を認識可能な大きさとするために縮尺を適宜変更している。
 図1と図2において、矢印Fは、図示された構造の前方向を示している。矢印Bは、図示された構造の後方向を示している。矢印Lは、図示された構造の左方向を示している。矢印Rは、図示された構造の右方向を示している。以降の説明に用いる「左」および「右」は、運転席から見た左右の方向を示している。
 図1の(A)は、第一実施形態に係る左前センサシステム101の構成を例示している。左前センサシステム101は、図2に示される車両100の左前隅部LFに搭載される。車両100の右前隅部RFには、左前センサシステム101と左右対称の構成を有する右前センサシステムが搭載される。
 左前センサシステム101は、第一カメラユニット111を備えている。第一カメラユニット111は、車両100の少なくとも前方を含む第一画像を取得するための装置である。第一カメラユニット111は、取得した第一画像に対応する第一信号S1を出力するように構成されている。第一カメラユニット111は、可視光カメラでもよいし、赤外線カメラでもよい。第一カメラユニット111は、第一センサユニットの一例である。
 第一カメラユニット111は、第一光軸X1を有している。第一光軸X1は、第一カメラユニット111が第一画像を取得する際の基準方向を規定しうる。すなわち、第一カメラユニット111は、第一光軸X1に基づいて車両100の少なくとも前方を含む第一画像を取得するように構成されている。第一光軸X1は、第一検出基準軸の一例である。第一画像の取得は、車両100の第一外部情報の検出の一例である。
 左前センサシステム101は、第二カメラユニット112を備えている。第二カメラユニット112は、車両100の少なくとも左方を含む第二画像を取得するための装置である。第二カメラユニット112は、取得した第二画像に対応する第二信号S2を出力するように構成されている。第二カメラユニット112は、可視光カメラでもよいし、赤外線カメラでもよい。第二カメラユニット112は、第二センサユニットの一例である。
 第二カメラユニット112は、第二光軸X2を有している。第二光軸X2は、第二カメラユニット112が第二画像を取得する際の基準方向を規定しうる。すなわち、第二カメラユニット112は、第二光軸X2に基づいて車両100の少なくとも左方を含む第二画像を取得するように構成されている。第二光軸X2は、第二検出基準軸の一例である。第二画像の取得は、車両100の第二外部情報の検出の一例である。
 左前センサシステム101は、ハウジング113と透光部材114を備えている。ハウジング113と透光部材114は、収容室115を区画している。
 第一カメラユニット111と第二カメラユニット112は、収容室115内に配置されている。第一カメラユニット111と第二カメラユニット112は、車両100の上下方向から見て第一光軸X1と第二光軸X2が交差するように配置されている。
 図1の(B)は、比較例に係る左前センサシステム101Aを示している。当該比較例において、第一カメラユニット111と第二カメラユニット112は、第一光軸X1と第二光軸X2が交差しないように配置されている。このような構成と比較すると、第一カメラユニット111と第二カメラユニット112よりも車両100の内側に対応する領域に比較的広い空間の確保が容易であることが判る。すなわち、より多くの画像情報を得るために複数のカメラユニットを使用しても、当該複数のカメラユニットが配置される空間の利用効率を高めることができる。
 車両100の上下方向から見て第一光軸X1と第二光軸X2が交差していれば、車両100の左右方向あるいは前後方向から見て第一光軸X1と第二光軸X2が交差していなくてもよい。しかしながら、第一光軸X1と第二光軸X2は、実際に交差していることが好ましい。
 このような構成によれば、車両100の上下方向における第一カメラユニット111と第二カメラユニット112の位置の相違が小さくなり、同方向における左前センサシステム101の大型化を抑制できる。また、第一画像を取得するための基準高さと第二画像を取得するための基準高さが一致するので、第一カメラユニット111から出力された第一信号S1と第二カメラユニット112から出力された第二信号S2に基づく画像処理の負荷の増大を抑制できる。
 図1の(A)に示されるように、透光部材114は、凹部114aを有しうる。凹部114aは、収容室115に向かって凹んだ部分である。この場合、第一カメラユニット111と第二カメラユニット112は、第一光軸X1と第二光軸X2が凹部114aと交差するように配置されうる。
 第一カメラユニット111と第二カメラユニット112の各々と透光部材114の内面との距離が短いほど、取得される画像の品質低下を抑制しやすい。上記のような構成によれば、第一カメラユニット111と第二カメラユニット112の各々を、透光部材114の内面の近くに配置することが容易になる。したがって、第一カメラユニット111により取得される第一画像の品質低下と第二カメラユニット112により取得される第二画像の品質低下を抑制できる。
 図1の(A)に示されるように、凹部114aは、第一平坦部114a1と第二平坦部114a2を含みうる。この場合、第一カメラユニット111は、第一光軸X1が第一平坦部114a1と交差するように配置されうる。第二カメラユニット112は、第二光軸X2が第二平坦部114a2と交差するように配置されうる。したがって、第一カメラユニット111は、透光部材114の第一平坦部114a1を通過した光に基づいて第一画像を取得する。第二カメラユニット112は、透光部材114の第二平坦部114a2を通過した光に基づいて第二画像を取得する。
 このような構成によれば、透光部材114において生じる光の反射に伴う第一画像と第二画像の品質低下を抑制できる。したがって、第一カメラユニット111は、第一光軸X1が第一平坦部114a1と直交するように配置されることが好ましい。第二カメラユニット112は、第二光軸X2が第二平坦部114a2と直交するように配置されることが好ましい。
 図1の(A)に示されるように、左前センサシステム101は、信号処理装置116を備えうる。信号処理装置116は、汎用メモリと協働して動作する汎用マイクロプロセッサにより実現されうる。汎用マイクロプロセッサとしては、CPU、MPU、GPUが例示されうる。汎用メモリとしては、ROMやRAMが例示されうる。この場合、ROMには、後述する処理を実現するコンピュータプログラムが記憶されうる。汎用マイクロプロセッサは、ROM上に記憶されたプログラムの少なくとも一部を指定してRAM上に展開し、RAMと協働して上述した処理を実行する。信号処理装置116は、後述する処理を実現するコンピュータプログラムを実行可能なマイクロコントローラ、ASIC、FPGAなどの専用集積回路によって実現されてもよい。信号処理装置116は、汎用マイクロプロセッサと専用集積回路の組合せによって実現されてもよい。
 信号処理装置116は、ハウジング113に固定された装置として実現されてもよいし、車両100に搭載されたECUなどの制御装置として実現されてもよい。
 信号処理装置116は、第一カメラユニット111から出力された第一信号S1と第二カメラユニット112から出力された第二信号S2を取得する。信号処理装置116は、第一信号S1と第二信号S2に基づいて、統合画像データを生成するように構成されている。前述のように、第一信号S1は、車両100の少なくとも前方を含む第一画像に対応している。第二信号S2は、車両100の少なくとも左方を含む第二画像に対応している。統合画像データは、第一画像と第二画像が統合された画像に対応するデータである。
 このような構成によれば、車両100の運転支援に統合画像データを利用できる。特に車両100に搭載されるECUなどの制御装置によって運転支援制御が実行される場合、信号処理装置116によって第一画像と第二画像の統合がなされるので、当該制御装置における処理負荷の増大を抑制できる。
 図1の(A)に示されるように、左前センサシステム101は、ランプユニット117を備えうる。ランプユニット117は、車両100の外方へ可視光を出射する装置である。ランプユニット117は、第一カメラユニット111および第二カメラユニット112とともに、収容室115に収容される。ランプユニット117としては、前照灯ユニット、車幅灯ユニット、方向指示灯ユニット、霧灯ユニットなどが例示されうる。
 ランプユニット117は、車両100の外部に光を供給するという機能ゆえに、上記した左前隅部LFなど、遮蔽物の少ない場所に配置されることが一般的である。このような場所に第一カメラユニット111と第二カメラユニット112も配置されることにより、車両100の外部の情報を効率的に取得できる。
 第一実施形態は、本開示の理解を容易にするための例示にすぎない。第一実施形態に係る構成は、本開示の趣旨を逸脱しなければ、適宜に変更・改良されうる。
 第一実施形態においては、左前センサシステム101が第一カメラユニット111と第二カメラユニット112を備えている例を示した。しかしながら、第一カメラユニット111と第二カメラユニット112の少なくとも一方は、LiDARセンサユニットとミリ波ユニットのいずれかにより置き換えられうる。
 LiDARセンサユニットは、非可視光を出射する構成、および当該非可視光が車両の少なくとも外部に存在する物体に反射した結果の戻り光を検出する構成を備えている。LiDARセンサユニットは、必要に応じて出射方向(すなわち検出方向)を変更して当該非可視光を掃引する走査機構を備えうる。例えば、非可視光として波長905nmの赤外光が使用されうる。
 LiDARセンサユニットは、例えば、ある方向へ非可視光を出射したタイミングから戻り光を検出するまでの時間に基づいて、当該戻り光に関連付けられた物体までの距離を取得できる。また、そのような距離データを検出位置と関連付けて集積することにより、戻り光に関連付けられた物体の形状に係る情報を取得できる。これに加えてあるいは代えて、出射光と戻り光の波形の相違に基づいて、戻り光に関連付けられた物体の材質などの属性に係る情報を取得できる。
 LiDARセンサユニットが用いられる場合、第一光軸X1および第二光軸X2を参照して説明したカメラユニットの光軸は、LiDARセンサユニットの検出基準軸で置き換えられうる。検出基準軸は、LiDARセンサユニットの検出基準方向を規定する。LiDARセンサユニットは、当該検出基準軸に基づいて、車両100の外部の情報を検出する。
 ミリ波センサユニットは、ミリ波を発信する構成、および当該ミリ波が車両100の外部に存在する物体に反射した結果の反射波を受信する構成を備えている。ミリ波の周波数の例としては、24GHz、26GHz、76GHz、79GHzなどが挙げられる。ミリ波センサユニットは、例えば、ある方向へミリ波を発信したタイミングから反射波を受信するまでの時間に基づいて、当該反射波に関連付けられた物体までの距離を取得できる。また、そのような距離データを検出位置と関連付けて集積することにより、反射波に関連付けられた物体の動きに係る情報を取得できる。
 ミリ波センサユニットが用いられる場合、第一光軸X1および第二光軸X2を参照して説明したカメラユニットの光軸は、ミリ波センサユニットの検出基準軸で置き換えられうる。検出基準軸は、ミリ波センサユニットの検出基準方向を規定する。ミリ波センサユニットは、当該検出基準軸に基づいて、車両100の外部の情報を検出する。
 赤外線カメラユニットとミリ波センサユニットのみが収容室115内に配置される場合、収容室115を区画する透光部材114は、必ずしも透明であることを要しない。本明細書において、「透光」という語は、センサユニットが車両100の外部の情報の検出に使用する波長の光が透過可能であることを意味する。
 左前センサシステム101の構成は、左後センサシステムにも適用可能である。左後センサシステムは、図2に示される車両100の左後隅部LBに搭載される。左後センサシステムの基本的な構成は、左前センサシステム101と前後対称でありうる。
 左前センサシステム101の構成は、右後センサシステムにも適用可能である。右後センサシステムは、図2に示される車両100の右後隅部RBに搭載される。右後センサシステムの基本的な構成は、上述の左後センサシステムと左右対称である。
 図3から図12を参照しつつ、実施形態の別例について以下詳細に説明する。各図面では、各部材を認識可能な大きさとするために縮尺を適宜変更している。
 以降の説明における「上」、「下」、「前」、「後」、「左」および「右」という表現は、説明の便宜のために用いられており、実際の使用時における姿勢を限定する意図はない。
 図3の(A)は、第二実施形態に係る第一センサユニット201を上方から見た外観を示している。図3の(B)は、第一センサユニット201を前方から見た外観を示している。図3の(C)は、第一センサユニット201を下方からみた外観を示している。図3の(D)は、第一センサユニット201を右方から見た外観を示している。左方から見た外観は、右方から見た外観と左右対称である。
 第一センサユニット201は、車両に搭載されて当該車両の外部の情報を取得するための装置である。例えば、第一センサユニット201は、LiDARセンサユニット、カメラユニット、ミリ波センサユニットのいずれかでありうる。
 LiDARセンサユニットは、非可視光を出射する構成、および当該非可視光が車両の少なくとも外部に存在する物体に反射した結果の戻り光を検出する構成を備えている。LiDARセンサユニットは、必要に応じて出射方向(すなわち検出方向)を変更して当該非可視光を掃引する走査機構を備えうる。例えば、非可視光として波長905nmの赤外光が使用されうる。
 カメラユニットは、車両の外部の情報として画像を取得するための装置である。画像は、静止画像と動画像の少なくとも一方を含みうる。カメラユニットは、可視光に感度を有するカメラを備えていてもよいし、赤外光に感度を有するカメラを備えていてもよい。
 ミリ波センサユニットは、ミリ波を発信する構成、および当該ミリ波が車両100の外部に存在する物体に反射した結果の反射波を受信する構成を備えている。ミリ波の周波数の例としては、24GHz、26GHz、76GHz、79GHzなどが挙げられる。
 第一センサユニット201は、検出面211を備えている。検出面211は、筐体を構成する外面のうち、情報の検出に係る光が通過する面である。
 第一センサユニット201は、第一凹部212aと第二凹部212bを備えている。第一凹部212aと第二凹部212bは、第一センサユニット201の上面213に形成されている。
 図4の(A)は、第二実施形態に係る第二センサユニット202を上方から見た外観を示している。図4の(B)は、第二センサユニット202を前方から見た外観を示している。図4の(C)は、第二センサユニット202を下方からみた外観を示している。図4の(D)は、第二センサユニット202を右方から見た外観を示している。左方から見た外観は、右方から見た外観と左右対称である。
 第二センサユニット202は、車両に搭載されて当該車両の外部の情報を取得するための装置である。例えば、第二センサユニット202は、LiDARセンサユニット、カメラユニット、ミリ波センサユニットのいずれかでありうる。
 第二センサユニット202は、検出面221を備えている。検出面221は、筐体を構成する外面のうち、情報の検出に係る光が通過する面である。
 第二センサユニット202は、第一凸部222aと第二凸部222bを備えている。第一凸部222aと第二凸部222bは、第二センサユニット202の下面223に形成されている。
 第一センサユニット201と第二センサユニット202は、連結可能とされている。第二センサユニット202の第一凸部222aと第二凸部222bを、第一センサユニット201の第一凹部212aと第二凹部212bにそれぞれ嵌入することによって、連結がなされる。図5の(A)は、連結された状態の第一センサユニット201と第二センサユニット202を上方から見た外観を示している。連結された第一センサユニット201と第二センサユニット202は、センサシステムSを構成する。図5の(B)は、連結された状態の第一センサユニット201と第二センサユニット202を右方から見た外観を示している。
 本例においては、第一凸部222aが第一凹部212aに嵌合し、第二凸部222bが第二凹部212bと嵌合することにより、連結方向と交差する平面内において第一センサユニット201の検出基準方向Y1と第二センサユニット202の検出基準方向Y2が一致するように、第一センサユニット201と第二センサユニット202の姿勢が規制される。すなわち、第一センサユニット201と第二センサユニット202が連結されるとき、第一凹部212a、第二凹部212b、第一凸部222a、および第二凸部222bは、第一センサユニット201の検出基準方向Y1に対する第二センサユニット202の検出基準方向Y2の角度を規制する。第一凹部212a、第二凹部212b、第一凸部222a、および第二凸部222bは、規制部材の一例である。
 このような構成によれば、車両の運転支援に第一センサユニット201と第二センサユニット202が使用される場合において、第一センサユニット201と第二センサユニット202を連結するのみで、第一センサユニット201の検出基準方向Y1と第二センサユニット202の検出基準方向Y2のなす角度を一義的に定めることができる。したがって、検出基準方向を調節する作業に係る負担を軽減しつつ、第一センサユニット201と第二センサユニット202の検出精度を高めることができる。
 図6の(A)は、第二実施形態の第一変形例に係る第一センサユニット201Aを上方から見た外観を示している。第一センサユニット201と実質的に同じ構成や機能を有する要素には同一の参照符号を付与し、繰り返しとなる説明は省略する。第一センサユニット201Aは、第一凹部212aが形成されている位置と第二凹部212bが形成されている位置が、第一センサユニット201と異なる。
 図6の(B)は、第一センサユニット201Aに上記の第二センサユニット202が連結された状態を上方から見た外観を示している。本例においては、第一凸部222aが第一凹部212aと嵌合し、第二凸部222bが第二凹部212bと嵌合することにより、連結方向と交差する平面内において第一センサユニット201Aの検出基準方向Y1と第二センサユニット202の検出基準方向Y2が所定の角度をなすように、第一センサユニット201Aと第二センサユニット202の姿勢が規制される。
 このような構成によっても、車両の運転支援に第一センサユニット201Aと第二センサユニット202が使用される場合において、第一センサユニット201Aと第二センサユニット202を連結するのみで、第一センサユニット201Aの検出基準方向Y1と第二センサユニット202の検出基準方向Y2のなす角度を一義的に定めることができる。したがって、検出基準方向を調節する作業に係る負担を軽減しつつ、第一センサユニット201Aと第二センサユニット202の検出精度を高めることができる。
 図7の(A)は、第二実施形態の第二変形例に係る第一センサユニット201Bを上方から見た外観を示している。第一センサユニット201と実質的に同じ構成や機能を有する要素には同一の参照符号を付与し、繰り返しとなる説明は省略する。第一センサユニット201Bの上面213には、第一凹部212aと第二凹部212bに加えて、第三凹部212c、第四凹部212d、第五凹部212e、第六凹部212f、第七凹部212g、第八凹部212h、第九凹部212i、および第十凹部212jが形成されている。
 図7の(B)に示されるように、本例においては、第一センサユニット201Bと第二センサユニット202の連結方向と交差する平面内において第一センサユニット201Bの検出基準方向Y1と第二センサユニット202の検出基準方向Y2のなす角度を、複数の値から選択可能とされている。
 一例として、第二センサユニット202の第一凸部222aと第二凸部222bを第一センサユニット201Bの第一凹部212aと第二凹部212bにそれぞれ嵌入すると、図5の(A)に示した例と同様に、第一センサユニット201Bの検出基準方向Y1と第二センサユニット202の検出基準方向Y2は一致する。
 別例として、第二センサユニット202の第一凸部222aと第二凸部222bを第一センサユニット201Bの第三凹部212cと第四凹部212dにそれぞれ嵌入すると、第二センサユニット202の検出基準方向Y2は、第一センサユニット201Bの検出基準方向Y1とは異なる、破線の矢印で示される方向となる。
 別例として、第二センサユニット202の第一凸部222aと第二凸部222bを第一センサユニット201Bの第九凹部212iと第十凹部212jにそれぞれ嵌入すると、第二センサユニット202の検出基準方向Y2は、第一センサユニット201Bの検出基準方向Y1とは異なる、二点鎖線の矢印で示される方向となる。
 このような構成によれば、検出基準方向を調節する作業に係る負担を軽減しつつ、検出基準方向の選択自由度を高めることもできる。
 上記の各例においては、第一センサユニット201(201A、201B)に凹部が設けられており、第二センサユニット202に当該凹部と嵌合する凸部が設けられている。しかしながら、第一センサユニット201(201A、201B)に凸部が設けられ、当該凸部が嵌合する凹部が第二センサユニット202に設けられてもよい。
 第一センサユニット201(201A、201B)と第二センサユニット202に設けられる凸部と凹部の位置、数、および形状は、連結時の第一センサユニット201(201A、201B)と第二センサユニット202の姿勢に応じて適宜に定められうる。例えば、連結時に対向する二つの面の一方に形成された溝と、他方の面に設けられて当該溝と嵌合する突条もまた、規制部材の一例となりうる。
 図8の(A)は、第三実施形態に係るセンサユニット203を上方から見た外観を示している。図8の(B)は、センサユニット203を前方から見た外観を示している。図8の(C)は、センサユニット203を下方からみた外観を示している。図8の(D)は、センサユニット203を右方から見た外観を示している。左方から見た外観は、右方から見た外観と左右対称である。
 センサユニット203は、車両に搭載されて当該車両の外部の情報を取得するための装置である。例えば、センサユニット203は、LiDARセンサユニット、カメラユニット、ミリ波センサユニットのいずれかでありうる。
 センサユニット203は、検出面231を備えている。検出面231は、筐体を構成する外面のうち、情報の検出に係る光が通過する面である。
 センサユニット203は、第一凹部232aと第二凹部232bを備えている。第一凹部232aと第二凹部232bは、センサユニット203の上面233に形成されている。
 センサユニット203は、第一凸部234aと第二凸部234bを備えている。第一凸部234aと第二凸部234bは、センサユニット203の下面235に設けられている。
 このような構成によれば、同一の構成を有する任意の数のセンサユニット203を上下方向に連結できる。したがって、検出基準方向を調節する作業に係る負担を軽減しつつ、製造コストを削減できる。
 図9は、三つのセンサユニット203が上下方向に連結された状態を示している。具体的には、あるセンサユニット203の第一凸部234aと第二凸部234bが、別のセンサユニット203の第一凹部232aと第二凹部232bにそれぞれ嵌入されることにより、当該二つのセンサユニット203が上下方向に連結される。本例においては、第一凹部232a、第二凹部232b、第一凸部234a、および第二凸部234bは、連結方向と交差する平面内において一方のセンサユニット203の検出基準方向Yが他方のセンサユニット203の検出基準方向Yと一致するように配置されている。
 この場合、連結される二つのセンサユニット203の一方は、第一センサユニットの一例であり、他方のセンサユニット203は、第二センサユニットの一例である。第一凹部232a、第二凹部232b、第一凸部234a、および第二凸部234bは、規制部材の一例である。
 第一凹部232a、第二凹部232b、第一凸部234a、および第二凸部234bの位置は、図6に示される例のように、連結される二つのセンサユニット203の検出基準方向Y同士がなす角度に応じて適宜に定められうる。
 図7に示される例のように、上面233に形成される凹部の数は、三つ以上とされうる。これにより、連結される二つのセンサユニット203の検出基準方向Y同士がなす角度を複数の値から選択可能になる。
 本例においては、センサユニット203の上面233に凹部が設けられており、別のセンサユニット203の凹部と嵌合する凸部が下面235に設けられている。しかしながら、上面233に凹部が形成され、下面235に凸部が設けられてもよい。
 連結される複数のセンサユニット203の全てが同種のセンサユニットである必要はない。例えば図9に示される例において、上段のセンサユニット203、中段のセンサユニット203、および下段のセンサユニット203は、それぞれLiDARセンサユニット、カメラユニット、ミリ波センサユニットとされうる。
 図10の(A)は、第四実施形態に係るセンサユニット204を後方から見た外観を示している。図10の(B)は、センサユニット204を左方から見た外観を示している。図10の(C)は、センサユニット204を上方から見た外観を示している。図10の(D)は、センサユニット204を右方から見た外観を示している。図10の(E)は、センサユニット204を前方から見た外観を示している。下方から見た外観は、上方から見た外観と左右対称である。
 センサユニット204は、車両に搭載されて当該車両の外部の情報を取得するための装置である。例えば、センサユニット204は、LiDARセンサユニット、カメラユニット、ミリ波センサユニットのいずれかでありうる。
 センサユニット204は、検出面241を備えている。検出面241は、筐体を構成する外面のうち、情報の検出に係る光が通過する面である。
 センサユニット204は、第一凹部242aと第二凹部242bを備えている。第一凹部242aと第二凹部242bは、センサユニット204の左側面243に形成されている。
 センサユニット204は、第一凸部244aと第二凸部244bを備えている。第一凸部244aと第二凸部244bは、センサユニット204の右側面245に設けられている。
 このような構成によれば、同一の構成を有する任意の数のセンサユニット204を左右方向に連結できる。したがって、検出基準方向を調節する作業に係る負担を軽減しつつ、製造コストを削減できる。
 図11は、三つのセンサユニット204が左右方向に連結された状態を示している。具体的には、あるセンサユニット204の第一凸部244aと第二凸部244bが、別のセンサユニット204の第一凹部242aと第二凹部242bにそれぞれ嵌入されることにより、当該二つのセンサユニット204が左右方向に連結される。本例においては、第一凹部242a、第二凹部242b、第一凸部244a、および第二凸部244bは、連結方向を含む平面内において一方のセンサユニット204の検出基準方向Yが他方のセンサユニット204の検出基準方向Yと所定の角度をなすように配置されている。
 この場合、連結される二つのセンサユニット204の一方は、第一センサユニットの一例であり、他方のセンサユニット204は、第二センサユニットの一例である。第一凹部242a、第二凹部242b、第一凸部244a、および第二凸部244bは、規制部材の一例である。
 本例においては、センサユニット204の左側面243に凹部が設けられており、別のセンサユニット204の凹部と嵌合する凸部が右側面245に設けられている。しかしながら、右側面245に凹部が形成され、左側面243に凸部が設けられてもよい。
 センサユニット204に設けられる凸部と凹部の位置、数、形状は、連結時の二つのセンサユニット204の姿勢に応じて適宜に定められうる。例えば、連結時に対向する二つの面の一方に形成された溝と、他方の面に設けられて当該溝と嵌合する突条もまた、規制部材の一例となりうる。
 連結される複数のセンサユニット204の全てが同種のセンサユニットである必要はない。例えば図11に示される例において、左側のセンサユニット204、中央のセンサユニット204、および右側のセンサユニット204は、それぞれLiDARセンサユニット、カメラユニット、ミリ波センサユニットとされうる。同種のセンサユニット204が連結される場合、情報を検出可能な角度範囲を左右方向に拡大できる。
 図6を参照して説明した例のように、凸部と凹部の位置を適宜に定めることによって、連結されている二つのセンサユニット204の検出基準方向Yを、連結方向を含む平面と交差する平面内(すなわち上下方向を含む平面内)において相違させることもできる。図7を参照して説明した例のように、当該上下方向を含む平面内において二つの検出基準方向Yがなす角度を複数の値から選択可能にしてもよい。
 図5の(B)に示されるように、センサシステムSは、支持体205と調節機構206を備えうる。支持体205は、第一センサユニット201と第二センサユニット202を支持する共通の支持体である。調節機構206は、センサシステムSが車両に搭載される際に、当該車両に対する支持体205の位置と姿勢の少なくとも一方を調節する機構である。調節機構206としては、周知のエイミングスクリュー機構やアクチュエータ機構が例示されうる。
 センサシステムSの出荷前において、第一センサユニット201の検出基準方向Y1と第二センサユニット202の検出基準方向Y2がなす角度は、前述した規制部材により一義的に定まる。しかしながら、センサシステムSが車両に搭載される際、車体部品の公差や車体に対するセンサシステムSの位置ずれに起因して、検出基準方向Y1と検出基準方向Y2の少なくとも一方が所望の方向からずれる場合がある。したがって、センサシステムSが車両に搭載された後、検出基準方向Y1と検出基準方向Y2の再調整が行なわれる。上記の構成においては、第一センサユニット201と第二センサユニット202が共通の支持体205に支持されているので、調節機構206によって検出基準方向Y1と検出基準方向Y2の調節を一括して行なえる。したがって、運転支援に複数のセンサユニットが使用される場合においても、各センサユニットの検出基準方向を調節する作業の負担を軽減できる。
 支持体205と調節機構206に係る構成は、他の図を参照して説明したセンサシステムSの各例にも適用可能である。
 図12に示されるように、センサシステムSは、左前ランプ装置207を備えうる。左前ランプ装置207は、ランプハウジング271と透光カバー272を備えうる。ランプハウジング271は、透光カバー272とともに灯室273を区画する。左前ランプ装置207は、図2に示される車両100の左前隅部LFに搭載される。
 図12において、矢印Fは、車両100の前方向を示している。矢印Bは、車両100の後方向を示している。矢印Lは、車両100の左方向を示している。矢印Rは、車両100の右方向を示している。これらの図に係る説明に用いる「左」および「右」は、運転席から見た左右の方向を示している。
 図12に示されるように、左前ランプ装置207は、ランプユニット274を備えうる。ランプユニット274は、車両100の外方へ可視光を出射する装置である。ランプユニット274は、灯室273に収容される。ランプユニット274としては、前照灯ユニット、車幅灯ユニット、方向指示灯ユニット、霧灯ユニットなどが例示されうる。
 図12に示されるように、第一センサユニット201と第二センサユニット202は、灯室273内に配置されている。ランプユニット274は、車両100の外部に光を供給するという機能ゆえに、上記した左前隅部LFなど、遮蔽物の少ない場所に配置されることが一般的である。このような場所に第一センサユニット201と第二センサユニット202も配置されることにより、車両100の外部の情報を効率的に取得できる。
 したがって、図2に示される車両100の右前隅部RFには、左前ランプ装置207と左右対称の構成を有する右前ランプ装置が搭載されうる。車両100の左後隅部LBには、左後ランプ装置が搭載されうる。この場合、左後ランプ装置が備えるランプユニットとしては、制動灯ユニット、尾灯ユニット、車幅灯ユニット、後進灯ユニットなどが例示されうる。車両100の右後隅部RBには、左後ランプ装置と左右対称の構成を有する右後ランプ装置が搭載されうる。いずれのランプ装置においても、第一センサユニット201と第二センサユニット202は、ランプハウジングにより区画される灯室内に配置されうる。
 第二実施形態から第四実施形態は、本開示の理解を容易にするための例示にすぎない。各実施形態に係る構成は、本開示の趣旨を逸脱しなければ、適宜に変更・改良されうる。
 図13から図18を参照しつつ、実施形態の別例について以下詳細に説明する。各図面では、各部材を認識可能な大きさとするために縮尺を適宜変更している。
 各図面において、矢印Fは、図示された構造の前方向を示している。矢印Bは、図示された構造の後方向を示している。矢印Uは、図示された構造の上方向を示している。矢印Dは、図示された構造の下方向を示している。矢印Lは、図示された構造の左方向を示している。矢印Rは、図示された構造の右方向を示している。これらの方向は、説明の便宜のために用いるに過ぎず、当該構造の実使用時における姿勢を限定する意図はない。
 図13の(A)は、第五実施形態に係るセンサモジュール501の外観を示している。センサモジュール501は、ハウジング511と透光カバー512を備えている。ハウジング511は、透光カバー512とともに収容室513を区画している。
 図13の(B)は、透光カバー512が外された状態のセンサモジュール501の外観を示している。図14は、図13の(B)における線XIV-XIVに沿って矢印方向から見たセンサモジュール501の断面を示している。
 センサモジュール501は、カメラユニット514とLiDARセンサユニット515を備えている。カメラユニット514は、第一センサユニットの一例である。LiDARセンサユニット515は、第二センサユニットの一例である。
 カメラユニット514は、車両の外部の情報として画像を取得するための装置である。画像は、静止画像と動画像の少なくとも一方を含みうる。カメラユニット514は、可視光に感度を有するカメラを備えていてもよいし、赤外光に感度を有するカメラを備えていてもよい。
 LiDARセンサユニット515は、非可視光を出射する構成、および当該非可視光が車両の少なくとも外部に存在する物体に反射した結果の戻り光を検出する構成を備えている。LiDARセンサユニット515は、必要に応じて出射方向(すなわち検出方向)を変更して当該非可視光を掃引する走査機構を備えうる。例えば、非可視光として波長905nmの赤外光が使用されうる。
 センサモジュール501は、車両における適宜の箇所に搭載される。当該箇所は、カメラユニット514とLiDARセンサユニット515のそれぞれが所望の情報を取得可能な位置として定められる。
 センサモジュール501は、支持体516を備えている。支持体516は、カメラユニット514とLiDARセンサユニット515を支持している。図15に示されるように、ハウジング511の背壁511aには開口511bが形成されている。支持体516は、ハウジング511に対して外部から着脱可能とされている。
 すなわち、支持体516に支持されたカメラユニット514とLiDARセンサユニット515に開口511bを通過させ、支持体516を背壁511aに固定することにより、図14に示された状態が得られる。図14における矢印Aは、支持体516の装着方向を示している。このようにして支持体516がハウジング511に装着されると、支持体516は、収容室513の一部を区画する。カメラユニット514とLiDARセンサユニット515は、収容室513内に配置される。
 このような構成によれば、複数のセンサに対する保守点検作業や交換作業を、支持体516をハウジング511に対して外部から着脱するのみで遂行できる。したがって、車両に搭載される複数のセンサの保守点検作業や交換作業に必要とされる労力を軽減できる。
 図13の(B)に示されるように、支持体516の装着方向から見たとき、カメラユニット514の全体とLiDARセンサユニット515の全体は、支持体516の外縁516aの内側に位置している。
 このような構成によれば、カメラユニット514とLiDARセンサユニット515にハウジング511の開口511bを通過させる際に、支持体516を傾けるなどの手間を不要にできる。支持体516のハウジング511に対する着脱を直線的な動作で遂行できるので、作業効率の低下を抑制できる。
 図13の(B)に示されるように、支持体516の装着方向から見たとき、支持体516の四隅の一つのみが異なる形状とされている。ハウジング511に形成された開口511bもまた、支持体516に対応する形状を有している。すなわち、支持体516とハウジング511は、支持体516がハウジング511に装着される際の姿勢を規制する形状を有している。
 このような構成によれば、誤った姿勢(上下方向または左右方向が逆の姿勢)でカメラユニット514とLiDARセンサユニット515が収容室513内に配置される事態を回避できる。また、ハウジング511への装着時における支持体516の姿勢の決定に迷いが生じないので、作業効率の低下を抑制できる。
 図14において、矢印514dは、カメラユニット514の検出基準方向を示している。矢印515dは、LiDARセンサユニット515の検出基準方向を示している。上記のようにハウジング511への装着時における支持体516の姿勢が規制されることにより、カメラユニット514の検出基準方向514dとLiDARセンサユニット515の検出基準方向515dが容易に定まる。このことによっても、作業効率の低下を抑制できる。
 図14に示されるように、支持体516の装着方向Aは、カメラユニット514の検出基準方向514dおよびLiDARセンサユニット515の検出基準方向515dに沿っている。
 「検出基準方向に沿う」とは、装着方向Aが検出基準方向と一致する場合、および装着方向Aが検出基準方向に対して傾いている場合を含む意味である。但し後者の場合、装着方向Aの検出基準方向に対する傾きが、検出基準方向と直交する向きに対する傾きよりも小さいことを要する。図14に示される例の場合、カメラユニット514の検出基準方向514dおよびLiDARセンサユニット515の検出基準方向515dは、前後方向に沿っている。装着方向Aは、前後方向に対して傾いていてもよい。但し、前後方向に対する傾きは、左右方向と上下方向の各々に対する傾きよりも小さいことを要する。
 図13の(B)と図14の比較から判るように、各センサユニットの投影面積は、検出基準方向から見た場合において小さくなる傾向にある。したがって、支持体516の装着方向Aを各センサユニットの検出基準方向に沿わせることにより、支持体516の寸法およびハウジング511の開口511bの面積を小さくできる。
 図14において、点514pは、カメラユニット514の検出基準位置を示している。点515pは、LiDARセンサユニット515の検出基準位置を示している。検出基準位置は、各センサユニットによる実際の検出に係る物理的な位置(カメラユニット514における撮像素子やLiDARセンサユニット515における受光素子の受光面など)として定められてもよいし、各センサユニットの配置や検出範囲を定める上で用いられる仮想的な点として定められてもよい。
 本実施形態においては、カメラユニット514の検出基準位置514pとLiDARセンサユニット515の検出基準位置515pは、前後方向にオフセットしていない。
 このような構成によれば、支持体516の姿勢を調節することによるカメラユニット514の検出基準方向514dとLiDARセンサユニット515の検出基準方向515dの一括調整が容易になる。
 図13の(B)に示されるように、カメラユニット514の検出基準位置514pとLiDARセンサユニット515の検出基準位置515pは、上下方向にオフセットしていない。
 このような構成によっても、支持体516の姿勢を調節することによるカメラユニット514の検出基準方向514dとLiDARセンサユニット515の検出基準方向515dの一括調整が容易になる。
 すなわち、支持体516は、ハウジング511に対する姿勢を微調整するための機構(不図示)を備えうる。そのような機構としては、エイミングスクリュー機構やアクチュエータ機構が例示されうる。
 カメラユニット514とLiDARセンサユニット515は、支持体516に対して個別に着脱可能とされうる。
 このような構成によれば、修理や交換の必要がないセンサユニットを継続利用できるので、センサモジュール501の経済的な運用が可能である。
 図13の(B)に示されるように、信号線541がカメラユニット514に接続されている。信号線541は、カメラユニット514に電力や制御信号を供給したり、カメラユニット514により検出された情報に対応する信号を出力したりするために使用される。
 同様に、信号線551がLiDARセンサユニット515に接続されている。信号線551は、LiDARセンサユニット515に電力や制御信号を供給したり、LiDARセンサユニット515により検出された情報に対応する信号を出力したりするために使用される。
 センサモジュール501は、集約部561を備えている。集約部561は、支持体516に設けられている。集約部561は、カメラユニット514に接続された信号線541とLiDARセンサユニット515に接続された信号線551を集約している。集約部561は、例えば挿通穴が形成された弾性部材として提供される。ハウジング511には貫通穴が形成されており、集約部561が当該貫通穴に嵌入される。信号線541と信号線551は、集約部561に形成された挿通穴を通じてハウジング511の外側へ引き出される。
 センサモジュールが複数のセンサユニットを備えている場合、複数の信号線の引き回しが必要になる。上記のような構成によれば、複数の信号線が支持体516において集約されるので、複数の信号線の取扱いが容易になる。よって、作業効率の低下を抑制できる。
 図14に示されるように、センサモジュール501は、制御装置517を備えている。制御装置517は、カメラユニット514とLiDARセンサユニット515の各々を制御するための装置である。本例においては、制御装置517は、ハウジング511の外側において支持体516に支持されている。信号線541と信号線551は、制御装置517に接続されている。カメラユニット514の動作を制御するための信号は、信号線541を介してカメラユニット514に供給される。LiDARセンサユニット515の動作を制御するための信号は、信号線551を介してLiDARセンサユニット515に供給される。
 図示を省略するが、制御装置517には通信線が接続されている。当該通信線は、車両に搭載されたECUなどの統括制御装置と直接的あるいは間接的に接続される。これにより、制御装置517と統括制御装置との間で信号やデータの通信が可能とされる。
 制御装置517は、汎用メモリと協働して動作する汎用マイクロプロセッサにより実現されうる。汎用マイクロプロセッサとしては、CPU、MPU、GPUが例示されうる。汎用メモリとしては、ROMやRAMが例示されうる。この場合、ROMには、後述する処理を実現するコンピュータプログラムが記憶されうる。汎用マイクロプロセッサは、ROM上に記憶されたプログラムの少なくとも一部を指定してRAM上に展開し、RAMと協働して上述した処理を実行する。制御装置517は、後述する処理を実現するコンピュータプログラムを実行可能なマイクロコントローラ、ASIC、FPGAなどの専用集積回路によって実現されてもよい。制御装置517は、汎用マイクロプロセッサと専用集積回路の組合せによって実現されてもよい。
 このような構成によれば、車両に搭載されたECUなどの統括制御装置により行なわれる処理の一部を、制御装置517が分担できる。したがって、統括制御装置における処理負荷を軽減できる。
 なお、カメラユニット514とLiDARセンサユニット515のいずれかの動作は、制御装置517を介さずに上記の統括制御装置によって制御されてもよい。
 制御装置517は、収容室513内において支持体516によって支持されてもよい。この場合、信号線541と信号線551は、収容室513内において制御装置517に接続されるので、制御装置517が集約部として機能しうる。そして、統括制御装置との通信に用いられる信号線が収容室513からハウジング511の外側へ引き出される。
 図14に示されるように、支持体516は、金属を含む材料で形成されている。
 このような構成によれば、カメラユニット514とLiDARセンサユニット515の各々の動作により発生する熱を効率的に放散できる。制御装置517が支持体516に支持される場合においては、制御装置517の動作により発生する熱も効率的に放散できる。
 図14に示されるように、支持体516は、封止部材562を備えている。封止部材562は、支持体516とハウジング511の間に配置される。封止部材562の例としては、ガスケットやOリングが挙げられる。封止部材562は、弾性を備えうる。
 このような構成によれば、収容室513の一部を区画する支持体516をハウジング511に対して外部から着脱可能にしても、収容室513に対する防水性や防塵性を確保できる。
 図14に示されるように、カメラユニット514は、遮光カバー542を備えうる。遮光カバー542は、カメラユニット514の撮像面543を包囲するように設けられる。
 このような構成によれば、撮像面543への外乱光の進入を抑制できる。したがって、カメラユニット514による車両の外部情報の検出精度の低下を抑制できる。
 第五実施形態は、本開示の理解を容易にするための例示にすぎない。第五実施形態に係る構成は、本開示の趣旨を逸脱しなければ、適宜に変更・改良されうる。
 第五実施形態においては、ハウジング511に対する支持体516の装着方向Aは、カメラユニット514の検出基準方向514dとLiDARセンサユニット515の検出基準方向515dに沿っている。しかしながら、支持体516の装着方向は、カメラユニット514の検出基準方向514dとLiDARセンサユニット515の検出基準方向515dに沿っていなくてもよい。
 図16は、そのような別例を示している。本例においては、支持体516の装着方向は、センサモジュール501の上下方向に沿う。他方、カメラユニット514の検出基準方向514dとLiDARセンサユニット515の検出基準方向515dは、センサモジュール501の前後方向に沿っている。すなわち、図13の(B)に示されるハウジング511の天井壁511cまたは底壁511dに前述した開口511bが形成され、カメラユニット514とLiDARセンサユニット515に開口511bを通過させるように、支持体516がハウジング511に対して装着される。
 本例においても、支持体516の装着方向から見たとき、カメラユニット514の全体とLiDARセンサユニット515の全体は、支持体516の外縁516aの内側に位置している。
 第五実施形態においては、ハウジング511に対する装着方向から見た支持体516は、四隅の一つのみが異なった形状とされた略長方形状を呈している。しかしながら、図16に示されるように、装着方向から見た支持体516の形状は、略円形状を呈しうる。この場合、外縁516aの一部に突起516bが形成されうる。他方、ハウジング511に形成される開口511bは、突起516bを受容するための凹部が形成される。すなわち、本例においても、支持体516とハウジング511は、支持体516がハウジング511に装着される際の姿勢を規制する形状を有している。突起と凹部の関係は、逆でもよい。
 第五実施形態においては、カメラユニット514の検出基準方向514dとLiDARセンサユニット515の検出基準方向515dは、相対変化しない。すなわち、検出基準方向514dと検出基準方向515dは、支持体516とともに固定されるか、一括調整される。しかしながら、検出基準方向514dと検出基準方向515dを個別に調節可能な構成も採用されうる。
 図17の(A)は、そのような例を示している。本例において、センサモジュール501は、第一調節機構581と第二調節機構582を備えている。第一調節機構581は、カメラユニット514の検出基準方向514dを調節するための機構である。第二調節機構582は、LiDARセンサユニット515の検出基準方向515dを調節するための機構である。第一調節機構581と第二調節機構582は、支持体516に支持されている。
 具体的には、第一調節機構581は、スクリュー581a、スクリュー581b、支点581c、および支持板581dを含むエイミングスクリュー機構である。カメラユニット514は、支持板581dに支持されている。支持板581dは、スクリュー581a、スクリュー581b、および支点581cを介して支持体516に支持されている。スクリュー581aとスクリュー581bは、ハウジング511の外側から操作可能とされている。
 スクリュー581aが操作されると、支点581cを中心として支持板581dの姿勢が左右方向に変化する。これにより、カメラユニット514の検出基準方向514dが、左右方向に変化する。スクリュー581bが操作されると、支点581cを中心として支持板581dの姿勢が上下方向に変化する。これにより、カメラユニット514の検出基準方向514dが、上下方向に変化する。スクリュー581aとスクリュー581bの各々は、外部からの制御信号により動作するアクチュエータに置き換えられうる。
 同様に、第二調節機構582は、スクリュー582a、スクリュー582b、支点582c、および支持板582dを含むエイミングスクリュー機構である。LiDARセンサユニット515は、支持板582dに支持されている。支持板582dは、スクリュー582a、スクリュー582b、および支点582cを介して支持体516に支持されている。スクリュー582aとスクリュー582bは、ハウジング511の外側から操作可能とされている。
 スクリュー582aが操作されると、支点582cを中心として支持板582dの姿勢が左右方向に変化する。これにより、LiDARセンサユニット515の検出基準方向515dが、左右方向に変化する。スクリュー582bが操作されると、支点582cを中心として支持板582dの姿勢が上下方向に変化する。これにより、LiDARセンサユニット515の検出基準方向515dが、上下方向に変化する。スクリュー582aとスクリュー582bの各々は、外部からの制御信号により動作するアクチュエータに置き換えられうる。
 このような構成によれば、特定のセンサユニットの検出基準方向の調節を、別のセンサユニットの検出基準方向の制約を受けることなく遂行できる。
 第五実施形態においては、センサモジュール501は、二つのセンサユニットを備えている。しかしながら、センサモジュール501が備えるセンサユニットの数は、三つ以上でもよい。
 図17の(B)は、そのような別例を示している。センサモジュール501は、さらにミリ波センサユニット519を備えうる。ミリ波センサユニット519は、支持体516に支持される。ミリ波センサユニット519は、第三センサユニットの一例である。
 ミリ波センサユニット519は、ミリ波を発信する構成、および当該ミリ波が車両の外部に存在する物体に反射した結果の反射波を受信する構成を備えている。ミリ波の周波数の例としては、24GHz、26GHz、76GHz、79GHzなどが挙げられる。
 このような構成によれば、取得可能な車両外部の情報を増やしつつも、センサの保守点検作業や交換作業に必要とされる労力を軽減できる。
 これまでに記載された各例においては、センサモジュール501が備える複数のセンサユニットの種別が相違している。しかしながら、各センサユニットは、上述したカメラユニット、LiDARセンサユニット、およびミリ波センサユニットから適宜に選択されうる。
 第五実施形態においては、センサモジュール501は、複数のセンサユニットを備えている。しかしながら、センサモジュール501は、ランプユニットと少なくとも一つのセンサユニットを備えるように構成されうる。
 図18は、そのような別例を示している。センサモジュール501は、カメラユニット514とランプユニット520を備えている。ランプユニット520は、車両の外方へ可視光を出射する装置である。ランプユニット520は、収容室513内に収容されている。ランプユニット520は、支持体516に支持されている。ランプユニット520としては、前照灯ユニット、車幅灯ユニット、方向指示灯ユニット、霧灯ユニットなどが例示されうる。
 この場合、センサモジュール501は、図2に示される車両100の左前隅部LFに搭載される。車両100の右前隅部RFには、図18に示されるセンサモジュール501と左右対称の構成を有するセンサモジュールが搭載される。図18の説明に用いられる「左」と「右」は、運転席から見た左右の方向を示している。
 図18に示されるセンサモジュール501は、図2に示される車両100の左後隅部LBにも搭載されうる。左後隅部LBに搭載されるセンサモジュールの基本的な構成は、図18に示されるセンサモジュール501と前後対称でありうる。
 図18に示されるセンサモジュール501は、図2に示される車両100の右後隅部RBにも搭載されうる。右後隅部RBに搭載されるセンサモジュールの基本的な構成は、上述した左後隅部LBに搭載されるセンサモジュールと左右対称である。
 このような構成によれば、カメラユニット514とランプユニット520の保守点検作業や交換作業を、支持体516をハウジング511に対して外部から着脱するのみで遂行できる。したがって、収容室513内に少なくとも一つのセンサユニットとランプユニットが配置されるセンサモジュールの保守点検作業や交換作業に必要とされる労力を軽減できる。
 図19から図26を参照しつつ、実施形態の別例について以下詳細に説明する。各図面では、各部材を認識可能な大きさとするために縮尺を適宜変更している。
 各図面において、矢印Fは、図示された構造の前方向を示している。矢印Bは、図示された構造の後方向を示している。矢印Lは、図示された構造の左方向を示している。矢印Rは、図示された構造の右方向を示している。以降の説明に用いる「左」および「右」は、運転席から見た左右の方向を示している。
 図19は、第六実施形態に係る左前ランプ装置601の構成を模式的に示している。左前ランプ装置601は、ハウジング611と透光カバー612を備えている。ハウジング611は、透光カバー612とともに灯室613を区画している。左前ランプ装置601は、図2に示される車両100の左前隅部LFに搭載される。車両100の右前隅部RFには、左前ランプ装置601と左右対称の構成を有する右前ランプ装置が搭載される。
 図19に示されるように、左前ランプ装置601は、ランプユニット614を備えている。ランプユニット614は、車両100の外方へ可視光を出射する装置である。ランプユニット614は、灯室613内に収容されている。ランプユニット614としては、前照灯ユニット、車幅灯ユニット、方向指示灯ユニット、霧灯ユニットなどが例示されうる。
 左前ランプ装置601は、センサユニット615を備えている。センサユニット615は、灯室613内に収容されている。灯室613は、ハウジング611により区画される空間の一例である。センサユニット615は、車両100の外部の情報を検出し、当該情報に対応する信号を出力する装置である。センサユニット615は、LiDARセンサユニット、カメラユニット、ミリ波センサユニットのいずれかでありうる。
 LiDARセンサユニットは、非可視光を出射する構成、および当該非可視光が車両の少なくとも外部に存在する物体に反射した結果の戻り光を検出する構成を備えている。LiDARセンサユニットは、必要に応じて出射方向(すなわち検出方向)を変更して当該非可視光を掃引する走査機構を備えうる。例えば、非可視光として波長905nmの赤外光が使用されうる。
 カメラユニットは、車両の外部の情報として画像を取得するための装置である。画像は、静止画像と動画像の少なくとも一方を含みうる。カメラユニットは、可視光に感度を有するカメラを備えていてもよいし、赤外光に感度を有するカメラを備えていてもよい。
 ミリ波センサユニットは、ミリ波を発信する構成、および当該ミリ波が車両100の外部に存在する物体に反射した結果の反射波を受信する構成を備えている。ミリ波の周波数の例としては、24GHz、26GHz、76GHz、79GHzなどが挙げられる。
 左前ランプ装置601は、第一エイミング機構616を備えている。第一エイミング機構616は、ランプユニット614の照明基準位置を調節する機構である。
 左前ランプ装置601は、第二エイミング機構617を備えている。第二エイミング機構617は、センサユニット615の検出基準位置を調節する機構である。
 図20の(A)は、左前ランプ装置601の一部を図19における矢印XXA方向から見た外観を示している。図20の(B)は、図20の(A)における線XXB-XXBに沿って矢印方向から見た断面を示している。
 第一エイミング機構616は、エイミングスクリュー661を含んでいる。エイミングスクリュー661は、ヘッド部661aと軸部661bを有している。ハウジング611は、貫通孔611aを有している。ヘッド部661aは、ハウジング611の外側に配置されている。軸部661bは、貫通孔611aを通じて灯室613内へ延びている。軸部661bの外周面の一部にはネジ溝が形成されている。
 第一エイミング機構616は、リンク部材662を含んでいる。リンク部材662は、貫通孔を有している。貫通孔の内周面にはネジ溝が形成されている。リンク部材662は、ネジ溝同士が螺合するようにエイミングスクリュー661の軸部661bと結合されている。他方、リンク部材662は、ランプユニット614の一部と結合されている。
 ヘッド部661aがハウジング611の外側に配置されているので、第一エイミング機構616は、ハウジング611の外側から操作可能である。ヘッド部661aが所定の工具で回転されることにより、軸部661bも同方向に回転する。これにより、螺合されているリンク部材662が軸部661bに沿って変位する。当該変位に応じてランプユニット614の姿勢が変化することにより、ランプユニット614の照明基準位置が変更される。リンク部材662を介してのランプユニット614の照明基準位置の調節の仕方自体は周知であるので、詳細な説明は省略する。
 第二エイミング機構617は、エイミングスクリュー671を含んでいる。エイミングスクリュー671は、ヘッド部671aと軸部671bを有している。ヘッド部671aは、灯室613内に配置されている。軸部671bの外周面にはネジ溝が形成されている。
 第二エイミング機構617は、リンク部材672を含んでいる。リンク部材672は、貫通孔を有している。貫通孔の内周面にはネジ溝が形成されている。リンク部材672は、ネジ溝同士が螺合するようにエイミングスクリュー671の軸部671bと結合されている。他方、リンク部材672は、センサユニット615の一部と結合されている。
 ヘッド部671aが灯室613内に配置されているので、第二エイミング機構617は、ハウジング611の外側から操作できない。したがって、左前ランプ装置601は、切替装置618を備えている。切替装置618は、ハウジング611の外側から第一エイミング機構616のみの操作を許容する第一状態と、第一エイミング機構616の操作に応じて第二エイミング機構617が操作される第二状態とを切り替え可能な装置である。
 切替装置618は、第一歯車681を備えている。第一歯車681は、第一エイミング機構616におけるエイミングスクリュー661の軸部661bと結合されている。すなわち、ハウジング611の外側においてエイミングスクリュー661のヘッド部661aが回転されると、第一歯車681も同方向に回転する。
 切替装置618は、第二歯車682、第三歯車683、およびシャフト684を備えている。シャフト684は、軸受機構により回転可能に支持されている。第二歯車682は、第一歯車681と噛合している。第二歯車682は、通常時においてシャフト684の周囲を空転可能とされている。第三歯車683は、シャフト684と結合されている。したがって、第三歯車683は、シャフト684と同方向に回転する。
 第二エイミング機構617におけるエイミングスクリュー671のヘッド部671aの外周面には、歯車671cが形成されている。歯車671cは、第三歯車683と噛合している。
 図20の(B)に示された状態は、前述の第一状態に対応している。ハウジング611の外側においてエイミングスクリュー661のヘッド部661aが回転されると、第一歯車681も同方向に回転する。その回転は、第二歯車682に伝達される。しかしながら、第二歯車682は、シャフト684の周囲を空転するので、第三歯車683は回転しない。したがって、第一エイミング機構616のみの操作が許容される。
 シャフト684は、中空部684aを有している。ハウジング611には貫通孔611bが形成されている。貫通孔611bは、中空部684aと連通している。通常時において貫通孔611bは、カバー685によって覆われている。
 図21の(A)に示されるように、切替装置618は、鍵部686を備えている。鍵部686は、円柱形状の軸部686aを有している。図21の(B)に示されるように、鍵部686は、一対の突起686bを備えている。各突起686bは、軸部686aの側面から突出している。各突起686bは、不図示の弾性部材により、軸部686aの外方へ向けて付勢されている。
 鍵部686は、操作部材686cを備えている。操作部材686cを図21の(A)に示される位置へ移動させると、各突起686bは、弾性部材の付勢力に抗して強制的に軸部686a内に引き戻され、軸部686a内に収容される。操作部材686cから手を放すと、各突起686bは、弾性部材の付勢力によって軸部686aの外方へ突出する。
 図21の(B)は、各突起686bの突出量が最大である状態を示している。この状態において、各突起686bは、弾性部材の付勢力に抗する方向への力により軸部686aに向かって変位可能である。操作部材686cの位置は、各突起686bの突出量に応じて図21の(A)に示される位置と図21の(B)に示される位置の間で変位する。マーク686dは、各突起686bの突出量が最大となる位置に操作部材686cが位置していることを示している。
 図22から図24を参照しつつ、鍵部686の使用法について説明する。まず図22に示されるように、カバー685を取り外すことにより露出された貫通孔611bに鍵部686が挿入される。このとき、操作部材686cを図21の(A)に示される位置に移動させ、各突起686bが軸部686a内に収容された状態で鍵部686の挿入がなされる。操作部材686cから手を放すことにより、各突起686bは軸部686aから突出可能となるが、中空部684aの内壁により突出が阻止される。
 図23に示されるように、シャフト684は、一対の貫通孔684bを有している。各貫通孔684bは、シャフト684の周方向における一部にのみ形成されている。各貫通孔684bは、シャフト684の径方向に延びており、シャフト684の外部と中空部684aを連通している。操作部材686cから手を放した状態で鍵部686を回転させるうちに、一対の突起686bが一対の貫通孔684bに対向する状態が一時的に成立する。このとき、弾性部材の付勢力により一対の突起686bが突出し、それぞれ一対の貫通孔684bに進入する。
 図24に示されるように、第二歯車682の内周面には一対の横孔682aが形成されている。各横孔682aは、第二歯車682の径方向に延びている。エイミングスクリュー661を介して第一歯車681と第二歯車682を回転させるうちに、一対の横孔682aが一対の貫通孔684bに対向する状態が一時的に成立する。このとき、弾性部材の付勢力により一対の突起686bがさらに突出し、それぞれ一対の横孔682aに進入する。これにより、一対の突起686bを介して第二歯車682とシャフト684が結合される。
 図24に示された状態は、前述の第二状態に対応している。ハウジング611の外側においてエイミングスクリュー661のヘッド部661aが回転されると、第一歯車681も同方向に回転する。その回転は、第二歯車682に伝達される。鍵部686を介して第二歯車682とシャフト684が結合されているので、シャフト684は、第二歯車682と同方向に回転する。第三歯車683はシャフト684に結合されているので、第三歯車683も第二歯車682と同方向に回転する。第三歯車683の回転は、歯車671cを介してエイミングスクリュー671へ伝達される。これにより、エイミングスクリュー671は、エイミングスクリュー661と同方向へ回転する。すなわち、第一エイミング機構616の操作に応じて第二エイミング機構617が操作される。
 これにより、螺合されているリンク部材672が軸部671bに沿って変位する。当該変位に応じてセンサユニット615の姿勢が変化することにより、センサユニット615の検出基準位置が変更される。リンク部材672を介してのセンサユニット615の照明基準位置の調節の仕方自体は周知であるので、詳細な説明は省略する。
 図24に示される状態において各突起686bの突出量は最大であるので、操作部材686cがマーク686dに達する。すなわち、ユーザは、マーク686dに操作部材686cが到達した事実をもって、第二状態が成立したことを認識できる。
 センサユニット615の検出基準位置の調節終了後、鍵部686の操作部材686cを図22に示される位置へ移動させることにより、一対の突起686bが軸部686aに引き戻され、第二歯車682とシャフト684の結合が解除される。すなわち、第二状態から第一状態への切り替えがなされる。この状態において、あるいは鍵部686を中空部684aから抜いた後、第一エイミング機構616を操作してランプユニット614の照明基準位置が調節されうる。
 上記のような構成によれば、切替装置618が第二状態を成立させない限り、ハウジング611内に収容された第二エイミング機構617を操作できない。したがって、左前ランプ装置601が備えるセンサユニット615の検出基準位置の一般ユーザによる調節行為を制限できる。
 本実施形態においては、切替装置618の一部である鍵部686がハウジング611の外側から着脱可能とされている。鍵部686が取り外された状態では、第一状態のみが成立する。
 このような構成によれば、一般ユーザが入手できないように鍵部686を管理することによって、一般ユーザによるセンサユニット615の検出基準位置の調節を不可能にできる。
 図21の(C)に示されるように、鍵部686の操作部材686cは、マーク686eに示された位置に係止可能とされうる。当該位置は、各突起686bの突出量が図21の(B)に示された状態よりも小さくなるように設定されうる。この突出量は、図25に示されるように、一対の突起686bがシャフト684における一対の貫通孔684bのみと係合可能な量として定められる。
 この場合、切替装置618は、第二エイミング機構617のみの操作を許容する第三状態もとりうる。すなわち、図25に示される状態で鍵部686を回転させることによって、シャフト684は、第二歯車682とは独立して回転する。したがって、シャフト684の回転は、第三歯車683と歯車671cを介してエイミングスクリュー671に伝達される一方、第一エイミング機構616のエイミングスクリュー661には伝達されない。
 このような構成によれば、ランプユニット614の照明基準位置とセンサユニット615の検出基準位置を独立して調節できるので、作業性が向上する。
 第六実施形態は、本開示の理解を容易にするための例示にすぎない。第六実施形態に係る構成は、本開示の趣旨を逸脱しなければ、適宜に変更・改良されうる。
 第六実施形態においては、切替装置618の一部である鍵部686がハウジング611の外側から着脱可能とされている。しかしながら、図26に示されるように、鍵部686と同様の切り替え機能を有する切替装置619の少なくとも一部は、灯室613内に配置されうる。
 切替装置619は、本体691を備えている。本体691は、シャフト684の中空部684a内に配置されている。本体691からは、一対の突起692が突出可能とされている。本体691と一対の突起692の関係は、上記の実施形態における軸部686aと一対の突起686bの関係と同様であるので、詳細な説明は省略する。各突起692の突出量に応じて、前述した第一状態、第二状態、および第三状態を選択的にとることが可能である。
 突起692の突出量は、本体691と連結された不図示の操作部材(レバー、ボタン、ダイヤルなど)によって調節されうる。当該操作部材は、左前ランプ装置601が車両100に搭載された際に一般ユーザがアクセスできない箇所に配置される。
 このような構成によっても、左前ランプ装置601が備えるセンサユニット615の検出基準位置の一般ユーザによる調節行為を制限できる。さらに、着脱可能な部品の所在を意識する必要がないので、切替装置619の管理を容易にできる。
 鍵部686は、必ずしも操作部材686cを備えることを要しない。鍵部686をシャフト684の中空部684aから引き抜く方向へ一定値以上の力を付与することにより、弾性部材の付勢力に抗しつつ一対の突起686bが軸部686a内に引き戻される構成も採用されうる。
 左前ランプ装置601の構成は、左後ランプ装置にも適用可能である。左後ランプ装置は、図2に示される車両100の左後隅部LBに搭載される。左後ランプ装置の基本的な構成は、左前ランプ装置601と前後対称でありうる。
 左前ランプ装置601の構成は、右後ランプ装置にも適用可能である。右後ランプ装置は、図2に示される車両100の右後隅部RBに搭載される。右後ランプ装置の基本的な構成は、上述の左後ランプ装置と左右対称である。
 本出願の記載の一部を構成するものとして、2018年3月5日に提出された日本国特許出願2018-038876号、2018年3月16日に提出された日本国特許出願2018-049743号、2018年4月10日に提出された日本国特許出願2018-075300号、および2018年4月20日に提出された日本国特許出願2018-081311号の内容が援用される。

Claims (32)

  1.  車両に搭載されるセンサシステムであって、
     第一検出基準軸に基づいて前記車両の第一外部情報を検出する第一センサユニットと、
     第二検出基準軸に基づいて前記車両の第二外部情報を検出する第二センサユニットと、
    を備えており、
     前記車両の上下方向から見て前記第一検出基準軸および前記第二検出基準軸は交差している、
    センサシステム。
  2.  前記第一検出基準軸と前記第二検出基準軸は交差している、
    請求項1に記載のセンサシステム。
  3.  第一センサユニットと第二センサユニットを収容する収容室を区画する透光部材を備えており、
     前記透光部材は、前記収容室に向かって凹んだ凹部を有しており、
     前記第一検出基準軸と前記第二検出基準軸は、前記凹部と交差している、
    請求項1または2に記載のセンサシステム。
  4.  前記凹部は第一平坦部と第二平坦部を含んでおり、
     前記第一検出基準軸は、前記第一平坦部と交差しており、
     前記第二検出基準軸は、前記第二平坦部と交差している、
    請求項3に記載のセンサシステム。
  5.  前記第一センサユニットから前記第一外部情報に対応する第一信号を取得し、前記第二センサユニットから前記第二外部情報に対応する第二信号を取得する信号処理装置を備えており、
     前記信号処理装置は、前記第一信号と前記第二信号に基づいて前記第一外部情報と前記第二外部情報が統合された統合情報に対応するデータを生成する、
    請求項1から4のいずれか一項に記載のセンサシステム。
  6.  ランプユニットを収容する灯室を区画しているハウジングを備えており、
     前記第一センサユニットと前記第二センサユニットは、前記灯室内に収容されている、
    請求項1から5のいずれか一項に記載のセンサシステム。
  7.  前記第一センサユニットと前記第二センサユニットは、LiDARセンサユニット、カメラユニット、ミリ波センサユニットの少なくとも一つを含んでいる、
    請求項1から6のいずれか一項に記載のセンサシステム。
  8.  車両に搭載されるセンサシステムであって、
     前記車両の外部の情報を検出する第一センサユニットと、
     前記第一センサユニットと連結可能であり、前記車両の外部の情報を検出する第二センサユニットと、
     前記第一センサユニットと前記第二センサユニットが連結されるとき、前記第一センサユニットの検出基準方向に対する前記第二センサユニットの検出基準方向の角度を規制する規制部材と、
    を備えている、
    センサシステム。
  9.  前記規制部材は、前記角度を複数の値から選択可能に構成されている、
    請求項8に記載のセンサシステム。
  10.  前記第一センサユニットと前記第二センサユニットを支持する共通の支持体と、
     前記車両に対する前記支持体の位置と姿勢の少なくとも一方を調節する調節機構と、
    を備えている、
    請求項8または9に記載のセンサシステム。
  11.  ランプユニットを収容する灯室を区画しているランプハウジングを備えており、
     前記第一センサユニットと前記第二センサユニットは、前記灯室内に配置されている、
    請求項8から10のいずれか一項に記載のセンサシステム。
  12.  前記第一センサユニットと前記第二センサユニットは、LiDARセンサユニット、カメラユニット、ミリ波センサユニットの少なくとも一つを含んでいる、
    請求項8から11のいずれか一項に記載のセンサシステム。
  13.  車両に搭載されるセンサモジュールであって、
     収容室を区画しているハウジングと、
     前記ハウジングに対して外部より着脱可能な支持体と、
     前記支持体に支持されている第一センサユニットと、
     前記支持体に支持されている第二センサユニットと、
    を備えており、
     前記支持体が前記ハウジングに装着されることにより、当該支持体が前記収容室の一部を区画するとともに、前記第一センサユニットと前記第二センサユニットが前記収容室内に配置される、
    センサモジュール。
  14.  前記支持体の装着方向から見たとき、前記第一センサユニットの全体と前記第二センサユニットの全体が前記支持体の外縁の内側に位置している、
    請求項13に記載のセンサモジュール。
  15.  前記支持体と前記ハウジングは、前記支持体が前記ハウジングに装着される際の姿勢を規制する形状を有している、
    請求項13または14に記載のセンサモジュール。
  16.  前記支持体の装着方向は、前記第一センサユニットの検出基準方向および前記第二センサユニットの検出基準方向に沿っている、
    請求項13から15のいずれか一項に記載のセンサモジュール。
  17.  前記第一センサユニットの検出基準位置と前記第二センサユニットの検出基準位置は、前後方向にオフセットしていない、
    請求項13から16のいずれか一項に記載のセンサモジュール。
  18.  前記第一センサユニットの検出基準位置と前記第二センサユニットの検出基準位置は、上下方向にオフセットしていない、
    請求項13から17のいずれか一項に記載のセンサモジュール。
  19.  前記第一センサユニットと前記第二センサユニットは、前記支持体に対して個別に着脱可能とされている、
    請求項13から18のいずれか一項に記載のセンサモジュール。
  20.  前記第一センサユニットに接続された信号線と前記第二センサユニットに接続された信号線を集約する集約部が、前記支持体に設けられている、
    請求項13から19のいずれか一項に記載のセンサモジュール。
  21.  前記第一センサユニットと前記第二センサユニットの少なくとも一方の動作を制御する制御装置が、前記支持体に支持されている、
    請求項13から20のいずれか一項に記載のセンサモジュール。
  22.  前記支持体は、金属を含む材料で形成されている、
    請求項13から21のいずれか一項に記載のセンサモジュール。
  23.  前記支持体と前記ハウジングの間に配置される封止部材を備えている、
    請求項13から22のいずれか一項に記載のセンサモジュール。
  24.  前記第一センサユニットと前記第二センサユニットの少なくとも一方は、カメラユニットであり、
     前記カメラユニットの撮像面を包囲する遮光カバーを備えている、
    請求項13から23のいずれか一項に記載のセンサモジュール。
  25.  前記第一センサユニットの検出基準方向を調節するための第一調節機構と前記第二センサユニットの検出基準方向を調節するための第二調節機構が、前記支持体に支持されている、
    請求項13から24のいずれか一項に記載のセンサモジュール。
  26.  前記支持体に支持されている第三センサモジュールを備えている、
    請求項13から25のいずれか一項に記載のセンサモジュール。
  27.  車両に搭載されるセンサモジュールであって、
     収容室を区画しているハウジングと、
     前記ハウジングに対して外部より着脱可能な支持体と、
     前記支持体に支持されているセンサユニットと、
     前記支持体に支持されているランプユニットと、
    を備えており、
     前記支持体が前記ハウジングに装着されることにより、当該支持体が前記収容室の一部を区画するとともに、前記センサユニットと前記ランプユニットが前記収容室内に配置される、
    センサモジュール。
  28.  車両に搭載されるランプ装置であって、
     照明光を出射するランプユニットと、
     前記車両の外部の情報を検出するセンサユニットと、
     前記ランプユニットと前記センサユニットを収容する空間を区画するハウジングと、
     前記ランプユニットの照明基準位置を調節する第一エイミング機構と、
     前記空間内に配置されており、前記センサユニットの検出基準位置を調節する第二エイミング機構と、
     前記ハウジングの外側から前記第一エイミング機構のみの操作を許容する第一状態と、前記第一エイミング機構の操作に応じて前記第二エイミング機構が操作される第二状態とを切り替え可能である切替装置と、
    を備えている、
    ランプ装置。
  29.  前記切替装置は、前記第二エイミング機構のみの操作を許容する第三状態にも切り替え可能である、
    請求項28に記載のランプ装置。
  30.  前記切替装置の一部は、前記ハウジングの外部から着脱可能であり、
     前記切替装置の一部が取り外された状態では、前記第一状態のみが成立する、
    請求項28または29に記載のランプ装置。
  31.  前記切替装置の少なくとも一部は、前記空間内に配置されている、
    請求項28または29に記載のランプ装置。
  32.  前記センサユニットは、LiDARセンサユニット、カメラユニット、ミリ波センサユニットの少なくとも一つを含んでいる、
    請求項28から31のいずれか一項に記載のランプ装置。
PCT/JP2019/008085 2018-03-05 2019-03-01 センサシステム、センサモジュール、およびランプ装置 WO2019172118A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19764283.8A EP3764126A4 (en) 2018-03-05 2019-03-01 SENSOR SYSTEM, SENSOR MODULE AND LAMP DEVICE
JP2020504984A JPWO2019172118A1 (ja) 2018-03-05 2019-03-01 センサシステム、センサモジュール、およびランプ装置
US16/978,556 US11248767B2 (en) 2018-03-05 2019-03-01 Sensor system, sensor module, and lamp device

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2018038876 2018-03-05
JP2018-038876 2018-03-05
JP2018-049743 2018-03-16
JP2018049743 2018-03-16
JP2018-075300 2018-04-10
JP2018075300 2018-04-10
JP2018081311 2018-04-20
JP2018-081311 2018-04-20

Publications (1)

Publication Number Publication Date
WO2019172118A1 true WO2019172118A1 (ja) 2019-09-12

Family

ID=67847052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008085 WO2019172118A1 (ja) 2018-03-05 2019-03-01 センサシステム、センサモジュール、およびランプ装置

Country Status (4)

Country Link
US (1) US11248767B2 (ja)
EP (1) EP3764126A4 (ja)
JP (1) JPWO2019172118A1 (ja)
WO (1) WO2019172118A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021065437A1 (ja) * 2019-10-02 2021-04-08 株式会社小糸製作所 測距装置
WO2022137817A1 (ja) * 2020-12-23 2022-06-30 株式会社サタケ 穀粒判別装置
WO2024043178A1 (ja) * 2022-08-26 2024-02-29 株式会社小糸製作所 測定装置、制御装置及びプログラム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11465705B2 (en) 2018-06-05 2022-10-11 Indian Motorcycle International, LLC Adaptive lighting system
KR102435406B1 (ko) * 2020-07-03 2022-08-24 현대모비스 주식회사 카메라 내장 램프의 비동기 제어 시스템 및 방법
FR3132162B1 (fr) 2022-01-24 2023-12-15 Valeo Vision Module pour élément d’éclairage et/ou de signalisation d’un véhicule comportant un capteur

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0440404U (ja) * 1990-08-01 1992-04-06
US5313213A (en) * 1992-01-18 1994-05-17 Mercedes-Benz Ag Device for aligning a directional antenna of a radar distance warning device of a vehicle
JPH08114446A (ja) * 1994-10-18 1996-05-07 Mitsubishi Automob Eng Co Ltd 測距センサの車体取付構造
JP2001260777A (ja) * 2000-03-21 2001-09-26 Denso Corp 車両用前照灯装置
WO2006035510A1 (ja) * 2004-09-29 2006-04-06 Hitachi, Ltd. 車両の外界認識装置
JP2008105518A (ja) 2006-10-25 2008-05-08 Calsonic Kansei Corp カメラ内蔵ランプ
JP2010002272A (ja) * 2008-06-19 2010-01-07 Toyota Motor Corp レーダー装置の軸調整方法および軸調整装置
JP2010185769A (ja) 2009-02-12 2010-08-26 Toyota Motor Corp 物体検出装置
JP2013029508A (ja) * 2011-07-26 2013-02-07 Avago Technologies Ecbu Ip (Singapore) Pte Ltd 多方向近接センサー
JP2015076352A (ja) 2013-10-11 2015-04-20 パナソニックIpマネジメント株式会社 ヘッドライトユニット
JP2017134052A (ja) * 2016-01-22 2017-08-03 株式会社デンソー 光測距装置
US20170315231A1 (en) * 2016-05-02 2017-11-02 Magna Electronics Inc. Mounting system for vehicle short range sensors
WO2018030239A1 (ja) * 2016-08-12 2018-02-15 株式会社小糸製作所 照明システムおよびセンサシステム
JP2018038876A (ja) 2012-12-26 2018-03-15 株式会社基陽 雪下ろし用シットハーネス
JP2018049743A (ja) 2016-09-21 2018-03-29 株式会社豊田自動織機 蓄電装置
JP2018075300A (ja) 2016-11-11 2018-05-17 住友ベークライト株式会社 放射線滅菌処理用フィルム、及び包装体
JP2018081311A (ja) 2017-12-12 2018-05-24 株式会社ジャパンディスプレイ 画像表示装置及び画像表示方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1130416A3 (en) 2000-03-02 2002-01-30 Denso Corporation Forward condition detecting apparatus for vehicles
US7579593B2 (en) * 2006-07-25 2009-08-25 Panasonic Corporation Night-vision imaging apparatus, control method of the same, and headlight module
US20140247349A1 (en) * 2013-03-04 2014-09-04 GM Global Technology Operations LLC Integrated lighting, camera and sensor unit
US11226401B2 (en) 2016-01-22 2022-01-18 Denso Corporation Optical distance measuring apparatus
US11953599B2 (en) * 2017-01-26 2024-04-09 Mobileye Vision Technologies Ltd. Vehicle navigation based on aligned image and LIDAR information

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0440404U (ja) * 1990-08-01 1992-04-06
US5313213A (en) * 1992-01-18 1994-05-17 Mercedes-Benz Ag Device for aligning a directional antenna of a radar distance warning device of a vehicle
JPH08114446A (ja) * 1994-10-18 1996-05-07 Mitsubishi Automob Eng Co Ltd 測距センサの車体取付構造
JP2001260777A (ja) * 2000-03-21 2001-09-26 Denso Corp 車両用前照灯装置
WO2006035510A1 (ja) * 2004-09-29 2006-04-06 Hitachi, Ltd. 車両の外界認識装置
JP2008105518A (ja) 2006-10-25 2008-05-08 Calsonic Kansei Corp カメラ内蔵ランプ
JP2010002272A (ja) * 2008-06-19 2010-01-07 Toyota Motor Corp レーダー装置の軸調整方法および軸調整装置
JP2010185769A (ja) 2009-02-12 2010-08-26 Toyota Motor Corp 物体検出装置
JP2013029508A (ja) * 2011-07-26 2013-02-07 Avago Technologies Ecbu Ip (Singapore) Pte Ltd 多方向近接センサー
JP2018038876A (ja) 2012-12-26 2018-03-15 株式会社基陽 雪下ろし用シットハーネス
JP2015076352A (ja) 2013-10-11 2015-04-20 パナソニックIpマネジメント株式会社 ヘッドライトユニット
JP2017134052A (ja) * 2016-01-22 2017-08-03 株式会社デンソー 光測距装置
US20170315231A1 (en) * 2016-05-02 2017-11-02 Magna Electronics Inc. Mounting system for vehicle short range sensors
WO2018030239A1 (ja) * 2016-08-12 2018-02-15 株式会社小糸製作所 照明システムおよびセンサシステム
JP2018049743A (ja) 2016-09-21 2018-03-29 株式会社豊田自動織機 蓄電装置
JP2018075300A (ja) 2016-11-11 2018-05-17 住友ベークライト株式会社 放射線滅菌処理用フィルム、及び包装体
JP2018081311A (ja) 2017-12-12 2018-05-24 株式会社ジャパンディスプレイ 画像表示装置及び画像表示方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3764126A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021065437A1 (ja) * 2019-10-02 2021-04-08 株式会社小糸製作所 測距装置
WO2022137817A1 (ja) * 2020-12-23 2022-06-30 株式会社サタケ 穀粒判別装置
JPWO2022137817A1 (ja) * 2020-12-23 2022-06-30
JP7355258B2 (ja) 2020-12-23 2023-10-03 株式会社サタケ 穀粒判別装置
WO2024043178A1 (ja) * 2022-08-26 2024-02-29 株式会社小糸製作所 測定装置、制御装置及びプログラム

Also Published As

Publication number Publication date
JPWO2019172118A1 (ja) 2021-02-18
EP3764126A1 (en) 2021-01-13
US11248767B2 (en) 2022-02-15
US20210025560A1 (en) 2021-01-28
EP3764126A4 (en) 2022-03-09

Similar Documents

Publication Publication Date Title
WO2019172118A1 (ja) センサシステム、センサモジュール、およびランプ装置
CN109690244B (zh) 传感器系统、传感器模块及灯装置
US10974639B2 (en) Lighting system and sensor system
US8905604B2 (en) Vehicle lamp control apparatus
EP3605136A1 (en) Sensor module, sensor system, and method for installing sensor system in vehicle
US20120268958A1 (en) Control device for vehicle lamp and vehicle lamp system
US20170193969A1 (en) Mirror device with display function and method of changing direction of mirror device with display function
CN110023817A (zh) 平视显示装置
JP6693474B2 (ja) ヘッドアップディスプレイ装置
US20190039505A1 (en) Headlight
JP2016042428A (ja) 車両用照明装置
CN110386083B (zh) 传感器模块
US20170199449A1 (en) Projection-type display device and heat dissipation method
US10807514B2 (en) Vehicular lamp
CN108058644B (zh) 显示装置以及内装部件单元
JP7396823B2 (ja) 車両用ミラー装置及び車両用ミラー装置の製造方法
CN209782493U (zh) 灯装置
JP5588237B2 (ja) 車輌用前照灯
JP7059987B2 (ja) ウィンドシールド表示装置
JP2020111197A (ja) 車両前方監視用補機およびインナーミラーの取付構造
JP2024057776A (ja) プロジェクター
KR20230078206A (ko) 각도 조절 장치 및 전자장치의 각도 조절 방법
JP2021018257A (ja) 表示装置
JP2020190595A (ja) 表示装置
JPWO2020059621A1 (ja) ヘッドアップディスプレイ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19764283

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020504984

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019764283

Country of ref document: EP

Effective date: 20201005